Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * zswap.c - zswap driver file
  3 *
  4 * zswap is a backend for frontswap that takes pages that are in the process
  5 * of being swapped out and attempts to compress and store them in a
  6 * RAM-based memory pool.  This can result in a significant I/O reduction on
  7 * the swap device and, in the case where decompressing from RAM is faster
  8 * than reading from the swap device, can also improve workload performance.
  9 *
 10 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
 11 *
 12 * This program is free software; you can redistribute it and/or
 13 * modify it under the terms of the GNU General Public License
 14 * as published by the Free Software Foundation; either version 2
 15 * of the License, or (at your option) any later version.
 16 *
 17 * This program is distributed in the hope that it will be useful,
 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 * GNU General Public License for more details.
 21*/
 22
 23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 24
 25#include <linux/module.h>
 26#include <linux/cpu.h>
 27#include <linux/highmem.h>
 28#include <linux/slab.h>
 29#include <linux/spinlock.h>
 30#include <linux/types.h>
 31#include <linux/atomic.h>
 32#include <linux/frontswap.h>
 33#include <linux/rbtree.h>
 34#include <linux/swap.h>
 35#include <linux/crypto.h>
 36#include <linux/mempool.h>
 37#include <linux/zbud.h>
 38
 39#include <linux/mm_types.h>
 40#include <linux/page-flags.h>
 41#include <linux/swapops.h>
 42#include <linux/writeback.h>
 43#include <linux/pagemap.h>
 44
 45/*********************************
 46* statistics
 47**********************************/
 48/* Number of memory pages used by the compressed pool */
 49static u64 zswap_pool_pages;
 50/* The number of compressed pages currently stored in zswap */
 51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
 
 
 52
 53/*
 54 * The statistics below are not protected from concurrent access for
 55 * performance reasons so they may not be a 100% accurate.  However,
 56 * they do provide useful information on roughly how many times a
 57 * certain event is occurring.
 58*/
 59
 60/* Pool limit was hit (see zswap_max_pool_percent) */
 61static u64 zswap_pool_limit_hit;
 62/* Pages written back when pool limit was reached */
 63static u64 zswap_written_back_pages;
 64/* Store failed due to a reclaim failure after pool limit was reached */
 65static u64 zswap_reject_reclaim_fail;
 66/* Compressed page was too big for the allocator to (optimally) store */
 67static u64 zswap_reject_compress_poor;
 68/* Store failed because underlying allocator could not get memory */
 69static u64 zswap_reject_alloc_fail;
 70/* Store failed because the entry metadata could not be allocated (rare) */
 71static u64 zswap_reject_kmemcache_fail;
 72/* Duplicate store was encountered (rare) */
 73static u64 zswap_duplicate_entry;
 74
 75/*********************************
 76* tunables
 77**********************************/
 78/* Enable/disable zswap (disabled by default, fixed at boot for now) */
 79static bool zswap_enabled __read_mostly;
 80module_param_named(enabled, zswap_enabled, bool, 0444);
 81
 82/* Compressor to be used by zswap (fixed at boot for now) */
 
 
 
 
 
 
 
 
 
 
 
 
 83#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
 84static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 85module_param_named(compressor, zswap_compressor, charp, 0444);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86
 87/* The maximum percentage of memory that the compressed pool can occupy */
 88static unsigned int zswap_max_pool_percent = 20;
 89module_param_named(max_pool_percent,
 90			zswap_max_pool_percent, uint, 0644);
 91
 92/* zbud_pool is shared by all of zswap backend  */
 93static struct zbud_pool *zswap_pool;
 
 
 94
 95/*********************************
 96* compression functions
 97**********************************/
 98/* per-cpu compression transforms */
 99static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
100
101enum comp_op {
102	ZSWAP_COMPOP_COMPRESS,
103	ZSWAP_COMPOP_DECOMPRESS
 
 
 
 
 
104};
105
106static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
107				u8 *dst, unsigned int *dlen)
108{
109	struct crypto_comp *tfm;
110	int ret;
111
112	tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
113	switch (op) {
114	case ZSWAP_COMPOP_COMPRESS:
115		ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
116		break;
117	case ZSWAP_COMPOP_DECOMPRESS:
118		ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
119		break;
120	default:
121		ret = -EINVAL;
122	}
123
124	put_cpu();
125	return ret;
126}
127
128static int __init zswap_comp_init(void)
129{
130	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
131		pr_info("%s compressor not available\n", zswap_compressor);
132		/* fall back to default compressor */
133		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
134		if (!crypto_has_comp(zswap_compressor, 0, 0))
135			/* can't even load the default compressor */
136			return -ENODEV;
137	}
138	pr_info("using %s compressor\n", zswap_compressor);
139
140	/* alloc percpu transforms */
141	zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
142	if (!zswap_comp_pcpu_tfms)
143		return -ENOMEM;
144	return 0;
145}
146
147static void zswap_comp_exit(void)
148{
149	/* free percpu transforms */
150	if (zswap_comp_pcpu_tfms)
151		free_percpu(zswap_comp_pcpu_tfms);
152}
153
154/*********************************
155* data structures
156**********************************/
157/*
158 * struct zswap_entry
159 *
160 * This structure contains the metadata for tracking a single compressed
161 * page within zswap.
162 *
163 * rbnode - links the entry into red-black tree for the appropriate swap type
 
164 * refcount - the number of outstanding reference to the entry. This is needed
165 *            to protect against premature freeing of the entry by code
166 *            concurrent calls to load, invalidate, and writeback.  The lock
167 *            for the zswap_tree structure that contains the entry must
168 *            be held while changing the refcount.  Since the lock must
169 *            be held, there is no reason to also make refcount atomic.
170 * offset - the swap offset for the entry.  Index into the red-black tree.
171 * handle - zbud allocation handle that stores the compressed page data
172 * length - the length in bytes of the compressed page data.  Needed during
173 *          decompression
 
 
 
174 */
175struct zswap_entry {
176	struct rb_node rbnode;
177	pgoff_t offset;
178	int refcount;
179	unsigned int length;
180	unsigned long handle;
 
 
 
 
181};
182
183struct zswap_header {
184	swp_entry_t swpentry;
185};
186
187/*
188 * The tree lock in the zswap_tree struct protects a few things:
189 * - the rbtree
190 * - the refcount field of each entry in the tree
191 */
192struct zswap_tree {
193	struct rb_root rbroot;
194	spinlock_t lock;
195};
196
197static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199/*********************************
200* zswap entry functions
201**********************************/
202static struct kmem_cache *zswap_entry_cache;
203
204static int zswap_entry_cache_create(void)
205{
206	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
207	return zswap_entry_cache == NULL;
208}
209
210static void zswap_entry_cache_destory(void)
211{
212	kmem_cache_destroy(zswap_entry_cache);
213}
214
215static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
216{
217	struct zswap_entry *entry;
218	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
219	if (!entry)
220		return NULL;
221	entry->refcount = 1;
222	RB_CLEAR_NODE(&entry->rbnode);
223	return entry;
224}
225
226static void zswap_entry_cache_free(struct zswap_entry *entry)
227{
228	kmem_cache_free(zswap_entry_cache, entry);
229}
230
231/*********************************
232* rbtree functions
233**********************************/
234static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
235{
236	struct rb_node *node = root->rb_node;
237	struct zswap_entry *entry;
238
239	while (node) {
240		entry = rb_entry(node, struct zswap_entry, rbnode);
241		if (entry->offset > offset)
242			node = node->rb_left;
243		else if (entry->offset < offset)
244			node = node->rb_right;
245		else
246			return entry;
247	}
248	return NULL;
249}
250
251/*
252 * In the case that a entry with the same offset is found, a pointer to
253 * the existing entry is stored in dupentry and the function returns -EEXIST
254 */
255static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
256			struct zswap_entry **dupentry)
257{
258	struct rb_node **link = &root->rb_node, *parent = NULL;
259	struct zswap_entry *myentry;
260
261	while (*link) {
262		parent = *link;
263		myentry = rb_entry(parent, struct zswap_entry, rbnode);
264		if (myentry->offset > entry->offset)
265			link = &(*link)->rb_left;
266		else if (myentry->offset < entry->offset)
267			link = &(*link)->rb_right;
268		else {
269			*dupentry = myentry;
270			return -EEXIST;
271		}
272	}
273	rb_link_node(&entry->rbnode, parent, link);
274	rb_insert_color(&entry->rbnode, root);
275	return 0;
276}
277
278static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
279{
280	if (!RB_EMPTY_NODE(&entry->rbnode)) {
281		rb_erase(&entry->rbnode, root);
282		RB_CLEAR_NODE(&entry->rbnode);
283	}
284}
285
286/*
287 * Carries out the common pattern of freeing and entry's zbud allocation,
288 * freeing the entry itself, and decrementing the number of stored pages.
289 */
290static void zswap_free_entry(struct zswap_entry *entry)
291{
292	zbud_free(zswap_pool, entry->handle);
 
