Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.15
 
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995	Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
 
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
 
 
  33
  34extern int  data_start;
  35extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
  36
  37#if PT_NLEVELS == 3
  38/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  40 * guarantee that global objects will be laid out in memory in the same order
  41 * as the order of declaration, so put these in different sections and use
  42 * the linker script to order them. */
  43pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  44#endif
  45
  46pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  47pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  48
  49#ifdef CONFIG_DISCONTIGMEM
  50struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  51signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  52#endif
  53
  54static struct resource data_resource = {
  55	.name	= "Kernel data",
  56	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  57};
  58
  59static struct resource code_resource = {
  60	.name	= "Kernel code",
  61	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  62};
  63
  64static struct resource pdcdata_resource = {
  65	.name	= "PDC data (Page Zero)",
  66	.start	= 0,
  67	.end	= 0x9ff,
  68	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  69};
  70
  71static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  72
  73/* The following array is initialized from the firmware specific
  74 * information retrieved in kernel/inventory.c.
  75 */
  76
  77physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  78int npmem_ranges __read_mostly;
  79
  80#ifdef CONFIG_64BIT
  81#define MAX_MEM         (~0UL)
  82#else /* !CONFIG_64BIT */
  83#define MAX_MEM         (3584U*1024U*1024U)
  84#endif /* !CONFIG_64BIT */
  85
  86static unsigned long mem_limit __read_mostly = MAX_MEM;
  87
  88static void __init mem_limit_func(void)
  89{
  90	char *cp, *end;
  91	unsigned long limit;
  92
  93	/* We need this before __setup() functions are called */
  94
  95	limit = MAX_MEM;
  96	for (cp = boot_command_line; *cp; ) {
  97		if (memcmp(cp, "mem=", 4) == 0) {
  98			cp += 4;
  99			limit = memparse(cp, &end);
 100			if (end != cp)
 101				break;
 102			cp = end;
 103		} else {
 104			while (*cp != ' ' && *cp)
 105				++cp;
 106			while (*cp == ' ')
 107				++cp;
 108		}
 109	}
 110
 111	if (limit < mem_limit)
 112		mem_limit = limit;
 113}
 114
 115#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 116
 117static void __init setup_bootmem(void)
 118{
 119	unsigned long bootmap_size;
 120	unsigned long mem_max;
 121	unsigned long bootmap_pages;
 122	unsigned long bootmap_start_pfn;
 123	unsigned long bootmap_pfn;
 124#ifndef CONFIG_DISCONTIGMEM
 125	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 126	int npmem_holes;
 127#endif
 128	int i, sysram_resource_count;
 129
 130	disable_sr_hashing(); /* Turn off space register hashing */
 131
 132	/*
 133	 * Sort the ranges. Since the number of ranges is typically
 134	 * small, and performance is not an issue here, just do
 135	 * a simple insertion sort.
 136	 */
 137
 138	for (i = 1; i < npmem_ranges; i++) {
 139		int j;
 140
 141		for (j = i; j > 0; j--) {
 142			unsigned long tmp;
 143
 144			if (pmem_ranges[j-1].start_pfn <
 145			    pmem_ranges[j].start_pfn) {
 146
 147				break;
 148			}
 149			tmp = pmem_ranges[j-1].start_pfn;
 150			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 151			pmem_ranges[j].start_pfn = tmp;
 152			tmp = pmem_ranges[j-1].pages;
 153			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 154			pmem_ranges[j].pages = tmp;
 155		}
 156	}
 157
 158#ifndef CONFIG_DISCONTIGMEM
 159	/*
 160	 * Throw out ranges that are too far apart (controlled by
 161	 * MAX_GAP).
 162	 */
 163
 164	for (i = 1; i < npmem_ranges; i++) {
 165		if (pmem_ranges[i].start_pfn -
 166			(pmem_ranges[i-1].start_pfn +
 167			 pmem_ranges[i-1].pages) > MAX_GAP) {
 168			npmem_ranges = i;
 169			printk("Large gap in memory detected (%ld pages). "
 170			       "Consider turning on CONFIG_DISCONTIGMEM\n",
 171			       pmem_ranges[i].start_pfn -
 172			       (pmem_ranges[i-1].start_pfn +
 173			        pmem_ranges[i-1].pages));
 174			break;
 175		}
 176	}
 177#endif
 178
 179	if (npmem_ranges > 1) {
 180
 181		/* Print the memory ranges */
 182
 183		printk(KERN_INFO "Memory Ranges:\n");
 
 
 
 184
 185		for (i = 0; i < npmem_ranges; i++) {
 186			unsigned long start;
 187			unsigned long size;
 
 188
 189			size = (pmem_ranges[i].pages << PAGE_SHIFT);
 190			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 191			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 192				i,start, start + (size - 1), size >> 20);
 193		}
 194	}
 195
 196	sysram_resource_count = npmem_ranges;
 197	for (i = 0; i < sysram_resource_count; i++) {
 198		struct resource *res = &sysram_resources[i];
 199		res->name = "System RAM";
 200		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 201		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 202		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 203		request_resource(&iomem_resource, res);
 204	}
 205
 
 
 206	/*
 207	 * For 32 bit kernels we limit the amount of memory we can
 208	 * support, in order to preserve enough kernel address space
 209	 * for other purposes. For 64 bit kernels we don't normally
 210	 * limit the memory, but this mechanism can be used to
 211	 * artificially limit the amount of memory (and it is written
 212	 * to work with multiple memory ranges).
 213	 */
 214
 215	mem_limit_func();       /* check for "mem=" argument */
 216
 217	mem_max = 0;
 218	for (i = 0; i < npmem_ranges; i++) {
 219		unsigned long rsize;
 220
 221		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222		if ((mem_max + rsize) > mem_limit) {
 223			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224			if (mem_max == mem_limit)
 225				npmem_ranges = i;
 226			else {
 227				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228						       - (mem_max >> PAGE_SHIFT);
 229				npmem_ranges = i + 1;
 230				mem_max = mem_limit;
 231			}
 232			break;
 233		}
 234		mem_max += rsize;
 235	}
 236
 237	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 238
 239#ifndef CONFIG_DISCONTIGMEM
 240	/* Merge the ranges, keeping track of the holes */
 241
 242	{
 243		unsigned long end_pfn;
 244		unsigned long hole_pages;
 245
 246		npmem_holes = 0;
 247		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 248		for (i = 1; i < npmem_ranges; i++) {
 249
 250			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 251			if (hole_pages) {
 252				pmem_holes[npmem_holes].start_pfn = end_pfn;
 253				pmem_holes[npmem_holes++].pages = hole_pages;
 254				end_pfn += hole_pages;
 255			}
 256			end_pfn += pmem_ranges[i].pages;
 257		}
 258
 259		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 260		npmem_ranges = 1;
 261	}
 262#endif
 263
 264	bootmap_pages = 0;
 265	for (i = 0; i < npmem_ranges; i++)
 266		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 267
 268	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 269
 270#ifdef CONFIG_DISCONTIGMEM
 271	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 272		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 273		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 274	}
 275	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 276
 277	for (i = 0; i < npmem_ranges; i++) {
 278		node_set_state(i, N_NORMAL_MEMORY);
 279		node_set_online(i);
 280	}
 281#endif
 282
 283	/*
 284	 * Initialize and free the full range of memory in each range.
 285	 * Note that the only writing these routines do are to the bootmap,
 286	 * and we've made sure to locate the bootmap properly so that they
 287	 * won't be writing over anything important.
 288	 */
 289
 290	bootmap_pfn = bootmap_start_pfn;
 291	max_pfn = 0;
 292	for (i = 0; i < npmem_ranges; i++) {
 293		unsigned long start_pfn;
 294		unsigned long npages;
 
