Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 
 11#include <linux/gfp.h>
 12#include <linux/export.h>
 13#include <linux/blkdev.h>
 14#include <linux/backing-dev.h>
 15#include <linux/task_io_accounting_ops.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagemap.h>
 18#include <linux/syscalls.h>
 19#include <linux/file.h>
 
 
 
 20
 21#include "internal.h"
 22
 23/*
 24 * Initialise a struct file's readahead state.  Assumes that the caller has
 25 * memset *ra to zero.
 26 */
 27void
 28file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 29{
 30	ra->ra_pages = mapping->backing_dev_info->ra_pages;
 31	ra->prev_pos = -1;
 32}
 33EXPORT_SYMBOL_GPL(file_ra_state_init);
 34
 35#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	page_cache_release(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = list_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 
 
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = list_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping,
 93					page->index, GFP_KERNEL)) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		page_cache_release(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_CACHE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned nr_pages)
113{
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = list_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping,
131					page->index, GFP_KERNEL)) {
132			mapping->a_ops->readpage(filp, page);
133		}
134		page_cache_release(page);
135	}
136	ret = 0;
137
138out:
139	blk_finish_plug(&plug);
140
141	return ret;
142}
143
144/*
145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
146 * the pages first, then submits them all for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that.
149 *
150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 */
152int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
153			pgoff_t offset, unsigned long nr_to_read,
154			unsigned long lookahead_size)
155{
156	struct inode *inode = mapping->host;
157	struct page *page;
158	unsigned long end_index;	/* The last page we want to read */
159	LIST_HEAD(page_pool);
160	int page_idx;
161	int ret = 0;
162	loff_t isize = i_size_read(inode);
 
163
164	if (isize == 0)
165		goto out;
166
167	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
168
169	/*
170	 * Preallocate as many pages as we will need.
171	 */
172	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
173		pgoff_t page_offset = offset + page_idx;
174
175		if (page_offset > end_index)
176			break;
177
178		rcu_read_lock();
179		page = radix_tree_lookup(&mapping->page_tree, page_offset);
180		rcu_read_unlock();
181		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
 
 
182			continue;
 
183
184		page = page_cache_alloc_readahead(mapping);
185		if (!page)
186			break;
187		page->index = page_offset;
188		list_add(&page->lru, &page_pool);
189		if (page_idx == nr_to_read - lookahead_size)
190			SetPageReadahead(page);
191		ret++;
192	}
193
194	/*
195	 * Now start the IO.  We ignore I/O errors - if the page is not
196	 * uptodate then the caller will launch readpage again, and
197	 * will then handle the error.
198	 */
199	if (ret)
200		read_pages(mapping, filp, &page_pool, ret);
201	BUG_ON(!list_empty(&page_pool));
202out:
203	return ret;
204}
205
206/*
207 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
208 * memory at once.
209 */
210int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
211		pgoff_t offset, unsigned long nr_to_read)
212{
 
 
 
 
213	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
214		return -EINVAL;
215
216	nr_to_read = max_sane_readahead(nr_to_read);
 
 
 
 
 