 
 
 
 
293	zswap_entry_cache_free(entry);
294	atomic_dec(&zswap_stored_pages);
295	zswap_pool_pages = zbud_get_pool_size(zswap_pool);
296}
297
298/* caller must hold the tree lock */
299static void zswap_entry_get(struct zswap_entry *entry)
300{
301	entry->refcount++;
302}
303
304/* caller must hold the tree lock
305* remove from the tree and free it, if nobody reference the entry
306*/
307static void zswap_entry_put(struct zswap_tree *tree,
308			struct zswap_entry *entry)
309{
310	int refcount = --entry->refcount;
311
312	BUG_ON(refcount < 0);
313	if (refcount == 0) {
314		zswap_rb_erase(&tree->rbroot, entry);
315		zswap_free_entry(entry);
316	}
317}
318
319/* caller must hold the tree lock */
320static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
321				pgoff_t offset)
322{
323	struct zswap_entry *entry = NULL;
324
325	entry = zswap_rb_search(root, offset);
326	if (entry)
327		zswap_entry_get(entry);
328
329	return entry;
330}
331
332/*********************************
333* per-cpu code
334**********************************/
335static DEFINE_PER_CPU(u8 *, zswap_dstmem);
336
337static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
338{
339	struct crypto_comp *tfm;
340	u8 *dst;
341
342	switch (action) {
343	case CPU_UP_PREPARE:
344		tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
345		if (IS_ERR(tfm)) {
346			pr_err("can't allocate compressor transform\n");
347			return NOTIFY_BAD;
348		}
349		*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
350		dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
351		if (!dst) {
352			pr_err("can't allocate compressor buffer\n");
353			crypto_free_comp(tfm);
354			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
355			return NOTIFY_BAD;
356		}
357		per_cpu(zswap_dstmem, cpu) = dst;
358		break;
359	case CPU_DEAD:
360	case CPU_UP_CANCELED:
361		tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
362		if (tfm) {
363			crypto_free_comp(tfm);
364			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
365		}
366		dst = per_cpu(zswap_dstmem, cpu);
367		kfree(dst);
368		per_cpu(zswap_dstmem, cpu) = NULL;
369		break;
370	default:
371		break;
372	}
373	return NOTIFY_OK;
374}
375
376static int zswap_cpu_notifier(struct notifier_block *nb,
377				unsigned long action, void *pcpu)
378{
379	unsigned long cpu = (unsigned long)pcpu;
380	return __zswap_cpu_notifier(action, cpu);
 
 
 
 
 
381}
382
383static struct notifier_block zswap_cpu_notifier_block = {
384	.notifier_call = zswap_cpu_notifier
385};
 
 
 
 
386
387static int zswap_cpu_init(void)
 
 
 
 
 
 
 
 
 
 
388{
389	unsigned long cpu;
 
390
391	cpu_notifier_register_begin();
392	for_each_online_cpu(cpu)
393		if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
394			goto cleanup;
395	__register_cpu_notifier(&zswap_cpu_notifier_block);
396	cpu_notifier_register_done();
397	return 0;
 
398
399cleanup:
400	for_each_online_cpu(cpu)
401		__zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
402	cpu_notifier_register_done();
403	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404}
405
406/*********************************
407* helpers
408**********************************/
409static bool zswap_is_full(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410{
411	return totalram_pages * zswap_max_pool_percent / 100 <
412		zswap_pool_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413}
414
415/*********************************
416* writeback code
417**********************************/
418/* return enum for zswap_get_swap_cache_page */
419enum zswap_get_swap_ret {
420	ZSWAP_SWAPCACHE_NEW,
421	ZSWAP_SWAPCACHE_EXIST,
422	ZSWAP_SWAPCACHE_FAIL,
423};
424
425/*
426 * zswap_get_swap_cache_page
427 *
428 * This is an adaption of read_swap_cache_async()
429 *
430 * This function tries to find a page with the given swap entry
431 * in the swapper_space address space (the swap cache).  If the page
432 * is found, it is returned in retpage.  Otherwise, a page is allocated,
433 * added to the swap cache, and returned in retpage.
434 *
435 * If success, the swap cache page is returned in retpage
436 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
437 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
438 *     the new page is added to swapcache and locked
439 * Returns ZSWAP_SWAPCACHE_FAIL on error
440 */
441static int zswap_get_swap_cache_page(swp_entry_t entry,
442				struct page **retpage)
443{
444	struct page *found_page, *new_page = NULL;
445	struct address_space *swapper_space = swap_address_space(entry);
446	int err;
447
448	*retpage = NULL;
449	do {
450		/*
451		 * First check the swap cache.  Since this is normally
452		 * called after lookup_swap_cache() failed, re-calling
453		 * that would confuse statistics.
454		 */
455		found_page = find_get_page(swapper_space, entry.val);
456		if (found_page)
457			break;
458
459		/*
460		 * Get a new page to read into from swap.
461		 */
462		if (!new_page) {
463			new_page = alloc_page(GFP_KERNEL);
464			if (!new_page)
465				break; /* Out of memory */
466		}
467
468		/*
469		 * call radix_tree_preload() while we can wait.
470		 */
471		err = radix_tree_preload(GFP_KERNEL);
472		if (err)
473			break;
474
475		/*
476		 * Swap entry may have been freed since our caller observed it.
477		 */
478		err = swapcache_prepare(entry);
479		if (err == -EEXIST) { /* seems racy */
480			radix_tree_preload_end();
481			continue;
482		}
483		if (err) { /* swp entry is obsolete ? */
484			radix_tree_preload_end();
485			break;
486		}
487
488		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
489		__set_page_locked(new_page);
490		SetPageSwapBacked(new_page);
491		err = __add_to_swap_cache(new_page, entry);
492		if (likely(!err)) {
493			radix_tree_preload_end();
494			lru_cache_add_anon(new_page);
495			*retpage = new_page;
496			return ZSWAP_SWAPCACHE_NEW;
497		}
498		radix_tree_preload_end();
499		ClearPageSwapBacked(new_page);
500		__clear_page_locked(new_page);
501		/*
502		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
503		 * clear SWAP_HAS_CACHE flag.
504		 */
505		swapcache_free(entry, NULL);
506	} while (err != -ENOMEM);
507
508	if (new_page)
509		page_cache_release(new_page);
510	if (!found_page)
511		return ZSWAP_SWAPCACHE_FAIL;
512	*retpage = found_page;
513	return ZSWAP_SWAPCACHE_EXIST;
514}
515
516/*
517 * Attempts to free an entry by adding a page to the swap cache,
518 * decompressing the entry data into the page, and issuing a
519 * bio write to write the page back to the swap device.
520 *
521 * This can be thought of as a "resumed writeback" of the page
522 * to the swap device.  We are basically resuming the same swap
523 * writeback path that was intercepted with the frontswap_store()
524 * in the first place.  After the page has been decompressed into
525 * the swap cache, the compressed version stored by zswap can be
526 * freed.
527 */
528static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
529{
530	struct zswap_header *zhdr;
531	swp_entry_t swpentry;
532	struct zswap_tree *tree;
533	pgoff_t offset;
534	struct zswap_entry *entry;
535	struct page *page;
 
536	u8 *src, *dst;
537	unsigned int dlen;
538	int ret;
539	struct writeback_control wbc = {
540		.sync_mode = WB_SYNC_NONE,
541	};
542
543	/* extract swpentry from data */
544	zhdr = zbud_map(pool, handle);
545	swpentry = zhdr->swpentry; /* here */
546	zbud_unmap(pool, handle);
547	tree = zswap_trees[swp_type(swpentry)];
548	offset = swp_offset(swpentry);
549
550	/* find and ref zswap entry */
551	spin_lock(&tree->lock);
552	entry = zswap_entry_find_get(&tree->rbroot, offset);
553	if (!entry) {
554		/* entry was invalidated */
555		spin_unlock(&tree->lock);
 
556		return 0;
557	}
558	spin_unlock(&tree->lock);
559	BUG_ON(offset != entry->offset);
560
561	/* try to allocate swap cache page */
562	switch (zswap_get_swap_cache_page(swpentry, &page)) {
563	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
564		ret = -ENOMEM;
565		goto fail;
566
567	case ZSWAP_SWAPCACHE_EXIST:
568		/* page is already in the swap cache, ignore for now */
569		page_cache_release(page);
570		ret = -EEXIST;
571		goto fail;
572
573	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
574		/* decompress */
575		dlen = PAGE_SIZE;
576		src = (u8 *)zbud_map(zswap_pool, entry->handle) +
577			sizeof(struct zswap_header);
578		dst = kmap_atomic(page);
579		ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
580				entry->length, dst, &dlen);
 
