Loading...
1/*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/bootmem.h>
17#include <linux/gfp.h>
18#include <linux/delay.h>
19#include <linux/init.h>
20#include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21#include <linux/initrd.h>
22#include <linux/swap.h>
23#include <linux/unistd.h>
24#include <linux/nodemask.h> /* for node_online_map */
25#include <linux/pagemap.h> /* for release_pages and page_cache_release */
26
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29#include <asm/tlb.h>
30#include <asm/pdc_chassis.h>
31#include <asm/mmzone.h>
32#include <asm/sections.h>
33
34extern int data_start;
35extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
36
37#if PT_NLEVELS == 3
38/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
40 * guarantee that global objects will be laid out in memory in the same order
41 * as the order of declaration, so put these in different sections and use
42 * the linker script to order them. */
43pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
44#endif
45
46pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
47pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
48
49#ifdef CONFIG_DISCONTIGMEM
50struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
51signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
52#endif
53
54static struct resource data_resource = {
55 .name = "Kernel data",
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
57};
58
59static struct resource code_resource = {
60 .name = "Kernel code",
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
62};
63
64static struct resource pdcdata_resource = {
65 .name = "PDC data (Page Zero)",
66 .start = 0,
67 .end = 0x9ff,
68 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
69};
70
71static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
72
73/* The following array is initialized from the firmware specific
74 * information retrieved in kernel/inventory.c.
75 */
76
77physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
78int npmem_ranges __read_mostly;
79
80#ifdef CONFIG_64BIT
81#define MAX_MEM (~0UL)
82#else /* !CONFIG_64BIT */
83#define MAX_MEM (3584U*1024U*1024U)
84#endif /* !CONFIG_64BIT */
85
86static unsigned long mem_limit __read_mostly = MAX_MEM;
87
88static void __init mem_limit_func(void)
89{
90 char *cp, *end;
91 unsigned long limit;
92
93 /* We need this before __setup() functions are called */
94
95 limit = MAX_MEM;
96 for (cp = boot_command_line; *cp; ) {
97 if (memcmp(cp, "mem=", 4) == 0) {
98 cp += 4;
99 limit = memparse(cp, &end);
100 if (end != cp)
101 break;
102 cp = end;
103 } else {
104 while (*cp != ' ' && *cp)
105 ++cp;
106 while (*cp == ' ')
107 ++cp;
108 }
109 }
110
111 if (limit < mem_limit)
112 mem_limit = limit;
113}
114
115#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
116
117static void __init setup_bootmem(void)
118{
119 unsigned long bootmap_size;
120 unsigned long mem_max;
121 unsigned long bootmap_pages;
122 unsigned long bootmap_start_pfn;
123 unsigned long bootmap_pfn;
124#ifndef CONFIG_DISCONTIGMEM
125 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
126 int npmem_holes;
127#endif
128 int i, sysram_resource_count;
129
130 disable_sr_hashing(); /* Turn off space register hashing */
131
132 /*
133 * Sort the ranges. Since the number of ranges is typically
134 * small, and performance is not an issue here, just do
135 * a simple insertion sort.
136 */
137
138 for (i = 1; i < npmem_ranges; i++) {
139 int j;
140
141 for (j = i; j > 0; j--) {
142 unsigned long tmp;
143
144 if (pmem_ranges[j-1].start_pfn <
145 pmem_ranges[j].start_pfn) {
146
147 break;
148 }
149 tmp = pmem_ranges[j-1].start_pfn;
150 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
151 pmem_ranges[j].start_pfn = tmp;
152 tmp = pmem_ranges[j-1].pages;
153 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
154 pmem_ranges[j].pages = tmp;
155 }
156 }
157
158#ifndef CONFIG_DISCONTIGMEM
159 /*
160 * Throw out ranges that are too far apart (controlled by
161 * MAX_GAP).
162 */
163
164 for (i = 1; i < npmem_ranges; i++) {
165 if (pmem_ranges[i].start_pfn -
166 (pmem_ranges[i-1].start_pfn +
167 pmem_ranges[i-1].pages) > MAX_GAP) {
168 npmem_ranges = i;
169 printk("Large gap in memory detected (%ld pages). "
170 "Consider turning on CONFIG_DISCONTIGMEM\n",
171 pmem_ranges[i].start_pfn -
172 (pmem_ranges[i-1].start_pfn +
173 pmem_ranges[i-1].pages));
174 break;
175 }
176 }
177#endif
178
179 if (npmem_ranges > 1) {
180
181 /* Print the memory ranges */
182
183 printk(KERN_INFO "Memory Ranges:\n");
184
185 for (i = 0; i < npmem_ranges; i++) {
186 unsigned long start;
187 unsigned long size;
188
189 size = (pmem_ranges[i].pages << PAGE_SHIFT);
190 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
191 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
192 i,start, start + (size - 1), size >> 20);
193 }
194 }
195
196 sysram_resource_count = npmem_ranges;
197 for (i = 0; i < sysram_resource_count; i++) {
198 struct resource *res = &sysram_resources[i];
199 res->name = "System RAM";
200 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
201 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
202 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
203 request_resource(&iomem_resource, res);
204 }
205
206 /*
207 * For 32 bit kernels we limit the amount of memory we can
208 * support, in order to preserve enough kernel address space
209 * for other purposes. For 64 bit kernels we don't normally
210 * limit the memory, but this mechanism can be used to
211 * artificially limit the amount of memory (and it is written
212 * to work with multiple memory ranges).
213 */
214
215 mem_limit_func(); /* check for "mem=" argument */
216
217 mem_max = 0;
218 for (i = 0; i < npmem_ranges; i++) {
219 unsigned long rsize;
220
221 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222 if ((mem_max + rsize) > mem_limit) {
223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224 if (mem_max == mem_limit)
225 npmem_ranges = i;
226 else {
227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
228 - (mem_max >> PAGE_SHIFT);
229 npmem_ranges = i + 1;
230 mem_max = mem_limit;
231 }
232 break;
233 }
234 mem_max += rsize;
235 }
236
237 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
238
239#ifndef CONFIG_DISCONTIGMEM
240 /* Merge the ranges, keeping track of the holes */
241
242 {
243 unsigned long end_pfn;
244 unsigned long hole_pages;
245
246 npmem_holes = 0;
247 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
248 for (i = 1; i < npmem_ranges; i++) {
249
250 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
251 if (hole_pages) {
252 pmem_holes[npmem_holes].start_pfn = end_pfn;
253 pmem_holes[npmem_holes++].pages = hole_pages;
254 end_pfn += hole_pages;
255 }
256 end_pfn += pmem_ranges[i].pages;
257 }
258
259 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
260 npmem_ranges = 1;
261 }
262#endif
263
264 bootmap_pages = 0;
265 for (i = 0; i < npmem_ranges; i++)
266 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
267
268 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
269
270#ifdef CONFIG_DISCONTIGMEM
271 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
272 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
273 NODE_DATA(i)->bdata = &bootmem_node_data[i];
274 }
275 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
276
277 for (i = 0; i < npmem_ranges; i++) {
278 node_set_state(i, N_NORMAL_MEMORY);
279 node_set_online(i);
280 }
281#endif
282
283 /*
284 * Initialize and free the full range of memory in each range.
