Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/cpu.h>
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 
 
 20#include <linux/fs.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/elfcore.h>
 24#include <linux/smp.h>
 25#include <linux/slab.h>
 26#include <linux/user.h>
 27#include <linux/interrupt.h>
 28#include <linux/delay.h>
 29#include <linux/module.h>
 30#include <linux/ptrace.h>
 31#include <linux/notifier.h>
 32#include <linux/kprobes.h>
 33#include <linux/kdebug.h>
 34#include <linux/prctl.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/ftrace.h>
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/processor.h>
 41#include <asm/i387.h>
 42#include <asm/fpu-internal.h>
 43#include <asm/mmu_context.h>
 44#include <asm/prctl.h>
 45#include <asm/desc.h>
 46#include <asm/proto.h>
 47#include <asm/ia32.h>
 48#include <asm/idle.h>
 49#include <asm/syscalls.h>
 50#include <asm/debugreg.h>
 51#include <asm/switch_to.h>
 
 
 
 
 
 
 
 
 
 52
 53asmlinkage extern void ret_from_fork(void);
 54
 55__visible DEFINE_PER_CPU(unsigned long, old_rsp);
 56
 57/* Prints also some state that isn't saved in the pt_regs */
 58void __show_regs(struct pt_regs *regs, int all)
 
 59{
 60	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 61	unsigned long d0, d1, d2, d3, d6, d7;
 62	unsigned int fsindex, gsindex;
 63	unsigned int ds, cs, es;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64
 65	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
 66	printk_address(regs->ip);
 67	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss,
 68			regs->sp, regs->flags);
 69	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 70	       regs->ax, regs->bx, regs->cx);
 71	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 72	       regs->dx, regs->si, regs->di);
 73	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 74	       regs->bp, regs->r8, regs->r9);
 75	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 76	       regs->r10, regs->r11, regs->r12);
 77	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 78	       regs->r13, regs->r14, regs->r15);
 79
 80	asm("movl %%ds,%0" : "=r" (ds));
 81	asm("movl %%cs,%0" : "=r" (cs));
 82	asm("movl %%es,%0" : "=r" (es));
 83	asm("movl %%fs,%0" : "=r" (fsindex));
 84	asm("movl %%gs,%0" : "=r" (gsindex));
 85
 86	rdmsrl(MSR_FS_BASE, fs);
 87	rdmsrl(MSR_GS_BASE, gs);
 88	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 89
 90	if (!all)
 91		return;
 92
 93	cr0 = read_cr0();
 94	cr2 = read_cr2();
 95	cr3 = read_cr3();
 96	cr4 = read_cr4();
 97
 98	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 99	       fs, fsindex, gs, gsindex, shadowgs);
100	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
101			es, cr0);
102	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
103			cr4);
104
105	get_debugreg(d0, 0);
106	get_debugreg(d1, 1);
107	get_debugreg(d2, 2);
108	get_debugreg(d3, 3);
109	get_debugreg(d6, 6);
110	get_debugreg(d7, 7);
111
112	/* Only print out debug registers if they are in their non-default state. */
113	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
114	    (d6 == DR6_RESERVED) && (d7 == 0x400))
115		return;
116
117	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
118	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
 
119
 
 
120}
121
122void release_thread(struct task_struct *dead_task)
123{
124	if (dead_task->mm) {
125		if (dead_task->mm->context.size) {
126			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
127				dead_task->comm,
128				dead_task->mm->context.ldt,
129				dead_task->mm->context.size);
130			BUG();
131		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132	}
 
 
133}
134
135static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136{
137	struct user_desc ud = {
138		.base_addr = addr,
139		.limit = 0xfffff,
140		.seg_32bit = 1,
141		.limit_in_pages = 1,
142		.useable = 1,
143	};
144	struct desc_struct *desc = t->thread.tls_array;
145	desc += tls;
146	fill_ldt(desc, &ud);
147}
148
149static inline u32 read_32bit_tls(struct task_struct *t, int tls)
150{
151	return get_desc_base(&t->thread.tls_array[tls]);
152}
153
154int copy_thread(unsigned long clone_flags, unsigned long sp,
155		unsigned long arg, struct task_struct *p)
156{
157	int err;
158	struct pt_regs *childregs;
159	struct task_struct *me = current;
160
161	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
162	childregs = task_pt_regs(p);
163	p->thread.sp = (unsigned long) childregs;
164	p->thread.usersp = me->thread.usersp;
165	set_tsk_thread_flag(p, TIF_FORK);
166	p->thread.fpu_counter = 0;
167	p->thread.io_bitmap_ptr = NULL;
168
169	savesegment(gs, p->thread.gsindex);
170	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
171	savesegment(fs, p->thread.fsindex);
172	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
173	savesegment(es, p->thread.es);
174	savesegment(ds, p->thread.ds);
175	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
176
177	if (unlikely(p->flags & PF_KTHREAD)) {
178		/* kernel thread */
179		memset(childregs, 0, sizeof(struct pt_regs));
180		childregs->sp = (unsigned long)childregs;
181		childregs->ss = __KERNEL_DS;
182		childregs->bx = sp; /* function */
183		childregs->bp = arg;
184		childregs->orig_ax = -1;
185		childregs->cs = __KERNEL_CS | get_kernel_rpl();
186		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
187		return 0;
188	}
189	*childregs = *current_pt_regs();
190
191	childregs->ax = 0;
192	if (sp)
193		childregs->sp = sp;
194
195	err = -ENOMEM;
196	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
197
198	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
199		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
200						  IO_BITMAP_BYTES, GFP_KERNEL);
201		if (!p->thread.io_bitmap_ptr) {
202			p->thread.io_bitmap_max = 0;
203			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204		}
205		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 
 
