Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   4 *          Christoffer Dall <c.dall@virtualopensystems.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License, version 2, as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  18 */
  19#include <linux/mm.h>
  20#include <linux/kvm_host.h>
  21#include <linux/uaccess.h>
  22#include <asm/kvm_arm.h>
  23#include <asm/kvm_host.h>
  24#include <asm/kvm_emulate.h>
  25#include <asm/kvm_coproc.h>
  26#include <asm/kvm_mmu.h>
  27#include <asm/cacheflush.h>
  28#include <asm/cputype.h>
  29#include <trace/events/kvm.h>
  30#include <asm/vfp.h>
  31#include "../vfp/vfpinstr.h"
  32
  33#include "trace.h"
  34#include "coproc.h"
  35
  36
  37/******************************************************************************
  38 * Co-processor emulation
  39 *****************************************************************************/
  40
  41/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  42static u32 cache_levels;
  43
  44/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  45#define CSSELR_MAX 12
  46
  47int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  48{
  49	kvm_inject_undefined(vcpu);
  50	return 1;
  51}
  52
  53int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  54{
  55	/*
  56	 * We can get here, if the host has been built without VFPv3 support,
  57	 * but the guest attempted a floating point operation.
  58	 */
  59	kvm_inject_undefined(vcpu);
  60	return 1;
  61}
  62
  63int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  64{
  65	kvm_inject_undefined(vcpu);
  66	return 1;
  67}
  68
  69int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  70{
  71	kvm_inject_undefined(vcpu);
  72	return 1;
  73}
  74
  75static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  76{
  77	/*
  78	 * Compute guest MPIDR. We build a virtual cluster out of the
  79	 * vcpu_id, but we read the 'U' bit from the underlying
  80	 * hardware directly.
  81	 */
  82	vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  83				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  84				     (vcpu->vcpu_id & 3));
  85}
  86
  87/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  88static bool access_actlr(struct kvm_vcpu *vcpu,
  89			 const struct coproc_params *p,
  90			 const struct coproc_reg *r)
  91{
  92	if (p->is_write)
  93		return ignore_write(vcpu, p);
  94
  95	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  96	return true;
  97}
  98
  99/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
 100static bool access_cbar(struct kvm_vcpu *vcpu,
 101			const struct coproc_params *p,
 102			const struct coproc_reg *r)
 103{
 104	if (p->is_write)
 105		return write_to_read_only(vcpu, p);
 106	return read_zero(vcpu, p);
 107}
 108
 109/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
 110static bool access_l2ctlr(struct kvm_vcpu *vcpu,
 111			  const struct coproc_params *p,
 112			  const struct coproc_reg *r)
 113{
 114	if (p->is_write)
 115		return ignore_write(vcpu, p);
 116
 117	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
 118	return true;
 119}
 120
 121static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 122{
 123	u32 l2ctlr, ncores;
 124
 125	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
 126	l2ctlr &= ~(3 << 24);
 127	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
 128	/* How many cores in the current cluster and the next ones */
 129	ncores -= (vcpu->vcpu_id & ~3);
 130	/* Cap it to the maximum number of cores in a single cluster */
 131	ncores = min(ncores, 3U);
 132	l2ctlr |= (ncores & 3) << 24;
 133
 134	vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
 135}
 136
 137static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 138{
 139	u32 actlr;
 140
 141	/* ACTLR contains SMP bit: make sure you create all cpus first! */
 142	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
 143	/* Make the SMP bit consistent with the guest configuration */
 144	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
 145		actlr |= 1U << 6;
 146	else
 147		actlr &= ~(1U << 6);
 148
 149	vcpu->arch.cp15[c1_ACTLR] = actlr;
 150}
 151
 152/*
 153 * TRM entries: A7:4.3.50, A15:4.3.49
 154 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
 155 */
 156static bool access_l2ectlr(struct kvm_vcpu *vcpu,
 157			   const struct coproc_params *p,
 158			   const struct coproc_reg *r)
 159{
 160	if (p->is_write)
 161		return ignore_write(vcpu, p);
 162
 163	*vcpu_reg(vcpu, p->Rt1) = 0;
 164	return true;
 165}
 166
 167/* See note at ARM ARM B1.14.4 */
 168static bool access_dcsw(struct kvm_vcpu *vcpu,
 169			const struct coproc_params *p,
 170			const struct coproc_reg *r)
 171{
 172	unsigned long val;
 173	int cpu;
 174
 175	if (!p->is_write)
 176		return read_from_write_only(vcpu, p);
 177
 178	cpu = get_cpu();
 179
 180	cpumask_setall(&vcpu->arch.require_dcache_flush);
 181	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
 182
 183	/* If we were already preempted, take the long way around */
 184	if (cpu != vcpu->arch.last_pcpu) {
 185		flush_cache_all();
 186		goto done;
 187	}
 188
 189	val = *vcpu_reg(vcpu, p->Rt1);
 190
 191	switch (p->CRm) {
 192	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
 193	case 14:		/* DCCISW */
 194		asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
 195		break;
 196
 197	case 10:		/* DCCSW */
 198		asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
 199		break;
 200	}
 201
 202done:
 203	put_cpu();
 204
 205	return true;
 206}
 207
 208/*
 209 * Generic accessor for VM registers. Only called as long as HCR_TVM
 210 * is set.
