Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * BTF-to-C type converter.
   5 *
   6 * Copyright (c) 2019 Facebook
   7 */
   8
   9#include <stdbool.h>
  10#include <stddef.h>
  11#include <stdlib.h>
  12#include <string.h>
  13#include <errno.h>
  14#include <linux/err.h>
  15#include <linux/btf.h>
  16#include "btf.h"
  17#include "hashmap.h"
  18#include "libbpf.h"
  19#include "libbpf_internal.h"
  20
  21static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  22static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  23
  24static const char *pfx(int lvl)
  25{
  26	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  27}
  28
  29enum btf_dump_type_order_state {
  30	NOT_ORDERED,
  31	ORDERING,
  32	ORDERED,
  33};
  34
  35enum btf_dump_type_emit_state {
  36	NOT_EMITTED,
  37	EMITTING,
  38	EMITTED,
  39};
  40
  41/* per-type auxiliary state */
  42struct btf_dump_type_aux_state {
  43	/* topological sorting state */
  44	enum btf_dump_type_order_state order_state: 2;
  45	/* emitting state used to determine the need for forward declaration */
  46	enum btf_dump_type_emit_state emit_state: 2;
  47	/* whether forward declaration was already emitted */
  48	__u8 fwd_emitted: 1;
  49	/* whether unique non-duplicate name was already assigned */
  50	__u8 name_resolved: 1;
  51	/* whether type is referenced from any other type */
  52	__u8 referenced: 1;
  53};
  54
  55struct btf_dump {
  56	const struct btf *btf;
  57	const struct btf_ext *btf_ext;
  58	btf_dump_printf_fn_t printf_fn;
  59	struct btf_dump_opts opts;
  60
  61	/* per-type auxiliary state */
  62	struct btf_dump_type_aux_state *type_states;
  63	/* per-type optional cached unique name, must be freed, if present */
  64	const char **cached_names;
  65
  66	/* topo-sorted list of dependent type definitions */
  67	__u32 *emit_queue;
  68	int emit_queue_cap;
  69	int emit_queue_cnt;
  70
  71	/*
  72	 * stack of type declarations (e.g., chain of modifiers, arrays,
  73	 * funcs, etc)
  74	 */
  75	__u32 *decl_stack;
  76	int decl_stack_cap;
  77	int decl_stack_cnt;
  78
  79	/* maps struct/union/enum name to a number of name occurrences */
  80	struct hashmap *type_names;
  81	/*
  82	 * maps typedef identifiers and enum value names to a number of such
  83	 * name occurrences
  84	 */
  85	struct hashmap *ident_names;
  86};
  87
  88static size_t str_hash_fn(const void *key, void *ctx)
  89{
  90	const char *s = key;
  91	size_t h = 0;
  92
  93	while (*s) {
  94		h = h * 31 + *s;
  95		s++;
  96	}
  97	return h;
  98}
  99
 100static bool str_equal_fn(const void *a, const void *b, void *ctx)
 101{
 102	return strcmp(a, b) == 0;
 103}
 104
 105static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 106{
 107	return btf__name_by_offset(d->btf, name_off);
 108}
 109
 110static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 111{
 112	va_list args;
 113
 114	va_start(args, fmt);
 115	d->printf_fn(d->opts.ctx, fmt, args);
 116	va_end(args);
 117}
 118
 119struct btf_dump *btf_dump__new(const struct btf *btf,
 120			       const struct btf_ext *btf_ext,
 121			       const struct btf_dump_opts *opts,
 122			       btf_dump_printf_fn_t printf_fn)
 123{
 124	struct btf_dump *d;
 125	int err;
 126
 127	d = calloc(1, sizeof(struct btf_dump));
 128	if (!d)
 129		return ERR_PTR(-ENOMEM);
 130
 131	d->btf = btf;
 132	d->btf_ext = btf_ext;
 133	d->printf_fn = printf_fn;
 134	d->opts.ctx = opts ? opts->ctx : NULL;
 135
 136	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 137	if (IS_ERR(d->type_names)) {
 138		err = PTR_ERR(d->type_names);
 139		d->type_names = NULL;
 140		btf_dump__free(d);
 141		return ERR_PTR(err);
 142	}
 143	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 144	if (IS_ERR(d->ident_names)) {
 145		err = PTR_ERR(d->ident_names);
 146		d->ident_names = NULL;
 147		btf_dump__free(d);
 148		return ERR_PTR(err);
 149	}
 150
 151	return d;
 152}
 153
 154void btf_dump__free(struct btf_dump *d)
 155{
 156	int i, cnt;
 157
 158	if (!d)
 159		return;
 160
 161	free(d->type_states);
 162	if (d->cached_names) {
 163		/* any set cached name is owned by us and should be freed */
 164		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
 165			if (d->cached_names[i])
 166				free((void *)d->cached_names[i]);
 167		}
 168	}
 169	free(d->cached_names);
 170	free(d->emit_queue);
 171	free(d->decl_stack);
 172	hashmap__free(d->type_names);
 173	hashmap__free(d->ident_names);
 174
 175	free(d);
 176}
 177
 178static int btf_dump_mark_referenced(struct btf_dump *d);
 179static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 180static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 181
 182/*
 183 * Dump BTF type in a compilable C syntax, including all the necessary
 184 * dependent types, necessary for compilation. If some of the dependent types
 185 * were already emitted as part of previous btf_dump__dump_type() invocation
 186 * for another type, they won't be emitted again. This API allows callers to
 187 * filter out BTF types according to user-defined criterias and emitted only
 188 * minimal subset of types, necessary to compile everything. Full struct/union
 189 * definitions will still be emitted, even if the only usage is through
 190 * pointer and could be satisfied with just a forward declaration.
 191 *
 192 * Dumping is done in two high-level passes:
 193 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 194 *   2. Emit type definitions in C syntax.
