Linux Audio

Check our new training course

Loading...
v3.15
 
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
 
 
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
 
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE	(1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE	0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48	void *object = assoc_array_ptr_to_leaf(x);
  49	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53	if (key->type == &key_type_keyring)
  54		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55	return key;
  56}
  57
  58static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
 
 
 
  62{
  63	unsigned bucket = 0;
  64
  65	for (; *desc; desc++)
  66		bucket += (unsigned char)*desc;
  67
  68	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
 
 
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
 
 
  76static int keyring_instantiate(struct key *keyring,
  77			       struct key_preparsed_payload *prep);
  78static void keyring_revoke(struct key *keyring);
  79static void keyring_destroy(struct key *keyring);
  80static void keyring_describe(const struct key *keyring, struct seq_file *m);
  81static long keyring_read(const struct key *keyring,
  82			 char __user *buffer, size_t buflen);
  83
  84struct key_type key_type_keyring = {
  85	.name		= "keyring",
  86	.def_datalen	= 0,
 
 
  87	.instantiate	= keyring_instantiate,
  88	.match		= user_match,
  89	.revoke		= keyring_revoke,
  90	.destroy	= keyring_destroy,
  91	.describe	= keyring_describe,
  92	.read		= keyring_read,
  93};
  94EXPORT_SYMBOL(key_type_keyring);
  95
  96/*
  97 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  98 * introducing a cycle.
  99 */
 100static DECLARE_RWSEM(keyring_serialise_link_sem);
 101
 102/*
 103 * Publish the name of a keyring so that it can be found by name (if it has
 104 * one).
 105 */
 106static void keyring_publish_name(struct key *keyring)
 107{
 108	int bucket;
 109
 110	if (keyring->description) {
 111		bucket = keyring_hash(keyring->description);
 112
 
 
 
 113		write_lock(&keyring_name_lock);
 114
 115		if (!keyring_name_hash[bucket].next)
 116			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 117
 118		list_add_tail(&keyring->type_data.link,
 119			      &keyring_name_hash[bucket]);
 120
 121		write_unlock(&keyring_name_lock);
 122	}
 123}
 124
 125/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126 * Initialise a keyring.
 127 *
 128 * Returns 0 on success, -EINVAL if given any data.
 129 */
 130static int keyring_instantiate(struct key *keyring,
 131			       struct key_preparsed_payload *prep)
 132{
 133	int ret;
 134
 135	ret = -EINVAL;
 136	if (prep->datalen == 0) {
 137		assoc_array_init(&keyring->keys);
 138		/* make the keyring available by name if it has one */
 139		keyring_publish_name(keyring);
 140		ret = 0;
 141	}
 142
 143	return ret;
 144}
 145
 146/*
 147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 148 * fold the carry back too, but that requires inline asm.
 149 */
 150static u64 mult_64x32_and_fold(u64 x, u32 y)
 151{
 152	u64 hi = (u64)(u32)(x >> 32) * y;
 153	u64 lo = (u64)(u32)(x) * y;
 154	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 155}
 156
 157/*
 158 * Hash a key type and description.
 159 */
 160static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 161{
 162	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 163	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 164	const char *description = index_key->description;
 165	unsigned long hash, type;
 166	u32 piece;
 167	u64 acc;
 168	int n, desc_len = index_key->desc_len;
 169
 170	type = (unsigned long)index_key->type;
 171
 172	acc = mult_64x32_and_fold(type, desc_len + 13);
 173	acc = mult_64x32_and_fold(acc, 9207);
 
 
 
 
 174	for (;;) {
 175		n = desc_len;
 176		if (n <= 0)
 177			break;
 178		if (n > 4)
 179			n = 4;
 180		piece = 0;
 181		memcpy(&piece, description, n);
 182		description += n;
 183		desc_len -= n;
 184		acc = mult_64x32_and_fold(acc, piece);
 185		acc = mult_64x32_and_fold(acc, 9207);
 186	}
 187
 188	/* Fold the hash down to 32 bits if need be. */
 189	hash = acc;
 190	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 191		hash ^= acc >> 32;
 192
 193	/* Squidge all the keyrings into a separate part of the tree to
 194	 * ordinary keys by making sure the lowest level segment in the hash is
 195	 * zero for keyrings and non-zero otherwise.
 196	 */
 197	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 198		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 199	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 200		return (hash + (hash << level_shift)) & ~fan_mask;
 201	return hash;
 202}
 203
 204/*
 205 * Build the next index key chunk.
 206 *
 207 * On 32-bit systems the index key is laid out as:
 208 *
 209 *	0	4	5	9...
 210 *	hash	desclen	typeptr	desc[]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211 *
 212 * On 64-bit systems:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213 *
 214 *	0	8	9	17...
 215 *	hash	desclen	typeptr	desc[]
 
 
 
 
 
 
 
 
 
 
 
 216 *
 217 * We return it one word-sized chunk at a time.
 218 */
 219static unsigned long keyring_get_key_chunk(const void *data, int level)
 220{
 221	const struct keyring_index_key *index_key = data;
 222	unsigned long chunk = 0;
 223	long offset = 0;
 224	int desc_len = index_key->desc_len, n = sizeof(chunk);
 225
 226	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 227	switch (level) {
 228	case 0:
 229		return hash_key_type_and_desc(index_key);
 230	case 1:
 231		return ((unsigned long)index_key->type << 8) | desc_len;
 232	case 2:
 233		if (desc_len == 0)
 234			return (u8)((unsigned long)index_key->type >>
 235				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 236		n--;
 237		offset = 1;
 238	default:
 239		offset += sizeof(chunk) - 1;
 240		offset += (level - 3) * sizeof(chunk);
 241		if (offset >= desc_len)
 242			return 0;
 243		desc_len -= offset;
 
 
 
 244		if (desc_len > n)
 245			desc_len = n;
 246		offset += desc_len;
 247		do {
 248			chunk <<= 8;
 249			chunk |= ((u8*)index_key->description)[--offset];
 250		} while (--desc_len > 0);
 251
 252		if (level == 2) {
 253			chunk <<= 8;
 254			chunk |= (u8)((unsigned long)index_key->type >>
 255				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 256		}
 257		return chunk;
 258	}
 259}
 260
 261static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 262{
 263	const struct key *key = keyring_ptr_to_key(object);
 264	return keyring_get_key_chunk(&key->index_key, level);
 265}
 266
 267static bool keyring_compare_object(const void *object, const void *data)
 268{
 269	const struct keyring_index_key *index_key = data;
 270	const struct key *key = keyring_ptr_to_key(object);
 271
 272	return key->index_key.type == index_key->type &&
 
 273		key->index_key.desc_len == index_key->desc_len &&
 274		memcmp(key->index_key.description, index_key->description,
 275		       index_key->desc_len) == 0;
 276}
 277
 278/*
 279 * Compare the index keys of a pair of objects and determine the bit position
 280 * at which they differ - if they differ.
 281 */
 282static int keyring_diff_objects(const void *object, const void *data)
 283{
 284	const struct key *key_a = keyring_ptr_to_key(object);
 285	const struct keyring_index_key *a = &key_a->index_key;
 286	const struct keyring_index_key *b = data;
 287	unsigned long seg_a, seg_b;
 288	int level, i;
 289
 290	level = 0;
 291	seg_a = hash_key_type_and_desc(a);
 292	seg_b = hash_key_type_and_desc(b);
 293	if ((seg_a ^ seg_b) != 0)
 294		goto differ;
 
 295
 296	/* The number of bits contributed by the hash is controlled by a
 297	 * constant in the assoc_array headers.  Everything else thereafter we
 298	 * can deal with as being machine word-size dependent.
 299	 */
 300	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 301	seg_a = a->desc_len;
 302	seg_b = b->desc_len;
 303	if ((seg_a ^ seg_b) != 0)
 304		goto differ;
 
 305
 306	/* The next bit may not work on big endian */
 307	level++;
 308	seg_a = (unsigned long)a->type;
 309	seg_b = (unsigned long)b->type;
 310	if ((seg_a ^ seg_b) != 0)
 311		goto differ;
 
 312
 
 
 
 
 313	level += sizeof(unsigned long);
 314	if (a->desc_len == 0)
 315		goto same;
 316
 317	i = 0;
 318	if (((unsigned long)a->description | (unsigned long)b->description) &
 319	    (sizeof(unsigned long) - 1)) {
 320		do {
 321			seg_a = *(unsigned long *)(a->description + i);
 322			seg_b = *(unsigned long *)(b->description + i);
 323			if ((seg_a ^ seg_b) != 0)
 324				goto differ_plus_i;
 325			i += sizeof(unsigned long);
 326		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 327	}
 328
 329	for (; i < a->desc_len; i++) {
 330		seg_a = *(unsigned char *)(a->description + i);
 331		seg_b = *(unsigned char *)(b->description + i);
 332		if ((seg_a ^ seg_b) != 0)
 333			goto differ_plus_i;
 334	}
 335
 336same:
 337	return -1;
 338
 339differ_plus_i:
 340	level += i;
 341differ:
 342	i = level * 8 + __ffs(seg_a ^ seg_b);
 343	return i;
 344}
 345
 346/*
 347 * Free an object after stripping the keyring flag off of the pointer.
 348 */
 349static void keyring_free_object(void *object)
 350{
 351	key_put(keyring_ptr_to_key(object));
 352}
 353
 354/*
 355 * Operations for keyring management by the index-tree routines.
 356 */
 357static const struct assoc_array_ops keyring_assoc_array_ops = {
 358	.get_key_chunk		= keyring_get_key_chunk,
 359	.get_object_key_chunk	= keyring_get_object_key_chunk,
 360	.compare_object		= keyring_compare_object,
 361	.diff_objects		= keyring_diff_objects,
 362	.free_object		= keyring_free_object,
 363};
 364
 365/*
 366 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 367 * and dispose of its data.
 368 *
 369 * The garbage collector detects the final key_put(), removes the keyring from
 370 * the serial number tree and then does RCU synchronisation before coming here,
 371 * so we shouldn't need to worry about code poking around here with the RCU
 372 * readlock held by this time.
 373 */
 374static void keyring_destroy(struct key *keyring)
 375{
 376	if (keyring->description) {
 377		write_lock(&keyring_name_lock);
 378
 379		if (keyring->type_data.link.next != NULL &&
 380		    !list_empty(&keyring->type_data.link))
 381			list_del(&keyring->type_data.link);
 382
 383		write_unlock(&keyring_name_lock);
 384	}
 385
 
 
 
 
 
 
 
 386	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 387}
 388
 389/*
 390 * Describe a keyring for /proc.
 391 */
 392static void keyring_describe(const struct key *keyring, struct seq_file *m)
 393{
 394	if (keyring->description)
 395		seq_puts(m, keyring->description);
 396	else
 397		seq_puts(m, "[anon]");
 398
 399	if (key_is_instantiated(keyring)) {
 400		if (keyring->keys.nr_leaves_on_tree != 0)
 401			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 402		else
 403			seq_puts(m, ": empty");
 404	}
 405}
 406
 407struct keyring_read_iterator_context {
 408	size_t			qty;
 409	size_t			count;
 410	key_serial_t __user	*buffer;
 411};
 412
 413static int keyring_read_iterator(const void *object, void *data)
 414{
 415	struct keyring_read_iterator_context *ctx = data;
 416	const struct key *key = keyring_ptr_to_key(object);
 417	int ret;
 418
 419	kenter("{%s,%d},,{%zu/%zu}",
 420	       key->type->name, key->serial, ctx->count, ctx->qty);
 421
 422	if (ctx->count >= ctx->qty)
 423		return 1;
 424
 425	ret = put_user(key->serial, ctx->buffer);
 426	if (ret < 0)
 427		return ret;
 428	ctx->buffer++;
 429	ctx->count += sizeof(key->serial);
 430	return 0;
 431}
 432
 433/*
 434 * Read a list of key IDs from the keyring's contents in binary form
 435 *
 436 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 437 * from modifying it under us - which could cause us to read key IDs multiple
 438 * times.
 439 */
 440static long keyring_read(const struct key *keyring,
 441			 char __user *buffer, size_t buflen)
 442{
 443	struct keyring_read_iterator_context ctx;
 444	unsigned long nr_keys;
 445	int ret;
 446
 447	kenter("{%d},,%zu", key_serial(keyring), buflen);
 448
 449	if (buflen & (sizeof(key_serial_t) - 1))
 450		return -EINVAL;
 451
 452	nr_keys = keyring->keys.nr_leaves_on_tree;
 453	if (nr_keys == 0)
 454		return 0;
 455
 456	/* Calculate how much data we could return */
 457	ctx.qty = nr_keys * sizeof(key_serial_t);
 458
 459	if (!buffer || !buflen)
 460		return ctx.qty;
 461
 462	if (buflen > ctx.qty)
 463		ctx.qty = buflen;
 464
 465	/* Copy the IDs of the subscribed keys into the buffer */
 466	ctx.buffer = (key_serial_t __user *)buffer;
 467	ctx.count = 0;
 468	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
 469	if (ret < 0) {
 470		kleave(" = %d [iterate]", ret);
 471		return ret;
 472	}
 473
 474	kleave(" = %zu [ok]", ctx.count);
 475	return ctx.count;
 