 
 
 
206	}
 
207
208	/*
209	 * Set a new TLS for the child thread?
210	 */
211	if (clone_flags & CLONE_SETTLS) {
212#ifdef CONFIG_IA32_EMULATION
213		if (test_thread_flag(TIF_IA32))
214			err = do_set_thread_area(p, -1,
215				(struct user_desc __user *)childregs->si, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216		else
 
 
 
 
217#endif
218			err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
219		if (err)
220			goto out;
221	}
222	err = 0;
223out:
224	if (err && p->thread.io_bitmap_ptr) {
225		kfree(p->thread.io_bitmap_ptr);
226		p->thread.io_bitmap_max = 0;
227	}
228
229	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230}
231
232static void
233start_thread_common(struct pt_regs *regs, unsigned long new_ip,
234		    unsigned long new_sp,
235		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
236{
 
 
 
 
 
 
 
 
237	loadsegment(fs, 0);
238	loadsegment(es, _ds);
239	loadsegment(ds, _ds);
240	load_gs_index(0);
241	current->thread.usersp	= new_sp;
242	regs->ip		= new_ip;
243	regs->sp		= new_sp;
244	this_cpu_write(old_rsp, new_sp);
245	regs->cs		= _cs;
246	regs->ss		= _ss;
247	regs->flags		= X86_EFLAGS_IF;
248}
249
250void
251start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
252{
253	start_thread_common(regs, new_ip, new_sp,
254			    __USER_CS, __USER_DS, 0);
255}
 
256
257#ifdef CONFIG_IA32_EMULATION
258void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
259{
260	start_thread_common(regs, new_ip, new_sp,
261			    test_thread_flag(TIF_X32)
262			    ? __USER_CS : __USER32_CS,
263			    __USER_DS, __USER_DS);
264}
265#endif
266
267/*
268 *	switch_to(x,y) should switch tasks from x to y.
269 *
270 * This could still be optimized:
271 * - fold all the options into a flag word and test it with a single test.
272 * - could test fs/gs bitsliced
273 *
274 * Kprobes not supported here. Set the probe on schedule instead.
275 * Function graph tracer not supported too.
276 */
277__visible __notrace_funcgraph struct task_struct *
278__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
279{
280	struct thread_struct *prev = &prev_p->thread;
281	struct thread_struct *next = &next_p->thread;
 
 
282	int cpu = smp_processor_id();
283	struct tss_struct *tss = &per_cpu(init_tss, cpu);
284	unsigned fsindex, gsindex;
285	fpu_switch_t fpu;
286
287	fpu = switch_fpu_prepare(prev_p, next_p, cpu);
288
289	/*
290	 * Reload esp0, LDT and the page table pointer:
291	 */
292	load_sp0(tss, next);
293
294	/*
295	 * Switch DS and ES.
296	 * This won't pick up thread selector changes, but I guess that is ok.
297	 */
298	savesegment(es, prev->es);
299	if (unlikely(next->es | prev->es))
300		loadsegment(es, next->es);
301
302	savesegment(ds, prev->ds);
303	if (unlikely(next->ds | prev->ds))
304		loadsegment(ds, next->ds);
305
 
 
306
307	/* We must save %fs and %gs before load_TLS() because
308	 * %fs and %gs may be cleared by load_TLS().
309	 *
310	 * (e.g. xen_load_tls())
311	 */
312	savesegment(fs, fsindex);
313	savesegment(gs, gsindex);
314
 
 
 
 
315	load_TLS(next, cpu);
316
317	/*
318	 * Leave lazy mode, flushing any hypercalls made here.
319	 * This must be done before restoring TLS segments so
320	 * the GDT and LDT are properly updated, and must be
321	 * done before math_state_restore, so the TS bit is up
322	 * to date.
323	 */
324	arch_end_context_switch(next_p);
325
326	/*
327	 * Switch FS and GS.
328	 *
329	 * Segment register != 0 always requires a reload.  Also
330	 * reload when it has changed.  When prev process used 64bit
331	 * base always reload to avoid an information leak.
 