 
581		kunmap_atomic(dst);
582		zbud_unmap(zswap_pool, entry->handle);
583		BUG_ON(ret);
584		BUG_ON(dlen != PAGE_SIZE);
585
586		/* page is up to date */
587		SetPageUptodate(page);
588	}
589
590	/* move it to the tail of the inactive list after end_writeback */
591	SetPageReclaim(page);
592
593	/* start writeback */
594	__swap_writepage(page, &wbc, end_swap_bio_write);
595	page_cache_release(page);
596	zswap_written_back_pages++;
597
598	spin_lock(&tree->lock);
599	/* drop local reference */
600	zswap_entry_put(tree, entry);
601
602	/*
603	* There are two possible situations for entry here:
604	* (1) refcount is 1(normal case),  entry is valid and on the tree
605	* (2) refcount is 0, entry is freed and not on the tree
606	*     because invalidate happened during writeback
607	*  search the tree and free the entry if find entry
608	*/
609	if (entry == zswap_rb_search(&tree->rbroot, offset))
610		zswap_entry_put(tree, entry);
611	spin_unlock(&tree->lock);
612
613	goto end;
614
615	/*
616	* if we get here due to ZSWAP_SWAPCACHE_EXIST
617	* a load may happening concurrently
618	* it is safe and okay to not free the entry
619	* if we free the entry in the following put
620	* it it either okay to return !0
621	*/
622fail:
623	spin_lock(&tree->lock);
624	zswap_entry_put(tree, entry);
625	spin_unlock(&tree->lock);
626
627end:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628	return ret;
629}
630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631/*********************************
632* frontswap hooks
633**********************************/
634/* attempts to compress and store an single page */
635static int zswap_frontswap_store(unsigned type, pgoff_t offset,
636				struct page *page)
637{
638	struct zswap_tree *tree = zswap_trees[type];
639	struct zswap_entry *entry, *dupentry;
 
640	int ret;
641	unsigned int dlen = PAGE_SIZE, len;
642	unsigned long handle;
643	char *buf;
644	u8 *src, *dst;
645	struct zswap_header *zhdr;
 
646
647	if (!tree) {
 
 
 
 
 
 
648		ret = -ENODEV;
649		goto reject;
650	}
651
652	/* reclaim space if needed */
653	if (zswap_is_full()) {
654		zswap_pool_limit_hit++;
655		if (zbud_reclaim_page(zswap_pool, 8)) {
656			zswap_reject_reclaim_fail++;
657			ret = -ENOMEM;
658			goto reject;
659		}
 
 
 
 
 
 
 
 
 
660	}
661
662	/* allocate entry */
663	entry = zswap_entry_cache_alloc(GFP_KERNEL);
664	if (!entry) {
665		zswap_reject_kmemcache_fail++;
666		ret = -ENOMEM;
667		goto reject;
668	}
669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670	/* compress */
671	dst = get_cpu_var(zswap_dstmem);
 
672	src = kmap_atomic(page);
673	ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
674	kunmap_atomic(src);
 
675	if (ret) {
676		ret = -EINVAL;
677		goto freepage;
678	}
679
680	/* store */
681	len = dlen + sizeof(struct zswap_header);
682	ret = zbud_alloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
683		&handle);
 
 
684	if (ret == -ENOSPC) {
685		zswap_reject_compress_poor++;
686		goto freepage;
687	}
688	if (ret) {
689		zswap_reject_alloc_fail++;
690		goto freepage;
691	}
692	zhdr = zbud_map(zswap_pool, handle);
693	zhdr->swpentry = swp_entry(type, offset);
694	buf = (u8 *)(zhdr + 1);
695	memcpy(buf, dst, dlen);
696	zbud_unmap(zswap_pool, handle);
697	put_cpu_var(zswap_dstmem);
698
699	/* populate entry */
700	entry->offset = offset;
701	entry->handle = handle;
702	entry->length = dlen;
703
 
704	/* map */
705	spin_lock(&tree->lock);
706	do {
707		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
708		if (ret == -EEXIST) {
709			zswap_duplicate_entry++;
710			/* remove from rbtree */
711			zswap_rb_erase(&tree->rbroot, dupentry);
712			zswap_entry_put(tree, dupentry);
713		}
714	} while (ret == -EEXIST);
715	spin_unlock(&tree->lock);
716
717	/* update stats */
718	atomic_inc(&zswap_stored_pages);
719	zswap_pool_pages = zbud_get_pool_size(zswap_pool);
720
721	return 0;
722
723freepage:
724	put_cpu_var(zswap_dstmem);
 
 
725	zswap_entry_cache_free(entry);
726reject:
727	return ret;
728}
729
730/*
731 * returns 0 if the page was successfully decompressed
732 * return -1 on entry not found or error
733*/
734static int zswap_frontswap_load(unsigned type, pgoff_t offset,
735				struct page *page)
736{
737	struct zswap_tree *tree = zswap_trees[type];
738	struct zswap_entry *entry;
 
739	u8 *src, *dst;
740	unsigned int dlen;
741	int ret;
742
743	/* find */
744	spin_lock(&tree->lock);
745	entry = zswap_entry_find_get(&tree->rbroot, offset);
746	if (!entry) {
747		/* entry was written back */
748		spin_unlock(&tree->lock);
749		return -1;
750	}
751	spin_unlock(&tree->lock);
752
 
 
 
 
 
 
 
753	/* decompress */
754	dlen = PAGE_SIZE;
755	src = (u8 *)zbud_map(zswap_pool, entry->handle) +
756			sizeof(struct zswap_header);
 
757	dst = kmap_atomic(page);
758	ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
759		dst, &dlen);
 
760	kunmap_atomic(dst);
761	zbud_unmap(zswap_pool, entry->handle);
762	BUG_ON(ret);
763
 
764	spin_lock(&tree->lock);
765	zswap_entry_put(tree, entry);
766	spin_unlock(&tree->lock);
767
768	return 0;
769}
770
771/* frees an entry in zswap */
772static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
773{
774	struct zswap_tree *tree = zswap_trees[type];
775	struct zswap_entry *entry;
776
777	/* find */
778	spin_lock(&tree->lock);
779	entry = zswap_rb_search(&tree->rbroot, offset);
780	if (!entry) {
781		/* entry was written back */
782		spin_unlock(&tree->lock);
783		return;
784	}
785
786	/* remove from rbtree */
787	zswap_rb_erase(&tree->rbroot, entry);
788
789	/* drop the initial reference from entry creation */
790	zswap_entry_put(tree, entry);
791
792	spin_unlock(&tree->lock);
793}
794
795/* frees all zswap entries for the given swap type */
796static void zswap_frontswap_invalidate_area(unsigned type)
797{
798	struct zswap_tree *tree = zswap_trees[type];
799	struct zswap_entry *entry, *n;
800
801	if (!tree)
802		return;
803
804	/* walk the tree and free everything */
805	spin_lock(&tree->lock);
806	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
807		zswap_free_entry(entry);
808	tree->rbroot = RB_ROOT;
809	spin_unlock(&tree->lock);
810	kfree(tree);
811	zswap_trees[type] = NULL;
812}
813
814static struct zbud_ops zswap_zbud_ops = {
815	.evict = zswap_writeback_entry
816};
817
818static void zswap_frontswap_init(unsigned type)
819{
820	struct zswap_tree *tree;
821
822	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
823	if (!tree) {
824		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
825		return;
826	}
827
828	tree->rbroot = RB_ROOT;
829	spin_lock_init(&tree->lock);
830	zswap_trees[type] = tree;
831}
832
833static struct frontswap_ops zswap_frontswap_ops = {
834	.store = zswap_frontswap_store,
835	.load = zswap_frontswap_load,
836	.invalidate_page = zswap_frontswap_invalidate_page,
837	.invalidate_area = zswap_frontswap_invalidate_area,
838	.init = zswap_frontswap_init
839};
840
841/*********************************
842* debugfs functions
843**********************************/
844#ifdef CONFIG_DEBUG_FS
845#include <linux/debugfs.h>
846
847static struct dentry *zswap_debugfs_root;
848
849static int __init zswap_debugfs_init(void)
850{
851	if (!debugfs_initialized())
852		return -ENODEV;
853
854	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
855	if (!zswap_debugfs_root)
856		return -ENOMEM;
857
858	debugfs_create_u64("pool_limit_hit", S_IRUGO,
859			zswap_debugfs_root, &zswap_pool_limit_hit);
860	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
861			zswap_debugfs_root, &zswap_reject_reclaim_fail);
862	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
863			zswap_debugfs_root, &zswap_reject_alloc_fail);
864	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
865			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
866	debugfs_create_u64("reject_compress_poor", S_IRUGO,
867			zswap_debugfs_root, &zswap_reject_compress_poor);
868	debugfs_create_u64("written_back_pages", S_IRUGO,
869			zswap_debugfs_root, &zswap_written_back_pages);
870	debugfs_create_u64("duplicate_entry", S_IRUGO,
871			zswap_debugfs_root, &zswap_duplicate_entry);
872	debugfs_create_u64("pool_pages", S_IRUGO,
873			zswap_debugfs_root, &zswap_pool_pages);
874	debugfs_create_atomic_t("stored_pages", S_IRUGO,
875			zswap_debugfs_root, &zswap_stored_pages);
 