 
 
 
 
 476}
 477
 478/*
 479 * Allocate a keyring and link into the destination keyring.
 480 */
 481struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 482			  const struct cred *cred, key_perm_t perm,
 483			  unsigned long flags, struct key *dest)
 
 
 484{
 485	struct key *keyring;
 486	int ret;
 487
 488	keyring = key_alloc(&key_type_keyring, description,
 489			    uid, gid, cred, perm, flags);
 490	if (!IS_ERR(keyring)) {
 491		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 492		if (ret < 0) {
 493			key_put(keyring);
 494			keyring = ERR_PTR(ret);
 495		}
 496	}
 497
 498	return keyring;
 499}
 500EXPORT_SYMBOL(keyring_alloc);
 501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502/*
 503 * Iteration function to consider each key found.
 504 */
 505static int keyring_search_iterator(const void *object, void *iterator_data)
 506{
 507	struct keyring_search_context *ctx = iterator_data;
 508	const struct key *key = keyring_ptr_to_key(object);
 509	unsigned long kflags = key->flags;
 
 510
 511	kenter("{%d}", key->serial);
 512
 513	/* ignore keys not of this type */
 514	if (key->type != ctx->index_key.type) {
 515		kleave(" = 0 [!type]");
 516		return 0;
 517	}
 518
 519	/* skip invalidated, revoked and expired keys */
 520	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 
 
 521		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 522			      (1 << KEY_FLAG_REVOKED))) {
 523			ctx->result = ERR_PTR(-EKEYREVOKED);
 524			kleave(" = %d [invrev]", ctx->skipped_ret);
 525			goto skipped;
 526		}
 527
 528		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
 529			ctx->result = ERR_PTR(-EKEYEXPIRED);
 
 530			kleave(" = %d [expire]", ctx->skipped_ret);
 531			goto skipped;
 532		}
 533	}
 534
 535	/* keys that don't match */
 536	if (!ctx->match(key, ctx->match_data)) {
 537		kleave(" = 0 [!match]");
 538		return 0;
 539	}
 540
 541	/* key must have search permissions */
 542	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 543	    key_task_permission(make_key_ref(key, ctx->possessed),
 544				ctx->cred, KEY_SEARCH) < 0) {
 545		ctx->result = ERR_PTR(-EACCES);
 546		kleave(" = %d [!perm]", ctx->skipped_ret);
 547		goto skipped;
 548	}
 549
 550	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 551		/* we set a different error code if we pass a negative key */
 552		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 553			smp_rmb();
 554			ctx->result = ERR_PTR(key->type_data.reject_error);
 555			kleave(" = %d [neg]", ctx->skipped_ret);
 556			goto skipped;
 557		}
 558	}
 559
 560	/* Found */
 561	ctx->result = make_key_ref(key, ctx->possessed);
 562	kleave(" = 1 [found]");
 563	return 1;
 564
 565skipped:
 566	return ctx->skipped_ret;
 567}
 568
 569/*
 570 * Search inside a keyring for a key.  We can search by walking to it
 571 * directly based on its index-key or we can iterate over the entire
 572 * tree looking for it, based on the match function.
 573 */
 574static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 575{
 576	if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
 577	    KEYRING_SEARCH_LOOKUP_DIRECT) {
 578		const void *object;
 579
 580		object = assoc_array_find(&keyring->keys,
 581					  &keyring_assoc_array_ops,
 582					  &ctx->index_key);
 583		return object ? ctx->iterator(object, ctx) : 0;
 584	}
 585	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 586}
 587
 588/*
 589 * Search a tree of keyrings that point to other keyrings up to the maximum
 590 * depth.
 591 */
 592static bool search_nested_keyrings(struct key *keyring,
 593				   struct keyring_search_context *ctx)
 594{
 595	struct {
 596		struct key *keyring;
 597		struct assoc_array_node *node;
 598		int slot;
 599	} stack[KEYRING_SEARCH_MAX_DEPTH];
 600
 601	struct assoc_array_shortcut *shortcut;
 602	struct assoc_array_node *node;
 603	struct assoc_array_ptr *ptr;
 604	struct key *key;
 605	int sp = 0, slot;
 606
 607	kenter("{%d},{%s,%s}",
 608	       keyring->serial,
 609	       ctx->index_key.type->name,
 610	       ctx->index_key.description);
 611
 
 
 
 
 612	if (ctx->index_key.description)
 613		ctx->index_key.desc_len = strlen(ctx->index_key.description);
 614
 615	/* Check to see if this top-level keyring is what we are looking for
 616	 * and whether it is valid or not.
 617	 */
 618	if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
 619	    keyring_compare_object(keyring, &ctx->index_key)) {
 620		ctx->skipped_ret = 2;
 621		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
 622		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 623		case 1:
 624			goto found;
 625		case 2:
 626			return false;
 627		default:
 628			break;
 629		}
 630	}
 631
 632	ctx->skipped_ret = 0;
 633	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
 634		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
 635
 636	/* Start processing a new keyring */
 637descend_to_keyring:
 638	kdebug("descend to %d", keyring->serial);
 639	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 640			      (1 << KEY_FLAG_REVOKED)))
 641		goto not_this_keyring;
 642
 643	/* Search through the keys in this keyring before its searching its
 644	 * subtrees.
 645	 */
 646	if (search_keyring(keyring, ctx))
 647		goto found;
 648
 649	/* Then manually iterate through the keyrings nested in this one.
 650	 *
 651	 * Start from the root node of the index tree.  Because of the way the
 652	 * hash function has been set up, keyrings cluster on the leftmost
 653	 * branch of the root node (root slot 0) or in the root node itself.
 654	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 655	 * slots 1-15).
 656	 */
 657	ptr = ACCESS_ONCE(keyring->keys.root);
 
 
 
 658	if (!ptr)
 659		goto not_this_keyring;
 660
 661	if (assoc_array_ptr_is_shortcut(ptr)) {
 662		/* If the root is a shortcut, either the keyring only contains
 663		 * keyring pointers (everything clusters behind root slot 0) or
 664		 * doesn't contain any keyring pointers.
 665		 */
 666		shortcut = assoc_array_ptr_to_shortcut(ptr);
 667		smp_read_barrier_depends();
 668		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 669			goto not_this_keyring;
 670
 671		ptr = ACCESS_ONCE(shortcut->next_node);
 672		node = assoc_array_ptr_to_node(ptr);
 673		goto begin_node;
 674	}
 675
 676	node = assoc_array_ptr_to_node(ptr);
 677	smp_read_barrier_depends();
 678
 679	ptr = node->slots[0];
 680	if (!assoc_array_ptr_is_meta(ptr))
 681		goto begin_node;
 682
 683descend_to_node:
 684	/* Descend to a more distal node in this keyring's content tree and go
 685	 * through that.
 686	 */
 687	kdebug("descend");
 688	if (assoc_array_ptr_is_shortcut(ptr)) {
 689		shortcut = assoc_array_ptr_to_shortcut(ptr);
 690		smp_read_barrier_depends();
 691		ptr = ACCESS_ONCE(shortcut->next_node);
 692		BUG_ON(!assoc_array_ptr_is_node(ptr));
 693	}
 694	node = assoc_array_ptr_to_node(ptr);
 695
 696begin_node:
 697	kdebug("begin_node");
 698	smp_read_barrier_depends();
 699	slot = 0;
 700ascend_to_node:
 701	/* Go through the slots in a node */
 702	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 703		ptr = ACCESS_ONCE(node->slots[slot]);
 704
 705		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 706			goto descend_to_node;
 707
 708		if (!keyring_ptr_is_keyring(ptr))
 709			continue;
 710
 711		key = keyring_ptr_to_key(ptr);
 712
 713		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 714			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 715				ctx->result = ERR_PTR(-ELOOP);
 716				return false;
 717			}
 718			goto not_this_keyring;
 719		}
 720
 721		/* Search a nested keyring */
 722		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 723		    key_task_permission(make_key_ref(key, ctx->possessed),
 724					ctx->cred, KEY_SEARCH) < 0)
 725			continue;
 726
 727		/* stack the current position */
 728		stack[sp].keyring = keyring;
 729		stack[sp].node = node;
 730		stack[sp].slot = slot;
 731		sp++;
 732
 733		/* begin again with the new keyring */
 734		keyring = key;
 735		goto descend_to_keyring;
 736	}
 737
 738	/* We've dealt with all the slots in the current node, so now we need
 739	 * to ascend to the parent and continue processing there.
 740	 */
 741	ptr = ACCESS_ONCE(node->back_pointer);
 742	slot = node->parent_slot;
 743
 744	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 745		shortcut = assoc_array_ptr_to_shortcut(ptr);
 746		smp_read_barrier_depends();
 747		ptr = ACCESS_ONCE(shortcut->back_pointer);
 748		slot = shortcut->parent_slot;
 749	}
 750	if (!ptr)
 751		goto not_this_keyring;
 752	node = assoc_array_ptr_to_node(ptr);
 753	smp_read_barrier_depends();
 754	slot++;
 755
 756	/* If we've ascended to the root (zero backpointer), we must have just
 757	 * finished processing the leftmost branch rather than the root slots -
 758	 * so there can't be any more keyrings for us to find.
 759	 */
 760	if (node->back_pointer) {
 761		kdebug("ascend %d", slot);
 762		goto ascend_to_node;
 763	}
 764
 765	/* The keyring we're looking at was disqualified or didn't contain a
 766	 * matching key.
 767	 */
 768not_this_keyring:
 769	kdebug("not_this_keyring %d", sp);
 770	if (sp <= 0) {
 771		kleave(" = false");
 772		return false;
 773	}
 774
 775	/* Resume the processing of a keyring higher up in the tree */
 776	sp--;
 777	keyring = stack[sp].keyring;
 778	node = stack[sp].node;
 779	slot = stack[sp].slot + 1;
 780	kdebug("ascend to %d [%d]", keyring->serial, slot);
 781	goto ascend_to_node;
 782
 783	/* We found a viable match */
 784found:
 785	key = key_ref_to_ptr(ctx->result);
 786	key_check(key);
 787	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 788		key->last_used_at = ctx->now.tv_sec;
 789		keyring->last_used_at = ctx->now.tv_sec;
 790		while (sp > 0)
 791			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 792	}
 793	kleave(" = true");
 794	return true;
 795}
 796
 797/**
 798 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 799 * @keyring_ref: A pointer to the keyring with possession indicator.
 800 * @ctx: The keyring search context.
 801 *
 802 * Search the supplied keyring tree for a key that matches the criteria given.
 803 * The root keyring and any linked keyrings must grant Search permission to the
 804 * caller to be searchable and keys can only be found if they too grant Search
 805 * to the caller. The possession flag on the root keyring pointer controls use
 806 * of the possessor bits in permissions checking of the entire tree.  In
 807 * addition, the LSM gets to forbid keyring searches and key matches.
 808 *
 809 * The search is performed as a breadth-then-depth search up to the prescribed
 810 * limit (KEYRING_SEARCH_MAX_DEPTH).
 