 
 
 
 
 
 
 
332	 */
333	if (unlikely(fsindex | next->fsindex | prev->fs)) {
334		loadsegment(fs, next->fsindex);
335		/*
336		 * Check if the user used a selector != 0; if yes
337		 *  clear 64bit base, since overloaded base is always
338		 *  mapped to the Null selector
339		 */
340		if (fsindex)
341			prev->fs = 0;
342	}
343	/* when next process has a 64bit base use it */
344	if (next->fs)
345		wrmsrl(MSR_FS_BASE, next->fs);
346	prev->fsindex = fsindex;
347
348	if (unlikely(gsindex | next->gsindex | prev->gs)) {
349		load_gs_index(next->gsindex);
350		if (gsindex)
351			prev->gs = 0;
352	}
353	if (next->gs)
354		wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
355	prev->gsindex = gsindex;
356
357	switch_fpu_finish(next_p, fpu);
 
 
 
 
358
359	/*
360	 * Switch the PDA and FPU contexts.
361	 */
362	prev->usersp = this_cpu_read(old_rsp);
363	this_cpu_write(old_rsp, next->usersp);
364	this_cpu_write(current_task, next_p);
 
365
366	/*
367	 * If it were not for PREEMPT_ACTIVE we could guarantee that the
368	 * preempt_count of all tasks was equal here and this would not be
369	 * needed.
370	 */
371	task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
372	this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
373
374	this_cpu_write(kernel_stack,
375		  (unsigned long)task_stack_page(next_p) +
376		  THREAD_SIZE - KERNEL_STACK_OFFSET);
377
378	/*
379	 * Now maybe reload the debug registers and handle I/O bitmaps
380	 */
381	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
382		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
383		__switch_to_xtra(prev_p, next_p, tss);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
385	return prev_p;
386}
387
388void set_personality_64bit(void)
389{
390	/* inherit personality from parent */
391
392	/* Make sure to be in 64bit mode */
393	clear_thread_flag(TIF_IA32);
394	clear_thread_flag(TIF_ADDR32);
395	clear_thread_flag(TIF_X32);
 
 
 
396
397	/* Ensure the corresponding mm is not marked. */
398	if (current->mm)
399		current->mm->context.ia32_compat = 0;
400
401	/* TBD: overwrites user setup. Should have two bits.
402	   But 64bit processes have always behaved this way,
403	   so it's not too bad. The main problem is just that
404	   32bit childs are affected again. */
405	current->personality &= ~READ_IMPLIES_EXEC;
406}
407
408void set_personality_ia32(bool x32)
409{
410	/* inherit personality from parent */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412	/* Make sure to be in 32bit mode */
413	set_thread_flag(TIF_ADDR32);
414
415	/* Mark the associated mm as containing 32-bit tasks. */
416	if (current->mm)
417		current->mm->context.ia32_compat = 1;
418
419	if (x32) {
420		clear_thread_flag(TIF_IA32);
421		set_thread_flag(TIF_X32);
422		current->personality &= ~READ_IMPLIES_EXEC;
423		/* is_compat_task() uses the presence of the x32
424		   syscall bit flag to determine compat status */
425		current_thread_info()->status &= ~TS_COMPAT;
426	} else {
427		set_thread_flag(TIF_IA32);
428		clear_thread_flag(TIF_X32);
429		current->personality |= force_personality32;
430		/* Prepare the first "return" to user space */
431		current_thread_info()->status |= TS_COMPAT;
432	}
433}
434EXPORT_SYMBOL_GPL(set_personality_ia32);
435
436unsigned long get_wchan(struct task_struct *p)
 
437{
438	unsigned long stack;
439	u64 fp, ip;
440	int count = 0;
441
442	if (!p || p == current || p->state == TASK_RUNNING)
443		return 0;
444	stack = (unsigned long)task_stack_page(p);
445	if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
446		return 0;
447	fp = *(u64 *)(p->thread.sp);
448	do {
449		if (fp < (unsigned long)stack ||
450		    fp >= (unsigned long)stack+THREAD_SIZE)
451			return 0;
452		ip = *(u64 *)(fp+8);
453		if (!in_sched_functions(ip))
454			return ip;
455		fp = *(u64 *)fp;
456	} while (count++ < 16);
457	return 0;
458}
 
459
460long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
461{
462	int ret = 0;
463	int doit = task == current;
464	int cpu;
465
466	switch (code) {
467	case ARCH_SET_GS:
468		if (addr >= TASK_SIZE_OF(task))
469			return -EPERM;
470		cpu = get_cpu();
471		/* handle small bases via the GDT because that's faster to
472		   switch. */
473		if (addr <= 0xffffffff) {
474			set_32bit_tls(task, GS_TLS, addr);
475			if (doit) {
476				load_TLS(&task->thread, cpu);
477				load_gs_index(GS_TLS_SEL);
478			}
479			task->thread.gsindex = GS_TLS_SEL;
480			task->thread.gs = 0;
 
 
 
 
 
 
 
481		} else {
482			task->thread.gsindex = 0;
483			task->thread.gs = addr;
484			if (doit) {
485				load_gs_index(0);
486				ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
487			}
488		}
489		put_cpu();
490		break;
491	case ARCH_SET_FS:
492		/* Not strictly needed for fs, but do it for symmetry
493		   with gs */
494		if (addr >= TASK_SIZE_OF(task))
 
 
 
495			return -EPERM;
496		cpu = get_cpu();
497		/* handle small bases via the GDT because that's faster to
498		   switch. */
499		if (addr <= 0xffffffff) {
500			set_32bit_tls(task, FS_TLS, addr);
501			if (doit) {
502				load_TLS(&task->thread, cpu);
503				loadsegment(fs, FS_TLS_SEL);
504			}
505			task->thread.fsindex = FS_TLS_SEL;
506			task->thread.fs = 0;
 
 
 