 211 */
 212static bool access_vm_reg(struct kvm_vcpu *vcpu,
 213			  const struct coproc_params *p,
 214			  const struct coproc_reg *r)
 215{
 216	BUG_ON(!p->is_write);
 217
 218	vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
 219	if (p->is_64bit)
 220		vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
 221
 222	return true;
 223}
 224
 225/*
 226 * SCTLR accessor. Only called as long as HCR_TVM is set.  If the
 227 * guest enables the MMU, we stop trapping the VM sys_regs and leave
 228 * it in complete control of the caches.
 229 *
 230 * Used by the cpu-specific code.
 231 */
 232bool access_sctlr(struct kvm_vcpu *vcpu,
 233		  const struct coproc_params *p,
 234		  const struct coproc_reg *r)
 235{
 236	access_vm_reg(vcpu, p, r);
 237
 238	if (vcpu_has_cache_enabled(vcpu)) {	/* MMU+Caches enabled? */
 239		vcpu->arch.hcr &= ~HCR_TVM;
 240		stage2_flush_vm(vcpu->kvm);
 241	}
 242
 243	return true;
 244}
 245
 246/*
 247 * We could trap ID_DFR0 and tell the guest we don't support performance
 248 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 249 * NAKed, so it will read the PMCR anyway.
 250 *
 251 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 252 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 253 * all PM registers, which doesn't crash the guest kernel at least.
 254 */
 255static bool pm_fake(struct kvm_vcpu *vcpu,
 256		    const struct coproc_params *p,
 257		    const struct coproc_reg *r)
 258{
 259	if (p->is_write)
 260		return ignore_write(vcpu, p);
 261	else
 262		return read_zero(vcpu, p);
 263}
 264
 265#define access_pmcr pm_fake
 266#define access_pmcntenset pm_fake
 267#define access_pmcntenclr pm_fake
 268#define access_pmovsr pm_fake
 269#define access_pmselr pm_fake
 270#define access_pmceid0 pm_fake
 271#define access_pmceid1 pm_fake
 272#define access_pmccntr pm_fake
 273#define access_pmxevtyper pm_fake
 274#define access_pmxevcntr pm_fake
 275#define access_pmuserenr pm_fake
 276#define access_pmintenset pm_fake
 277#define access_pmintenclr pm_fake
 278
 279/* Architected CP15 registers.
 280 * CRn denotes the primary register number, but is copied to the CRm in the
 281 * user space API for 64-bit register access in line with the terminology used
 282 * in the ARM ARM.
 283 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
 284 *            registers preceding 32-bit ones.