 
 811 *
 812 * Keys are matched to the type provided and are then filtered by the match
 813 * function, which is given the description to use in any way it sees fit.  The
 814 * match function may use any attributes of a key that it wishes to to
 815 * determine the match.  Normally the match function from the key type would be
 816 * used.
 817 *
 818 * RCU can be used to prevent the keyring key lists from disappearing without
 819 * the need to take lots of locks.
 820 *
 821 * Returns a pointer to the found key and increments the key usage count if
 822 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 823 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 824 * specified keyring wasn't a keyring.
 825 *
 826 * In the case of a successful return, the possession attribute from
 827 * @keyring_ref is propagated to the returned key reference.
 828 */
 829key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 830			     struct keyring_search_context *ctx)
 831{
 832	struct key *keyring;
 833	long err;
 834
 835	ctx->iterator = keyring_search_iterator;
 836	ctx->possessed = is_key_possessed(keyring_ref);
 837	ctx->result = ERR_PTR(-EAGAIN);
 838
 839	keyring = key_ref_to_ptr(keyring_ref);
 840	key_check(keyring);
 841
 842	if (keyring->type != &key_type_keyring)
 843		return ERR_PTR(-ENOTDIR);
 844
 845	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 846		err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
 847		if (err < 0)
 848			return ERR_PTR(err);
 849	}
 850
 851	rcu_read_lock();
 852	ctx->now = current_kernel_time();
 853	if (search_nested_keyrings(keyring, ctx))
 854		__key_get(key_ref_to_ptr(ctx->result));
 855	rcu_read_unlock();
 856	return ctx->result;
 857}
 858
 859/**
 860 * keyring_search - Search the supplied keyring tree for a matching key
 861 * @keyring: The root of the keyring tree to be searched.
 862 * @type: The type of keyring we want to find.
 863 * @description: The name of the keyring we want to find.
 
 864 *
 865 * As keyring_search_aux() above, but using the current task's credentials and
 866 * type's default matching function and preferred search method.
 867 */
 868key_ref_t keyring_search(key_ref_t keyring,
 869			 struct key_type *type,
 870			 const char *description)
 
 871{
 872	struct keyring_search_context ctx = {
 873		.index_key.type		= type,
 874		.index_key.description	= description,
 
 875		.cred			= current_cred(),
 876		.match			= type->match,
 877		.match_data		= description,
 878		.flags			= (type->def_lookup_type |
 879					   KEYRING_SEARCH_DO_STATE_CHECK),
 880	};
 
 
 881
 882	if (!ctx.match)
 883		return ERR_PTR(-ENOKEY);
 
 
 
 
 
 
 
 
 
 884
 885	return keyring_search_aux(keyring, &ctx);
 
 
 886}
 887EXPORT_SYMBOL(keyring_search);
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889/*
 890 * Search the given keyring for a key that might be updated.
 891 *
 892 * The caller must guarantee that the keyring is a keyring and that the
 893 * permission is granted to modify the keyring as no check is made here.  The
 894 * caller must also hold a lock on the keyring semaphore.
 895 *
 896 * Returns a pointer to the found key with usage count incremented if
 897 * successful and returns NULL if not found.  Revoked and invalidated keys are
 898 * skipped over.
 899 *
 900 * If successful, the possession indicator is propagated from the keyring ref
 901 * to the returned key reference.
 902 */
 903key_ref_t find_key_to_update(key_ref_t keyring_ref,
 904			     const struct keyring_index_key *index_key)
 905{
 906	struct key *keyring, *key;
 907	const void *object;
 908
 909	keyring = key_ref_to_ptr(keyring_ref);
 910
 911	kenter("{%d},{%s,%s}",
 912	       keyring->serial, index_key->type->name, index_key->description);
 913
 914	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 915				  index_key);
 916
 917	if (object)
 918		goto found;
 919
 920	kleave(" = NULL");
 921	return NULL;
 922
 923found:
 924	key = keyring_ptr_to_key(object);
 925	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 926			  (1 << KEY_FLAG_REVOKED))) {
 927		kleave(" = NULL [x]");
 928		return NULL;
 929	}
 930	__key_get(key);
 931	kleave(" = {%d}", key->serial);
 932	return make_key_ref(key, is_key_possessed(keyring_ref));
 933}
 934
 935/*
 936 * Find a keyring with the specified name.
 937 *
 938 * All named keyrings in the current user namespace are searched, provided they
 939 * grant Search permission directly to the caller (unless this check is
 940 * skipped).  Keyrings whose usage points have reached zero or who have been
 941 * revoked are skipped.
 942 *
 943 * Returns a pointer to the keyring with the keyring's refcount having being
 944 * incremented on success.  -ENOKEY is returned if a key could not be found.
 945 */
 946struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
 947{
 
 948	struct key *keyring;
 949	int bucket;
 950
 951	if (!name)
 952		return ERR_PTR(-EINVAL);
 953
 954	bucket = keyring_hash(name);
 955
 956	read_lock(&keyring_name_lock);
 957
 958	if (keyring_name_hash[bucket].next) {
 959		/* search this hash bucket for a keyring with a matching name
 960		 * that's readable and that hasn't been revoked */
 961		list_for_each_entry(keyring,
 962				    &keyring_name_hash[bucket],
 963				    type_data.link
 964				    ) {
 965			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
 966				continue;
 967
 968			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 969				continue;
 970
 971			if (strcmp(keyring->description, name) != 0)
 972				continue;
 973
 974			if (!skip_perm_check &&
 975			    key_permission(make_key_ref(keyring, 0),
 976					   KEY_SEARCH) < 0)
 977				continue;
 978
 979			/* we've got a match but we might end up racing with
 980			 * key_cleanup() if the keyring is currently 'dead'
 981			 * (ie. it has a zero usage count) */
 982			if (!atomic_inc_not_zero(&keyring->usage))
 983				continue;
 984			keyring->last_used_at = current_kernel_time().tv_sec;
 985			goto out;
 986		}
 
 
 
 
 
 
 
 
 987	}
 988
 989	keyring = ERR_PTR(-ENOKEY);
 990out:
 991	read_unlock(&keyring_name_lock);
 992	return keyring;
 993}
 994
 995static int keyring_detect_cycle_iterator(const void *object,
 996					 void *iterator_data)
 997{
 998	struct keyring_search_context *ctx = iterator_data;
 999	const struct key *key = keyring_ptr_to_key(object);
1000
1001	kenter("{%d}", key->serial);
1002
1003	/* We might get a keyring with matching index-key that is nonetheless a
1004	 * different keyring. */
1005	if (key != ctx->match_data)
1006		return 0;
1007
1008	ctx->result = ERR_PTR(-EDEADLK);
1009	return 1;
1010}
1011
1012/*
1013 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1014 * tree A at the topmost level (ie: as a direct child of A).
1015 *
1016 * Since we are adding B to A at the top level, checking for cycles should just
1017 * be a matter of seeing if node A is somewhere in tree B.
1018 */
1019static int keyring_detect_cycle(struct key *A, struct key *B)
1020{
1021	struct keyring_search_context ctx = {
1022		.index_key	= A->index_key,
1023		.match_data	= A,
1024		.iterator	= keyring_detect_cycle_iterator,
1025		.flags		= (KEYRING_SEARCH_LOOKUP_DIRECT |
1026				   KEYRING_SEARCH_NO_STATE_CHECK |
1027				   KEYRING_SEARCH_NO_UPDATE_TIME |
1028				   KEYRING_SEARCH_NO_CHECK_PERM |
1029				   KEYRING_SEARCH_DETECT_TOO_DEEP),
 
1030	};
1031
1032	rcu_read_lock();
1033	search_nested_keyrings(B, &ctx);
1034	rcu_read_unlock();
1035	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1036}
1037
1038/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039 * Preallocate memory so that a key can be linked into to a keyring.
1040 */
1041int __key_link_begin(struct key *keyring,
1042		     const struct keyring_index_key *index_key,
1043		     struct assoc_array_edit **_edit)
1044	__acquires(&keyring->sem)
1045	__acquires(&keyring_serialise_link_sem)
1046{
1047	struct assoc_array_edit *edit;
1048	int ret;
1049
1050	kenter("%d,%s,%s,",
1051	       keyring->serial, index_key->type->name, index_key->description);
1052
1053	BUG_ON(index_key->desc_len == 0);
 
1054
1055	if (keyring->type != &key_type_keyring)
1056		return -ENOTDIR;
1057
1058	down_write(&keyring->sem);
1059
1060	ret = -EKEYREVOKED;
1061	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1062		goto error_krsem;
1063
1064	/* serialise link/link calls to prevent parallel calls causing a cycle
1065	 * when linking two keyring in opposite orders */
1066	if (index_key->type == &key_type_keyring)
1067		down_write(&keyring_serialise_link_sem);
1068
1069	/* Create an edit script that will insert/replace the key in the
1070	 * keyring tree.
1071	 */
1072	edit = assoc_array_insert(&keyring->keys,
1073				  &keyring_assoc_array_ops,
1074				  index_key,
1075				  NULL);
1076	if (IS_ERR(edit)) {
1077		ret = PTR_ERR(edit);
1078		goto error_sem;
1079	}
1080
1081	/* If we're not replacing a link in-place then we're going to need some
1082	 * extra quota.
1083	 */
1084	if (!edit->dead_leaf) {
1085		ret = key_payload_reserve(keyring,
1086					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1087		if (ret < 0)
1088			goto error_cancel;
1089	}
1090
1091	*_edit = edit;
1092	kleave(" = 0");
1093	return 0;
1094
1095error_cancel:
1096	assoc_array_cancel_edit(edit);
1097error_sem:
1098	if (index_key->type == &key_type_keyring)
1099		up_write(&keyring_serialise_link_sem);
1100error_krsem:
1101	up_write(&keyring->sem);
1102	kleave(" = %d", ret);
1103	return ret;
1104}
1105
1106/*
1107 * Check already instantiated keys aren't going to be a problem.
1108 *
1109 * The caller must have called __key_link_begin(). Don't need to call this for
1110 * keys that were created since __key_link_begin() was called.
1111 */
1112int __key_link_check_live_key(struct key *keyring, struct key *key)
1113{
1114	if (key->type == &key_type_keyring)
1115		/* check that we aren't going to create a cycle by linking one
1116		 * keyring to another */
1117		return keyring_detect_cycle(keyring, key);
1118	return 0;
1119}
1120
1121/*
1122 * Link a key into to a keyring.
1123 *
1124 * Must be called with __key_link_begin() having being called.  Discards any
1125 * already extant link to matching key if there is one, so that each keyring
1126 * holds at most one link to any given key of a particular type+description
1127 * combination.
1128 */
1129void __key_link(struct key *key, struct assoc_array_edit **_edit)
1130{
1131	__key_get(key);
1132	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1133	assoc_array_apply_edit(*_edit);
1134	*_edit = NULL;
1135}
1136
1137/*
1138 * Finish linking a key into to a keyring.
1139 *
1140 * Must be called with __key_link_begin() having being called.
1141 */
1142void __key_link_end(struct key *keyring,
1143		    const struct keyring_index_key *index_key,
1144		    struct assoc_array_edit *edit)
1145	__releases(&keyring->sem)
1146	__releases(&keyring_serialise_link_sem)
1147{
1148	BUG_ON(index_key->type == NULL);
1149	kenter("%d,%s,", keyring->serial, index_key->type->name);
1150
1151	if (index_key->type == &key_type_keyring)
1152		up_write(&keyring_serialise_link_sem);
1153
1154	if (edit && !edit->dead_leaf) {
1155		key_payload_reserve(keyring,
1156				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1157		assoc_array_cancel_edit(edit);
1158	}
1159	up_write(&keyring->sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160}
1161
1162/**
1163 * key_link - Link a key to a keyring
1164 * @keyring: The keyring to make the link in.
1165 * @key: The key to link to.
1166 *
1167 * Make a link in a keyring to a key, such that the keyring holds a reference
1168 * on that key and the key can potentially be found by searching that keyring.
1169 *
1170 * This function will write-lock the keyring's semaphore and will consume some
1171 * of the user's key data quota to hold the link.
1172 *
1173 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1174 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1175 * full, -EDQUOT if there is insufficient key data quota remaining to add
1176 * another link or -ENOMEM if there's insufficient memory.
1177 *
1178 * It is assumed that the caller has checked that it is permitted for a link to
1179 * be made (the keyring should have Write permission and the key Link
1180 * permission).
1181 */
1182int key_link(struct key *keyring, struct key *key)
1183{
1184	struct assoc_array_edit *edit;
1185	int ret;
1186
1187	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1188
1189	key_check(keyring);
1190	key_check(key);
1191
1192	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1193	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1194		return -EPERM;
1195
1196	ret = __key_link_begin(keyring, &key->index_key, &edit);
1197	if (ret == 0) {
1198		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
 