 195 *
 196 * Returns 0 on success; <0, otherwise.
 197 */
 198int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 199{
 200	int err, i;
 201
 202	if (id > btf__get_nr_types(d->btf))
 203		return -EINVAL;
 204
 205	/* type states are lazily allocated, as they might not be needed */
 206	if (!d->type_states) {
 207		d->type_states = calloc(1 + btf__get_nr_types(d->btf),
 208					sizeof(d->type_states[0]));
 209		if (!d->type_states)
 210			return -ENOMEM;
 211		d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
 212					 sizeof(d->cached_names[0]));
 213		if (!d->cached_names)
 214			return -ENOMEM;
 215
 216		/* VOID is special */
 217		d->type_states[0].order_state = ORDERED;
 218		d->type_states[0].emit_state = EMITTED;
 219
 220		/* eagerly determine referenced types for anon enums */
 221		err = btf_dump_mark_referenced(d);
 222		if (err)
 223			return err;
 224	}
 225
 226	d->emit_queue_cnt = 0;
 227	err = btf_dump_order_type(d, id, false);
 228	if (err < 0)
 229		return err;
 230
 231	for (i = 0; i < d->emit_queue_cnt; i++)
 232		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 233
 234	return 0;
 235}
 236
 237/*
 238 * Mark all types that are referenced from any other type. This is used to
 239 * determine top-level anonymous enums that need to be emitted as an
 240 * independent type declarations.
 241 * Anonymous enums come in two flavors: either embedded in a struct's field
 242 * definition, in which case they have to be declared inline as part of field
 243 * type declaration; or as a top-level anonymous enum, typically used for
 244 * declaring global constants. It's impossible to distinguish between two
 245 * without knowning whether given enum type was referenced from other type:
 246 * top-level anonymous enum won't be referenced by anything, while embedded
 247 * one will.
 248 */
 249static int btf_dump_mark_referenced(struct btf_dump *d)
 250{
 251	int i, j, n = btf__get_nr_types(d->btf);
 252	const struct btf_type *t;
 253	__u16 vlen;
 254
 255	for (i = 1; i <= n; i++) {
 256		t = btf__type_by_id(d->btf, i);
 257		vlen = btf_vlen(t);
 258
 259		switch (btf_kind(t)) {
 260		case BTF_KIND_INT:
 261		case BTF_KIND_ENUM:
 262		case BTF_KIND_FWD:
 263			break;
 264
 265		case BTF_KIND_VOLATILE:
 266		case BTF_KIND_CONST:
 267		case BTF_KIND_RESTRICT:
 268		case BTF_KIND_PTR:
 269		case BTF_KIND_TYPEDEF:
 270		case BTF_KIND_FUNC:
 271		case BTF_KIND_VAR:
 272			d->type_states[t->type].referenced = 1;
 273			break;
 274
 275		case BTF_KIND_ARRAY: {
 276			const struct btf_array *a = btf_array(t);
 277
 278			d->type_states[a->index_type].referenced = 1;
 279			d->type_states[a->type].referenced = 1;
 280			break;
 281		}
 282		case BTF_KIND_STRUCT:
 283		case BTF_KIND_UNION: {
 284			const struct btf_member *m = btf_members(t);
 285
 286			for (j = 0; j < vlen; j++, m++)
 287				d->type_states[m->type].referenced = 1;
 288			break;
 289		}
 290		case BTF_KIND_FUNC_PROTO: {
 291			const struct btf_param *p = btf_params(t);
 292
 293			for (j = 0; j < vlen; j++, p++)
 294				d->type_states[p->type].referenced = 1;
 295			break;
 296		}
 297		case BTF_KIND_DATASEC: {
 298			const struct btf_var_secinfo *v = btf_var_secinfos(t);
 299
 300			for (j = 0; j < vlen; j++, v++)
 301				d->type_states[v->type].referenced = 1;
 302			break;
 303		}
 304		default:
 305			return -EINVAL;
 306		}
 307	}
 308	return 0;
 309}
 310static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 311{
 312	__u32 *new_queue;
 313	size_t new_cap;
 314
 315	if (d->emit_queue_cnt >= d->emit_queue_cap) {
 316		new_cap = max(16, d->emit_queue_cap * 3 / 2);
 317		new_queue = realloc(d->emit_queue,
 318				    new_cap * sizeof(new_queue[0]));
 319		if (!new_queue)
 320			return -ENOMEM;
 321		d->emit_queue = new_queue;
 322		d->emit_queue_cap = new_cap;
 323	}
 324
 325	d->emit_queue[d->emit_queue_cnt++] = id;
 326	return 0;
 327}
 328
 329/*
 330 * Determine order of emitting dependent types and specified type to satisfy
 331 * C compilation rules.  This is done through topological sorting with an
 332 * additional complication which comes from C rules. The main idea for C is
 333 * that if some type is "embedded" into a struct/union, it's size needs to be
 334 * known at the time of definition of containing type. E.g., for:
 335 *
 336 *	struct A {};
 337 *	struct B { struct A x; }
 338 *
 339 * struct A *HAS* to be defined before struct B, because it's "embedded",
 340 * i.e., it is part of struct B layout. But in the following case:
 341 *
 342 *	struct A;
 343 *	struct B { struct A *x; }
 344 *	struct A {};
 345 *
 346 * it's enough to just have a forward declaration of struct A at the time of
 347 * struct B definition, as struct B has a pointer to struct A, so the size of
 348 * field x is known without knowing struct A size: it's sizeof(void *).