 
 295
 296		start_pfn = pmem_ranges[i].start_pfn;
 297		npages = pmem_ranges[i].pages;
 298
 299		bootmap_size = init_bootmem_node(NODE_DATA(i),
 300						bootmap_pfn,
 301						start_pfn,
 302						(start_pfn + npages) );
 303		free_bootmem_node(NODE_DATA(i),
 304				  (start_pfn << PAGE_SHIFT),
 305				  (npages << PAGE_SHIFT) );
 306		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 307		if ((start_pfn + npages) > max_pfn)
 308			max_pfn = start_pfn + npages;
 309	}
 310
 
 
 
 
 
 
 
 311	/* IOMMU is always used to access "high mem" on those boxes
 312	 * that can support enough mem that a PCI device couldn't
 313	 * directly DMA to any physical addresses.
 314	 * ISA DMA support will need to revisit this.
 315	 */
 316	max_low_pfn = max_pfn;
 317
 318	/* bootmap sizing messed up? */
 319	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 320
 321	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 322
 323#define PDC_CONSOLE_IO_IODC_SIZE 32768
 324
 325	reserve_bootmem_node(NODE_DATA(0), 0UL,
 326			(unsigned long)(PAGE0->mem_free +
 327				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 328	reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
 329			(unsigned long)(_end - KERNEL_BINARY_TEXT_START),
 330			BOOTMEM_DEFAULT);
 331	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 332			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 333			BOOTMEM_DEFAULT);
 334
 335#ifndef CONFIG_DISCONTIGMEM
 336
 337	/* reserve the holes */
 338
 339	for (i = 0; i < npmem_holes; i++) {
 340		reserve_bootmem_node(NODE_DATA(0),
 341				(pmem_holes[i].start_pfn << PAGE_SHIFT),
 342				(pmem_holes[i].pages << PAGE_SHIFT),
 343				BOOTMEM_DEFAULT);
 344	}
 345#endif
 346
 347#ifdef CONFIG_BLK_DEV_INITRD
 348	if (initrd_start) {
 349		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 350		if (__pa(initrd_start) < mem_max) {
 351			unsigned long initrd_reserve;
 352
 353			if (__pa(initrd_end) > mem_max) {
 354				initrd_reserve = mem_max - __pa(initrd_start);
 355			} else {
 356				initrd_reserve = initrd_end - initrd_start;
 357			}
 358			initrd_below_start_ok = 1;
 359			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 360
 361			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 362					initrd_reserve, BOOTMEM_DEFAULT);
 363		}
 364	}
 365#endif
 366
 367	data_resource.start =  virt_to_phys(&data_start);
 368	data_resource.end = virt_to_phys(_end) - 1;
 369	code_resource.start = virt_to_phys(_text);
 370	code_resource.end = virt_to_phys(&data_start)-1;
 371
 372	/* We don't know which region the kernel will be in, so try
 373	 * all of them.
 374	 */
 375	for (i = 0; i < sysram_resource_count; i++) {
 376		struct resource *res = &sysram_resources[i];
 377		request_resource(res, &code_resource);
 378		request_resource(res, &data_resource);
 379	}
 380	request_resource(&sysram_resources[0], &pdcdata_resource);
 381}
 382
 383static int __init parisc_text_address(unsigned long vaddr)
 384{
 385	static unsigned long head_ptr __initdata;
 386
 387	if (!head_ptr)
 388		head_ptr = PAGE_MASK & (unsigned long)
 389			dereference_function_descriptor(&parisc_kernel_start);
 390
 391	return core_kernel_text(vaddr) || vaddr == head_ptr;
 
 392}
 393
 
 
 394static void __init map_pages(unsigned long start_vaddr,
 395			     unsigned long start_paddr, unsigned long size,
 396			     pgprot_t pgprot, int force)
 397{
 398	pgd_t *pg_dir;
 399	pmd_t *pmd;
 400	pte_t *pg_table;
 401	unsigned long end_paddr;
 402	unsigned long start_pmd;
 403	unsigned long start_pte;
 404	unsigned long tmp1;
 405	unsigned long tmp2;
 406	unsigned long address;
 407	unsigned long vaddr;
 408	unsigned long ro_start;
 409	unsigned long ro_end;
 410	unsigned long fv_addr;
 411	unsigned long gw_addr;
 412	extern const unsigned long fault_vector_20;
 413	extern void * const linux_gateway_page;
 414
 415	ro_start = __pa((unsigned long)_text);
 416	ro_end   = __pa((unsigned long)&data_start);
 417	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 418	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 419
 420	end_paddr = start_paddr + size;
 421
 422	pg_dir = pgd_offset_k(start_vaddr);
 423
 424#if PTRS_PER_PMD == 1
 425	start_pmd = 0;
 426#else
 427	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 428#endif
 429	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 430
 431	address = start_paddr;
 432	vaddr = start_vaddr;
 433	while (address < end_paddr) {
 434#if PTRS_PER_PMD == 1
 435		pmd = (pmd_t *)__pa(pg_dir);
 436#else
 437		pmd = (pmd_t *)pgd_address(*pg_dir);
 438
 439		/*
 440		 * pmd is physical at this point
 441		 */
 442
 443		if (!pmd) {
 444			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 445			pmd = (pmd_t *) __pa(pmd);
 446		}
 447
 448		pgd_populate(NULL, pg_dir, __va(pmd));
 449#endif
 450		pg_dir++;
 451
 452		/* now change pmd to kernel virtual addresses */
 453
 454		pmd = (pmd_t *)__va(pmd) + start_pmd;
 455		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 456
 457			/*
 458			 * pg_table is physical at this point
 459			 */
 460
 461			pg_table = (pte_t *)pmd_address(*pmd);
 462			if (!pg_table) {
 463				pg_table = (pte_t *)
 464					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 465				pg_table = (pte_t *) __pa(pg_table);
 466			}
 467
 468			pmd_populate_kernel(NULL, pmd, __va(pg_table));
 469
 470			/* now change pg_table to kernel virtual addresses */
 471
 472			pg_table = (pte_t *) __va(pg_table) + start_pte;
 473			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 474				pte_t pte;
 
