Linux Audio

Check our new training course

Loading...
v3.15
 
 
  1#include <linux/skbuff.h>
  2#include <linux/export.h>
  3#include <linux/ip.h>
  4#include <linux/ipv6.h>
  5#include <linux/if_vlan.h>
 
 
  6#include <net/ip.h>
  7#include <net/ipv6.h>
 
 
 
  8#include <linux/igmp.h>
  9#include <linux/icmp.h>
 10#include <linux/sctp.h>
 11#include <linux/dccp.h>
 12#include <linux/if_tunnel.h>
 13#include <linux/if_pppox.h>
 14#include <linux/ppp_defs.h>
 15#include <net/flow_keys.h>
 
 
 
 
 
 
 
 
 
 
 
 
 16
 17/* copy saddr & daddr, possibly using 64bit load/store
 18 * Equivalent to :	flow->src = iph->saddr;
 19 *			flow->dst = iph->daddr;
 20 */
 21static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22{
 23	BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
 24		     offsetof(typeof(*flow), src) + sizeof(flow->src));
 25	memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26}
 
 27
 28/**
 29 * skb_flow_get_ports - extract the upper layer ports and return them
 30 * @skb: buffer to extract the ports from
 31 * @thoff: transport header offset
 32 * @ip_proto: protocol for which to get port offset
 
 
 33 *
 34 * The function will try to retrieve the ports at offset thoff + poff where poff
 35 * is the protocol port offset returned from proto_ports_offset
 36 */
 37__be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto)
 
 38{
 39	int poff = proto_ports_offset(ip_proto);
 40
 
 
 
 
 
 41	if (poff >= 0) {
 42		__be32 *ports, _ports;
 43
 44		ports = skb_header_pointer(skb, thoff + poff,
 45					   sizeof(_ports), &_ports);
 46		if (ports)
 47			return *ports;
 48	}
 49
 50	return 0;
 51}
 52EXPORT_SYMBOL(skb_flow_get_ports);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54bool skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55{
 56	int nhoff = skb_network_offset(skb);
 57	u8 ip_proto;
 58	__be16 proto = skb->protocol;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60	memset(flow, 0, sizeof(*flow));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61
 62again:
 63	switch (proto) {
 64	case htons(ETH_P_IP): {
 65		const struct iphdr *iph;
 66		struct iphdr _iph;
 67ip:
 68		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
 69		if (!iph || iph->ihl < 5)
 70			return false;
 
 
 
 71		nhoff += iph->ihl * 4;
 72
 73		ip_proto = iph->protocol;
 74		if (ip_is_fragment(iph))
 75			ip_proto = 0;
 76
 77		iph_to_flow_copy_addrs(flow, iph);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78		break;
 79	}
 80	case htons(ETH_P_IPV6): {
 81		const struct ipv6hdr *iph;
 82		struct ipv6hdr _iph;
 83ipv6:
 84		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
 85		if (!iph)
 86			return false;
 
 
 87
 88		ip_proto = iph->nexthdr;
 89		flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
 90		flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
 91		nhoff += sizeof(struct ipv6hdr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92		break;
 93	}
 94	case htons(ETH_P_8021AD):
 95	case htons(ETH_P_8021Q): {
 96		const struct vlan_hdr *vlan;
 97		struct vlan_hdr _vlan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98
 99		vlan = skb_header_pointer(skb, nhoff, sizeof(_vlan), &_vlan);
100		if (!vlan)
101			return false;
102
103		proto = vlan->h_vlan_encapsulated_proto;
104		nhoff += sizeof(*vlan);
105		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106	}
107	case htons(ETH_P_PPP_SES): {
108		struct {
109			struct pppoe_hdr hdr;
110			__be16 proto;
111		} *hdr, _hdr;
112		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
113		if (!hdr)
114			return false;
 
 
 
115		proto = hdr->proto;
116		nhoff += PPPOE_SES_HLEN;
117		switch (proto) {
118		case htons(PPP_IP):
119			goto ip;
 
 
120		case htons(PPP_IPV6):
121			goto ipv6;
 
 
122		default:
123			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125	}
 
 
 
 
 
 
 
 
 
 
 
 
 
126	default:
127		return false;
128	}
129
 
 
 
130	switch (ip_proto) {
131	case IPPROTO_GRE: {
132		struct gre_hdr {
133			__be16 flags;
134			__be16 proto;
135		} *hdr, _hdr;
136
137		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
138		if (!hdr)
139			return false;
140		/*
141		 * Only look inside GRE if version zero and no
142		 * routing
143		 */
144		if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
145			proto = hdr->proto;
146			nhoff += 4;
147			if (hdr->flags & GRE_CSUM)
148				nhoff += 4;
149			if (hdr->flags & GRE_KEY)
150				nhoff += 4;
151			if (hdr->flags & GRE_SEQ)
152				nhoff += 4;
153			if (proto == htons(ETH_P_TEB)) {
154				const struct ethhdr *eth;
155				struct ethhdr _eth;
156
157				eth = skb_header_pointer(skb, nhoff,
158							 sizeof(_eth), &_eth);
159				if (!eth)
160					return false;
161				proto = eth->h_proto;
162				nhoff += sizeof(*eth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163			}
164			goto again;
165		}
 
 
166		break;
167	}
168	case IPPROTO_IPIP:
169		proto = htons(ETH_P_IP);
170		goto ip;
 
 
 
 
 
 
 
 
 
171	case IPPROTO_IPV6:
172		proto = htons(ETH_P_IPV6);
173		goto ipv6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174	default:
175		break;
176	}
177
178	flow->ip_proto = ip_proto;
179	flow->ports = skb_flow_get_ports(skb, nhoff, ip_proto);
180	flow->thoff = (u16) nhoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
182	return true;
 
 
 
 
 
 
 
 
 
183}
184EXPORT_SYMBOL(skb_flow_dissect);
185
186static u32 hashrnd __read_mostly;
187static __always_inline void __flow_hash_secret_init(void)
188{
189	net_get_random_once(&hashrnd, sizeof(hashrnd));
190}
191
192static __always_inline u32 __flow_hash_3words(u32 a, u32 b, u32 c)
193{
194	__flow_hash_secret_init();
195	return jhash_3words(a, b, c, hashrnd);
196}
197
198static __always_inline u32 __flow_hash_1word(u32 a)
199{
200	__flow_hash_secret_init();
201	return jhash_1word(a, hashrnd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202}
203
204/*
205 * __skb_get_hash: calculate a flow hash based on src/dst addresses
206 * and src/dst port numbers.  Sets hash in skb to non-zero hash value
207 * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
208 * if hash is a canonical 4-tuple hash over transport ports.
209 */
210void __skb_get_hash(struct sk_buff *skb)
211{
212	struct flow_keys keys;
213	u32 hash;
 
 
 
 
 
 
 
 
 
 
 
214
215	if (!skb_flow_dissect(skb, &keys))
216		return;
 
 
 
 
 
 
 
 
 
 
 
217
218	if (keys.ports)
219		skb->l4_hash = 1;
 
 
 
 
220
221	/* get a consistent hash (same value on both flow directions) */
222	if (((__force u32)keys.dst < (__force u32)keys.src) ||
223	    (((__force u32)keys.dst == (__force u32)keys.src) &&
224	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
225		swap(keys.dst, keys.src);
226		swap(keys.port16[0], keys.port16[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227	}
 
 
 
 
 
 
 
 
228
229	hash = __flow_hash_3words((__force u32)keys.dst,
230				  (__force u32)keys.src,
231				  (__force u32)keys.ports);
232	if (!hash)
233		hash = 1;
234
235	skb->hash = hash;
236}
237EXPORT_SYMBOL(__skb_get_hash);
238
239/*
240 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
241 * to be used as a distribution range.
242 */
243u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
244		  unsigned int num_tx_queues)
245{
246	u32 hash;
247	u16 qoffset = 0;
248	u16 qcount = num_tx_queues;
 
249
250	if (skb_rx_queue_recorded(skb)) {
251		hash = skb_get_rx_queue(skb);
252		while (unlikely(hash >= num_tx_queues))
253			hash -= num_tx_queues;
254		return hash;
255	}
256
257	if (dev->num_tc) {
258		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
259		qoffset = dev->tc_to_txq[tc].offset;
260		qcount = dev->tc_to_txq[tc].count;
261	}
262
263	if (skb->sk && skb->sk->sk_hash)
264		hash = skb->sk->sk_hash;
265	else
266		hash = (__force u16) skb->protocol;
267	hash = __flow_hash_1word(hash);
 
 
 
 
 
 
 
 
 
 
 
 
 