 
 
 
1199		ret = __key_link_check_live_key(keyring, key);
1200		if (ret == 0)
1201			__key_link(key, &edit);
1202		__key_link_end(keyring, &key->index_key, edit);
1203	}
1204
1205	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
 
 
 
1206	return ret;
1207}
1208EXPORT_SYMBOL(key_link);
1209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210/**
1211 * key_unlink - Unlink the first link to a key from a keyring.
1212 * @keyring: The keyring to remove the link from.
1213 * @key: The key the link is to.
1214 *
1215 * Remove a link from a keyring to a key.
1216 *
1217 * This function will write-lock the keyring's semaphore.
1218 *
1219 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1220 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1221 * memory.
1222 *
1223 * It is assumed that the caller has checked that it is permitted for a link to
1224 * be removed (the keyring should have Write permission; no permissions are
1225 * required on the key).
1226 */
1227int key_unlink(struct key *keyring, struct key *key)
1228{
1229	struct assoc_array_edit *edit;
1230	int ret;
1231
1232	key_check(keyring);
1233	key_check(key);
1234
1235	if (keyring->type != &key_type_keyring)
1236		return -ENOTDIR;
 
1237
1238	down_write(&keyring->sem);
 
 
 
 
 
 
1239
1240	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1241				  &key->index_key);
1242	if (IS_ERR(edit)) {
1243		ret = PTR_ERR(edit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244		goto error;
1245	}
1246	ret = -ENOENT;
1247	if (edit == NULL)
1248		goto error;
1249
1250	assoc_array_apply_edit(edit);
1251	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1252	ret = 0;
 
 
 
 
 
 
 
1253
 
 
1254error:
1255	up_write(&keyring->sem);
 
 
 
1256	return ret;
1257}
1258EXPORT_SYMBOL(key_unlink);
1259
1260/**
1261 * keyring_clear - Clear a keyring
1262 * @keyring: The keyring to clear.
1263 *
1264 * Clear the contents of the specified keyring.
1265 *
1266 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1267 */
1268int keyring_clear(struct key *keyring)
1269{
1270	struct assoc_array_edit *edit;
1271	int ret;
1272
1273	if (keyring->type != &key_type_keyring)
1274		return -ENOTDIR;
1275
1276	down_write(&keyring->sem);
1277
1278	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1279	if (IS_ERR(edit)) {
1280		ret = PTR_ERR(edit);
1281	} else {
1282		if (edit)
1283			assoc_array_apply_edit(edit);
1284		key_payload_reserve(keyring, 0);
1285		ret = 0;
1286	}
1287
1288	up_write(&keyring->sem);
1289	return ret;
1290}
1291EXPORT_SYMBOL(keyring_clear);
1292
1293/*
1294 * Dispose of the links from a revoked keyring.
1295 *
1296 * This is called with the key sem write-locked.
1297 */
1298static void keyring_revoke(struct key *keyring)
1299{
1300	struct assoc_array_edit *edit;
1301
1302	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1303	if (!IS_ERR(edit)) {
1304		if (edit)
1305			assoc_array_apply_edit(edit);
1306		key_payload_reserve(keyring, 0);
1307	}
1308}
1309
1310static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1311{
1312	struct key *key = keyring_ptr_to_key(object);
1313	time_t *limit = iterator_data;
1314
1315	if (key_is_dead(key, *limit))
1316		return false;
1317	key_get(key);
1318	return true;
1319}
1320
1321static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1322{
1323	const struct key *key = keyring_ptr_to_key(object);
1324	time_t *limit = iterator_data;
1325
1326	key_check(key);
1327	return key_is_dead(key, *limit);
1328}
1329
1330/*
1331 * Garbage collect pointers from a keyring.
1332 *
1333 * Not called with any locks held.  The keyring's key struct will not be
1334 * deallocated under us as only our caller may deallocate it.
1335 */
1336void keyring_gc(struct key *keyring, time_t limit)
1337{
1338	int result;
1339
1340	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1341
1342	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1343			      (1 << KEY_FLAG_REVOKED)))
1344		goto dont_gc;
1345
1346	/* scan the keyring looking for dead keys */
1347	rcu_read_lock();
1348	result = assoc_array_iterate(&keyring->keys,
1349				     keyring_gc_check_iterator, &limit);
1350	rcu_read_unlock();
1351	if (result == true)
1352		goto do_gc;
1353
1354dont_gc:
1355	kleave(" [no gc]");
1356	return;
1357
1358do_gc:
1359	down_write(&keyring->sem);
1360	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1361		       keyring_gc_select_iterator, &limit);
1362	up_write(&keyring->sem);
1363	kleave(" [gc]");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Keyring handling
   3 *
   4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/security.h>
  13#include <linux/seq_file.h>
  14#include <linux/err.h>
  15#include <linux/user_namespace.h>
  16#include <linux/nsproxy.h>
  17#include <keys/keyring-type.h>
  18#include <keys/user-type.h>
  19#include <linux/assoc_array_priv.h>
  20#include <linux/uaccess.h>
  21#include <net/net_namespace.h>
  22#include "internal.h"
  23
  24/*
  25 * When plumbing the depths of the key tree, this sets a hard limit
  26 * set on how deep we're willing to go.
  27 */
  28#define KEYRING_SEARCH_MAX_DEPTH 6
  29
  30/*
 
 
 
 
 
  31 * We mark pointers we pass to the associative array with bit 1 set if
  32 * they're keyrings and clear otherwise.
  33 */
  34#define KEYRING_PTR_SUBTYPE	0x2UL
  35
  36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  37{
  38	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  39}
  40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  41{
  42	void *object = assoc_array_ptr_to_leaf(x);
  43	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  44}
  45static inline void *keyring_key_to_ptr(struct key *key)
  46{
  47	if (key->type == &key_type_keyring)
  48		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  49	return key;
  50}
  51
 
  52static DEFINE_RWLOCK(keyring_name_lock);
  53
  54/*
  55 * Clean up the bits of user_namespace that belong to us.
  56 */
  57void key_free_user_ns(struct user_namespace *ns)
  58{
  59	write_lock(&keyring_name_lock);
  60	list_del_init(&ns->keyring_name_list);
  61	write_unlock(&keyring_name_lock);
  62
  63	key_put(ns->user_keyring_register);
  64#ifdef CONFIG_PERSISTENT_KEYRINGS
  65	key_put(ns->persistent_keyring_register);
  66#endif
  67}
  68
  69/*
  70 * The keyring key type definition.  Keyrings are simply keys of this type and
  71 * can be treated as ordinary keys in addition to having their own special
  72 * operations.
  73 */
  74static int keyring_preparse(struct key_preparsed_payload *prep);
  75static void keyring_free_preparse(struct key_preparsed_payload *prep);
  76static int keyring_instantiate(struct key *keyring,
  77			       struct key_preparsed_payload *prep);
  78static void keyring_revoke(struct key *keyring);
  79static void keyring_destroy(struct key *keyring);
  80static void keyring_describe(const struct key *keyring, struct seq_file *m);
  81static long keyring_read(const struct key *keyring,
  82			 char __user *buffer, size_t buflen);
  83
  84struct key_type key_type_keyring = {
  85	.name		= "keyring",
  86	.def_datalen	= 0,
  87	.preparse	= keyring_preparse,
  88	.free_preparse	= keyring_free_preparse,
  89	.instantiate	= keyring_instantiate,
 
  90	.revoke		= keyring_revoke,
  91	.destroy	= keyring_destroy,
  92	.describe	= keyring_describe,
  93	.read		= keyring_read,
  94};
  95EXPORT_SYMBOL(key_type_keyring);
  96
  97/*
  98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  99 * introducing a cycle.
 100 */
 101static DEFINE_MUTEX(keyring_serialise_link_lock);
 102
 103/*
 104 * Publish the name of a keyring so that it can be found by name (if it has
 105 * one and it doesn't begin with a dot).
 106 */
 107static void keyring_publish_name(struct key *keyring)
 108{
 109	struct user_namespace *ns = current_user_ns();
 
 
 
 110
 111	if (keyring->description &&
 112	    keyring->description[0] &&
 113	    keyring->description[0] != '.') {
 114		write_lock(&keyring_name_lock);
 115		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
 
 
 
 
 
 
 116		write_unlock(&keyring_name_lock);
 117	}
 118}
 119
 120/*
 121 * Preparse a keyring payload
 122 */
 123static int keyring_preparse(struct key_preparsed_payload *prep)
 124{
 125	return prep->datalen != 0 ? -EINVAL : 0;
 126}
 127
 128/*
 129 * Free a preparse of a user defined key payload
 130 */
 131static void keyring_free_preparse(struct key_preparsed_payload *prep)
 132{
 133}
 134
 135/*
 136 * Initialise a keyring.
 137 *
 138 * Returns 0 on success, -EINVAL if given any data.
 139 */
 140static int keyring_instantiate(struct key *keyring,
 141			       struct key_preparsed_payload *prep)
 142{
 143	assoc_array_init(&keyring->keys);
 144	/* make the keyring available by name if it has one */
 145	keyring_publish_name(keyring);
 146	return 0;
 
 
 
 
 
 
 
 147}
 148
 149/*
 150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 151 * fold the carry back too, but that requires inline asm.
 152 */
 153static u64 mult_64x32_and_fold(u64 x, u32 y)
 154{
 155	u64 hi = (u64)(u32)(x >> 32) * y;
 156	u64 lo = (u64)(u32)(x) * y;
 157	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 158}
 159
 160/*
 161 * Hash a key type and description.
 162 */
 163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
 164{
 165	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 166	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 167	const char *description = index_key->description;
 168	unsigned long hash, type;
 169	u32 piece;
 170	u64 acc;
 171	int n, desc_len = index_key->desc_len;
 172
 173	type = (unsigned long)index_key->type;
 
 174	acc = mult_64x32_and_fold(type, desc_len + 13);
 175	acc = mult_64x32_and_fold(acc, 9207);
 176	piece = (unsigned long)index_key->domain_tag;
 177	acc = mult_64x32_and_fold(acc, piece);
 178	acc = mult_64x32_and_fold(acc, 9207);
 179
 180	for (;;) {
 181		n = desc_len;
 182		if (n <= 0)
 183			break;
 184		if (n > 4)
 185			n = 4;
 186		piece = 0;
 187		memcpy(&piece, description, n);
 188		description += n;
 189		desc_len -= n;
 190		acc = mult_64x32_and_fold(acc, piece);
 191		acc = mult_64x32_and_fold(acc, 9207);
 192	}
 193
 194	/* Fold the hash down to 32 bits if need be. */
 195	hash = acc;
 196	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 197		hash ^= acc >> 32;
 198
 199	/* Squidge all the keyrings into a separate part of the tree to
 200	 * ordinary keys by making sure the lowest level segment in the hash is
 201	 * zero for keyrings and non-zero otherwise.
 202	 */
 203	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 204		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 205	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 206		hash = (hash + (hash << level_shift)) & ~fan_mask;
 207	index_key->hash = hash;
 208}
 209
 210/*
 211 * Finalise an index key to include a part of the description actually in the
 212 * index key, to set the domain tag and to calculate the hash.
 213 */
 214void key_set_index_key(struct keyring_index_key *index_key)
 215{
 216	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
 217	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
 218
 219	memcpy(index_key->desc, index_key->description, n);
 220
 221	if (!index_key->domain_tag) {
 222		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
 223			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
 224		else
 225			index_key->domain_tag = &default_domain_tag;
 226	}
 227
 228	hash_key_type_and_desc(index_key);
 229}
 230
 231/**
 232 * key_put_tag - Release a ref on a tag.
 233 * @tag: The tag to release.
 234 *
 235 * This releases a reference the given tag and returns true if that ref was the
 236 * last one.
 237 */
 238bool key_put_tag(struct key_tag *tag)
 239{
 240	if (refcount_dec_and_test(&tag->usage)) {
 241		kfree_rcu(tag, rcu);
 242		return true;
 243	}
 244
 245	return false;
 246}
 247
 248/**
 249 * key_remove_domain - Kill off a key domain and gc its keys
 250 * @domain_tag: The domain tag to release.
 251 *
 252 * This marks a domain tag as being dead and releases a ref on it.  If that
 253 * wasn't the last reference, the garbage collector is poked to try and delete
 254 * all keys that were in the domain.
 255 */
 256void key_remove_domain(struct key_tag *domain_tag)
 257{
 258	domain_tag->removed = true;
 259	if (!key_put_tag(domain_tag))
 260		key_schedule_gc_links();
 261}
 262
 263/*
 264 * Build the next index key chunk.
 265 *
 266 * We return it one word-sized chunk at a time.
 267 */
 268static unsigned long keyring_get_key_chunk(const void *data, int level)
 269{
 270	const struct keyring_index_key *index_key = data;
 271	unsigned long chunk = 0;
 272	const u8 *d;
 273	int desc_len = index_key->desc_len, n = sizeof(chunk);
 274
 275	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 276	switch (level) {
 277	case 0:
 278		return index_key->hash;
 279	case 1:
 280		return index_key->x;
 281	case 2:
 282		return (unsigned long)index_key->type;
 283	case 3:
 284		return (unsigned long)index_key->domain_tag;
 
