Linux Audio

Check our new training course

Loading...
v3.15
  1/* bpf_jit_comp.c : BPF JIT compiler
 
 
  2 *
  3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License
  7 * as published by the Free Software Foundation; version 2
  8 * of the License.
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <linux/netdevice.h>
 13#include <linux/filter.h>
 14#include <linux/if_vlan.h>
 15#include <linux/random.h>
 16
 17/*
 18 * Conventions :
 19 *  EAX : BPF A accumulator
 20 *  EBX : BPF X accumulator
 21 *  RDI : pointer to skb   (first argument given to JIT function)
 22 *  RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
 23 *  ECX,EDX,ESI : scratch registers
 24 *  r9d : skb->len - skb->data_len (headlen)
 25 *  r8  : skb->data
 26 * -8(RBP) : saved RBX value
 27 * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
 28 */
 29int bpf_jit_enable __read_mostly;
 30
 31/*
 32 * assembly code in arch/x86/net/bpf_jit.S
 33 */
 34extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
 35extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
 36extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
 37extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
 38extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
 39
 40static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
 41{
 42	if (len == 1)
 43		*ptr = bytes;
 44	else if (len == 2)
 45		*(u16 *)ptr = bytes;
 46	else {
 47		*(u32 *)ptr = bytes;
 48		barrier();
 49	}
 50	return ptr + len;
 51}
 52
 53#define EMIT(bytes, len)	do { prog = emit_code(prog, bytes, len); } while (0)
 
 54
 55#define EMIT1(b1)		EMIT(b1, 1)
 56#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
 57#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
 58#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
 59#define EMIT1_off32(b1, off)	do { EMIT1(b1); EMIT(off, 4);} while (0)
 60
 61#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
 62#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
 
 
 
 
 
 
 63
 64static inline bool is_imm8(int value)
 65{
 66	return value <= 127 && value >= -128;
 67}
 68
 69static inline bool is_near(int offset)
 
 
 
 
 
 70{
 71	return offset <= 127 && offset >= -128;
 72}
 73
 74#define EMIT_JMP(offset)						\
 75do {									\
 76	if (offset) {							\
 77		if (is_near(offset))					\
 78			EMIT2(0xeb, offset); /* jmp .+off8 */		\
 79		else							\
 80			EMIT1_off32(0xe9, offset); /* jmp .+off32 */	\
 81	}								\
 82} while (0)
 
 
 
 
 
 
 
 
 
 
 
 83
 84/* list of x86 cond jumps opcodes (. + s8)
 
 85 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 86 */
 87#define X86_JB  0x72
 88#define X86_JAE 0x73
 89#define X86_JE  0x74
 90#define X86_JNE 0x75
 91#define X86_JBE 0x76
 92#define X86_JA  0x77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93
 94#define EMIT_COND_JMP(op, offset)				\
 95do {								\
 96	if (is_near(offset))					\
 97		EMIT2(op, offset); /* jxx .+off8 */		\
 98	else {							\
 99		EMIT2(0x0f, op + 0x10);				\
100		EMIT(offset, 4); /* jxx .+off32 */		\
101	}							\
102} while (0)
103
104#define COND_SEL(CODE, TOP, FOP)	\
105	case CODE:			\
106		t_op = TOP;		\
107		f_op = FOP;		\
108		goto cond_branch
109
110
111#define SEEN_DATAREF 1 /* might call external helpers */
112#define SEEN_XREG    2 /* ebx is used */
113#define SEEN_MEM     4 /* use mem[] for temporary storage */
114
115static inline void bpf_flush_icache(void *start, void *end)
116{
117	mm_segment_t old_fs = get_fs();
118
119	set_fs(KERNEL_DS);
120	smp_wmb();
121	flush_icache_range((unsigned long)start, (unsigned long)end);
122	set_fs(old_fs);
123}
124
125#define CHOOSE_LOAD_FUNC(K, func) \
126	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
128/* Helper to find the offset of pkt_type in sk_buff
129 * We want to make sure its still a 3bit field starting at a byte boundary.
 
130 */
131#define PKT_TYPE_MAX 7
132static int pkt_type_offset(void)
133{
134	struct sk_buff skb_probe = {
135		.pkt_type = ~0,
136	};
137	char *ct = (char *)&skb_probe;
138	unsigned int off;
139
140	for (off = 0; off < sizeof(struct sk_buff); off++) {
141		if (ct[off] == PKT_TYPE_MAX)
142			return off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143	}
144	pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
145	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146}
147
148struct bpf_binary_header {
149	unsigned int	pages;
150	/* Note : for security reasons, bpf code will follow a randomly
151	 * sized amount of int3 instructions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152	 */
153	u8		image[];
154};
155
156static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
157						  u8 **image_ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158{
159	unsigned int sz, hole;
160	struct bpf_binary_header *header;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
162	/* Most of BPF filters are really small,
163	 * but if some of them fill a page, allow at least
164	 * 128 extra bytes to insert a random section of int3
165	 */
166	sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
167	header = module_alloc(sz);
168	if (!header)
169		return NULL;
 
 
 
 
170
171	memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
 
 
 
 
 
 
172
173	header->pages = sz / PAGE_SIZE;
174	hole = min(sz - (proglen + sizeof(*header)), PAGE_SIZE - sizeof(*header));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
176	/* insert a random number of int3 instructions before BPF code */
177	*image_ptr = &header->image[prandom_u32() % hole];
178	return header;
179}
180
181void bpf_jit_compile(struct sk_filter *fp)
182{
183	u8 temp[64];
184	u8 *prog;
185	unsigned int proglen, oldproglen = 0;
186	int ilen, i;
187	int t_offset, f_offset;
188	u8 t_op, f_op, seen = 0, pass;
189	u8 *image = NULL;
190	struct bpf_binary_header *header = NULL;
191	u8 *func;
192	int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
193	unsigned int cleanup_addr; /* epilogue code offset */
194	unsigned int *addrs;
195	const struct sock_filter *filter = fp->insns;
196	int flen = fp->len;
197
198	if (!bpf_jit_enable)
199		return;
200
201	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
202	if (addrs == NULL)
203		return;
204
205	/* Before first pass, make a rough estimation of addrs[]
206	 * each bpf instruction is translated to less than 64 bytes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207	 */
208	for (proglen = 0, i = 0; i < flen; i++) {
209		proglen += 64;
210		addrs[i] = proglen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211	}
212	cleanup_addr = proglen; /* epilogue address */
 
 
 
 
 
213
214	for (pass = 0; pass < 10; pass++) {
215		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
216		/* no prologue/epilogue for trivial filters (RET something) */
217		proglen = 0;
218		prog = temp;
219
220		if (seen_or_pass0) {
221			EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
222			EMIT4(0x48, 0x83, 0xec, 96);	/* subq  $96,%rsp	*/
223			/* note : must save %rbx in case bpf_error is hit */
224			if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
225				EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
226			if (seen_or_pass0 & SEEN_XREG)
227				CLEAR_X(); /* make sure we dont leek kernel memory */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
229			/*
230			 * If this filter needs to access skb data,
231			 * loads r9 and r8 with :
232			 *  r9 = skb->len - skb->data_len
233			 *  r8 = skb->data
234			 */
235			if (seen_or_pass0 & SEEN_DATAREF) {
236				if (offsetof(struct sk_buff, len) <= 127)
237					/* mov    off8(%rdi),%r9d */
238					EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
239				else {
240					/* mov    off32(%rdi),%r9d */
241					EMIT3(0x44, 0x8b, 0x8f);
242					EMIT(offsetof(struct sk_buff, len), 4);
243				}
244				if (is_imm8(offsetof(struct sk_buff, data_len)))
245					/* sub    off8(%rdi),%r9d */
246					EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
247				else {
248					EMIT3(0x44, 0x2b, 0x8f);
249					EMIT(offsetof(struct sk_buff, data_len), 4);
250				}
 
 
 
 
 
 
251
252				if (is_imm8(offsetof(struct sk_buff, data)))
253					/* mov off8(%rdi),%r8 */
254					EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
255				else {
256					/* mov off32(%rdi),%r8 */
257					EMIT3(0x4c, 0x8b, 0x87);
258					EMIT(offsetof(struct sk_buff, data), 4);
259				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260			}
 
261		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
263		switch (filter[0].code) {
264		case BPF_S_RET_K:
265		case BPF_S_LD_W_LEN:
266		case BPF_S_ANC_PROTOCOL:
267		case BPF_S_ANC_IFINDEX:
268		case BPF_S_ANC_MARK:
269		case BPF_S_ANC_RXHASH:
270		case BPF_S_ANC_CPU:
271		case BPF_S_ANC_VLAN_TAG:
272		case BPF_S_ANC_VLAN_TAG_PRESENT:
273		case BPF_S_ANC_QUEUE:
274		case BPF_S_ANC_PKTTYPE:
275		case BPF_S_LD_W_ABS:
276		case BPF_S_LD_H_ABS:
277		case BPF_S_LD_B_ABS:
278			/* first instruction sets A register (or is RET 'constant') */
279			break;
280		default:
281			/* make sure we dont leak kernel information to user */
282			CLEAR_A(); /* A = 0 */
283		}
284
285		for (i = 0; i < flen; i++) {
286			unsigned int K = filter[i].k;
 
 
 
 
 
 
 
 
 
 
 