 349 *
 350 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 351 *
 352 *	struct A {}; // if this was forward-declaration: compilation error
 353 *	struct B {
 354 *		struct { // anonymous struct
 355 *			struct A y;
 356 *		} *x;
 357 *	};
 358 *
 359 * In this case, struct B's field x is a pointer, so it's size is known
 360 * regardless of the size of (anonymous) struct it points to. But because this
 361 * struct is anonymous and thus defined inline inside struct B, *and* it
 362 * embeds struct A, compiler requires full definition of struct A to be known
 363 * before struct B can be defined. This creates a transitive dependency
 364 * between struct A and struct B. If struct A was forward-declared before
 365 * struct B definition and fully defined after struct B definition, that would
 366 * trigger compilation error.
 367 *
 368 * All this means that while we are doing topological sorting on BTF type
 369 * graph, we need to determine relationships between different types (graph
 370 * nodes):
 371 *   - weak link (relationship) between X and Y, if Y *CAN* be
 372 *   forward-declared at the point of X definition;
 373 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 374 *
 375 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 376 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 377 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 378 * Weak/strong relationship is determined recursively during DFS traversal and
 379 * is returned as a result from btf_dump_order_type().
 380 *
 381 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 382 * but it is not guaranteeing that no extraneous forward declarations will be
 383 * emitted.
 384 *
 385 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 386 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 387 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 388 * entire graph path, so depending where from one came to that BTF type, it
 389 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 390 * once they are processed, there is no need to do it again, so they are
 391 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 392 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 393 * in any case, once those are processed, no need to do it again, as the
 394 * result won't change.
 395 *
 396 * Returns:
 397 *   - 1, if type is part of strong link (so there is strong topological
 398 *   ordering requirements);
 399 *   - 0, if type is part of weak link (so can be satisfied through forward
 400 *   declaration);
 401 *   - <0, on error (e.g., unsatisfiable type loop detected).
 402 */
 403static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 404{
 405	/*
 406	 * Order state is used to detect strong link cycles, but only for BTF
 407	 * kinds that are or could be an independent definition (i.e.,
 408	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 409	 * func_protos, modifiers are just means to get to these definitions.
 410	 * Int/void don't need definitions, they are assumed to be always
 411	 * properly defined.  We also ignore datasec, var, and funcs for now.
 412	 * So for all non-defining kinds, we never even set ordering state,
 413	 * for defining kinds we set ORDERING and subsequently ORDERED if it
 414	 * forms a strong link.
 415	 */
 416	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 417	const struct btf_type *t;
 418	__u16 vlen;
 419	int err, i;
 420
 421	/* return true, letting typedefs know that it's ok to be emitted */
 422	if (tstate->order_state == ORDERED)
 423		return 1;
 424
 425	t = btf__type_by_id(d->btf, id);
 426
 427	if (tstate->order_state == ORDERING) {
 428		/* type loop, but resolvable through fwd declaration */
 429		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 430			return 0;
 431		pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
 432		return -ELOOP;
 433	}
 434
 435	switch (btf_kind(t)) {
 436	case BTF_KIND_INT:
 437		tstate->order_state = ORDERED;
 438		return 0;
 439
 440	case BTF_KIND_PTR:
 441		err = btf_dump_order_type(d, t->type, true);
 442		tstate->order_state = ORDERED;
 443		return err;
 444
 445	case BTF_KIND_ARRAY:
 446		return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
 447
 448	case BTF_KIND_STRUCT:
 449	case BTF_KIND_UNION: {
 450		const struct btf_member *m = btf_members(t);
 451		/*
 452		 * struct/union is part of strong link, only if it's embedded
 453		 * (so no ptr in a path) or it's anonymous (so has to be
 454		 * defined inline, even if declared through ptr)
 455		 */
 456		if (through_ptr && t->name_off != 0)
 457			return 0;
 458
 459		tstate->order_state = ORDERING;
 460
 461		vlen = btf_vlen(t);
 462		for (i = 0; i < vlen; i++, m++) {
 463			err = btf_dump_order_type(d, m->type, false);
 464			if (err < 0)
 465				return err;
 466		}
 467
 468		if (t->name_off != 0) {
 469			err = btf_dump_add_emit_queue_id(d, id);
 470			if (err < 0)
 471				return err;
 472		}
 473
 474		tstate->order_state = ORDERED;
 475		return 1;
 476	}
 477	case BTF_KIND_ENUM:
 478	case BTF_KIND_FWD:
 479		/*
 480		 * non-anonymous or non-referenced enums are top-level
 481		 * declarations and should be emitted. Same logic can be
 482		 * applied to FWDs, it won't hurt anyways.
