Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 Google LLC
  4 */
  5
  6/*
  7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
  8 */
  9
 10#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
 11
 12#include <crypto/skcipher.h>
 13#include <linux/blk-cgroup.h>
 14#include <linux/blk-crypto.h>
 15#include <linux/blkdev.h>
 16#include <linux/crypto.h>
 17#include <linux/keyslot-manager.h>
 18#include <linux/mempool.h>
 19#include <linux/module.h>
 20#include <linux/random.h>
 21
 22#include "blk-crypto-internal.h"
 23
 24static unsigned int num_prealloc_bounce_pg = 32;
 25module_param(num_prealloc_bounce_pg, uint, 0);
 26MODULE_PARM_DESC(num_prealloc_bounce_pg,
 27		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
 28
 29static unsigned int blk_crypto_num_keyslots = 100;
 30module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
 31MODULE_PARM_DESC(num_keyslots,
 32		 "Number of keyslots for the blk-crypto crypto API fallback");
 33
 34static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
 35module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
 36MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
 37		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
 38
 39struct bio_fallback_crypt_ctx {
 40	struct bio_crypt_ctx crypt_ctx;
 41	/*
 42	 * Copy of the bvec_iter when this bio was submitted.
 43	 * We only want to en/decrypt the part of the bio as described by the
 44	 * bvec_iter upon submission because bio might be split before being
 45	 * resubmitted
 46	 */
 47	struct bvec_iter crypt_iter;
 48	union {
 49		struct {
 50			struct work_struct work;
 51			struct bio *bio;
 52		};
 53		struct {
 54			void *bi_private_orig;
 55			bio_end_io_t *bi_end_io_orig;
 56		};
 57	};
 58};
 59
 60static struct kmem_cache *bio_fallback_crypt_ctx_cache;
 61static mempool_t *bio_fallback_crypt_ctx_pool;
 62
 63/*
 64 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
 65 * all of a mode's tfms when that mode starts being used. Since each mode may
 66 * need all the keyslots at some point, each mode needs its own tfm for each
 67 * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
 68 * match the behavior of real inline encryption hardware (which only supports a
 69 * single encryption context per keyslot), we only allow one tfm per keyslot to
 70 * be used at a time - the rest of the unused tfms have their keys cleared.
 71 */
 72static DEFINE_MUTEX(tfms_init_lock);
 73static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
 74
 75static struct blk_crypto_keyslot {
 76	enum blk_crypto_mode_num crypto_mode;
 77	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
 78} *blk_crypto_keyslots;
 79
 80static struct blk_keyslot_manager blk_crypto_ksm;
 81static struct workqueue_struct *blk_crypto_wq;
 82static mempool_t *blk_crypto_bounce_page_pool;
 83
 84/*
 85 * This is the key we set when evicting a keyslot. This *should* be the all 0's
 86 * key, but AES-XTS rejects that key, so we use some random bytes instead.
 87 */
 88static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
 89
 90static void blk_crypto_evict_keyslot(unsigned int slot)
 91{
 92	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
 93	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
 94	int err;
 95
 96	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
 97
 98	/* Clear the key in the skcipher */
 99	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
100				     blk_crypto_modes[crypto_mode].keysize);
101	WARN_ON(err);
102	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
103}
104
105static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
106				      const struct blk_crypto_key *key,
107				      unsigned int slot)
108{
109	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
110	const enum blk_crypto_mode_num crypto_mode =
111						key->crypto_cfg.crypto_mode;
112	int err;
113
114	if (crypto_mode != slotp->crypto_mode &&
115	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
116		blk_crypto_evict_keyslot(slot);
117
118	slotp->crypto_mode = crypto_mode;
119	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
120				     key->size);
121	if (err) {
122		blk_crypto_evict_keyslot(slot);
123		return err;
124	}
125	return 0;
126}
127
128static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
129				    const struct blk_crypto_key *key,
130				    unsigned int slot)
131{
132	blk_crypto_evict_keyslot(slot);
133	return 0;
134}
135
136/*
137 * The crypto API fallback KSM ops - only used for a bio when it specifies a
138 * blk_crypto_key that was not supported by the device's inline encryption
139 * hardware.