 
 285	default:
 286		level -= 4;
 287		if (desc_len <= sizeof(index_key->desc))
 
 288			return 0;
 289
 290		d = index_key->description + sizeof(index_key->desc);
 291		d += level * sizeof(long);
 292		desc_len -= sizeof(index_key->desc);
 293		if (desc_len > n)
 294			desc_len = n;
 
 295		do {
 296			chunk <<= 8;
 297			chunk |= *d++;
 298		} while (--desc_len > 0);
 
 
 
 
 
 
 299		return chunk;
 300	}
 301}
 302
 303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 304{
 305	const struct key *key = keyring_ptr_to_key(object);
 306	return keyring_get_key_chunk(&key->index_key, level);
 307}
 308
 309static bool keyring_compare_object(const void *object, const void *data)
 310{
 311	const struct keyring_index_key *index_key = data;
 312	const struct key *key = keyring_ptr_to_key(object);
 313
 314	return key->index_key.type == index_key->type &&
 315		key->index_key.domain_tag == index_key->domain_tag &&
 316		key->index_key.desc_len == index_key->desc_len &&
 317		memcmp(key->index_key.description, index_key->description,
 318		       index_key->desc_len) == 0;
 319}
 320
 321/*
 322 * Compare the index keys of a pair of objects and determine the bit position
 323 * at which they differ - if they differ.
 324 */
 325static int keyring_diff_objects(const void *object, const void *data)
 326{
 327	const struct key *key_a = keyring_ptr_to_key(object);
 328	const struct keyring_index_key *a = &key_a->index_key;
 329	const struct keyring_index_key *b = data;
 330	unsigned long seg_a, seg_b;
 331	int level, i;
 332
 333	level = 0;
 334	seg_a = a->hash;
 335	seg_b = b->hash;
 336	if ((seg_a ^ seg_b) != 0)
 337		goto differ;
 338	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 339
 340	/* The number of bits contributed by the hash is controlled by a
 341	 * constant in the assoc_array headers.  Everything else thereafter we
 342	 * can deal with as being machine word-size dependent.
 343	 */
 344	seg_a = a->x;
 345	seg_b = b->x;
 
 346	if ((seg_a ^ seg_b) != 0)
 347		goto differ;
 348	level += sizeof(unsigned long);
 349
 350	/* The next bit may not work on big endian */
 
 351	seg_a = (unsigned long)a->type;
 352	seg_b = (unsigned long)b->type;
 353	if ((seg_a ^ seg_b) != 0)
 354		goto differ;
 355	level += sizeof(unsigned long);
 356
 357	seg_a = (unsigned long)a->domain_tag;
 358	seg_b = (unsigned long)b->domain_tag;
 359	if ((seg_a ^ seg_b) != 0)
 360		goto differ;
 361	level += sizeof(unsigned long);
 
 
 362
 363	i = sizeof(a->desc);
 364	if (a->desc_len <= i)
 365		goto same;
 
 
 
 
 
 
 
 
 366
 367	for (; i < a->desc_len; i++) {
 368		seg_a = *(unsigned char *)(a->description + i);
 369		seg_b = *(unsigned char *)(b->description + i);
 370		if ((seg_a ^ seg_b) != 0)
 371			goto differ_plus_i;
 372	}
 373
 374same:
 375	return -1;
 376
 377differ_plus_i:
 378	level += i;
 379differ:
 380	i = level * 8 + __ffs(seg_a ^ seg_b);
 381	return i;
 382}
 383
 384/*
 385 * Free an object after stripping the keyring flag off of the pointer.
 386 */
 387static void keyring_free_object(void *object)
 388{
 389	key_put(keyring_ptr_to_key(object));
 390}
 391
 392/*
 393 * Operations for keyring management by the index-tree routines.
 394 */
 395static const struct assoc_array_ops keyring_assoc_array_ops = {
 396	.get_key_chunk		= keyring_get_key_chunk,
 397	.get_object_key_chunk	= keyring_get_object_key_chunk,
 398	.compare_object		= keyring_compare_object,
 399	.diff_objects		= keyring_diff_objects,
 400	.free_object		= keyring_free_object,
 401};
 402
 403/*
 404 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 405 * and dispose of its data.
 406 *
 407 * The garbage collector detects the final key_put(), removes the keyring from
 408 * the serial number tree and then does RCU synchronisation before coming here,
 409 * so we shouldn't need to worry about code poking around here with the RCU
 410 * readlock held by this time.
 411 */
 412static void keyring_destroy(struct key *keyring)
 413{
 414	if (keyring->description) {
 415		write_lock(&keyring_name_lock);
 416
 417		if (keyring->name_link.next != NULL &&
 418		    !list_empty(&keyring->name_link))
 419			list_del(&keyring->name_link);
 420
 421		write_unlock(&keyring_name_lock);
 422	}
 423
 424	if (keyring->restrict_link) {
 425		struct key_restriction *keyres = keyring->restrict_link;
 426
 427		key_put(keyres->key);
 428		kfree(keyres);
 429	}
 430
 431	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 432}
 433
 434/*
 435 * Describe a keyring for /proc.
 436 */
 437static void keyring_describe(const struct key *keyring, struct seq_file *m)
 438{
 439	if (keyring->description)
 440		seq_puts(m, keyring->description);
 441	else
 442		seq_puts(m, "[anon]");
 443
 444	if (key_is_positive(keyring)) {
 445		if (keyring->keys.nr_leaves_on_tree != 0)
 446			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 447		else
 448			seq_puts(m, ": empty");
 449	}
 450}
 451
 452struct keyring_read_iterator_context {
 453	size_t			buflen;
 454	size_t			count;
 455	key_serial_t __user	*buffer;
 456};
 457
 458static int keyring_read_iterator(const void *object, void *data)
 459{
 460	struct keyring_read_iterator_context *ctx = data;
 461	const struct key *key = keyring_ptr_to_key(object);
 462	int ret;
 463
 464	kenter("{%s,%d},,{%zu/%zu}",
 465	       key->type->name, key->serial, ctx->count, ctx->buflen);
 466
 467	if (ctx->count >= ctx->buflen)
 468		return 1;
 469
 470	ret = put_user(key->serial, ctx->buffer);
 471	if (ret < 0)
 472		return ret;
 473	ctx->buffer++;
 474	ctx->count += sizeof(key->serial);
 475	return 0;
 476}
 477
 478/*
 479 * Read a list of key IDs from the keyring's contents in binary form
 480 *
 481 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 482 * from modifying it under us - which could cause us to read key IDs multiple
 483 * times.
 484 */
 485static long keyring_read(const struct key *keyring,
 486			 char __user *buffer, size_t buflen)
 487{
 488	struct keyring_read_iterator_context ctx;
 489	long ret;
 
 490
 491	kenter("{%d},,%zu", key_serial(keyring), buflen);
 492
 493	if (buflen & (sizeof(key_serial_t) - 1))
 494		return -EINVAL;
 495
 496	/* Copy as many key IDs as fit into the buffer */
 497	if (buffer && buflen) {
 498		ctx.buffer = (key_serial_t __user *)buffer;
 499		ctx.buflen = buflen;
 500		ctx.count = 0;
 501		ret = assoc_array_iterate(&keyring->keys,
 502					  keyring_read_iterator, &ctx);
 503		if (ret < 0) {
 504			kleave(" = %ld [iterate]", ret);
 505			return ret;
 506		}
 
 
 
 
 
 
 
 
 
 507	}
 508
 509	/* Return the size of the buffer needed */
 510	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 511	if (ret <= buflen)
 512		kleave("= %ld [ok]", ret);
 513	else
 514		kleave("= %ld [buffer too small]", ret);
 515	return ret;
 516}
 517
 518/*
 519 * Allocate a keyring and link into the destination keyring.
 520 */
 521struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 522			  const struct cred *cred, key_perm_t perm,
 523			  unsigned long flags,
 524			  struct key_restriction *restrict_link,
 525			  struct key *dest)
 526{
 527	struct key *keyring;
 528	int ret;
 529
 530	keyring = key_alloc(&key_type_keyring, description,
 531			    uid, gid, cred, perm, flags, restrict_link);
 532	if (!IS_ERR(keyring)) {
 533		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 534		if (ret < 0) {
 535			key_put(keyring);
 536			keyring = ERR_PTR(ret);
 537		}
 538	}
 539
 540	return keyring;
 541}
 542EXPORT_SYMBOL(keyring_alloc);
 543
 544/**
 545 * restrict_link_reject - Give -EPERM to restrict link
 546 * @keyring: The keyring being added to.
 547 * @type: The type of key being added.
 548 * @payload: The payload of the key intended to be added.
 549 * @restriction_key: Keys providing additional data for evaluating restriction.
 550 *
 551 * Reject the addition of any links to a keyring.  It can be overridden by
 552 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 553 * adding a key to a keyring.
 554 *
 555 * This is meant to be stored in a key_restriction structure which is passed
 556 * in the restrict_link parameter to keyring_alloc().
 557 */
 558int restrict_link_reject(struct key *keyring,
 559			 const struct key_type *type,
 560			 const union key_payload *payload,
 561			 struct key *restriction_key)
 562{
 563	return -EPERM;
 564}
 565
 566/*
 567 * By default, we keys found by getting an exact match on their descriptions.
 568 */
 569bool key_default_cmp(const struct key *key,
 570		     const struct key_match_data *match_data)
 571{
 572	return strcmp(key->description, match_data->raw_data) == 0;
 573}
 574
 575/*
 576 * Iteration function to consider each key found.
 577 */
 578static int keyring_search_iterator(const void *object, void *iterator_data)
 579{
 580	struct keyring_search_context *ctx = iterator_data;
 581	const struct key *key = keyring_ptr_to_key(object);
 582	unsigned long kflags = READ_ONCE(key->flags);
 583	short state = READ_ONCE(key->state);
 584
 585	kenter("{%d}", key->serial);
 586
 587	/* ignore keys not of this type */
 588	if (key->type != ctx->index_key.type) {
 589		kleave(" = 0 [!type]");
 590		return 0;
 591	}
 592
 593	/* skip invalidated, revoked and expired keys */
 594	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 595		time64_t expiry = READ_ONCE(key->expiry);
 596
 597		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 598			      (1 << KEY_FLAG_REVOKED))) {
 599			ctx->result = ERR_PTR(-EKEYREVOKED);
 600			kleave(" = %d [invrev]", ctx->skipped_ret);
 601			goto skipped;
 602		}
 603
 604		if (expiry && ctx->now >= expiry) {
 605			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 606				ctx->result = ERR_PTR(-EKEYEXPIRED);
 607			kleave(" = %d [expire]", ctx->skipped_ret);
 608			goto skipped;
 609		}
 610	}
 611
 612	/* keys that don't match */
 613	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 614		kleave(" = 0 [!match]");
 615		return 0;
 616	}
 617
 618	/* key must have search permissions */
 619	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 620	    key_task_permission(make_key_ref(key, ctx->possessed),
 621				ctx->cred, KEY_NEED_SEARCH) < 0) {
 622		ctx->result = ERR_PTR(-EACCES);
 623		kleave(" = %d [!perm]", ctx->skipped_ret);
 624		goto skipped;
 625	}
 626
 627	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 628		/* we set a different error code if we pass a negative key */
 629		if (state < 0) {
 630			ctx->result = ERR_PTR(state);
 