217	while (nr_to_read) {
218		int err;
219
220		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
221
222		if (this_chunk > nr_to_read)
223			this_chunk = nr_to_read;
224		err = __do_page_cache_readahead(mapping, filp,
225						offset, this_chunk, 0);
226		if (err < 0)
227			return err;
228
229		offset += this_chunk;
230		nr_to_read -= this_chunk;
231	}
232	return 0;
233}
234
235#define MAX_READAHEAD   ((512*4096)/PAGE_CACHE_SIZE)
236/*
237 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
238 * sensible upper limit.
239 */
240unsigned long max_sane_readahead(unsigned long nr)
241{
242	return min(nr, MAX_READAHEAD);
243}
244
245/*
246 * Set the initial window size, round to next power of 2 and square
247 * for small size, x 4 for medium, and x 2 for large
248 * for 128k (32 page) max ra
249 * 1-8 page = 32k initial, > 8 page = 128k initial
250 */
251static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
252{
253	unsigned long newsize = roundup_pow_of_two(size);
254
255	if (newsize <= max / 32)
256		newsize = newsize * 4;
257	else if (newsize <= max / 4)
258		newsize = newsize * 2;
259	else
260		newsize = max;
261
262	return newsize;
263}
264
265/*
266 *  Get the previous window size, ramp it up, and
267 *  return it as the new window size.
268 */
269static unsigned long get_next_ra_size(struct file_ra_state *ra,
270						unsigned long max)
271{
272	unsigned long cur = ra->size;
273	unsigned long newsize;
274
275	if (cur < max / 16)
276		newsize = 4 * cur;
277	else
278		newsize = 2 * cur;
279
280	return min(newsize, max);
281}
282
283/*
284 * On-demand readahead design.
285 *
286 * The fields in struct file_ra_state represent the most-recently-executed
287 * readahead attempt:
288 *
289 *                        |<----- async_size ---------|
290 *     |------------------- size -------------------->|
291 *     |==================#===========================|
292 *     ^start             ^page marked with PG_readahead
293 *
294 * To overlap application thinking time and disk I/O time, we do
295 * `readahead pipelining': Do not wait until the application consumed all
296 * readahead pages and stalled on the missing page at readahead_index;
297 * Instead, submit an asynchronous readahead I/O as soon as there are
298 * only async_size pages left in the readahead window. Normally async_size
299 * will be equal to size, for maximum pipelining.
300 *
301 * In interleaved sequential reads, concurrent streams on the same fd can
302 * be invalidating each other's readahead state. So we flag the new readahead
303 * page at (start+size-async_size) with PG_readahead, and use it as readahead
304 * indicator. The flag won't be set on already cached pages, to avoid the
305 * readahead-for-nothing fuss, saving pointless page cache lookups.
306 *
307 * prev_pos tracks the last visited byte in the _previous_ read request.
308 * It should be maintained by the caller, and will be used for detecting
309 * small random reads. Note that the readahead algorithm checks loosely
310 * for sequential patterns. Hence interleaved reads might be served as
311 * sequential ones.
312 *
313 * There is a special-case: if the first page which the application tries to
314 * read happens to be the first page of the file, it is assumed that a linear
315 * read is about to happen and the window is immediately set to the initial size
316 * based on I/O request size and the max_readahead.
317 *
318 * The code ramps up the readahead size aggressively at first, but slow down as
319 * it approaches max_readhead.
320 */
321
322/*
323 * Count contiguously cached pages from @offset-1 to @offset-@max,
324 * this count is a conservative estimation of
325 * 	- length of the sequential read sequence, or
326 * 	- thrashing threshold in memory tight systems
327 */
328static pgoff_t count_history_pages(struct address_space *mapping,
329				   struct file_ra_state *ra,
330				   pgoff_t offset, unsigned long max)
331{
332	pgoff_t head;
333
334	rcu_read_lock();
335	head = page_cache_prev_hole(mapping, offset - 1, max);
336	rcu_read_unlock();
337
338	return offset - 1 - head;
339}
340
341/*
342 * page cache context based read-ahead
343 */
344static int try_context_readahead(struct address_space *mapping,
345				 struct file_ra_state *ra,
346				 pgoff_t offset,
347				 unsigned long req_size,
348				 unsigned long max)
349{
350	pgoff_t size;
351
352	size = count_history_pages(mapping, ra, offset, max);
353
354	/*
355	 * not enough history pages:
356	 * it could be a random read
357	 */
358	if (size <= req_size)
359		return 0;
360
361	/*
362	 * starts from beginning of file:
363	 * it is a strong indication of long-run stream (or whole-file-read)
364	 */
365	if (size >= offset)
366		size *= 2;
367
368	ra->start = offset;
369	ra->size = min(size + req_size, max);
370	ra->async_size = 1;
371
372	return 1;
373}
374
375/*
376 * A minimal readahead algorithm for trivial sequential/random reads.
377 */
378static unsigned long
379ondemand_readahead(struct address_space *mapping,
380		   struct file_ra_state *ra, struct file *filp,
381		   bool hit_readahead_marker, pgoff_t offset,
382		   unsigned long req_size)
383{
384	unsigned long max = max_sane_readahead(ra->ra_pages);
 