 
876
877	return 0;
878}
879
880static void __exit zswap_debugfs_exit(void)
881{
882	debugfs_remove_recursive(zswap_debugfs_root);
883}
884#else
885static int __init zswap_debugfs_init(void)
886{
887	return 0;
888}
889
890static void __exit zswap_debugfs_exit(void) { }
891#endif
892
893/*********************************
894* module init and exit
895**********************************/
896static int __init init_zswap(void)
897{
898	if (!zswap_enabled)
899		return 0;
900
901	pr_info("loading zswap\n");
902
903	zswap_pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
904	if (!zswap_pool) {
905		pr_err("zbud pool creation failed\n");
906		goto error;
907	}
908
909	if (zswap_entry_cache_create()) {
910		pr_err("entry cache creation failed\n");
911		goto cachefail;
912	}
913	if (zswap_comp_init()) {
914		pr_err("compressor initialization failed\n");
915		goto compfail;
916	}
917	if (zswap_cpu_init()) {
918		pr_err("per-cpu initialization failed\n");
919		goto pcpufail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
920	}
921
922	frontswap_register_ops(&zswap_frontswap_ops);
923	if (zswap_debugfs_init())
924		pr_warn("debugfs initialization failed\n");
925	return 0;
926pcpufail:
927	zswap_comp_exit();
928compfail:
929	zswap_entry_cache_destory();
930cachefail:
931	zbud_destroy_pool(zswap_pool);
932error:
 
 
933	return -ENOMEM;
934}
935/* must be late so crypto has time to come up */
936late_initcall(init_zswap);
937
938MODULE_LICENSE("GPL");
939MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
940MODULE_DESCRIPTION("Compressed cache for swap pages");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a backend for frontswap that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
 
 
 
 
 
 
 
 
 
 
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
  23#include <linux/frontswap.h>
  24#include <linux/rbtree.h>
  25#include <linux/swap.h>
  26#include <linux/crypto.h>
  27#include <linux/mempool.h>
  28#include <linux/zpool.h>
  29
  30#include <linux/mm_types.h>
  31#include <linux/page-flags.h>
  32#include <linux/swapops.h>
  33#include <linux/writeback.h>
  34#include <linux/pagemap.h>
  35
  36/*********************************
  37* statistics
  38**********************************/
  39/* Total bytes used by the compressed storage */
  40static u64 zswap_pool_total_size;
  41/* The number of compressed pages currently stored in zswap */
  42static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  43/* The number of same-value filled pages currently stored in zswap */
  44static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  45
  46/*
  47 * The statistics below are not protected from concurrent access for
  48 * performance reasons so they may not be a 100% accurate.  However,
  49 * they do provide useful information on roughly how many times a
  50 * certain event is occurring.
  51*/
  52
  53/* Pool limit was hit (see zswap_max_pool_percent) */
  54static u64 zswap_pool_limit_hit;
  55/* Pages written back when pool limit was reached */
  56static u64 zswap_written_back_pages;
  57/* Store failed due to a reclaim failure after pool limit was reached */
  58static u64 zswap_reject_reclaim_fail;
  59/* Compressed page was too big for the allocator to (optimally) store */
  60static u64 zswap_reject_compress_poor;
  61/* Store failed because underlying allocator could not get memory */
  62static u64 zswap_reject_alloc_fail;
  63/* Store failed because the entry metadata could not be allocated (rare) */
  64static u64 zswap_reject_kmemcache_fail;
  65/* Duplicate store was encountered (rare) */
  66static u64 zswap_duplicate_entry;
  67
  68/*********************************
  69* tunables
  70**********************************/
 
 
 
  71
  72#define ZSWAP_PARAM_UNSET ""
  73
  74/* Enable/disable zswap (disabled by default) */
  75static bool zswap_enabled;
  76static int zswap_enabled_param_set(const char *,
  77				   const struct kernel_param *);
  78static struct kernel_param_ops zswap_enabled_param_ops = {
  79	.set =		zswap_enabled_param_set,
  80	.get =		param_get_bool,
  81};
  82module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  83
  84/* Crypto compressor to use */
  85#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  86static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  87static int zswap_compressor_param_set(const char *,
  88				      const struct kernel_param *);
  89static struct kernel_param_ops zswap_compressor_param_ops = {
  90	.set =		zswap_compressor_param_set,
  91	.get =		param_get_charp,
  92	.free =		param_free_charp,
  93};
  94module_param_cb(compressor, &zswap_compressor_param_ops,
  95		&zswap_compressor, 0644);
  96
  97/* Compressed storage zpool to use */
  98#define ZSWAP_ZPOOL_DEFAULT "zbud"
  99static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 100static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 101static struct kernel_param_ops zswap_zpool_param_ops = {
 102	.set =		zswap_zpool_param_set,
 103	.get =		param_get_charp,
 104	.free =		param_free_charp,
 105};
 106module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 107
 108/* The maximum percentage of memory that the compressed pool can occupy */
 109static unsigned int zswap_max_pool_percent = 20;
 110module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 
 111
 112/* Enable/disable handling same-value filled pages (enabled by default) */
 113static bool zswap_same_filled_pages_enabled = true;
 114module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 115		   bool, 0644);
 116
 117/*********************************
 118* data structures
 119**********************************/
 
 
 120
 121struct zswap_pool {
 122	struct zpool *zpool;
 123	struct crypto_comp * __percpu *tfm;
 124	struct kref kref;
 125	struct list_head list;
 126	struct work_struct work;
 127	struct hlist_node node;
 128	char tfm_name[CRYPTO_MAX_ALG_NAME];
 129};
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/*
 132 * struct zswap_entry
 133 *
 134 * This structure contains the metadata for tracking a single compressed
 135 * page within zswap.
 136 *
 137 * rbnode - links the entry into red-black tree for the appropriate swap type
 138 * offset - the swap offset for the entry.  Index into the red-black tree.
 139 * refcount - the number of outstanding reference to the entry. This is needed
 140 *            to protect against premature freeing of the entry by code
 141 *            concurrent calls to load, invalidate, and writeback.  The lock
 142 *            for the zswap_tree structure that contains the entry must
 143 *            be held while changing the refcount.  Since the lock must
 144 *            be held, there is no reason to also make refcount atomic.
 