 
507		} else {
508			task->thread.fsindex = 0;
509			task->thread.fs = addr;
510			if (doit) {
511				/* set the selector to 0 to not confuse
512				   __switch_to */
513				loadsegment(fs, 0);
514				ret = wrmsrl_safe(MSR_FS_BASE, addr);
515			}
516		}
517		put_cpu();
518		break;
 
519	case ARCH_GET_FS: {
520		unsigned long base;
521		if (task->thread.fsindex == FS_TLS_SEL)
522			base = read_32bit_tls(task, FS_TLS);
523		else if (doit)
524			rdmsrl(MSR_FS_BASE, base);
525		else
526			base = task->thread.fs;
527		ret = put_user(base, (unsigned long __user *)addr);
528		break;
529	}
530	case ARCH_GET_GS: {
531		unsigned long base;
532		unsigned gsindex;
533		if (task->thread.gsindex == GS_TLS_SEL)
534			base = read_32bit_tls(task, GS_TLS);
535		else if (doit) {
536			savesegment(gs, gsindex);
537			if (gsindex)
538				rdmsrl(MSR_KERNEL_GS_BASE, base);
539			else
540				base = task->thread.gs;
541		} else
542			base = task->thread.gs;
543		ret = put_user(base, (unsigned long __user *)addr);
544		break;
545	}
546
 
 
 
 
 
 
 
 
 
 
 
 
 
547	default:
548		ret = -EINVAL;
549		break;
550	}
551
552	return ret;
553}
554
555long sys_arch_prctl(int code, unsigned long addr)
556{
557	return do_arch_prctl(current, code, addr);
 
 
 
 
 
 
 
 
 
 
 
 
558}
 
559
560unsigned long KSTK_ESP(struct task_struct *task)
561{
562	return (test_tsk_thread_flag(task, TIF_IA32)) ?
563			(task_pt_regs(task)->sp) : ((task)->thread.usersp);
564}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 
 43#include <asm/processor.h>
 44#include <asm/fpu/internal.h>
 
 45#include <asm/mmu_context.h>
 46#include <asm/prctl.h>
 47#include <asm/desc.h>
 48#include <asm/proto.h>
 49#include <asm/ia32.h>
 
 
 50#include <asm/debugreg.h>
 51#include <asm/switch_to.h>
 52#include <asm/xen/hypervisor.h>
 53#include <asm/vdso.h>
 54#include <asm/resctrl.h>
 55#include <asm/unistd.h>
 56#include <asm/fsgsbase.h>
 57#ifdef CONFIG_IA32_EMULATION
 58/* Not included via unistd.h */
 59#include <asm/unistd_32_ia32.h>
 60#endif
 61
 62#include "process.h"
 
 
 63
 64/* Prints also some state that isn't saved in the pt_regs */
 65void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 66		 const char *log_lvl)
 67{
 68	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 69	unsigned long d0, d1, d2, d3, d6, d7;
 70	unsigned int fsindex, gsindex;
 71	unsigned int ds, es;
 72
 73	show_iret_regs(regs, log_lvl);
 74
 75	if (regs->orig_ax != -1)
 76		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 77	else
 78		pr_cont("\n");
 79
 80	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 81	       log_lvl, regs->ax, regs->bx, regs->cx);
 82	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 83	       log_lvl, regs->dx, regs->si, regs->di);
 84	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 85	       log_lvl, regs->bp, regs->r8, regs->r9);
 86	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 87	       log_lvl, regs->r10, regs->r11, regs->r12);
 88	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 89	       log_lvl, regs->r13, regs->r14, regs->r15);
 90
 91	if (mode == SHOW_REGS_SHORT)
 92		return;
 93
 94	if (mode == SHOW_REGS_USER) {
 95		rdmsrl(MSR_FS_BASE, fs);
 96		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 97		printk("%sFS:  %016lx GS:  %016lx\n",
 98		       log_lvl, fs, shadowgs);
 99		return;
100	}
 
 
 
 
 
 
 
101
102	asm("movl %%ds,%0" : "=r" (ds));
 
103	asm("movl %%es,%0" : "=r" (es));
104	asm("movl %%fs,%0" : "=r" (fsindex));
105	asm("movl %%gs,%0" : "=r" (gsindex));
106
107	rdmsrl(MSR_FS_BASE, fs);
108	rdmsrl(MSR_GS_BASE, gs);
109	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110
 
 
 