268
269	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
 
 
 
 
270}
271EXPORT_SYMBOL(__skb_tx_hash);
272
273/* __skb_get_poff() returns the offset to the payload as far as it could
274 * be dissected. The main user is currently BPF, so that we can dynamically
275 * truncate packets without needing to push actual payload to the user
276 * space and can analyze headers only, instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277 */
278u32 __skb_get_poff(const struct sk_buff *skb)
279{
280	struct flow_keys keys;
281	u32 poff = 0;
282
283	if (!skb_flow_dissect(skb, &keys))
284		return 0;
285
286	poff += keys.thoff;
287	switch (keys.ip_proto) {
288	case IPPROTO_TCP: {
289		const struct tcphdr *tcph;
290		struct tcphdr _tcph;
291
292		tcph = skb_header_pointer(skb, poff, sizeof(_tcph), &_tcph);
293		if (!tcph)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294			return poff;
295
296		poff += max_t(u32, sizeof(struct tcphdr), tcph->doff * 4);
297		break;
298	}
299	case IPPROTO_UDP:
300	case IPPROTO_UDPLITE:
301		poff += sizeof(struct udphdr);
302		break;
303	/* For the rest, we do not really care about header
304	 * extensions at this point for now.
305	 */
306	case IPPROTO_ICMP:
307		poff += sizeof(struct icmphdr);
308		break;
309	case IPPROTO_ICMPV6:
310		poff += sizeof(struct icmp6hdr);
311		break;
312	case IPPROTO_IGMP:
313		poff += sizeof(struct igmphdr);
314		break;
315	case IPPROTO_DCCP:
316		poff += sizeof(struct dccp_hdr);
317		break;
318	case IPPROTO_SCTP:
319		poff += sizeof(struct sctphdr);
320		break;
321	}
322
323	return poff;
324}
325
326static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
327{
328#ifdef CONFIG_XPS
329	struct xps_dev_maps *dev_maps;
330	struct xps_map *map;
331	int queue_index = -1;
332
333	rcu_read_lock();
334	dev_maps = rcu_dereference(dev->xps_maps);
335	if (dev_maps) {
336		map = rcu_dereference(
337		    dev_maps->cpu_map[raw_smp_processor_id()]);
338		if (map) {
339			if (map->len == 1)
340				queue_index = map->queues[0];
341			else {
342				u32 hash;
343				if (skb->sk && skb->sk->sk_hash)
344					hash = skb->sk->sk_hash;
345				else
346					hash = (__force u16) skb->protocol ^
347					    skb->hash;
348				hash = __flow_hash_1word(hash);
349				queue_index = map->queues[
350				    ((u64)hash * map->len) >> 32];
351			}
352			if (unlikely(queue_index >= dev->real_num_tx_queues))
353				queue_index = -1;
354		}
355	}
356	rcu_read_unlock();
357
358	return queue_index;
359#else
360	return -1;
361#endif
 
362}
363
364static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
365{
366	struct sock *sk = skb->sk;
367	int queue_index = sk_tx_queue_get(sk);
368
369	if (queue_index < 0 || skb->ooo_okay ||
370	    queue_index >= dev->real_num_tx_queues) {
371		int new_index = get_xps_queue(dev, skb);
372		if (new_index < 0)
373			new_index = skb_tx_hash(dev, skb);
374
375		if (queue_index != new_index && sk &&
376		    rcu_access_pointer(sk->sk_dst_cache))
377			sk_tx_queue_set(sk, new_index);
 
 
 
 
 
 
 
378
379		queue_index = new_index;
380	}
381
382	return queue_index;
383}
 
384
385struct netdev_queue *netdev_pick_tx(struct net_device *dev,
386				    struct sk_buff *skb,
387				    void *accel_priv)
388{
389	int queue_index = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390
391	if (dev->real_num_tx_queues != 1) {
392		const struct net_device_ops *ops = dev->netdev_ops;
393		if (ops->ndo_select_queue)
394			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
395							    __netdev_pick_tx);
396		else
397			queue_index = __netdev_pick_tx(dev, skb);
398
399		if (!accel_priv)
400			queue_index = netdev_cap_txqueue(dev, queue_index);
401	}
402
403	skb_set_queue_mapping(skb, queue_index);
404	return netdev_get_tx_queue(dev, queue_index);
 
 
 
 
 
 
 
 
 