 
385	pgoff_t prev_offset;
386
387	/*
 
 
 
 
 
 
 
388	 * start of file
389	 */
390	if (!offset)
391		goto initial_readahead;
392
393	/*
394	 * It's the expected callback offset, assume sequential access.
395	 * Ramp up sizes, and push forward the readahead window.
396	 */
397	if ((offset == (ra->start + ra->size - ra->async_size) ||
398	     offset == (ra->start + ra->size))) {
399		ra->start += ra->size;
400		ra->size = get_next_ra_size(ra, max);
401		ra->async_size = ra->size;
402		goto readit;
403	}
404
405	/*
406	 * Hit a marked page without valid readahead state.
407	 * E.g. interleaved reads.
408	 * Query the pagecache for async_size, which normally equals to
409	 * readahead size. Ramp it up and use it as the new readahead size.
410	 */
411	if (hit_readahead_marker) {
412		pgoff_t start;
413
414		rcu_read_lock();
415		start = page_cache_next_hole(mapping, offset + 1, max);
416		rcu_read_unlock();
417
418		if (!start || start - offset > max)
419			return 0;
420
421		ra->start = start;
422		ra->size = start - offset;	/* old async_size */
423		ra->size += req_size;
424		ra->size = get_next_ra_size(ra, max);
425		ra->async_size = ra->size;
426		goto readit;
427	}
428
429	/*
430	 * oversize read
431	 */
432	if (req_size > max)
433		goto initial_readahead;
434
435	/*
436	 * sequential cache miss
437	 * trivial case: (offset - prev_offset) == 1
438	 * unaligned reads: (offset - prev_offset) == 0
439	 */
440	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
441	if (offset - prev_offset <= 1UL)
442		goto initial_readahead;
443
444	/*
445	 * Query the page cache and look for the traces(cached history pages)
446	 * that a sequential stream would leave behind.
447	 */
448	if (try_context_readahead(mapping, ra, offset, req_size, max))
449		goto readit;
450
451	/*
452	 * standalone, small random read
453	 * Read as is, and do not pollute the readahead state.
454	 */
455	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
456
457initial_readahead:
458	ra->start = offset;
459	ra->size = get_init_ra_size(req_size, max);
460	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
461
462readit:
463	/*
464	 * Will this read hit the readahead marker made by itself?
465	 * If so, trigger the readahead marker hit now, and merge
466	 * the resulted next readahead window into the current one.
 
467	 */
468	if (offset == ra->start && ra->size == ra->async_size) {
469		ra->async_size = get_next_ra_size(ra, max);
470		ra->size += ra->async_size;
 
 
 
 
 
 
471	}
472
473	return ra_submit(ra, mapping, filp);
474}
475
476/**
477 * page_cache_sync_readahead - generic file readahead
478 * @mapping: address_space which holds the pagecache and I/O vectors
479 * @ra: file_ra_state which holds the readahead state
480 * @filp: passed on to ->readpage() and ->readpages()
481 * @offset: start offset into @mapping, in pagecache page-sized units
482 * @req_size: hint: total size of the read which the caller is performing in
483 *            pagecache pages
484 *
485 * page_cache_sync_readahead() should be called when a cache miss happened:
486 * it will submit the read.  The readahead logic may decide to piggyback more
487 * pages onto the read request if access patterns suggest it will improve
488 * performance.
489 */
490void page_cache_sync_readahead(struct address_space *mapping,
491			       struct file_ra_state *ra, struct file *filp,
492			       pgoff_t offset, unsigned long req_size)
493{
494	/* no read-ahead */
495	if (!ra->ra_pages)
496		return;
497
 
 
 
