Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_defer.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_btree.h"
  21#include "xfs_refcount_btree.h"
  22#include "xfs_refcount.h"
  23#include "xfs_bmap_btree.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_bit.h"
  26#include "xfs_alloc.h"
  27#include "xfs_quota.h"
  28#include "xfs_reflink.h"
  29#include "xfs_iomap.h"
  30#include "xfs_sb.h"
  31#include "xfs_ag_resv.h"
  32
  33/*
  34 * Copy on Write of Shared Blocks
  35 *
  36 * XFS must preserve "the usual" file semantics even when two files share
  37 * the same physical blocks.  This means that a write to one file must not
  38 * alter the blocks in a different file; the way that we'll do that is
  39 * through the use of a copy-on-write mechanism.  At a high level, that
  40 * means that when we want to write to a shared block, we allocate a new
  41 * block, write the data to the new block, and if that succeeds we map the
  42 * new block into the file.
  43 *
  44 * XFS provides a "delayed allocation" mechanism that defers the allocation
  45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
  46 * possible.  This reduces fragmentation by enabling the filesystem to ask
  47 * for bigger chunks less often, which is exactly what we want for CoW.
  48 *
  49 * The delalloc mechanism begins when the kernel wants to make a block
  50 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
  51 * create a delalloc mapping, which is a regular in-core extent, but without
  52 * a real startblock.  (For delalloc mappings, the startblock encodes both
  53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
  54 * many blocks might be required to put the mapping into the BMBT.)  delalloc
  55 * mappings are a reservation against the free space in the filesystem;
  56 * adjacent mappings can also be combined into fewer larger mappings.
  57 *
  58 * As an optimization, the CoW extent size hint (cowextsz) creates
  59 * outsized aligned delalloc reservations in the hope of landing out of
  60 * order nearby CoW writes in a single extent on disk, thereby reducing
  61 * fragmentation and improving future performance.
  62 *
  63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
  64 * C: ------DDDDDDD--------- (CoW fork)
  65 *
  66 * When dirty pages are being written out (typically in writepage), the
  67 * delalloc reservations are converted into unwritten mappings by
  68 * allocating blocks and replacing the delalloc mapping with real ones.
  69 * A delalloc mapping can be replaced by several unwritten ones if the
  70 * free space is fragmented.
  71 *
  72 * D: --RRRRRRSSSRRRRRRRR---
  73 * C: ------UUUUUUU---------
  74 *
  75 * We want to adapt the delalloc mechanism for copy-on-write, since the
  76 * write paths are similar.  The first two steps (creating the reservation
  77 * and allocating the blocks) are exactly the same as delalloc except that
  78 * the mappings must be stored in a separate CoW fork because we do not want
  79 * to disturb the mapping in the data fork until we're sure that the write
  80 * succeeded.  IO completion in this case is the process of removing the old
  81 * mapping from the data fork and moving the new mapping from the CoW fork to
  82 * the data fork.  This will be discussed shortly.
  83 *
  84 * For now, unaligned directio writes will be bounced back to the page cache.
  85 * Block-aligned directio writes will use the same mechanism as buffered
  86 * writes.
  87 *
  88 * Just prior to submitting the actual disk write requests, we convert
  89 * the extents representing the range of the file actually being written
  90 * (as opposed to extra pieces created for the cowextsize hint) to real
  91 * extents.  This will become important in the next step:
  92 *
  93 * D: --RRRRRRSSSRRRRRRRR---
  94 * C: ------UUrrUUU---------
  95 *
  96 * CoW remapping must be done after the data block write completes,
  97 * because we don't want to destroy the old data fork map until we're sure
  98 * the new block has been written.  Since the new mappings are kept in a
  99 * separate fork, we can simply iterate these mappings to find the ones
 100 * that cover the file blocks that we just CoW'd.  For each extent, simply
 101 * unmap the corresponding range in the data fork, map the new range into
 102 * the data fork, and remove the extent from the CoW fork.  Because of
 103 * the presence of the cowextsize hint, however, we must be careful
 104 * only to remap the blocks that we've actually written out --  we must
 105 * never remap delalloc reservations nor CoW staging blocks that have
 106 * yet to be written.  This corresponds exactly to the real extents in
 107 * the CoW fork:
 108 *
 109 * D: --RRRRRRrrSRRRRRRRR---
 110 * C: ------UU--UUU---------
 111 *
 112 * Since the remapping operation can be applied to an arbitrary file
 113 * range, we record the need for the remap step as a flag in the ioend
 114 * instead of declaring a new IO type.  This is required for direct io
 115 * because we only have ioend for the whole dio, and we have to be able to
 116 * remember the presence of unwritten blocks and CoW blocks with a single
 117 * ioend structure.  Better yet, the more ground we can cover with one
 118 * ioend, the better.
 119 */
 120
 121/*
 122 * Given an AG extent, find the lowest-numbered run of shared blocks
 123 * within that range and return the range in fbno/flen.  If
 124 * find_end_of_shared is true, return the longest contiguous extent of
 125 * shared blocks.  If there are no shared extents, fbno and flen will
 126 * be set to NULLAGBLOCK and 0, respectively.
 127 */
 128int
 129xfs_reflink_find_shared(
 130	struct xfs_mount	*mp,
 131	struct xfs_trans	*tp,
 132	xfs_agnumber_t		agno,
 133	xfs_agblock_t		agbno,
 134	xfs_extlen_t		aglen,
 135	xfs_agblock_t		*fbno,
 136	xfs_extlen_t		*flen,
 137	bool			find_end_of_shared)
 138{
 139	struct xfs_buf		*agbp;
 140	struct xfs_btree_cur	*cur;
 141	int			error;
 142
 143	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 144	if (error)
 145		return error;
 146
 147	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
 148
 149	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
 150			find_end_of_shared);
 151
 152	xfs_btree_del_cursor(cur, error);
 153
 154	xfs_trans_brelse(tp, agbp);
 155	return error;
 156}
 157
 158/*
 159 * Trim the mapping to the next block where there's a change in the
 160 * shared/unshared status.  More specifically, this means that we
 161 * find the lowest-numbered extent of shared blocks that coincides with
 162 * the given block mapping.  If the shared extent overlaps the start of
 163 * the mapping, trim the mapping to the end of the shared extent.  If
 164 * the shared region intersects the mapping, trim the mapping to the
 165 * start of the shared extent.  If there are no shared regions that
 166 * overlap, just return the original extent.