 
405}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/skbuff.h>
   4#include <linux/export.h>
   5#include <linux/ip.h>
   6#include <linux/ipv6.h>
   7#include <linux/if_vlan.h>
   8#include <net/dsa.h>
   9#include <net/dst_metadata.h>
  10#include <net/ip.h>
  11#include <net/ipv6.h>
  12#include <net/gre.h>
  13#include <net/pptp.h>
  14#include <net/tipc.h>
  15#include <linux/igmp.h>
  16#include <linux/icmp.h>
  17#include <linux/sctp.h>
  18#include <linux/dccp.h>
  19#include <linux/if_tunnel.h>
  20#include <linux/if_pppox.h>
  21#include <linux/ppp_defs.h>
  22#include <linux/stddef.h>
  23#include <linux/if_ether.h>
  24#include <linux/mpls.h>
  25#include <linux/tcp.h>
  26#include <net/flow_dissector.h>
  27#include <scsi/fc/fc_fcoe.h>
  28#include <uapi/linux/batadv_packet.h>
  29#include <linux/bpf.h>
  30#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  31#include <net/netfilter/nf_conntrack_core.h>
  32#include <net/netfilter/nf_conntrack_labels.h>
  33#endif
  34#include <linux/bpf-netns.h>
  35
  36static void dissector_set_key(struct flow_dissector *flow_dissector,
  37			      enum flow_dissector_key_id key_id)
  38{
  39	flow_dissector->used_keys |= (1 << key_id);
  40}
  41
  42void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  43			     const struct flow_dissector_key *key,
  44			     unsigned int key_count)
  45{
  46	unsigned int i;
  47
  48	memset(flow_dissector, 0, sizeof(*flow_dissector));
  49
  50	for (i = 0; i < key_count; i++, key++) {
  51		/* User should make sure that every key target offset is withing
  52		 * boundaries of unsigned short.
  53		 */
  54		BUG_ON(key->offset > USHRT_MAX);
  55		BUG_ON(dissector_uses_key(flow_dissector,
  56					  key->key_id));
  57
  58		dissector_set_key(flow_dissector, key->key_id);
  59		flow_dissector->offset[key->key_id] = key->offset;
  60	}
  61
  62	/* Ensure that the dissector always includes control and basic key.
  63	 * That way we are able to avoid handling lack of these in fast path.
  64	 */
  65	BUG_ON(!dissector_uses_key(flow_dissector,
  66				   FLOW_DISSECTOR_KEY_CONTROL));
  67	BUG_ON(!dissector_uses_key(flow_dissector,
  68				   FLOW_DISSECTOR_KEY_BASIC));
  69}
  70EXPORT_SYMBOL(skb_flow_dissector_init);
  71
  72#ifdef CONFIG_BPF_SYSCALL
  73int flow_dissector_bpf_prog_attach_check(struct net *net,
  74					 struct bpf_prog *prog)
  75{
  76	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
  77
  78	if (net == &init_net) {
  79		/* BPF flow dissector in the root namespace overrides
  80		 * any per-net-namespace one. When attaching to root,
  81		 * make sure we don't have any BPF program attached
  82		 * to the non-root namespaces.
  83		 */
  84		struct net *ns;
  85
  86		for_each_net(ns) {
  87			if (ns == &init_net)
  88				continue;
  89			if (rcu_access_pointer(ns->bpf.run_array[type]))
  90				return -EEXIST;
  91		}
  92	} else {
  93		/* Make sure root flow dissector is not attached
  94		 * when attaching to the non-root namespace.
  95		 */
  96		if (rcu_access_pointer(init_net.bpf.run_array[type]))
  97			return -EEXIST;
  98	}
  99
 100	return 0;
 101}
 102#endif /* CONFIG_BPF_SYSCALL */
 103
 104/**
 105 * __skb_flow_get_ports - extract the upper layer ports and return them
 106 * @skb: sk_buff to extract the ports from
 107 * @thoff: transport header offset
 108 * @ip_proto: protocol for which to get port offset
 109 * @data: raw buffer pointer to the packet, if NULL use skb->data
 110 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
 111 *
 112 * The function will try to retrieve the ports at offset thoff + poff where poff
 113 * is the protocol port offset returned from proto_ports_offset
 114 */
 115__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
 116			    void *data, int hlen)
 117{
 118	int poff = proto_ports_offset(ip_proto);
 119
 120	if (!data) {
 121		data = skb->data;
 122		hlen = skb_headlen(skb);
 123	}
 124
 125	if (poff >= 0) {
 126		__be32 *ports, _ports;
 127
 128		ports = __skb_header_pointer(skb, thoff + poff,
 129					     sizeof(_ports), data, hlen, &_ports);
 130		if (ports)
 131			return *ports;
 132	}
 133
 134	return 0;
 135}
 136EXPORT_SYMBOL(__skb_flow_get_ports);
 137
 138static bool icmp_has_id(u8 type)
 139{
 140	switch (type) {
 141	case ICMP_ECHO:
 142	case ICMP_ECHOREPLY:
 143	case ICMP_TIMESTAMP:
 144	case ICMP_TIMESTAMPREPLY:
 145	case ICMPV6_ECHO_REQUEST:
 146	case ICMPV6_ECHO_REPLY:
 147		return true;
 148	}
 149
 150	return false;
 151}
 152
 153/**
 154 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
 155 * @skb: sk_buff to extract from
 156 * @key_icmp: struct flow_dissector_key_icmp to fill
 157 * @data: raw buffer pointer to the packet
 158 * @thoff: offset to extract at
 159 * @hlen: packet header length
 160 */
 161void skb_flow_get_icmp_tci(const struct sk_buff *skb,
 162			   struct flow_dissector_key_icmp *key_icmp,
 163			   void *data, int thoff, int hlen)
 164{
 165	struct icmphdr *ih, _ih;
 166
 167	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
 168	if (!ih)
 169		return;
 170
 171	key_icmp->type = ih->type;
 172	key_icmp->code = ih->code;
 173
 174	/* As we use 0 to signal that the Id field is not present,
 175	 * avoid confusion with packets without such field
 176	 */
 177	if (icmp_has_id(ih->type))
 178		key_icmp->id = ih->un.echo.id ? : 1;
 179	else
 180		key_icmp->id = 0;
 181}
 182EXPORT_SYMBOL(skb_flow_get_icmp_tci);
 183
 184/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
 185 * using skb_flow_get_icmp_tci().
 186 */
 187static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
 188				    struct flow_dissector *flow_dissector,
 189				    void *target_container,
 190				    void *data, int thoff, int hlen)
 191{
 192	struct flow_dissector_key_icmp *key_icmp;
 193
 194	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
 195		return;
 196
 197	key_icmp = skb_flow_dissector_target(flow_dissector,
 198					     FLOW_DISSECTOR_KEY_ICMP,
 199					     target_container);
 200
 201	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
 202}
 203
 204void skb_flow_dissect_meta(const struct sk_buff *skb,
 205			   struct flow_dissector *flow_dissector,
 206			   void *target_container)
 207{
 208	struct flow_dissector_key_meta *meta;
 209
 210	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
 211		return;
 212
 213	meta = skb_flow_dissector_target(flow_dissector,
 214					 FLOW_DISSECTOR_KEY_META,
 215					 target_container);
 216	meta->ingress_ifindex = skb->skb_iif;
 217}
 218EXPORT_SYMBOL(skb_flow_dissect_meta);
 219
 220static void
 221skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
 222				   struct flow_dissector *flow_dissector,
 223				   void *target_container)
 224{
 225	struct flow_dissector_key_control *ctrl;
 226
 227	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
 228		return;
 229
 230	ctrl = skb_flow_dissector_target(flow_dissector,
 231					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
 232					 target_container);
 233	ctrl->addr_type = type;
 234}
 235
 236void
 237skb_flow_dissect_ct(const struct sk_buff *skb,
 238		    struct flow_dissector *flow_dissector,
 239		    void *target_container,
 240		    u16 *ctinfo_map,
 241		    size_t mapsize)
 242{
 243#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 244	struct flow_dissector_key_ct *key;
 245	enum ip_conntrack_info ctinfo;
 246	struct nf_conn_labels *cl;
 247	struct nf_conn *ct;
 248
 249	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
 250		return;
 251
 252	ct = nf_ct_get(skb, &ctinfo);
 253	if (!ct)
 254		return;
 255
 256	key = skb_flow_dissector_target(flow_dissector,
 257					FLOW_DISSECTOR_KEY_CT,
 258					target_container);
 259
 260	if (ctinfo < mapsize)
 261		key->ct_state = ctinfo_map[ctinfo];
 262#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
 263	key->ct_zone = ct->zone.id;
 264#endif
 265#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
 266	key->ct_mark = ct->mark;
 267#endif
 268
 269	cl = nf_ct_labels_find(ct);
 270	if (cl)
 271		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
 272#endif /* CONFIG_NF_CONNTRACK */
 273}
 274EXPORT_SYMBOL(skb_flow_dissect_ct);
 275
 276void
 277skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
 278			     struct flow_dissector *flow_dissector,
 279			     void *target_container)
 280{
 281	struct ip_tunnel_info *info;
 282	struct ip_tunnel_key *key;
 283
 284	/* A quick check to see if there might be something to do. */
 285	if (!dissector_uses_key(flow_dissector,
 286				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
 287	    !dissector_uses_key(flow_dissector,
 288				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
 289	    !dissector_uses_key(flow_dissector,
 290				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
 291	    !dissector_uses_key(flow_dissector,
 292				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
 293	    !dissector_uses_key(flow_dissector,
 294				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
 295	    !dissector_uses_key(flow_dissector,
 296				FLOW_DISSECTOR_KEY_ENC_IP) &&
 297	    !dissector_uses_key(flow_dissector,
 298				FLOW_DISSECTOR_KEY_ENC_OPTS))
 299		return;
 300
 301	info = skb_tunnel_info(skb);
 302	if (!info)
 303		return;
 304
 305	key = &info->key;
 306
 307	switch (ip_tunnel_info_af(info)) {
 308	case AF_INET:
 309		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
 310						   flow_dissector,
 311						   target_container);
 312		if (dissector_uses_key(flow_dissector,
 313				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
 314			struct flow_dissector_key_ipv4_addrs *ipv4;
 315
 316			ipv4 = skb_flow_dissector_target(flow_dissector,
 317							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
 318							 target_container);
 319			ipv4->src = key->u.ipv4.src;
 320			ipv4->dst = key->u.ipv4.dst;
 321		}
 322		break;
 323	case AF_INET6:
 324		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
 325						   flow_dissector,
 326						   target_container);
 327		if (dissector_uses_key(flow_dissector,
 328				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
 329			struct flow_dissector_key_ipv6_addrs *ipv6;
 330
 331			ipv6 = skb_flow_dissector_target(flow_dissector,
 332							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
 333							 target_container);
 334			ipv6->src = key->u.ipv6.src;
 335			ipv6->dst = key->u.ipv6.dst;
 336		}
 337		break;
 338	}
 339
 340	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
 341		struct flow_dissector_key_keyid *keyid;
 342
 343		keyid = skb_flow_dissector_target(flow_dissector,
 344						  FLOW_DISSECTOR_KEY_ENC_KEYID,
 345						  target_container);
 346		keyid->keyid = tunnel_id_to_key32(key->tun_id);
 347	}
 348
 349	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
 350		struct flow_dissector_key_ports *tp;
 351
 352		tp = skb_flow_dissector_target(flow_dissector,
 353					       FLOW_DISSECTOR_KEY_ENC_PORTS,
 354					       target_container);
 355		tp->src = key->tp_src;
 356		tp->dst = key->tp_dst;
 357	}
 358
 359	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
 360		struct flow_dissector_key_ip *ip;
 361
 362		ip = skb_flow_dissector_target(flow_dissector,
 363					       FLOW_DISSECTOR_KEY_ENC_IP,
 364					       target_container);
 365		ip->tos = key->tos;
 366		ip->ttl = key->ttl;
 367	}
 368
 369	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
 370		struct flow_dissector_key_enc_opts *enc_opt;
 371
 372		enc_opt = skb_flow_dissector_target(flow_dissector,
 373						    FLOW_DISSECTOR_KEY_ENC_OPTS,
 374						    target_container);
 375
 376		if (info->options_len) {
 377			enc_opt->len = info->options_len;
 378			ip_tunnel_info_opts_get(enc_opt->data, info);
 379			enc_opt->dst_opt_type = info->key.tun_flags &
 380						TUNNEL_OPTIONS_PRESENT;
 381		}
 382	}
 383}
 384EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
 385
 386void skb_flow_dissect_hash(const struct sk_buff *skb,
 387			   struct flow_dissector *flow_dissector,
 388			   void *target_container)
 389{
 390	struct flow_dissector_key_hash *key;
 391
 392	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
 393		return;
 394
 395	key = skb_flow_dissector_target(flow_dissector,
 396					FLOW_DISSECTOR_KEY_HASH,
 397					target_container);
 398
 399	key->hash = skb_get_hash_raw(skb);
 400}
 401EXPORT_SYMBOL(skb_flow_dissect_hash);
 402
 403static enum flow_dissect_ret
 404__skb_flow_dissect_mpls(const struct sk_buff *skb,
 405			struct flow_dissector *flow_dissector,
 406			void *target_container, void *data, int nhoff, int hlen,
 407			int lse_index, bool *entropy_label)
 408{
 409	struct mpls_label *hdr, _hdr;
 410	u32 entry, label, bos;
 411
 412	if (!dissector_uses_key(flow_dissector,
 413				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
 414	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
 415		return FLOW_DISSECT_RET_OUT_GOOD;
 416
 417	if (lse_index >= FLOW_DIS_MPLS_MAX)
 418		return FLOW_DISSECT_RET_OUT_GOOD;
 419
 420	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
 421				   hlen, &_hdr);
 422	if (!hdr)
 423		return FLOW_DISSECT_RET_OUT_BAD;
 424
 425	entry = ntohl(hdr->entry);
 426	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
 427	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
 428
 429	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
 430		struct flow_dissector_key_mpls *key_mpls;
 431		struct flow_dissector_mpls_lse *lse;
 432
 433		key_mpls = skb_flow_dissector_target(flow_dissector,
 434						     FLOW_DISSECTOR_KEY_MPLS,
 435						     target_container);
 436		lse = &key_mpls->ls[lse_index];
 437
 438		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
 439		lse->mpls_bos = bos;
 440		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
 441		lse->mpls_label = label;
 442		dissector_set_mpls_lse(key_mpls, lse_index);
 443	}
 444
 445	if (*entropy_label &&
 446	    dissector_uses_key(flow_dissector,
 447			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
 448		struct flow_dissector_key_keyid *key_keyid;
 449
 450		key_keyid = skb_flow_dissector_target(flow_dissector,
 451						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
 452						      target_container);
 453		key_keyid->keyid = cpu_to_be32(label);
 454	}
 455
 456	*entropy_label = label == MPLS_LABEL_ENTROPY;
 457
 458	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
 459}
 460
 461static enum flow_dissect_ret
 462__skb_flow_dissect_arp(const struct sk_buff *skb,
 463		       struct flow_dissector *flow_dissector,
 464		       void *target_container, void *data, int nhoff, int hlen)
 465{
 466	struct flow_dissector_key_arp *key_arp;
 467	struct {
 468		unsigned char ar_sha[ETH_ALEN];
 469		unsigned char ar_sip[4];
 470		unsigned char ar_tha[ETH_ALEN];
 471		unsigned char ar_tip[4];
 472	} *arp_eth, _arp_eth;
 473	const struct arphdr *arp;
 474	struct arphdr _arp;
 475
 476	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
 477		return FLOW_DISSECT_RET_OUT_GOOD;
 478
 479	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
 480				   hlen, &_arp);
 481	if (!arp)
 482		return FLOW_DISSECT_RET_OUT_BAD;
 483
 484	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
 485	    arp->ar_pro != htons(ETH_P_IP) ||
 486	    arp->ar_hln != ETH_ALEN ||
 487	    arp->ar_pln != 4 ||
 488	    (arp->ar_op != htons(ARPOP_REPLY) &&
 489	     arp->ar_op != htons(ARPOP_REQUEST)))
 490		return FLOW_DISSECT_RET_OUT_BAD;
 491
 492	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
 493				       sizeof(_arp_eth), data,
 494				       hlen, &_arp_eth);
 495	if (!arp_eth)
 496		return FLOW_DISSECT_RET_OUT_BAD;
 497
 498	key_arp = skb_flow_dissector_target(flow_dissector,
 499					    FLOW_DISSECTOR_KEY_ARP,
 500					    target_container);
 501
 502	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
 503	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
 504
 505	/* Only store the lower byte of the opcode;
 506	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
 507	 */
 508	key_arp->op = ntohs(arp->ar_op) & 0xff;
 509
 510	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
 511	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
 512
 513	return FLOW_DISSECT_RET_OUT_GOOD;
 514}
 515
 516static enum flow_dissect_ret
 517__skb_flow_dissect_gre(const struct sk_buff *skb,
 518		       struct flow_dissector_key_control *key_control,
 519		       struct flow_dissector *flow_dissector,
 520		       void *target_container, void *data,
 521		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
 522		       unsigned int flags)
 523{
 524	struct flow_dissector_key_keyid *key_keyid;
 525	struct gre_base_hdr *hdr, _hdr;
 526	int offset = 0;
 527	u16 gre_ver;
 528