285 * Note that the only writing these routines do are to the bootmap,
286 * and we've made sure to locate the bootmap properly so that they
287 * won't be writing over anything important.
288 */
289
290 bootmap_pfn = bootmap_start_pfn;
291 max_pfn = 0;
292 for (i = 0; i < npmem_ranges; i++) {
293 unsigned long start_pfn;
294 unsigned long npages;
295
296 start_pfn = pmem_ranges[i].start_pfn;
297 npages = pmem_ranges[i].pages;
298
299 bootmap_size = init_bootmem_node(NODE_DATA(i),
300 bootmap_pfn,
301 start_pfn,
302 (start_pfn + npages) );
303 free_bootmem_node(NODE_DATA(i),
304 (start_pfn << PAGE_SHIFT),
305 (npages << PAGE_SHIFT) );
306 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 if ((start_pfn + npages) > max_pfn)
308 max_pfn = start_pfn + npages;
309 }
310
311 /* IOMMU is always used to access "high mem" on those boxes
312 * that can support enough mem that a PCI device couldn't
313 * directly DMA to any physical addresses.
314 * ISA DMA support will need to revisit this.
315 */
316 max_low_pfn = max_pfn;
317
318 /* bootmap sizing messed up? */
319 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
320
321 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
322
323#define PDC_CONSOLE_IO_IODC_SIZE 32768
324
325 reserve_bootmem_node(NODE_DATA(0), 0UL,
326 (unsigned long)(PAGE0->mem_free +
327 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
328 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
329 (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
330 BOOTMEM_DEFAULT);
331 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
332 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
333 BOOTMEM_DEFAULT);
334
335#ifndef CONFIG_DISCONTIGMEM
336
337 /* reserve the holes */
338
339 for (i = 0; i < npmem_holes; i++) {
340 reserve_bootmem_node(NODE_DATA(0),
341 (pmem_holes[i].start_pfn << PAGE_SHIFT),
342 (pmem_holes[i].pages << PAGE_SHIFT),
343 BOOTMEM_DEFAULT);
344 }
345#endif
346
347#ifdef CONFIG_BLK_DEV_INITRD
348 if (initrd_start) {
349 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
350 if (__pa(initrd_start) < mem_max) {
351 unsigned long initrd_reserve;
352
353 if (__pa(initrd_end) > mem_max) {
354 initrd_reserve = mem_max - __pa(initrd_start);
355 } else {
356 initrd_reserve = initrd_end - initrd_start;
357 }
358 initrd_below_start_ok = 1;
359 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
360
361 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
362 initrd_reserve, BOOTMEM_DEFAULT);
363 }
364 }
365#endif
366
367 data_resource.start = virt_to_phys(&data_start);
368 data_resource.end = virt_to_phys(_end) - 1;
369 code_resource.start = virt_to_phys(_text);
370 code_resource.end = virt_to_phys(&data_start)-1;
371
372 /* We don't know which region the kernel will be in, so try
373 * all of them.
374 */
375 for (i = 0; i < sysram_resource_count; i++) {
376 struct resource *res = &sysram_resources[i];
377 request_resource(res, &code_resource);
378 request_resource(res, &data_resource);
379 }
380 request_resource(&sysram_resources[0], &pdcdata_resource);
381}
382
383static int __init parisc_text_address(unsigned long vaddr)
384{
385 static unsigned long head_ptr __initdata;
386
387 if (!head_ptr)
388 head_ptr = PAGE_MASK & (unsigned long)
389 dereference_function_descriptor(&parisc_kernel_start);
390
391 return core_kernel_text(vaddr) || vaddr == head_ptr;
392}
393
394static void __init map_pages(unsigned long start_vaddr,
395 unsigned long start_paddr, unsigned long size,
396 pgprot_t pgprot, int force)
397{
398 pgd_t *pg_dir;
399 pmd_t *pmd;
400 pte_t *pg_table;
401 unsigned long end_paddr;
402 unsigned long start_pmd;
403 unsigned long start_pte;
404 unsigned long tmp1;
405 unsigned long tmp2;
406 unsigned long address;
407 unsigned long vaddr;
408 unsigned long ro_start;
409 unsigned long ro_end;
410 unsigned long fv_addr;
411 unsigned long gw_addr;
412 extern const unsigned long fault_vector_20;
413 extern void * const linux_gateway_page;
414
415 ro_start = __pa((unsigned long)_text);
416 ro_end = __pa((unsigned long)&data_start);
417 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
418 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
419
420 end_paddr = start_paddr + size;
421
422 pg_dir = pgd_offset_k(start_vaddr);
423
424#if PTRS_PER_PMD == 1
425 start_pmd = 0;
426#else
427 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
428#endif
429 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
430
431 address = start_paddr;
432 vaddr = start_vaddr;
433 while (address < end_paddr) {
434#if PTRS_PER_PMD == 1
435 pmd = (pmd_t *)__pa(pg_dir);
436#else
437 pmd = (pmd_t *)pgd_address(*pg_dir);
438
439 /*
440 * pmd is physical at this point
441 */
442
443 if (!pmd) {
444 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
445 pmd = (pmd_t *) __pa(pmd);
446 }
447
448 pgd_populate(NULL, pg_dir, __va(pmd));
449#endif
450 pg_dir++;
451
452 /* now change pmd to kernel virtual addresses */
453
454 pmd = (pmd_t *)__va(pmd) + start_pmd;
455 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
456
457 /*
458 * pg_table is physical at this point
459 */
460
461 pg_table = (pte_t *)pmd_address(*pmd);
462 if (!pg_table) {
463 pg_table = (pte_t *)
464 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
465 pg_table = (pte_t *) __pa(pg_table);
466 }
467
468 pmd_populate_kernel(NULL, pmd, __va(pg_table));
469
470 /* now change pg_table to kernel virtual addresses */
471
472 pg_table = (pte_t *) __va(pg_table) + start_pte;
473 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
474 pte_t pte;
475
476 /*
477 * Map the fault vector writable so we can
478 * write the HPMC checksum.