287
288			switch (filter[i].code) {
289			case BPF_S_ALU_ADD_X: /* A += X; */
290				seen |= SEEN_XREG;
291				EMIT2(0x01, 0xd8);		/* add %ebx,%eax */
292				break;
293			case BPF_S_ALU_ADD_K: /* A += K; */
294				if (!K)
295					break;
296				if (is_imm8(K))
297					EMIT3(0x83, 0xc0, K);	/* add imm8,%eax */
298				else
299					EMIT1_off32(0x05, K);	/* add imm32,%eax */
300				break;
301			case BPF_S_ALU_SUB_X: /* A -= X; */
302				seen |= SEEN_XREG;
303				EMIT2(0x29, 0xd8);		/* sub    %ebx,%eax */
304				break;
305			case BPF_S_ALU_SUB_K: /* A -= K */
306				if (!K)
307					break;
308				if (is_imm8(K))
309					EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
310				else
311					EMIT1_off32(0x2d, K); /* sub imm32,%eax */
312				break;
313			case BPF_S_ALU_MUL_X: /* A *= X; */
314				seen |= SEEN_XREG;
315				EMIT3(0x0f, 0xaf, 0xc3);	/* imul %ebx,%eax */
316				break;
317			case BPF_S_ALU_MUL_K: /* A *= K */
318				if (is_imm8(K))
319					EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
320				else {
321					EMIT2(0x69, 0xc0);		/* imul imm32,%eax */
322					EMIT(K, 4);
323				}
324				break;
325			case BPF_S_ALU_DIV_X: /* A /= X; */
326				seen |= SEEN_XREG;
327				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
328				if (pc_ret0 > 0) {
329					/* addrs[pc_ret0 - 1] is start address of target
330					 * (addrs[i] - 4) is the address following this jmp
331					 * ("xor %edx,%edx; div %ebx" being 4 bytes long)
332					 */
333					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
334								(addrs[i] - 4));
335				} else {
336					EMIT_COND_JMP(X86_JNE, 2 + 5);
337					CLEAR_A();
338					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
339				}
340				EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
341				break;
342			case BPF_S_ALU_MOD_X: /* A %= X; */
343				seen |= SEEN_XREG;
344				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
345				if (pc_ret0 > 0) {
346					/* addrs[pc_ret0 - 1] is start address of target
347					 * (addrs[i] - 6) is the address following this jmp
348					 * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
349					 */
350					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
351								(addrs[i] - 6));
352				} else {
353					EMIT_COND_JMP(X86_JNE, 2 + 5);
354					CLEAR_A();
355					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
356				}
357				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
358				EMIT2(0xf7, 0xf3);	/* div %ebx */
359				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
360				break;
361			case BPF_S_ALU_MOD_K: /* A %= K; */
362				if (K == 1) {
363					CLEAR_A();
364					break;
365				}
366				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
367				EMIT1(0xb9);EMIT(K, 4);	/* mov imm32,%ecx */
368				EMIT2(0xf7, 0xf1);	/* div %ecx */
369				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
370				break;
371			case BPF_S_ALU_DIV_K: /* A /= K */
372				if (K == 1)
373					break;
374				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
375				EMIT1(0xb9);EMIT(K, 4);	/* mov imm32,%ecx */
376				EMIT2(0xf7, 0xf1);	/* div %ecx */
377				break;
378			case BPF_S_ALU_AND_X:
379				seen |= SEEN_XREG;
380				EMIT2(0x21, 0xd8);		/* and %ebx,%eax */
381				break;
382			case BPF_S_ALU_AND_K:
383				if (K >= 0xFFFFFF00) {
384					EMIT2(0x24, K & 0xFF); /* and imm8,%al */
385				} else if (K >= 0xFFFF0000) {
386					EMIT2(0x66, 0x25);	/* and imm16,%ax */
387					EMIT(K, 2);
388				} else {
389					EMIT1_off32(0x25, K);	/* and imm32,%eax */
390				}
391				break;
392			case BPF_S_ALU_OR_X:
393				seen |= SEEN_XREG;
394				EMIT2(0x09, 0xd8);		/* or %ebx,%eax */
395				break;
396			case BPF_S_ALU_OR_K:
397				if (is_imm8(K))
398					EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
399				else
400					EMIT1_off32(0x0d, K);	/* or imm32,%eax */
401				break;
402			case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
403			case BPF_S_ALU_XOR_X:
404				seen |= SEEN_XREG;
405				EMIT2(0x31, 0xd8);		/* xor %ebx,%eax */
406				break;
407			case BPF_S_ALU_XOR_K: /* A ^= K; */
408				if (K == 0)
409					break;
410				if (is_imm8(K))
411					EMIT3(0x83, 0xf0, K);	/* xor imm8,%eax */
412				else
413					EMIT1_off32(0x35, K);	/* xor imm32,%eax */
414				break;
415			case BPF_S_ALU_LSH_X: /* A <<= X; */
416				seen |= SEEN_XREG;
417				EMIT4(0x89, 0xd9, 0xd3, 0xe0);	/* mov %ebx,%ecx; shl %cl,%eax */
418				break;
419			case BPF_S_ALU_LSH_K:
420				if (K == 0)
421					break;
422				else if (K == 1)
423					EMIT2(0xd1, 0xe0); /* shl %eax */
424				else
425					EMIT3(0xc1, 0xe0, K);
426				break;
427			case BPF_S_ALU_RSH_X: /* A >>= X; */
428				seen |= SEEN_XREG;
429				EMIT4(0x89, 0xd9, 0xd3, 0xe8);	/* mov %ebx,%ecx; shr %cl,%eax */
430				break;
431			case BPF_S_ALU_RSH_K: /* A >>= K; */
432				if (K == 0)
433					break;
434				else if (K == 1)
435					EMIT2(0xd1, 0xe8); /* shr %eax */
436				else
437					EMIT3(0xc1, 0xe8, K);
 
438				break;
439			case BPF_S_ALU_NEG:
440				EMIT2(0xf7, 0xd8);		/* neg %eax */
 
 
441				break;
442			case BPF_S_RET_K:
443				if (!K) {
444					if (pc_ret0 == -1)
445						pc_ret0 = i;
446					CLEAR_A();
447				} else {
448					EMIT1_off32(0xb8, K);	/* mov $imm32,%eax */
449				}
450				/* fallinto */
451			case BPF_S_RET_A:
452				if (seen_or_pass0) {
453					if (i != flen - 1) {
454						EMIT_JMP(cleanup_addr - addrs[i]);
455						break;
456					}
457					if (seen_or_pass0 & SEEN_XREG)
458						EMIT4(0x48, 0x8b, 0x5d, 0xf8);  /* mov  -8(%rbp),%rbx */
459					EMIT1(0xc9);		/* leaveq */
460				}
461				EMIT1(0xc3);		/* ret */
462				break;
463			case BPF_S_MISC_TAX: /* X = A */
464				seen |= SEEN_XREG;
465				EMIT2(0x89, 0xc3);	/* mov    %eax,%ebx */
466				break;
467			case BPF_S_MISC_TXA: /* A = X */
468				seen |= SEEN_XREG;
469				EMIT2(0x89, 0xd8);	/* mov    %ebx,%eax */
470				break;
471			case BPF_S_LD_IMM: /* A = K */
472				if (!K)
473					CLEAR_A();
474				else
475					EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
476				break;
477			case BPF_S_LDX_IMM: /* X = K */
478				seen |= SEEN_XREG;
479				if (!K)
480					CLEAR_X();
481				else
482					EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
483				break;
484			case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
485				seen |= SEEN_MEM;
486				EMIT3(0x8b, 0x45, 0xf0 - K*4);
487				break;
488			case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
489				seen |= SEEN_XREG | SEEN_MEM;
490				EMIT3(0x8b, 0x5d, 0xf0 - K*4);
491				break;
492			case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
493				seen |= SEEN_MEM;
494				EMIT3(0x89, 0x45, 0xf0 - K*4);
495				break;
496			case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
497				seen |= SEEN_XREG | SEEN_MEM;
498				EMIT3(0x89, 0x5d, 0xf0 - K*4);
499				break;
500			case BPF_S_LD_W_LEN: /*	A = skb->len; */
501				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
502				if (is_imm8(offsetof(struct sk_buff, len)))
503					/* mov    off8(%rdi),%eax */
504					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
505				else {
506					EMIT2(0x8b, 0x87);
507					EMIT(offsetof(struct sk_buff, len), 4);
508				}
509				break;
510			case BPF_S_LDX_W_LEN: /* X = skb->len; */
511				seen |= SEEN_XREG;
512				if (is_imm8(offsetof(struct sk_buff, len)))
513					/* mov off8(%rdi),%ebx */
514					EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
515				else {
516					EMIT2(0x8b, 0x9f);
517					EMIT(offsetof(struct sk_buff, len), 4);
518				}
519				break;
520			case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
521				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
522				if (is_imm8(offsetof(struct sk_buff, protocol))) {
523					/* movzwl off8(%rdi),%eax */
524					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
525				} else {
526					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
527					EMIT(offsetof(struct sk_buff, protocol), 4);
528				}
529				EMIT2(0x86, 0xc4); /* ntohs() : xchg   %al,%ah */
530				break;
531			case BPF_S_ANC_IFINDEX:
532				if (is_imm8(offsetof(struct sk_buff, dev))) {
533					/* movq off8(%rdi),%rax */
534					EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
535				} else {
536					EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
537					EMIT(offsetof(struct sk_buff, dev), 4);
538				}
539				EMIT3(0x48, 0x85, 0xc0);	/* test %rax,%rax */
540				EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
541				BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
542				EMIT2(0x8b, 0x80);	/* mov off32(%rax),%eax */
543				EMIT(offsetof(struct net_device, ifindex), 4);
544				break;
545			case BPF_S_ANC_MARK:
546				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
547				if (is_imm8(offsetof(struct sk_buff, mark))) {
548					/* mov off8(%rdi),%eax */
549					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
550				} else {
551					EMIT2(0x8b, 0x87);
552					EMIT(offsetof(struct sk_buff, mark), 4);
553				}
554				break;
555			case BPF_S_ANC_RXHASH:
556				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
557				if (is_imm8(offsetof(struct sk_buff, hash))) {
558					/* mov off8(%rdi),%eax */
559					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, hash));
560				} else {
561					EMIT2(0x8b, 0x87);
562					EMIT(offsetof(struct sk_buff, hash), 4);
563				}
564				break;
565			case BPF_S_ANC_QUEUE:
566				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
567				if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
568					/* movzwl off8(%rdi),%eax */
569					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
570				} else {
571					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
572					EMIT(offsetof(struct sk_buff, queue_mapping), 4);
573				}
574				break;
575			case BPF_S_ANC_CPU:
576#ifdef CONFIG_SMP
577				EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
578				EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
579#else
580				CLEAR_A();
581#endif
582				break;
583			case BPF_S_ANC_VLAN_TAG:
584			case BPF_S_ANC_VLAN_TAG_PRESENT:
585				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
586				if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
587					/* movzwl off8(%rdi),%eax */
588					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
589				} else {
590					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
591					EMIT(offsetof(struct sk_buff, vlan_tci), 4);
592				}
593				BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
594				if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
595					EMIT3(0x80, 0xe4, 0xef); /* and    $0xef,%ah */
596				} else {
597					EMIT3(0xc1, 0xe8, 0x0c); /* shr    $0xc,%eax */
598					EMIT3(0x83, 0xe0, 0x01); /* and    $0x1,%eax */
599				}
600				break;
601			case BPF_S_ANC_PKTTYPE:
602			{
603				int off = pkt_type_offset();
604
605				if (off < 0)
606					goto out;
607				if (is_imm8(off)) {
608					/* movzbl off8(%rdi),%eax */
609					EMIT4(0x0f, 0xb6, 0x47, off);
610				} else {
611					/* movbl off32(%rdi),%eax */
612					EMIT3(0x0f, 0xb6, 0x87);
613					EMIT(off, 4);
614				}
615				EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and    $0x7,%eax */
616				break;
617			}
618			case BPF_S_LD_W_ABS:
619				func = CHOOSE_LOAD_FUNC(K, sk_load_word);
620common_load:			seen |= SEEN_DATAREF;
621				t_offset = func - (image + addrs[i]);
622				EMIT1_off32(0xbe, K); /* mov imm32,%esi */
623				EMIT1_off32(0xe8, t_offset); /* call */
624				break;
625			case BPF_S_LD_H_ABS:
626				func = CHOOSE_LOAD_FUNC(K, sk_load_half);
627				goto common_load;
628			case BPF_S_LD_B_ABS:
629				func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
630				goto common_load;
631			case BPF_S_LDX_B_MSH:
632				func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
633				seen |= SEEN_DATAREF | SEEN_XREG;
634				t_offset = func - (image + addrs[i]);
635				EMIT1_off32(0xbe, K);	/* mov imm32,%esi */
636				EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
637				break;
638			case BPF_S_LD_W_IND:
639				func = sk_load_word;
640common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
641				t_offset = func - (image + addrs[i]);
642				if (K) {
643					if (is_imm8(K)) {
644						EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
645					} else {
646						EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
647						EMIT(K, 4);
648					}
649				} else {
650					EMIT2(0x89,0xde); /* mov %ebx,%esi */
651				}
652				EMIT1_off32(0xe8, t_offset);	/* call sk_load_xxx_ind */
653				break;
654			case BPF_S_LD_H_IND:
655				func = sk_load_half;
656				goto common_load_ind;
657			case BPF_S_LD_B_IND:
658				func = sk_load_byte;
659				goto common_load_ind;
660			case BPF_S_JMP_JA:
661				t_offset = addrs[i + K] - addrs[i];
662				EMIT_JMP(t_offset);
663				break;
664			COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
665			COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
666			COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
667			COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
668			COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
669			COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
670			COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
671			COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
672
673cond_branch:			f_offset = addrs[i + filter[i].jf] - addrs[i];
674				t_offset = addrs[i + filter[i].jt] - addrs[i];
675
676				/* same targets, can avoid doing the test :) */
677				if (filter[i].jt == filter[i].jf) {
678					EMIT_JMP(t_offset);
679					break;
680				}
681
682				switch (filter[i].code) {
683				case BPF_S_JMP_JGT_X:
684				case BPF_S_JMP_JGE_X:
685				case BPF_S_JMP_JEQ_X:
686					seen |= SEEN_XREG;
687					EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
688					break;
689				case BPF_S_JMP_JSET_X:
690					seen |= SEEN_XREG;
691					EMIT2(0x85, 0xd8); /* test %ebx,%eax */
692					break;
693				case BPF_S_JMP_JEQ_K:
694					if (K == 0) {
695						EMIT2(0x85, 0xc0); /* test   %eax,%eax */
696						break;
697					}
698				case BPF_S_JMP_JGT_K:
699				case BPF_S_JMP_JGE_K:
700					if (K <= 127)
701						EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
702					else
703						EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
704					break;
705				case BPF_S_JMP_JSET_K:
706					if (K <= 0xFF)
707						EMIT2(0xa8, K); /* test imm8,%al */
708					else if (!(K & 0xFFFF00FF))
709						EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
710					else if (K <= 0xFFFF) {
711						EMIT2(0x66, 0xa9); /* test imm16,%ax */
712						EMIT(K, 2);
713					} else {
714						EMIT1_off32(0xa9, K); /* test imm32,%eax */
715					}
716					break;
717				}
718				if (filter[i].jt != 0) {
719					if (filter[i].jf && f_offset)
720						t_offset += is_near(f_offset) ? 2 : 5;
721					EMIT_COND_JMP(t_op, t_offset);
722					if (filter[i].jf)
723						EMIT_JMP(f_offset);
 