 529	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
 530				   data, *p_hlen, &_hdr);
 531	if (!hdr)
 532		return FLOW_DISSECT_RET_OUT_BAD;
 533
 534	/* Only look inside GRE without routing */
 535	if (hdr->flags & GRE_ROUTING)
 536		return FLOW_DISSECT_RET_OUT_GOOD;
 537
 538	/* Only look inside GRE for version 0 and 1 */
 539	gre_ver = ntohs(hdr->flags & GRE_VERSION);
 540	if (gre_ver > 1)
 541		return FLOW_DISSECT_RET_OUT_GOOD;
 542
 543	*p_proto = hdr->protocol;
 544	if (gre_ver) {
 545		/* Version1 must be PPTP, and check the flags */
 546		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
 547			return FLOW_DISSECT_RET_OUT_GOOD;
 548	}
 549
 550	offset += sizeof(struct gre_base_hdr);
 551
 552	if (hdr->flags & GRE_CSUM)
 553		offset += sizeof_field(struct gre_full_hdr, csum) +
 554			  sizeof_field(struct gre_full_hdr, reserved1);
 555
 556	if (hdr->flags & GRE_KEY) {
 557		const __be32 *keyid;
 558		__be32 _keyid;
 559
 560		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
 561					     sizeof(_keyid),
 562					     data, *p_hlen, &_keyid);
 563		if (!keyid)
 564			return FLOW_DISSECT_RET_OUT_BAD;
 565
 566		if (dissector_uses_key(flow_dissector,
 567				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
 568			key_keyid = skb_flow_dissector_target(flow_dissector,
 569							      FLOW_DISSECTOR_KEY_GRE_KEYID,
 570							      target_container);
 571			if (gre_ver == 0)
 572				key_keyid->keyid = *keyid;
 573			else
 574				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
 575		}
 576		offset += sizeof_field(struct gre_full_hdr, key);
 577	}
 578
 579	if (hdr->flags & GRE_SEQ)
 580		offset += sizeof_field(struct pptp_gre_header, seq);
 581
 582	if (gre_ver == 0) {
 583		if (*p_proto == htons(ETH_P_TEB)) {
 584			const struct ethhdr *eth;
 585			struct ethhdr _eth;
 586
 587			eth = __skb_header_pointer(skb, *p_nhoff + offset,
 588						   sizeof(_eth),
 589						   data, *p_hlen, &_eth);
 590			if (!eth)
 591				return FLOW_DISSECT_RET_OUT_BAD;
 592			*p_proto = eth->h_proto;
 593			offset += sizeof(*eth);
 594
 595			/* Cap headers that we access via pointers at the
 596			 * end of the Ethernet header as our maximum alignment
 597			 * at that point is only 2 bytes.
 598			 */
 599			if (NET_IP_ALIGN)
 600				*p_hlen = *p_nhoff + offset;
 601		}
 602	} else { /* version 1, must be PPTP */
 603		u8 _ppp_hdr[PPP_HDRLEN];
 604		u8 *ppp_hdr;
 605
 606		if (hdr->flags & GRE_ACK)
 607			offset += sizeof_field(struct pptp_gre_header, ack);
 608
 609		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
 610					       sizeof(_ppp_hdr),
 611					       data, *p_hlen, _ppp_hdr);
 612		if (!ppp_hdr)
 613			return FLOW_DISSECT_RET_OUT_BAD;
 614
 615		switch (PPP_PROTOCOL(ppp_hdr)) {
 616		case PPP_IP:
 617			*p_proto = htons(ETH_P_IP);
 618			break;
 619		case PPP_IPV6:
 620			*p_proto = htons(ETH_P_IPV6);
 621			break;
 622		default:
 623			/* Could probably catch some more like MPLS */
 624			break;
 625		}
 626
 627		offset += PPP_HDRLEN;
 628	}
 629
 630	*p_nhoff += offset;
 631	key_control->flags |= FLOW_DIS_ENCAPSULATION;
 632	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
 633		return FLOW_DISSECT_RET_OUT_GOOD;
 634
 635	return FLOW_DISSECT_RET_PROTO_AGAIN;
 636}
 637
 638/**
 639 * __skb_flow_dissect_batadv() - dissect batman-adv header
 640 * @skb: sk_buff to with the batman-adv header
 641 * @key_control: flow dissectors control key
 642 * @data: raw buffer pointer to the packet, if NULL use skb->data
 643 * @p_proto: pointer used to update the protocol to process next
 644 * @p_nhoff: pointer used to update inner network header offset
 645 * @hlen: packet header length
 646 * @flags: any combination of FLOW_DISSECTOR_F_*
 647 *
 648 * ETH_P_BATMAN packets are tried to be dissected. Only
 649 * &struct batadv_unicast packets are actually processed because they contain an
 650 * inner ethernet header and are usually followed by actual network header. This
 651 * allows the flow dissector to continue processing the packet.
 652 *
 653 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
 654 *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
 655 *  otherwise FLOW_DISSECT_RET_OUT_BAD
 656 */
 657static enum flow_dissect_ret
 658__skb_flow_dissect_batadv(const struct sk_buff *skb,
 659			  struct flow_dissector_key_control *key_control,
 660			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
 661			  unsigned int flags)
 662{
 663	struct {
 664		struct batadv_unicast_packet batadv_unicast;
 665		struct ethhdr eth;
 666	} *hdr, _hdr;
 667
 668	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
 669				   &_hdr);
 670	if (!hdr)
 671		return FLOW_DISSECT_RET_OUT_BAD;
 672
 673	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
 674		return FLOW_DISSECT_RET_OUT_BAD;
 675
 676	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
 677		return FLOW_DISSECT_RET_OUT_BAD;
 678
 679	*p_proto = hdr->eth.h_proto;
 680	*p_nhoff += sizeof(*hdr);
 681
 682	key_control->flags |= FLOW_DIS_ENCAPSULATION;
 683	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
 684		return FLOW_DISSECT_RET_OUT_GOOD;
 685
 686	return FLOW_DISSECT_RET_PROTO_AGAIN;
 687}
 688
 689static void
 690__skb_flow_dissect_tcp(const struct sk_buff *skb,
 691		       struct flow_dissector *flow_dissector,
 692		       void *target_container, void *data, int thoff, int hlen)
 693{
 694	struct flow_dissector_key_tcp *key_tcp;
 695	struct tcphdr *th, _th;
 696
 697	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
 698		return;
 699
 700	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
 701	if (!th)
 702		return;
 703
 704	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
 705		return;
 706
 707	key_tcp = skb_flow_dissector_target(flow_dissector,
 708					    FLOW_DISSECTOR_KEY_TCP,
 709					    target_container);
 710	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
 711}
 712
 713static void
 714__skb_flow_dissect_ports(const struct sk_buff *skb,
 715			 struct flow_dissector *flow_dissector,
 716			 void *target_container, void *data, int nhoff,
 717			 u8 ip_proto, int hlen)
 718{
 719	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
 720	struct flow_dissector_key_ports *key_ports;
 721
 722	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
 723		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
 724	else if (dissector_uses_key(flow_dissector,
 725				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
 726		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
 727
 728	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
 729		return;
 730
 731	key_ports = skb_flow_dissector_target(flow_dissector,
 732					      dissector_ports,
 733					      target_container);
 734	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
 735						data, hlen);
 736}
 737
 738static void
 739__skb_flow_dissect_ipv4(const struct sk_buff *skb,
 740			struct flow_dissector *flow_dissector,
 741			void *target_container, void *data, const struct iphdr *iph)
 742{
 743	struct flow_dissector_key_ip *key_ip;
 744
 745	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
 746		return;
 747
 748	key_ip = skb_flow_dissector_target(flow_dissector,
 749					   FLOW_DISSECTOR_KEY_IP,
 750					   target_container);
 751	key_ip->tos = iph->tos;
 752	key_ip->ttl = iph->ttl;
 753}
 754
 755static void
 756__skb_flow_dissect_ipv6(const struct sk_buff *skb,
 757			struct flow_dissector *flow_dissector,
 758			void *target_container, void *data, const struct ipv6hdr *iph)
 759{
 760	struct flow_dissector_key_ip *key_ip;
 761
 762	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
 763		return;
 764
 765	key_ip = skb_flow_dissector_target(flow_dissector,
 766					   FLOW_DISSECTOR_KEY_IP,
 767					   target_container);
 768	key_ip->tos = ipv6_get_dsfield(iph);
 769	key_ip->ttl = iph->hop_limit;
 770}
 771
 772/* Maximum number of protocol headers that can be parsed in
 773 * __skb_flow_dissect
 774 */
 775#define MAX_FLOW_DISSECT_HDRS	15
 776
 777static bool skb_flow_dissect_allowed(int *num_hdrs)
 778{
 779	++*num_hdrs;
 780
 781	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
 782}
 783
 784static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
 785				     struct flow_dissector *flow_dissector,
 786				     void *target_container)
 787{
 788	struct flow_dissector_key_ports *key_ports = NULL;
 789	struct flow_dissector_key_control *key_control;
 790	struct flow_dissector_key_basic *key_basic;
 791	struct flow_dissector_key_addrs *key_addrs;
 792	struct flow_dissector_key_tags *key_tags;
 793
 794	key_control = skb_flow_dissector_target(flow_dissector,
 795						FLOW_DISSECTOR_KEY_CONTROL,
 796						target_container);
 797	key_control->thoff = flow_keys->thoff;
 798	if (flow_keys->is_frag)
 799		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
 800	if (flow_keys->is_first_frag)
 801		key_control->flags |= FLOW_DIS_FIRST_FRAG;
 802	if (flow_keys->is_encap)
 803		key_control->flags |= FLOW_DIS_ENCAPSULATION;
 804
 805	key_basic = skb_flow_dissector_target(flow_dissector,
 806					      FLOW_DISSECTOR_KEY_BASIC,
 807					      target_container);
 808	key_basic->n_proto = flow_keys->n_proto;
 809	key_basic->ip_proto = flow_keys->ip_proto;
 810
 811	if (flow_keys->addr_proto == ETH_P_IP &&
 812	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
 813		key_addrs = skb_flow_dissector_target(flow_dissector,
 814						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
 815						      target_container);
 816		key_addrs->v4addrs.src = flow_keys->ipv4_src;
 817		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
 818		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
 819	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
 820		   dissector_uses_key(flow_dissector,
 821				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
 822		key_addrs = skb_flow_dissector_target(flow_dissector,
 823						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
 824						      target_container);
 825		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
 826		       sizeof(key_addrs->v6addrs));
 827		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
 828	}
 829
 830	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
 831		key_ports = skb_flow_dissector_target(flow_dissector,
 832						      FLOW_DISSECTOR_KEY_PORTS,
 833						      target_container);
 834	else if (dissector_uses_key(flow_dissector,
 835				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
 836		key_ports = skb_flow_dissector_target(flow_dissector,
 837						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
 838						      target_container);
 839
 840	if (key_ports) {
 841		key_ports->src = flow_keys->sport;
 842		key_ports->dst = flow_keys->dport;
 843	}
 844
 845	if (dissector_uses_key(flow_dissector,
 846			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
 847		key_tags = skb_flow_dissector_target(flow_dissector,
 848						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
 849						     target_container);
 850		key_tags->flow_label = ntohl(flow_keys->flow_label);
 851	}
 852}
 853
 854bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
 855		      __be16 proto, int nhoff, int hlen, unsigned int flags)
 856{
 857	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
 858	u32 result;
 859
 860	/* Pass parameters to the BPF program */
 861	memset(flow_keys, 0, sizeof(*flow_keys));
 862	flow_keys->n_proto = proto;
 863	flow_keys->nhoff = nhoff;
 864	flow_keys->thoff = flow_keys->nhoff;
 865
 866	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
 867		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
 868	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
 869		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
 870	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
 871		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
 872	flow_keys->flags = flags;
 873
 874	result = bpf_prog_run_pin_on_cpu(prog, ctx);
 875
 876	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
 877	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
 878				   flow_keys->nhoff, hlen);
 879
 880	return result == BPF_OK;
 881}
 882
 883/**
 884 * __skb_flow_dissect - extract the flow_keys struct and return it
 885 * @net: associated network namespace, derived from @skb if NULL
 886 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
 887 * @flow_dissector: list of keys to dissect
 888 * @target_container: target structure to put dissected values into
 889 * @data: raw buffer pointer to the packet, if NULL use skb->data
 890 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
 891 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
 892 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
 893 * @flags: flags that control the dissection process, e.g.
 894 *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
 895 *
 896 * The function will try to retrieve individual keys into target specified
 897 * by flow_dissector from either the skbuff or a raw buffer specified by the
 898 * rest parameters.
 899 *
 900 * Caller must take care of zeroing target container memory.
 901 */
 902bool __skb_flow_dissect(const struct net *net,
 903			const struct sk_buff *skb,
 904			struct flow_dissector *flow_dissector,
 905			void *target_container,
 906			void *data, __be16 proto, int nhoff, int hlen,
 907			unsigned int flags)
 908{
 909	struct flow_dissector_key_control *key_control;
 910	struct flow_dissector_key_basic *key_basic;
 911	struct flow_dissector_key_addrs *key_addrs;
 912	struct flow_dissector_key_tags *key_tags;
 913	struct flow_dissector_key_vlan *key_vlan;
 914	enum flow_dissect_ret fdret;
 915	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
 916	bool mpls_el = false;
 917	int mpls_lse = 0;
 918	int num_hdrs = 0;
 919	u8 ip_proto = 0;
 920	bool ret;
 921
 922	if (!data) {
 923		data = skb->data;
 924		proto = skb_vlan_tag_present(skb) ?
 925			 skb->vlan_proto : skb->protocol;
 926		nhoff = skb_network_offset(skb);
 927		hlen = skb_headlen(skb);
 928#if IS_ENABLED(CONFIG_NET_DSA)
 929		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
 930			     proto == htons(ETH_P_XDSA))) {
 931			const struct dsa_device_ops *ops;
 932			int offset = 0;
 933
 934			ops = skb->dev->dsa_ptr->tag_ops;
 935			if (ops->flow_dissect &&
 936			    !ops->flow_dissect(skb, &proto, &offset)) {
 937				hlen -= offset;
 938				nhoff += offset;
 939			}
 940		}
 941#endif
 942	}
 943
 944	/* It is ensured by skb_flow_dissector_init() that control key will
 945	 * be always present.
 946	 */
 947	key_control = skb_flow_dissector_target(flow_dissector,
 948						FLOW_DISSECTOR_KEY_CONTROL,
 949						target_container);
 950
 951	/* It is ensured by skb_flow_dissector_init() that basic key will
 952	 * be always present.
 953	 */
 954	key_basic = skb_flow_dissector_target(flow_dissector,
 955					      FLOW_DISSECTOR_KEY_BASIC,
 956					      target_container);
 957
 958	if (skb) {
 959		if (!net) {
 960			if (skb->dev)
 961				net = dev_net(skb->dev);
 962			else if (skb->sk)
 963				net = sock_net(skb->sk);
 964		}
 965	}
 966
 967	WARN_ON_ONCE(!net);
 968	if (net) {
 969		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
 970		struct bpf_prog_array *run_array;
 971
 972		rcu_read_lock();
 973		run_array = rcu_dereference(init_net.bpf.run_array[type]);
 974		if (!run_array)
 975			run_array = rcu_dereference(net->bpf.run_array[type]);
 976
 977		if (run_array) {
 978			struct bpf_flow_keys flow_keys;
 979			struct bpf_flow_dissector ctx = {
 980				.flow_keys = &flow_keys,
 981				.data = data,
 982				.data_end = data + hlen,
 983			};
 984			__be16 n_proto = proto;
 985			struct bpf_prog *prog;
 986
 987			if (skb) {
 988				ctx.skb = skb;
 989				/* we can't use 'proto' in the skb case
 990				 * because it might be set to skb->vlan_proto
 991				 * which has been pulled from the data
 992				 */
 993				n_proto = skb->protocol;
 994			}
 995
 996			prog = READ_ONCE(run_array->items[0].prog);
 997			ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
 998					       hlen, flags);
 999			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1000						 target_container);
1001			rcu_read_unlock();
1002			return ret;
1003		}
1004		rcu_read_unlock();
1005	}
1006
1007	if (dissector_uses_key(flow_dissector,
1008			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1009		struct ethhdr *eth = eth_hdr(skb);
1010		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1011
1012		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1013							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1014							  target_container);
1015		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1016	}
1017
1018proto_again:
1019	fdret = FLOW_DISSECT_RET_CONTINUE;
1020
 