111	cr0 = read_cr0();
112	cr2 = read_cr2();
113	cr3 = __read_cr3();
114	cr4 = __read_cr4();
115
116	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
118	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
119		log_lvl, regs->cs, ds, es, cr0);
120	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
121		log_lvl, cr2, cr3, cr4);
122
123	get_debugreg(d0, 0);
124	get_debugreg(d1, 1);
125	get_debugreg(d2, 2);
126	get_debugreg(d3, 3);
127	get_debugreg(d6, 6);
128	get_debugreg(d7, 7);
129
130	/* Only print out debug registers if they are in their non-default state. */
131	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
134		       log_lvl, d0, d1, d2);
135		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
136		       log_lvl, d3, d6, d7);
137	}
138
139	if (boot_cpu_has(X86_FEATURE_OSPKE))
140		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
141}
142
143void release_thread(struct task_struct *dead_task)
144{
145	WARN_ON(dead_task->mm);
146}
147
148enum which_selector {
149	FS,
150	GS
151};
152
153/*
154 * Out of line to be protected from kprobes and tracing. If this would be
155 * traced or probed than any access to a per CPU variable happens with
156 * the wrong GS.
157 *
158 * It is not used on Xen paravirt. When paravirt support is needed, it
159 * needs to be renamed with native_ prefix.
160 */
161static noinstr unsigned long __rdgsbase_inactive(void)
162{
163	unsigned long gsbase;
164
165	lockdep_assert_irqs_disabled();
166
167	if (!static_cpu_has(X86_FEATURE_XENPV)) {
168		native_swapgs();
169		gsbase = rdgsbase();
170		native_swapgs();
171	} else {
172		instrumentation_begin();
173		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
174		instrumentation_end();
175	}
176
177	return gsbase;
178}
179
180/*
181 * Out of line to be protected from kprobes and tracing. If this would be
182 * traced or probed than any access to a per CPU variable happens with
183 * the wrong GS.
184 *
185 * It is not used on Xen paravirt. When paravirt support is needed, it
186 * needs to be renamed with native_ prefix.
187 */
188static noinstr void __wrgsbase_inactive(unsigned long gsbase)
189{
190	lockdep_assert_irqs_disabled();
191
192	if (!static_cpu_has(X86_FEATURE_XENPV)) {
193		native_swapgs();
194		wrgsbase(gsbase);
195		native_swapgs();
196	} else {
197		instrumentation_begin();
198		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
199		instrumentation_end();
200	}
201}
202
203/*
204 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
205 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
206 * It's forcibly inlined because it'll generate better code and this function
207 * is hot.
208 */
209static __always_inline void save_base_legacy(struct task_struct *prev_p,
210					     unsigned short selector,
211					     enum which_selector which)
212{
213	if (likely(selector == 0)) {
214		/*
215		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
216		 * be the pre-existing saved base or it could be zero.  On AMD
217		 * (with X86_BUG_NULL_SEG), the segment base could be almost
218		 * anything.
219		 *
220		 * This branch is very hot (it's hit twice on almost every
221		 * context switch between 64-bit programs), and avoiding
222		 * the RDMSR helps a lot, so we just assume that whatever
223		 * value is already saved is correct.  This matches historical
224		 * Linux behavior, so it won't break existing applications.
225		 *
226		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
227		 * report that the base is zero, it needs to actually be zero:
228		 * see the corresponding logic in load_seg_legacy.
229		 */
230	} else {
231		/*
232		 * If the selector is 1, 2, or 3, then the base is zero on
233		 * !X86_BUG_NULL_SEG CPUs and could be anything on
234		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
235		 * has never attempted to preserve the base across context
236		 * switches.
237		 *
238		 * If selector > 3, then it refers to a real segment, and
239		 * saving the base isn't necessary.
240		 */
241		if (which == FS)
242			prev_p->thread.fsbase = 0;
243		else
244			prev_p->thread.gsbase = 0;
245	}
246}
247
248static __always_inline void save_fsgs(struct task_struct *task)
249{
250	savesegment(fs, task->thread.fsindex);
251	savesegment(gs, task->thread.gsindex);
252	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
253		/*
254		 * If FSGSBASE is enabled, we can't make any useful guesses
255		 * about the base, and user code expects us to save the current
256		 * value.  Fortunately, reading the base directly is efficient.
257		 */
258		task->thread.fsbase = rdfsbase();
259		task->thread.gsbase = __rdgsbase_inactive();
260	} else {
261		save_base_legacy(task, task->thread.fsindex, FS);
262		save_base_legacy(task, task->thread.gsindex, GS);
263	}
264}
265
266/*
267 * While a process is running,current->thread.fsbase and current->thread.gsbase
268 * may not match the corresponding CPU registers (see save_base_legacy()).
269 */
270void current_save_fsgs(void)
271{
272	unsigned long flags;
273
274	/* Interrupts need to be off for FSGSBASE */
275	local_irq_save(flags);
276	save_fsgs(current);
277	local_irq_restore(flags);
278}
279#if IS_ENABLED(CONFIG_KVM)
280EXPORT_SYMBOL_GPL(current_save_fsgs);
281#endif
282
283static __always_inline void loadseg(enum which_selector which,
284				    unsigned short sel)
285{
286	if (which == FS)
287		loadsegment(fs, sel);
288	else
289		load_gs_index(sel);
290}
291
292static __always_inline void load_seg_legacy(unsigned short prev_index,
293					    unsigned long prev_base,
294					    unsigned short next_index,
295					    unsigned long next_base,
296					    enum which_selector which)
297{
298	if (likely(next_index <= 3)) {
299		/*
300		 * The next task is using 64-bit TLS, is not using this
301		 * segment at all, or is having fun with arcane CPU features.
302		 */
303		if (next_base == 0) {
304			/*
305			 * Nasty case: on AMD CPUs, we need to forcibly zero
306			 * the base.
307			 */
308			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
309				loadseg(which, __USER_DS);
310				loadseg(which, next_index);
311			} else {
312				/*
313				 * We could try to exhaustively detect cases
314				 * under which we can skip the segment load,
315				 * but there's really only one case that matters
316				 * for performance: if both the previous and
317				 * next states are fully zeroed, we can skip
318				 * the load.
319				 *
320				 * (This assumes that prev_base == 0 has no
321				 * false positives.  This is the case on
322				 * Intel-style CPUs.)
323				 */
324				if (likely(prev_index | next_index | prev_base))
325					loadseg(which, next_index);
326			}
327		} else {
328			if (prev_index != next_index)
329				loadseg(which, next_index);
330			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
331			       next_base);
332		}
333	} else {
334		/*
335		 * The next task is using a real segment.  Loading the selector
336		 * is sufficient.
337		 */
338		loadseg(which, next_index);
339	}
340}
341
342static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
343					      struct thread_struct *next)
344{
345	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
346		/* Update the FS and GS selectors if they could have changed. */
347		if (unlikely(prev->fsindex || next->fsindex))
348			loadseg(FS, next->fsindex);
349		if (unlikely(prev->gsindex || next->gsindex))
350			loadseg(GS, next->gsindex);
351
352		/* Update the bases. */
353		wrfsbase(next->fsbase);
354		__wrgsbase_inactive(next->gsbase);
355	} else {
356		load_seg_legacy(prev->fsindex, prev->fsbase,
357				next->fsindex, next->fsbase, FS);
358		load_seg_legacy(prev->gsindex, prev->gsbase,
359				next->gsindex, next->gsbase, GS);
360	}
361}
362
363unsigned long x86_fsgsbase_read_task(struct task_struct *task,
364				     unsigned short selector)
365{
366	unsigned short idx = selector >> 3;
367	unsigned long base;
368
369	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
370		if (unlikely(idx >= GDT_ENTRIES))
371			return 0;
372
373		/*
374		 * There are no user segments in the GDT with nonzero bases
375		 * other than the TLS segments.
376		 */
377		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
378			return 0;
379
380		idx -= GDT_ENTRY_TLS_MIN;
381		base = get_desc_base(&task->thread.tls_array[idx]);
382	} else {
383#ifdef CONFIG_MODIFY_LDT_SYSCALL
384		struct ldt_struct *ldt;
385
386		/*
387		 * If performance here mattered, we could protect the LDT
388		 * with RCU.  This is a slow path, though, so we can just
389		 * take the mutex.
390		 */
391		mutex_lock(&task->mm->context.lock);
392		ldt = task->mm->context.ldt;
393		if (unlikely(!ldt || idx >= ldt->nr_entries))
394			base = 0;
395		else
396			base = get_desc_base(ldt->entries + idx);
397		mutex_unlock(&task->mm->context.lock);
398#else
399		base = 0;
400#endif
 