479 */
480 if (force)
481 pte = __mk_pte(address, pgprot);
482 else if (parisc_text_address(vaddr) &&
483 address != fv_addr)
484 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485 else
486#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
487 if (address >= ro_start && address < ro_end
488 && address != fv_addr
489 && address != gw_addr)
490 pte = __mk_pte(address, PAGE_KERNEL_RO);
491 else
492#endif
493 pte = __mk_pte(address, pgprot);
494
495 if (address >= end_paddr) {
496 if (force)
497 break;
498 else
499 pte_val(pte) = 0;
500 }
501
502 set_pte(pg_table, pte);
503
504 address += PAGE_SIZE;
505 vaddr += PAGE_SIZE;
506 }
507 start_pte = 0;
508
509 if (address >= end_paddr)
510 break;
511 }
512 start_pmd = 0;
513 }
514}
515
516void free_initmem(void)
517{
518 unsigned long init_begin = (unsigned long)__init_begin;
519 unsigned long init_end = (unsigned long)__init_end;
520
521 /* The init text pages are marked R-X. We have to
522 * flush the icache and mark them RW-
523 *
524 * This is tricky, because map_pages is in the init section.
525 * Do a dummy remap of the data section first (the data
526 * section is already PAGE_KERNEL) to pull in the TLB entries
527 * for map_kernel */
528 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
529 PAGE_KERNEL_RWX, 1);
530 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
531 * map_pages */
532 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
533 PAGE_KERNEL, 1);
534
535 /* force the kernel to see the new TLB entries */
536 __flush_tlb_range(0, init_begin, init_end);
537 /* Attempt to catch anyone trying to execute code here
538 * by filling the page with BRK insns.
539 */
540 memset((void *)init_begin, 0x00, init_end - init_begin);
541 /* finally dump all the instructions which were cached, since the
542 * pages are no-longer executable */
543 flush_icache_range(init_begin, init_end);
544
545 free_initmem_default(-1);
546
547 /* set up a new led state on systems shipped LED State panel */
548 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
549}
550
551
552#ifdef CONFIG_DEBUG_RODATA
553void mark_rodata_ro(void)
554{
555 /* rodata memory was already mapped with KERNEL_RO access rights by
556 pagetable_init() and map_pages(). No need to do additional stuff here */
557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558 (unsigned long)(__end_rodata - __start_rodata) >> 10);
559}
560#endif
561
562
563/*
564 * Just an arbitrary offset to serve as a "hole" between mapping areas
565 * (between top of physical memory and a potential pcxl dma mapping
566 * area, and below the vmalloc mapping area).
567 *
568 * The current 32K value just means that there will be a 32K "hole"
569 * between mapping areas. That means that any out-of-bounds memory
570 * accesses will hopefully be caught. The vmalloc() routines leaves
571 * a hole of 4kB between each vmalloced area for the same reason.
572 */
573
574 /* Leave room for gateway page expansion */
575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576#error KERNEL_MAP_START is in gateway reserved region
577#endif
578#define MAP_START (KERNEL_MAP_START)
579
580#define VM_MAP_OFFSET (32*1024)
581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582 & ~(VM_MAP_OFFSET-1)))
583
584void *parisc_vmalloc_start __read_mostly;
585EXPORT_SYMBOL(parisc_vmalloc_start);
586
587#ifdef CONFIG_PA11
588unsigned long pcxl_dma_start __read_mostly;
589#endif
590
591void __init mem_init(void)
592{
593 /* Do sanity checks on page table constants */
594 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
595 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
596 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
597 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
598 > BITS_PER_LONG);
599
600 high_memory = __va((max_pfn << PAGE_SHIFT));
601 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
602 free_all_bootmem();
603
604#ifdef CONFIG_PA11
605 if (hppa_dma_ops == &pcxl_dma_ops) {
606 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
607 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
608 + PCXL_DMA_MAP_SIZE);
609 } else {
610 pcxl_dma_start = 0;
611 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
612 }
613#else
614 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
615#endif
616
617 mem_init_print_info(NULL);
618#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
619 printk("virtual kernel memory layout:\n"
620 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
621 " memory : 0x%p - 0x%p (%4ld MB)\n"
622 " .init : 0x%p - 0x%p (%4ld kB)\n"
623 " .data : 0x%p - 0x%p (%4ld kB)\n"
624 " .text : 0x%p - 0x%p (%4ld kB)\n",
625
626 (void*)VMALLOC_START, (void*)VMALLOC_END,
627 (VMALLOC_END - VMALLOC_START) >> 20,
628
629 __va(0), high_memory,
630 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
631
632 __init_begin, __init_end,
633 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
634
635 _etext, _edata,
636 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
637
638 _text, _etext,
639 ((unsigned long)_etext - (unsigned long)_text) >> 10);
640#endif
641}
642
643unsigned long *empty_zero_page __read_mostly;
644EXPORT_SYMBOL(empty_zero_page);
645
646void show_mem(unsigned int filter)
647{
648 int total = 0,reserved = 0;
649 pg_data_t *pgdat;
650
651 printk(KERN_INFO "Mem-info:\n");
652 show_free_areas(filter);
653
654 for_each_online_pgdat(pgdat) {
655 unsigned long flags;
656 int zoneid;
657
658 pgdat_resize_lock(pgdat, &flags);
659 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
660 struct zone *zone = &pgdat->node_zones[zoneid];
661 if (!populated_zone(zone))
662 continue;
663
664 total += zone->present_pages;
665 reserved = zone->present_pages - zone->managed_pages;
666 }
667 pgdat_resize_unlock(pgdat, &flags);
668 }
669
670 printk(KERN_INFO "%d pages of RAM\n", total);
671 printk(KERN_INFO "%d reserved pages\n", reserved);
672
673#ifdef CONFIG_DISCONTIGMEM
674 {
675 struct zonelist *zl;
676 int i, j;
677
678 for (i = 0; i < npmem_ranges; i++) {
679 zl = node_zonelist(i, 0);
680 for (j = 0; j < MAX_NR_ZONES; j++) {
681 struct zoneref *z;
682 struct zone *zone;
683
684 printk("Zone list for zone %d on node %d: ", j, i);
685 for_each_zone_zonelist(zone, z, zl, j)
686 printk("[%d/%s] ", zone_to_nid(zone),
687 zone->name);
688 printk("\n");
689 }
690 }
691 }
692#endif
693}
694
695/*
696 * pagetable_init() sets up the page tables
697 *
698 * Note that gateway_init() places the Linux gateway page at page 0.
699 * Since gateway pages cannot be dereferenced this has the desirable
700 * side effect of trapping those pesky NULL-reference errors in the
701 * kernel.