140 */
141static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
142	.keyslot_program	= blk_crypto_keyslot_program,
143	.keyslot_evict		= blk_crypto_keyslot_evict,
144};
145
146static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
147{
148	struct bio *src_bio = enc_bio->bi_private;
149	int i;
150
151	for (i = 0; i < enc_bio->bi_vcnt; i++)
152		mempool_free(enc_bio->bi_io_vec[i].bv_page,
153			     blk_crypto_bounce_page_pool);
154
155	src_bio->bi_status = enc_bio->bi_status;
156
157	bio_put(enc_bio);
158	bio_endio(src_bio);
159}
160
161static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
162{
163	struct bvec_iter iter;
164	struct bio_vec bv;
165	struct bio *bio;
166
167	bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL);
168	if (!bio)
169		return NULL;
170	bio->bi_disk		= bio_src->bi_disk;
171	bio->bi_opf		= bio_src->bi_opf;
172	bio->bi_ioprio		= bio_src->bi_ioprio;
173	bio->bi_write_hint	= bio_src->bi_write_hint;
174	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
175	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
176
177	bio_for_each_segment(bv, bio_src, iter)
178		bio->bi_io_vec[bio->bi_vcnt++] = bv;
179
180	bio_clone_blkg_association(bio, bio_src);
181	blkcg_bio_issue_init(bio);
182
183	return bio;
184}
185
186static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot,
187					struct skcipher_request **ciph_req_ret,
188					struct crypto_wait *wait)
189{
190	struct skcipher_request *ciph_req;
191	const struct blk_crypto_keyslot *slotp;
192	int keyslot_idx = blk_ksm_get_slot_idx(slot);
193
194	slotp = &blk_crypto_keyslots[keyslot_idx];
195	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
196					  GFP_NOIO);
197	if (!ciph_req)
198		return false;
199
200	skcipher_request_set_callback(ciph_req,
201				      CRYPTO_TFM_REQ_MAY_BACKLOG |
202				      CRYPTO_TFM_REQ_MAY_SLEEP,
203				      crypto_req_done, wait);
204	*ciph_req_ret = ciph_req;
205
206	return true;
207}
208
209static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
210{
211	struct bio *bio = *bio_ptr;
212	unsigned int i = 0;
213	unsigned int num_sectors = 0;
214	struct bio_vec bv;
215	struct bvec_iter iter;
216
217	bio_for_each_segment(bv, bio, iter) {
218		num_sectors += bv.bv_len >> SECTOR_SHIFT;
219		if (++i == BIO_MAX_PAGES)
220			break;
221	}
222	if (num_sectors < bio_sectors(bio)) {
223		struct bio *split_bio;
224
225		split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL);
226		if (!split_bio) {
227			bio->bi_status = BLK_STS_RESOURCE;
228			return false;
229		}
230		bio_chain(split_bio, bio);
231		submit_bio_noacct(bio);
232		*bio_ptr = split_bio;
233	}
234
235	return true;
236}
237
238union blk_crypto_iv {
239	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
240	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
241};
242
243static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
244				 union blk_crypto_iv *iv)
245{
246	int i;
247
248	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
249		iv->dun[i] = cpu_to_le64(dun[i]);
250}
251
252/*
253 * The crypto API fallback's encryption routine.
254 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
255 * and replace *bio_ptr with the bounce bio. May split input bio if it's too
256 * large. Returns true on success. Returns false and sets bio->bi_status on
257 * error.
258 */
259static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
260{
261	struct bio *src_bio, *enc_bio;
262	struct bio_crypt_ctx *bc;
263	struct blk_ksm_keyslot *slot;
264	int data_unit_size;
265	struct skcipher_request *ciph_req = NULL;
266	DECLARE_CRYPTO_WAIT(wait);
267	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
268	struct scatterlist src, dst;
269	union blk_crypto_iv iv;
270	unsigned int i, j;
271	bool ret = false;
272	blk_status_t blk_st;
273
274	/* Split the bio if it's too big for single page bvec */
275	if (!blk_crypto_split_bio_if_needed(bio_ptr))
276		return false;
277
278	src_bio = *bio_ptr;
279	bc = src_bio->bi_crypt_context;
280	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
281
282	/* Allocate bounce bio for encryption */
283	enc_bio = blk_crypto_clone_bio(src_bio);
284	if (!enc_bio) {
285		src_bio->bi_status = BLK_STS_RESOURCE;
286		return false;
287	}
288
289	/*
290	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
291	 * for the algorithm and key specified for this bio.