1021	switch (proto) {
1022	case htons(ETH_P_IP): {
1023		const struct iphdr *iph;
1024		struct iphdr _iph;
1025
1026		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1027		if (!iph || iph->ihl < 5) {
1028			fdret = FLOW_DISSECT_RET_OUT_BAD;
1029			break;
1030		}
1031
1032		nhoff += iph->ihl * 4;
1033
1034		ip_proto = iph->protocol;
 
 
1035
1036		if (dissector_uses_key(flow_dissector,
1037				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1038			key_addrs = skb_flow_dissector_target(flow_dissector,
1039							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1040							      target_container);
1041
1042			memcpy(&key_addrs->v4addrs, &iph->saddr,
1043			       sizeof(key_addrs->v4addrs));
1044			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1045		}
1046
1047		if (ip_is_fragment(iph)) {
1048			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1049
1050			if (iph->frag_off & htons(IP_OFFSET)) {
1051				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1052				break;
1053			} else {
1054				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1055				if (!(flags &
1056				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1057					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1058					break;
1059				}
1060			}
1061		}
1062
1063		__skb_flow_dissect_ipv4(skb, flow_dissector,
1064					target_container, data, iph);
1065
1066		break;
1067	}
1068	case htons(ETH_P_IPV6): {
1069		const struct ipv6hdr *iph;
1070		struct ipv6hdr _iph;
1071
1072		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1073		if (!iph) {
1074			fdret = FLOW_DISSECT_RET_OUT_BAD;
1075			break;
1076		}
1077
1078		ip_proto = iph->nexthdr;
 