 167 */
 168int
 169xfs_reflink_trim_around_shared(
 170	struct xfs_inode	*ip,
 171	struct xfs_bmbt_irec	*irec,
 172	bool			*shared)
 173{
 174	xfs_agnumber_t		agno;
 175	xfs_agblock_t		agbno;
 176	xfs_extlen_t		aglen;
 177	xfs_agblock_t		fbno;
 178	xfs_extlen_t		flen;
 179	int			error = 0;
 180
 181	/* Holes, unwritten, and delalloc extents cannot be shared */
 182	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
 183		*shared = false;
 184		return 0;
 185	}
 186
 187	trace_xfs_reflink_trim_around_shared(ip, irec);
 188
 189	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
 190	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
 191	aglen = irec->br_blockcount;
 192
 193	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
 194			aglen, &fbno, &flen, true);
 195	if (error)
 196		return error;
 197
 198	*shared = false;
 199	if (fbno == NULLAGBLOCK) {
 200		/* No shared blocks at all. */
 201		return 0;
 202	} else if (fbno == agbno) {
 203		/*
 204		 * The start of this extent is shared.  Truncate the
 205		 * mapping at the end of the shared region so that a
 206		 * subsequent iteration starts at the start of the
 207		 * unshared region.
 208		 */
 209		irec->br_blockcount = flen;
 210		*shared = true;
 211		return 0;
 212	} else {
 213		/*
 214		 * There's a shared extent midway through this extent.
 215		 * Truncate the mapping at the start of the shared
 216		 * extent so that a subsequent iteration starts at the
 217		 * start of the shared region.
 218		 */
 219		irec->br_blockcount = fbno - agbno;
 220		return 0;
 221	}
 222}
 223
 224int
 225xfs_bmap_trim_cow(
 226	struct xfs_inode	*ip,
 227	struct xfs_bmbt_irec	*imap,
 228	bool			*shared)
 229{
 230	/* We can't update any real extents in always COW mode. */
 231	if (xfs_is_always_cow_inode(ip) &&
 232	    !isnullstartblock(imap->br_startblock)) {
 233		*shared = true;
 234		return 0;
 235	}
 236
 237	/* Trim the mapping to the nearest shared extent boundary. */
 238	return xfs_reflink_trim_around_shared(ip, imap, shared);
 239}
 240
 241static int
 242xfs_reflink_convert_cow_locked(
 243	struct xfs_inode	*ip,
 244	xfs_fileoff_t		offset_fsb,
 245	xfs_filblks_t		count_fsb)
 246{
 247	struct xfs_iext_cursor	icur;
 248	struct xfs_bmbt_irec	got;
 249	struct xfs_btree_cur	*dummy_cur = NULL;
 250	int			dummy_logflags;
 251	int			error = 0;
 252
 253	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
 254		return 0;
 255
 256	do {
 257		if (got.br_startoff >= offset_fsb + count_fsb)
 258			break;
 259		if (got.br_state == XFS_EXT_NORM)
 260			continue;
 261		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
 262			return -EIO;
 263
 264		xfs_trim_extent(&got, offset_fsb, count_fsb);
 265		if (!got.br_blockcount)
 266			continue;
 267
 268		got.br_state = XFS_EXT_NORM;
 269		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
 270				XFS_COW_FORK, &icur, &dummy_cur, &got,
 271				&dummy_logflags);
 272		if (error)
 273			return error;
 274	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
 275
 276	return error;
 277}
 278
 279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
 280int
 281xfs_reflink_convert_cow(
 282	struct xfs_inode	*ip,
 283	xfs_off_t		offset,
 284	xfs_off_t		count)
 285{
 286	struct xfs_mount	*mp = ip->i_mount;
 287	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 288	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
 289	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
 290	int			error;
 291
 292	ASSERT(count != 0);
 293
 294	xfs_ilock(ip, XFS_ILOCK_EXCL);
 295	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 296	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 297	return error;
 298}
 299
 300/*
 301 * Find the extent that maps the given range in the COW fork. Even if the extent
 302 * is not shared we might have a preallocation for it in the COW fork. If so we
 303 * use it that rather than trigger a new allocation.
 304 */
 305static int
 306xfs_find_trim_cow_extent(
 307	struct xfs_inode	*ip,
 308	struct xfs_bmbt_irec	*imap,
 309	struct xfs_bmbt_irec	*cmap,
 310	bool			*shared,
 311	bool			*found)
 312{
 313	xfs_fileoff_t		offset_fsb = imap->br_startoff;
 314	xfs_filblks_t		count_fsb = imap->br_blockcount;
 315	struct xfs_iext_cursor	icur;
 316
 317	*found = false;
 318
 319	/*
 320	 * If we don't find an overlapping extent, trim the range we need to
 321	 * allocate to fit the hole we found.