 
 145 * length - the length in bytes of the compressed page data.  Needed during
 146 *          decompression. For a same value filled page length is 0.
 147 * pool - the zswap_pool the entry's data is in
 148 * handle - zpool allocation handle that stores the compressed page data
 149 * value - value of the same-value filled pages which have same content
 150 */
 151struct zswap_entry {
 152	struct rb_node rbnode;
 153	pgoff_t offset;
 154	int refcount;
 155	unsigned int length;
 156	struct zswap_pool *pool;
 157	union {
 158		unsigned long handle;
 159		unsigned long value;
 160	};
 161};
 162
 163struct zswap_header {
 164	swp_entry_t swpentry;
 165};
 166
 167/*
 168 * The tree lock in the zswap_tree struct protects a few things:
 169 * - the rbtree
 170 * - the refcount field of each entry in the tree
 171 */
 172struct zswap_tree {
 173	struct rb_root rbroot;
 174	spinlock_t lock;
 175};
 176
 177static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 178
 179/* RCU-protected iteration */
 180static LIST_HEAD(zswap_pools);
 181/* protects zswap_pools list modification */
 182static DEFINE_SPINLOCK(zswap_pools_lock);
 183/* pool counter to provide unique names to zpool */
 184static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 185
 186/* used by param callback function */
 187static bool zswap_init_started;
 188
 189/* fatal error during init */
 190static bool zswap_init_failed;
 191
 192/* init completed, but couldn't create the initial pool */
 193static bool zswap_has_pool;
 194
 195/*********************************
 196* helpers and fwd declarations
 197**********************************/
 198
 199#define zswap_pool_debug(msg, p)				\
 200	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 201		 zpool_get_type((p)->zpool))
 202
 203static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 204static int zswap_pool_get(struct zswap_pool *pool);
 205static void zswap_pool_put(struct zswap_pool *pool);
 206
 207static const struct zpool_ops zswap_zpool_ops = {
 208	.evict = zswap_writeback_entry
 209};
 210
 211static bool zswap_is_full(void)
 212{
 213	return totalram_pages() * zswap_max_pool_percent / 100 <
 214			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 215}
 216
 217static void zswap_update_total_size(void)
 218{
 219	struct zswap_pool *pool;
 220	u64 total = 0;
 221
 222	rcu_read_lock();
 223
 224	list_for_each_entry_rcu(pool, &zswap_pools, list)
 225		total += zpool_get_total_size(pool->zpool);
 226
 227	rcu_read_unlock();
 228
 229	zswap_pool_total_size = total;
 230}
 231
 232/*********************************
 233* zswap entry functions
 234**********************************/
 235static struct kmem_cache *zswap_entry_cache;
 236
 237static int __init zswap_entry_cache_create(void)
 238{
 239	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 240	return zswap_entry_cache == NULL;
 241}
 242
 243static void __init zswap_entry_cache_destroy(void)
 244{
 245	kmem_cache_destroy(zswap_entry_cache);
 246}
 247
 248static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 249{
 250	struct zswap_entry *entry;
 251	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 252	if (!entry)
 253		return NULL;
 254	entry->refcount = 1;
 255	RB_CLEAR_NODE(&entry->rbnode);
 256	return entry;
 257}
 258
 259static void zswap_entry_cache_free(struct zswap_entry *entry)
 260{
 261	kmem_cache_free(zswap_entry_cache, entry);
 262}
 263
 264/*********************************
 265* rbtree functions
 266**********************************/
 267static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 268{
 269	struct rb_node *node = root->rb_node;
 270	struct zswap_entry *entry;
 271
 272	while (node) {
 273		entry = rb_entry(node, struct zswap_entry, rbnode);
 274		if (entry->offset > offset)
 275			node = node->rb_left;
 276		else if (entry->offset < offset)
 277			node = node->rb_right;
 278		else
 279			return entry;
 280	}
 281	return NULL;
 282}
 283
 284/*
 285 * In the case that a entry with the same offset is found, a pointer to
 286 * the existing entry is stored in dupentry and the function returns -EEXIST
 287 */
 288static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 289			struct zswap_entry **dupentry)
 290{
 291	struct rb_node **link = &root->rb_node, *parent = NULL;
 292	struct zswap_entry *myentry;
 293
 294	while (*link) {
 295		parent = *link;
 296		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 297		if (myentry->offset > entry->offset)
 298			link = &(*link)->rb_left;
 299		else if (myentry->offset < entry->offset)
 300			link = &(*link)->rb_right;
 301		else {
 302			*dupentry = myentry;
 303			return -EEXIST;
 304		}
 305	}
 306	rb_link_node(&entry->rbnode, parent, link);
 307	rb_insert_color(&entry->rbnode, root);
 308	return 0;
 309}
 310
 311static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 312{
 313	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 314		rb_erase(&entry->rbnode, root);
 315		RB_CLEAR_NODE(&entry->rbnode);
 316	}
 317}
 318
 319/*
 320 * Carries out the common pattern of freeing and entry's zpool allocation,
 321 * freeing the entry itself, and decrementing the number of stored pages.
 322 */
 323static void zswap_free_entry(struct zswap_entry *entry)
 324{
 325	if (!entry->length)
 326		atomic_dec(&zswap_same_filled_pages);
 327	else {
 328		zpool_free(entry->pool->zpool, entry->handle);
 329		zswap_pool_put(entry->pool);
 330	}
 331	zswap_entry_cache_free(entry);
 332	atomic_dec(&zswap_stored_pages);
 333	zswap_update_total_size();
 334}
 335
 336/* caller must hold the tree lock */
 337static void zswap_entry_get(struct zswap_entry *entry)
 338{
 339	entry->refcount++;
 340}
 341
 342/* caller must hold the tree lock
 343* remove from the tree and free it, if nobody reference the entry
 344*/
 345static void zswap_entry_put(struct zswap_tree *tree,
 346			struct zswap_entry *entry)
 347{
 348	int refcount = --entry->refcount;
 349
 350	BUG_ON(refcount < 0);
 351	if (refcount == 0) {
 352		zswap_rb_erase(&tree->rbroot, entry);
 353		zswap_free_entry(entry);
 354	}
 355}
 356
 357/* caller must hold the tree lock */
 358static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 359				pgoff_t offset)
 360{
 361	struct zswap_entry *entry;
 362
 363	entry = zswap_rb_search(root, offset);
 364	if (entry)
 365		zswap_entry_get(entry);
 366
 367	return entry;
 368}
 369
 370/*********************************
 371* per-cpu code
 372**********************************/
 373static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 374
 375static int zswap_dstmem_prepare(unsigned int cpu)
 376{
 
 377	u8 *dst;
 378
 379	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 380	if (!dst)
 381		return -ENOMEM;
 382
 383	per_cpu(zswap_dstmem, cpu) = dst;
 384	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385}
 386
 387static int zswap_dstmem_dead(unsigned int cpu)
 
 388{
 389	u8 *dst;
 390
 391	dst = per_cpu(zswap_dstmem, cpu);
 392	kfree(dst);
 393	per_cpu(zswap_dstmem, cpu) = NULL;
 394
 395	return 0;
 396}
 397
 398static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 399{
 400	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 401	struct crypto_comp *tfm;
 402
 403	if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
 404		return 0;
 405
 406	tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
 407	if (IS_ERR_OR_NULL(tfm)) {
 408		pr_err("could not alloc crypto comp %s : %ld\n",
 409		       pool->tfm_name, PTR_ERR(tfm));
 410		return -ENOMEM;
 411	}
 412	*per_cpu_ptr(pool->tfm, cpu) = tfm;
 413	return 0;
 414}
 415
 416static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 417{
 418	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 419	struct crypto_comp *tfm;
 420
 421	tfm = *per_cpu_ptr(pool->tfm, cpu);
 422	if (!IS_ERR_OR_NULL(tfm))
 423		crypto_free_comp(tfm);
 424	*per_cpu_ptr(pool->tfm, cpu) = NULL;
 