 
 475
 476				/*
 477				 * Map the fault vector writable so we can
 478				 * write the HPMC checksum.
 479				 */
 480				if (force)
 481					pte =  __mk_pte(address, pgprot);
 482				else if (parisc_text_address(vaddr) &&
 483					 address != fv_addr)
 484					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 485				else
 486#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 487				if (address >= ro_start && address < ro_end
 488							&& address != fv_addr
 489							&& address != gw_addr)
 490					pte = __mk_pte(address, PAGE_KERNEL_RO);
 491				else
 492#endif
 493					pte = __mk_pte(address, pgprot);
 494
 495				if (address >= end_paddr) {
 496					if (force)
 497						break;
 498					else
 499						pte_val(pte) = 0;
 500				}
 501
 
 
 
 
 
 
 
 502				set_pte(pg_table, pte);
 503
 504				address += PAGE_SIZE;
 505				vaddr += PAGE_SIZE;
 506			}
 507			start_pte = 0;
 508
 509			if (address >= end_paddr)
 510			    break;
 511		}
 512		start_pmd = 0;
 513	}
 514}
 515
 516void free_initmem(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 517{
 518	unsigned long init_begin = (unsigned long)__init_begin;
 519	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 
 520
 521	/* The init text pages are marked R-X.  We have to
 522	 * flush the icache and mark them RW-
 523	 *
 524	 * This is tricky, because map_pages is in the init section.
 525	 * Do a dummy remap of the data section first (the data
 526	 * section is already PAGE_KERNEL) to pull in the TLB entries
 527	 * for map_kernel */
 528	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 529		  PAGE_KERNEL_RWX, 1);
 530	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 531	 * map_pages */
 532	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 533		  PAGE_KERNEL, 1);
 534
 535	/* force the kernel to see the new TLB entries */
 536	__flush_tlb_range(0, init_begin, init_end);
 537	/* Attempt to catch anyone trying to execute code here
 538	 * by filling the page with BRK insns.
 539	 */
 540	memset((void *)init_begin, 0x00, init_end - init_begin);
 541	/* finally dump all the instructions which were cached, since the
 542	 * pages are no-longer executable */
 543	flush_icache_range(init_begin, init_end);
 544	
 545	free_initmem_default(-1);
 546
 547	/* set up a new led state on systems shipped LED State panel */
 548	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555	/* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582				     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593	/* Do sanity checks on page table constants */
 594	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 595	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 596	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 597	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 598			> BITS_PER_LONG);
 599
 600	high_memory = __va((max_pfn << PAGE_SHIFT));
 601	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 602	free_all_bootmem();
 603
 604#ifdef CONFIG_PA11
 605	if (hppa_dma_ops == &pcxl_dma_ops) {
 606		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 607		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 608						+ PCXL_DMA_MAP_SIZE);
 609	} else {
 610		pcxl_dma_start = 0;
 611		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 612	}
 613#else
 614	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 615#endif
 
 616
 617	mem_init_print_info(NULL);
 618#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 
 
 
 
 
 619	printk("virtual kernel memory layout:\n"
 620	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 621	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 622	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 623	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 624	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
 625
 626	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 627	       (VMALLOC_END - VMALLOC_START) >> 20,
 628
 
 
 
 629	       __va(0), high_memory,
 630	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 631
 632	       __init_begin, __init_end,
 633	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 634
 635	       _etext, _edata,
 636	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 637
 638	       _text, _etext,
 639	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 640#endif
 641}
 642
 643unsigned long *empty_zero_page __read_mostly;
 644EXPORT_SYMBOL(empty_zero_page);
 645
 646void show_mem(unsigned int filter)
 647{
 648	int total = 0,reserved = 0;
 649	pg_data_t *pgdat;
 650
 651	printk(KERN_INFO "Mem-info:\n");
 652	show_free_areas(filter);
 653
 654	for_each_online_pgdat(pgdat) {
 655		unsigned long flags;
 656		int zoneid;
 657
 658		pgdat_resize_lock(pgdat, &flags);
 659		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 660			struct zone *zone = &pgdat->node_zones[zoneid];
 661			if (!populated_zone(zone))
 662				continue;
 663
 664			total += zone->present_pages;
 665			reserved = zone->present_pages - zone->managed_pages;
 666		}
 667		pgdat_resize_unlock(pgdat, &flags);
 668	}
 669
 670	printk(KERN_INFO "%d pages of RAM\n", total);
 671	printk(KERN_INFO "%d reserved pages\n", reserved);
 672
 673#ifdef CONFIG_DISCONTIGMEM
 674	{
 675		struct zonelist *zl;
 676		int i, j;
 677
 678		for (i = 0; i < npmem_ranges; i++) {
 679			zl = node_zonelist(i, 0);
 680			for (j = 0; j < MAX_NR_ZONES; j++) {
 681				struct zoneref *z;
 682				struct zone *zone;
 683
 684				printk("Zone list for zone %d on node %d: ", j, i);
 685				for_each_zone_zonelist(zone, z, zl, j)
 686					printk("[%d/%s] ", zone_to_nid(zone),
 687								zone->name);
 688				printk("\n");
 689			}
 690		}
 691	}
 692#endif
 693}
 694
 695/*
 696 * pagetable_init() sets up the page tables
 697 *
 698 * Note that gateway_init() places the Linux gateway page at page 0.
 699 * Since gateway pages cannot be dereferenced this has the desirable
 700 * side effect of trapping those pesky NULL-reference errors in the
 701 * kernel.
 702 */
 703static void __init pagetable_init(void)
 704{
 705	int range;
 706
 707	/* Map each physical memory range to its kernel vaddr */
 708
 709	for (range = 0; range < npmem_ranges; range++) {
 710		unsigned long start_paddr;
 711		unsigned long end_paddr;
 712		unsigned long size;
 713
 714		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 715		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 716		size = pmem_ranges[range].pages << PAGE_SHIFT;
 