 285 */
 286static const struct coproc_reg cp15_regs[] = {
 287	/* MPIDR: we use VMPIDR for guest access. */
 288	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
 289			NULL, reset_mpidr, c0_MPIDR },
 290
 291	/* CSSELR: swapped by interrupt.S. */
 292	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
 293			NULL, reset_unknown, c0_CSSELR },
 294
 295	/* ACTLR: trapped by HCR.TAC bit. */
 296	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
 297			access_actlr, reset_actlr, c1_ACTLR },
 298
 299	/* CPACR: swapped by interrupt.S. */
 300	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
 301			NULL, reset_val, c1_CPACR, 0x00000000 },
 302
 303	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
 304	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
 305	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
 306			access_vm_reg, reset_unknown, c2_TTBR0 },
 307	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
 308			access_vm_reg, reset_unknown, c2_TTBR1 },
 309	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
 310			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
 311	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
 312
 313
 314	/* DACR: swapped by interrupt.S. */
 315	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
 316			access_vm_reg, reset_unknown, c3_DACR },
 317
 318	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
 319	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
 320			access_vm_reg, reset_unknown, c5_DFSR },
 321	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
 322			access_vm_reg, reset_unknown, c5_IFSR },
 323	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
 324			access_vm_reg, reset_unknown, c5_ADFSR },
 325	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
 326			access_vm_reg, reset_unknown, c5_AIFSR },
 327
 328	/* DFAR/IFAR: swapped by interrupt.S. */
 329	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
 330			access_vm_reg, reset_unknown, c6_DFAR },
 331	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
 332			access_vm_reg, reset_unknown, c6_IFAR },
 333
 334	/* PAR swapped by interrupt.S */
 335	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
 336
 337	/*
 338	 * DC{C,I,CI}SW operations:
 339	 */
 340	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
 341	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
 342	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
 343	/*
 344	 * L2CTLR access (guest wants to know #CPUs).
 345	 */
 346	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
 347			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
 348	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
 349
 350	/*
 351	 * Dummy performance monitor implementation.
 352	 */
 353	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
 354	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
 355	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
 356	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
 357	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
 358	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
 359	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
 360	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
 361	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
 362	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
 363	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
 364	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
 365	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
 366
 367	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
 368	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
 369			access_vm_reg, reset_unknown, c10_PRRR},
 370	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
 371			access_vm_reg, reset_unknown, c10_NMRR},
 372
 373	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
 374	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
 375			access_vm_reg, reset_unknown, c10_AMAIR0},
 376	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
 377			access_vm_reg, reset_unknown, c10_AMAIR1},
 378
 379	/* VBAR: swapped by interrupt.S. */
 380	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
 381			NULL, reset_val, c12_VBAR, 0x00000000 },
 382
 383	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
 384	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
 385			access_vm_reg, reset_val, c13_CID, 0x00000000 },
 386	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
 387			NULL, reset_unknown, c13_TID_URW },
 388	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
 389			NULL, reset_unknown, c13_TID_URO },
 390	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
 391			NULL, reset_unknown, c13_TID_PRIV },
 392
 393	/* CNTKCTL: swapped by interrupt.S. */
 394	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
 395			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
 396
 397	/* The Configuration Base Address Register. */
 398	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
 399};
 400
 401/* Target specific emulation tables */
 402static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
 403
 404void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
 405{
 406	unsigned int i;
 407
 408	for (i = 1; i < table->num; i++)
 409		BUG_ON(cmp_reg(&table->table[i-1],
 410			       &table->table[i]) >= 0);
 411
 412	target_tables[table->target] = table;
 413}
 414
 415/* Get specific register table for this target. */
 416static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
 417{
 418	struct kvm_coproc_target_table *table;
 419
 420	table = target_tables[target];
 421	*num = table->num;
 422	return table->table;
 423}
 424
 425static const struct coproc_reg *find_reg(const struct coproc_params *params,
 426					 const struct coproc_reg table[],
 427					 unsigned int num)