498	/* be dumb */
499	if (filp && (filp->f_mode & FMODE_RANDOM)) {
500		force_page_cache_readahead(mapping, filp, offset, req_size);
501		return;
502	}
503
504	/* do read-ahead */
505	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
506}
507EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
508
509/**
510 * page_cache_async_readahead - file readahead for marked pages
511 * @mapping: address_space which holds the pagecache and I/O vectors
512 * @ra: file_ra_state which holds the readahead state
513 * @filp: passed on to ->readpage() and ->readpages()
514 * @page: the page at @offset which has the PG_readahead flag set
515 * @offset: start offset into @mapping, in pagecache page-sized units
516 * @req_size: hint: total size of the read which the caller is performing in
517 *            pagecache pages
518 *
519 * page_cache_async_readahead() should be called when a page is used which
520 * has the PG_readahead flag; this is a marker to suggest that the application
521 * has used up enough of the readahead window that we should start pulling in
522 * more pages.
523 */
524void
525page_cache_async_readahead(struct address_space *mapping,
526			   struct file_ra_state *ra, struct file *filp,
527			   struct page *page, pgoff_t offset,
528			   unsigned long req_size)
529{
530	/* no read-ahead */
531	if (!ra->ra_pages)
532		return;
533
534	/*
535	 * Same bit is used for PG_readahead and PG_reclaim.
536	 */
537	if (PageWriteback(page))
538		return;
539
540	ClearPageReadahead(page);
541
542	/*
543	 * Defer asynchronous read-ahead on IO congestion.
544	 */
545	if (bdi_read_congested(mapping->backing_dev_info))
 
 
 
546		return;
547
548	/* do read-ahead */
549	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
550}
551EXPORT_SYMBOL_GPL(page_cache_async_readahead);
552
553static ssize_t
554do_readahead(struct address_space *mapping, struct file *filp,
555	     pgoff_t index, unsigned long nr)
556{
557	if (!mapping || !mapping->a_ops)
558		return -EINVAL;
559
560	return force_page_cache_readahead(mapping, filp, index, nr);
561}
562
563SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
564{
565	ssize_t ret;
566	struct fd f;
567
568	ret = -EBADF;
569	f = fdget(fd);
570	if (f.file) {
571		if (f.file->f_mode & FMODE_READ) {
572			struct address_space *mapping = f.file->f_mapping;
573			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
574			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
575			unsigned long len = end - start + 1;
576			ret = do_readahead(mapping, f.file, start, len);
577		}
578		fdput(f);
579	}
 
 
 
 
 
 
580	return ret;
 
 
 
 
 
581}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25
 26#include "internal.h"
 27
 28/*
 29 * Initialise a struct file's readahead state.  Assumes that the caller has
 30 * memset *ra to zero.
 31 */
 32void
 33file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 34{
 35	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 36	ra->prev_pos = -1;
 37}
 38EXPORT_SYMBOL_GPL(file_ra_state_init);
 39
 