 717
 718		map_pages((unsigned long)__va(start_paddr), start_paddr,
 719			  size, PAGE_KERNEL, 0);
 720	}
 721
 722#ifdef CONFIG_BLK_DEV_INITRD
 723	if (initrd_end && initrd_end > mem_limit) {
 724		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 725		map_pages(initrd_start, __pa(initrd_start),
 726			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 727	}
 728#endif
 729
 730	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 731	memset(empty_zero_page, 0, PAGE_SIZE);
 
 
 732}
 733
 734static void __init gateway_init(void)
 735{
 736	unsigned long linux_gateway_page_addr;
 737	/* FIXME: This is 'const' in order to trick the compiler
 738	   into not treating it as DP-relative data. */
 739	extern void * const linux_gateway_page;
 740
 741	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 742
 743	/*
 744	 * Setup Linux Gateway page.
 745	 *
 746	 * The Linux gateway page will reside in kernel space (on virtual
 747	 * page 0), so it doesn't need to be aliased into user space.
 748	 */
 749
 750	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 751		  PAGE_SIZE, PAGE_GATEWAY, 1);
 752}
 753
 754#ifdef CONFIG_HPUX
 755void
 756map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 757{
 758	pgd_t *pg_dir;
 759	pmd_t *pmd;
 760	pte_t *pg_table;
 761	unsigned long start_pmd;
 762	unsigned long start_pte;
 763	unsigned long address;
 764	unsigned long hpux_gw_page_addr;
 765	/* FIXME: This is 'const' in order to trick the compiler
 766	   into not treating it as DP-relative data. */
 767	extern void * const hpux_gateway_page;
 768
 769	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 770
 771	/*
 772	 * Setup HP-UX Gateway page.
 773	 *
 774	 * The HP-UX gateway page resides in the user address space,
 775	 * so it needs to be aliased into each process.
 776	 */
 777
 778	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 779
 780#if PTRS_PER_PMD == 1
 781	start_pmd = 0;
 782#else
 783	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 784#endif
 785	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 786
 787	address = __pa(&hpux_gateway_page);
 788#if PTRS_PER_PMD == 1
 789	pmd = (pmd_t *)__pa(pg_dir);
 790#else
 791	pmd = (pmd_t *) pgd_address(*pg_dir);
 792
 793	/*
 794	 * pmd is physical at this point
 795	 */
 796
 797	if (!pmd) {
 798		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 799		pmd = (pmd_t *) __pa(pmd);
 800	}
 801
 802	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 803#endif
 804	/* now change pmd to kernel virtual addresses */
 805
 806	pmd = (pmd_t *)__va(pmd) + start_pmd;
 807
 808	/*
 809	 * pg_table is physical at this point
 810	 */
 811
 812	pg_table = (pte_t *) pmd_address(*pmd);
 813	if (!pg_table)
 814		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 815
 816	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 817
 818	/* now change pg_table to kernel virtual addresses */
 819
 820	pg_table = (pte_t *) __va(pg_table) + start_pte;
 821	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 822}
 823EXPORT_SYMBOL(map_hpux_gateway_page);
 824#endif
 825
 826void __init paging_init(void)
 827{
 828	int i;
 829
 830	setup_bootmem();
 831	pagetable_init();
 832	gateway_init();
 833	flush_cache_all_local(); /* start with known state */
 834	flush_tlb_all_local(NULL);
 835
 836	for (i = 0; i < npmem_ranges; i++) {
 837		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 838
 839		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 840
 841#ifdef CONFIG_DISCONTIGMEM
 842		/* Need to initialize the pfnnid_map before we can initialize
 843		   the zone */
 844		{
 845		    int j;
 846		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 847			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 848			 j++) {
 849			pfnnid_map[j] = i;
 850		    }
 851		}
 852#endif
 853
 854		free_area_init_node(i, zones_size,
 855				pmem_ranges[i].start_pfn, NULL);
 856	}
 857}
 858
 859#ifdef CONFIG_PA20
 860
 861/*
 862 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 863 * limiting factor (space ids are 32 bits).
 864 */
 865
 866#define NR_SPACE_IDS 262144
 867
 868#else
 869
 870/*
 871 * Currently we have a one-to-one relationship between space IDs and
 872 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 873 * support 15 bit protection IDs, so that is the limiting factor.
 874 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 875 * probably not worth the effort for a special case here.
 876 */
 877
 878#define NR_SPACE_IDS 32768
 879
 880#endif  /* !CONFIG_PA20 */
 881
 882#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 883#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 884
 885static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 886static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 887static unsigned long space_id_index;
 888static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 889static unsigned long dirty_space_ids = 0;
 890
 891static DEFINE_SPINLOCK(sid_lock);
 892
 893unsigned long alloc_sid(void)
 894{
 895	unsigned long index;
 896
 897	spin_lock(&sid_lock);
 898
 899	if (free_space_ids == 0) {
 900		if (dirty_space_ids != 0) {
 901			spin_unlock(&sid_lock);
 902			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 903			spin_lock(&sid_lock);
 904		}
 905		BUG_ON(free_space_ids == 0);
 906	}
 907
 908	free_space_ids--;
 909
 910	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 911	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 912	space_id_index = index;
 913
 914	spin_unlock(&sid_lock);
 915
 916	return index << SPACEID_SHIFT;
 917}
 918
 919void free_sid(unsigned long spaceid)
 920{
 921	unsigned long index = spaceid >> SPACEID_SHIFT;
 922	unsigned long *dirty_space_offset;
 923
 924	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 925	index &= (BITS_PER_LONG - 1);
 926
 927	spin_lock(&sid_lock);
 928
 929	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 930
 931	*dirty_space_offset |= (1L << index);
 932	dirty_space_ids++;
 933
 934	spin_unlock(&sid_lock);
 935}
 936
 937
 938#ifdef CONFIG_SMP
 939static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 940{
 941	int i;
 942
 943	/* NOTE: sid_lock must be held upon entry */
 944
 945	*ndirtyptr = dirty_space_ids;
 946	if (dirty_space_ids != 0) {
 947	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
 948		dirty_array[i] = dirty_space_id[i];
 949		dirty_space_id[i] = 0;
 950	    }
 951	    dirty_space_ids = 0;
 952	}
 953
 954	return;
 955}
 956
 957static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 958{
 959	int i;
 960
 961	/* NOTE: sid_lock must be held upon entry */
 962
 963	if (ndirty != 0) {
 964		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 965			space_id[i] ^= dirty_array[i];
 966		}
 967
 968		free_space_ids += ndirty;
 969		space_id_index = 0;
 970	}
 971}
 972
 973#else /* CONFIG_SMP */
 974
 975static void recycle_sids(void)
 976{
 977	int i;
 978
 979	/* NOTE: sid_lock must be held upon entry */
 980
 981	if (dirty_space_ids != 0) {
 982		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 983			space_id[i] ^= dirty_space_id[i];
 984			dirty_space_id[i] = 0;
 985		}
 986
 987		free_space_ids += dirty_space_ids;
 988		dirty_space_ids = 0;
 989		space_id_index = 0;
 990	}
 991}
 992#endif
 993
 994/*
 995 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 996 * purged, we can safely reuse the space ids that were released but
 997 * not flushed from the tlb.
 998 */
 999
1000#ifdef CONFIG_SMP
1001
1002static unsigned long recycle_ndirty;
1003static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1004static unsigned int recycle_inuse;
1005
1006void flush_tlb_all(void)
1007{
1008	int do_recycle;
1009
1010	__inc_irq_stat(irq_tlb_count);
1011	do_recycle = 0;
1012	spin_lock(&sid_lock);
1013	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1014	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1015	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1016	    recycle_inuse++;
1017	    do_recycle++;
1018	}
1019	spin_unlock(&sid_lock);
1020	on_each_cpu(flush_tlb_all_local, NULL, 1);
1021	if (do_recycle) {
1022	    spin_lock(&sid_lock);
1023	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1024	    recycle_inuse = 0;
1025	    spin_unlock(&sid_lock);
1026	}
1027}
1028#else
1029void flush_tlb_all(void)
1030{
1031	__inc_irq_stat(irq_tlb_count);
1032	spin_lock(&sid_lock);
1033	flush_tlb_all_local(NULL);
1034	recycle_sids();
1035	spin_unlock(&sid_lock);
1036}
1037#endif
1038
1039#ifdef CONFIG_BLK_DEV_INITRD
1040void free_initrd_mem(unsigned long start, unsigned long end)
1041{
1042	free_reserved_area((void *)start, (void *)end, -1, "initrd");
1043}
1044#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/mm/init.c
  4 *
  5 *  Copyright (C) 1995	Linus Torvalds
  6 *  Copyright 1999 SuSE GmbH
  7 *    changed by Philipp Rumpf
  8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 11 *
 12 */
 13
 14
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/memblock.h>
 18#include <linux/gfp.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 
 29#include <asm/tlb.h>
 30#include <asm/pdc_chassis.h>
 31#include <asm/mmzone.h>
 32#include <asm/sections.h>
 33#include <asm/msgbuf.h>
 34#include <asm/sparsemem.h>
 35
 36extern int  data_start;
 37extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 38
 39#if CONFIG_PGTABLE_LEVELS == 3
 40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 42 * guarantee that global objects will be laid out in memory in the same order
 43 * as the order of declaration, so put these in different sections and use
 44 * the linker script to order them. */
 45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 46#endif
 47
 48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 50
 