292	 */
293	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
294	if (blk_st != BLK_STS_OK) {
295		src_bio->bi_status = blk_st;
296		goto out_put_enc_bio;
297	}
298
299	/* and then allocate an skcipher_request for it */
300	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
301		src_bio->bi_status = BLK_STS_RESOURCE;
302		goto out_release_keyslot;
303	}
304
305	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
306	sg_init_table(&src, 1);
307	sg_init_table(&dst, 1);
308
309	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
310				   iv.bytes);
311
312	/* Encrypt each page in the bounce bio */
313	for (i = 0; i < enc_bio->bi_vcnt; i++) {
314		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
315		struct page *plaintext_page = enc_bvec->bv_page;
316		struct page *ciphertext_page =
317			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
318
319		enc_bvec->bv_page = ciphertext_page;
320
321		if (!ciphertext_page) {
322			src_bio->bi_status = BLK_STS_RESOURCE;
323			goto out_free_bounce_pages;
324		}
325
326		sg_set_page(&src, plaintext_page, data_unit_size,
327			    enc_bvec->bv_offset);
328		sg_set_page(&dst, ciphertext_page, data_unit_size,
329			    enc_bvec->bv_offset);
330
331		/* Encrypt each data unit in this page */
332		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
333			blk_crypto_dun_to_iv(curr_dun, &iv);
334			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
335					    &wait)) {
336				i++;
337				src_bio->bi_status = BLK_STS_IOERR;
338				goto out_free_bounce_pages;
339			}
340			bio_crypt_dun_increment(curr_dun, 1);
341			src.offset += data_unit_size;
342			dst.offset += data_unit_size;
343		}
344	}
345
346	enc_bio->bi_private = src_bio;
347	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
348	*bio_ptr = enc_bio;
349	ret = true;
350
351	enc_bio = NULL;
352	goto out_free_ciph_req;
353
354out_free_bounce_pages:
355	while (i > 0)
356		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
357			     blk_crypto_bounce_page_pool);
358out_free_ciph_req:
359	skcipher_request_free(ciph_req);
360out_release_keyslot:
361	blk_ksm_put_slot(slot);
362out_put_enc_bio:
363	if (enc_bio)
364		bio_put(enc_bio);
365
366	return ret;
367}
368
369/*
370 * The crypto API fallback's main decryption routine.
371 * Decrypts input bio in place, and calls bio_endio on the bio.
372 */
373static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
374{
375	struct bio_fallback_crypt_ctx *f_ctx =
376		container_of(work, struct bio_fallback_crypt_ctx, work);
377	struct bio *bio = f_ctx->bio;
378	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
379	struct blk_ksm_keyslot *slot;
380	struct skcipher_request *ciph_req = NULL;
381	DECLARE_CRYPTO_WAIT(wait);
382	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
383	union blk_crypto_iv iv;
384	struct scatterlist sg;
385	struct bio_vec bv;
386	struct bvec_iter iter;
387	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
388	unsigned int i;
389	blk_status_t blk_st;
390
391	/*
392	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
393	 * for the algorithm and key specified for this bio.
394	 */
395	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
396	if (blk_st != BLK_STS_OK) {
397		bio->bi_status = blk_st;
398		goto out_no_keyslot;
399	}
400
401	/* and then allocate an skcipher_request for it */
402	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
403		bio->bi_status = BLK_STS_RESOURCE;
404		goto out;
405	}
406
407	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
408	sg_init_table(&sg, 1);
409	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
410				   iv.bytes);
411
412	/* Decrypt each segment in the bio */
413	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
414		struct page *page = bv.bv_page;
415
416		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
417
418		/* Decrypt each data unit in the segment */
419		for (i = 0; i < bv.bv_len; i += data_unit_size) {
420			blk_crypto_dun_to_iv(curr_dun, &iv);
421			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
422					    &wait)) {
423				bio->bi_status = BLK_STS_IOERR;
424				goto out;
425			}
426			bio_crypt_dun_increment(curr_dun, 1);
427			sg.offset += data_unit_size;
428		}
429	}
430
431out:
432	skcipher_request_free(ciph_req);
433	blk_ksm_put_slot(slot);
434out_no_keyslot:
435	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
436	bio_endio(bio);
437}
438
439/**
440 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
441 *
442 * @bio: the bio to queue
443 *
444 * Restore bi_private and bi_end_io, and queue the bio for decryption into a
445 * workqueue, since this function will be called from an atomic context.
446 */
447static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
448{
449	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
450
451	bio->bi_private = f_ctx->bi_private_orig;
452	bio->bi_end_io = f_ctx->bi_end_io_orig;
453
454	/* If there was an IO error, don't queue for decrypt. */
455	if (bio->bi_status) {
456		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
457		bio_endio(bio);
458		return;
459	}
460
461	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
462	f_ctx->bio = bio;
463	queue_work(blk_crypto_wq, &f_ctx->work);
464}
465
466/**
467 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
468 *
469 * @bio_ptr: pointer to the bio to prepare
470 *
471 * If bio is doing a WRITE operation, this splits the bio into two parts if it's
472 * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio
473 * for the first part, encrypts it, and update bio_ptr to point to the bounce
474 * bio.
475 *
476 * For a READ operation, we mark the bio for decryption by using bi_private and
477 * bi_end_io.
478 *
479 * In either case, this function will make the bio look like a regular bio (i.e.
480 * as if no encryption context was ever specified) for the purposes of the rest
481 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
482 * currently supported together).
483 *
484 * Return: true on success. Sets bio->bi_status and returns false on error.