 322	 */
 323	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
 324		cmap->br_startoff = offset_fsb + count_fsb;
 325	if (cmap->br_startoff > offset_fsb) {
 326		xfs_trim_extent(imap, imap->br_startoff,
 327				cmap->br_startoff - imap->br_startoff);
 328		return xfs_bmap_trim_cow(ip, imap, shared);
 329	}
 330
 331	*shared = true;
 332	if (isnullstartblock(cmap->br_startblock)) {
 333		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
 334		return 0;
 335	}
 336
 337	/* real extent found - no need to allocate */
 338	xfs_trim_extent(cmap, offset_fsb, count_fsb);
 339	*found = true;
 340	return 0;
 341}
 342
 343/* Allocate all CoW reservations covering a range of blocks in a file. */
 344int
 345xfs_reflink_allocate_cow(
 346	struct xfs_inode	*ip,
 347	struct xfs_bmbt_irec	*imap,
 348	struct xfs_bmbt_irec	*cmap,
 349	bool			*shared,
 350	uint			*lockmode,
 351	bool			convert_now)
 352{
 353	struct xfs_mount	*mp = ip->i_mount;
 354	xfs_fileoff_t		offset_fsb = imap->br_startoff;
 355	xfs_filblks_t		count_fsb = imap->br_blockcount;
 356	struct xfs_trans	*tp;
 357	int			nimaps, error = 0;
 358	bool			found;
 359	xfs_filblks_t		resaligned;
 360	xfs_extlen_t		resblks = 0;
 361
 362	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 363	if (!ip->i_cowfp) {
 364		ASSERT(!xfs_is_reflink_inode(ip));
 365		xfs_ifork_init_cow(ip);
 366	}
 367
 368	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 369	if (error || !*shared)
 370		return error;
 371	if (found)
 372		goto convert;
 373
 374	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
 375		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
 376	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
 377
 378	xfs_iunlock(ip, *lockmode);
 379	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
 380	*lockmode = XFS_ILOCK_EXCL;
 381	xfs_ilock(ip, *lockmode);
 382
 383	if (error)
 384		return error;
 385
 386	error = xfs_qm_dqattach_locked(ip, false);
 387	if (error)
 388		goto out_trans_cancel;
 389
 390	/*
 391	 * Check for an overlapping extent again now that we dropped the ilock.
 392	 */
 393	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 394	if (error || !*shared)
 395		goto out_trans_cancel;
 396	if (found) {
 397		xfs_trans_cancel(tp);
 398		goto convert;
 399	}
 400
 401	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
 402			XFS_QMOPT_RES_REGBLKS);
 403	if (error)
 404		goto out_trans_cancel;
 405
 406	xfs_trans_ijoin(tp, ip, 0);
 407
 408	/* Allocate the entire reservation as unwritten blocks. */
 409	nimaps = 1;
 410	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
 411			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
 412			&nimaps);
 413	if (error)
 414		goto out_unreserve;
 415
 416	xfs_inode_set_cowblocks_tag(ip);
 417	error = xfs_trans_commit(tp);
 418	if (error)
 419		return error;
 420
 421	/*
 422	 * Allocation succeeded but the requested range was not even partially
 423	 * satisfied?  Bail out!
 424	 */
 425	if (nimaps == 0)
 426		return -ENOSPC;
 427convert:
 428	xfs_trim_extent(cmap, offset_fsb, count_fsb);
 429	/*
 430	 * COW fork extents are supposed to remain unwritten until we're ready
 431	 * to initiate a disk write.  For direct I/O we are going to write the
 432	 * data and need the conversion, but for buffered writes we're done.
 433	 */
 434	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
 435		return 0;
 436	trace_xfs_reflink_convert_cow(ip, cmap);
 437	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 438
 439out_unreserve:
 440	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
 441			XFS_QMOPT_RES_REGBLKS);
 442out_trans_cancel:
 443	xfs_trans_cancel(tp);
 444	return error;
 445}
 446
 447/*
 448 * Cancel CoW reservations for some block range of an inode.
 449 *
 450 * If cancel_real is true this function cancels all COW fork extents for the
 451 * inode; if cancel_real is false, real extents are not cleared.
 452 *
 453 * Caller must have already joined the inode to the current transaction. The
 454 * inode will be joined to the transaction returned to the caller.
 455 */
 456int
 457xfs_reflink_cancel_cow_blocks(
 458	struct xfs_inode		*ip,
 459	struct xfs_trans		**tpp,
 460	xfs_fileoff_t			offset_fsb,
 461	xfs_fileoff_t			end_fsb,
 462	bool				cancel_real)
 463{
 464	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 465	struct xfs_bmbt_irec		got, del;
 466	struct xfs_iext_cursor		icur;
 467	int				error = 0;
 468
 469	if (!xfs_inode_has_cow_data(ip))
 470		return 0;
 471	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
 472		return 0;
 473
 474	/* Walk backwards until we're out of the I/O range... */
 475	while (got.br_startoff + got.br_blockcount > offset_fsb) {
 476		del = got;
 477		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
 478
 479		/* Extent delete may have bumped ext forward */
 480		if (!del.br_blockcount) {
 481			xfs_iext_prev(ifp, &icur);
 482			goto next_extent;
 483		}
 484
 485		trace_xfs_reflink_cancel_cow(ip, &del);
 486
 487		if (isnullstartblock(del.br_startblock)) {
 488			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
 489					&icur, &got, &del);
 490			if (error)
 491				break;
 492		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
 493			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
 494
 495			/* Free the CoW orphan record. */
 496			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
 497					del.br_blockcount);
 498
 499			xfs_bmap_add_free(*tpp, del.br_startblock,
 500					  del.br_blockcount, NULL);
 501
 502			/* Roll the transaction */
 503			error = xfs_defer_finish(tpp);
 504			if (error)
 505				break;
 506
 507			/* Remove the mapping from the CoW fork. */
 508			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 509
 510			/* Remove the quota reservation */
 511			error = xfs_trans_reserve_quota_nblks(NULL, ip,
 512					-(long)del.br_blockcount, 0,
 513					XFS_QMOPT_RES_REGBLKS);
 514			if (error)
 515				break;
 516		} else {
 517			/* Didn't do anything, push cursor back. */
 518			xfs_iext_prev(ifp, &icur);
 519		}
 520next_extent:
 521		if (!xfs_iext_get_extent(ifp, &icur, &got))
 522			break;
 523	}
 524
 525	/* clear tag if cow fork is emptied */
 526	if (!ifp->if_bytes)
 527		xfs_inode_clear_cowblocks_tag(ip);
 528	return error;
 529}
 530
 531/*
 532 * Cancel CoW reservations for some byte range of an inode.
 533 *
 534 * If cancel_real is true this function cancels all COW fork extents for the
 535 * inode; if cancel_real is false, real extents are not cleared.