 
 
 
 
 51static struct resource data_resource = {
 52	.name	= "Kernel data",
 53	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 54};
 55
 56static struct resource code_resource = {
 57	.name	= "Kernel code",
 58	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 59};
 60
 61static struct resource pdcdata_resource = {
 62	.name	= "PDC data (Page Zero)",
 63	.start	= 0,
 64	.end	= 0x9ff,
 65	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 66};
 67
 68static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
 69
 70/* The following array is initialized from the firmware specific
 71 * information retrieved in kernel/inventory.c.
 72 */
 73
 74physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
 75int npmem_ranges __initdata;
 76
 77#ifdef CONFIG_64BIT
 78#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
 79#else /* !CONFIG_64BIT */
 80#define MAX_MEM         (3584U*1024U*1024U)
 81#endif /* !CONFIG_64BIT */
 82
 83static unsigned long mem_limit __read_mostly = MAX_MEM;
 84
 85static void __init mem_limit_func(void)
 86{
 87	char *cp, *end;
 88	unsigned long limit;
 89
 90	/* We need this before __setup() functions are called */
 91
 92	limit = MAX_MEM;
 93	for (cp = boot_command_line; *cp; ) {
 94		if (memcmp(cp, "mem=", 4) == 0) {
 95			cp += 4;
 96			limit = memparse(cp, &end);
 97			if (end != cp)
 98				break;
 99			cp = end;
100		} else {
101			while (*cp != ' ' && *cp)
102				++cp;
103			while (*cp == ' ')
104				++cp;
105		}
106	}
107
108	if (limit < mem_limit)
109		mem_limit = limit;
110}
111
112#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
113
114static void __init setup_bootmem(void)
115{
 
116	unsigned long mem_max;
117#ifndef CONFIG_SPARSEMEM
 
 
 
118	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
119	int npmem_holes;
120#endif
121	int i, sysram_resource_count;
122
123	disable_sr_hashing(); /* Turn off space register hashing */
124
125	/*
126	 * Sort the ranges. Since the number of ranges is typically
127	 * small, and performance is not an issue here, just do
128	 * a simple insertion sort.
129	 */
130
131	for (i = 1; i < npmem_ranges; i++) {
132		int j;
133
134		for (j = i; j > 0; j--) {
135			physmem_range_t tmp;
136
137			if (pmem_ranges[j-1].start_pfn <
138			    pmem_ranges[j].start_pfn) {
139
140				break;
141			}
142			tmp = pmem_ranges[j-1];
143			pmem_ranges[j-1] = pmem_ranges[j];
144			pmem_ranges[j] = tmp;
 
 
 
145		}
146	}
147
148#ifndef CONFIG_SPARSEMEM
149	/*
150	 * Throw out ranges that are too far apart (controlled by
151	 * MAX_GAP).
152	 */
153
154	for (i = 1; i < npmem_ranges; i++) {
155		if (pmem_ranges[i].start_pfn -
156			(pmem_ranges[i-1].start_pfn +
157			 pmem_ranges[i-1].pages) > MAX_GAP) {
158			npmem_ranges = i;
159			printk("Large gap in memory detected (%ld pages). "
160			       "Consider turning on CONFIG_SPARSEMEM\n",
161			       pmem_ranges[i].start_pfn -
162			       (pmem_ranges[i-1].start_pfn +
163			        pmem_ranges[i-1].pages));
164			break;
165		}
166	}
167#endif
168
169	/* Print the memory ranges */
170	pr_info("Memory Ranges:\n");
 