 
 
 
 
 
 
 
 
 
 
 
724					break;
725				}
726				EMIT_COND_JMP(f_op, f_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727				break;
728			default:
729				/* hmm, too complex filter, give up with jit compiler */
730				goto out;
731			}
732			ilen = prog - temp;
733			if (image) {
734				if (unlikely(proglen + ilen > oldproglen)) {
735					pr_err("bpb_jit_compile fatal error\n");
736					kfree(addrs);
737					module_free(NULL, header);
738					return;
739				}
740				memcpy(image + proglen, temp, ilen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741			}
742			proglen += ilen;
743			addrs[i] = proglen;
744			prog = temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745		}
746		/* last bpf instruction is always a RET :
747		 * use it to give the cleanup instruction(s) addr
748		 */
749		cleanup_addr = proglen - 1; /* ret */
750		if (seen_or_pass0)
751			cleanup_addr -= 1; /* leaveq */
752		if (seen_or_pass0 & SEEN_XREG)
753			cleanup_addr -= 4; /* mov  -8(%rbp),%rbx */
754
755		if (image) {
756			if (proglen != oldproglen)
757				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
758			break;
 
 
759		}
760		if (proglen == oldproglen) {
761			header = bpf_alloc_binary(proglen, &image);
762			if (!header)
763				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764		}
765		oldproglen = proglen;
766	}
767
768	if (bpf_jit_enable > 1)
769		bpf_jit_dump(flen, proglen, pass, image);
 
 
 
 
 
 
 
 
 
 
770
771	if (image) {
772		bpf_flush_icache(header, image + proglen);
773		set_memory_ro((unsigned long)header, header->pages);
774		fp->bpf_func = (void *)image;
775		fp->jited = 1;
 
 
 
 
 
 
 
 
776	}
777out:
778	kfree(addrs);
779	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780}
781
782static void bpf_jit_free_deferred(struct work_struct *work)
783{
784	struct sk_filter *fp = container_of(work, struct sk_filter, work);
785	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
786	struct bpf_binary_header *header = (void *)addr;
787
788	set_memory_rw(addr, header->pages);
789	module_free(NULL, header);
790	kfree(fp);
 
 
791}
792
793void bpf_jit_free(struct sk_filter *fp)
794{
795	if (fp->jited) {
796		INIT_WORK(&fp->work, bpf_jit_free_deferred);
797		schedule_work(&fp->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798	} else {
799		kfree(fp);
800	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * bpf_jit_comp.c: BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 
 
 
 
   7 */
 
 
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12#include <linux/memory.h>
  13#include <linux/sort.h>
  14#include <asm/extable.h>
  15#include <asm/set_memory.h>
  16#include <asm/nospec-branch.h>
  17#include <asm/text-patching.h>
  18#include <asm/asm-prototypes.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19
  20static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  21{
  22	if (len == 1)
  23		*ptr = bytes;
  24	else if (len == 2)
  25		*(u16 *)ptr = bytes;
  26	else {
  27		*(u32 *)ptr = bytes;
  28		barrier();
  29	}
  30	return ptr + len;
  31}
  32
  33#define EMIT(bytes, len) \
  34	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  35
  36#define EMIT1(b1)		EMIT(b1, 1)
  37#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  38#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  39#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
 
  40
  41#define EMIT1_off32(b1, off) \
  42	do { EMIT1(b1); EMIT(off, 4); } while (0)
  43#define EMIT2_off32(b1, b2, off) \
  44	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  45#define EMIT3_off32(b1, b2, b3, off) \
  46	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  47#define EMIT4_off32(b1, b2, b3, b4, off) \
  48	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  49
  50static bool is_imm8(int value)
  51{
  52	return value <= 127 && value >= -128;
  53}
  54
  55static bool is_simm32(s64 value)
  56{
  57	return value == (s64)(s32)value;
  58}
  59
  60static bool is_uimm32(u64 value)
  61{
  62	return value == (u64)(u32)value;
  63}
  64
  65/* mov dst, src */
  66#define EMIT_mov(DST, SRC)								 \
  67	do {										 \
  68		if (DST != SRC)								 \
  69			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  70	} while (0)
  71
  72static int bpf_size_to_x86_bytes(int bpf_size)
  73{
  74	if (bpf_size == BPF_W)
  75		return 4;
  76	else if (bpf_size == BPF_H)
  77		return 2;
  78	else if (bpf_size == BPF_B)
  79		return 1;
  80	else if (bpf_size == BPF_DW)
  81		return 4; /* imm32 */
  82	else
  83		return 0;
  84}
  85
  86/*
  87 * List of x86 cond jumps opcodes (. + s8)
  88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  89 */
  90#define X86_JB  0x72
  91#define X86_JAE 0x73
  92#define X86_JE  0x74
  93#define X86_JNE 0x75
  94#define X86_JBE 0x76
  95#define X86_JA  0x77
  96#define X86_JL  0x7C
  97#define X86_JGE 0x7D
  98#define X86_JLE 0x7E
  99#define X86_JG  0x7F
 100
 101/* Pick a register outside of BPF range for JIT internal work */
 102#define AUX_REG (MAX_BPF_JIT_REG + 1)
 103#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
 104
 105/*
 106 * The following table maps BPF registers to x86-64 registers.
 107 *
 108 * x86-64 register R12 is unused, since if used as base address
 109 * register in load/store instructions, it always needs an
 110 * extra byte of encoding and is callee saved.
 111 *
 112 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
 113 * trampoline. x86-64 register R10 is used for blinding (if enabled).
 114 */
 115static const int reg2hex[] = {
 116	[BPF_REG_0] = 0,  /* RAX */
 117	[BPF_REG_1] = 7,  /* RDI */
 118	[BPF_REG_2] = 6,  /* RSI */
 119	[BPF_REG_3] = 2,  /* RDX */
 120	[BPF_REG_4] = 1,  /* RCX */
 121	[BPF_REG_5] = 0,  /* R8  */
 122	[BPF_REG_6] = 3,  /* RBX callee saved */
 123	[BPF_REG_7] = 5,  /* R13 callee saved */
 124	[BPF_REG_8] = 6,  /* R14 callee saved */
 125	[BPF_REG_9] = 7,  /* R15 callee saved */
 126	[BPF_REG_FP] = 5, /* RBP readonly */
 127	[BPF_REG_AX] = 2, /* R10 temp register */
 128	[AUX_REG] = 3,    /* R11 temp register */
 129	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
 130};
 131
 132static const int reg2pt_regs[] = {
 133	[BPF_REG_0] = offsetof(struct pt_regs, ax),
 134	[BPF_REG_1] = offsetof(struct pt_regs, di),
 135	[BPF_REG_2] = offsetof(struct pt_regs, si),
 136	[BPF_REG_3] = offsetof(struct pt_regs, dx),
 137	[BPF_REG_4] = offsetof(struct pt_regs, cx),
 138	[BPF_REG_5] = offsetof(struct pt_regs, r8),
 139	[BPF_REG_6] = offsetof(struct pt_regs, bx),
 140	[BPF_REG_7] = offsetof(struct pt_regs, r13),
 141	[BPF_REG_8] = offsetof(struct pt_regs, r14),
 142	[BPF_REG_9] = offsetof(struct pt_regs, r15),
 143};
 144
 145/*
 146 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 147 * which need extra byte of encoding.
 148 * rax,rcx,...,rbp have simpler encoding
 149 */
 150static bool is_ereg(u32 reg)
 151{
 152	return (1 << reg) & (BIT(BPF_REG_5) |
 153			     BIT(AUX_REG) |
 154			     BIT(BPF_REG_7) |
 155			     BIT(BPF_REG_8) |
 156			     BIT(BPF_REG_9) |
 157			     BIT(X86_REG_R9) |
 158			     BIT(BPF_REG_AX));
 
 
 159}
 160
 161/*
 162 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
 163 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
 164 * of encoding. al,cl,dl,bl have simpler encoding.
 165 */
 166static bool is_ereg_8l(u32 reg)
 167{
 168	return is_ereg(reg) ||
 169	    (1 << reg) & (BIT(BPF_REG_1) |
 170			  BIT(BPF_REG_2) |
 171			  BIT(BPF_REG_FP));
 172}
 173
 174static bool is_axreg(u32 reg)
 175{
 176	return reg == BPF_REG_0;
 177}
 178
 179/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 180static u8 add_1mod(u8 byte, u32 reg)
 181{
 182	if (is_ereg(reg))
 183		byte |= 1;
 184	return byte;
 185}
 186
 187static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 188{
 189	if (is_ereg(r1))
 190		byte |= 1;
 191	if (is_ereg(r2))
 192		byte |= 4;
 193	return byte;
 194}
 195
 196/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 197static u8 add_1reg(u8 byte, u32 dst_reg)
 198{
 199	return byte + reg2hex[dst_reg];
 200}
 201
 202/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 203static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 204{
 205	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 206}
 207
 208static void jit_fill_hole(void *area, unsigned int size)
 209{
 210	/* Fill whole space with INT3 instructions */
 211	memset(area, 0xcc, size);
 212}
 213
 214struct jit_context {
 215	int cleanup_addr; /* Epilogue code offset */
 216};
 217
 218/* Maximum number of bytes emitted while JITing one eBPF insn */
 219#define BPF_MAX_INSN_SIZE	128
 220#define BPF_INSN_SAFETY		64
 221
 222/* Number of bytes emit_patch() needs to generate instructions */
 223#define X86_PATCH_SIZE		5
 224
 225#define PROLOGUE_SIZE		25
 226
 227/*
 228 * Emit x86-64 prologue code for BPF program and check its size.
 229 * bpf_tail_call helper will skip it while jumping into another program
 230 */
 231static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
 