 
 40/*
 41 * see if a page needs releasing upon read_cache_pages() failure
 42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 43 *   before calling, such as the NFS fs marking pages that are cached locally
 44 *   on disk, thus we need to give the fs a chance to clean up in the event of
 45 *   an error
 46 */
 47static void read_cache_pages_invalidate_page(struct address_space *mapping,
 48					     struct page *page)
 49{
 50	if (page_has_private(page)) {
 51		if (!trylock_page(page))
 52			BUG();
 53		page->mapping = mapping;
 54		do_invalidatepage(page, 0, PAGE_SIZE);
 55		page->mapping = NULL;
 56		unlock_page(page);
 57	}
 58	put_page(page);
 59}
 60
 61/*
 62 * release a list of pages, invalidating them first if need be
 63 */
 64static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 65					      struct list_head *pages)
 66{
 67	struct page *victim;
 68
 69	while (!list_empty(pages)) {
 70		victim = lru_to_page(pages);
 71		list_del(&victim->lru);
 72		read_cache_pages_invalidate_page(mapping, victim);
 73	}
 74}
 75
 76/**
 77 * read_cache_pages - populate an address space with some pages & start reads against them
 78 * @mapping: the address_space
 79 * @pages: The address of a list_head which contains the target pages.  These
 80 *   pages have their ->index populated and are otherwise uninitialised.
 81 * @filler: callback routine for filling a single page.
 82 * @data: private data for the callback routine.
 83 *
 84 * Hides the details of the LRU cache etc from the filesystems.
 85 *
 86 * Returns: %0 on success, error return by @filler otherwise
 87 */
 88int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 89			int (*filler)(void *, struct page *), void *data)
 90{
 91	struct page *page;
 92	int ret = 0;
 93
 94	while (!list_empty(pages)) {
 95		page = lru_to_page(pages);
 96		list_del(&page->lru);
 97		if (add_to_page_cache_lru(page, mapping, page->index,
 98				readahead_gfp_mask(mapping))) {
 99			read_cache_pages_invalidate_page(mapping, page);
100			continue;
101		}
102		put_page(page);
103
104		ret = filler(data, page);
105		if (unlikely(ret)) {
106			read_cache_pages_invalidate_pages(mapping, pages);
107			break;
108		}
109		task_io_account_read(PAGE_SIZE);
110	}
111	return ret;
112}
113
114EXPORT_SYMBOL(read_cache_pages);
115
116static int read_pages(struct address_space *mapping, struct file *filp,
117		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
118{
119	struct blk_plug plug;
120	unsigned page_idx;
121	int ret;
122
123	blk_start_plug(&plug);
124
125	if (mapping->a_ops->readpages) {
126		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
127		/* Clean up the remaining pages */
128		put_pages_list(pages);
129		goto out;
130	}
131
132	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
133		struct page *page = lru_to_page(pages);
134		list_del(&page->lru);
135		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 
136			mapping->a_ops->readpage(filp, page);
137		put_page(page);
 
138	}
139	ret = 0;
140
141out:
142	blk_finish_plug(&plug);
143
144	return ret;
145}
146
147/*
148 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
149 * the pages first, then submits them for I/O. This avoids the very bad
150 * behaviour which would occur if page allocations are causing VM writeback.
151 * We really don't want to intermingle reads and writes like that.
152 *
153 * Returns the number of pages requested, or the maximum amount of I/O allowed.
154 */
155unsigned int __do_page_cache_readahead(struct address_space *mapping,
156		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
157		unsigned long lookahead_size)
158{
159	struct inode *inode = mapping->host;
160	struct page *page;
161	unsigned long end_index;	/* The last page we want to read */
162	LIST_HEAD(page_pool);
163	int page_idx;
164	unsigned int nr_pages = 0;
165	loff_t isize = i_size_read(inode);
166	gfp_t gfp_mask = readahead_gfp_mask(mapping);
167
168	if (isize == 0)
169		goto out;
170
171	end_index = ((isize - 1) >> PAGE_SHIFT);
172
173	/*
174	 * Preallocate as many pages as we will need.
175	 */
176	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
177		pgoff_t page_offset = offset + page_idx;
178
179		if (page_offset > end_index)
180			break;
181
182		page = xa_load(&mapping->i_pages, page_offset);
183		if (page && !xa_is_value(page)) {
184			/*
185			 * Page already present?  Kick off the current batch of
186			 * contiguous pages before continuing with the next
187			 * batch.
188			 */
189			if (nr_pages)
190				read_pages(mapping, filp, &page_pool, nr_pages,
191						gfp_mask);
192			nr_pages = 0;
193			continue;
194		}
195
196		page = __page_cache_alloc(gfp_mask);
197		if (!page)
198			break;
199		page->index = page_offset;
200		list_add(&page->lru, &page_pool);
201		if (page_idx == nr_to_read - lookahead_size)
202			SetPageReadahead(page);
203		nr_pages++;
204	}
205
206	/*
207	 * Now start the IO.  We ignore I/O errors - if the page is not
208	 * uptodate then the caller will launch readpage again, and
209	 * will then handle the error.
210	 */
211	if (nr_pages)
212		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
213	BUG_ON(!list_empty(&page_pool));
214out:
215	return nr_pages;
216}
217
218/*
219 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
220 * memory at once.
221 */
222int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
223			       pgoff_t offset, unsigned long nr_to_read)
224{
225	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
226	struct file_ra_state *ra = &filp->f_ra;
227	unsigned long max_pages;
228
229	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
230		return -EINVAL;
231
232	/*
233	 * If the request exceeds the readahead window, allow the read to
234	 * be up to the optimal hardware IO size
235	 */
236	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
237	nr_to_read = min(nr_to_read, max_pages);
238	while (nr_to_read) {
239		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 
 