171
172	for (i = 0; i < npmem_ranges; i++) {
173		struct resource *res = &sysram_resources[i];
174		unsigned long start;
175		unsigned long size;
176
177		size = (pmem_ranges[i].pages << PAGE_SHIFT);
178		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180			i, start, start + (size - 1), size >> 20);
181
182		/* request memory resource */
 
 
 
 
 
 
 
 
 
183		res->name = "System RAM";
184		res->start = start;
185		res->end = start + size - 1;
186		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
187		request_resource(&iomem_resource, res);
188	}
189
190	sysram_resource_count = npmem_ranges;
191
192	/*
193	 * For 32 bit kernels we limit the amount of memory we can
194	 * support, in order to preserve enough kernel address space
195	 * for other purposes. For 64 bit kernels we don't normally
196	 * limit the memory, but this mechanism can be used to
197	 * artificially limit the amount of memory (and it is written
198	 * to work with multiple memory ranges).
199	 */
200
201	mem_limit_func();       /* check for "mem=" argument */
202
203	mem_max = 0;
204	for (i = 0; i < npmem_ranges; i++) {
205		unsigned long rsize;
206
207		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
208		if ((mem_max + rsize) > mem_limit) {
209			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
210			if (mem_max == mem_limit)
211				npmem_ranges = i;
212			else {
213				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
214						       - (mem_max >> PAGE_SHIFT);
215				npmem_ranges = i + 1;
216				mem_max = mem_limit;
217			}
218			break;
219		}
220		mem_max += rsize;
221	}
222
223	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
224
225#ifndef CONFIG_SPARSEMEM
226	/* Merge the ranges, keeping track of the holes */
 
227	{
228		unsigned long end_pfn;
229		unsigned long hole_pages;
230
231		npmem_holes = 0;
232		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
233		for (i = 1; i < npmem_ranges; i++) {
234
235			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
236			if (hole_pages) {
237				pmem_holes[npmem_holes].start_pfn = end_pfn;
238				pmem_holes[npmem_holes++].pages = hole_pages;
239				end_pfn += hole_pages;
240			}
241			end_pfn += pmem_ranges[i].pages;
242		}
243
244		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
245		npmem_ranges = 1;
246	}
247#endif
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249	/*
250	 * Initialize and free the full range of memory in each range.
 
 
 
251	 */
252
 
253	max_pfn = 0;
254	for (i = 0; i < npmem_ranges; i++) {
255		unsigned long start_pfn;
256		unsigned long npages;
257		unsigned long start;
258		unsigned long size;
259
260		start_pfn = pmem_ranges[i].start_pfn;
261		npages = pmem_ranges[i].pages;
262
263		start = start_pfn << PAGE_SHIFT;
264		size = npages << PAGE_SHIFT;
265
266		/* add system RAM memblock */
267		memblock_add(start, size);
268
 
 
269		if ((start_pfn + npages) > max_pfn)
270			max_pfn = start_pfn + npages;
271	}
272
273	/*
274	 * We can't use memblock top-down allocations because we only
275	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
276	 * the assembly bootup code.
277	 */
278	memblock_set_bottom_up(true);
279
280	/* IOMMU is always used to access "high mem" on those boxes
281	 * that can support enough mem that a PCI device couldn't
282	 * directly DMA to any physical addresses.
283	 * ISA DMA support will need to revisit this.
284	 */
285	max_low_pfn = max_pfn;
286
 
 
 
287	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
288
289#define PDC_CONSOLE_IO_IODC_SIZE 32768
290
291	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
292				PDC_CONSOLE_IO_IODC_SIZE));
293	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
294			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
 
295
296#ifndef CONFIG_SPARSEMEM
297
298	/* reserve the holes */
299
300	for (i = 0; i < npmem_holes; i++) {
301		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
302				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
303	}
304#endif
305
306#ifdef CONFIG_BLK_DEV_INITRD
307	if (initrd_start) {
308		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
309		if (__pa(initrd_start) < mem_max) {
310			unsigned long initrd_reserve;
311
312			if (__pa(initrd_end) > mem_max) {
313				initrd_reserve = mem_max - __pa(initrd_start);
314			} else {
315				initrd_reserve = initrd_end - initrd_start;
316			}
317			initrd_below_start_ok = 1;
318			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
319
320			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
321		}
322	}
323#endif
324
325	data_resource.start =  virt_to_phys(&data_start);
326	data_resource.end = virt_to_phys(_end) - 1;
327	code_resource.start = virt_to_phys(_text);
328	code_resource.end = virt_to_phys(&data_start)-1;
329
330	/* We don't know which region the kernel will be in, so try
331	 * all of them.
332	 */
333	for (i = 0; i < sysram_resource_count; i++) {
334		struct resource *res = &sysram_resources[i];
335		request_resource(res, &code_resource);
336		request_resource(res, &data_resource);
337	}
338	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
339
340	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
341	pdc_pdt_init();
 
342
343	memblock_allow_resize();
344	memblock_dump_all();
345}
346
347static bool kernel_set_to_readonly;
348
349static void __init map_pages(unsigned long start_vaddr,
350			     unsigned long start_paddr, unsigned long size,
351			     pgprot_t pgprot, int force)
352{
 
353	pmd_t *pmd;
354	pte_t *pg_table;
355	unsigned long end_paddr;
356	unsigned long start_pmd;
357	unsigned long start_pte;
358	unsigned long tmp1;
359	unsigned long tmp2;
360	unsigned long address;
361	unsigned long vaddr;
362	unsigned long ro_start;
363	unsigned long ro_end;
364	unsigned long kernel_start, kernel_end;
 
 
 
365
366	ro_start = __pa((unsigned long)_text);
367	ro_end   = __pa((unsigned long)&data_start);
368	kernel_start = __pa((unsigned long)&__init_begin);
369	kernel_end  = __pa((unsigned long)&_end);
370
371	end_paddr = start_paddr + size;
372
373	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
 
 
 
 
374	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 
375	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
376
377	address = start_paddr;
378	vaddr = start_vaddr;
379	while (address < end_paddr) {
380		pgd_t *pgd = pgd_offset_k(vaddr);
381		p4d_t *p4d = p4d_offset(pgd, vaddr);
382		pud_t *pud = pud_offset(p4d, vaddr);
 
383
384#if CONFIG_PGTABLE_LEVELS == 3
385		if (pud_none(*pud)) {
386			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
387					     PAGE_SIZE << PMD_ORDER);
388			if (!pmd)
389				panic("pmd allocation failed.\n");
390			pud_populate(NULL, pud, pmd);
391		}
 
 
392#endif
 
 
 