 232{
 233	u8 *prog = *pprog;
 234	int cnt = X86_PATCH_SIZE;
 
 
 
 235
 236	/* BPF trampoline can be made to work without these nops,
 237	 * but let's waste 5 bytes for now and optimize later
 238	 */
 239	memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
 240	prog += cnt;
 241	EMIT1(0x55);             /* push rbp */
 242	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 243	/* sub rsp, rounded_stack_depth */
 244	EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 245	EMIT1(0x53);             /* push rbx */
 246	EMIT2(0x41, 0x55);       /* push r13 */
 247	EMIT2(0x41, 0x56);       /* push r14 */
 248	EMIT2(0x41, 0x57);       /* push r15 */
 249	if (!ebpf_from_cbpf) {
 250		/* zero init tail_call_cnt */
 251		EMIT2(0x6a, 0x00);
 252		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
 253	}
 254	*pprog = prog;
 255}
 256
 257static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
 258{
 259	u8 *prog = *pprog;
 260	int cnt = 0;
 261	s64 offset;
 262
 263	offset = func - (ip + X86_PATCH_SIZE);
 264	if (!is_simm32(offset)) {
 265		pr_err("Target call %p is out of range\n", func);
 266		return -ERANGE;
 267	}
 268	EMIT1_off32(opcode, offset);
 269	*pprog = prog;
 270	return 0;
 271}
 272
 273static int emit_call(u8 **pprog, void *func, void *ip)
 274{
 275	return emit_patch(pprog, func, ip, 0xE8);
 276}
 277
 278static int emit_jump(u8 **pprog, void *func, void *ip)
 279{
 280	return emit_patch(pprog, func, ip, 0xE9);
 281}
 282
 283static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 284				void *old_addr, void *new_addr,
 285				const bool text_live)
 286{
 287	const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
 288	u8 old_insn[X86_PATCH_SIZE];
 289	u8 new_insn[X86_PATCH_SIZE];
 290	u8 *prog;
 291	int ret;
 292
 293	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
 294	if (old_addr) {
 295		prog = old_insn;
 296		ret = t == BPF_MOD_CALL ?
 297		      emit_call(&prog, old_addr, ip) :
 298		      emit_jump(&prog, old_addr, ip);
 299		if (ret)
 300			return ret;
 301	}
 302
 303	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
 304	if (new_addr) {
 305		prog = new_insn;
 306		ret = t == BPF_MOD_CALL ?
 307		      emit_call(&prog, new_addr, ip) :
 308		      emit_jump(&prog, new_addr, ip);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	ret = -EBUSY;
 314	mutex_lock(&text_mutex);
 315	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
 316		goto out;
 317	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
 318		if (text_live)
 319			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
 320		else
 321			memcpy(ip, new_insn, X86_PATCH_SIZE);
 322	}
 323	ret = 0;
 324out:
 325	mutex_unlock(&text_mutex);
 326	return ret;
 327}
 328
 329int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 330		       void *old_addr, void *new_addr)
 331{
 332	if (!is_kernel_text((long)ip) &&
 333	    !is_bpf_text_address((long)ip))
 334		/* BPF poking in modules is not supported */
 335		return -EINVAL;
 336
 337	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
 338}
 339
 340/*
 341 * Generate the following code:
 342 *
 343 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 344 *   if (index >= array->map.max_entries)
 345 *     goto out;
 346 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 347 *     goto out;
 348 *   prog = array->ptrs[index];
 349 *   if (prog == NULL)
 350 *     goto out;
 351 *   goto *(prog->bpf_func + prologue_size);
 352 * out:
 353 */
 354static void emit_bpf_tail_call_indirect(u8 **pprog)
 355{
 356	u8 *prog = *pprog;
 357	int label1, label2, label3;
 358	int cnt = 0;
 359
 360	/*
 361	 * rdi - pointer to ctx
 362	 * rsi - pointer to bpf_array
 363	 * rdx - index in bpf_array
 364	 */
 
 
 365
 366	/*
 367	 * if (index >= array->map.max_entries)
 368	 *	goto out;
 369	 */
 370	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 371	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 372	      offsetof(struct bpf_array, map.max_entries));
 373#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
 374	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
 375	label1 = cnt;
 376
 377	/*
 378	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 379	 *	goto out;
 380	 */
 381	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
 382	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 383#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
 384	EMIT2(X86_JA, OFFSET2);                   /* ja out */
 385	label2 = cnt;
 386	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 387	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
 388
 389	/* prog = array->ptrs[index]; */
 390	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
 391		    offsetof(struct bpf_array, ptrs));
 392
 393	/*
 394	 * if (prog == NULL)
 395	 *	goto out;
 396	 */
 397	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
 398#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
 399	EMIT2(X86_JE, OFFSET3);                   /* je out */
 400	label3 = cnt;
 401
 402	/* goto *(prog->bpf_func + prologue_size); */
 403	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
 404	      offsetof(struct bpf_prog, bpf_func));
 405	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
 406
 407	/*
 408	 * Wow we're ready to jump into next BPF program
 409	 * rdi == ctx (1st arg)
 410	 * rax == prog->bpf_func + prologue_size
 411	 */
 412	RETPOLINE_RAX_BPF_JIT();
 413
 414	/* out: */
 415	BUILD_BUG_ON(cnt - label1 != OFFSET1);
 416	BUILD_BUG_ON(cnt - label2 != OFFSET2);
 417	BUILD_BUG_ON(cnt - label3 != OFFSET3);
 418	*pprog = prog;
 419}
 420
 421static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
 422				      u8 **pprog, int addr, u8 *image)
 423{
 424	u8 *prog = *pprog;
 425	int cnt = 0;
 426
 427	/*
 428	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 429	 *	goto out;
 430	 */
 431	EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
 432	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
 433	EMIT2(X86_JA, 14);                            /* ja out */
 434	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
 435	EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
 436
 437	poke->ip = image + (addr - X86_PATCH_SIZE);
 438	poke->adj_off = PROLOGUE_SIZE;
 439
 440	memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
 441	prog += X86_PATCH_SIZE;
 442	/* out: */
 443
 444	*pprog = prog;
 445}
 446
 447static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
 448{
 449	struct bpf_jit_poke_descriptor *poke;
 450	struct bpf_array *array;
 451	struct bpf_prog *target;
 452	int i, ret;
 453
 454	for (i = 0; i < prog->aux->size_poke_tab; i++) {
 455		poke = &prog->aux->poke_tab[i];
 456		WARN_ON_ONCE(READ_ONCE(poke->ip_stable));
 457
 458		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
 459			continue;
 460
 461		array = container_of(poke->tail_call.map, struct bpf_array, map);
 462		mutex_lock(&array->aux->poke_mutex);
 463		target = array->ptrs[poke->tail_call.key];
 464		if (target) {
 465			/* Plain memcpy is used when image is not live yet
 466			 * and still not locked as read-only. Once poke
 467			 * location is active (poke->ip_stable), any parallel
 468			 * bpf_arch_text_poke() might occur still on the
 469			 * read-write image until we finally locked it as
 470			 * read-only. Both modifications on the given image
 471			 * are under text_mutex to avoid interference.
 472			 */
 473			ret = __bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, NULL,
 474						   (u8 *)target->bpf_func +
 475						   poke->adj_off, false);
 476			BUG_ON(ret < 0);
 477		}
 478		WRITE_ONCE(poke->ip_stable, true);
 479		mutex_unlock(&array->aux->poke_mutex);
 480	}
 481}
 482
 483static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 484			   u32 dst_reg, const u32 imm32)
 485{
 486	u8 *prog = *pprog;
 487	u8 b1, b2, b3;
 488	int cnt = 0;
 489
 490	/*
 491	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 492	 * (which zero-extends imm32) to save 2 bytes.
 493	 */
 494	if (sign_propagate && (s32)imm32 < 0) {
 495		/* 'mov %rax, imm32' sign extends imm32 */
 496		b1 = add_1mod(0x48, dst_reg);
 497		b2 = 0xC7;
 498		b3 = 0xC0;
 499		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 500		goto done;
 501	}
 502
 503	/*
 504	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 505	 * to save 3 bytes.
 506	 */
 507	if (imm32 == 0) {
 508		if (is_ereg(dst_reg))
 509			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 510		b2 = 0x31; /* xor */
 511		b3 = 0xC0;
 512		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 513		goto done;
 514	}
 515
 516	/* mov %eax, imm32 */
 517	if (is_ereg(dst_reg))
 518		EMIT1(add_1mod(0x40, dst_reg));
 519	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 520done:
 521	*pprog = prog;
 522}
 523
 524static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 525			   const u32 imm32_hi, const u32 imm32_lo)
 526{
 527	u8 *prog = *pprog;
 528	int cnt = 0;
 529
 530	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 531		/*
 532		 * For emitting plain u32, where sign bit must not be
 533		 * propagated LLVM tends to load imm64 over mov32
 534		 * directly, so save couple of bytes by just doing
 535		 * 'mov %eax, imm32' instead.
 536		 */
 537		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 538	} else {
 539		/* movabsq %rax, imm64 */
 540		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 541		EMIT(imm32_lo, 4);
 542		EMIT(imm32_hi, 4);
 543	}
 544
 545	*pprog = prog;
 
 
 546}
 547
 548static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 549{
 550	u8 *prog = *pprog;
 551	int cnt = 0;
 552
 553	if (is64) {
 554		/* mov dst, src */
 555		EMIT_mov(dst_reg, src_reg);
 556	} else {
 557		/* mov32 dst, src */
 558		if (is_ereg(dst_reg) || is_ereg(src_reg))
 559			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 560		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 561	}
 
 
 
 
 
 
 
 
 