 483		 */
 484		if (t->name_off != 0 || !tstate->referenced) {
 485			err = btf_dump_add_emit_queue_id(d, id);
 486			if (err)
 487				return err;
 488		}
 489		tstate->order_state = ORDERED;
 490		return 1;
 491
 492	case BTF_KIND_TYPEDEF: {
 493		int is_strong;
 494
 495		is_strong = btf_dump_order_type(d, t->type, through_ptr);
 496		if (is_strong < 0)
 497			return is_strong;
 498
 499		/* typedef is similar to struct/union w.r.t. fwd-decls */
 500		if (through_ptr && !is_strong)
 501			return 0;
 502
 503		/* typedef is always a named definition */
 504		err = btf_dump_add_emit_queue_id(d, id);
 505		if (err)
 506			return err;
 507
 508		d->type_states[id].order_state = ORDERED;
 509		return 1;
 510	}
 511	case BTF_KIND_VOLATILE:
 512	case BTF_KIND_CONST:
 513	case BTF_KIND_RESTRICT:
 514		return btf_dump_order_type(d, t->type, through_ptr);
 515
 516	case BTF_KIND_FUNC_PROTO: {
 517		const struct btf_param *p = btf_params(t);
 518		bool is_strong;
 519
 520		err = btf_dump_order_type(d, t->type, through_ptr);
 521		if (err < 0)
 522			return err;
 523		is_strong = err > 0;
 524
 525		vlen = btf_vlen(t);
 526		for (i = 0; i < vlen; i++, p++) {
 527			err = btf_dump_order_type(d, p->type, through_ptr);
 528			if (err < 0)
 529				return err;
 530			if (err > 0)
 531				is_strong = true;
 532		}
 533		return is_strong;
 534	}
 535	case BTF_KIND_FUNC:
 536	case BTF_KIND_VAR:
 537	case BTF_KIND_DATASEC:
 538		d->type_states[id].order_state = ORDERED;
 539		return 0;
 540
 541	default:
 542		return -EINVAL;
 543	}
 544}
 545
 546static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 547				     const struct btf_type *t);
 548static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 549				     const struct btf_type *t, int lvl);
 550
 551static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 552				   const struct btf_type *t);
 553static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 554				   const struct btf_type *t, int lvl);
 555
 556static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 557				  const struct btf_type *t);
 558
 559static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 560				      const struct btf_type *t, int lvl);
 561
 562/* a local view into a shared stack */
 563struct id_stack {
 564	const __u32 *ids;
 565	int cnt;
 566};
 567
 568static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 569				    const char *fname, int lvl);
 570static void btf_dump_emit_type_chain(struct btf_dump *d,
 571				     struct id_stack *decl_stack,
 572				     const char *fname, int lvl);
 573
 574static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 575static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 576static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 577				 const char *orig_name);
 578
 579static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 580{
 581	const struct btf_type *t = btf__type_by_id(d->btf, id);
 582
 583	/* __builtin_va_list is a compiler built-in, which causes compilation
 584	 * errors, when compiling w/ different compiler, then used to compile
 585	 * original code (e.g., GCC to compile kernel, Clang to use generated
 586	 * C header from BTF). As it is built-in, it should be already defined
 587	 * properly internally in compiler.
 588	 */
 589	if (t->name_off == 0)
 590		return false;
 591	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 592}
 593
 594/*
 595 * Emit C-syntax definitions of types from chains of BTF types.
 596 *
 597 * High-level handling of determining necessary forward declarations are handled
 598 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 599 * declarations/definitions in C syntax  are handled by a combo of
 600 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 601 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 602 *
 603 * We also keep track of "containing struct/union type ID" to determine when
 604 * we reference it from inside and thus can avoid emitting unnecessary forward
 605 * declaration.
 606 *
 607 * This algorithm is designed in such a way, that even if some error occurs
 608 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 609 * that doesn't comply to C rules completely), algorithm will try to proceed
 610 * and produce as much meaningful output as possible.
 611 */
 612static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 613{
 614	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 615	bool top_level_def = cont_id == 0;
 616	const struct btf_type *t;
 617	__u16 kind;
 618
 619	if (tstate->emit_state == EMITTED)
 620		return;
 621
 622	t = btf__type_by_id(d->btf, id);
 623	kind = btf_kind(t);
 624
 625	if (tstate->emit_state == EMITTING) {
 626		if (tstate->fwd_emitted)
 627			return;
 628
 629		switch (kind) {
 630		case BTF_KIND_STRUCT:
 631		case BTF_KIND_UNION:
 632			/*
 633			 * if we are referencing a struct/union that we are
 634			 * part of - then no need for fwd declaration
 635			 */
 636			if (id == cont_id)
 637				return;
 638			if (t->name_off == 0) {
 639				pr_warning("anonymous struct/union loop, id:[%u]\n",
 640					   id);
 641				return;
 642			}
 643			btf_dump_emit_struct_fwd(d, id, t);
 644			btf_dump_printf(d, ";\n\n");
 645			tstate->fwd_emitted = 1;
 646			break;
 647		case BTF_KIND_TYPEDEF:
 648			/*
 649			 * for typedef fwd_emitted means typedef definition
 650			 * was emitted, but it can be used only for "weak"
 651			 * references through pointer only, not for embedding
 652			 */
 653			if (!btf_dump_is_blacklisted(d, id)) {
 654				btf_dump_emit_typedef_def(d, id, t, 0);
 655				btf_dump_printf(d, ";\n\n");
 656			};
 657			tstate->fwd_emitted = 1;
 658			break;
 659		default:
 660			break;
 661		}
 662
 663		return;
 664	}