240
241		if (this_chunk > nr_to_read)
242			this_chunk = nr_to_read;
243		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
 
 
 
244
245		offset += this_chunk;
246		nr_to_read -= this_chunk;
247	}
248	return 0;
249}
250
 
 
 
 
 
 
 
 
 
 
251/*
252 * Set the initial window size, round to next power of 2 and square
253 * for small size, x 4 for medium, and x 2 for large
254 * for 128k (32 page) max ra
255 * 1-8 page = 32k initial, > 8 page = 128k initial
256 */
257static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
258{
259	unsigned long newsize = roundup_pow_of_two(size);
260
261	if (newsize <= max / 32)
262		newsize = newsize * 4;
263	else if (newsize <= max / 4)
264		newsize = newsize * 2;
265	else
266		newsize = max;
267
268	return newsize;
269}
270
271/*
272 *  Get the previous window size, ramp it up, and
273 *  return it as the new window size.
274 */
275static unsigned long get_next_ra_size(struct file_ra_state *ra,
276				      unsigned long max)
277{
278	unsigned long cur = ra->size;
 
279
280	if (cur < max / 16)
281		return 4 * cur;
282	if (cur <= max / 2)
283		return 2 * cur;
284	return max;
 
285}
286
287/*
288 * On-demand readahead design.
289 *
290 * The fields in struct file_ra_state represent the most-recently-executed
291 * readahead attempt:
292 *
293 *                        |<----- async_size ---------|
294 *     |------------------- size -------------------->|
295 *     |==================#===========================|
296 *     ^start             ^page marked with PG_readahead
297 *
298 * To overlap application thinking time and disk I/O time, we do
299 * `readahead pipelining': Do not wait until the application consumed all
300 * readahead pages and stalled on the missing page at readahead_index;
301 * Instead, submit an asynchronous readahead I/O as soon as there are
302 * only async_size pages left in the readahead window. Normally async_size
303 * will be equal to size, for maximum pipelining.
304 *
305 * In interleaved sequential reads, concurrent streams on the same fd can
306 * be invalidating each other's readahead state. So we flag the new readahead
307 * page at (start+size-async_size) with PG_readahead, and use it as readahead
308 * indicator. The flag won't be set on already cached pages, to avoid the
309 * readahead-for-nothing fuss, saving pointless page cache lookups.
310 *
311 * prev_pos tracks the last visited byte in the _previous_ read request.
312 * It should be maintained by the caller, and will be used for detecting
313 * small random reads. Note that the readahead algorithm checks loosely
314 * for sequential patterns. Hence interleaved reads might be served as
315 * sequential ones.
316 *
317 * There is a special-case: if the first page which the application tries to
318 * read happens to be the first page of the file, it is assumed that a linear
319 * read is about to happen and the window is immediately set to the initial size
320 * based on I/O request size and the max_readahead.
321 *
322 * The code ramps up the readahead size aggressively at first, but slow down as
323 * it approaches max_readhead.
324 */
325
326/*
327 * Count contiguously cached pages from @offset-1 to @offset-@max,
328 * this count is a conservative estimation of
329 * 	- length of the sequential read sequence, or
330 * 	- thrashing threshold in memory tight systems
331 */
332static pgoff_t count_history_pages(struct address_space *mapping,
 