702 */
703static void __init pagetable_init(void)
704{
705 int range;
706
707 /* Map each physical memory range to its kernel vaddr */
708
709 for (range = 0; range < npmem_ranges; range++) {
710 unsigned long start_paddr;
711 unsigned long end_paddr;
712 unsigned long size;
713
714 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
715 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
716 size = pmem_ranges[range].pages << PAGE_SHIFT;
717
718 map_pages((unsigned long)__va(start_paddr), start_paddr,
719 size, PAGE_KERNEL, 0);
720 }
721
722#ifdef CONFIG_BLK_DEV_INITRD
723 if (initrd_end && initrd_end > mem_limit) {
724 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
725 map_pages(initrd_start, __pa(initrd_start),
726 initrd_end - initrd_start, PAGE_KERNEL, 0);
727 }
728#endif
729
730 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
731 memset(empty_zero_page, 0, PAGE_SIZE);
732}
733
734static void __init gateway_init(void)
735{
736 unsigned long linux_gateway_page_addr;
737 /* FIXME: This is 'const' in order to trick the compiler
738 into not treating it as DP-relative data. */
739 extern void * const linux_gateway_page;
740
741 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
742
743 /*
744 * Setup Linux Gateway page.
745 *
746 * The Linux gateway page will reside in kernel space (on virtual
747 * page 0), so it doesn't need to be aliased into user space.
748 */
749
750 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
751 PAGE_SIZE, PAGE_GATEWAY, 1);
752}
753
754#ifdef CONFIG_HPUX
755void
756map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
757{
758 pgd_t *pg_dir;
759 pmd_t *pmd;
760 pte_t *pg_table;
761 unsigned long start_pmd;
762 unsigned long start_pte;
763 unsigned long address;
764 unsigned long hpux_gw_page_addr;
765 /* FIXME: This is 'const' in order to trick the compiler
766 into not treating it as DP-relative data. */
767 extern void * const hpux_gateway_page;
768
769 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
770
771 /*
772 * Setup HP-UX Gateway page.
773 *
774 * The HP-UX gateway page resides in the user address space,
775 * so it needs to be aliased into each process.
776 */
777
778 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
779
780#if PTRS_PER_PMD == 1
781 start_pmd = 0;
782#else
783 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
784#endif
785 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
786
787 address = __pa(&hpux_gateway_page);
788#if PTRS_PER_PMD == 1
789 pmd = (pmd_t *)__pa(pg_dir);
790#else
791 pmd = (pmd_t *) pgd_address(*pg_dir);
792
793 /*
794 * pmd is physical at this point
795 */
796
797 if (!pmd) {
798 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
799 pmd = (pmd_t *) __pa(pmd);
800 }
801
802 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
803#endif
804 /* now change pmd to kernel virtual addresses */
805
806 pmd = (pmd_t *)__va(pmd) + start_pmd;
807
808 /*
809 * pg_table is physical at this point
810 */
811
812 pg_table = (pte_t *) pmd_address(*pmd);
813 if (!pg_table)
814 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
815
816 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
817
818 /* now change pg_table to kernel virtual addresses */
819
820 pg_table = (pte_t *) __va(pg_table) + start_pte;
821 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
822}
823EXPORT_SYMBOL(map_hpux_gateway_page);
824#endif
825
826void __init paging_init(void)
827{
828 int i;
829
830 setup_bootmem();
831 pagetable_init();
832 gateway_init();
833 flush_cache_all_local(); /* start with known state */
834 flush_tlb_all_local(NULL);
835
836 for (i = 0; i < npmem_ranges; i++) {
837 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
838
839 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
840
841#ifdef CONFIG_DISCONTIGMEM
842 /* Need to initialize the pfnnid_map before we can initialize
843 the zone */
844 {
845 int j;
846 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
847 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
848 j++) {
849 pfnnid_map[j] = i;
850 }
851 }
852#endif
853
854 free_area_init_node(i, zones_size,
855 pmem_ranges[i].start_pfn, NULL);
856 }
857}
858
859#ifdef CONFIG_PA20
860
861/*
862 * Currently, all PA20 chips have 18 bit protection IDs, which is the
863 * limiting factor (space ids are 32 bits).
864 */
865
866#define NR_SPACE_IDS 262144
867
868#else
869
870/*
871 * Currently we have a one-to-one relationship between space IDs and
872 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
873 * support 15 bit protection IDs, so that is the limiting factor.
874 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
875 * probably not worth the effort for a special case here.
876 */
877
878#define NR_SPACE_IDS 32768
879
880#endif /* !CONFIG_PA20 */
881
882#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
883#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
884
885static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
886static unsigned long dirty_space_id[SID_ARRAY_SIZE];
887static unsigned long space_id_index;
888static unsigned long free_space_ids = NR_SPACE_IDS - 1;
889static unsigned long dirty_space_ids = 0;
890
891static DEFINE_SPINLOCK(sid_lock);
892
893unsigned long alloc_sid(void)
894{
895 unsigned long index;
896
897 spin_lock(&sid_lock);
898
899 if (free_space_ids == 0) {
900 if (dirty_space_ids != 0) {
901 spin_unlock(&sid_lock);
902 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
903 spin_lock(&sid_lock);
904 }
905 BUG_ON(free_space_ids == 0);
906 }
907
908 free_space_ids--;
909
910 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
911 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
912 space_id_index = index;
913
914 spin_unlock(&sid_lock);
915
916 return index << SPACEID_SHIFT;
917}
918
919void free_sid(unsigned long spaceid)
920{
921 unsigned long index = spaceid >> SPACEID_SHIFT;
922 unsigned long *dirty_space_offset;
923
924 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
925 index &= (BITS_PER_LONG - 1);
926
927 spin_lock(&sid_lock);
928
929 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
930
931 *dirty_space_offset |= (1L << index);
932 dirty_space_ids++;
933
934 spin_unlock(&sid_lock);
935}
936
937
938#ifdef CONFIG_SMP
939static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
940{
941 int i;
942
943 /* NOTE: sid_lock must be held upon entry */
944
945 *ndirtyptr = dirty_space_ids;
946 if (dirty_space_ids != 0) {
947 for (i = 0; i < SID_ARRAY_SIZE; i++) {
948 dirty_array[i] = dirty_space_id[i];
949 dirty_space_id[i] = 0;
950 }
951 dirty_space_ids = 0;
952 }
953
954 return;
955}
956
957static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
958{
959 int i;
960
961 /* NOTE: sid_lock must be held upon entry */
962
963 if (ndirty != 0) {
964 for (i = 0; i < SID_ARRAY_SIZE; i++) {
965 space_id[i] ^= dirty_array[i];
966 }
967
968 free_space_ids += ndirty;
969 space_id_index = 0;
970 }
971}
972
973#else /* CONFIG_SMP */
974
975static void recycle_sids(void)
976{
977 int i;
978
979 /* NOTE: sid_lock must be held upon entry */
980
981 if (dirty_space_ids != 0) {
982 for (i = 0; i < SID_ARRAY_SIZE; i++) {
983 space_id[i] ^= dirty_space_id[i];
984 dirty_space_id[i] = 0;
985 }
986
987 free_space_ids += dirty_space_ids;
988 dirty_space_ids = 0;
989 space_id_index = 0;
990 }
991}
992#endif
993
994/*
995 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
996 * purged, we can safely reuse the space ids that were released but
997 * not flushed from the tlb.