 631			kleave(" = %d [neg]", ctx->skipped_ret);
 632			goto skipped;
 633		}
 634	}
 635
 636	/* Found */
 637	ctx->result = make_key_ref(key, ctx->possessed);
 638	kleave(" = 1 [found]");
 639	return 1;
 640
 641skipped:
 642	return ctx->skipped_ret;
 643}
 644
 645/*
 646 * Search inside a keyring for a key.  We can search by walking to it
 647 * directly based on its index-key or we can iterate over the entire
 648 * tree looking for it, based on the match function.
 649 */
 650static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 651{
 652	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 
 653		const void *object;
 654
 655		object = assoc_array_find(&keyring->keys,
 656					  &keyring_assoc_array_ops,
 657					  &ctx->index_key);
 658		return object ? ctx->iterator(object, ctx) : 0;
 659	}
 660	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 661}
 662
 663/*
 664 * Search a tree of keyrings that point to other keyrings up to the maximum
 665 * depth.
 666 */
 667static bool search_nested_keyrings(struct key *keyring,
 668				   struct keyring_search_context *ctx)
 669{
 670	struct {
 671		struct key *keyring;
 672		struct assoc_array_node *node;
 673		int slot;
 674	} stack[KEYRING_SEARCH_MAX_DEPTH];
 675
 676	struct assoc_array_shortcut *shortcut;
 677	struct assoc_array_node *node;
 678	struct assoc_array_ptr *ptr;
 679	struct key *key;
 680	int sp = 0, slot;
 681
 682	kenter("{%d},{%s,%s}",
 683	       keyring->serial,
 684	       ctx->index_key.type->name,
 685	       ctx->index_key.description);
 686
 687#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 688	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 689	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 690
 691	if (ctx->index_key.description)
 692		key_set_index_key(&ctx->index_key);
 693
 694	/* Check to see if this top-level keyring is what we are looking for
 695	 * and whether it is valid or not.
 696	 */
 697	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 698	    keyring_compare_object(keyring, &ctx->index_key)) {
 699		ctx->skipped_ret = 2;
 
 700		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 701		case 1:
 702			goto found;
 703		case 2:
 704			return false;
 705		default:
 706			break;
 707		}
 708	}
 709
 710	ctx->skipped_ret = 0;
 
 
 711
 712	/* Start processing a new keyring */
 713descend_to_keyring:
 714	kdebug("descend to %d", keyring->serial);
 715	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 716			      (1 << KEY_FLAG_REVOKED)))
 717		goto not_this_keyring;
 718
 719	/* Search through the keys in this keyring before its searching its
 720	 * subtrees.
 721	 */
 722	if (search_keyring(keyring, ctx))
 723		goto found;
 724
 725	/* Then manually iterate through the keyrings nested in this one.
 726	 *
 727	 * Start from the root node of the index tree.  Because of the way the
 728	 * hash function has been set up, keyrings cluster on the leftmost
 729	 * branch of the root node (root slot 0) or in the root node itself.
 730	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 731	 * slots 1-15).
 732	 */
 733	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
 734		goto not_this_keyring;
 735
 736	ptr = READ_ONCE(keyring->keys.root);
 737	if (!ptr)
 738		goto not_this_keyring;
 739
 740	if (assoc_array_ptr_is_shortcut(ptr)) {
 741		/* If the root is a shortcut, either the keyring only contains
 742		 * keyring pointers (everything clusters behind root slot 0) or
 743		 * doesn't contain any keyring pointers.
 744		 */
 745		shortcut = assoc_array_ptr_to_shortcut(ptr);
 
 746		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 747			goto not_this_keyring;
 748
 749		ptr = READ_ONCE(shortcut->next_node);
 750		node = assoc_array_ptr_to_node(ptr);
 751		goto begin_node;
 752	}
 753
 754	node = assoc_array_ptr_to_node(ptr);
 
 
 755	ptr = node->slots[0];
 756	if (!assoc_array_ptr_is_meta(ptr))
 757		goto begin_node;
 758
 759descend_to_node:
 760	/* Descend to a more distal node in this keyring's content tree and go
 761	 * through that.
 762	 */
 763	kdebug("descend");
 764	if (assoc_array_ptr_is_shortcut(ptr)) {
 765		shortcut = assoc_array_ptr_to_shortcut(ptr);
 766		ptr = READ_ONCE(shortcut->next_node);
 
 767		BUG_ON(!assoc_array_ptr_is_node(ptr));
 768	}
 769	node = assoc_array_ptr_to_node(ptr);
 770
 771begin_node:
 772	kdebug("begin_node");
 
 773	slot = 0;
 774ascend_to_node:
 775	/* Go through the slots in a node */
 776	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 777		ptr = READ_ONCE(node->slots[slot]);
 778
 779		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 780			goto descend_to_node;
 781
 782		if (!keyring_ptr_is_keyring(ptr))
 783			continue;
 784
 785		key = keyring_ptr_to_key(ptr);
 786
 787		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 788			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 789				ctx->result = ERR_PTR(-ELOOP);
 790				return false;
 791			}
 792			goto not_this_keyring;
 793		}
 794
 795		/* Search a nested keyring */
 796		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 797		    key_task_permission(make_key_ref(key, ctx->possessed),
 798					ctx->cred, KEY_NEED_SEARCH) < 0)
 799			continue;
 800
 801		/* stack the current position */
 802		stack[sp].keyring = keyring;
 803		stack[sp].node = node;
 804		stack[sp].slot = slot;
 805		sp++;
 806
 807		/* begin again with the new keyring */
 808		keyring = key;
 809		goto descend_to_keyring;
 810	}
 811
 812	/* We've dealt with all the slots in the current node, so now we need
 813	 * to ascend to the parent and continue processing there.
 814	 */
 815	ptr = READ_ONCE(node->back_pointer);
 816	slot = node->parent_slot;
 817
 818	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 819		shortcut = assoc_array_ptr_to_shortcut(ptr);
 820		ptr = READ_ONCE(shortcut->back_pointer);
 
 821		slot = shortcut->parent_slot;
 822	}
 823	if (!ptr)
 824		goto not_this_keyring;
 825	node = assoc_array_ptr_to_node(ptr);
 
 826	slot++;
 827
 828	/* If we've ascended to the root (zero backpointer), we must have just
 829	 * finished processing the leftmost branch rather than the root slots -
 830	 * so there can't be any more keyrings for us to find.
 831	 */
 832	if (node->back_pointer) {
 833		kdebug("ascend %d", slot);
 834		goto ascend_to_node;
 835	}
 836
 837	/* The keyring we're looking at was disqualified or didn't contain a
 838	 * matching key.
 839	 */
 840not_this_keyring:
 841	kdebug("not_this_keyring %d", sp);
 842	if (sp <= 0) {
 843		kleave(" = false");
 844		return false;
 845	}
 846
 847	/* Resume the processing of a keyring higher up in the tree */
 848	sp--;
 849	keyring = stack[sp].keyring;
 850	node = stack[sp].node;
 851	slot = stack[sp].slot + 1;
 852	kdebug("ascend to %d [%d]", keyring->serial, slot);
 853	goto ascend_to_node;
 854
 855	/* We found a viable match */
 856found:
 857	key = key_ref_to_ptr(ctx->result);
 858	key_check(key);
 859	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 860		key->last_used_at = ctx->now;
 861		keyring->last_used_at = ctx->now;
 862		while (sp > 0)
 863			stack[--sp].keyring->last_used_at = ctx->now;
 864	}
 865	kleave(" = true");
 866	return true;
 867}
 868
 869/**
 870 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
 871 * @keyring_ref: A pointer to the keyring with possession indicator.
 872 * @ctx: The keyring search context.
 873 *
 874 * Search the supplied keyring tree for a key that matches the criteria given.
 875 * The root keyring and any linked keyrings must grant Search permission to the
 876 * caller to be searchable and keys can only be found if they too grant Search
 877 * to the caller. The possession flag on the root keyring pointer controls use
 878 * of the possessor bits in permissions checking of the entire tree.  In
 879 * addition, the LSM gets to forbid keyring searches and key matches.
 880 *
 881 * The search is performed as a breadth-then-depth search up to the prescribed
 882 * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
 883 * prevent keyrings from being destroyed or rearranged whilst they are being
 884 * searched.
 885 *
 886 * Keys are matched to the type provided and are then filtered by the match
 887 * function, which is given the description to use in any way it sees fit.  The
 888 * match function may use any attributes of a key that it wishes to to
 889 * determine the match.  Normally the match function from the key type would be
 890 * used.
 891 *
 892 * RCU can be used to prevent the keyring key lists from disappearing without
 893 * the need to take lots of locks.
 894 *
 895 * Returns a pointer to the found key and increments the key usage count if
 896 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 897 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 898 * specified keyring wasn't a keyring.
 899 *
 900 * In the case of a successful return, the possession attribute from
 901 * @keyring_ref is propagated to the returned key reference.
 902 */
 903key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
 904			     struct keyring_search_context *ctx)
 905{
 906	struct key *keyring;
 907	long err;
 908
 909	ctx->iterator = keyring_search_iterator;
 910	ctx->possessed = is_key_possessed(keyring_ref);
 911	ctx->result = ERR_PTR(-EAGAIN);
 912
 913	keyring = key_ref_to_ptr(keyring_ref);
 914	key_check(keyring);
 915
 916	if (keyring->type != &key_type_keyring)
 917		return ERR_PTR(-ENOTDIR);
 918
 919	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 920		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 921		if (err < 0)
 922			return ERR_PTR(err);
 923	}
 924
 925	ctx->now = ktime_get_real_seconds();
 
 926	if (search_nested_keyrings(keyring, ctx))
 927		__key_get(key_ref_to_ptr(ctx->result));
 