 
 
 
 
 
 
 
 
401	}
402
403	return base;
404}
405
406unsigned long x86_gsbase_read_cpu_inactive(void)
407{
408	unsigned long gsbase;
409
410	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
411		unsigned long flags;
412
413		local_irq_save(flags);
414		gsbase = __rdgsbase_inactive();
415		local_irq_restore(flags);
416	} else {
417		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
418	}
419
420	return gsbase;
421}
422
423void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
424{
425	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
426		unsigned long flags;
427
428		local_irq_save(flags);
429		__wrgsbase_inactive(gsbase);
430		local_irq_restore(flags);
431	} else {
432		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
433	}
434}
435
436unsigned long x86_fsbase_read_task(struct task_struct *task)
437{
438	unsigned long fsbase;
439
440	if (task == current)
441		fsbase = x86_fsbase_read_cpu();
442	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
443		 (task->thread.fsindex == 0))
444		fsbase = task->thread.fsbase;
445	else
446		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
447
448	return fsbase;
449}
450
451unsigned long x86_gsbase_read_task(struct task_struct *task)
452{
453	unsigned long gsbase;
454
455	if (task == current)
456		gsbase = x86_gsbase_read_cpu_inactive();
457	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
458		 (task->thread.gsindex == 0))
459		gsbase = task->thread.gsbase;
460	else
461		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
462
463	return gsbase;
464}
465
466void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
467{
468	WARN_ON_ONCE(task == current);
469
470	task->thread.fsbase = fsbase;
471}
472
473void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
474{
475	WARN_ON_ONCE(task == current);
476
477	task->thread.gsbase = gsbase;
478}
479
480static void
481start_thread_common(struct pt_regs *regs, unsigned long new_ip,
482		    unsigned long new_sp,
483		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
484{
485	WARN_ON_ONCE(regs != current_pt_regs());
486
487	if (static_cpu_has(X86_BUG_NULL_SEG)) {
488		/* Loading zero below won't clear the base. */
489		loadsegment(fs, __USER_DS);
490		load_gs_index(__USER_DS);
491	}
492
493	loadsegment(fs, 0);
494	loadsegment(es, _ds);
495	loadsegment(ds, _ds);
496	load_gs_index(0);
497
498	regs->ip		= new_ip;
499	regs->sp		= new_sp;
 