998 */
999
1000#ifdef CONFIG_SMP
1001
1002static unsigned long recycle_ndirty;
1003static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1004static unsigned int recycle_inuse;
1005
1006void flush_tlb_all(void)
1007{
1008 int do_recycle;
1009
1010 __inc_irq_stat(irq_tlb_count);
1011 do_recycle = 0;
1012 spin_lock(&sid_lock);
1013 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1014 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1015 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1016 recycle_inuse++;
1017 do_recycle++;
1018 }
1019 spin_unlock(&sid_lock);
1020 on_each_cpu(flush_tlb_all_local, NULL, 1);
1021 if (do_recycle) {
1022 spin_lock(&sid_lock);
1023 recycle_sids(recycle_ndirty,recycle_dirty_array);
1024 recycle_inuse = 0;
1025 spin_unlock(&sid_lock);
1026 }
1027}
1028#else
1029void flush_tlb_all(void)
1030{
1031 __inc_irq_stat(irq_tlb_count);
1032 spin_lock(&sid_lock);
1033 flush_tlb_all_local(NULL);
1034 recycle_sids();
1035 spin_unlock(&sid_lock);
1036}
1037#endif
1038
1039#ifdef CONFIG_BLK_DEV_INITRD
1040void free_initrd_mem(unsigned long start, unsigned long end)
1041{
1042 free_reserved_area((void *)start, (void *)end, -1, "initrd");
1043}
1044#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/arch/parisc/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
11 *
12 */
13
14
15#include <linux/module.h>
16#include <linux/mm.h>
17#include <linux/memblock.h>
18#include <linux/gfp.h>
19#include <linux/delay.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/swap.h>
23#include <linux/unistd.h>
24#include <linux/nodemask.h> /* for node_online_map */
25#include <linux/pagemap.h> /* for release_pages */
26#include <linux/compat.h>
27
28#include <asm/pgalloc.h>
29#include <asm/tlb.h>
30#include <asm/pdc_chassis.h>
31#include <asm/mmzone.h>
32#include <asm/sections.h>
33#include <asm/msgbuf.h>
34#include <asm/sparsemem.h>
35
36extern int data_start;
37extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
38
39#if CONFIG_PGTABLE_LEVELS == 3
40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42 * guarantee that global objects will be laid out in memory in the same order
43 * as the order of declaration, so put these in different sections and use
44 * the linker script to order them. */
45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
46#endif
47
48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
50
51static struct resource data_resource = {
52 .name = "Kernel data",
53 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
54};
55
56static struct resource code_resource = {
57 .name = "Kernel code",
58 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
59};
60
61static struct resource pdcdata_resource = {
62 .name = "PDC data (Page Zero)",
63 .start = 0,
64 .end = 0x9ff,
65 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
66};
67
68static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
69
70/* The following array is initialized from the firmware specific
71 * information retrieved in kernel/inventory.c.
72 */
73
74physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
75int npmem_ranges __initdata;
76
77#ifdef CONFIG_64BIT
78#define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
79#else /* !CONFIG_64BIT */
80#define MAX_MEM (3584U*1024U*1024U)
81#endif /* !CONFIG_64BIT */
82
83static unsigned long mem_limit __read_mostly = MAX_MEM;
84
85static void __init mem_limit_func(void)
86{
87 char *cp, *end;
88 unsigned long limit;
89
90 /* We need this before __setup() functions are called */
91
92 limit = MAX_MEM;
93 for (cp = boot_command_line; *cp; ) {
94 if (memcmp(cp, "mem=", 4) == 0) {
95 cp += 4;
96 limit = memparse(cp, &end);
97 if (end != cp)
98 break;
99 cp = end;
100 } else {
101 while (*cp != ' ' && *cp)
102 ++cp;
103 while (*cp == ' ')
104 ++cp;
105 }
106 }
107
108 if (limit < mem_limit)
109 mem_limit = limit;
110}
111
112#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
113
114static void __init setup_bootmem(void)
115{
116 unsigned long mem_max;
117#ifndef CONFIG_SPARSEMEM
118 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
119 int npmem_holes;
120#endif
121 int i, sysram_resource_count;
122
123 disable_sr_hashing(); /* Turn off space register hashing */
124
125 /*
126 * Sort the ranges. Since the number of ranges is typically
127 * small, and performance is not an issue here, just do
128 * a simple insertion sort.
129 */
130
131 for (i = 1; i < npmem_ranges; i++) {
132 int j;
133
134 for (j = i; j > 0; j--) {
135 physmem_range_t tmp;
136
137 if (pmem_ranges[j-1].start_pfn <
138 pmem_ranges[j].start_pfn) {
139
140 break;
141 }
142 tmp = pmem_ranges[j-1];
143 pmem_ranges[j-1] = pmem_ranges[j];
144 pmem_ranges[j] = tmp;
145 }
146 }
147
148#ifndef CONFIG_SPARSEMEM
149 /*
150 * Throw out ranges that are too far apart (controlled by
151 * MAX_GAP).
152 */
153
154 for (i = 1; i < npmem_ranges; i++) {
155 if (pmem_ranges[i].start_pfn -
156 (pmem_ranges[i-1].start_pfn +
157 pmem_ranges[i-1].pages) > MAX_GAP) {
158 npmem_ranges = i;
159 printk("Large gap in memory detected (%ld pages). "
160 "Consider turning on CONFIG_SPARSEMEM\n",
161 pmem_ranges[i].start_pfn -
162 (pmem_ranges[i-1].start_pfn +
163 pmem_ranges[i-1].pages));
164 break;
165 }
166 }
167#endif
168
169 /* Print the memory ranges */
170 pr_info("Memory Ranges:\n");
171
172 for (i = 0; i < npmem_ranges; i++) {
173 struct resource *res = &sysram_resources[i];
174 unsigned long start;
175 unsigned long size;
176
177 size = (pmem_ranges[i].pages << PAGE_SHIFT);
178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 i, start, start + (size - 1), size >> 20);
181
182 /* request memory resource */
183 res->name = "System RAM";
184 res->start = start;
185 res->end = start + size - 1;
186 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
187 request_resource(&iomem_resource, res);
188 }
189
190 sysram_resource_count = npmem_ranges;
191
192 /*
193 * For 32 bit kernels we limit the amount of memory we can
194 * support, in order to preserve enough kernel address space
195 * for other purposes. For 64 bit kernels we don't normally
196 * limit the memory, but this mechanism can be used to
197 * artificially limit the amount of memory (and it is written
198 * to work with multiple memory ranges).