 
1079		nhoff += sizeof(struct ipv6hdr);
1080
1081		if (dissector_uses_key(flow_dissector,
1082				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1083			key_addrs = skb_flow_dissector_target(flow_dissector,
1084							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1085							      target_container);
1086
1087			memcpy(&key_addrs->v6addrs, &iph->saddr,
1088			       sizeof(key_addrs->v6addrs));
1089			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1090		}
1091
1092		if ((dissector_uses_key(flow_dissector,
1093					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1094		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1095		    ip6_flowlabel(iph)) {
1096			__be32 flow_label = ip6_flowlabel(iph);
1097
1098			if (dissector_uses_key(flow_dissector,
1099					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1100				key_tags = skb_flow_dissector_target(flow_dissector,
1101								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1102								     target_container);
1103				key_tags->flow_label = ntohl(flow_label);
1104			}
1105			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1106				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1107				break;
1108			}
1109		}
1110
1111		__skb_flow_dissect_ipv6(skb, flow_dissector,
1112					target_container, data, iph);
1113
1114		break;
1115	}
1116	case htons(ETH_P_8021AD):
1117	case htons(ETH_P_8021Q): {
1118		const struct vlan_hdr *vlan = NULL;
1119		struct vlan_hdr _vlan;
1120		__be16 saved_vlan_tpid = proto;
1121
1122		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1123		    skb && skb_vlan_tag_present(skb)) {
1124			proto = skb->protocol;
1125		} else {
1126			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1127						    data, hlen, &_vlan);
1128			if (!vlan) {
1129				fdret = FLOW_DISSECT_RET_OUT_BAD;
1130				break;
1131			}
1132
1133			proto = vlan->h_vlan_encapsulated_proto;
1134			nhoff += sizeof(*vlan);
1135		}
1136
1137		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1138			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1139		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1140			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1141		} else {
1142			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1143			break;
1144		}
1145
1146		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1147			key_vlan = skb_flow_dissector_target(flow_dissector,
1148							     dissector_vlan,
1149							     target_container);
1150
1151			if (!vlan) {
1152				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1153				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1154			} else {
1155				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1156					VLAN_VID_MASK;
1157				key_vlan->vlan_priority =
1158					(ntohs(vlan->h_vlan_TCI) &
1159					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1160			}
1161			key_vlan->vlan_tpid = saved_vlan_tpid;
1162		}
1163
1164		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1165		break;
1166	}
1167	case htons(ETH_P_PPP_SES): {
1168		struct {
1169			struct pppoe_hdr hdr;
1170			__be16 proto;
1171		} *hdr, _hdr;
1172		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1173		if (!hdr) {
1174			fdret = FLOW_DISSECT_RET_OUT_BAD;
1175			break;
1176		}
1177
1178		proto = hdr->proto;
1179		nhoff += PPPOE_SES_HLEN;
1180		switch (proto) {
1181		case htons(PPP_IP):
1182			proto = htons(ETH_P_IP);
1183			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1184			break;
1185		case htons(PPP_IPV6):
1186			proto = htons(ETH_P_IPV6);
1187			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1188			break;
1189		default:
1190			fdret = FLOW_DISSECT_RET_OUT_BAD;
1191			break;
1192		}
1193		break;
1194	}
1195	case htons(ETH_P_TIPC): {
1196		struct tipc_basic_hdr *hdr, _hdr;
1197
1198		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1199					   data, hlen, &_hdr);
1200		if (!hdr) {
1201			fdret = FLOW_DISSECT_RET_OUT_BAD;
1202			break;
1203		}
1204
1205		if (dissector_uses_key(flow_dissector,
1206				       FLOW_DISSECTOR_KEY_TIPC)) {
1207			key_addrs = skb_flow_dissector_target(flow_dissector,
1208							      FLOW_DISSECTOR_KEY_TIPC,
1209							      target_container);
1210			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1211			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1212		}
1213		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1214		break;
1215	}
1216
1217	case htons(ETH_P_MPLS_UC):
1218	case htons(ETH_P_MPLS_MC):
1219		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1220						target_container, data,
1221						nhoff, hlen, mpls_lse,
1222						&mpls_el);
1223		nhoff += sizeof(struct mpls_label);
1224		mpls_lse++;
1225		break;
1226	case htons(ETH_P_FCOE):
1227		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1228			fdret = FLOW_DISSECT_RET_OUT_BAD;
1229			break;
1230		}
1231
1232		nhoff += FCOE_HEADER_LEN;
1233		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1234		break;
1235
1236	case htons(ETH_P_ARP):
1237	case htons(ETH_P_RARP):
1238		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1239					       target_container, data,
1240					       nhoff, hlen);
1241		break;
1242
1243	case htons(ETH_P_BATMAN):
1244		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1245						  &proto, &nhoff, hlen, flags);
1246		break;
1247
1248	default:
1249		fdret = FLOW_DISSECT_RET_OUT_BAD;
1250		break;
1251	}
1252
1253	/* Process result of proto processing */
1254	switch (fdret) {
1255	case FLOW_DISSECT_RET_OUT_GOOD:
1256		goto out_good;
1257	case FLOW_DISSECT_RET_PROTO_AGAIN:
1258		if (skb_flow_dissect_allowed(&num_hdrs))
1259			goto proto_again;
1260		goto out_good;
1261	case FLOW_DISSECT_RET_CONTINUE:
1262	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1263		break;
1264	case FLOW_DISSECT_RET_OUT_BAD:
1265	default:
1266		goto out_bad;
1267	}
1268
1269ip_proto_again:
1270	fdret = FLOW_DISSECT_RET_CONTINUE;
1271
1272	switch (ip_proto) {
1273	case IPPROTO_GRE:
1274		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1275					       target_container, data,
1276					       &proto, &nhoff, &hlen, flags);
1277		break;
1278
1279	case NEXTHDR_HOP:
1280	case NEXTHDR_ROUTING:
1281	case NEXTHDR_DEST: {
1282		u8 _opthdr[2], *opthdr;
1283
1284		if (proto != htons(ETH_P_IPV6))
1285			break;
1286
1287		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1288					      data, hlen, &_opthdr);
1289		if (!opthdr) {
1290			fdret = FLOW_DISSECT_RET_OUT_BAD;
1291			break;
1292		}
1293
1294		ip_proto = opthdr[0];
1295		nhoff += (opthdr[1] + 1) << 3;
1296
1297		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1298		break;
1299	}
1300	case NEXTHDR_FRAGMENT: {
1301		struct frag_hdr _fh, *fh;
1302
1303		if (proto != htons(ETH_P_IPV6))
1304			break;
1305
1306		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1307					  data, hlen, &_fh);
1308
1309		if (!fh) {
1310			fdret = FLOW_DISSECT_RET_OUT_BAD;
1311			break;
1312		}
1313
1314		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1315
1316		nhoff += sizeof(_fh);
1317		ip_proto = fh->nexthdr;
1318
1319		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1320			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1321			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1322				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1323				break;
1324			}
 