 536 */
 537int
 538xfs_reflink_cancel_cow_range(
 539	struct xfs_inode	*ip,
 540	xfs_off_t		offset,
 541	xfs_off_t		count,
 542	bool			cancel_real)
 543{
 544	struct xfs_trans	*tp;
 545	xfs_fileoff_t		offset_fsb;
 546	xfs_fileoff_t		end_fsb;
 547	int			error;
 548
 549	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
 550	ASSERT(ip->i_cowfp);
 551
 552	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 553	if (count == NULLFILEOFF)
 554		end_fsb = NULLFILEOFF;
 555	else
 556		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 557
 558	/* Start a rolling transaction to remove the mappings */
 559	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
 560			0, 0, 0, &tp);
 561	if (error)
 562		goto out;
 563
 564	xfs_ilock(ip, XFS_ILOCK_EXCL);
 565	xfs_trans_ijoin(tp, ip, 0);
 566
 567	/* Scrape out the old CoW reservations */
 568	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
 569			cancel_real);
 570	if (error)
 571		goto out_cancel;
 572
 573	error = xfs_trans_commit(tp);
 574
 575	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 576	return error;
 577
 578out_cancel:
 579	xfs_trans_cancel(tp);
 580	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 581out:
 582	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
 583	return error;
 584}
 585
 586/*
 587 * Remap part of the CoW fork into the data fork.
 588 *
 589 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 590 * into the data fork; this function will remap what it can (at the end of the
 591 * range) and update @end_fsb appropriately.  Each remap gets its own
 592 * transaction because we can end up merging and splitting bmbt blocks for
 593 * every remap operation and we'd like to keep the block reservation
 594 * requirements as low as possible.
 595 */
 596STATIC int
 597xfs_reflink_end_cow_extent(
 598	struct xfs_inode	*ip,
 599	xfs_fileoff_t		offset_fsb,
 600	xfs_fileoff_t		*end_fsb)
 601{
 602	struct xfs_bmbt_irec	got, del;
 603	struct xfs_iext_cursor	icur;
 604	struct xfs_mount	*mp = ip->i_mount;
 605	struct xfs_trans	*tp;
 606	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 607	xfs_filblks_t		rlen;
 608	unsigned int		resblks;
 609	int			error;
 610
 611	/* No COW extents?  That's easy! */
 612	if (ifp->if_bytes == 0) {
 613		*end_fsb = offset_fsb;
 614		return 0;
 615	}
 616
 617	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
 618	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
 619			XFS_TRANS_RESERVE, &tp);
 620	if (error)
 621		return error;
 622
 623	/*
 624	 * Lock the inode.  We have to ijoin without automatic unlock because
 625	 * the lead transaction is the refcountbt record deletion; the data
 626	 * fork update follows as a deferred log item.
 627	 */
 628	xfs_ilock(ip, XFS_ILOCK_EXCL);
 629	xfs_trans_ijoin(tp, ip, 0);
 630
 631	/*
 632	 * In case of racing, overlapping AIO writes no COW extents might be
 633	 * left by the time I/O completes for the loser of the race.  In that
 634	 * case we are done.
 635	 */
 636	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
 637	    got.br_startoff + got.br_blockcount <= offset_fsb) {
 638		*end_fsb = offset_fsb;
 639		goto out_cancel;
 640	}
 641
 642	/*
 643	 * Structure copy @got into @del, then trim @del to the range that we
 644	 * were asked to remap.  We preserve @got for the eventual CoW fork
 645	 * deletion; from now on @del represents the mapping that we're
 646	 * actually remapping.
 647	 */
 648	del = got;
 649	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
 650
 651	ASSERT(del.br_blockcount > 0);
 652
 653	/*
 654	 * Only remap real extents that contain data.  With AIO, speculative
 655	 * preallocations can leak into the range we are called upon, and we
 656	 * need to skip them.
 657	 */
 658	if (!xfs_bmap_is_written_extent(&got)) {
 659		*end_fsb = del.br_startoff;
 660		goto out_cancel;
 661	}
 662
 663	/* Unmap the old blocks in the data fork. */
 664	rlen = del.br_blockcount;
 665	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
 666	if (error)
 667		goto out_cancel;
 668
 669	/* Trim the extent to whatever got unmapped. */
 670	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
 671	trace_xfs_reflink_cow_remap(ip, &del);
 672
 673	/* Free the CoW orphan record. */
 674	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
 675
 676	/* Map the new blocks into the data fork. */
 677	xfs_bmap_map_extent(tp, ip, &del);
 678
 679	/* Charge this new data fork mapping to the on-disk quota. */
 680	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
 681			(long)del.br_blockcount);
 682
 683	/* Remove the mapping from the CoW fork. */
 684	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 685
 686	error = xfs_trans_commit(tp);
 687	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 688	if (error)
 689		return error;
 690
 691	/* Update the caller about how much progress we made. */
 692	*end_fsb = del.br_startoff;
 693	return 0;
 694
 695out_cancel:
 696	xfs_trans_cancel(tp);
 697	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 698	return error;
 699}
 700
 701/*
 702 * Remap parts of a file's data fork after a successful CoW.
 703 */
 704int
 705xfs_reflink_end_cow(
 706	struct xfs_inode		*ip,
 707	xfs_off_t			offset,
 708	xfs_off_t			count)
 709{
 710	xfs_fileoff_t			offset_fsb;
 711	xfs_fileoff_t			end_fsb;
 712	int				error = 0;
 713
 714	trace_xfs_reflink_end_cow(ip, offset, count);
 715
 716	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 717	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 718
 719	/*
 720	 * Walk backwards until we're out of the I/O range.  The loop function
 721	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
 722	 * extent.
 723	 *
 724	 * If we're being called by writeback then the pages will still
 725	 * have PageWriteback set, which prevents races with reflink remapping
 726	 * and truncate.  Reflink remapping prevents races with writeback by
 727	 * taking the iolock and mmaplock before flushing the pages and
 728	 * remapping, which means there won't be any further writeback or page
 729	 * cache dirtying until the reflink completes.
 730	 *
 731	 * We should never have two threads issuing writeback for the same file
 732	 * region.  There are also have post-eof checks in the writeback
 733	 * preparation code so that we don't bother writing out pages that are
 734	 * about to be truncated.
 735	 *
 736	 * If we're being called as part of directio write completion, the dio
 737	 * count is still elevated, which reflink and truncate will wait for.