 
 425	return 0;
 426}
 427
 428/*********************************
 429* pool functions
 430**********************************/
 431
 432static struct zswap_pool *__zswap_pool_current(void)
 433{
 434	struct zswap_pool *pool;
 435
 436	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 437	WARN_ONCE(!pool && zswap_has_pool,
 438		  "%s: no page storage pool!\n", __func__);
 439
 440	return pool;
 441}
 442
 443static struct zswap_pool *zswap_pool_current(void)
 444{
 445	assert_spin_locked(&zswap_pools_lock);
 446
 447	return __zswap_pool_current();
 448}
 449
 450static struct zswap_pool *zswap_pool_current_get(void)
 451{
 452	struct zswap_pool *pool;
 453
 454	rcu_read_lock();
 455
 456	pool = __zswap_pool_current();
 457	if (!zswap_pool_get(pool))
 458		pool = NULL;
 459
 460	rcu_read_unlock();
 461
 462	return pool;
 463}
 464
 465static struct zswap_pool *zswap_pool_last_get(void)
 466{
 467	struct zswap_pool *pool, *last = NULL;
 468
 469	rcu_read_lock();
 470
 471	list_for_each_entry_rcu(pool, &zswap_pools, list)
 472		last = pool;
 473	WARN_ONCE(!last && zswap_has_pool,
 474		  "%s: no page storage pool!\n", __func__);
 475	if (!zswap_pool_get(last))
 476		last = NULL;
 477
 478	rcu_read_unlock();
 479
 480	return last;
 481}
 482
 483/* type and compressor must be null-terminated */
 484static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 485{
 486	struct zswap_pool *pool;
 487
 488	assert_spin_locked(&zswap_pools_lock);
 489
 490	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 491		if (strcmp(pool->tfm_name, compressor))
 492			continue;
 493		if (strcmp(zpool_get_type(pool->zpool), type))
 494			continue;
 495		/* if we can't get it, it's about to be destroyed */
 496		if (!zswap_pool_get(pool))
 497			continue;
 498		return pool;
 499	}
 500
 501	return NULL;
 502}
 503
 504static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 505{
 506	struct zswap_pool *pool;
 507	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 508	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 509	int ret;
 510
 511	if (!zswap_has_pool) {
 512		/* if either are unset, pool initialization failed, and we
 513		 * need both params to be set correctly before trying to
 514		 * create a pool.
 515		 */
 516		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 517			return NULL;
 518		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 519			return NULL;
 520	}
 521
 522	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 523	if (!pool)
 524		return NULL;
 525
 526	/* unique name for each pool specifically required by zsmalloc */
 527	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 528
 529	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 530	if (!pool->zpool) {
 531		pr_err("%s zpool not available\n", type);
 532		goto error;
 533	}
 534	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 535
 536	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 537	pool->tfm = alloc_percpu(struct crypto_comp *);
 538	if (!pool->tfm) {
 539		pr_err("percpu alloc failed\n");
 540		goto error;
 541	}
 542
 543	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 544				       &pool->node);
 545	if (ret)
 546		goto error;
 547	pr_debug("using %s compressor\n", pool->tfm_name);
 548
 549	/* being the current pool takes 1 ref; this func expects the
 550	 * caller to always add the new pool as the current pool
 551	 */
 552	kref_init(&pool->kref);
 553	INIT_LIST_HEAD(&pool->list);
 554
 555	zswap_pool_debug("created", pool);
 556
 557	return pool;
 558
 559error:
 560	free_percpu(pool->tfm);
 561	if (pool->zpool)
 562		zpool_destroy_pool(pool->zpool);
 563	kfree(pool);
 564	return NULL;
 565}
 566
 567static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 568{
 569	bool has_comp, has_zpool;
 570
 571	has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 572	if (!has_comp && strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
 573		pr_err("compressor %s not available, using default %s\n",
 574		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
 575		param_free_charp(&zswap_compressor);
 576		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 577		has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 578	}
 579	if (!has_comp) {
 580		pr_err("default compressor %s not available\n",
 581		       zswap_compressor);
 582		param_free_charp(&zswap_compressor);
 583		zswap_compressor = ZSWAP_PARAM_UNSET;
 584	}
 585
 586	has_zpool = zpool_has_pool(zswap_zpool_type);
 587	if (!has_zpool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
 588		pr_err("zpool %s not available, using default %s\n",
 589		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
 590		param_free_charp(&zswap_zpool_type);
 591		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 592		has_zpool = zpool_has_pool(zswap_zpool_type);
 593	}
 594	if (!has_zpool) {
 595		pr_err("default zpool %s not available\n",
 596		       zswap_zpool_type);
 597		param_free_charp(&zswap_zpool_type);
 598		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 599	}
 600
 601	if (!has_comp || !has_zpool)
 602		return NULL;
 603
 604	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 605}
 606
 607static void zswap_pool_destroy(struct zswap_pool *pool)
 608{
 609	zswap_pool_debug("destroying", pool);
 610
 611	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 612	free_percpu(pool->tfm);
 613	zpool_destroy_pool(pool->zpool);
 614	kfree(pool);
 615}
 616
 617static int __must_check zswap_pool_get(struct zswap_pool *pool)
 618{
 619	if (!pool)
 620		return 0;
 621
 622	return kref_get_unless_zero(&pool->kref);
 623}
 624
 625static void __zswap_pool_release(struct work_struct *work)
 626{
 627	struct zswap_pool *pool = container_of(work, typeof(*pool), work);
 628
 629	synchronize_rcu();
 630
 631	/* nobody should have been able to get a kref... */
 632	WARN_ON(kref_get_unless_zero(&pool->kref));
 633
 634	/* pool is now off zswap_pools list and has no references. */
 635	zswap_pool_destroy(pool);
 636}
 637
 638static void __zswap_pool_empty(struct kref *kref)
 639{
 640	struct zswap_pool *pool;
 641
 642	pool = container_of(kref, typeof(*pool), kref);
 643
 644	spin_lock(&zswap_pools_lock);
 645
 646	WARN_ON(pool == zswap_pool_current());
 647
 648	list_del_rcu(&pool->list);
 649
 650	INIT_WORK(&pool->work, __zswap_pool_release);
 651	schedule_work(&pool->work);
 652
 653	spin_unlock(&zswap_pools_lock);
 654}
 655
 656static void zswap_pool_put(struct zswap_pool *pool)
 657{
 658	kref_put(&pool->kref, __zswap_pool_empty);
 659}
 660
 661/*********************************
 662* param callbacks
 663**********************************/
 664
 665/* val must be a null-terminated string */
 666static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 667			     char *type, char *compressor)
 668{
 669	struct zswap_pool *pool, *put_pool = NULL;
 670	char *s = strstrip((char *)val);
 671	int ret;
 672
 673	if (zswap_init_failed) {
 674		pr_err("can't set param, initialization failed\n");
 675		return -ENODEV;
 676	}
 677
 678	/* no change required */
 679	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 680		return 0;
 681
 682	/* if this is load-time (pre-init) param setting,
 683	 * don't create a pool; that's done during init.
 684	 */
 685	if (!zswap_init_started)
 686		return param_set_charp(s, kp);
 687
 688	if (!type) {
 689		if (!zpool_has_pool(s)) {
 690			pr_err("zpool %s not available\n", s);
 691			return -ENOENT;
 692		}
 693		type = s;
 694	} else if (!compressor) {
 695		if (!crypto_has_comp(s, 0, 0)) {
 696			pr_err("compressor %s not available\n", s);
 697			return -ENOENT;
 698		}
 699		compressor = s;
 700	} else {
 701		WARN_ON(1);
 702		return -EINVAL;
 703	}
 704
 705	spin_lock(&zswap_pools_lock);
 706
 707	pool = zswap_pool_find_get(type, compressor);
 708	if (pool) {
 709		zswap_pool_debug("using existing", pool);
 710		WARN_ON(pool == zswap_pool_current());
 711		list_del_rcu(&pool->list);
 712	}
 713
 714	spin_unlock(&zswap_pools_lock);
 715
 716	if (!pool)
 717		pool = zswap_pool_create(type, compressor);
 718
 719	if (pool)
 720		ret = param_set_charp(s, kp);
 721	else
 722		ret = -EINVAL;
 723
 724	spin_lock(&zswap_pools_lock);
 725
 726	if (!ret) {
 727		put_pool = zswap_pool_current();
 728		list_add_rcu(&pool->list, &zswap_pools);
 729		zswap_has_pool = true;
 730	} else if (pool) {
 731		/* add the possibly pre-existing pool to the end of the pools
 732		 * list; if it's new (and empty) then it'll be removed and
 733		 * destroyed by the put after we drop the lock
 734		 */
 735		list_add_tail_rcu(&pool->list, &zswap_pools);
 736		put_pool = pool;
 737	}
 738
 739	spin_unlock(&zswap_pools_lock);
 740
 741	if (!zswap_has_pool && !pool) {
 742		/* if initial pool creation failed, and this pool creation also
 743		 * failed, maybe both compressor and zpool params were bad.
 744		 * Allow changing this param, so pool creation will succeed
 745		 * when the other param is changed. We already verified this
 746		 * param is ok in the zpool_has_pool() or crypto_has_comp()
 747		 * checks above.
 748		 */
 749		ret = param_set_charp(s, kp);
 750	}
 751
 752	/* drop the ref from either the old current pool,
 753	 * or the new pool we failed to add
 754	 */
 755	if (put_pool)
 756		zswap_pool_put(put_pool);
 757
 758	return ret;
 759}
 760
 761static int zswap_compressor_param_set(const char *val,
 762				      const struct kernel_param *kp)
 763{
 764	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 765}
 766
 767static int zswap_zpool_param_set(const char *val,
 768				 const struct kernel_param *kp)
 769{
 770	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 771}
 772
 773static int zswap_enabled_param_set(const char *val,
 774				   const struct kernel_param *kp)
 775{
 776	if (zswap_init_failed) {
 777		pr_err("can't enable, initialization failed\n");
 778		return -ENODEV;
 779	}
 780	if (!zswap_has_pool && zswap_init_started) {
 781		pr_err("can't enable, no pool configured\n");
 782		return -ENODEV;
 783	}
 784
 785	return param_set_bool(val, kp);
 786}
 787
 788/*********************************
 789* writeback code
 790**********************************/
 791/* return enum for zswap_get_swap_cache_page */
 792enum zswap_get_swap_ret {
 793	ZSWAP_SWAPCACHE_NEW,
 794	ZSWAP_SWAPCACHE_EXIST,
 795	ZSWAP_SWAPCACHE_FAIL,
 796};
 797
 798/*
 799 * zswap_get_swap_cache_page
 800 *
 801 * This is an adaption of read_swap_cache_async()
 802 *
 803 * This function tries to find a page with the given swap entry
 804 * in the swapper_space address space (the swap cache).  If the page
 805 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 806 * added to the swap cache, and returned in retpage.
 807 *
 808 * If success, the swap cache page is returned in retpage
 809 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 810 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 811 *     the new page is added to swapcache and locked
 812 * Returns ZSWAP_SWAPCACHE_FAIL on error
 813 */
 814static int zswap_get_swap_cache_page(swp_entry_t entry,
 815				struct page **retpage)
 816{
 817	bool page_was_allocated;
 