199 */
200
201 mem_limit_func(); /* check for "mem=" argument */
202
203 mem_max = 0;
204 for (i = 0; i < npmem_ranges; i++) {
205 unsigned long rsize;
206
207 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
208 if ((mem_max + rsize) > mem_limit) {
209 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
210 if (mem_max == mem_limit)
211 npmem_ranges = i;
212 else {
213 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
214 - (mem_max >> PAGE_SHIFT);
215 npmem_ranges = i + 1;
216 mem_max = mem_limit;
217 }
218 break;
219 }
220 mem_max += rsize;
221 }
222
223 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
224
225#ifndef CONFIG_SPARSEMEM
226 /* Merge the ranges, keeping track of the holes */
227 {
228 unsigned long end_pfn;
229 unsigned long hole_pages;
230
231 npmem_holes = 0;
232 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
233 for (i = 1; i < npmem_ranges; i++) {
234
235 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
236 if (hole_pages) {
237 pmem_holes[npmem_holes].start_pfn = end_pfn;
238 pmem_holes[npmem_holes++].pages = hole_pages;
239 end_pfn += hole_pages;
240 }
241 end_pfn += pmem_ranges[i].pages;
242 }
243
244 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
245 npmem_ranges = 1;
246 }
247#endif
248
249 /*
250 * Initialize and free the full range of memory in each range.
251 */
252
253 max_pfn = 0;
254 for (i = 0; i < npmem_ranges; i++) {
255 unsigned long start_pfn;
256 unsigned long npages;
257 unsigned long start;
258 unsigned long size;
259
260 start_pfn = pmem_ranges[i].start_pfn;
261 npages = pmem_ranges[i].pages;
262
263 start = start_pfn << PAGE_SHIFT;
264 size = npages << PAGE_SHIFT;
265
266 /* add system RAM memblock */
267 memblock_add(start, size);
268
269 if ((start_pfn + npages) > max_pfn)
270 max_pfn = start_pfn + npages;
271 }
272
273 /*
274 * We can't use memblock top-down allocations because we only
275 * created the initial mapping up to KERNEL_INITIAL_SIZE in
276 * the assembly bootup code.
277 */
278 memblock_set_bottom_up(true);
279
280 /* IOMMU is always used to access "high mem" on those boxes
281 * that can support enough mem that a PCI device couldn't
282 * directly DMA to any physical addresses.
283 * ISA DMA support will need to revisit this.
284 */
285 max_low_pfn = max_pfn;
286
287 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
288
289#define PDC_CONSOLE_IO_IODC_SIZE 32768
290
291 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
292 PDC_CONSOLE_IO_IODC_SIZE));
293 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
294 (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
295
296#ifndef CONFIG_SPARSEMEM
297
298 /* reserve the holes */
299
300 for (i = 0; i < npmem_holes; i++) {
301 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
302 (pmem_holes[i].pages << PAGE_SHIFT));
303 }
304#endif
305
306#ifdef CONFIG_BLK_DEV_INITRD
307 if (initrd_start) {
308 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
309 if (__pa(initrd_start) < mem_max) {
310 unsigned long initrd_reserve;
311
312 if (__pa(initrd_end) > mem_max) {
313 initrd_reserve = mem_max - __pa(initrd_start);
314 } else {
315 initrd_reserve = initrd_end - initrd_start;
316 }
317 initrd_below_start_ok = 1;
318 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
319
320 memblock_reserve(__pa(initrd_start), initrd_reserve);
321 }
322 }
323#endif
324
325 data_resource.start = virt_to_phys(&data_start);
326 data_resource.end = virt_to_phys(_end) - 1;
327 code_resource.start = virt_to_phys(_text);
328 code_resource.end = virt_to_phys(&data_start)-1;
329
330 /* We don't know which region the kernel will be in, so try
331 * all of them.
332 */
333 for (i = 0; i < sysram_resource_count; i++) {
334 struct resource *res = &sysram_resources[i];
335 request_resource(res, &code_resource);
336 request_resource(res, &data_resource);
337 }
338 request_resource(&sysram_resources[0], &pdcdata_resource);
339
340 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
341 pdc_pdt_init();
342
343 memblock_allow_resize();
344 memblock_dump_all();
345}
346
347static bool kernel_set_to_readonly;
348
349static void __init map_pages(unsigned long start_vaddr,
350 unsigned long start_paddr, unsigned long size,
351 pgprot_t pgprot, int force)
352{
353 pmd_t *pmd;
354 pte_t *pg_table;
355 unsigned long end_paddr;
356 unsigned long start_pmd;
357 unsigned long start_pte;
358 unsigned long tmp1;
359 unsigned long tmp2;
360 unsigned long address;
361 unsigned long vaddr;
362 unsigned long ro_start;
363 unsigned long ro_end;
364 unsigned long kernel_start, kernel_end;
365
366 ro_start = __pa((unsigned long)_text);
367 ro_end = __pa((unsigned long)&data_start);
368 kernel_start = __pa((unsigned long)&__init_begin);
369 kernel_end = __pa((unsigned long)&_end);
370
371 end_paddr = start_paddr + size;
372
373 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
374 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
375 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
376
377 address = start_paddr;
378 vaddr = start_vaddr;
379 while (address < end_paddr) {
380 pgd_t *pgd = pgd_offset_k(vaddr);
381 p4d_t *p4d = p4d_offset(pgd, vaddr);
382 pud_t *pud = pud_offset(p4d, vaddr);
383
384#if CONFIG_PGTABLE_LEVELS == 3
385 if (pud_none(*pud)) {
386 pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
387 PAGE_SIZE << PMD_ORDER);
388 if (!pmd)
389 panic("pmd allocation failed.\n");
390 pud_populate(NULL, pud, pmd);
391 }
392#endif
393
394 pmd = pmd_offset(pud, vaddr);
395 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
396 if (pmd_none(*pmd)) {
397 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
398 if (!pg_table)
399 panic("page table allocation failed\n");
400 pmd_populate_kernel(NULL, pmd, pg_table);
401 }
402
403 pg_table = pte_offset_kernel(pmd, vaddr);
404 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
405 pte_t pte;
406 pgprot_t prot;
407 bool huge = false;
408
409 if (force) {
410 prot = pgprot;
411 } else if (address < kernel_start || address >= kernel_end) {
412 /* outside kernel memory */
413 prot = PAGE_KERNEL;
414 } else if (!kernel_set_to_readonly) {
415 /* still initializing, allow writing to RO memory */
416 prot = PAGE_KERNEL_RWX;
417 huge = true;
418 } else if (address >= ro_start) {
419 /* Code (ro) and Data areas */
420 prot = (address < ro_end) ?