 428{
 429	unsigned int i;
 430
 431	for (i = 0; i < num; i++) {
 432		const struct coproc_reg *r = &table[i];
 433
 434		if (params->is_64bit != r->is_64)
 435			continue;
 436		if (params->CRn != r->CRn)
 437			continue;
 438		if (params->CRm != r->CRm)
 439			continue;
 440		if (params->Op1 != r->Op1)
 441			continue;
 442		if (params->Op2 != r->Op2)
 443			continue;
 444
 445		return r;
 446	}
 447	return NULL;
 448}
 449
 450static int emulate_cp15(struct kvm_vcpu *vcpu,
 451			const struct coproc_params *params)
 452{
 453	size_t num;
 454	const struct coproc_reg *table, *r;
 455
 456	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
 457				   params->CRm, params->Op2, params->is_write);
 458
 459	table = get_target_table(vcpu->arch.target, &num);
 460
 461	/* Search target-specific then generic table. */
 462	r = find_reg(params, table, num);
 463	if (!r)
 464		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
 465
 466	if (likely(r)) {
 467		/* If we don't have an accessor, we should never get here! */
 468		BUG_ON(!r->access);
 469
 470		if (likely(r->access(vcpu, params, r))) {
 471			/* Skip instruction, since it was emulated */
 472			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 473			return 1;
 474		}
 475		/* If access function fails, it should complain. */
 476	} else {
 477		kvm_err("Unsupported guest CP15 access at: %08lx\n",
 478			*vcpu_pc(vcpu));
 479		print_cp_instr(params);
 480	}
 481	kvm_inject_undefined(vcpu);
 482	return 1;
 483}
 484
 485/**
 486 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 487 * @vcpu: The VCPU pointer
 488 * @run:  The kvm_run struct
 489 */
 490int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 491{
 492	struct coproc_params params;
 493
 494	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 495	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 496	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 497	params.is_64bit = true;
 498
 499	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
 500	params.Op2 = 0;
 501	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 502	params.CRm = 0;
 503
 504	return emulate_cp15(vcpu, &params);
 505}
 506
 507static void reset_coproc_regs(struct kvm_vcpu *vcpu,
 508			      const struct coproc_reg *table, size_t num)
 509{
 510	unsigned long i;
 511
 512	for (i = 0; i < num; i++)
 513		if (table[i].reset)
 514			table[i].reset(vcpu, &table[i]);
 515}
 516
 517/**
 518 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 519 * @vcpu: The VCPU pointer
 520 * @run:  The kvm_run struct
 521 */
 522int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 523{
 524	struct coproc_params params;
 525
 526	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 527	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 528	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 529	params.is_64bit = false;
 530
 531	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 532	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
 533	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
 534	params.Rt2 = 0;
 535
 536	return emulate_cp15(vcpu, &params);
 537}
 538
 539/******************************************************************************
 540 * Userspace API
 541 *****************************************************************************/
 542
 543static bool index_to_params(u64 id, struct coproc_params *params)
 544{
 545	switch (id & KVM_REG_SIZE_MASK) {
 546	case KVM_REG_SIZE_U32:
 547		/* Any unused index bits means it's not valid. */
 548		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 549			   | KVM_REG_ARM_COPROC_MASK
 550			   | KVM_REG_ARM_32_CRN_MASK
 551			   | KVM_REG_ARM_CRM_MASK
 552			   | KVM_REG_ARM_OPC1_MASK
 553			   | KVM_REG_ARM_32_OPC2_MASK))
 554			return false;
 555
 556		params->is_64bit = false;
 557		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
 558			       >> KVM_REG_ARM_32_CRN_SHIFT);
 559		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
 560			       >> KVM_REG_ARM_CRM_SHIFT);
 561		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 562			       >> KVM_REG_ARM_OPC1_SHIFT);
 563		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
 564			       >> KVM_REG_ARM_32_OPC2_SHIFT);
 565		return true;
 566	case KVM_REG_SIZE_U64:
 567		/* Any unused index bits means it's not valid. */
 568		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 569			      | KVM_REG_ARM_COPROC_MASK
 570			      | KVM_REG_ARM_CRM_MASK
 571			      | KVM_REG_ARM_OPC1_MASK))
 572			return false;
 573		params->is_64bit = true;
 574		/* CRm to CRn: see cp15_to_index for details */
 575		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
 576			       >> KVM_REG_ARM_CRM_SHIFT);
 577		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 578			       >> KVM_REG_ARM_OPC1_SHIFT);
 579		params->Op2 = 0;
 580		params->CRm = 0;
 581		return true;
 582	default:
 583		return false;
 584	}
 585}
 586
 587/* Decode an index value, and find the cp15 coproc_reg entry. */
 588static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
 589						    u64 id)
 590{
 591	size_t num;
 592	const struct coproc_reg *table, *r;
 593	struct coproc_params params;
 594
 595	/* We only do cp15 for now. */
 596	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
 597		return NULL;
 598
 599	if (!index_to_params(id, &params))
 600		return NULL;
 601
 602	table = get_target_table(vcpu->arch.target, &num);
 603	r = find_reg(&params, table, num);
 604	if (!r)
 605		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
 606
 607	/* Not saved in the cp15 array? */
 608	if (r && !r->reg)
 609		r = NULL;
 610
 611	return r;
 612}
 613
 614/*
 615 * These are the invariant cp15 registers: we let the guest see the host
 616 * versions of these, so they're part of the guest state.