 
 818
 819	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 820			NULL, 0, &page_was_allocated);
 821	if (page_was_allocated)
 822		return ZSWAP_SWAPCACHE_NEW;
 823	if (!*retpage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824		return ZSWAP_SWAPCACHE_FAIL;
 
 825	return ZSWAP_SWAPCACHE_EXIST;
 826}
 827
 828/*
 829 * Attempts to free an entry by adding a page to the swap cache,
 830 * decompressing the entry data into the page, and issuing a
 831 * bio write to write the page back to the swap device.
 832 *
 833 * This can be thought of as a "resumed writeback" of the page
 834 * to the swap device.  We are basically resuming the same swap
 835 * writeback path that was intercepted with the frontswap_store()
 836 * in the first place.  After the page has been decompressed into
 837 * the swap cache, the compressed version stored by zswap can be
 838 * freed.
 839 */
 840static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 841{
 842	struct zswap_header *zhdr;
 843	swp_entry_t swpentry;
 844	struct zswap_tree *tree;
 845	pgoff_t offset;
 846	struct zswap_entry *entry;
 847	struct page *page;
 848	struct crypto_comp *tfm;
 849	u8 *src, *dst;
 850	unsigned int dlen;
 851	int ret;
 852	struct writeback_control wbc = {
 853		.sync_mode = WB_SYNC_NONE,
 854	};
 855
 856	/* extract swpentry from data */
 857	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 858	swpentry = zhdr->swpentry; /* here */
 
 859	tree = zswap_trees[swp_type(swpentry)];
 860	offset = swp_offset(swpentry);
 861
 862	/* find and ref zswap entry */
 863	spin_lock(&tree->lock);
 864	entry = zswap_entry_find_get(&tree->rbroot, offset);
 865	if (!entry) {
 866		/* entry was invalidated */
 867		spin_unlock(&tree->lock);
 868		zpool_unmap_handle(pool, handle);
 869		return 0;
 870	}
 871	spin_unlock(&tree->lock);
 872	BUG_ON(offset != entry->offset);
 873
 874	/* try to allocate swap cache page */
 875	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 876	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 877		ret = -ENOMEM;
 878		goto fail;
 879
 880	case ZSWAP_SWAPCACHE_EXIST:
 881		/* page is already in the swap cache, ignore for now */
 882		put_page(page);
 883		ret = -EEXIST;
 884		goto fail;
 885
 886	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 887		/* decompress */
 888		dlen = PAGE_SIZE;
 889		src = (u8 *)zhdr + sizeof(struct zswap_header);
 
 890		dst = kmap_atomic(page);
 891		tfm = *get_cpu_ptr(entry->pool->tfm);
 892		ret = crypto_comp_decompress(tfm, src, entry->length,
 893					     dst, &dlen);
 894		put_cpu_ptr(entry->pool->tfm);
 895		kunmap_atomic(dst);
 
 896		BUG_ON(ret);
 897		BUG_ON(dlen != PAGE_SIZE);
 898
 899		/* page is up to date */
 900		SetPageUptodate(page);
 901	}
 902
 903	/* move it to the tail of the inactive list after end_writeback */
 904	SetPageReclaim(page);
 905
 906	/* start writeback */
 907	__swap_writepage(page, &wbc, end_swap_bio_write);
 908	put_page(page);
 909	zswap_written_back_pages++;
 910
 911	spin_lock(&tree->lock);
 912	/* drop local reference */
 913	zswap_entry_put(tree, entry);
 914
 915	/*
 916	* There are two possible situations for entry here:
 917	* (1) refcount is 1(normal case),  entry is valid and on the tree
 918	* (2) refcount is 0, entry is freed and not on the tree
 919	*     because invalidate happened during writeback
 920	*  search the tree and free the entry if find entry
 921	*/
 922	if (entry == zswap_rb_search(&tree->rbroot, offset))
 923		zswap_entry_put(tree, entry);
 924	spin_unlock(&tree->lock);
 925
 926	goto end;
 927
 928	/*
 929	* if we get here due to ZSWAP_SWAPCACHE_EXIST
 930	* a load may happening concurrently
 931	* it is safe and okay to not free the entry
 932	* if we free the entry in the following put
 933	* it it either okay to return !0
 934	*/
 935fail:
 936	spin_lock(&tree->lock);
 937	zswap_entry_put(tree, entry);
 938	spin_unlock(&tree->lock);
 939
 940end:
 941	zpool_unmap_handle(pool, handle);
 942	return ret;
 943}
 944
 945static int zswap_shrink(void)
 946{
 947	struct zswap_pool *pool;
 948	int ret;
 949
 950	pool = zswap_pool_last_get();
 951	if (!pool)
 952		return -ENOENT;
 953
 954	ret = zpool_shrink(pool->zpool, 1, NULL);
 955
 956	zswap_pool_put(pool);
 957
 958	return ret;
 959}
 960
 961static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
 962{
 963	unsigned int pos;
 964	unsigned long *page;
 965
 966	page = (unsigned long *)ptr;
 967	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
 968		if (page[pos] != page[0])
 969			return 0;
 970	}
 971	*value = page[0];
 972	return 1;
 973}
 974
 975static void zswap_fill_page(void *ptr, unsigned long value)
 976{
 977	unsigned long *page;
 978
 979	page = (unsigned long *)ptr;
 980	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
 981}
 982
 983/*********************************
 984* frontswap hooks
 985**********************************/
 986/* attempts to compress and store an single page */
 987static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 988				struct page *page)
 989{
 990	struct zswap_tree *tree = zswap_trees[type];
 991	struct zswap_entry *entry, *dupentry;
 992	struct crypto_comp *tfm;
 993	int ret;
 994	unsigned int hlen, dlen = PAGE_SIZE;
 995	unsigned long handle, value;
 996	char *buf;
 997	u8 *src, *dst;
 998	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
 999	gfp_t gfp;
1000
1001	/* THP isn't supported */
1002	if (PageTransHuge(page)) {
1003		ret = -EINVAL;
1004		goto reject;
1005	}
1006
1007	if (!zswap_enabled || !tree) {
1008		ret = -ENODEV;
1009		goto reject;
1010	}
1011
1012	/* reclaim space if needed */
1013	if (zswap_is_full()) {
1014		zswap_pool_limit_hit++;
1015		if (zswap_shrink()) {
1016			zswap_reject_reclaim_fail++;
1017			ret = -ENOMEM;
1018			goto reject;
1019		}
1020
1021		/* A second zswap_is_full() check after
1022		 * zswap_shrink() to make sure it's now
1023		 * under the max_pool_percent
1024		 */
1025		if (zswap_is_full()) {
1026			ret = -ENOMEM;
1027			goto reject;
1028		}
1029	}
1030
1031	/* allocate entry */
1032	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1033	if (!entry) {
1034		zswap_reject_kmemcache_fail++;
1035		ret = -ENOMEM;
1036		goto reject;
1037	}
1038
1039	if (zswap_same_filled_pages_enabled) {
1040		src = kmap_atomic(page);
1041		if (zswap_is_page_same_filled(src, &value)) {
1042			kunmap_atomic(src);
1043			entry->offset = offset;
1044			entry->length = 0;
1045			entry->value = value;
1046			atomic_inc(&zswap_same_filled_pages);
1047			goto insert_entry;
1048		}
1049		kunmap_atomic(src);
1050	}
1051
1052	/* if entry is successfully added, it keeps the reference */
1053	entry->pool = zswap_pool_current_get();
1054	if (!entry->pool) {
1055		ret = -EINVAL;
1056		goto freepage;
1057	}
1058
1059	/* compress */
1060	dst = get_cpu_var(zswap_dstmem);
1061	tfm = *get_cpu_ptr(entry->pool->tfm);
1062	src = kmap_atomic(page);
1063	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1064	kunmap_atomic(src);
1065	put_cpu_ptr(entry->pool->tfm);
1066	if (ret) {
1067		ret = -EINVAL;
1068		goto put_dstmem;
1069	}
1070
1071	/* store */
1072	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1073	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1074	if (zpool_malloc_support_movable(entry->pool->zpool))
1075		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1076	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1077	if (ret == -ENOSPC) {
1078		zswap_reject_compress_poor++;
1079		goto put_dstmem;
1080	}
1081	if (ret) {
1082		zswap_reject_alloc_fail++;
1083		goto put_dstmem;
1084	}
1085	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1086	memcpy(buf, &zhdr, hlen);
1087	memcpy(buf + hlen, dst, dlen);
1088	zpool_unmap_handle(entry->pool->zpool, handle);
 