485 */
486bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
487{
488	struct bio *bio = *bio_ptr;
489	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
490	struct bio_fallback_crypt_ctx *f_ctx;
491
492	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
493		/* User didn't call blk_crypto_start_using_key() first */
494		bio->bi_status = BLK_STS_IOERR;
495		return false;
496	}
497
498	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
499					  &bc->bc_key->crypto_cfg)) {
500		bio->bi_status = BLK_STS_NOTSUPP;
501		return false;
502	}
503
504	if (bio_data_dir(bio) == WRITE)
505		return blk_crypto_fallback_encrypt_bio(bio_ptr);
506
507	/*
508	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
509	 * bi_end_io appropriately to trigger decryption when the bio is ended.
510	 */
511	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
512	f_ctx->crypt_ctx = *bc;
513	f_ctx->crypt_iter = bio->bi_iter;
514	f_ctx->bi_private_orig = bio->bi_private;
515	f_ctx->bi_end_io_orig = bio->bi_end_io;
516	bio->bi_private = (void *)f_ctx;
517	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
518	bio_crypt_free_ctx(bio);
519
520	return true;
521}
522
523int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
524{
525	return blk_ksm_evict_key(&blk_crypto_ksm, key);
526}
527
528static bool blk_crypto_fallback_inited;
529static int blk_crypto_fallback_init(void)
530{
531	int i;
532	int err;
533
534	if (blk_crypto_fallback_inited)
535		return 0;
536
537	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
538
539	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
540	if (err)
541		goto out;
542	err = -ENOMEM;
543
544	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
545	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
546
547	/* All blk-crypto modes have a crypto API fallback. */
548	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
549		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
550	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
551
552	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
553					WQ_UNBOUND | WQ_HIGHPRI |
554					WQ_MEM_RECLAIM, num_online_cpus());
555	if (!blk_crypto_wq)
556		goto fail_free_ksm;
557
558	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
559				      sizeof(blk_crypto_keyslots[0]),
560				      GFP_KERNEL);
561	if (!blk_crypto_keyslots)
562		goto fail_free_wq;
563
564	blk_crypto_bounce_page_pool =
565		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
566	if (!blk_crypto_bounce_page_pool)
567		goto fail_free_keyslots;
568
569	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
570	if (!bio_fallback_crypt_ctx_cache)
571		goto fail_free_bounce_page_pool;
572
573	bio_fallback_crypt_ctx_pool =
574		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
575					 bio_fallback_crypt_ctx_cache);
576	if (!bio_fallback_crypt_ctx_pool)
577		goto fail_free_crypt_ctx_cache;
578
579	blk_crypto_fallback_inited = true;
580
581	return 0;
582fail_free_crypt_ctx_cache:
583	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
584fail_free_bounce_page_pool:
585	mempool_destroy(blk_crypto_bounce_page_pool);
586fail_free_keyslots:
587	kfree(blk_crypto_keyslots);
588fail_free_wq:
589	destroy_workqueue(blk_crypto_wq);
590fail_free_ksm:
591	blk_ksm_destroy(&blk_crypto_ksm);
592out:
593	return err;
594}
595
596/*
597 * Prepare blk-crypto-fallback for the specified crypto mode.
598 * Returns -ENOPKG if the needed crypto API support is missing.
599 */
600int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
601{
602	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
603	struct blk_crypto_keyslot *slotp;
604	unsigned int i;
605	int err = 0;
606
607	/*
608	 * Fast path
609	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
610	 * for each i are visible before we try to access them.
611	 */
612	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
613		return 0;
614
615	mutex_lock(&tfms_init_lock);
616	if (tfms_inited[mode_num])
617		goto out;
618
619	err = blk_crypto_fallback_init();
620	if (err)
621		goto out;
622
623	for (i = 0; i < blk_crypto_num_keyslots; i++) {
624		slotp = &blk_crypto_keyslots[i];
625		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
626		if (IS_ERR(slotp->tfms[mode_num])) {
627			err = PTR_ERR(slotp->tfms[mode_num]);
628			if (err == -ENOENT) {
629				pr_warn_once("Missing crypto API support for \"%s\"\n",
630					     cipher_str);
631				err = -ENOPKG;
632			}
633			slotp->tfms[mode_num] = NULL;
634			goto out_free_tfms;
635		}
636
637		crypto_skcipher_set_flags(slotp->tfms[mode_num],
638					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
639	}
640
641	/*
642	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
643	 * for each i are visible before we set tfms_inited[mode_num].
644	 */
645	smp_store_release(&tfms_inited[mode_num], true);
646	goto out;
647
648out_free_tfms:
649	for (i = 0; i < blk_crypto_num_keyslots; i++) {
650		slotp = &blk_crypto_keyslots[i];
651		crypto_free_skcipher(slotp->tfms[mode_num]);
652		slotp->tfms[mode_num] = NULL;
653	}
654out:
655	mutex_unlock(&tfms_init_lock);
656	return err;
657}