393
394		pmd = pmd_offset(pud, vaddr);
395		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
396			if (pmd_none(*pmd)) {
397				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
398				if (!pg_table)
399					panic("page table allocation failed\n");
400				pmd_populate_kernel(NULL, pmd, pg_table);
 
 
 
 
 
401			}
402
403			pg_table = pte_offset_kernel(pmd, vaddr);
 
 
 
 
404			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
405				pte_t pte;
406				pgprot_t prot;
407				bool huge = false;
408
409				if (force) {
410					prot = pgprot;
411				} else if (address < kernel_start || address >= kernel_end) {
412					/* outside kernel memory */
413					prot = PAGE_KERNEL;
414				} else if (!kernel_set_to_readonly) {
415					/* still initializing, allow writing to RO memory */
416					prot = PAGE_KERNEL_RWX;
417					huge = true;
418				} else if (address >= ro_start) {
419					/* Code (ro) and Data areas */
420					prot = (address < ro_end) ?
421						PAGE_KERNEL_EXEC : PAGE_KERNEL;
422					huge = true;
423				} else {
424					prot = PAGE_KERNEL;
 
 
 
 
 
 
 
 
425				}
426
427				pte = __mk_pte(address, prot);
428				if (huge)
429					pte = pte_mkhuge(pte);
430
431				if (address >= end_paddr)
432					break;
433
434				set_pte(pg_table, pte);
435
436				address += PAGE_SIZE;
437				vaddr += PAGE_SIZE;
438			}
439			start_pte = 0;
440
441			if (address >= end_paddr)
442			    break;
443		}
444		start_pmd = 0;
445	}
446}
447
448void __init set_kernel_text_rw(int enable_read_write)
449{
450	unsigned long start = (unsigned long) __init_begin;
451	unsigned long end   = (unsigned long) &data_start;
452
453	map_pages(start, __pa(start), end-start,
454		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
455
456	/* force the kernel to see the new page table entries */
457	flush_cache_all();
458	flush_tlb_all();
459}
460
461void __ref free_initmem(void)
462{
463	unsigned long init_begin = (unsigned long)__init_begin;
464	unsigned long init_end = (unsigned long)__init_end;
465	unsigned long kernel_end  = (unsigned long)&_end;
466
467	/* Remap kernel text and data, but do not touch init section yet. */
468	kernel_set_to_readonly = true;
469	map_pages(init_end, __pa(init_end), kernel_end - init_end,
470		  PAGE_KERNEL, 0);
471
472	/* The init text pages are marked R-X.  We have to
473	 * flush the icache and mark them RW-
474	 *
475	 * This is tricky, because map_pages is in the init section.
476	 * Do a dummy remap of the data section first (the data
477	 * section is already PAGE_KERNEL) to pull in the TLB entries
478	 * for map_kernel */
479	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
480		  PAGE_KERNEL_RWX, 1);
481	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
482	 * map_pages */
483	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
484		  PAGE_KERNEL, 1);
485
486	/* force the kernel to see the new TLB entries */
487	__flush_tlb_range(0, init_begin, kernel_end);
488
 
 
 
489	/* finally dump all the instructions which were cached, since the
490	 * pages are no-longer executable */
491	flush_icache_range(init_begin, init_end);
492	
493	free_initmem_default(POISON_FREE_INITMEM);
494
495	/* set up a new led state on systems shipped LED State panel */
496	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
497}
498
499
500#ifdef CONFIG_STRICT_KERNEL_RWX
501void mark_rodata_ro(void)
502{
503	/* rodata memory was already mapped with KERNEL_RO access rights by
504           pagetable_init() and map_pages(). No need to do additional stuff here */
505	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
506
507	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
508}
509#endif
510
511
512/*
513 * Just an arbitrary offset to serve as a "hole" between mapping areas
514 * (between top of physical memory and a potential pcxl dma mapping
515 * area, and below the vmalloc mapping area).
516 *
517 * The current 32K value just means that there will be a 32K "hole"
518 * between mapping areas. That means that  any out-of-bounds memory
519 * accesses will hopefully be caught. The vmalloc() routines leaves
520 * a hole of 4kB between each vmalloced area for the same reason.
521 */
522
523 /* Leave room for gateway page expansion */
524#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
525#error KERNEL_MAP_START is in gateway reserved region
526#endif
527#define MAP_START (KERNEL_MAP_START)
528
529#define VM_MAP_OFFSET  (32*1024)
530#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
531				     & ~(VM_MAP_OFFSET-1)))
532
533void *parisc_vmalloc_start __ro_after_init;
534EXPORT_SYMBOL(parisc_vmalloc_start);
535
536#ifdef CONFIG_PA11
537unsigned long pcxl_dma_start __ro_after_init;
538#endif
539
540void __init mem_init(void)
541{
542	/* Do sanity checks on IPC (compat) structures */
543	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
544#ifndef CONFIG_64BIT
545	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
546	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
547	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
548#endif
549#ifdef CONFIG_COMPAT
550	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
551	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
552	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
553	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
554#endif
555
556	/* Do sanity checks on page table constants */
557	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
558	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
559	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
560	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
561			> BITS_PER_LONG);
562
563	high_memory = __va((max_pfn << PAGE_SHIFT));
564	set_max_mapnr(max_low_pfn);
565	memblock_free_all();
566
567#ifdef CONFIG_PA11
568	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
569		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
570		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
571						+ PCXL_DMA_MAP_SIZE);
572	} else
 
 
 
 
 