 665
 666	switch (kind) {
 667	case BTF_KIND_INT:
 668		tstate->emit_state = EMITTED;
 669		break;
 670	case BTF_KIND_ENUM:
 671		if (top_level_def) {
 672			btf_dump_emit_enum_def(d, id, t, 0);
 673			btf_dump_printf(d, ";\n\n");
 674		}
 675		tstate->emit_state = EMITTED;
 676		break;
 677	case BTF_KIND_PTR:
 678	case BTF_KIND_VOLATILE:
 679	case BTF_KIND_CONST:
 680	case BTF_KIND_RESTRICT:
 681		btf_dump_emit_type(d, t->type, cont_id);
 682		break;
 683	case BTF_KIND_ARRAY:
 684		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 685		break;
 686	case BTF_KIND_FWD:
 687		btf_dump_emit_fwd_def(d, id, t);
 688		btf_dump_printf(d, ";\n\n");
 689		tstate->emit_state = EMITTED;
 690		break;
 691	case BTF_KIND_TYPEDEF:
 692		tstate->emit_state = EMITTING;
 693		btf_dump_emit_type(d, t->type, id);
 694		/*
 695		 * typedef can server as both definition and forward
 696		 * declaration; at this stage someone depends on
 697		 * typedef as a forward declaration (refers to it
 698		 * through pointer), so unless we already did it,
 699		 * emit typedef as a forward declaration
 700		 */
 701		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 702			btf_dump_emit_typedef_def(d, id, t, 0);
 703			btf_dump_printf(d, ";\n\n");
 704		}
 705		tstate->emit_state = EMITTED;
 706		break;
 707	case BTF_KIND_STRUCT:
 708	case BTF_KIND_UNION:
 709		tstate->emit_state = EMITTING;
 710		/* if it's a top-level struct/union definition or struct/union
 711		 * is anonymous, then in C we'll be emitting all fields and
 712		 * their types (as opposed to just `struct X`), so we need to
 713		 * make sure that all types, referenced from struct/union
 714		 * members have necessary forward-declarations, where
 715		 * applicable
 716		 */
 717		if (top_level_def || t->name_off == 0) {
 718			const struct btf_member *m = btf_members(t);
 719			__u16 vlen = btf_vlen(t);
 720			int i, new_cont_id;
 721
 722			new_cont_id = t->name_off == 0 ? cont_id : id;
 723			for (i = 0; i < vlen; i++, m++)
 724				btf_dump_emit_type(d, m->type, new_cont_id);
 725		} else if (!tstate->fwd_emitted && id != cont_id) {
 726			btf_dump_emit_struct_fwd(d, id, t);
 727			btf_dump_printf(d, ";\n\n");
 728			tstate->fwd_emitted = 1;
 729		}
 730
 731		if (top_level_def) {
 732			btf_dump_emit_struct_def(d, id, t, 0);
 733			btf_dump_printf(d, ";\n\n");
 734			tstate->emit_state = EMITTED;
 735		} else {
 736			tstate->emit_state = NOT_EMITTED;
 737		}
 738		break;
 739	case BTF_KIND_FUNC_PROTO: {
 740		const struct btf_param *p = btf_params(t);
 741		__u16 vlen = btf_vlen(t);
 742		int i;
 743
 744		btf_dump_emit_type(d, t->type, cont_id);
 745		for (i = 0; i < vlen; i++, p++)
 746			btf_dump_emit_type(d, p->type, cont_id);
 747
 748		break;
 749	}
 750	default:
 751		break;
 752	}
 753}
 754
 755static int btf_align_of(const struct btf *btf, __u32 id)
 756{
 757	const struct btf_type *t = btf__type_by_id(btf, id);
 758	__u16 kind = btf_kind(t);
 759
 760	switch (kind) {
 761	case BTF_KIND_INT:
 762	case BTF_KIND_ENUM:
 763		return min(sizeof(void *), t->size);
 764	case BTF_KIND_PTR:
 765		return sizeof(void *);
 766	case BTF_KIND_TYPEDEF:
 767	case BTF_KIND_VOLATILE:
 768	case BTF_KIND_CONST:
 769	case BTF_KIND_RESTRICT:
 770		return btf_align_of(btf, t->type);
 771	case BTF_KIND_ARRAY:
 772		return btf_align_of(btf, btf_array(t)->type);
 773	case BTF_KIND_STRUCT:
 774	case BTF_KIND_UNION: {
 775		const struct btf_member *m = btf_members(t);
 776		__u16 vlen = btf_vlen(t);
 777		int i, align = 1;
 778
 779		for (i = 0; i < vlen; i++, m++)
 780			align = max(align, btf_align_of(btf, m->type));
 781
 782		return align;
 783	}
 784	default:
 785		pr_warning("unsupported BTF_KIND:%u\n", btf_kind(t));
 786		return 1;
 787	}
 788}
 789
 790static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 791				 const struct btf_type *t)
 792{
 793	const struct btf_member *m;
 794	int align, i, bit_sz;
 795	__u16 vlen;
 796
 797	align = btf_align_of(btf, id);
 798	/* size of a non-packed struct has to be a multiple of its alignment*/
 799	if (t->size % align)
 800		return true;
 801
 802	m = btf_members(t);
 803	vlen = btf_vlen(t);
 804	/* all non-bitfield fields have to be naturally aligned */
 805	for (i = 0; i < vlen; i++, m++) {
 806		align = btf_align_of(btf, m->type);
 807		bit_sz = btf_member_bitfield_size(t, i);
 808		if (bit_sz == 0 && m->offset % (8 * align) != 0)
 809			return true;
 810	}
 811
 812	/*
 813	 * if original struct was marked as packed, but its layout is
 814	 * naturally aligned, we'll detect that it's not packed
 815	 */
 816	return false;
 817}
 818
 819static int chip_away_bits(int total, int at_most)
 820{
 821	return total % at_most ? : at_most;
 822}
 823
 824static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 825				      int cur_off, int m_off, int m_bit_sz,
 826				      int align, int lvl)
 827{
 828	int off_diff = m_off - cur_off;
 829	int ptr_bits = sizeof(void *) * 8;
 830
 831	if (off_diff <= 0)
 832		/* no gap */
 833		return;
 834	if (m_bit_sz == 0 && off_diff < align * 8)
 835		/* natural padding will take care of a gap */
 836		return;
 837
 838	while (off_diff > 0) {
 839		const char *pad_type;
 840		int pad_bits;
 841
 842		if (ptr_bits > 32 && off_diff > 32) {
 843			pad_type = "long";
 844			pad_bits = chip_away_bits(off_diff, ptr_bits);
 845		} else if (off_diff > 16) {
 846			pad_type = "int";
 847			pad_bits = chip_away_bits(off_diff, 32);
 848		} else if (off_diff > 8) {
 849			pad_type = "short";
 850			pad_bits = chip_away_bits(off_diff, 16);
 851		} else {
 852			pad_type = "char";
 853			pad_bits = chip_away_bits(off_diff, 8);
 854		}
 855		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 856		off_diff -= pad_bits;