 928	return ctx->result;
 929}
 930
 931/**
 932 * keyring_search - Search the supplied keyring tree for a matching key
 933 * @keyring: The root of the keyring tree to be searched.
 934 * @type: The type of keyring we want to find.
 935 * @description: The name of the keyring we want to find.
 936 * @recurse: True to search the children of @keyring also
 937 *
 938 * As keyring_search_rcu() above, but using the current task's credentials and
 939 * type's default matching function and preferred search method.
 940 */
 941key_ref_t keyring_search(key_ref_t keyring,
 942			 struct key_type *type,
 943			 const char *description,
 944			 bool recurse)
 945{
 946	struct keyring_search_context ctx = {
 947		.index_key.type		= type,
 948		.index_key.description	= description,
 949		.index_key.desc_len	= strlen(description),
 950		.cred			= current_cred(),
 951		.match_data.cmp		= key_default_cmp,
 952		.match_data.raw_data	= description,
 953		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
 954		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
 955	};
 956	key_ref_t key;
 957	int ret;
 958
 959	if (recurse)
 960		ctx.flags |= KEYRING_SEARCH_RECURSE;
 961	if (type->match_preparse) {
 962		ret = type->match_preparse(&ctx.match_data);
 963		if (ret < 0)
 964			return ERR_PTR(ret);
 965	}
 966
 967	rcu_read_lock();
 968	key = keyring_search_rcu(keyring, &ctx);
 969	rcu_read_unlock();
 970
 971	if (type->match_free)
 972		type->match_free(&ctx.match_data);
 973	return key;
 974}
 975EXPORT_SYMBOL(keyring_search);
 976
 977static struct key_restriction *keyring_restriction_alloc(
 978	key_restrict_link_func_t check)
 979{
 980	struct key_restriction *keyres =
 981		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 982
 983	if (!keyres)
 984		return ERR_PTR(-ENOMEM);
 985
 986	keyres->check = check;
 987
 988	return keyres;
 989}
 990
 991/*
 992 * Semaphore to serialise restriction setup to prevent reference count
 993 * cycles through restriction key pointers.
 994 */
 995static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 996
 997/*
 998 * Check for restriction cycles that would prevent keyring garbage collection.
 999 * keyring_serialise_restrict_sem must be held.
1000 */
1001static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1002					     struct key_restriction *keyres)
1003{
1004	while (keyres && keyres->key &&
1005	       keyres->key->type == &key_type_keyring) {
1006		if (keyres->key == dest_keyring)
1007			return true;
1008
1009		keyres = keyres->key->restrict_link;
1010	}
1011
1012	return false;
1013}
1014
1015/**
1016 * keyring_restrict - Look up and apply a restriction to a keyring
1017 * @keyring_ref: The keyring to be restricted
1018 * @type: The key type that will provide the restriction checker.
1019 * @restriction: The restriction options to apply to the keyring
1020 *
1021 * Look up a keyring and apply a restriction to it.  The restriction is managed
1022 * by the specific key type, but can be configured by the options specified in
1023 * the restriction string.
1024 */
1025int keyring_restrict(key_ref_t keyring_ref, const char *type,
1026		     const char *restriction)
1027{
1028	struct key *keyring;
1029	struct key_type *restrict_type = NULL;
1030	struct key_restriction *restrict_link;
1031	int ret = 0;
1032
1033	keyring = key_ref_to_ptr(keyring_ref);
1034	key_check(keyring);
1035
1036	if (keyring->type != &key_type_keyring)
1037		return -ENOTDIR;
1038
1039	if (!type) {
1040		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1041	} else {
1042		restrict_type = key_type_lookup(type);
1043
1044		if (IS_ERR(restrict_type))
1045			return PTR_ERR(restrict_type);
1046
1047		if (!restrict_type->lookup_restriction) {
1048			ret = -ENOENT;
1049			goto error;
1050		}
1051
1052		restrict_link = restrict_type->lookup_restriction(restriction);
1053	}
1054
1055	if (IS_ERR(restrict_link)) {
1056		ret = PTR_ERR(restrict_link);
1057		goto error;
1058	}
1059
1060	down_write(&keyring->sem);
1061	down_write(&keyring_serialise_restrict_sem);
1062
1063	if (keyring->restrict_link)
1064		ret = -EEXIST;
1065	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1066		ret = -EDEADLK;
1067	else
1068		keyring->restrict_link = restrict_link;
1069
1070	up_write(&keyring_serialise_restrict_sem);
1071	up_write(&keyring->sem);
1072
1073	if (ret < 0) {
1074		key_put(restrict_link->key);
1075		kfree(restrict_link);
1076	}
1077
1078error:
1079	if (restrict_type)
1080		key_type_put(restrict_type);
1081
1082	return ret;
1083}
1084EXPORT_SYMBOL(keyring_restrict);
1085
1086/*
1087 * Search the given keyring for a key that might be updated.
1088 *
1089 * The caller must guarantee that the keyring is a keyring and that the
1090 * permission is granted to modify the keyring as no check is made here.  The
1091 * caller must also hold a lock on the keyring semaphore.
1092 *
1093 * Returns a pointer to the found key with usage count incremented if
1094 * successful and returns NULL if not found.  Revoked and invalidated keys are
1095 * skipped over.
1096 *
1097 * If successful, the possession indicator is propagated from the keyring ref
1098 * to the returned key reference.
1099 */
1100key_ref_t find_key_to_update(key_ref_t keyring_ref,
1101			     const struct keyring_index_key *index_key)
1102{
1103	struct key *keyring, *key;
1104	const void *object;
1105
1106	keyring = key_ref_to_ptr(keyring_ref);
1107
1108	kenter("{%d},{%s,%s}",
1109	       keyring->serial, index_key->type->name, index_key->description);
1110
1111	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1112				  index_key);
1113
1114	if (object)
1115		goto found;
1116
1117	kleave(" = NULL");
1118	return NULL;
1119
1120found:
1121	key = keyring_ptr_to_key(object);
1122	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1123			  (1 << KEY_FLAG_REVOKED))) {
1124		kleave(" = NULL [x]");
1125		return NULL;
1126	}
1127	__key_get(key);
1128	kleave(" = {%d}", key->serial);
1129	return make_key_ref(key, is_key_possessed(keyring_ref));
1130}
1131
1132/*
1133 * Find a keyring with the specified name.
1134 *
1135 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1136 * user in the current user namespace are considered.  If @uid_keyring is %true,
1137 * the keyring additionally must have been allocated as a user or user session
1138 * keyring; otherwise, it must grant Search permission directly to the caller.
1139 *
1140 * Returns a pointer to the keyring with the keyring's refcount having being
1141 * incremented on success.  -ENOKEY is returned if a key could not be found.
1142 */
1143struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1144{
1145	struct user_namespace *ns = current_user_ns();
1146	struct key *keyring;
 
1147
1148	if (!name)
1149		return ERR_PTR(-EINVAL);
1150
 
 
1151	read_lock(&keyring_name_lock);
1152
1153	/* Search this hash bucket for a keyring with a matching name that
1154	 * grants Search permission and that hasn't been revoked
1155	 */
1156	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1157		if (!kuid_has_mapping(ns, keyring->user->uid))
1158			continue;
 
 
 
1159
1160		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1161			continue;
1162
1163		if (strcmp(keyring->description, name) != 0)
1164			continue;
1165
1166		if (uid_keyring) {
1167			if (!test_bit(KEY_FLAG_UID_KEYRING,
1168				      &keyring->flags))
1169				continue;
1170		} else {
1171			if (key_permission(make_key_ref(keyring, 0),
1172					   KEY_NEED_SEARCH) < 0)
 
 
1173				continue;
 
 
1174		}
1175
1176		/* we've got a match but we might end up racing with
1177		 * key_cleanup() if the keyring is currently 'dead'
1178		 * (ie. it has a zero usage count) */
1179		if (!refcount_inc_not_zero(&keyring->usage))
1180			continue;
1181		keyring->last_used_at = ktime_get_real_seconds();
1182		goto out;
1183	}
1184
1185	keyring = ERR_PTR(-ENOKEY);
1186out:
1187	read_unlock(&keyring_name_lock);
1188	return keyring;
1189}
1190
1191static int keyring_detect_cycle_iterator(const void *object,
1192					 void *iterator_data)
1193{
1194	struct keyring_search_context *ctx = iterator_data;
1195	const struct key *key = keyring_ptr_to_key(object);
1196
1197	kenter("{%d}", key->serial);
1198
1199	/* We might get a keyring with matching index-key that is nonetheless a
1200	 * different keyring. */
1201	if (key != ctx->match_data.raw_data)
1202		return 0;
1203
1204	ctx->result = ERR_PTR(-EDEADLK);
1205	return 1;
1206}
1207
1208/*
1209 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1210 * tree A at the topmost level (ie: as a direct child of A).
1211 *
1212 * Since we are adding B to A at the top level, checking for cycles should just
1213 * be a matter of seeing if node A is somewhere in tree B.
1214 */
1215static int keyring_detect_cycle(struct key *A, struct key *B)
1216{
1217	struct keyring_search_context ctx = {
1218		.index_key		= A->index_key,
1219		.match_data.raw_data	= A,
1220		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1221		.iterator		= keyring_detect_cycle_iterator,
1222		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1223					   KEYRING_SEARCH_NO_UPDATE_TIME |
1224					   KEYRING_SEARCH_NO_CHECK_PERM |
1225					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1226					   KEYRING_SEARCH_RECURSE),
1227	};
1228
1229	rcu_read_lock();
1230	search_nested_keyrings(B, &ctx);
1231	rcu_read_unlock();
1232	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1233}
1234
1235/*
1236 * Lock keyring for link.
1237 */
1238int __key_link_lock(struct key *keyring,
1239		    const struct keyring_index_key *index_key)
1240	__acquires(&keyring->sem)
1241	__acquires(&keyring_serialise_link_lock)
1242{
1243	if (keyring->type != &key_type_keyring)
1244		return -ENOTDIR;
1245
1246	down_write(&keyring->sem);
1247
1248	/* Serialise link/link calls to prevent parallel calls causing a cycle
1249	 * when linking two keyring in opposite orders.
1250	 */
1251	if (index_key->type == &key_type_keyring)
1252		mutex_lock(&keyring_serialise_link_lock);
1253
1254	return 0;
1255}
1256
1257/*
1258 * Lock keyrings for move (link/unlink combination).
1259 */
1260int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1261		    const struct keyring_index_key *index_key)
1262	__acquires(&l_keyring->sem)
1263	__acquires(&u_keyring->sem)
1264	__acquires(&keyring_serialise_link_lock)
1265{
1266	if (l_keyring->type != &key_type_keyring ||
1267	    u_keyring->type != &key_type_keyring)
1268		return -ENOTDIR;
1269
1270	/* We have to be very careful here to take the keyring locks in the
1271	 * right order, lest we open ourselves to deadlocking against another
1272	 * move operation.
1273	 */
1274	if (l_keyring < u_keyring) {
1275		down_write(&l_keyring->sem);
1276		down_write_nested(&u_keyring->sem, 1);
1277	} else {
1278		down_write(&u_keyring->sem);
1279		down_write_nested(&l_keyring->sem, 1);
1280	}
1281
1282	/* Serialise link/link calls to prevent parallel calls causing a cycle
1283	 * when linking two keyring in opposite orders.
1284	 */
1285	if (index_key->type == &key_type_keyring)
1286		mutex_lock(&keyring_serialise_link_lock);
1287
1288	return 0;
1289}
1290
1291/*
1292 * Preallocate memory so that a key can be linked into to a keyring.
1293 */
1294int __key_link_begin(struct key *keyring,
1295		     const struct keyring_index_key *index_key,
1296		     struct assoc_array_edit **_edit)
 
 
1297{
1298	struct assoc_array_edit *edit;
1299	int ret;
1300
1301	kenter("%d,%s,%s,",
1302	       keyring->serial, index_key->type->name, index_key->description);
1303
1304	BUG_ON(index_key->desc_len == 0);
1305	BUG_ON(*_edit != NULL);
1306
1307	*_edit = NULL;
 
 
 
1308
1309	ret = -EKEYREVOKED;
1310	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1311		goto error;
 
 
 
 
 
1312
1313	/* Create an edit script that will insert/replace the key in the
1314	 * keyring tree.
1315	 */
1316	edit = assoc_array_insert(&keyring->keys,
1317				  &keyring_assoc_array_ops,
1318				  index_key,
1319				  NULL);
1320	if (IS_ERR(edit)) {
1321		ret = PTR_ERR(edit);
1322		goto error;
1323	}
1324
1325	/* If we're not replacing a link in-place then we're going to need some
1326	 * extra quota.
1327	 */
1328	if (!edit->dead_leaf) {
1329		ret = key_payload_reserve(keyring,
1330					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1331		if (ret < 0)
1332			goto error_cancel;
1333	}
1334
1335	*_edit = edit;
1336	kleave(" = 0");
1337	return 0;
1338
1339error_cancel:
1340	assoc_array_cancel_edit(edit);
1341error:
 
 
 
 
1342	kleave(" = %d", ret);
1343	return ret;
1344}
1345
1346/*
1347 * Check already instantiated keys aren't going to be a problem.
1348 *
1349 * The caller must have called __key_link_begin(). Don't need to call this for
1350 * keys that were created since __key_link_begin() was called.
1351 */
1352int __key_link_check_live_key(struct key *keyring, struct key *key)
1353{
1354	if (key->type == &key_type_keyring)
1355		/* check that we aren't going to create a cycle by linking one
1356		 * keyring to another */
1357		return keyring_detect_cycle(keyring, key);
1358	return 0;
1359}
1360
1361/*
1362 * Link a key into to a keyring.
1363 *
1364 * Must be called with __key_link_begin() having being called.  Discards any
1365 * already extant link to matching key if there is one, so that each keyring
1366 * holds at most one link to any given key of a particular type+description
1367 * combination.
1368 */
1369void __key_link(struct key *key, struct assoc_array_edit **_edit)
1370{
1371	__key_get(key);
1372	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1373	assoc_array_apply_edit(*_edit);
1374	*_edit = NULL;
1375}
1376
1377/*
1378 * Finish linking a key into to a keyring.
1379 *
1380 * Must be called with __key_link_begin() having being called.
1381 */
1382void __key_link_end(struct key *keyring,
1383		    const struct keyring_index_key *index_key,
1384		    struct assoc_array_edit *edit)
1385	__releases(&keyring->sem)
1386	__releases(&keyring_serialise_link_lock)
1387{
1388	BUG_ON(index_key->type == NULL);
1389	kenter("%d,%s,", keyring->serial, index_key->type->name);
1390
1391	if (edit) {
1392		if (!edit->dead_leaf) {
1393			key_payload_reserve(keyring,
1394				keyring->datalen - KEYQUOTA_LINK_BYTES);
1395		}
 