 738	 * Reflink remapping takes the iolock and mmaplock and waits for
 739	 * pending dio to finish, which should prevent any directio until the
 740	 * remap completes.  Multiple concurrent directio writes to the same
 741	 * region are handled by end_cow processing only occurring for the
 742	 * threads which succeed; the outcome of multiple overlapping direct
 743	 * writes is not well defined anyway.
 744	 *
 745	 * It's possible that a buffered write and a direct write could collide
 746	 * here (the buffered write stumbles in after the dio flushes and
 747	 * invalidates the page cache and immediately queues writeback), but we
 748	 * have never supported this 100%.  If either disk write succeeds the
 749	 * blocks will be remapped.
 750	 */
 751	while (end_fsb > offset_fsb && !error)
 752		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
 753
 754	if (error)
 755		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
 756	return error;
 757}
 758
 759/*
 760 * Free leftover CoW reservations that didn't get cleaned out.
 761 */
 762int
 763xfs_reflink_recover_cow(
 764	struct xfs_mount	*mp)
 765{
 766	xfs_agnumber_t		agno;
 767	int			error = 0;
 768
 769	if (!xfs_sb_version_hasreflink(&mp->m_sb))
 770		return 0;
 771
 772	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 773		error = xfs_refcount_recover_cow_leftovers(mp, agno);
 774		if (error)
 775			break;
 776	}
 777
 778	return error;
 779}
 780
 781/*
 782 * Reflinking (Block) Ranges of Two Files Together
 783 *
 784 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 785 * optimization to avoid unnecessary refcount btree lookups in the write path.
 786 *
 787 * Now we can iteratively remap the range of extents (and holes) in src to the
 788 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 789 * logical blocks in dest and src touched by the reflink operation.
 790 *
 791 * While the length of drange is greater than zero,
 792 *    - Read src's bmbt at the start of srange ("imap")
 793 *    - If imap doesn't exist, make imap appear to start at the end of srange
 794 *      with zero length.
 795 *    - If imap starts before srange, advance imap to start at srange.
 796 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 797 *    - Punch (imap start - srange start + imap len) blocks from dest at
 798 *      offset (drange start).
 799 *    - If imap points to a real range of pblks,
 800 *         > Increase the refcount of the imap's pblks
 801 *         > Map imap's pblks into dest at the offset
 802 *           (drange start + imap start - srange start)
 803 *    - Advance drange and srange by (imap start - srange start + imap len)
 804 *
 805 * Finally, if the reflink made dest longer, update both the in-core and
 806 * on-disk file sizes.
 807 *
 808 * ASCII Art Demonstration:
 809 *
 810 * Let's say we want to reflink this source file:
 811 *
 812 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 813 *   <-------------------->
 814 *
 815 * into this destination file:
 816 *
 817 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 818 *        <-------------------->
 819 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 820 * Observe that the range has different logical offsets in either file.
 821 *
 822 * Consider that the first extent in the source file doesn't line up with our
 823 * reflink range.  Unmapping  and remapping are separate operations, so we can
 824 * unmap more blocks from the destination file than we remap.
 825 *
 826 * ----SSSSSSS-SSSSS----SSSSSS
 827 *   <------->
 828 * --DDDDD---------DDDDD--DDD
 829 *        <------->
 830 *
 831 * Now remap the source extent into the destination file:
 832 *
 833 * ----SSSSSSS-SSSSS----SSSSSS
 834 *   <------->
 835 * --DDDDD--SSSSSSSDDDDD--DDD
 836 *        <------->
 837 *
 838 * Do likewise with the second hole and extent in our range.  Holes in the
 839 * unmap range don't affect our operation.
 840 *
 841 * ----SSSSSSS-SSSSS----SSSSSS
 842 *            <---->
 843 * --DDDDD--SSSSSSS-SSSSS-DDD
 844 *                 <---->
 845 *
 846 * Finally, unmap and remap part of the third extent.  This will increase the
 847 * size of the destination file.
 848 *
 849 * ----SSSSSSS-SSSSS----SSSSSS
 850 *                  <----->
 851 * --DDDDD--SSSSSSS-SSSSS----SSS
 852 *                       <----->
 853 *
 854 * Once we update the destination file's i_size, we're done.
 855 */
 856
 857/*
 858 * Ensure the reflink bit is set in both inodes.
 859 */
 860STATIC int
 861xfs_reflink_set_inode_flag(
 862	struct xfs_inode	*src,
 863	struct xfs_inode	*dest)
 864{
 865	struct xfs_mount	*mp = src->i_mount;
 866	int			error;
 867	struct xfs_trans	*tp;
 868
 869	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
 870		return 0;
 871
 872	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 873	if (error)
 874		goto out_error;
 875
 876	/* Lock both files against IO */
 877	if (src->i_ino == dest->i_ino)
 878		xfs_ilock(src, XFS_ILOCK_EXCL);
 879	else
 880		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
 881
 882	if (!xfs_is_reflink_inode(src)) {
 883		trace_xfs_reflink_set_inode_flag(src);
 884		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
 885		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 886		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
 887		xfs_ifork_init_cow(src);
 888	} else
 889		xfs_iunlock(src, XFS_ILOCK_EXCL);
 890
 891	if (src->i_ino == dest->i_ino)
 892		goto commit_flags;
 893
 894	if (!xfs_is_reflink_inode(dest)) {
 895		trace_xfs_reflink_set_inode_flag(dest);
 896		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 897		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 898		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 899		xfs_ifork_init_cow(dest);
 900	} else
 901		xfs_iunlock(dest, XFS_ILOCK_EXCL);
 902
 903commit_flags:
 904	error = xfs_trans_commit(tp);
 905	if (error)
 906		goto out_error;
 907	return error;
 908
 909out_error:
 910	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
 911	return error;
 912}
 913
 914/*
 915 * Update destination inode size & cowextsize hint, if necessary.