 857	}
 858}
 859
 860static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 861				     const struct btf_type *t)
 862{
 863	btf_dump_printf(d, "%s %s",
 864			btf_is_struct(t) ? "struct" : "union",
 865			btf_dump_type_name(d, id));
 866}
 867
 868static void btf_dump_emit_struct_def(struct btf_dump *d,
 869				     __u32 id,
 870				     const struct btf_type *t,
 871				     int lvl)
 872{
 873	const struct btf_member *m = btf_members(t);
 874	bool is_struct = btf_is_struct(t);
 875	int align, i, packed, off = 0;
 876	__u16 vlen = btf_vlen(t);
 877
 878	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 879	align = packed ? 1 : btf_align_of(d->btf, id);
 880
 881	btf_dump_printf(d, "%s%s%s {",
 882			is_struct ? "struct" : "union",
 883			t->name_off ? " " : "",
 884			btf_dump_type_name(d, id));
 885
 886	for (i = 0; i < vlen; i++, m++) {
 887		const char *fname;
 888		int m_off, m_sz;
 889
 890		fname = btf_name_of(d, m->name_off);
 891		m_sz = btf_member_bitfield_size(t, i);
 892		m_off = btf_member_bit_offset(t, i);
 893		align = packed ? 1 : btf_align_of(d->btf, m->type);
 894
 895		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 896		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 897		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 898
 899		if (m_sz) {
 900			btf_dump_printf(d, ": %d", m_sz);
 901			off = m_off + m_sz;
 902		} else {
 903			m_sz = max(0, btf__resolve_size(d->btf, m->type));
 904			off = m_off + m_sz * 8;
 905		}
 906		btf_dump_printf(d, ";");
 907	}
 908
 909	if (vlen)
 910		btf_dump_printf(d, "\n");
 911	btf_dump_printf(d, "%s}", pfx(lvl));
 912	if (packed)
 913		btf_dump_printf(d, " __attribute__((packed))");
 914}
 915
 916static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 917				   const struct btf_type *t)
 918{
 919	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 920}
 921
 922static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 923				   const struct btf_type *t,
 924				   int lvl)
 925{
 926	const struct btf_enum *v = btf_enum(t);
 927	__u16 vlen = btf_vlen(t);
 928	const char *name;
 929	size_t dup_cnt;
 930	int i;
 931
 932	btf_dump_printf(d, "enum%s%s",
 933			t->name_off ? " " : "",
 934			btf_dump_type_name(d, id));
 935
 936	if (vlen) {
 937		btf_dump_printf(d, " {");
 938		for (i = 0; i < vlen; i++, v++) {
 939			name = btf_name_of(d, v->name_off);
 940			/* enumerators share namespace with typedef idents */
 941			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 942			if (dup_cnt > 1) {
 943				btf_dump_printf(d, "\n%s%s___%zu = %d,",
 944						pfx(lvl + 1), name, dup_cnt,
 945						(__s32)v->val);
 946			} else {
 947				btf_dump_printf(d, "\n%s%s = %d,",
 948						pfx(lvl + 1), name,
 949						(__s32)v->val);
 950			}
 951		}
 952		btf_dump_printf(d, "\n%s}", pfx(lvl));
 953	}
 954}
 955
 956static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 957				  const struct btf_type *t)
 958{
 959	const char *name = btf_dump_type_name(d, id);
 960
 961	if (btf_kflag(t))
 962		btf_dump_printf(d, "union %s", name);
 963	else
 964		btf_dump_printf(d, "struct %s", name);
 965}
 966
 967static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 968				     const struct btf_type *t, int lvl)
 969{
 970	const char *name = btf_dump_ident_name(d, id);
 971
 972	btf_dump_printf(d, "typedef ");
 973	btf_dump_emit_type_decl(d, t->type, name, lvl);
 974}
 975
 976static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
 977{
 978	__u32 *new_stack;
 979	size_t new_cap;
 980
 981	if (d->decl_stack_cnt >= d->decl_stack_cap) {
 982		new_cap = max(16, d->decl_stack_cap * 3 / 2);
 983		new_stack = realloc(d->decl_stack,
 984				    new_cap * sizeof(new_stack[0]));
 985		if (!new_stack)
 986			return -ENOMEM;
 987		d->decl_stack = new_stack;
 988		d->decl_stack_cap = new_cap;
 989	}
 990
 991	d->decl_stack[d->decl_stack_cnt++] = id;
 992
 993	return 0;
 994}
 995
 996/*
 997 * Emit type declaration (e.g., field type declaration in a struct or argument
 998 * declaration in function prototype) in correct C syntax.
 999 *
1000 * For most types it's trivial, but there are few quirky type declaration
1001 * cases worth mentioning:
1002 *   - function prototypes (especially nesting of function prototypes);
1003 *   - arrays;
1004 *   - const/volatile/restrict for pointers vs other types.
1005 *
1006 * For a good discussion of *PARSING* C syntax (as a human), see
1007 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1008 * Ch.3 "Unscrambling Declarations in C".
1009 *
1010 * It won't help with BTF to C conversion much, though, as it's an opposite
1011 * problem. So we came up with this algorithm in reverse to van der Linden's
1012 * parsing algorithm. It goes from structured BTF representation of type
1013 * declaration to a valid compilable C syntax.
1014 *
1015 * For instance, consider this C typedef:
1016 *	typedef const int * const * arr[10] arr_t;
1017 * It will be represented in BTF with this chain of BTF types:
1018 *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1019 *
1020 * Notice how [const] modifier always goes before type it modifies in BTF type
1021 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1022 * the right of pointers, but to the left of other types. There are also other
1023 * quirks, like function pointers, arrays of them, functions returning other
1024 * functions, etc.
1025 *
1026 * We handle that by pushing all the types to a stack, until we hit "terminal"
1027 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1028 * top of a stack, modifiers are handled differently. Array/function pointers
1029 * have also wildly different syntax and how nesting of them are done. See
1030 * code for authoritative definition.
