Loading...
1#ifndef INT_BLK_MQ_H
2#define INT_BLK_MQ_H
3
4struct blk_mq_ctx {
5 struct {
6 spinlock_t lock;
7 struct list_head rq_list;
8 } ____cacheline_aligned_in_smp;
9
10 unsigned int cpu;
11 unsigned int index_hw;
12 unsigned int ipi_redirect;
13
14 /* incremented at dispatch time */
15 unsigned long rq_dispatched[2];
16 unsigned long rq_merged;
17
18 /* incremented at completion time */
19 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
20
21 struct request_queue *queue;
22 struct kobject kobj;
23};
24
25void __blk_mq_complete_request(struct request *rq);
26void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
27void blk_mq_init_flush(struct request_queue *q);
28void blk_mq_drain_queue(struct request_queue *q);
29void blk_mq_free_queue(struct request_queue *q);
30void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq);
31
32/*
33 * CPU hotplug helpers
34 */
35struct blk_mq_cpu_notifier;
36void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier,
37 void (*fn)(void *, unsigned long, unsigned int),
38 void *data);
39void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier);
40void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier);
41void blk_mq_cpu_init(void);
42void blk_mq_enable_hotplug(void);
43void blk_mq_disable_hotplug(void);
44
45/*
46 * CPU -> queue mappings
47 */
48struct blk_mq_reg;
49extern unsigned int *blk_mq_make_queue_map(struct blk_mq_reg *reg);
50extern int blk_mq_update_queue_map(unsigned int *map, unsigned int nr_queues);
51
52void blk_mq_add_timer(struct request *rq);
53
54#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef INT_BLK_MQ_H
3#define INT_BLK_MQ_H
4
5#include "blk-stat.h"
6#include "blk-mq-tag.h"
7
8struct blk_mq_tag_set;
9
10struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13};
14
15/**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 /* incremented at dispatch time */
29 unsigned long rq_dispatched[2];
30 unsigned long rq_merged;
31
32 /* incremented at completion time */
33 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
34
35 struct request_queue *queue;
36 struct blk_mq_ctxs *ctxs;
37 struct kobject kobj;
38} ____cacheline_aligned_in_smp;
39
40void blk_mq_exit_queue(struct request_queue *q);
41int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42void blk_mq_wake_waiters(struct request_queue *q);
43bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
44 unsigned int);
45void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
46 bool kick_requeue_list);
47void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
48struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *start);
50
51/*
52 * Internal helpers for allocating/freeing the request map
53 */
54void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
55 unsigned int hctx_idx);
56void blk_mq_free_rq_map(struct blk_mq_tags *tags);
57struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
58 unsigned int hctx_idx,
59 unsigned int nr_tags,
60 unsigned int reserved_tags);
61int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
62 unsigned int hctx_idx, unsigned int depth);
63
64/*
65 * Internal helpers for request insertion into sw queues
66 */
67void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
68 bool at_head);
69void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
70 bool run_queue);
71void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
72 struct list_head *list);
73
74/* Used by blk_insert_cloned_request() to issue request directly */
75blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
76void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
77 struct list_head *list);
78
79/*
80 * CPU -> queue mappings
81 */
82extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
83
84/*
85 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
86 * @q: request queue
87 * @type: the hctx type index
88 * @cpu: CPU
89 */
90static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
91 enum hctx_type type,
92 unsigned int cpu)
93{
94 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
95}
96
97/*
98 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
99 * @q: request queue
100 * @flags: request command flags
101 * @cpu: cpu ctx
102 */
103static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
104 unsigned int flags,
105 struct blk_mq_ctx *ctx)
106{
107 enum hctx_type type = HCTX_TYPE_DEFAULT;
108
109 /*
110 * The caller ensure that if REQ_HIPRI, poll must be enabled.
111 */
112 if (flags & REQ_HIPRI)
113 type = HCTX_TYPE_POLL;
114 else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
115 type = HCTX_TYPE_READ;
116
117 return ctx->hctxs[type];
118}
119
120/*
121 * sysfs helpers
122 */
123extern void blk_mq_sysfs_init(struct request_queue *q);
124extern void blk_mq_sysfs_deinit(struct request_queue *q);
125extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
126extern int blk_mq_sysfs_register(struct request_queue *q);
127extern void blk_mq_sysfs_unregister(struct request_queue *q);
128extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
129
130void blk_mq_release(struct request_queue *q);
131
132static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
133 unsigned int cpu)
134{
135 return per_cpu_ptr(q->queue_ctx, cpu);
136}
137
138/*
139 * This assumes per-cpu software queueing queues. They could be per-node
140 * as well, for instance. For now this is hardcoded as-is. Note that we don't
141 * care about preemption, since we know the ctx's are persistent. This does
142 * mean that we can't rely on ctx always matching the currently running CPU.
143 */
144static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
145{
146 return __blk_mq_get_ctx(q, raw_smp_processor_id());
147}
148
149struct blk_mq_alloc_data {
150 /* input parameter */
151 struct request_queue *q;
152 blk_mq_req_flags_t flags;
153 unsigned int shallow_depth;
154 unsigned int cmd_flags;
155
156 /* input & output parameter */
157 struct blk_mq_ctx *ctx;
158 struct blk_mq_hw_ctx *hctx;
159};
160
161static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
162{
163 if (data->q->elevator)
164 return data->hctx->sched_tags;
165
166 return data->hctx->tags;
167}
168
169static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
170{
171 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
172}
173
174static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
175{
176 return hctx->nr_ctx && hctx->tags;
177}
178
179unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
180void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
181 unsigned int inflight[2]);
182
183static inline void blk_mq_put_dispatch_budget(struct request_queue *q)
184{
185 if (q->mq_ops->put_budget)
186 q->mq_ops->put_budget(q);
187}
188
189static inline bool blk_mq_get_dispatch_budget(struct request_queue *q)
190{
191 if (q->mq_ops->get_budget)
192 return q->mq_ops->get_budget(q);
193 return true;
194}
195
196static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
197 struct request *rq)
198{
199 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
200 rq->tag = BLK_MQ_NO_TAG;
201
202 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
203 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
204 atomic_dec(&hctx->nr_active);
205 }
206}
207
208static inline void blk_mq_put_driver_tag(struct request *rq)
209{
210 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
211 return;
212
213 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
214}
215
216static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
217{
218 int cpu;
219
220 for_each_possible_cpu(cpu)
221 qmap->mq_map[cpu] = 0;
222}
223
224/*
225 * blk_mq_plug() - Get caller context plug
226 * @q: request queue
227 * @bio : the bio being submitted by the caller context
228 *
229 * Plugging, by design, may delay the insertion of BIOs into the elevator in
230 * order to increase BIO merging opportunities. This however can cause BIO
231 * insertion order to change from the order in which submit_bio() is being
232 * executed in the case of multiple contexts concurrently issuing BIOs to a
233 * device, even if these context are synchronized to tightly control BIO issuing
234 * order. While this is not a problem with regular block devices, this ordering
235 * change can cause write BIO failures with zoned block devices as these
236 * require sequential write patterns to zones. Prevent this from happening by
237 * ignoring the plug state of a BIO issuing context if the target request queue
238 * is for a zoned block device and the BIO to plug is a write operation.
239 *
240 * Return current->plug if the bio can be plugged and NULL otherwise
241 */
242static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
243 struct bio *bio)
244{
245 /*
246 * For regular block devices or read operations, use the context plug
247 * which may be NULL if blk_start_plug() was not executed.
248 */
249 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
250 return current->plug;
251
252 /* Zoned block device write operation case: do not plug the BIO */
253 return NULL;
254}
255
256#endif