500	regs->cs		= _cs;
501	regs->ss		= _ss;
502	regs->flags		= X86_EFLAGS_IF;
503}
504
505void
506start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
507{
508	start_thread_common(regs, new_ip, new_sp,
509			    __USER_CS, __USER_DS, 0);
510}
511EXPORT_SYMBOL_GPL(start_thread);
512
513#ifdef CONFIG_COMPAT
514void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
515{
516	start_thread_common(regs, new_ip, new_sp,
517			    test_thread_flag(TIF_X32)
518			    ? __USER_CS : __USER32_CS,
519			    __USER_DS, __USER_DS);
520}
521#endif
522
523/*
524 *	switch_to(x,y) should switch tasks from x to y.
525 *
526 * This could still be optimized:
527 * - fold all the options into a flag word and test it with a single test.
528 * - could test fs/gs bitsliced
529 *
530 * Kprobes not supported here. Set the probe on schedule instead.
531 * Function graph tracer not supported too.
532 */
533__visible __notrace_funcgraph struct task_struct *
534__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
535{
536	struct thread_struct *prev = &prev_p->thread;
537	struct thread_struct *next = &next_p->thread;
538	struct fpu *prev_fpu = &prev->fpu;
539	struct fpu *next_fpu = &next->fpu;
540	int cpu = smp_processor_id();
 
 
 
 
 
541
542	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
543		     this_cpu_read(irq_count) != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544
545	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
546		switch_fpu_prepare(prev_fpu, cpu);
547
548	/* We must save %fs and %gs before load_TLS() because
549	 * %fs and %gs may be cleared by load_TLS().
550	 *
551	 * (e.g. xen_load_tls())
552	 */
553	save_fsgs(prev_p);
 
554
555	/*
556	 * Load TLS before restoring any segments so that segment loads
557	 * reference the correct GDT entries.
558	 */
559	load_TLS(next, cpu);
560
561	/*
562	 * Leave lazy mode, flushing any hypercalls made here.  This
563	 * must be done after loading TLS entries in the GDT but before
564	 * loading segments that might reference them.
 
 
565	 */
566	arch_end_context_switch(next_p);
567
568	/* Switch DS and ES.
 
569	 *
570	 * Reading them only returns the selectors, but writing them (if
571	 * nonzero) loads the full descriptor from the GDT or LDT.  The
572	 * LDT for next is loaded in switch_mm, and the GDT is loaded
573	 * above.
574	 *
575	 * We therefore need to write new values to the segment
576	 * registers on every context switch unless both the new and old
577	 * values are zero.
578	 *
579	 * Note that we don't need to do anything for CS and SS, as
580	 * those are saved and restored as part of pt_regs.
581	 */
582	savesegment(es, prev->es);
583	if (unlikely(next->es | prev->es))
584		loadsegment(es, next->es);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585
586	savesegment(ds, prev->ds);
587	if (unlikely(next->ds | prev->ds))
588		loadsegment(ds, next->ds);
589
590	x86_fsgsbase_load(prev, next);
591
592	/*
593	 * Switch the PDA and FPU contexts.
594	 */
 
 
595	this_cpu_write(current_task, next_p);
596	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
597
598	switch_fpu_finish(next_fpu);
 
 
 
 
 
 
599
600	/* Reload sp0. */
601	update_task_stack(next_p);
 
602
603	switch_to_extra(prev_p, next_p);
604
605	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
606		/*
607		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
608		 * does not update the cached descriptor.  As a result, if we
609		 * do SYSRET while SS is NULL, we'll end up in user mode with
610		 * SS apparently equal to __USER_DS but actually unusable.
611		 *
612		 * The straightforward workaround would be to fix it up just
613		 * before SYSRET, but that would slow down the system call
614		 * fast paths.  Instead, we ensure that SS is never NULL in
615		 * system call context.  We do this by replacing NULL SS
616		 * selectors at every context switch.  SYSCALL sets up a valid
617		 * SS, so the only way to get NULL is to re-enter the kernel
618		 * from CPL 3 through an interrupt.  Since that can't happen
619		 * in the same task as a running syscall, we are guaranteed to
620		 * context switch between every interrupt vector entry and a
621		 * subsequent SYSRET.
622		 *
623		 * We read SS first because SS reads are much faster than
624		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
625		 * it previously had a different non-NULL value.
626		 */
627		unsigned short ss_sel;
628		savesegment(ss, ss_sel);
629		if (ss_sel != __KERNEL_DS)
630			loadsegment(ss, __KERNEL_DS);
631	}
632
633	/* Load the Intel cache allocation PQR MSR. */
634	resctrl_sched_in();
635
636	return prev_p;
637}
638
639void set_personality_64bit(void)
640{
641	/* inherit personality from parent */
642
643	/* Make sure to be in 64bit mode */
644	clear_thread_flag(TIF_IA32);
645	clear_thread_flag(TIF_ADDR32);
646	clear_thread_flag(TIF_X32);
647	/* Pretend that this comes from a 64bit execve */
648	task_pt_regs(current)->orig_ax = __NR_execve;
649	current_thread_info()->status &= ~TS_COMPAT;
650
651	/* Ensure the corresponding mm is not marked. */
652	if (current->mm)
653		current->mm->context.ia32_compat = 0;
654
655	/* TBD: overwrites user setup. Should have two bits.
656	   But 64bit processes have always behaved this way,
657	   so it's not too bad. The main problem is just that
658	   32bit children are affected again. */
659	current->personality &= ~READ_IMPLIES_EXEC;
660}
661
662static void __set_personality_x32(void)
663{
664#ifdef CONFIG_X86_X32
665	clear_thread_flag(TIF_IA32);
666	set_thread_flag(TIF_X32);
667	if (current->mm)
668		current->mm->context.ia32_compat = TIF_X32;
669	current->personality &= ~READ_IMPLIES_EXEC;
670	/*
671	 * in_32bit_syscall() uses the presence of the x32 syscall bit
672	 * flag to determine compat status.  The x86 mmap() code relies on
673	 * the syscall bitness so set x32 syscall bit right here to make
674	 * in_32bit_syscall() work during exec().
675	 *
676	 * Pretend to come from a x32 execve.
677	 */
678	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
679	current_thread_info()->status &= ~TS_COMPAT;
680#endif
681}
682
683static void __set_personality_ia32(void)
684{
685#ifdef CONFIG_IA32_EMULATION
686	set_thread_flag(TIF_IA32);
687	clear_thread_flag(TIF_X32);
688	if (current->mm)
689		current->mm->context.ia32_compat = TIF_IA32;
690	current->personality |= force_personality32;
691	/* Prepare the first "return" to user space */
692	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
693	current_thread_info()->status |= TS_COMPAT;
694#endif
695}
696
697void set_personality_ia32(bool x32)
698{
699	/* Make sure to be in 32bit mode */
700	set_thread_flag(TIF_ADDR32);
701
702	if (x32)
703		__set_personality_x32();
704	else
705		__set_personality_ia32();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706}
707EXPORT_SYMBOL_GPL(set_personality_ia32);
708
709#ifdef CONFIG_CHECKPOINT_RESTORE
710static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
711{
712	int ret;
713
714	ret = map_vdso_once(image, addr);
715	if (ret)
716		return ret;
717
718	return (long)image->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
719}
720#endif
721
722long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
723{
724	int ret = 0;
 