1396		assoc_array_cancel_edit(edit);
1397	}
1398	up_write(&keyring->sem);
1399
1400	if (index_key->type == &key_type_keyring)
1401		mutex_unlock(&keyring_serialise_link_lock);
1402}
1403
1404/*
1405 * Check addition of keys to restricted keyrings.
1406 */
1407static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408{
1409	if (!keyring->restrict_link || !keyring->restrict_link->check)
1410		return 0;
1411	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412					     keyring->restrict_link->key);
1413}
1414
1415/**
1416 * key_link - Link a key to a keyring
1417 * @keyring: The keyring to make the link in.
1418 * @key: The key to link to.
1419 *
1420 * Make a link in a keyring to a key, such that the keyring holds a reference
1421 * on that key and the key can potentially be found by searching that keyring.
1422 *
1423 * This function will write-lock the keyring's semaphore and will consume some
1424 * of the user's key data quota to hold the link.
1425 *
1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
1429 * another link or -ENOMEM if there's insufficient memory.
1430 *
1431 * It is assumed that the caller has checked that it is permitted for a link to
1432 * be made (the keyring should have Write permission and the key Link
1433 * permission).
1434 */
1435int key_link(struct key *keyring, struct key *key)
1436{
1437	struct assoc_array_edit *edit = NULL;
1438	int ret;
1439
1440	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441
1442	key_check(keyring);
1443	key_check(key);
1444
1445	ret = __key_link_lock(keyring, &key->index_key);
1446	if (ret < 0)
1447		goto error;
1448
1449	ret = __key_link_begin(keyring, &key->index_key, &edit);
1450	if (ret < 0)
1451		goto error_end;
1452
1453	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454	ret = __key_link_check_restriction(keyring, key);
1455	if (ret == 0)
1456		ret = __key_link_check_live_key(keyring, key);
1457	if (ret == 0)
1458		__key_link(key, &edit);
 
 
1459
1460error_end:
1461	__key_link_end(keyring, &key->index_key, edit);
1462error:
1463	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464	return ret;
1465}
1466EXPORT_SYMBOL(key_link);
1467
1468/*
1469 * Lock a keyring for unlink.
1470 */
1471static int __key_unlink_lock(struct key *keyring)
1472	__acquires(&keyring->sem)
1473{
1474	if (keyring->type != &key_type_keyring)
1475		return -ENOTDIR;
1476
1477	down_write(&keyring->sem);
1478	return 0;
1479}
1480
1481/*
1482 * Begin the process of unlinking a key from a keyring.
1483 */
1484static int __key_unlink_begin(struct key *keyring, struct key *key,
1485			      struct assoc_array_edit **_edit)
1486{
1487	struct assoc_array_edit *edit;
1488
1489	BUG_ON(*_edit != NULL);
1490	
1491	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492				  &key->index_key);
1493	if (IS_ERR(edit))
1494		return PTR_ERR(edit);
1495
1496	if (!edit)
1497		return -ENOENT;
1498
1499	*_edit = edit;
1500	return 0;
1501}
1502
1503/*
1504 * Apply an unlink change.
1505 */
1506static void __key_unlink(struct key *keyring, struct key *key,
1507			 struct assoc_array_edit **_edit)
1508{
1509	assoc_array_apply_edit(*_edit);
1510	*_edit = NULL;
1511	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1512}
1513
1514/*
1515 * Finish unlinking a key from to a keyring.
1516 */
1517static void __key_unlink_end(struct key *keyring,
1518			     struct key *key,
1519			     struct assoc_array_edit *edit)
1520	__releases(&keyring->sem)
1521{
1522	if (edit)
1523		assoc_array_cancel_edit(edit);
1524	up_write(&keyring->sem);
1525}
1526
1527/**
1528 * key_unlink - Unlink the first link to a key from a keyring.
1529 * @keyring: The keyring to remove the link from.
1530 * @key: The key the link is to.
1531 *
1532 * Remove a link from a keyring to a key.
1533 *
1534 * This function will write-lock the keyring's semaphore.
1535 *
1536 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1537 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1538 * memory.
1539 *
1540 * It is assumed that the caller has checked that it is permitted for a link to
1541 * be removed (the keyring should have Write permission; no permissions are
1542 * required on the key).
1543 */
1544int key_unlink(struct key *keyring, struct key *key)
1545{
1546	struct assoc_array_edit *edit = NULL;
1547	int ret;
1548
1549	key_check(keyring);
1550	key_check(key);
1551
1552	ret = __key_unlink_lock(keyring);
1553	if (ret < 0)
1554		return ret;
1555
1556	ret = __key_unlink_begin(keyring, key, &edit);
1557	if (ret == 0)
1558		__key_unlink(keyring, key, &edit);
1559	__key_unlink_end(keyring, key, edit);
1560	return ret;
1561}
1562EXPORT_SYMBOL(key_unlink);
1563
1564/**
1565 * key_move - Move a key from one keyring to another
1566 * @key: The key to move
1567 * @from_keyring: The keyring to remove the link from.
1568 * @to_keyring: The keyring to make the link in.
1569 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1570 *
1571 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1572 * on that key and the key can potentially be found by searching that keyring
1573 * whilst simultaneously removing a link to the key from @from_keyring.
1574 *
1575 * This function will write-lock both keyring's semaphores and will consume
1576 * some of the user's key data quota to hold the link on @to_keyring.
1577 *
1578 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1579 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1580 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1581 * to add another link or -ENOMEM if there's insufficient memory.  If
1582 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1583 * matching key in @to_keyring.
1584 *
1585 * It is assumed that the caller has checked that it is permitted for a link to
1586 * be made (the keyring should have Write permission and the key Link
1587 * permission).
1588 */
1589int key_move(struct key *key,
1590	     struct key *from_keyring,
1591	     struct key *to_keyring,
1592	     unsigned int flags)
1593{
1594	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1595	int ret;
1596
1597	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1598
1599	if (from_keyring == to_keyring)
1600		return 0;
1601
1602	key_check(key);
1603	key_check(from_keyring);
1604	key_check(to_keyring);
1605
1606	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1607	if (ret < 0)
1608		goto out;
1609	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1610	if (ret < 0)
1611		goto error;
1612	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1613	if (ret < 0)
 
1614		goto error;
1615
1616	ret = -EEXIST;
1617	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1618		goto error;
1619
1620	ret = __key_link_check_restriction(to_keyring, key);
1621	if (ret < 0)
1622		goto error;
1623	ret = __key_link_check_live_key(to_keyring, key);
1624	if (ret < 0)
1625		goto error;
1626
1627	__key_unlink(from_keyring, key, &from_edit);
1628	__key_link(key, &to_edit);
1629error:
1630	__key_link_end(to_keyring, &key->index_key, to_edit);
1631	__key_unlink_end(from_keyring, key, from_edit);
1632out:
1633	kleave(" = %d", ret);
1634	return ret;
1635}
1636EXPORT_SYMBOL(key_move);
1637
1638/**
1639 * keyring_clear - Clear a keyring
1640 * @keyring: The keyring to clear.
1641 *
1642 * Clear the contents of the specified keyring.
1643 *
1644 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1645 */
1646int keyring_clear(struct key *keyring)
1647{
1648	struct assoc_array_edit *edit;
1649	int ret;
1650
1651	if (keyring->type != &key_type_keyring)
1652		return -ENOTDIR;
1653
1654	down_write(&keyring->sem);
1655
1656	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1657	if (IS_ERR(edit)) {
1658		ret = PTR_ERR(edit);
1659	} else {
1660		if (edit)
1661			assoc_array_apply_edit(edit);
1662		key_payload_reserve(keyring, 0);
1663		ret = 0;
1664	}
1665
1666	up_write(&keyring->sem);
1667	return ret;
1668}
1669EXPORT_SYMBOL(keyring_clear);
1670
1671/*
1672 * Dispose of the links from a revoked keyring.
1673 *
1674 * This is called with the key sem write-locked.
1675 */
1676static void keyring_revoke(struct key *keyring)
1677{
1678	struct assoc_array_edit *edit;
1679
1680	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1681	if (!IS_ERR(edit)) {
1682		if (edit)
1683			assoc_array_apply_edit(edit);
1684		key_payload_reserve(keyring, 0);
1685	}
1686}
1687
1688static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1689{
1690	struct key *key = keyring_ptr_to_key(object);
1691	time64_t *limit = iterator_data;
1692
1693	if (key_is_dead(key, *limit))
1694		return false;
1695	key_get(key);
1696	return true;
1697}
1698
1699static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1700{
1701	const struct key *key = keyring_ptr_to_key(object);
1702	time64_t *limit = iterator_data;
1703
1704	key_check(key);
1705	return key_is_dead(key, *limit);
1706}
1707
1708/*
1709 * Garbage collect pointers from a keyring.
1710 *
1711 * Not called with any locks held.  The keyring's key struct will not be
1712 * deallocated under us as only our caller may deallocate it.
1713 */
1714void keyring_gc(struct key *keyring, time64_t limit)
1715{
1716	int result;
1717
1718	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1719
1720	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1721			      (1 << KEY_FLAG_REVOKED)))
1722		goto dont_gc;
1723
1724	/* scan the keyring looking for dead keys */
1725	rcu_read_lock();
1726	result = assoc_array_iterate(&keyring->keys,
1727				     keyring_gc_check_iterator, &limit);
1728	rcu_read_unlock();
1729	if (result == true)
1730		goto do_gc;
1731
1732dont_gc:
1733	kleave(" [no gc]");
1734	return;
1735
1736do_gc:
1737	down_write(&keyring->sem);
1738	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1739		       keyring_gc_select_iterator, &limit);
1740	up_write(&keyring->sem);
1741	kleave(" [gc]");
1742}
1743
1744/*
1745 * Garbage collect restriction pointers from a keyring.
1746 *
1747 * Keyring restrictions are associated with a key type, and must be cleaned
1748 * up if the key type is unregistered. The restriction is altered to always
1749 * reject additional keys so a keyring cannot be opened up by unregistering
1750 * a key type.
1751 *
1752 * Not called with any keyring locks held. The keyring's key struct will not
1753 * be deallocated under us as only our caller may deallocate it.
1754 *
1755 * The caller is required to hold key_types_sem and dead_type->sem. This is
1756 * fulfilled by key_gc_keytype() holding the locks on behalf of
1757 * key_garbage_collector(), which it invokes on a workqueue.
1758 */
1759void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1760{
1761	struct key_restriction *keyres;
1762
1763	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1764
1765	/*
1766	 * keyring->restrict_link is only assigned at key allocation time
1767	 * or with the key type locked, so the only values that could be
1768	 * concurrently assigned to keyring->restrict_link are for key
1769	 * types other than dead_type. Given this, it's ok to check
1770	 * the key type before acquiring keyring->sem.
1771	 */
1772	if (!dead_type || !keyring->restrict_link ||
1773	    keyring->restrict_link->keytype != dead_type) {
1774		kleave(" [no restriction gc]");
1775		return;
1776	}
1777
1778	/* Lock the keyring to ensure that a link is not in progress */
1779	down_write(&keyring->sem);
1780
1781	keyres = keyring->restrict_link;
1782
1783	keyres->check = restrict_link_reject;
1784
1785	key_put(keyres->key);
1786	keyres->key = NULL;
1787	keyres->keytype = NULL;
1788
1789	up_write(&keyring->sem);
1790
1791	kleave(" [restriction gc]");
1792}