1089	put_cpu_var(zswap_dstmem);
1090
1091	/* populate entry */
1092	entry->offset = offset;
1093	entry->handle = handle;
1094	entry->length = dlen;
1095
1096insert_entry:
1097	/* map */
1098	spin_lock(&tree->lock);
1099	do {
1100		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1101		if (ret == -EEXIST) {
1102			zswap_duplicate_entry++;
1103			/* remove from rbtree */
1104			zswap_rb_erase(&tree->rbroot, dupentry);
1105			zswap_entry_put(tree, dupentry);
1106		}
1107	} while (ret == -EEXIST);
1108	spin_unlock(&tree->lock);
1109
1110	/* update stats */
1111	atomic_inc(&zswap_stored_pages);
1112	zswap_update_total_size();
1113
1114	return 0;
1115
1116put_dstmem:
1117	put_cpu_var(zswap_dstmem);
1118	zswap_pool_put(entry->pool);
1119freepage:
1120	zswap_entry_cache_free(entry);
1121reject:
1122	return ret;
1123}
1124
1125/*
1126 * returns 0 if the page was successfully decompressed
1127 * return -1 on entry not found or error
1128*/
1129static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1130				struct page *page)
1131{
1132	struct zswap_tree *tree = zswap_trees[type];
1133	struct zswap_entry *entry;
1134	struct crypto_comp *tfm;
1135	u8 *src, *dst;
1136	unsigned int dlen;
1137	int ret;
1138
1139	/* find */
1140	spin_lock(&tree->lock);
1141	entry = zswap_entry_find_get(&tree->rbroot, offset);
1142	if (!entry) {
1143		/* entry was written back */
1144		spin_unlock(&tree->lock);
1145		return -1;
1146	}
1147	spin_unlock(&tree->lock);
1148
1149	if (!entry->length) {
1150		dst = kmap_atomic(page);
1151		zswap_fill_page(dst, entry->value);
1152		kunmap_atomic(dst);
1153		goto freeentry;
1154	}
1155
1156	/* decompress */
1157	dlen = PAGE_SIZE;
1158	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1159	if (zpool_evictable(entry->pool->zpool))
1160		src += sizeof(struct zswap_header);
1161	dst = kmap_atomic(page);
1162	tfm = *get_cpu_ptr(entry->pool->tfm);
1163	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1164	put_cpu_ptr(entry->pool->tfm);
1165	kunmap_atomic(dst);
1166	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1167	BUG_ON(ret);
1168
1169freeentry:
1170	spin_lock(&tree->lock);
1171	zswap_entry_put(tree, entry);
1172	spin_unlock(&tree->lock);
1173
1174	return 0;
1175}
1176
1177/* frees an entry in zswap */
1178static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1179{
1180	struct zswap_tree *tree = zswap_trees[type];
1181	struct zswap_entry *entry;
1182
1183	/* find */
1184	spin_lock(&tree->lock);
1185	entry = zswap_rb_search(&tree->rbroot, offset);
1186	if (!entry) {
1187		/* entry was written back */
1188		spin_unlock(&tree->lock);
1189		return;
1190	}
1191
1192	/* remove from rbtree */
1193	zswap_rb_erase(&tree->rbroot, entry);
1194
1195	/* drop the initial reference from entry creation */
1196	zswap_entry_put(tree, entry);
1197
1198	spin_unlock(&tree->lock);
1199}
1200
1201/* frees all zswap entries for the given swap type */
1202static void zswap_frontswap_invalidate_area(unsigned type)
1203{
1204	struct zswap_tree *tree = zswap_trees[type];
1205	struct zswap_entry *entry, *n;
1206
1207	if (!tree)
1208		return;
1209
1210	/* walk the tree and free everything */
1211	spin_lock(&tree->lock);
1212	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1213		zswap_free_entry(entry);
1214	tree->rbroot = RB_ROOT;
1215	spin_unlock(&tree->lock);
1216	kfree(tree);
1217	zswap_trees[type] = NULL;
1218}
1219
 
 
 
 
1220static void zswap_frontswap_init(unsigned type)
1221{
1222	struct zswap_tree *tree;
1223
1224	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1225	if (!tree) {
1226		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1227		return;
1228	}
1229
1230	tree->rbroot = RB_ROOT;
1231	spin_lock_init(&tree->lock);
1232	zswap_trees[type] = tree;
1233}
1234
1235static struct frontswap_ops zswap_frontswap_ops = {
1236	.store = zswap_frontswap_store,
1237	.load = zswap_frontswap_load,
1238	.invalidate_page = zswap_frontswap_invalidate_page,
1239	.invalidate_area = zswap_frontswap_invalidate_area,
1240	.init = zswap_frontswap_init
1241};
1242
1243/*********************************
1244* debugfs functions
1245**********************************/
1246#ifdef CONFIG_DEBUG_FS
1247#include <linux/debugfs.h>
1248
1249static struct dentry *zswap_debugfs_root;
1250
1251static int __init zswap_debugfs_init(void)
1252{
1253	if (!debugfs_initialized())
1254		return -ENODEV;
1255
1256	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
 
 
1257
1258	debugfs_create_u64("pool_limit_hit", 0444,
1259			   zswap_debugfs_root, &zswap_pool_limit_hit);
1260	debugfs_create_u64("reject_reclaim_fail", 0444,
1261			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1262	debugfs_create_u64("reject_alloc_fail", 0444,
1263			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1264	debugfs_create_u64("reject_kmemcache_fail", 0444,
1265			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1266	debugfs_create_u64("reject_compress_poor", 0444,
1267			   zswap_debugfs_root, &zswap_reject_compress_poor);
1268	debugfs_create_u64("written_back_pages", 0444,
1269			   zswap_debugfs_root, &zswap_written_back_pages);
1270	debugfs_create_u64("duplicate_entry", 0444,
1271			   zswap_debugfs_root, &zswap_duplicate_entry);
1272	debugfs_create_u64("pool_total_size", 0444,
1273			   zswap_debugfs_root, &zswap_pool_total_size);
1274	debugfs_create_atomic_t("stored_pages", 0444,
1275				zswap_debugfs_root, &zswap_stored_pages);
1276	debugfs_create_atomic_t("same_filled_pages", 0444,
1277				zswap_debugfs_root, &zswap_same_filled_pages);
1278
1279	return 0;
1280}
1281
1282static void __exit zswap_debugfs_exit(void)
1283{
1284	debugfs_remove_recursive(zswap_debugfs_root);
1285}
1286#else
1287static int __init zswap_debugfs_init(void)
1288{
1289	return 0;
1290}
1291
1292static void __exit zswap_debugfs_exit(void) { }
1293#endif
1294
1295/*********************************
1296* module init and exit
1297**********************************/
1298static int __init init_zswap(void)
1299{
1300	struct zswap_pool *pool;
1301	int ret;
 
 
1302
1303	zswap_init_started = true;
 
 
 
 
1304
1305	if (zswap_entry_cache_create()) {
1306		pr_err("entry cache creation failed\n");
1307		goto cache_fail;
1308	}
1309
1310	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1311				zswap_dstmem_prepare, zswap_dstmem_dead);
1312	if (ret) {
1313		pr_err("dstmem alloc failed\n");
1314		goto dstmem_fail;
1315	}
1316
1317	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1318				      "mm/zswap_pool:prepare",
1319				      zswap_cpu_comp_prepare,
1320				      zswap_cpu_comp_dead);
1321	if (ret)
1322		goto hp_fail;
1323
1324	pool = __zswap_pool_create_fallback();
1325	if (pool) {
1326		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1327			zpool_get_type(pool->zpool));
1328		list_add(&pool->list, &zswap_pools);
1329		zswap_has_pool = true;
1330	} else {
1331		pr_err("pool creation failed\n");
1332		zswap_enabled = false;
1333	}
1334
1335	frontswap_register_ops(&zswap_frontswap_ops);
1336	if (zswap_debugfs_init())
1337		pr_warn("debugfs initialization failed\n");
1338	return 0;
1339
1340hp_fail:
1341	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1342dstmem_fail:
1343	zswap_entry_cache_destroy();
1344cache_fail:
1345	/* if built-in, we aren't unloaded on failure; don't allow use */
1346	zswap_init_failed = true;
1347	zswap_enabled = false;
1348	return -ENOMEM;
1349}
1350/* must be late so crypto has time to come up */
1351late_initcall(init_zswap);
1352
1353MODULE_LICENSE("GPL");
1354MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1355MODULE_DESCRIPTION("Compressed cache for swap pages");