1325		}
1326
1327		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1328		break;
1329	}
1330	case IPPROTO_IPIP:
1331		proto = htons(ETH_P_IP);
1332
1333		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1334		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1335			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1336			break;
1337		}
1338
1339		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1340		break;
1341
1342	case IPPROTO_IPV6:
1343		proto = htons(ETH_P_IPV6);
1344
1345		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1346		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1347			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1348			break;
1349		}
1350
1351		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1352		break;
1353
1354
1355	case IPPROTO_MPLS:
1356		proto = htons(ETH_P_MPLS_UC);
1357		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1358		break;
1359
1360	case IPPROTO_TCP:
1361		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1362				       data, nhoff, hlen);
1363		break;
1364
1365	case IPPROTO_ICMP:
1366	case IPPROTO_ICMPV6:
1367		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1368					data, nhoff, hlen);
1369		break;
1370
1371	default:
1372		break;
1373	}
1374
1375	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1376		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1377					 data, nhoff, ip_proto, hlen);
1378
1379	/* Process result of IP proto processing */
1380	switch (fdret) {
1381	case FLOW_DISSECT_RET_PROTO_AGAIN:
1382		if (skb_flow_dissect_allowed(&num_hdrs))
1383			goto proto_again;
1384		break;
1385	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1386		if (skb_flow_dissect_allowed(&num_hdrs))
1387			goto ip_proto_again;
1388		break;
1389	case FLOW_DISSECT_RET_OUT_GOOD:
1390	case FLOW_DISSECT_RET_CONTINUE:
1391		break;
1392	case FLOW_DISSECT_RET_OUT_BAD:
1393	default:
1394		goto out_bad;
1395	}
1396
1397out_good:
1398	ret = true;
1399
1400out:
1401	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1402	key_basic->n_proto = proto;
1403	key_basic->ip_proto = ip_proto;
1404
1405	return ret;
1406
1407out_bad:
1408	ret = false;
1409	goto out;
1410}
1411EXPORT_SYMBOL(__skb_flow_dissect);
1412
1413static siphash_key_t hashrnd __read_mostly;
1414static __always_inline void __flow_hash_secret_init(void)
1415{
1416	net_get_random_once(&hashrnd, sizeof(hashrnd));
1417}
1418
1419static const void *flow_keys_hash_start(const struct flow_keys *flow)
1420{
1421	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1422	return &flow->FLOW_KEYS_HASH_START_FIELD;
1423}
1424
1425static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1426{
1427	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1428
1429	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1430
1431	switch (flow->control.addr_type) {
1432	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1433		diff -= sizeof(flow->addrs.v4addrs);
1434		break;
1435	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1436		diff -= sizeof(flow->addrs.v6addrs);
1437		break;
1438	case FLOW_DISSECTOR_KEY_TIPC:
1439		diff -= sizeof(flow->addrs.tipckey);
1440		break;
1441	}
1442	return sizeof(*flow) - diff;
1443}
1444
1445__be32 flow_get_u32_src(const struct flow_keys *flow)
 
 
 
 
 
 
1446{
1447	switch (flow->control.addr_type) {
1448	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1449		return flow->addrs.v4addrs.src;
1450	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1451		return (__force __be32)ipv6_addr_hash(
1452			&flow->addrs.v6addrs.src);
1453	case FLOW_DISSECTOR_KEY_TIPC:
1454		return flow->addrs.tipckey.key;
1455	default:
1456		return 0;
1457	}
1458}
1459EXPORT_SYMBOL(flow_get_u32_src);
1460
1461__be32 flow_get_u32_dst(const struct flow_keys *flow)
1462{
1463	switch (flow->control.addr_type) {
1464	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1465		return flow->addrs.v4addrs.dst;
1466	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1467		return (__force __be32)ipv6_addr_hash(
1468			&flow->addrs.v6addrs.dst);
1469	default:
1470		return 0;
1471	}
1472}
1473EXPORT_SYMBOL(flow_get_u32_dst);
1474
1475/* Sort the source and destination IP (and the ports if the IP are the same),
1476 * to have consistent hash within the two directions
1477 */
1478static inline void __flow_hash_consistentify(struct flow_keys *keys)
1479{
1480	int addr_diff, i;
1481
1482	switch (keys->control.addr_type) {
1483	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1484		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1485			    (__force u32)keys->addrs.v4addrs.src;
1486		if ((addr_diff < 0) ||
1487		    (addr_diff == 0 &&
1488		     ((__force u16)keys->ports.dst <
1489		      (__force u16)keys->ports.src))) {
1490			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1491			swap(keys->ports.src, keys->ports.dst);
1492		}
1493		break;
1494	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1495		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1496				   &keys->addrs.v6addrs.src,
1497				   sizeof(keys->addrs.v6addrs.dst));
1498		if ((addr_diff < 0) ||
1499		    (addr_diff == 0 &&
1500		     ((__force u16)keys->ports.dst <
1501		      (__force u16)keys->ports.src))) {
1502			for (i = 0; i < 4; i++)
1503				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1504				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1505			swap(keys->ports.src, keys->ports.dst);
1506		}
1507		break;
1508	}
1509}
1510
1511static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1512					const siphash_key_t *keyval)
1513{
1514	u32 hash;
1515
1516	__flow_hash_consistentify(keys);
1517
1518	hash = siphash(flow_keys_hash_start(keys),
1519		       flow_keys_hash_length(keys), keyval);
 