 916 */
 917int
 918xfs_reflink_update_dest(
 919	struct xfs_inode	*dest,
 920	xfs_off_t		newlen,
 921	xfs_extlen_t		cowextsize,
 922	unsigned int		remap_flags)
 923{
 924	struct xfs_mount	*mp = dest->i_mount;
 925	struct xfs_trans	*tp;
 926	int			error;
 927
 928	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
 929		return 0;
 930
 931	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 932	if (error)
 933		goto out_error;
 934
 935	xfs_ilock(dest, XFS_ILOCK_EXCL);
 936	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 937
 938	if (newlen > i_size_read(VFS_I(dest))) {
 939		trace_xfs_reflink_update_inode_size(dest, newlen);
 940		i_size_write(VFS_I(dest), newlen);
 941		dest->i_d.di_size = newlen;
 942	}
 943
 944	if (cowextsize) {
 945		dest->i_d.di_cowextsize = cowextsize;
 946		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 947	}
 948
 949	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 950
 951	error = xfs_trans_commit(tp);
 952	if (error)
 953		goto out_error;
 954	return error;
 955
 956out_error:
 957	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
 958	return error;
 959}
 960
 961/*
 962 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 963 * btree already reserved all the space it needs, but the rmap btree can grow
 964 * infinitely, so we won't allow more reflinks when the AG is down to the
 965 * btree reserves.
 966 */
 967static int
 968xfs_reflink_ag_has_free_space(
 969	struct xfs_mount	*mp,
 970	xfs_agnumber_t		agno)
 971{
 972	struct xfs_perag	*pag;
 973	int			error = 0;
 974
 975	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 976		return 0;
 977
 978	pag = xfs_perag_get(mp, agno);
 979	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
 980	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
 981		error = -ENOSPC;
 982	xfs_perag_put(pag);
 983	return error;
 984}
 985
 986/*
 987 * Remap the given extent into the file.  The dmap blockcount will be set to
 988 * the number of blocks that were actually remapped.
 989 */
 990STATIC int
 991xfs_reflink_remap_extent(
 992	struct xfs_inode	*ip,
 993	struct xfs_bmbt_irec	*dmap,
 994	xfs_off_t		new_isize)
 995{
 996	struct xfs_bmbt_irec	smap;
 997	struct xfs_mount	*mp = ip->i_mount;
 998	struct xfs_trans	*tp;
 999	xfs_off_t		newlen;
1000	int64_t			qres, qdelta;
1001	unsigned int		resblks;
1002	bool			smap_real;
1003	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1004	int			nimaps;
1005	int			error;
1006
1007	/* Start a rolling transaction to switch the mappings */
1008	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1009	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1010	if (error)
1011		goto out;
1012
1013	xfs_ilock(ip, XFS_ILOCK_EXCL);
1014	xfs_trans_ijoin(tp, ip, 0);
1015
1016	/*
1017	 * Read what's currently mapped in the destination file into smap.
1018	 * If smap isn't a hole, we will have to remove it before we can add
1019	 * dmap to the destination file.
1020	 */
1021	nimaps = 1;
1022	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1023			&smap, &nimaps, 0);
1024	if (error)
1025		goto out_cancel;
1026	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1027	smap_real = xfs_bmap_is_real_extent(&smap);
1028
1029	/*
1030	 * We can only remap as many blocks as the smaller of the two extent
1031	 * maps, because we can only remap one extent at a time.
1032	 */
1033	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1034	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1035
1036	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1037
1038	/*
1039	 * Two extents mapped to the same physical block must not have
1040	 * different states; that's filesystem corruption.  Move on to the next
1041	 * extent if they're both holes or both the same physical extent.
1042	 */
1043	if (dmap->br_startblock == smap.br_startblock) {
1044		if (dmap->br_state != smap.br_state)
1045			error = -EFSCORRUPTED;
1046		goto out_cancel;
1047	}
1048
1049	/* If both extents are unwritten, leave them alone. */
1050	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1051	    smap.br_state == XFS_EXT_UNWRITTEN)
1052		goto out_cancel;
1053
1054	/* No reflinking if the AG of the dest mapping is low on space. */
1055	if (dmap_written) {
1056		error = xfs_reflink_ag_has_free_space(mp,
1057				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1058		if (error)
1059			goto out_cancel;
1060	}
1061
1062	/*
1063	 * Compute quota reservation if we think the quota block counter for
1064	 * this file could increase.
1065	 *
1066	 * Adding a written extent to the extent map can cause a bmbt split,
1067	 * and removing a mapped extent from the extent can cause a bmbt split.
1068	 * The two operations cannot both cause a split since they operate on
1069	 * the same index in the bmap btree, so we only need a reservation for
1070	 * one bmbt split if either thing is happening.
1071	 *
1072	 * If we are mapping a written extent into the file, we need to have
1073	 * enough quota block count reservation to handle the blocks in that
1074	 * extent.  We log only the delta to the quota block counts, so if the
1075	 * extent we're unmapping also has blocks allocated to it, we don't
1076	 * need a quota reservation for the extent itself.
1077	 *
1078	 * Note that if we're replacing a delalloc reservation with a written
1079	 * extent, we have to take the full quota reservation because removing
1080	 * the delalloc reservation gives the block count back to the quota
1081	 * count.  This is suboptimal, but the VFS flushed the dest range
1082	 * before we started.  That should have removed all the delalloc
1083	 * reservations, but we code defensively.
1084	 */
1085	qres = qdelta = 0;
1086	if (smap_real || dmap_written)
1087		qres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1088	if (!smap_real && dmap_written)
1089		qres += dmap->br_blockcount;
1090	if (qres > 0) {
1091		error = xfs_trans_reserve_quota_nblks(tp, ip, qres, 0,
1092				XFS_QMOPT_RES_REGBLKS);
1093		if (error)
1094			goto out_cancel;
1095	}
1096
1097	if (smap_real) {
1098		/*
1099		 * If the extent we're unmapping is backed by storage (written
1100		 * or not), unmap the extent and drop its refcount.
1101		 */
1102		xfs_bmap_unmap_extent(tp, ip, &smap);
1103		xfs_refcount_decrease_extent(tp, &smap);
1104		qdelta -= smap.br_blockcount;
1105	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1106		xfs_filblks_t	len = smap.br_blockcount;
1107
1108		/*
1109		 * If the extent we're unmapping is a delalloc reservation,
1110		 * we can use the regular bunmapi function to release the
1111		 * incore state.  Dropping the delalloc reservation takes care
1112		 * of the quota reservation for us.