1031 *
1032 * To avoid allocating new stack for each independent chain of BTF types, we
1033 * share one bigger stack, with each chain working only on its own local view
1034 * of a stack frame. Some care is required to "pop" stack frames after
1035 * processing type declaration chain.
1036 */
1037static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1038				    const char *fname, int lvl)
1039{
1040	struct id_stack decl_stack;
1041	const struct btf_type *t;
1042	int err, stack_start;
1043
1044	stack_start = d->decl_stack_cnt;
1045	for (;;) {
1046		err = btf_dump_push_decl_stack_id(d, id);
1047		if (err < 0) {
1048			/*
1049			 * if we don't have enough memory for entire type decl
1050			 * chain, restore stack, emit warning, and try to
1051			 * proceed nevertheless
1052			 */
1053			pr_warning("not enough memory for decl stack:%d", err);
1054			d->decl_stack_cnt = stack_start;
1055			return;
1056		}
1057
1058		/* VOID */
1059		if (id == 0)
1060			break;
1061
1062		t = btf__type_by_id(d->btf, id);
1063		switch (btf_kind(t)) {
1064		case BTF_KIND_PTR:
1065		case BTF_KIND_VOLATILE:
1066		case BTF_KIND_CONST:
1067		case BTF_KIND_RESTRICT:
1068		case BTF_KIND_FUNC_PROTO:
1069			id = t->type;
1070			break;
1071		case BTF_KIND_ARRAY:
1072			id = btf_array(t)->type;
1073			break;
1074		case BTF_KIND_INT:
1075		case BTF_KIND_ENUM:
1076		case BTF_KIND_FWD:
1077		case BTF_KIND_STRUCT:
1078		case BTF_KIND_UNION:
1079		case BTF_KIND_TYPEDEF:
1080			goto done;
1081		default:
1082			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1083				   btf_kind(t), id);
1084			goto done;
1085		}
1086	}
1087done:
1088	/*
1089	 * We might be inside a chain of declarations (e.g., array of function
1090	 * pointers returning anonymous (so inlined) structs, having another
1091	 * array field). Each of those needs its own "stack frame" to handle
1092	 * emitting of declarations. Those stack frames are non-overlapping
1093	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1094	 * handle this set of nested stacks, we create a view corresponding to
1095	 * our own "stack frame" and work with it as an independent stack.
1096	 * We'll need to clean up after emit_type_chain() returns, though.
1097	 */
1098	decl_stack.ids = d->decl_stack + stack_start;
1099	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1100	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1101	/*
1102	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1103	 * frame before returning. But it works with a read-only view into
1104	 * decl_stack, so it doesn't actually pop anything from the
1105	 * perspective of shared btf_dump->decl_stack, per se. We need to
1106	 * reset decl_stack state to how it was before us to avoid it growing
1107	 * all the time.
1108	 */
1109	d->decl_stack_cnt = stack_start;
1110}
1111
1112static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1113{
1114	const struct btf_type *t;
1115	__u32 id;
1116
1117	while (decl_stack->cnt) {
1118		id = decl_stack->ids[decl_stack->cnt - 1];
1119		t = btf__type_by_id(d->btf, id);
1120
1121		switch (btf_kind(t)) {
1122		case BTF_KIND_VOLATILE:
1123			btf_dump_printf(d, "volatile ");
1124			break;
1125		case BTF_KIND_CONST:
1126			btf_dump_printf(d, "const ");
1127			break;
1128		case BTF_KIND_RESTRICT:
1129			btf_dump_printf(d, "restrict ");
1130			break;
1131		default:
1132			return;
1133		}
1134		decl_stack->cnt--;
1135	}
1136}
1137
1138static void btf_dump_emit_name(const struct btf_dump *d,
1139			       const char *name, bool last_was_ptr)
1140{
1141	bool separate = name[0] && !last_was_ptr;
1142
1143	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1144}
1145
1146static void btf_dump_emit_type_chain(struct btf_dump *d,
1147				     struct id_stack *decls,
1148				     const char *fname, int lvl)
1149{
1150	/*
1151	 * last_was_ptr is used to determine if we need to separate pointer
1152	 * asterisk (*) from previous part of type signature with space, so
1153	 * that we get `int ***`, instead of `int * * *`. We default to true
1154	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1155	 * func_proto case. func_proto will start a new emit_type_chain call
1156	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1157	 * don't want to prepend space for that last pointer.
1158	 */
1159	bool last_was_ptr = true;
1160	const struct btf_type *t;
1161	const char *name;
1162	__u16 kind;
1163	__u32 id;
1164
1165	while (decls->cnt) {
1166		id = decls->ids[--decls->cnt];
1167		if (id == 0) {
1168			/* VOID is a special snowflake */
1169			btf_dump_emit_mods(d, decls);
1170			btf_dump_printf(d, "void");
1171			last_was_ptr = false;
1172			continue;
1173		}
1174
1175		t = btf__type_by_id(d->btf, id);
1176		kind = btf_kind(t);
1177
1178		switch (kind) {
1179		case BTF_KIND_INT:
1180			btf_dump_emit_mods(d, decls);
1181			name = btf_name_of(d, t->name_off);
1182			btf_dump_printf(d, "%s", name);
1183			break;
1184		case BTF_KIND_STRUCT:
1185		case BTF_KIND_UNION:
1186			btf_dump_emit_mods(d, decls);
1187			/* inline anonymous struct/union */
1188			if (t->name_off == 0)
1189				btf_dump_emit_struct_def(d, id, t, lvl);
1190			else
1191				btf_dump_emit_struct_fwd(d, id, t);
1192			break;
1193		case BTF_KIND_ENUM:
1194			btf_dump_emit_mods(d, decls);
1195			/* inline anonymous enum */
1196			if (t->name_off == 0)
1197				btf_dump_emit_enum_def(d, id, t, lvl);
1198			else
1199				btf_dump_emit_enum_fwd(d, id, t);
1200			break;
1201		case BTF_KIND_FWD:
1202			btf_dump_emit_mods(d, decls);
1203			btf_dump_emit_fwd_def(d, id, t);
1204			break;
1205		case BTF_KIND_TYPEDEF:
1206			btf_dump_emit_mods(d, decls);
1207			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1208			break;
1209		case BTF_KIND_PTR:
1210			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1211			break;
1212		case BTF_KIND_VOLATILE:
1213			btf_dump_printf(d, " volatile");
1214			break;
1215		case BTF_KIND_CONST:
1216			btf_dump_printf(d, " const");
1217			break;
1218		case BTF_KIND_RESTRICT:
1219			btf_dump_printf(d, " restrict");
1220			break;
1221		case BTF_KIND_ARRAY: {
1222			const struct btf_array *a = btf_array(t);
1223			const struct btf_type *next_t;
1224			__u32 next_id;
1225			bool multidim;
1226			/*
1227			 * GCC has a bug
1228			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1229			 * which causes it to emit extra const/volatile
1230			 * modifiers for an array, if array's element type has
1231			 * const/volatile modifiers. Clang doesn't do that.