 617 *
 618 * A future CPU may provide a mechanism to present different values to
 619 * the guest, or a future kvm may trap them.
 620 */
 621/* Unfortunately, there's no register-argument for mrc, so generate. */
 622#define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
 623	static void get_##name(struct kvm_vcpu *v,			\
 624			       const struct coproc_reg *r)		\
 625	{								\
 626		u32 val;						\
 627									\
 628		asm volatile("mrc p15, " __stringify(op1)		\
 629			     ", %0, c" __stringify(crn)			\
 630			     ", c" __stringify(crm)			\
 631			     ", " __stringify(op2) "\n" : "=r" (val));	\
 632		((struct coproc_reg *)r)->val = val;			\
 633	}
 634
 635FUNCTION_FOR32(0, 0, 0, 0, MIDR)
 636FUNCTION_FOR32(0, 0, 0, 1, CTR)
 637FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
 638FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
 639FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
 640FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
 641FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
 642FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
 643FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
 644FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
 645FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
 646FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
 647FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
 648FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
 649FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
 650FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
 651FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
 652FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
 653FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
 654FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
 655FUNCTION_FOR32(0, 0, 1, 7, AIDR)
 656
 657/* ->val is filled in by kvm_invariant_coproc_table_init() */
 658static struct coproc_reg invariant_cp15[] = {
 659	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
 660	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
 661	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
 662	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
 663	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
 664
 665	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
 666	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
 667	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
 668	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
 669	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
 670	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
 671	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
 672	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
 673
 674	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
 675	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
 676	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
 677	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
 678	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
 679	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
 680
 681	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
 682	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
 683};
 684
 685static int reg_from_user(void *val, const void __user *uaddr, u64 id)
 686{
 687	/* This Just Works because we are little endian. */
 688	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
 689		return -EFAULT;
 690	return 0;
 691}
 692
 693static int reg_to_user(void __user *uaddr, const void *val, u64 id)
 694{
 695	/* This Just Works because we are little endian. */
 696	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
 697		return -EFAULT;
 698	return 0;
 699}
 700
 701static int get_invariant_cp15(u64 id, void __user *uaddr)
 702{
 703	struct coproc_params params;
 704	const struct coproc_reg *r;
 705
 706	if (!index_to_params(id, &params))
 707		return -ENOENT;
 708
 709	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 710	if (!r)
 711		return -ENOENT;
 712
 713	return reg_to_user(uaddr, &r->val, id);
 714}
 715
 716static int set_invariant_cp15(u64 id, void __user *uaddr)
 717{
 718	struct coproc_params params;
 719	const struct coproc_reg *r;
 720	int err;
 721	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
 722
 723	if (!index_to_params(id, &params))
 724		return -ENOENT;
 725	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 726	if (!r)
 727		return -ENOENT;
 728
 729	err = reg_from_user(&val, uaddr, id);
 730	if (err)
 731		return err;
 732
 733	/* This is what we mean by invariant: you can't change it. */
 734	if (r->val != val)
 735		return -EINVAL;
 736
 737	return 0;
 738}
 739
 740static bool is_valid_cache(u32 val)
 741{
 742	u32 level, ctype;
 743
 744	if (val >= CSSELR_MAX)
 745		return -ENOENT;