 562
 563	*pprog = prog;
 564}
 565
 566/* LDX: dst_reg = *(u8*)(src_reg + off) */
 567static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 568{
 569	u8 *prog = *pprog;
 570	int cnt = 0;
 571
 572	switch (size) {
 573	case BPF_B:
 574		/* Emit 'movzx rax, byte ptr [rax + off]' */
 575		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 576		break;
 577	case BPF_H:
 578		/* Emit 'movzx rax, word ptr [rax + off]' */
 579		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 580		break;
 581	case BPF_W:
 582		/* Emit 'mov eax, dword ptr [rax+0x14]' */
 583		if (is_ereg(dst_reg) || is_ereg(src_reg))
 584			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 585		else
 586			EMIT1(0x8B);
 587		break;
 588	case BPF_DW:
 589		/* Emit 'mov rax, qword ptr [rax+0x14]' */
 590		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 591		break;
 592	}
 593	/*
 594	 * If insn->off == 0 we can save one extra byte, but
 595	 * special case of x86 R13 which always needs an offset
 596	 * is not worth the hassle
 597	 */
 598	if (is_imm8(off))
 599		EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
 600	else
 601		EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
 602	*pprog = prog;
 603}
 604
 605/* STX: *(u8*)(dst_reg + off) = src_reg */
 606static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 607{
 608	u8 *prog = *pprog;
 609	int cnt = 0;
 610
 611	switch (size) {
 612	case BPF_B:
 613		/* Emit 'mov byte ptr [rax + off], al' */
 614		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
 615			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
 616			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 617		else
 618			EMIT1(0x88);
 619		break;
 620	case BPF_H:
 621		if (is_ereg(dst_reg) || is_ereg(src_reg))
 622			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 623		else
 624			EMIT2(0x66, 0x89);
 625		break;
 626	case BPF_W:
 627		if (is_ereg(dst_reg) || is_ereg(src_reg))
 628			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 629		else
 630			EMIT1(0x89);
 631		break;
 632	case BPF_DW:
 633		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 634		break;
 635	}
 636	if (is_imm8(off))
 637		EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
 638	else
 639		EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
 640	*pprog = prog;
 641}
 642
 643static bool ex_handler_bpf(const struct exception_table_entry *x,
 644			   struct pt_regs *regs, int trapnr,
 645			   unsigned long error_code, unsigned long fault_addr)
 646{
 647	u32 reg = x->fixup >> 8;
 648
 649	/* jump over faulting load and clear dest register */
 650	*(unsigned long *)((void *)regs + reg) = 0;
 651	regs->ip += x->fixup & 0xff;
 652	return true;
 653}
 654
 655static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
 656		  int oldproglen, struct jit_context *ctx)
 657{
 658	struct bpf_insn *insn = bpf_prog->insnsi;
 659	int insn_cnt = bpf_prog->len;
 660	bool seen_exit = false;
 661	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 662	int i, cnt = 0, excnt = 0;
 663	int proglen = 0;
 664	u8 *prog = temp;
 665
 666	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 667		      bpf_prog_was_classic(bpf_prog));
 668	addrs[0] = prog - temp;
 669
 670	for (i = 1; i <= insn_cnt; i++, insn++) {
 671		const s32 imm32 = insn->imm;
 672		u32 dst_reg = insn->dst_reg;
 673		u32 src_reg = insn->src_reg;
 674		u8 b2 = 0, b3 = 0;
 675		s64 jmp_offset;
 676		u8 jmp_cond;
 677		int ilen;
 678		u8 *func;
 679
 680		switch (insn->code) {
 681			/* ALU */
 682		case BPF_ALU | BPF_ADD | BPF_X:
 683		case BPF_ALU | BPF_SUB | BPF_X:
 684		case BPF_ALU | BPF_AND | BPF_X:
 685		case BPF_ALU | BPF_OR | BPF_X:
 686		case BPF_ALU | BPF_XOR | BPF_X:
 687		case BPF_ALU64 | BPF_ADD | BPF_X:
 688		case BPF_ALU64 | BPF_SUB | BPF_X:
 689		case BPF_ALU64 | BPF_AND | BPF_X:
 690		case BPF_ALU64 | BPF_OR | BPF_X:
 691		case BPF_ALU64 | BPF_XOR | BPF_X:
 692			switch (BPF_OP(insn->code)) {
 693			case BPF_ADD: b2 = 0x01; break;
 694			case BPF_SUB: b2 = 0x29; break;
 695			case BPF_AND: b2 = 0x21; break;
 696			case BPF_OR: b2 = 0x09; break;
 697			case BPF_XOR: b2 = 0x31; break;
 698			}
 699			if (BPF_CLASS(insn->code) == BPF_ALU64)
 700				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 701			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 702				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 703			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
 704			break;
 705
 706		case BPF_ALU64 | BPF_MOV | BPF_X:
 707		case BPF_ALU | BPF_MOV | BPF_X:
 708			emit_mov_reg(&prog,
 709				     BPF_CLASS(insn->code) == BPF_ALU64,
 710				     dst_reg, src_reg);
 711			break;
 712
 713			/* neg dst */
 714		case BPF_ALU | BPF_NEG:
 715		case BPF_ALU64 | BPF_NEG:
 716			if (BPF_CLASS(insn->code) == BPF_ALU64)
 717				EMIT1(add_1mod(0x48, dst_reg));
 718			else if (is_ereg(dst_reg))
 719				EMIT1(add_1mod(0x40, dst_reg));
 720			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
 721			break;
 722
 723		case BPF_ALU | BPF_ADD | BPF_K:
 724		case BPF_ALU | BPF_SUB | BPF_K:
 725		case BPF_ALU | BPF_AND | BPF_K:
 726		case BPF_ALU | BPF_OR | BPF_K:
 727		case BPF_ALU | BPF_XOR | BPF_K:
 728		case BPF_ALU64 | BPF_ADD | BPF_K:
 729		case BPF_ALU64 | BPF_SUB | BPF_K:
 730		case BPF_ALU64 | BPF_AND | BPF_K:
 731		case BPF_ALU64 | BPF_OR | BPF_K:
 732		case BPF_ALU64 | BPF_XOR | BPF_K:
 733			if (BPF_CLASS(insn->code) == BPF_ALU64)
 734				EMIT1(add_1mod(0x48, dst_reg));
 735			else if (is_ereg(dst_reg))
 736				EMIT1(add_1mod(0x40, dst_reg));
 737
 738			/*
 739			 * b3 holds 'normal' opcode, b2 short form only valid
 740			 * in case dst is eax/rax.
 
 
 741			 */
 742			switch (BPF_OP(insn->code)) {
 743			case BPF_ADD:
 744				b3 = 0xC0;
 745				b2 = 0x05;
 746				break;
 747			case BPF_SUB:
 748				b3 = 0xE8;
 749				b2 = 0x2D;
 750				break;
 751			case BPF_AND:
 752				b3 = 0xE0;
 753				b2 = 0x25;
 754				break;
 755			case BPF_OR:
 756				b3 = 0xC8;
 757				b2 = 0x0D;
 758				break;
 759			case BPF_XOR:
 760				b3 = 0xF0;
 761				b2 = 0x35;
 762				break;
 763			}
 764
 765			if (is_imm8(imm32))
 766				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
 767			else if (is_axreg(dst_reg))
 768				EMIT1_off32(b2, imm32);
 769			else
 770				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
 771			break;
 772
 773		case BPF_ALU64 | BPF_MOV | BPF_K:
 774		case BPF_ALU | BPF_MOV | BPF_K:
 775			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
 776				       dst_reg, imm32);
 777			break;
 778
 779		case BPF_LD | BPF_IMM | BPF_DW:
 780			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
 781			insn++;
 782			i++;
 783			break;
 784
 785			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
 786		case BPF_ALU | BPF_MOD | BPF_X:
 787		case BPF_ALU | BPF_DIV | BPF_X:
 788		case BPF_ALU | BPF_MOD | BPF_K:
 789		case BPF_ALU | BPF_DIV | BPF_K:
 790		case BPF_ALU64 | BPF_MOD | BPF_X:
 791		case BPF_ALU64 | BPF_DIV | BPF_X:
 792		case BPF_ALU64 | BPF_MOD | BPF_K:
 793		case BPF_ALU64 | BPF_DIV | BPF_K:
 794			EMIT1(0x50); /* push rax */
 795			EMIT1(0x52); /* push rdx */
 796
 797			if (BPF_SRC(insn->code) == BPF_X)
 798				/* mov r11, src_reg */
 799				EMIT_mov(AUX_REG, src_reg);
 800			else
 801				/* mov r11, imm32 */
 802				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
 803
 804			/* mov rax, dst_reg */
 805			EMIT_mov(BPF_REG_0, dst_reg);
 806
 807			/*
 808			 * xor edx, edx
 809			 * equivalent to 'xor rdx, rdx', but one byte less
 810			 */
 811			EMIT2(0x31, 0xd2);
 812
 813			if (BPF_CLASS(insn->code) == BPF_ALU64)
 814				/* div r11 */
 815				EMIT3(0x49, 0xF7, 0xF3);
 816			else
 817				/* div r11d */
 818				EMIT3(0x41, 0xF7, 0xF3);
 819
 820			if (BPF_OP(insn->code) == BPF_MOD)
 821				/* mov r11, rdx */
 822				EMIT3(0x49, 0x89, 0xD3);
 823			else
 824				/* mov r11, rax */
 825				EMIT3(0x49, 0x89, 0xC3);
 826
 827			EMIT1(0x5A); /* pop rdx */
 828			EMIT1(0x58); /* pop rax */
 829
 830			/* mov dst_reg, r11 */
 831			EMIT_mov(dst_reg, AUX_REG);
 832			break;
 833
 834		case BPF_ALU | BPF_MUL | BPF_K:
 835		case BPF_ALU | BPF_MUL | BPF_X:
 836		case BPF_ALU64 | BPF_MUL | BPF_K:
 837		case BPF_ALU64 | BPF_MUL | BPF_X:
 838		{
 839			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 840
 841			if (dst_reg != BPF_REG_0)
 842				EMIT1(0x50); /* push rax */
 843			if (dst_reg != BPF_REG_3)
 844				EMIT1(0x52); /* push rdx */
 845
 846			/* mov r11, dst_reg */
 847			EMIT_mov(AUX_REG, dst_reg);
 848
 849			if (BPF_SRC(insn->code) == BPF_X)
 850				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
 851			else
 852				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
 853
 854			if (is64)
 855				EMIT1(add_1mod(0x48, AUX_REG));
 856			else if (is_ereg(AUX_REG))
 857				EMIT1(add_1mod(0x40, AUX_REG));
 858			/* mul(q) r11 */
 859			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
 860
 861			if (dst_reg != BPF_REG_3)
 862				EMIT1(0x5A); /* pop rdx */
 863			if (dst_reg != BPF_REG_0) {
 864				/* mov dst_reg, rax */
 865				EMIT_mov(dst_reg, BPF_REG_0);
 866				EMIT1(0x58); /* pop rax */
 867			}
 868			break;
 869		}
 870			/* Shifts */
 871		case BPF_ALU | BPF_LSH | BPF_K:
 872		case BPF_ALU | BPF_RSH | BPF_K:
 873		case BPF_ALU | BPF_ARSH | BPF_K:
 874		case BPF_ALU64 | BPF_LSH | BPF_K:
 875		case BPF_ALU64 | BPF_RSH | BPF_K:
 876		case BPF_ALU64 | BPF_ARSH | BPF_K:
 877			if (BPF_CLASS(insn->code) == BPF_ALU64)
 878				EMIT1(add_1mod(0x48, dst_reg));
 879			else if (is_ereg(dst_reg))
 880				EMIT1(add_1mod(0x40, dst_reg));
 881
 882			switch (BPF_OP(insn->code)) {
 883			case BPF_LSH: b3 = 0xE0; break;
 884			case BPF_RSH: b3 = 0xE8; break;
 885			case BPF_ARSH: b3 = 0xF8; break;
 886			}
 887
 888			if (imm32 == 1)
 889				EMIT2(0xD1, add_1reg(b3, dst_reg));
 890			else
 891				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
 
 
 
 
 
 
 
 
 
 
 
 
 892			break;
 
 
 