1520	if (!hash)
1521		hash = 1;
1522
1523	return hash;
1524}
 
1525
1526u32 flow_hash_from_keys(struct flow_keys *keys)
 
 
 
 
 
1527{
1528	__flow_hash_secret_init();
1529	return __flow_hash_from_keys(keys, &hashrnd);
1530}
1531EXPORT_SYMBOL(flow_hash_from_keys);
1532
1533static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1534				  struct flow_keys *keys,
1535				  const siphash_key_t *keyval)
1536{
1537	skb_flow_dissect_flow_keys(skb, keys,
1538				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1539
1540	return __flow_hash_from_keys(keys, keyval);
1541}
 
 
 
1542
1543struct _flow_keys_digest_data {
1544	__be16	n_proto;
1545	u8	ip_proto;
1546	u8	padding;
1547	__be32	ports;
1548	__be32	src;
1549	__be32	dst;
1550};
1551
1552void make_flow_keys_digest(struct flow_keys_digest *digest,
1553			   const struct flow_keys *flow)
1554{
1555	struct _flow_keys_digest_data *data =
1556	    (struct _flow_keys_digest_data *)digest;
1557
1558	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1559
1560	memset(digest, 0, sizeof(*digest));
1561
1562	data->n_proto = flow->basic.n_proto;
1563	data->ip_proto = flow->basic.ip_proto;
1564	data->ports = flow->ports.ports;
1565	data->src = flow->addrs.v4addrs.src;
1566	data->dst = flow->addrs.v4addrs.dst;
1567}
1568EXPORT_SYMBOL(make_flow_keys_digest);
1569
1570static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1571
1572u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1573{
1574	struct flow_keys keys;
1575
1576	__flow_hash_secret_init();
1577
1578	memset(&keys, 0, sizeof(keys));
1579	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1580			   &keys, NULL, 0, 0, 0,
1581			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1582
1583	return __flow_hash_from_keys(&keys, &hashrnd);
1584}
1585EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1586
1587/**
1588 * __skb_get_hash: calculate a flow hash
1589 * @skb: sk_buff to calculate flow hash from
1590 *
1591 * This function calculates a flow hash based on src/dst addresses
1592 * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1593 * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1594 * if hash is a canonical 4-tuple hash over transport ports.
1595 */
1596void __skb_get_hash(struct sk_buff *skb)
1597{
1598	struct flow_keys keys;
1599	u32 hash;
1600
1601	__flow_hash_secret_init();
 
1602
1603	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1604
1605	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1606}
1607EXPORT_SYMBOL(__skb_get_hash);
1608
1609__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1610			   const siphash_key_t *perturb)
1611{
1612	struct flow_keys keys;
1613
1614	return ___skb_get_hash(skb, &keys, perturb);
1615}
1616EXPORT_SYMBOL(skb_get_hash_perturb);
1617
1618u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1619		   const struct flow_keys_basic *keys, int hlen)
1620{
1621	u32 poff = keys->control.thoff;
1622
1623	/* skip L4 headers for fragments after the first */
1624	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1625	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1626		return poff;
1627
1628	switch (keys->basic.ip_proto) {
1629	case IPPROTO_TCP: {
1630		/* access doff as u8 to avoid unaligned access */
1631		const u8 *doff;
1632		u8 _doff;
1633
1634		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1635					    data, hlen, &_doff);
1636		if (!doff)
1637			return poff;
1638
1639		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1640		break;
1641	}
1642	case IPPROTO_UDP:
1643	case IPPROTO_UDPLITE:
1644		poff += sizeof(struct udphdr);
1645		break;
1646	/* For the rest, we do not really care about header
1647	 * extensions at this point for now.
1648	 */
1649	case IPPROTO_ICMP:
1650		poff += sizeof(struct icmphdr);
1651		break;
1652	case IPPROTO_ICMPV6:
1653		poff += sizeof(struct icmp6hdr);
1654		break;
1655	case IPPROTO_IGMP:
1656		poff += sizeof(struct igmphdr);
1657		break;
1658	case IPPROTO_DCCP:
1659		poff += sizeof(struct dccp_hdr);
1660		break;
1661	case IPPROTO_SCTP:
1662		poff += sizeof(struct sctphdr);
1663		break;
1664	}
1665
1666	return poff;
1667}
1668
1669/**
1670 * skb_get_poff - get the offset to the payload
1671 * @skb: sk_buff to get the payload offset from
1672 *
1673 * The function will get the offset to the payload as far as it could
1674 * be dissected.  The main user is currently BPF, so that we can dynamically
1675 * truncate packets without needing to push actual payload to the user
1676 * space and can analyze headers only, instead.
1677 */
1678u32 skb_get_poff(const struct sk_buff *skb)
1679{
1680	struct flow_keys_basic keys;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681
1682	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1683					      NULL, 0, 0, 0, 0))
1684		return 0;
1685
1686	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1687}
1688
1689__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1690{
1691	memset(keys, 0, sizeof(*keys));
 
 
 
 
 
 
 
1692
1693	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1694	    sizeof(keys->addrs.v6addrs.src));
1695	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1696	    sizeof(keys->addrs.v6addrs.dst));
1697	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1698	keys->ports.src = fl6->fl6_sport;
1699	keys->ports.dst = fl6->fl6_dport;
1700	keys->keyid.keyid = fl6->fl6_gre_key;
1701	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1702	keys->basic.ip_proto = fl6->flowi6_proto;
1703
1704	return flow_hash_from_keys(keys);
 
 
 
1705}
1706EXPORT_SYMBOL(__get_hash_from_flowi6);
1707
1708static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1709	{
1710		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1711		.offset = offsetof(struct flow_keys, control),
1712	},
1713	{
1714		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1715		.offset = offsetof(struct flow_keys, basic),
1716	},
1717	{
1718		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1719		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1720	},
1721	{
1722		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1723		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1724	},
1725	{
1726		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1727		.offset = offsetof(struct flow_keys, addrs.tipckey),
1728	},
1729	{
1730		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1731		.offset = offsetof(struct flow_keys, ports),
1732	},
1733	{
1734		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1735		.offset = offsetof(struct flow_keys, vlan),
1736	},
1737	{
1738		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1739		.offset = offsetof(struct flow_keys, tags),
1740	},
1741	{
1742		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1743		.offset = offsetof(struct flow_keys, keyid),
1744	},
1745};
1746
1747static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1748	{
1749		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1750		.offset = offsetof(struct flow_keys, control),
1751	},
1752	{
1753		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1754		.offset = offsetof(struct flow_keys, basic),
1755	},
1756	{
1757		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1758		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1759	},
1760	{
1761		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1762		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1763	},
1764	{
1765		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1766		.offset = offsetof(struct flow_keys, ports),
1767	},
1768};
1769
1770static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1771	{
1772		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1773		.offset = offsetof(struct flow_keys, control),
1774	},
1775	{
1776		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1777		.offset = offsetof(struct flow_keys, basic),
1778	},
1779};
1780
1781struct flow_dissector flow_keys_dissector __read_mostly;
1782EXPORT_SYMBOL(flow_keys_dissector);
 
 
 
 
 
1783
1784struct flow_dissector flow_keys_basic_dissector __read_mostly;
1785EXPORT_SYMBOL(flow_keys_basic_dissector);
 
1786
1787static int __init init_default_flow_dissectors(void)
1788{
1789	skb_flow_dissector_init(&flow_keys_dissector,
1790				flow_keys_dissector_keys,
1791				ARRAY_SIZE(flow_keys_dissector_keys));
1792	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1793				flow_keys_dissector_symmetric_keys,
1794				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1795	skb_flow_dissector_init(&flow_keys_basic_dissector,
1796				flow_keys_basic_dissector_keys,
1797				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1798	return 0;
1799}
1800core_initcall(init_default_flow_dissectors);