1113		 */
1114		error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1115		if (error)
1116			goto out_cancel;
1117		ASSERT(len == 0);
1118	}
1119
1120	/*
1121	 * If the extent we're sharing is backed by written storage, increase
1122	 * its refcount and map it into the file.
1123	 */
1124	if (dmap_written) {
1125		xfs_refcount_increase_extent(tp, dmap);
1126		xfs_bmap_map_extent(tp, ip, dmap);
1127		qdelta += dmap->br_blockcount;
1128	}
1129
1130	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1131
1132	/* Update dest isize if needed. */
1133	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1134	newlen = min_t(xfs_off_t, newlen, new_isize);
1135	if (newlen > i_size_read(VFS_I(ip))) {
1136		trace_xfs_reflink_update_inode_size(ip, newlen);
1137		i_size_write(VFS_I(ip), newlen);
1138		ip->i_d.di_size = newlen;
1139		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140	}
1141
1142	/* Commit everything and unlock. */
1143	error = xfs_trans_commit(tp);
1144	goto out_unlock;
1145
1146out_cancel:
1147	xfs_trans_cancel(tp);
1148out_unlock:
1149	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1150out:
1151	if (error)
1152		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1153	return error;
1154}
1155
1156/* Remap a range of one file to the other. */
1157int
1158xfs_reflink_remap_blocks(
1159	struct xfs_inode	*src,
1160	loff_t			pos_in,
1161	struct xfs_inode	*dest,
1162	loff_t			pos_out,
1163	loff_t			remap_len,
1164	loff_t			*remapped)
1165{
1166	struct xfs_bmbt_irec	imap;
1167	struct xfs_mount	*mp = src->i_mount;
1168	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1169	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1170	xfs_filblks_t		len;
1171	xfs_filblks_t		remapped_len = 0;
1172	xfs_off_t		new_isize = pos_out + remap_len;
1173	int			nimaps;
1174	int			error = 0;
1175
1176	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1177			XFS_MAX_FILEOFF);
1178
1179	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1180
1181	while (len > 0) {
1182		unsigned int	lock_mode;
1183
1184		/* Read extent from the source file */
1185		nimaps = 1;
1186		lock_mode = xfs_ilock_data_map_shared(src);
1187		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1188		xfs_iunlock(src, lock_mode);
1189		if (error)
1190			break;
1191		/*
1192		 * The caller supposedly flushed all dirty pages in the source
1193		 * file range, which means that writeback should have allocated
1194		 * or deleted all delalloc reservations in that range.  If we
1195		 * find one, that's a good sign that something is seriously
1196		 * wrong here.
1197		 */
1198		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1199		if (imap.br_startblock == DELAYSTARTBLOCK) {
1200			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1201			error = -EFSCORRUPTED;
1202			break;
1203		}
1204
1205		trace_xfs_reflink_remap_extent_src(src, &imap);
1206
1207		/* Remap into the destination file at the given offset. */
1208		imap.br_startoff = destoff;
1209		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1210		if (error)
1211			break;
1212
1213		if (fatal_signal_pending(current)) {
1214			error = -EINTR;
1215			break;
1216		}
1217
1218		/* Advance drange/srange */
1219		srcoff += imap.br_blockcount;
1220		destoff += imap.br_blockcount;
1221		len -= imap.br_blockcount;
1222		remapped_len += imap.br_blockcount;
1223	}
1224
1225	if (error)
1226		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1227	*remapped = min_t(loff_t, remap_len,
1228			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1229	return error;
1230}
1231
1232/*
1233 * If we're reflinking to a point past the destination file's EOF, we must
1234 * zero any speculative post-EOF preallocations that sit between the old EOF
1235 * and the destination file offset.
1236 */
1237static int
1238xfs_reflink_zero_posteof(
1239	struct xfs_inode	*ip,
1240	loff_t			pos)
1241{
1242	loff_t			isize = i_size_read(VFS_I(ip));
1243
1244	if (pos <= isize)
1245		return 0;
1246
1247	trace_xfs_zero_eof(ip, isize, pos - isize);
1248	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1249			&xfs_buffered_write_iomap_ops);
1250}
1251
1252/*
1253 * Prepare two files for range cloning.  Upon a successful return both inodes
1254 * will have the iolock and mmaplock held, the page cache of the out file will
1255 * be truncated, and any leases on the out file will have been broken.  This
1256 * function borrows heavily from xfs_file_aio_write_checks.
1257 *
1258 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1259 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1260 * EOF block in the source dedupe range because it's not a complete block match,
1261 * hence can introduce a corruption into the file that has it's block replaced.
1262 *
1263 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1264 * "block aligned" for the purposes of cloning entire files.  However, if the
1265 * source file range includes the EOF block and it lands within the existing EOF
1266 * of the destination file, then we can expose stale data from beyond the source
1267 * file EOF in the destination file.
1268 *
1269 * XFS doesn't support partial block sharing, so in both cases we have check
1270 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1271 * down to the previous whole block and ignore the partial EOF block. While this
1272 * means we can't dedupe the last block of a file, this is an acceptible
1273 * tradeoff for simplicity on implementation.
1274 *
1275 * For cloning, we want to share the partial EOF block if it is also the new EOF
1276 * block of the destination file. If the partial EOF block lies inside the
1277 * existing destination EOF, then we have to abort the clone to avoid exposing
1278 * stale data in the destination file. Hence we reject these clone attempts with
1279 * -EINVAL in this case.
1280 */
1281int
1282xfs_reflink_remap_prep(
1283	struct file		*file_in,
1284	loff_t			pos_in,
1285	struct file		*file_out,
1286	loff_t			pos_out,
1287	loff_t			*len,
1288	unsigned int		remap_flags)
1289{
1290	struct inode		*inode_in = file_inode(file_in);
1291	struct xfs_inode	*src = XFS_I(inode_in);
1292	struct inode		*inode_out = file_inode(file_out);
1293	struct xfs_inode	*dest = XFS_I(inode_out);
1294	int			ret;
1295
1296	/* Lock both files against IO */
1297	ret = xfs_ilock2_io_mmap(src, dest);
1298	if (ret)
1299		return ret;
1300
1301	/* Check file eligibility and prepare for block sharing. */
1302	ret = -EINVAL;
1303	/* Don't reflink realtime inodes */
1304	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1305		goto out_unlock;
1306
1307	/* Don't share DAX file data for now. */
1308	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1309		goto out_unlock;
1310
1311	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1312			len, remap_flags);
1313	if (ret || *len == 0)
1314		goto out_unlock;
1315
1316	/* Attach dquots to dest inode before changing block map */
1317	ret = xfs_qm_dqattach(dest);
1318	if (ret)
1319		goto out_unlock;
1320
1321	/*
1322	 * Zero existing post-eof speculative preallocations in the destination
1323	 * file.