 
 893
 894		case BPF_ALU | BPF_LSH | BPF_X:
 895		case BPF_ALU | BPF_RSH | BPF_X:
 896		case BPF_ALU | BPF_ARSH | BPF_X:
 897		case BPF_ALU64 | BPF_LSH | BPF_X:
 898		case BPF_ALU64 | BPF_RSH | BPF_X:
 899		case BPF_ALU64 | BPF_ARSH | BPF_X:
 900
 901			/* Check for bad case when dst_reg == rcx */
 902			if (dst_reg == BPF_REG_4) {
 903				/* mov r11, dst_reg */
 904				EMIT_mov(AUX_REG, dst_reg);
 905				dst_reg = AUX_REG;
 906			}
 907
 908			if (src_reg != BPF_REG_4) { /* common case */
 909				EMIT1(0x51); /* push rcx */
 910
 911				/* mov rcx, src_reg */
 912				EMIT_mov(BPF_REG_4, src_reg);
 913			}
 914
 915			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
 916			if (BPF_CLASS(insn->code) == BPF_ALU64)
 917				EMIT1(add_1mod(0x48, dst_reg));
 918			else if (is_ereg(dst_reg))
 919				EMIT1(add_1mod(0x40, dst_reg));
 920
 921			switch (BPF_OP(insn->code)) {
 922			case BPF_LSH: b3 = 0xE0; break;
 923			case BPF_RSH: b3 = 0xE8; break;
 924			case BPF_ARSH: b3 = 0xF8; break;
 925			}
 926			EMIT2(0xD3, add_1reg(b3, dst_reg));
 927
 928			if (src_reg != BPF_REG_4)
 929				EMIT1(0x59); /* pop rcx */
 930
 931			if (insn->dst_reg == BPF_REG_4)
 932				/* mov dst_reg, r11 */
 933				EMIT_mov(insn->dst_reg, AUX_REG);
 934			break;
 935
 936		case BPF_ALU | BPF_END | BPF_FROM_BE:
 937			switch (imm32) {
 938			case 16:
 939				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
 940				EMIT1(0x66);
 941				if (is_ereg(dst_reg))
 942					EMIT1(0x41);
 943				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
 944
 945				/* Emit 'movzwl eax, ax' */
 946				if (is_ereg(dst_reg))
 947					EMIT3(0x45, 0x0F, 0xB7);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948				else
 949					EMIT2(0x0F, 0xB7);
 950				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 
 
 
 951				break;
 952			case 32:
 953				/* Emit 'bswap eax' to swap lower 4 bytes */
 954				if (is_ereg(dst_reg))
 955					EMIT2(0x41, 0x0F);
 
 956				else
 957					EMIT1(0x0F);
 958				EMIT1(add_1reg(0xC8, dst_reg));
 959				break;
 960			case 64:
 961				/* Emit 'bswap rax' to swap 8 bytes */
 962				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
 963				      add_1reg(0xC8, dst_reg));
 964				break;
 965			}
 966			break;
 967
 968		case BPF_ALU | BPF_END | BPF_FROM_LE:
 969			switch (imm32) {
 970			case 16:
 971				/*
 972				 * Emit 'movzwl eax, ax' to zero extend 16-bit
 973				 * into 64 bit
 974				 */
 975				if (is_ereg(dst_reg))
 976					EMIT3(0x45, 0x0F, 0xB7);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977				else
 978					EMIT2(0x0F, 0xB7);
 979				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980				break;
 981			case 32:
 982				/* Emit 'mov eax, eax' to clear upper 32-bits */
 983				if (is_ereg(dst_reg))
 984					EMIT1(0x45);
 985				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986				break;
 987			case 64:
 988				/* nop */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989				break;
 990			}
 991			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993			/* ST: *(u8*)(dst_reg + off) = imm */
 994		case BPF_ST | BPF_MEM | BPF_B:
 995			if (is_ereg(dst_reg))
 996				EMIT2(0x41, 0xC6);
 997			else
 998				EMIT1(0xC6);
 999			goto st;
1000		case BPF_ST | BPF_MEM | BPF_H:
1001			if (is_ereg(dst_reg))
1002				EMIT3(0x66, 0x41, 0xC7);
1003			else
1004				EMIT2(0x66, 0xC7);
1005			goto st;
1006		case BPF_ST | BPF_MEM | BPF_W:
1007			if (is_ereg(dst_reg))
1008				EMIT2(0x41, 0xC7);
1009			else
1010				EMIT1(0xC7);
1011			goto st;
1012		case BPF_ST | BPF_MEM | BPF_DW:
1013			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1014
1015st:			if (is_imm8(insn->off))
1016				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1017			else
1018				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1019
1020			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1021			break;
1022
1023			/* STX: *(u8*)(dst_reg + off) = src_reg */
1024		case BPF_STX | BPF_MEM | BPF_B:
1025		case BPF_STX | BPF_MEM | BPF_H:
1026		case BPF_STX | BPF_MEM | BPF_W:
1027		case BPF_STX | BPF_MEM | BPF_DW:
1028			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1029			break;
1030
1031			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1032		case BPF_LDX | BPF_MEM | BPF_B:
1033		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1034		case BPF_LDX | BPF_MEM | BPF_H:
1035		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1036		case BPF_LDX | BPF_MEM | BPF_W:
1037		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1038		case BPF_LDX | BPF_MEM | BPF_DW:
1039		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1040			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1041			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1042				struct exception_table_entry *ex;
1043				u8 *_insn = image + proglen;
1044				s64 delta;
1045
1046				if (!bpf_prog->aux->extable)
1047					break;
1048
1049				if (excnt >= bpf_prog->aux->num_exentries) {
1050					pr_err("ex gen bug\n");
1051					return -EFAULT;
1052				}
1053				ex = &bpf_prog->aux->extable[excnt++];
1054
1055				delta = _insn - (u8 *)&ex->insn;
1056				if (!is_simm32(delta)) {
1057					pr_err("extable->insn doesn't fit into 32-bit\n");
1058					return -EFAULT;
1059				}
1060				ex->insn = delta;
1061
1062				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1063				if (!is_simm32(delta)) {
1064					pr_err("extable->handler doesn't fit into 32-bit\n");
1065					return -EFAULT;
1066				}
1067				ex->handler = delta;
1068
1069				if (dst_reg > BPF_REG_9) {
1070					pr_err("verifier error\n");
1071					return -EFAULT;
1072				}
1073				/*
1074				 * Compute size of x86 insn and its target dest x86 register.
1075				 * ex_handler_bpf() will use lower 8 bits to adjust
1076				 * pt_regs->ip to jump over this x86 instruction
1077				 * and upper bits to figure out which pt_regs to zero out.
1078				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1079				 * of 4 bytes will be ignored and rbx will be zero inited.
1080				 */
1081				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1082			}
1083			break;
1084
1085			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1086		case BPF_STX | BPF_XADD | BPF_W:
1087			/* Emit 'lock add dword ptr [rax + off], eax' */
1088			if (is_ereg(dst_reg) || is_ereg(src_reg))
1089				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1090			else
1091				EMIT2(0xF0, 0x01);
1092			goto xadd;
1093		case BPF_STX | BPF_XADD | BPF_DW:
1094			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1095xadd:			if (is_imm8(insn->off))
1096				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1097			else
1098				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1099					    insn->off);
1100			break;
1101
1102			/* call */
1103		case BPF_JMP | BPF_CALL:
1104			func = (u8 *) __bpf_call_base + imm32;
1105			if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1106				return -EINVAL;
1107			break;
1108
1109		case BPF_JMP | BPF_TAIL_CALL:
1110			if (imm32)
1111				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1112							  &prog, addrs[i], image);
1113			else
1114				emit_bpf_tail_call_indirect(&prog);
1115			break;
1116
1117			/* cond jump */
1118		case BPF_JMP | BPF_JEQ | BPF_X:
1119		case BPF_JMP | BPF_JNE | BPF_X:
1120		case BPF_JMP | BPF_JGT | BPF_X:
1121		case BPF_JMP | BPF_JLT | BPF_X:
1122		case BPF_JMP | BPF_JGE | BPF_X:
1123		case BPF_JMP | BPF_JLE | BPF_X:
1124		case BPF_JMP | BPF_JSGT | BPF_X:
1125		case BPF_JMP | BPF_JSLT | BPF_X:
1126		case BPF_JMP | BPF_JSGE | BPF_X:
1127		case BPF_JMP | BPF_JSLE | BPF_X:
1128		case BPF_JMP32 | BPF_JEQ | BPF_X:
1129		case BPF_JMP32 | BPF_JNE | BPF_X:
1130		case BPF_JMP32 | BPF_JGT | BPF_X:
1131		case BPF_JMP32 | BPF_JLT | BPF_X:
1132		case BPF_JMP32 | BPF_JGE | BPF_X:
1133		case BPF_JMP32 | BPF_JLE | BPF_X:
1134		case BPF_JMP32 | BPF_JSGT | BPF_X:
1135		case BPF_JMP32 | BPF_JSLT | BPF_X:
1136		case BPF_JMP32 | BPF_JSGE | BPF_X:
1137		case BPF_JMP32 | BPF_JSLE | BPF_X:
1138			/* cmp dst_reg, src_reg */
1139			if (BPF_CLASS(insn->code) == BPF_JMP)
1140				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1141			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1142				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1143			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1144			goto emit_cond_jmp;
1145
1146		case BPF_JMP | BPF_JSET | BPF_X:
1147		case BPF_JMP32 | BPF_JSET | BPF_X:
1148			/* test dst_reg, src_reg */
1149			if (BPF_CLASS(insn->code) == BPF_JMP)
1150				EMIT1(add_2mod(0x48, dst_reg, src_reg));
1151			else if (is_ereg(dst_reg) || is_ereg(src_reg))
1152				EMIT1(add_2mod(0x40, dst_reg, src_reg));
1153			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1154			goto emit_cond_jmp;
1155
1156		case BPF_JMP | BPF_JSET | BPF_K:
1157		case BPF_JMP32 | BPF_JSET | BPF_K:
1158			/* test dst_reg, imm32 */
1159			if (BPF_CLASS(insn->code) == BPF_JMP)
1160				EMIT1(add_1mod(0x48, dst_reg));
1161			else if (is_ereg(dst_reg))
1162				EMIT1(add_1mod(0x40, dst_reg));
1163			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1164			goto emit_cond_jmp;
1165
1166		case BPF_JMP | BPF_JEQ | BPF_K:
1167		case BPF_JMP | BPF_JNE | BPF_K:
1168		case BPF_JMP | BPF_JGT | BPF_K:
1169		case BPF_JMP | BPF_JLT | BPF_K:
1170		case BPF_JMP | BPF_JGE | BPF_K:
1171		case BPF_JMP | BPF_JLE | BPF_K:
1172		case BPF_JMP | BPF_JSGT | BPF_K:
1173		case BPF_JMP | BPF_JSLT | BPF_K:
1174		case BPF_JMP | BPF_JSGE | BPF_K:
1175		case BPF_JMP | BPF_JSLE | BPF_K:
1176		case BPF_JMP32 | BPF_JEQ | BPF_K:
1177		case BPF_JMP32 | BPF_JNE | BPF_K:
1178		case BPF_JMP32 | BPF_JGT | BPF_K:
1179		case BPF_JMP32 | BPF_JLT | BPF_K:
1180		case BPF_JMP32 | BPF_JGE | BPF_K:
1181		case BPF_JMP32 | BPF_JLE | BPF_K:
1182		case BPF_JMP32 | BPF_JSGT | BPF_K:
1183		case BPF_JMP32 | BPF_JSLT | BPF_K:
1184		case BPF_JMP32 | BPF_JSGE | BPF_K:
1185		case BPF_JMP32 | BPF_JSLE | BPF_K:
1186			/* test dst_reg, dst_reg to save one extra byte */
1187			if (imm32 == 0) {
1188				if (BPF_CLASS(insn->code) == BPF_JMP)
1189					EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1190				else if (is_ereg(dst_reg))
1191					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1192				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1193				goto emit_cond_jmp;
1194			}
1195
1196			/* cmp dst_reg, imm8/32 */
1197			if (BPF_CLASS(insn->code) == BPF_JMP)
1198				EMIT1(add_1mod(0x48, dst_reg));
1199			else if (is_ereg(dst_reg))
1200				EMIT1(add_1mod(0x40, dst_reg));
1201
1202			if (is_imm8(imm32))
1203				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1204			else
1205				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1206
1207emit_cond_jmp:		/* Convert BPF opcode to x86 */
1208			switch (BPF_OP(insn->code)) {
1209			case BPF_JEQ:
1210				jmp_cond = X86_JE;
1211				break;
1212			case BPF_JSET:
1213			case BPF_JNE:
1214				jmp_cond = X86_JNE;
1215				break;
1216			case BPF_JGT:
1217				/* GT is unsigned '>', JA in x86 */
1218				jmp_cond = X86_JA;
1219				break;
1220			case BPF_JLT:
1221				/* LT is unsigned '<', JB in x86 */
1222				jmp_cond = X86_JB;
1223				break;
1224			case BPF_JGE:
1225				/* GE is unsigned '>=', JAE in x86 */
1226				jmp_cond = X86_JAE;
1227				break;
1228			case BPF_JLE:
1229				/* LE is unsigned '<=', JBE in x86 */
1230				jmp_cond = X86_JBE;
1231				break;
1232			case BPF_JSGT:
1233				/* Signed '>', GT in x86 */
1234				jmp_cond = X86_JG;
1235				break;
1236			case BPF_JSLT:
1237				/* Signed '<', LT in x86 */
1238				jmp_cond = X86_JL;
1239				break;
1240			case BPF_JSGE:
1241				/* Signed '>=', GE in x86 */
1242				jmp_cond = X86_JGE;
1243				break;
1244			case BPF_JSLE:
1245				/* Signed '<=', LE in x86 */
1246				jmp_cond = X86_JLE;
1247				break;
1248			default: /* to silence GCC warning */
1249				return -EFAULT;
1250			}
1251			jmp_offset = addrs[i + insn->off] - addrs[i];
1252			if (is_imm8(jmp_offset)) {
1253				EMIT2(jmp_cond, jmp_offset);
1254			} else if (is_simm32(jmp_offset)) {
1255				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1256			} else {
1257				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1258				return -EFAULT;
1259			}
1260
1261			break;
1262
1263		case BPF_JMP | BPF_JA:
1264			if (insn->off == -1)
1265				/* -1 jmp instructions will always jump
1266				 * backwards two bytes. Explicitly handling
1267				 * this case avoids wasting too many passes
1268				 * when there are long sequences of replaced
1269				 * dead code.
1270				 */
1271				jmp_offset = -2;
1272			else
1273				jmp_offset = addrs[i + insn->off] - addrs[i];
1274
1275			if (!jmp_offset)
1276				/* Optimize out nop jumps */
1277				break;
1278emit_jmp:
1279			if (is_imm8(jmp_offset)) {
1280				EMIT2(0xEB, jmp_offset);
1281			} else if (is_simm32(jmp_offset)) {
1282				EMIT1_off32(0xE9, jmp_offset);
1283			} else {
1284				pr_err("jmp gen bug %llx\n", jmp_offset);
1285				return -EFAULT;
1286			}
1287			break;
1288
1289		case BPF_JMP | BPF_EXIT:
1290			if (seen_exit) {
1291				jmp_offset = ctx->cleanup_addr - addrs[i];
1292				goto emit_jmp;
1293			}
1294			seen_exit = true;
1295			/* Update cleanup_addr */
1296			ctx->cleanup_addr = proglen;
1297			if (!bpf_prog_was_classic(bpf_prog))
1298				EMIT1(0x5B); /* get rid of tail_call_cnt */
1299			EMIT2(0x41, 0x5F);   /* pop r15 */
1300			EMIT2(0x41, 0x5E);   /* pop r14 */
1301			EMIT2(0x41, 0x5D);   /* pop r13 */
1302			EMIT1(0x5B);         /* pop rbx */
1303			EMIT1(0xC9);         /* leave */
1304			EMIT1(0xC3);         /* ret */
1305			break;
1306
1307		default:
1308			/*
1309			 * By design x86-64 JIT should support all BPF instructions.
1310			 * This error will be seen if new instruction was added
1311			 * to the interpreter, but not to the JIT, or if there is
1312			 * junk in bpf_prog.
1313			 */
1314			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1315			return -EINVAL;
1316		}
1317
1318		ilen = prog - temp;
1319		if (ilen > BPF_MAX_INSN_SIZE) {
1320			pr_err("bpf_jit: fatal insn size error\n");
1321			return -EFAULT;
1322		}
 