 746
 747	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
 748        level = (val >> 1);
 749        ctype = (cache_levels >> (level * 3)) & 7;
 750
 751	switch (ctype) {
 752	case 0: /* No cache */
 753		return false;
 754	case 1: /* Instruction cache only */
 755		return (val & 1);
 756	case 2: /* Data cache only */
 757	case 4: /* Unified cache */
 758		return !(val & 1);
 759	case 3: /* Separate instruction and data caches */
 760		return true;
 761	default: /* Reserved: we can't know instruction or data. */
 762		return false;
 763	}
 764}
 765
 766/* Which cache CCSIDR represents depends on CSSELR value. */
 767static u32 get_ccsidr(u32 csselr)
 768{
 769	u32 ccsidr;
 770
 771	/* Make sure noone else changes CSSELR during this! */
 772	local_irq_disable();
 773	/* Put value into CSSELR */
 774	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
 775	isb();
 776	/* Read result out of CCSIDR */
 777	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
 778	local_irq_enable();
 779
 780	return ccsidr;
 781}
 782
 783static int demux_c15_get(u64 id, void __user *uaddr)
 784{
 785	u32 val;
 786	u32 __user *uval = uaddr;
 787
 788	/* Fail if we have unknown bits set. */
 789	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 790		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 791		return -ENOENT;
 792
 793	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 794	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 795		if (KVM_REG_SIZE(id) != 4)
 796			return -ENOENT;
 797		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 798			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 799		if (!is_valid_cache(val))
 800			return -ENOENT;
 801
 802		return put_user(get_ccsidr(val), uval);
 803	default:
 804		return -ENOENT;
 805	}
 806}
 807
 808static int demux_c15_set(u64 id, void __user *uaddr)
 809{
 810	u32 val, newval;
 811	u32 __user *uval = uaddr;
 812
 813	/* Fail if we have unknown bits set. */
 814	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 815		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 816		return -ENOENT;
 817
 818	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 819	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 820		if (KVM_REG_SIZE(id) != 4)
 821			return -ENOENT;
 822		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 823			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 824		if (!is_valid_cache(val))
 825			return -ENOENT;
 826
 827		if (get_user(newval, uval))
 828			return -EFAULT;
 829
 830		/* This is also invariant: you can't change it. */
 831		if (newval != get_ccsidr(val))
 832			return -EINVAL;
 833		return 0;
 834	default:
 835		return -ENOENT;
 836	}
 837}
 838
 839#ifdef CONFIG_VFPv3
 840static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
 841				   KVM_REG_ARM_VFP_FPSCR,
 842				   KVM_REG_ARM_VFP_FPINST,
 843				   KVM_REG_ARM_VFP_FPINST2,
 844				   KVM_REG_ARM_VFP_MVFR0,
 845				   KVM_REG_ARM_VFP_MVFR1,
 846				   KVM_REG_ARM_VFP_FPSID };
 847
 848static unsigned int num_fp_regs(void)
 849{
 850	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
 851		return 32;
 852	else
 853		return 16;
 854}
 855
 856static unsigned int num_vfp_regs(void)
 857{
 858	/* Normal FP regs + control regs. */
 859	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
 860}
 861
 862static int copy_vfp_regids(u64 __user *uindices)
 863{
 864	unsigned int i;
 865	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
 866	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 867
 868	for (i = 0; i < num_fp_regs(); i++) {
 869		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
 870			     uindices))
 871			return -EFAULT;
 872		uindices++;
 873	}
 874
 875	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
 876		if (put_user(u32reg | vfp_sysregs[i], uindices))
 877			return -EFAULT;
 878		uindices++;
 879	}
 880
 881	return num_vfp_regs();
 882}
 883
 884static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
 885{
 886	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
 887	u32 val;
 888
 889	/* Fail if we have unknown bits set. */
 890	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 891		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 892		return -ENOENT;
 893
 894	if (vfpid < num_fp_regs()) {
 895		if (KVM_REG_SIZE(id) != 8)
 896			return -ENOENT;
 897		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
 898				   id);
 899	}
 900
 901	/* FP control registers are all 32 bit. */
 902	if (KVM_REG_SIZE(id) != 4)
 903		return -ENOENT;
 904
 905	switch (vfpid) {
 906	case KVM_REG_ARM_VFP_FPEXC:
 907		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
 908	case KVM_REG_ARM_VFP_FPSCR:
 909		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
 910	case KVM_REG_ARM_VFP_FPINST:
 911		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
 912	case KVM_REG_ARM_VFP_FPINST2:
 913		return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
 914	case KVM_REG_ARM_VFP_MVFR0:
 915		val = fmrx(MVFR0);
 916		return reg_to_user(uaddr, &val, id);
 917	case KVM_REG_ARM_VFP_MVFR1:
 918		val = fmrx(MVFR1);
 919		return reg_to_user(uaddr, &val, id);
 920	case KVM_REG_ARM_VFP_FPSID:
 921		val = fmrx(FPSID);
 922		return reg_to_user(uaddr, &val, id);
 923	default:
 924		return -ENOENT;
 925	}
 926}
 927
 928static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
 929{
 930	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
 931	u32 val;
 932
 933	/* Fail if we have unknown bits set. */
 934	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 935		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 936		return -ENOENT;
 937
 938	if (vfpid < num_fp_regs()) {
 939		if (KVM_REG_SIZE(id) != 8)
 940			return -ENOENT;
 941		return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
 942				     uaddr, id);
 943	}
 944
 945	/* FP control registers are all 32 bit. */
 946	if (KVM_REG_SIZE(id) != 4)
 947		return -ENOENT;
 948
 949	switch (vfpid) {
 950	case KVM_REG_ARM_VFP_FPEXC:
 951		return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
 952	case KVM_REG_ARM_VFP_FPSCR:
 953		return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
 954	case KVM_REG_ARM_VFP_FPINST:
 955		return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
 956	case KVM_REG_ARM_VFP_FPINST2:
 957		return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
 958	/* These are invariant. */
 959	case KVM_REG_ARM_VFP_MVFR0:
 960		if (reg_from_user(&val, uaddr, id))
 961			return -EFAULT;
 962		if (val != fmrx(MVFR0))
 963			return -EINVAL;
 964		return 0;
 965	case KVM_REG_ARM_VFP_MVFR1:
 966		if (reg_from_user(&val, uaddr, id))
 967			return -EFAULT;
 968		if (val != fmrx(MVFR1))
 969			return -EINVAL;
 970		return 0;
 971	case KVM_REG_ARM_VFP_FPSID:
 972		if (reg_from_user(&val, uaddr, id))
 973			return -EFAULT;
 974		if (val != fmrx(FPSID))
 975			return -EINVAL;
 976		return 0;
 977	default:
 978		return -ENOENT;
 979	}
 980}
 981#else /* !CONFIG_VFPv3 */
 982static unsigned int num_vfp_regs(void)
 983{
 984	return 0;
 985}
 986
 987static int copy_vfp_regids(u64 __user *uindices)
 988{
 989	return 0;
 990}
 991
 992static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
 993{
 994	return -ENOENT;
 995}
 996
 997static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
 998{
 999	return -ENOENT;
1000}
1001#endif /* !CONFIG_VFPv3 */
1002
1003int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1004{
1005	const struct coproc_reg *r;
1006	void __user *uaddr = (void __user *)(long)reg->addr;
1007
1008	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1009		return demux_c15_get(reg->id, uaddr);
1010
1011	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1012		return vfp_get_reg(vcpu, reg->id, uaddr);
1013
1014	r = index_to_coproc_reg(vcpu, reg->id);
1015	if (!r)
1016		return get_invariant_cp15(reg->id, uaddr);
1017
1018	/* Note: copies two regs if size is 64 bit. */
1019	return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
1020}
1021
1022int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1023{
1024	const struct coproc_reg *r;
1025	void __user *uaddr = (void __user *)(long)reg->addr;
1026
1027	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1028		return demux_c15_set(reg->id, uaddr);
1029
1030	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1031		return vfp_set_reg(vcpu, reg->id, uaddr);
1032
1033	r = index_to_coproc_reg(vcpu, reg->id);
1034	if (!r)
1035		return set_invariant_cp15(reg->id, uaddr);
1036
1037	/* Note: copies two regs if size is 64 bit */
1038	return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
1039}
1040
1041static unsigned int num_demux_regs(void)
1042{
1043	unsigned int i, count = 0;
1044
1045	for (i = 0; i < CSSELR_MAX; i++)
1046		if (is_valid_cache(i))
1047			count++;
1048
1049	return count;
1050}
1051
1052static int write_demux_regids(u64 __user *uindices)
1053{
1054	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1055	unsigned int i;
1056
1057	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1058	for (i = 0; i < CSSELR_MAX; i++) {
1059		if (!is_valid_cache(i))
1060			continue;
1061		if (put_user(val | i, uindices))
1062			return -EFAULT;
1063		uindices++;
1064	}
1065	return 0;
1066}
1067
1068static u64 cp15_to_index(const struct coproc_reg *reg)
1069{
1070	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1071	if (reg->is_64) {
1072		val |= KVM_REG_SIZE_U64;
1073		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1074		/*
1075		 * CRn always denotes the primary coproc. reg. nr. for the
1076		 * in-kernel representation, but the user space API uses the