1324	 */
1325	ret = xfs_reflink_zero_posteof(dest, pos_out);
1326	if (ret)
1327		goto out_unlock;
1328
1329	/* Set flags and remap blocks. */
1330	ret = xfs_reflink_set_inode_flag(src, dest);
1331	if (ret)
1332		goto out_unlock;
1333
1334	/*
1335	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1336	 * pos_out. In that case, we need to extend the flush and unmap to cover
1337	 * from EOF to the end of the copy length.
1338	 */
1339	if (pos_out > XFS_ISIZE(dest)) {
1340		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1341		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1342	} else {
1343		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1344	}
1345	if (ret)
1346		goto out_unlock;
1347
1348	return 0;
1349out_unlock:
1350	xfs_iunlock2_io_mmap(src, dest);
1351	return ret;
1352}
1353
1354/* Does this inode need the reflink flag? */
1355int
1356xfs_reflink_inode_has_shared_extents(
1357	struct xfs_trans		*tp,
1358	struct xfs_inode		*ip,
1359	bool				*has_shared)
1360{
1361	struct xfs_bmbt_irec		got;
1362	struct xfs_mount		*mp = ip->i_mount;
1363	struct xfs_ifork		*ifp;
1364	xfs_agnumber_t			agno;
1365	xfs_agblock_t			agbno;
1366	xfs_extlen_t			aglen;
1367	xfs_agblock_t			rbno;
1368	xfs_extlen_t			rlen;
1369	struct xfs_iext_cursor		icur;
1370	bool				found;
1371	int				error;
1372
1373	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1374	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1375		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1376		if (error)
1377			return error;
1378	}
1379
1380	*has_shared = false;
1381	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1382	while (found) {
1383		if (isnullstartblock(got.br_startblock) ||
1384		    got.br_state != XFS_EXT_NORM)
1385			goto next;
1386		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1387		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1388		aglen = got.br_blockcount;
1389
1390		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1391				&rbno, &rlen, false);
1392		if (error)
1393			return error;
1394		/* Is there still a shared block here? */
1395		if (rbno != NULLAGBLOCK) {
1396			*has_shared = true;
1397			return 0;
1398		}
1399next:
1400		found = xfs_iext_next_extent(ifp, &icur, &got);
1401	}
1402
1403	return 0;
1404}
1405
1406/*
1407 * Clear the inode reflink flag if there are no shared extents.
1408 *
1409 * The caller is responsible for joining the inode to the transaction passed in.
1410 * The inode will be joined to the transaction that is returned to the caller.
1411 */
1412int
1413xfs_reflink_clear_inode_flag(
1414	struct xfs_inode	*ip,
1415	struct xfs_trans	**tpp)
1416{
1417	bool			needs_flag;
1418	int			error = 0;
1419
1420	ASSERT(xfs_is_reflink_inode(ip));
1421
1422	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1423	if (error || needs_flag)
1424		return error;
1425
1426	/*
1427	 * We didn't find any shared blocks so turn off the reflink flag.
1428	 * First, get rid of any leftover CoW mappings.
1429	 */
1430	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1431			true);
1432	if (error)
1433		return error;
1434
1435	/* Clear the inode flag. */
1436	trace_xfs_reflink_unset_inode_flag(ip);
1437	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1438	xfs_inode_clear_cowblocks_tag(ip);
1439	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1440
1441	return error;
1442}
1443
1444/*
1445 * Clear the inode reflink flag if there are no shared extents and the size
1446 * hasn't changed.
1447 */
1448STATIC int
1449xfs_reflink_try_clear_inode_flag(
1450	struct xfs_inode	*ip)
1451{
1452	struct xfs_mount	*mp = ip->i_mount;
1453	struct xfs_trans	*tp;
1454	int			error = 0;
1455
1456	/* Start a rolling transaction to remove the mappings */
1457	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1458	if (error)
1459		return error;
1460
1461	xfs_ilock(ip, XFS_ILOCK_EXCL);
1462	xfs_trans_ijoin(tp, ip, 0);
1463
1464	error = xfs_reflink_clear_inode_flag(ip, &tp);
1465	if (error)
1466		goto cancel;
1467
1468	error = xfs_trans_commit(tp);
1469	if (error)
1470		goto out;
1471
1472	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1473	return 0;
1474cancel:
1475	xfs_trans_cancel(tp);
1476out:
1477	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1478	return error;
1479}
1480
1481/*
1482 * Pre-COW all shared blocks within a given byte range of a file and turn off
1483 * the reflink flag if we unshare all of the file's blocks.
1484 */
1485int
1486xfs_reflink_unshare(
1487	struct xfs_inode	*ip,
1488	xfs_off_t		offset,
1489	xfs_off_t		len)
1490{
1491	struct inode		*inode = VFS_I(ip);
1492	int			error;
1493
1494	if (!xfs_is_reflink_inode(ip))
1495		return 0;
1496
1497	trace_xfs_reflink_unshare(ip, offset, len);
1498
1499	inode_dio_wait(inode);
1500
1501	error = iomap_file_unshare(inode, offset, len,
1502			&xfs_buffered_write_iomap_ops);
1503	if (error)
1504		goto out;
1505	error = filemap_write_and_wait(inode->i_mapping);
1506	if (error)
1507		goto out;
1508
1509	/* Turn off the reflink flag if possible. */
1510	error = xfs_reflink_try_clear_inode_flag(ip);
1511	if (error)
1512		goto out;
1513	return 0;
1514
1515out:
1516	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1517	return error;
1518}