 
725
726	switch (option) {
727	case ARCH_SET_GS: {
728		if (unlikely(arg2 >= TASK_SIZE_MAX))
729			return -EPERM;
730
731		preempt_disable();
732		/*
733		 * ARCH_SET_GS has always overwritten the index
734		 * and the base. Zero is the most sensible value
735		 * to put in the index, and is the only value that
736		 * makes any sense if FSGSBASE is unavailable.
737		 */
738		if (task == current) {
739			loadseg(GS, 0);
740			x86_gsbase_write_cpu_inactive(arg2);
741
742			/*
743			 * On non-FSGSBASE systems, save_base_legacy() expects
744			 * that we also fill in thread.gsbase.
745			 */
746			task->thread.gsbase = arg2;
747
748		} else {
749			task->thread.gsindex = 0;
750			x86_gsbase_write_task(task, arg2);
 
 
 
 
751		}
752		preempt_enable();
753		break;
754	}
755	case ARCH_SET_FS: {
756		/*
757		 * Not strictly needed for %fs, but do it for symmetry
758		 * with %gs
759		 */
760		if (unlikely(arg2 >= TASK_SIZE_MAX))
761			return -EPERM;
762
763		preempt_disable();
764		/*
765		 * Set the selector to 0 for the same reason
766		 * as %gs above.
767		 */
768		if (task == current) {
769			loadseg(FS, 0);
770			x86_fsbase_write_cpu(arg2);
771
772			/*
773			 * On non-FSGSBASE systems, save_base_legacy() expects
774			 * that we also fill in thread.fsbase.
775			 */
776			task->thread.fsbase = arg2;
777		} else {
778			task->thread.fsindex = 0;
779			x86_fsbase_write_task(task, arg2);
 
 
 
 
 
 
780		}
781		preempt_enable();
782		break;
783	}
784	case ARCH_GET_FS: {
785		unsigned long base = x86_fsbase_read_task(task);
786
787		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
788		break;
789	}
790	case ARCH_GET_GS: {
791		unsigned long base = x86_gsbase_read_task(task);
792
793		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
 
 
 
 
 
794		break;
795	}
796
797#ifdef CONFIG_CHECKPOINT_RESTORE
798# ifdef CONFIG_X86_X32_ABI
799	case ARCH_MAP_VDSO_X32:
800		return prctl_map_vdso(&vdso_image_x32, arg2);
801# endif
802# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
803	case ARCH_MAP_VDSO_32:
804		return prctl_map_vdso(&vdso_image_32, arg2);
805# endif
806	case ARCH_MAP_VDSO_64:
807		return prctl_map_vdso(&vdso_image_64, arg2);
808#endif
809
810	default:
811		ret = -EINVAL;
812		break;
813	}
814
815	return ret;
816}
817
818SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
819{
820	long ret;
821
822	ret = do_arch_prctl_64(current, option, arg2);
823	if (ret == -EINVAL)
824		ret = do_arch_prctl_common(current, option, arg2);
825
826	return ret;
827}
828
829#ifdef CONFIG_IA32_EMULATION
830COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
831{
832	return do_arch_prctl_common(current, option, arg2);
833}
834#endif
835
836unsigned long KSTK_ESP(struct task_struct *task)
837{
838	return task_pt_regs(task)->sp;
 
839}