 
 
 
 
 
 
 
1323
1324		if (image) {
1325			if (unlikely(proglen + ilen > oldproglen)) {
1326				pr_err("bpf_jit: fatal error\n");
1327				return -EFAULT;
1328			}
1329			memcpy(image + proglen, temp, ilen);
1330		}
1331		proglen += ilen;
1332		addrs[i] = proglen;
1333		prog = temp;
1334	}
1335
1336	if (image && excnt != bpf_prog->aux->num_exentries) {
1337		pr_err("extable is not populated\n");
1338		return -EFAULT;
1339	}
1340	return proglen;
1341}
1342
1343static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1344		      int stack_size)
1345{
1346	int i;
1347	/* Store function arguments to stack.
1348	 * For a function that accepts two pointers the sequence will be:
1349	 * mov QWORD PTR [rbp-0x10],rdi
1350	 * mov QWORD PTR [rbp-0x8],rsi
1351	 */
1352	for (i = 0; i < min(nr_args, 6); i++)
1353		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1354			 BPF_REG_FP,
1355			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1356			 -(stack_size - i * 8));
1357}
1358
1359static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1360			 int stack_size)
1361{
1362	int i;
1363
1364	/* Restore function arguments from stack.
1365	 * For a function that accepts two pointers the sequence will be:
1366	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1367	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1368	 */
1369	for (i = 0; i < min(nr_args, 6); i++)
1370		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1371			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1372			 BPF_REG_FP,
1373			 -(stack_size - i * 8));
1374}
1375
1376static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1377			   struct bpf_prog *p, int stack_size, bool mod_ret)
1378{
1379	u8 *prog = *pprog;
1380	int cnt = 0;
1381
1382	if (emit_call(&prog, __bpf_prog_enter, prog))
1383		return -EINVAL;
1384	/* remember prog start time returned by __bpf_prog_enter */
1385	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1386
1387	/* arg1: lea rdi, [rbp - stack_size] */
1388	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1389	/* arg2: progs[i]->insnsi for interpreter */
1390	if (!p->jited)
1391		emit_mov_imm64(&prog, BPF_REG_2,
1392			       (long) p->insnsi >> 32,
1393			       (u32) (long) p->insnsi);
1394	/* call JITed bpf program or interpreter */
1395	if (emit_call(&prog, p->bpf_func, prog))
1396		return -EINVAL;
1397
1398	/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1399	 * of the previous call which is then passed on the stack to
1400	 * the next BPF program.
1401	 */
1402	if (mod_ret)
1403		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1404
1405	/* arg1: mov rdi, progs[i] */
1406	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32,
1407		       (u32) (long) p);
1408	/* arg2: mov rsi, rbx <- start time in nsec */
1409	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1410	if (emit_call(&prog, __bpf_prog_exit, prog))
1411		return -EINVAL;
1412
1413	*pprog = prog;
1414	return 0;
1415}
1416
1417static void emit_nops(u8 **pprog, unsigned int len)
1418{
1419	unsigned int i, noplen;
1420	u8 *prog = *pprog;
1421	int cnt = 0;
1422
1423	while (len > 0) {
1424		noplen = len;
1425
1426		if (noplen > ASM_NOP_MAX)
1427			noplen = ASM_NOP_MAX;
1428
1429		for (i = 0; i < noplen; i++)
1430			EMIT1(ideal_nops[noplen][i]);
1431		len -= noplen;
1432	}
1433
1434	*pprog = prog;
1435}
1436
1437static void emit_align(u8 **pprog, u32 align)
1438{
1439	u8 *target, *prog = *pprog;
1440
1441	target = PTR_ALIGN(prog, align);
1442	if (target != prog)
1443		emit_nops(&prog, target - prog);
1444
1445	*pprog = prog;
1446}
1447
1448static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1449{
1450	u8 *prog = *pprog;
1451	int cnt = 0;
1452	s64 offset;
1453
1454	offset = func - (ip + 2 + 4);
1455	if (!is_simm32(offset)) {
1456		pr_err("Target %p is out of range\n", func);
1457		return -EINVAL;
1458	}
1459	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1460	*pprog = prog;
1461	return 0;
1462}
1463
1464static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1465		      struct bpf_tramp_progs *tp, int stack_size)
1466{
1467	int i;
1468	u8 *prog = *pprog;
1469
1470	for (i = 0; i < tp->nr_progs; i++) {
1471		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1472			return -EINVAL;
1473	}
1474	*pprog = prog;
1475	return 0;
1476}
1477
1478static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1479			      struct bpf_tramp_progs *tp, int stack_size,
1480			      u8 **branches)
1481{
1482	u8 *prog = *pprog;
1483	int i, cnt = 0;
1484
1485	/* The first fmod_ret program will receive a garbage return value.
1486	 * Set this to 0 to avoid confusing the program.
1487	 */
1488	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1489	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1490	for (i = 0; i < tp->nr_progs; i++) {
1491		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1492			return -EINVAL;
1493
1494		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1495		 * if (*(u64 *)(rbp - 8) !=  0)
1496		 *	goto do_fexit;
1497		 */
1498		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1499		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1500
1501		/* Save the location of the branch and Generate 6 nops
1502		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1503		 * are replaced with a conditional jump once do_fexit (i.e. the
1504		 * start of the fexit invocation) is finalized.
1505		 */
1506		branches[i] = prog;
1507		emit_nops(&prog, 4 + 2);
1508	}
1509
1510	*pprog = prog;
1511	return 0;
1512}
1513
1514/* Example:
1515 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1516 * its 'struct btf_func_model' will be nr_args=2
1517 * The assembly code when eth_type_trans is executing after trampoline:
1518 *
1519 * push rbp
1520 * mov rbp, rsp
1521 * sub rsp, 16                     // space for skb and dev
1522 * push rbx                        // temp regs to pass start time
1523 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1524 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1525 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1526 * mov rbx, rax                    // remember start time in bpf stats are enabled
1527 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1528 * call addr_of_jited_FENTRY_prog
1529 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1530 * mov rsi, rbx                    // prog start time
1531 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1532 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1533 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1534 * pop rbx
1535 * leave
1536 * ret
1537 *
1538 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1539 * replaced with 'call generated_bpf_trampoline'. When it returns
1540 * eth_type_trans will continue executing with original skb and dev pointers.
1541 *
1542 * The assembly code when eth_type_trans is called from trampoline:
1543 *
1544 * push rbp
1545 * mov rbp, rsp
1546 * sub rsp, 24                     // space for skb, dev, return value
1547 * push rbx                        // temp regs to pass start time
1548 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1549 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1550 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1551 * mov rbx, rax                    // remember start time if bpf stats are enabled
1552 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1553 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1554 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1555 * mov rsi, rbx                    // prog start time
1556 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1557 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1558 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1559 * call eth_type_trans+5           // execute body of eth_type_trans
1560 * mov qword ptr [rbp - 8], rax    // save return value
1561 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1562 * mov rbx, rax                    // remember start time in bpf stats are enabled
1563 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1564 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1565 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1566 * mov rsi, rbx                    // prog start time
1567 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1568 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1569 * pop rbx
1570 * leave
1571 * add rsp, 8                      // skip eth_type_trans's frame
1572 * ret                             // return to its caller
1573 */
1574int arch_prepare_bpf_trampoline(void *image, void *image_end,
1575				const struct btf_func_model *m, u32 flags,
1576				struct bpf_tramp_progs *tprogs,
1577				void *orig_call)
1578{
1579	int ret, i, cnt = 0, nr_args = m->nr_args;
1580	int stack_size = nr_args * 8;
1581	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1582	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1583	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1584	u8 **branches = NULL;
1585	u8 *prog;
1586
1587	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1588	if (nr_args > 6)
1589		return -ENOTSUPP;
1590
1591	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1592	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1593		return -EINVAL;
1594
1595	if (flags & BPF_TRAMP_F_CALL_ORIG)
1596		stack_size += 8; /* room for return value of orig_call */
1597
1598	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1599		/* skip patched call instruction and point orig_call to actual
1600		 * body of the kernel function.
1601		 */
1602		orig_call += X86_PATCH_SIZE;
1603
1604	prog = image;
1605
1606	EMIT1(0x55);		 /* push rbp */
1607	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1608	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1609	EMIT1(0x53);		 /* push rbx */
1610
1611	save_regs(m, &prog, nr_args, stack_size);
1612
1613	if (fentry->nr_progs)
1614		if (invoke_bpf(m, &prog, fentry, stack_size))
1615			return -EINVAL;
1616
1617	if (fmod_ret->nr_progs) {
1618		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1619				   GFP_KERNEL);
1620		if (!branches)
1621			return -ENOMEM;
1622
1623		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1624				       branches)) {
1625			ret = -EINVAL;
1626			goto cleanup;
1627		}
 