421 PAGE_KERNEL_EXEC : PAGE_KERNEL;
422 huge = true;
423 } else {
424 prot = PAGE_KERNEL;
425 }
426
427 pte = __mk_pte(address, prot);
428 if (huge)
429 pte = pte_mkhuge(pte);
430
431 if (address >= end_paddr)
432 break;
433
434 set_pte(pg_table, pte);
435
436 address += PAGE_SIZE;
437 vaddr += PAGE_SIZE;
438 }
439 start_pte = 0;
440
441 if (address >= end_paddr)
442 break;
443 }
444 start_pmd = 0;
445 }
446}
447
448void __init set_kernel_text_rw(int enable_read_write)
449{
450 unsigned long start = (unsigned long) __init_begin;
451 unsigned long end = (unsigned long) &data_start;
452
453 map_pages(start, __pa(start), end-start,
454 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
455
456 /* force the kernel to see the new page table entries */
457 flush_cache_all();
458 flush_tlb_all();
459}
460
461void __ref free_initmem(void)
462{
463 unsigned long init_begin = (unsigned long)__init_begin;
464 unsigned long init_end = (unsigned long)__init_end;
465 unsigned long kernel_end = (unsigned long)&_end;
466
467 /* Remap kernel text and data, but do not touch init section yet. */
468 kernel_set_to_readonly = true;
469 map_pages(init_end, __pa(init_end), kernel_end - init_end,
470 PAGE_KERNEL, 0);
471
472 /* The init text pages are marked R-X. We have to
473 * flush the icache and mark them RW-
474 *
475 * This is tricky, because map_pages is in the init section.
476 * Do a dummy remap of the data section first (the data
477 * section is already PAGE_KERNEL) to pull in the TLB entries
478 * for map_kernel */
479 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
480 PAGE_KERNEL_RWX, 1);
481 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
482 * map_pages */
483 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
484 PAGE_KERNEL, 1);
485
486 /* force the kernel to see the new TLB entries */
487 __flush_tlb_range(0, init_begin, kernel_end);
488
489 /* finally dump all the instructions which were cached, since the
490 * pages are no-longer executable */
491 flush_icache_range(init_begin, init_end);
492
493 free_initmem_default(POISON_FREE_INITMEM);
494
495 /* set up a new led state on systems shipped LED State panel */
496 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
497}
498
499
500#ifdef CONFIG_STRICT_KERNEL_RWX
501void mark_rodata_ro(void)
502{
503 /* rodata memory was already mapped with KERNEL_RO access rights by
504 pagetable_init() and map_pages(). No need to do additional stuff here */
505 unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
506
507 pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
508}
509#endif
510
511
512/*
513 * Just an arbitrary offset to serve as a "hole" between mapping areas
514 * (between top of physical memory and a potential pcxl dma mapping
515 * area, and below the vmalloc mapping area).
516 *
517 * The current 32K value just means that there will be a 32K "hole"
518 * between mapping areas. That means that any out-of-bounds memory
519 * accesses will hopefully be caught. The vmalloc() routines leaves
520 * a hole of 4kB between each vmalloced area for the same reason.
521 */
522
523 /* Leave room for gateway page expansion */
524#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
525#error KERNEL_MAP_START is in gateway reserved region
526#endif
527#define MAP_START (KERNEL_MAP_START)
528
529#define VM_MAP_OFFSET (32*1024)
530#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
531 & ~(VM_MAP_OFFSET-1)))
532
533void *parisc_vmalloc_start __ro_after_init;
534EXPORT_SYMBOL(parisc_vmalloc_start);
535
536#ifdef CONFIG_PA11
537unsigned long pcxl_dma_start __ro_after_init;
538#endif
539
540void __init mem_init(void)
541{
542 /* Do sanity checks on IPC (compat) structures */
543 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
544#ifndef CONFIG_64BIT
545 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
546 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
547 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
548#endif
549#ifdef CONFIG_COMPAT
550 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
551 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
552 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
553 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
554#endif
555
556 /* Do sanity checks on page table constants */
557 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
558 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
559 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
560 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
561 > BITS_PER_LONG);
562
563 high_memory = __va((max_pfn << PAGE_SHIFT));
564 set_max_mapnr(max_low_pfn);
565 memblock_free_all();
566
567#ifdef CONFIG_PA11
568 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
569 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
570 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
571 + PCXL_DMA_MAP_SIZE);
572 } else
573#endif
574 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575
576 mem_init_print_info(NULL);
577
578#if 0
579 /*
580 * Do not expose the virtual kernel memory layout to userspace.
581 * But keep code for debugging purposes.
582 */
583 printk("virtual kernel memory layout:\n"
584 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
585 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
586 " memory : 0x%px - 0x%px (%4ld MB)\n"
587 " .init : 0x%px - 0x%px (%4ld kB)\n"
588 " .data : 0x%px - 0x%px (%4ld kB)\n"
589 " .text : 0x%px - 0x%px (%4ld kB)\n",
590
591 (void*)VMALLOC_START, (void*)VMALLOC_END,
592 (VMALLOC_END - VMALLOC_START) >> 20,
593
594 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
595 (unsigned long)(FIXMAP_SIZE / 1024),
596
597 __va(0), high_memory,
598 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
599
600 __init_begin, __init_end,
601 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
602
603 _etext, _edata,
604 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
605
606 _text, _etext,
607 ((unsigned long)_etext - (unsigned long)_text) >> 10);
608#endif
609}
610
611unsigned long *empty_zero_page __ro_after_init;
612EXPORT_SYMBOL(empty_zero_page);
613
614/*
615 * pagetable_init() sets up the page tables
616 *
617 * Note that gateway_init() places the Linux gateway page at page 0.
618 * Since gateway pages cannot be dereferenced this has the desirable
619 * side effect of trapping those pesky NULL-reference errors in the
620 * kernel.