1077		 * CRm for the encoding, because it is modelled after the
1078		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1079		 * B3-1445
1080		 */
1081		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1082	} else {
1083		val |= KVM_REG_SIZE_U32;
1084		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1085		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1086		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1087		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1088	}
1089	return val;
1090}
1091
1092static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1093{
1094	if (!*uind)
1095		return true;
1096
1097	if (put_user(cp15_to_index(reg), *uind))
1098		return false;
1099
1100	(*uind)++;
1101	return true;
1102}
1103
1104/* Assumed ordered tables, see kvm_coproc_table_init. */
1105static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1106{
1107	const struct coproc_reg *i1, *i2, *end1, *end2;
1108	unsigned int total = 0;
1109	size_t num;
1110
1111	/* We check for duplicates here, to allow arch-specific overrides. */
1112	i1 = get_target_table(vcpu->arch.target, &num);
1113	end1 = i1 + num;
1114	i2 = cp15_regs;
1115	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1116
1117	BUG_ON(i1 == end1 || i2 == end2);
1118
1119	/* Walk carefully, as both tables may refer to the same register. */
1120	while (i1 || i2) {
1121		int cmp = cmp_reg(i1, i2);
1122		/* target-specific overrides generic entry. */
1123		if (cmp <= 0) {
1124			/* Ignore registers we trap but don't save. */
1125			if (i1->reg) {
1126				if (!copy_reg_to_user(i1, &uind))
1127					return -EFAULT;
1128				total++;
1129			}
1130		} else {
1131			/* Ignore registers we trap but don't save. */
1132			if (i2->reg) {
1133				if (!copy_reg_to_user(i2, &uind))
1134					return -EFAULT;
1135				total++;
1136			}
1137		}
1138
1139		if (cmp <= 0 && ++i1 == end1)
1140			i1 = NULL;
1141		if (cmp >= 0 && ++i2 == end2)
1142			i2 = NULL;
1143	}
1144	return total;
1145}
1146
1147unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1148{
1149	return ARRAY_SIZE(invariant_cp15)
1150		+ num_demux_regs()
1151		+ num_vfp_regs()
1152		+ walk_cp15(vcpu, (u64 __user *)NULL);
1153}
1154
1155int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1156{
1157	unsigned int i;
1158	int err;
1159
1160	/* Then give them all the invariant registers' indices. */
1161	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1162		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1163			return -EFAULT;
1164		uindices++;
1165	}
1166
1167	err = walk_cp15(vcpu, uindices);
1168	if (err < 0)
1169		return err;
1170	uindices += err;
1171
1172	err = copy_vfp_regids(uindices);
1173	if (err < 0)
1174		return err;
1175	uindices += err;
1176
1177	return write_demux_regids(uindices);
1178}
1179
1180void kvm_coproc_table_init(void)
1181{
1182	unsigned int i;
1183
1184	/* Make sure tables are unique and in order. */
1185	for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1186		BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1187
1188	/* We abuse the reset function to overwrite the table itself. */
1189	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1190		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1191
1192	/*
1193	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1194	 *
1195	 *   If software reads the Cache Type fields from Ctype1
1196	 *   upwards, once it has seen a value of 0b000, no caches
1197	 *   exist at further-out levels of the hierarchy. So, for
1198	 *   example, if Ctype3 is the first Cache Type field with a
1199	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1200	 *   ignored.
1201	 */
1202	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1203	for (i = 0; i < 7; i++)
1204		if (((cache_levels >> (i*3)) & 7) == 0)
1205			break;
1206	/* Clear all higher bits. */
1207	cache_levels &= (1 << (i*3))-1;
1208}
1209
1210/**
1211 * kvm_reset_coprocs - sets cp15 registers to reset value
1212 * @vcpu: The VCPU pointer
1213 *
1214 * This function finds the right table above and sets the registers on the
1215 * virtual CPU struct to their architecturally defined reset values.
1216 */
1217void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1218{
1219	size_t num;
1220	const struct coproc_reg *table;
1221
1222	/* Catch someone adding a register without putting in reset entry. */
1223	memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1224
1225	/* Generic chip reset first (so target could override). */
1226	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1227
1228	table = get_target_table(vcpu->arch.target, &num);
1229	reset_coproc_regs(vcpu, table, num);
1230
1231	for (num = 1; num < NR_CP15_REGS; num++)
1232		if (vcpu->arch.cp15[num] == 0x42424242)
1233			panic("Didn't reset vcpu->arch.cp15[%zi]", num);
1234}