1628	}
1629
1630	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1631		if (fentry->nr_progs || fmod_ret->nr_progs)
1632			restore_regs(m, &prog, nr_args, stack_size);
1633
1634		/* call original function */
1635		if (emit_call(&prog, orig_call, prog)) {
1636			ret = -EINVAL;
1637			goto cleanup;
1638		}
1639		/* remember return value in a stack for bpf prog to access */
1640		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1641	}
1642
1643	if (fmod_ret->nr_progs) {
1644		/* From Intel 64 and IA-32 Architectures Optimization
1645		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1646		 * Coding Rule 11: All branch targets should be 16-byte
1647		 * aligned.
1648		 */
1649		emit_align(&prog, 16);
1650		/* Update the branches saved in invoke_bpf_mod_ret with the
1651		 * aligned address of do_fexit.
1652		 */
1653		for (i = 0; i < fmod_ret->nr_progs; i++)
1654			emit_cond_near_jump(&branches[i], prog, branches[i],
1655					    X86_JNE);
1656	}
1657
1658	if (fexit->nr_progs)
1659		if (invoke_bpf(m, &prog, fexit, stack_size)) {
1660			ret = -EINVAL;
1661			goto cleanup;
1662		}
1663
1664	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1665		restore_regs(m, &prog, nr_args, stack_size);
1666
1667	/* This needs to be done regardless. If there were fmod_ret programs,
1668	 * the return value is only updated on the stack and still needs to be
1669	 * restored to R0.
1670	 */
1671	if (flags & BPF_TRAMP_F_CALL_ORIG)
1672		/* restore original return value back into RAX */
1673		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1674
1675	EMIT1(0x5B); /* pop rbx */
1676	EMIT1(0xC9); /* leave */
1677	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1678		/* skip our return address and return to parent */
1679		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1680	EMIT1(0xC3); /* ret */
1681	/* Make sure the trampoline generation logic doesn't overflow */
1682	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
1683		ret = -EFAULT;
1684		goto cleanup;
1685	}
1686	ret = prog - (u8 *)image;
1687
1688cleanup:
1689	kfree(branches);
1690	return ret;
1691}
1692
1693static int emit_fallback_jump(u8 **pprog)
1694{
1695	u8 *prog = *pprog;
1696	int err = 0;
1697
1698#ifdef CONFIG_RETPOLINE
1699	/* Note that this assumes the the compiler uses external
1700	 * thunks for indirect calls. Both clang and GCC use the same
1701	 * naming convention for external thunks.
1702	 */
1703	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1704#else
1705	int cnt = 0;
1706
1707	EMIT2(0xFF, 0xE2);	/* jmp rdx */
1708#endif
1709	*pprog = prog;
1710	return err;
1711}
1712
1713static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1714{
1715	u8 *jg_reloc, *prog = *pprog;
1716	int pivot, err, jg_bytes = 1, cnt = 0;
1717	s64 jg_offset;
1718
1719	if (a == b) {
1720		/* Leaf node of recursion, i.e. not a range of indices
1721		 * anymore.
1722		 */
1723		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
1724		if (!is_simm32(progs[a]))
1725			return -1;
1726		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1727			    progs[a]);
1728		err = emit_cond_near_jump(&prog,	/* je func */
1729					  (void *)progs[a], prog,
1730					  X86_JE);
1731		if (err)
1732			return err;
1733
1734		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
1735		if (err)
1736			return err;
1737
1738		*pprog = prog;
1739		return 0;
1740	}
1741
1742	/* Not a leaf node, so we pivot, and recursively descend into
1743	 * the lower and upper ranges.
1744	 */
1745	pivot = (b - a) / 2;
1746	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
1747	if (!is_simm32(progs[a + pivot]))
1748		return -1;
1749	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1750
1751	if (pivot > 2) {				/* jg upper_part */
1752		/* Require near jump. */
1753		jg_bytes = 4;
1754		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1755	} else {
1756		EMIT2(X86_JG, 0);
1757	}
1758	jg_reloc = prog;
1759
1760	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
1761				  progs);
1762	if (err)
1763		return err;
1764
1765	/* From Intel 64 and IA-32 Architectures Optimization
1766	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1767	 * Coding Rule 11: All branch targets should be 16-byte
1768	 * aligned.
1769	 */
1770	emit_align(&prog, 16);
1771	jg_offset = prog - jg_reloc;
1772	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1773
1774	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
1775				  b, progs);
1776	if (err)
1777		return err;
1778
1779	*pprog = prog;
1780	return 0;
1781}
1782
1783static int cmp_ips(const void *a, const void *b)
1784{
1785	const s64 *ipa = a;
1786	const s64 *ipb = b;
 
1787
1788	if (*ipa > *ipb)
1789		return 1;
1790	if (*ipa < *ipb)
1791		return -1;
1792	return 0;
1793}
1794
1795int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1796{
1797	u8 *prog = image;
1798
1799	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1800	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1801}
1802
1803struct x64_jit_data {
1804	struct bpf_binary_header *header;
1805	int *addrs;
1806	u8 *image;
1807	int proglen;
1808	struct jit_context ctx;
1809};
1810
1811struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1812{
1813	struct bpf_binary_header *header = NULL;
1814	struct bpf_prog *tmp, *orig_prog = prog;
1815	struct x64_jit_data *jit_data;
1816	int proglen, oldproglen = 0;
1817	struct jit_context ctx = {};
1818	bool tmp_blinded = false;
1819	bool extra_pass = false;
1820	u8 *image = NULL;
1821	int *addrs;
1822	int pass;
1823	int i;
1824
1825	if (!prog->jit_requested)
1826		return orig_prog;
1827
1828	tmp = bpf_jit_blind_constants(prog);
1829	/*
1830	 * If blinding was requested and we failed during blinding,
1831	 * we must fall back to the interpreter.
1832	 */
1833	if (IS_ERR(tmp))
1834		return orig_prog;
1835	if (tmp != prog) {
1836		tmp_blinded = true;
1837		prog = tmp;
1838	}
1839
1840	jit_data = prog->aux->jit_data;
1841	if (!jit_data) {
1842		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1843		if (!jit_data) {
1844			prog = orig_prog;
1845			goto out;
1846		}
1847		prog->aux->jit_data = jit_data;
1848	}
1849	addrs = jit_data->addrs;
1850	if (addrs) {
1851		ctx = jit_data->ctx;
1852		oldproglen = jit_data->proglen;
1853		image = jit_data->image;
1854		header = jit_data->header;
1855		extra_pass = true;
1856		goto skip_init_addrs;
1857	}
1858	addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1859	if (!addrs) {
1860		prog = orig_prog;
1861		goto out_addrs;
1862	}
1863
1864	/*
1865	 * Before first pass, make a rough estimation of addrs[]
1866	 * each BPF instruction is translated to less than 64 bytes
1867	 */
1868	for (proglen = 0, i = 0; i <= prog->len; i++) {
1869		proglen += 64;
1870		addrs[i] = proglen;
1871	}
1872	ctx.cleanup_addr = proglen;
1873skip_init_addrs:
1874
1875	/*
1876	 * JITed image shrinks with every pass and the loop iterates
1877	 * until the image stops shrinking. Very large BPF programs
1878	 * may converge on the last pass. In such case do one more
1879	 * pass to emit the final image.
1880	 */
1881	for (pass = 0; pass < 20 || image; pass++) {
1882		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1883		if (proglen <= 0) {
1884out_image:
1885			image = NULL;
1886			if (header)
1887				bpf_jit_binary_free(header);
1888			prog = orig_prog;
1889			goto out_addrs;
1890		}
1891		if (image) {
1892			if (proglen != oldproglen) {
1893				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1894				       proglen, oldproglen);
1895				goto out_image;
1896			}
1897			break;
1898		}
1899		if (proglen == oldproglen) {
1900			/*
1901			 * The number of entries in extable is the number of BPF_LDX
1902			 * insns that access kernel memory via "pointer to BTF type".
1903			 * The verifier changed their opcode from LDX|MEM|size
1904			 * to LDX|PROBE_MEM|size to make JITing easier.
1905			 */
1906			u32 align = __alignof__(struct exception_table_entry);
1907			u32 extable_size = prog->aux->num_exentries *
1908				sizeof(struct exception_table_entry);
1909
1910			/* allocate module memory for x86 insns and extable */
1911			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
1912						      &image, align, jit_fill_hole);
1913			if (!header) {
1914				prog = orig_prog;
1915				goto out_addrs;
1916			}
1917			prog->aux->extable = (void *) image + roundup(proglen, align);
1918		}
1919		oldproglen = proglen;
1920		cond_resched();
1921	}
1922
1923	if (bpf_jit_enable > 1)
1924		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1925
1926	if (image) {
1927		if (!prog->is_func || extra_pass) {
1928			bpf_tail_call_direct_fixup(prog);
1929			bpf_jit_binary_lock_ro(header);
1930		} else {
1931			jit_data->addrs = addrs;
1932			jit_data->ctx = ctx;
1933			jit_data->proglen = proglen;
1934			jit_data->image = image;
1935			jit_data->header = header;
1936		}
1937		prog->bpf_func = (void *)image;
1938		prog->jited = 1;
1939		prog->jited_len = proglen;
1940	} else {
1941		prog = orig_prog;
1942	}
1943
1944	if (!image || !prog->is_func || extra_pass) {
1945		if (image)
1946			bpf_prog_fill_jited_linfo(prog, addrs + 1);
1947out_addrs:
1948		kfree(addrs);
1949		kfree(jit_data);
1950		prog->aux->jit_data = NULL;
1951	}
1952out:
1953	if (tmp_blinded)
1954		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1955					   tmp : orig_prog);
1956	return prog;
1957}