621 */
622static void __init pagetable_init(void)
623{
624 int range;
625
626 /* Map each physical memory range to its kernel vaddr */
627
628 for (range = 0; range < npmem_ranges; range++) {
629 unsigned long start_paddr;
630 unsigned long end_paddr;
631 unsigned long size;
632
633 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
634 size = pmem_ranges[range].pages << PAGE_SHIFT;
635 end_paddr = start_paddr + size;
636
637 map_pages((unsigned long)__va(start_paddr), start_paddr,
638 size, PAGE_KERNEL, 0);
639 }
640
641#ifdef CONFIG_BLK_DEV_INITRD
642 if (initrd_end && initrd_end > mem_limit) {
643 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
644 map_pages(initrd_start, __pa(initrd_start),
645 initrd_end - initrd_start, PAGE_KERNEL, 0);
646 }
647#endif
648
649 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
650 if (!empty_zero_page)
651 panic("zero page allocation failed.\n");
652
653}
654
655static void __init gateway_init(void)
656{
657 unsigned long linux_gateway_page_addr;
658 /* FIXME: This is 'const' in order to trick the compiler
659 into not treating it as DP-relative data. */
660 extern void * const linux_gateway_page;
661
662 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
663
664 /*
665 * Setup Linux Gateway page.
666 *
667 * The Linux gateway page will reside in kernel space (on virtual
668 * page 0), so it doesn't need to be aliased into user space.
669 */
670
671 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
672 PAGE_SIZE, PAGE_GATEWAY, 1);
673}
674
675static void __init parisc_bootmem_free(void)
676{
677 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
678
679 max_zone_pfn[0] = memblock_end_of_DRAM();
680
681 free_area_init(max_zone_pfn);
682}
683
684void __init paging_init(void)
685{
686 setup_bootmem();
687 pagetable_init();
688 gateway_init();
689 flush_cache_all_local(); /* start with known state */
690 flush_tlb_all_local(NULL);
691
692 sparse_init();
693 parisc_bootmem_free();
694}
695
696#ifdef CONFIG_PA20
697
698/*
699 * Currently, all PA20 chips have 18 bit protection IDs, which is the
700 * limiting factor (space ids are 32 bits).
701 */
702
703#define NR_SPACE_IDS 262144
704
705#else
706
707/*
708 * Currently we have a one-to-one relationship between space IDs and
709 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
710 * support 15 bit protection IDs, so that is the limiting factor.
711 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
712 * probably not worth the effort for a special case here.
713 */
714
715#define NR_SPACE_IDS 32768
716
717#endif /* !CONFIG_PA20 */
718
719#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
720#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
721
722static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
723static unsigned long dirty_space_id[SID_ARRAY_SIZE];
724static unsigned long space_id_index;
725static unsigned long free_space_ids = NR_SPACE_IDS - 1;
726static unsigned long dirty_space_ids = 0;
727
728static DEFINE_SPINLOCK(sid_lock);
729
730unsigned long alloc_sid(void)
731{
732 unsigned long index;
733
734 spin_lock(&sid_lock);
735
736 if (free_space_ids == 0) {
737 if (dirty_space_ids != 0) {
738 spin_unlock(&sid_lock);
739 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
740 spin_lock(&sid_lock);
741 }
742 BUG_ON(free_space_ids == 0);
743 }
744
745 free_space_ids--;
746
747 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
748 space_id[BIT_WORD(index)] |= BIT_MASK(index);
749 space_id_index = index;
750
751 spin_unlock(&sid_lock);
752
753 return index << SPACEID_SHIFT;
754}
755
756void free_sid(unsigned long spaceid)
757{
758 unsigned long index = spaceid >> SPACEID_SHIFT;
759 unsigned long *dirty_space_offset, mask;
760
761 dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
762 mask = BIT_MASK(index);
763
764 spin_lock(&sid_lock);
765
766 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
767
768 *dirty_space_offset |= mask;
769 dirty_space_ids++;
770
771 spin_unlock(&sid_lock);
772}
773
774
775#ifdef CONFIG_SMP
776static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
777{
778 int i;
779
780 /* NOTE: sid_lock must be held upon entry */
781
782 *ndirtyptr = dirty_space_ids;
783 if (dirty_space_ids != 0) {
784 for (i = 0; i < SID_ARRAY_SIZE; i++) {
785 dirty_array[i] = dirty_space_id[i];
786 dirty_space_id[i] = 0;
787 }
788 dirty_space_ids = 0;
789 }
790
791 return;
792}
793
794static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
795{
796 int i;
797
798 /* NOTE: sid_lock must be held upon entry */
799
800 if (ndirty != 0) {
801 for (i = 0; i < SID_ARRAY_SIZE; i++) {
802 space_id[i] ^= dirty_array[i];
803 }
804
805 free_space_ids += ndirty;
806 space_id_index = 0;
807 }
808}
809
810#else /* CONFIG_SMP */
811
812static void recycle_sids(void)
813{
814 int i;
815
816 /* NOTE: sid_lock must be held upon entry */
817
818 if (dirty_space_ids != 0) {
819 for (i = 0; i < SID_ARRAY_SIZE; i++) {
820 space_id[i] ^= dirty_space_id[i];
821 dirty_space_id[i] = 0;
822 }
823
824 free_space_ids += dirty_space_ids;
825 dirty_space_ids = 0;
826 space_id_index = 0;
827 }
828}
829#endif
830
831/*
832 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
833 * purged, we can safely reuse the space ids that were released but
834 * not flushed from the tlb.
835 */
836
837#ifdef CONFIG_SMP
838
839static unsigned long recycle_ndirty;
840static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
841static unsigned int recycle_inuse;
842
843void flush_tlb_all(void)
844{
845 int do_recycle;
846
847 __inc_irq_stat(irq_tlb_count);
848 do_recycle = 0;
849 spin_lock(&sid_lock);
850 if (dirty_space_ids > RECYCLE_THRESHOLD) {
851 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
852 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
853 recycle_inuse++;
854 do_recycle++;
855 }
856 spin_unlock(&sid_lock);
857 on_each_cpu(flush_tlb_all_local, NULL, 1);
858 if (do_recycle) {
859 spin_lock(&sid_lock);
860 recycle_sids(recycle_ndirty,recycle_dirty_array);
861 recycle_inuse = 0;
862 spin_unlock(&sid_lock);
863 }
864}
865#else
866void flush_tlb_all(void)
867{
868 __inc_irq_stat(irq_tlb_count);
869 spin_lock(&sid_lock);
870 flush_tlb_all_local(NULL);
871 recycle_sids();
872 spin_unlock(&sid_lock);
873}
874#endif