573#endif
574		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575
576	mem_init_print_info(NULL);
577
578#if 0
579	/*
580	 * Do not expose the virtual kernel memory layout to userspace.
581	 * But keep code for debugging purposes.
582	 */
583	printk("virtual kernel memory layout:\n"
584	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
585	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
586	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
587	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
588	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
589	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
590
591	       (void*)VMALLOC_START, (void*)VMALLOC_END,
592	       (VMALLOC_END - VMALLOC_START) >> 20,
593
594	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
595	       (unsigned long)(FIXMAP_SIZE / 1024),
596
597	       __va(0), high_memory,
598	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
599
600	       __init_begin, __init_end,
601	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
602
603	       _etext, _edata,
604	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
605
606	       _text, _etext,
607	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
608#endif
609}
610
611unsigned long *empty_zero_page __ro_after_init;
612EXPORT_SYMBOL(empty_zero_page);
613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614/*
615 * pagetable_init() sets up the page tables
616 *
617 * Note that gateway_init() places the Linux gateway page at page 0.
618 * Since gateway pages cannot be dereferenced this has the desirable
619 * side effect of trapping those pesky NULL-reference errors in the
620 * kernel.
621 */
622static void __init pagetable_init(void)
623{
624	int range;
625
626	/* Map each physical memory range to its kernel vaddr */
627
628	for (range = 0; range < npmem_ranges; range++) {
629		unsigned long start_paddr;
630		unsigned long end_paddr;
631		unsigned long size;
632
633		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 
634		size = pmem_ranges[range].pages << PAGE_SHIFT;
635		end_paddr = start_paddr + size;
636
637		map_pages((unsigned long)__va(start_paddr), start_paddr,
638			  size, PAGE_KERNEL, 0);
639	}
640
641#ifdef CONFIG_BLK_DEV_INITRD
642	if (initrd_end && initrd_end > mem_limit) {
643		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
644		map_pages(initrd_start, __pa(initrd_start),
645			  initrd_end - initrd_start, PAGE_KERNEL, 0);
646	}
647#endif
648
649	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
650	if (!empty_zero_page)
651		panic("zero page allocation failed.\n");
652
653}
654
655static void __init gateway_init(void)
656{
657	unsigned long linux_gateway_page_addr;
658	/* FIXME: This is 'const' in order to trick the compiler
659	   into not treating it as DP-relative data. */
660	extern void * const linux_gateway_page;
661
662	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
663
664	/*
665	 * Setup Linux Gateway page.
666	 *
667	 * The Linux gateway page will reside in kernel space (on virtual
668	 * page 0), so it doesn't need to be aliased into user space.
669	 */
670
671	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
672		  PAGE_SIZE, PAGE_GATEWAY, 1);
673}
674
675static void __init parisc_bootmem_free(void)
 
 
676{
677	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678
679	max_zone_pfn[0] = memblock_end_of_DRAM();
680
681	free_area_init(max_zone_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682}
 
 
683
684void __init paging_init(void)
685{
 
 
686	setup_bootmem();
687	pagetable_init();
688	gateway_init();
689	flush_cache_all_local(); /* start with known state */
690	flush_tlb_all_local(NULL);
691
692	sparse_init();
693	parisc_bootmem_free();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694}
695
696#ifdef CONFIG_PA20
697
698/*
699 * Currently, all PA20 chips have 18 bit protection IDs, which is the
700 * limiting factor (space ids are 32 bits).
701 */
702
703#define NR_SPACE_IDS 262144
704
705#else
706
707/*
708 * Currently we have a one-to-one relationship between space IDs and
709 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
710 * support 15 bit protection IDs, so that is the limiting factor.
711 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
712 * probably not worth the effort for a special case here.
713 */
714
715#define NR_SPACE_IDS 32768
716
717#endif  /* !CONFIG_PA20 */
718
719#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
720#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
721
722static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
723static unsigned long dirty_space_id[SID_ARRAY_SIZE];
724static unsigned long space_id_index;
725static unsigned long free_space_ids = NR_SPACE_IDS - 1;
726static unsigned long dirty_space_ids = 0;
727
728static DEFINE_SPINLOCK(sid_lock);
729
730unsigned long alloc_sid(void)
731{
732	unsigned long index;
733
734	spin_lock(&sid_lock);
735
736	if (free_space_ids == 0) {
737		if (dirty_space_ids != 0) {
738			spin_unlock(&sid_lock);
739			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
740			spin_lock(&sid_lock);
741		}
742		BUG_ON(free_space_ids == 0);
743	}
744
745	free_space_ids--;
746
747	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
748	space_id[BIT_WORD(index)] |= BIT_MASK(index);
749	space_id_index = index;
750
751	spin_unlock(&sid_lock);
752
753	return index << SPACEID_SHIFT;
754}
755
756void free_sid(unsigned long spaceid)
757{
758	unsigned long index = spaceid >> SPACEID_SHIFT;
759	unsigned long *dirty_space_offset, mask;
760
761	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
762	mask = BIT_MASK(index);
763
764	spin_lock(&sid_lock);
765
766	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
767
768	*dirty_space_offset |= mask;
769	dirty_space_ids++;
770
771	spin_unlock(&sid_lock);
772}
773
774
775#ifdef CONFIG_SMP
776static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
777{
778	int i;
779
780	/* NOTE: sid_lock must be held upon entry */
781
782	*ndirtyptr = dirty_space_ids;
783	if (dirty_space_ids != 0) {
784	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
785		dirty_array[i] = dirty_space_id[i];
786		dirty_space_id[i] = 0;
787	    }
788	    dirty_space_ids = 0;
789	}
790
791	return;
792}
793
794static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
795{
796	int i;
797
798	/* NOTE: sid_lock must be held upon entry */
799
800	if (ndirty != 0) {
801		for (i = 0; i < SID_ARRAY_SIZE; i++) {
802			space_id[i] ^= dirty_array[i];
803		}
804
805		free_space_ids += ndirty;
806		space_id_index = 0;
807	}
808}
809
810#else /* CONFIG_SMP */
811
812static void recycle_sids(void)
813{
814	int i;
815
816	/* NOTE: sid_lock must be held upon entry */
817
818	if (dirty_space_ids != 0) {
819		for (i = 0; i < SID_ARRAY_SIZE; i++) {
820			space_id[i] ^= dirty_space_id[i];
821			dirty_space_id[i] = 0;
822		}
823
824		free_space_ids += dirty_space_ids;
825		dirty_space_ids = 0;
826		space_id_index = 0;
827	}
828}
829#endif
830
831/*
832 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
833 * purged, we can safely reuse the space ids that were released but
834 * not flushed from the tlb.
835 */
836
837#ifdef CONFIG_SMP
838
839static unsigned long recycle_ndirty;
840static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
841static unsigned int recycle_inuse;
842
843void flush_tlb_all(void)
844{
845	int do_recycle;
846
847	__inc_irq_stat(irq_tlb_count);
848	do_recycle = 0;
849	spin_lock(&sid_lock);
850	if (dirty_space_ids > RECYCLE_THRESHOLD) {
851	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
852	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
853	    recycle_inuse++;
854	    do_recycle++;
855	}
856	spin_unlock(&sid_lock);
857	on_each_cpu(flush_tlb_all_local, NULL, 1);
858	if (do_recycle) {
859	    spin_lock(&sid_lock);
860	    recycle_sids(recycle_ndirty,recycle_dirty_array);
861	    recycle_inuse = 0;
862	    spin_unlock(&sid_lock);
863	}
864}
865#else
866void flush_tlb_all(void)
867{
868	__inc_irq_stat(irq_tlb_count);
869	spin_lock(&sid_lock);
870	flush_tlb_all_local(NULL);
871	recycle_sids();
872	spin_unlock(&sid_lock);
 
 
 
 
 
 
 
873}
874#endif