1232			 * In general, it doesn't seem very meaningful to have
1233			 * a const/volatile modifier for array, so we are
1234			 * going to silently skip them here.
1235			 */
1236			while (decls->cnt) {
1237				next_id = decls->ids[decls->cnt - 1];
1238				next_t = btf__type_by_id(d->btf, next_id);
1239				if (btf_is_mod(next_t))
1240					decls->cnt--;
1241				else
1242					break;
1243			}
1244
1245			if (decls->cnt == 0) {
1246				btf_dump_emit_name(d, fname, last_was_ptr);
1247				btf_dump_printf(d, "[%u]", a->nelems);
1248				return;
1249			}
1250
1251			next_id = decls->ids[decls->cnt - 1];
1252			next_t = btf__type_by_id(d->btf, next_id);
1253			multidim = btf_is_array(next_t);
1254			/* we need space if we have named non-pointer */
1255			if (fname[0] && !last_was_ptr)
1256				btf_dump_printf(d, " ");
1257			/* no parentheses for multi-dimensional array */
1258			if (!multidim)
1259				btf_dump_printf(d, "(");
1260			btf_dump_emit_type_chain(d, decls, fname, lvl);
1261			if (!multidim)
1262				btf_dump_printf(d, ")");
1263			btf_dump_printf(d, "[%u]", a->nelems);
1264			return;
1265		}
1266		case BTF_KIND_FUNC_PROTO: {
1267			const struct btf_param *p = btf_params(t);
1268			__u16 vlen = btf_vlen(t);
1269			int i;
1270
1271			btf_dump_emit_mods(d, decls);
1272			if (decls->cnt) {
1273				btf_dump_printf(d, " (");
1274				btf_dump_emit_type_chain(d, decls, fname, lvl);
1275				btf_dump_printf(d, ")");
1276			} else {
1277				btf_dump_emit_name(d, fname, last_was_ptr);
1278			}
1279			btf_dump_printf(d, "(");
1280			/*
1281			 * Clang for BPF target generates func_proto with no
1282			 * args as a func_proto with a single void arg (e.g.,
1283			 * `int (*f)(void)` vs just `int (*f)()`). We are
1284			 * going to pretend there are no args for such case.
1285			 */
1286			if (vlen == 1 && p->type == 0) {
1287				btf_dump_printf(d, ")");
1288				return;
1289			}
1290
1291			for (i = 0; i < vlen; i++, p++) {
1292				if (i > 0)
1293					btf_dump_printf(d, ", ");
1294
1295				/* last arg of type void is vararg */
1296				if (i == vlen - 1 && p->type == 0) {
1297					btf_dump_printf(d, "...");
1298					break;
1299				}
1300
1301				name = btf_name_of(d, p->name_off);
1302				btf_dump_emit_type_decl(d, p->type, name, lvl);
1303			}
1304
1305			btf_dump_printf(d, ")");
1306			return;
1307		}
1308		default:
1309			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1310				   kind, id);
1311			return;
1312		}
1313
1314		last_was_ptr = kind == BTF_KIND_PTR;
1315	}
1316
1317	btf_dump_emit_name(d, fname, last_was_ptr);
1318}
1319
1320/* return number of duplicates (occurrences) of a given name */
1321static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1322				 const char *orig_name)
1323{
1324	size_t dup_cnt = 0;
1325
1326	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1327	dup_cnt++;
1328	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1329
1330	return dup_cnt;
1331}
1332
1333static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1334					 struct hashmap *name_map)
1335{
1336	struct btf_dump_type_aux_state *s = &d->type_states[id];
1337	const struct btf_type *t = btf__type_by_id(d->btf, id);
1338	const char *orig_name = btf_name_of(d, t->name_off);
1339	const char **cached_name = &d->cached_names[id];
1340	size_t dup_cnt;
1341
1342	if (t->name_off == 0)
1343		return "";
1344
1345	if (s->name_resolved)
1346		return *cached_name ? *cached_name : orig_name;
1347
1348	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1349	if (dup_cnt > 1) {
1350		const size_t max_len = 256;
1351		char new_name[max_len];
1352
1353		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1354		*cached_name = strdup(new_name);
1355	}
1356
1357	s->name_resolved = 1;
1358	return *cached_name ? *cached_name : orig_name;
1359}
1360
1361static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1362{
1363	return btf_dump_resolve_name(d, id, d->type_names);
1364}
1365
1366static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1367{
1368	return btf_dump_resolve_name(d, id, d->ident_names);
1369}