333				   pgoff_t offset, unsigned long max)
334{
335	pgoff_t head;
336
337	rcu_read_lock();
338	head = page_cache_prev_miss(mapping, offset - 1, max);
339	rcu_read_unlock();
340
341	return offset - 1 - head;
342}
343
344/*
345 * page cache context based read-ahead
346 */
347static int try_context_readahead(struct address_space *mapping,
348				 struct file_ra_state *ra,
349				 pgoff_t offset,
350				 unsigned long req_size,
351				 unsigned long max)
352{
353	pgoff_t size;
354
355	size = count_history_pages(mapping, offset, max);
356
357	/*
358	 * not enough history pages:
359	 * it could be a random read
360	 */
361	if (size <= req_size)
362		return 0;
363
364	/*
365	 * starts from beginning of file:
366	 * it is a strong indication of long-run stream (or whole-file-read)
367	 */
368	if (size >= offset)
369		size *= 2;
370
371	ra->start = offset;
372	ra->size = min(size + req_size, max);
373	ra->async_size = 1;
374
375	return 1;
376}
377
378/*
379 * A minimal readahead algorithm for trivial sequential/random reads.
380 */
381static unsigned long
382ondemand_readahead(struct address_space *mapping,
383		   struct file_ra_state *ra, struct file *filp,
384		   bool hit_readahead_marker, pgoff_t offset,
385		   unsigned long req_size)
386{
387	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
388	unsigned long max_pages = ra->ra_pages;
389	unsigned long add_pages;
390	pgoff_t prev_offset;
391
392	/*
393	 * If the request exceeds the readahead window, allow the read to
394	 * be up to the optimal hardware IO size
395	 */
396	if (req_size > max_pages && bdi->io_pages > max_pages)
397		max_pages = min(req_size, bdi->io_pages);
398
399	/*
400	 * start of file
401	 */
402	if (!offset)
403		goto initial_readahead;
404
405	/*
406	 * It's the expected callback offset, assume sequential access.
407	 * Ramp up sizes, and push forward the readahead window.
408	 */
409	if ((offset == (ra->start + ra->size - ra->async_size) ||
410	     offset == (ra->start + ra->size))) {
411		ra->start += ra->size;
412		ra->size = get_next_ra_size(ra, max_pages);
413		ra->async_size = ra->size;
414		goto readit;
415	}
416
417	/*
418	 * Hit a marked page without valid readahead state.
419	 * E.g. interleaved reads.
420	 * Query the pagecache for async_size, which normally equals to
421	 * readahead size. Ramp it up and use it as the new readahead size.
422	 */
423	if (hit_readahead_marker) {
424		pgoff_t start;
425
426		rcu_read_lock();
427		start = page_cache_next_miss(mapping, offset + 1, max_pages);
428		rcu_read_unlock();
429
430		if (!start || start - offset > max_pages)
431			return 0;
432
433		ra->start = start;
434		ra->size = start - offset;	/* old async_size */
435		ra->size += req_size;
436		ra->size = get_next_ra_size(ra, max_pages);
437		ra->async_size = ra->size;
438		goto readit;
439	}
440
441	/*
442	 * oversize read
443	 */
444	if (req_size > max_pages)
445		goto initial_readahead;
446
447	/*
448	 * sequential cache miss
449	 * trivial case: (offset - prev_offset) == 1
450	 * unaligned reads: (offset - prev_offset) == 0
451	 */
452	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
453	if (offset - prev_offset <= 1UL)
454		goto initial_readahead;
455
456	/*
457	 * Query the page cache and look for the traces(cached history pages)
458	 * that a sequential stream would leave behind.
459	 */
460	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
461		goto readit;
462
463	/*
464	 * standalone, small random read
465	 * Read as is, and do not pollute the readahead state.
466	 */
467	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
468
469initial_readahead:
470	ra->start = offset;
471	ra->size = get_init_ra_size(req_size, max_pages);
472	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
473
474readit:
475	/*
476	 * Will this read hit the readahead marker made by itself?
477	 * If so, trigger the readahead marker hit now, and merge
478	 * the resulted next readahead window into the current one.
479	 * Take care of maximum IO pages as above.
480	 */
481	if (offset == ra->start && ra->size == ra->async_size) {
482		add_pages = get_next_ra_size(ra, max_pages);
483		if (ra->size + add_pages <= max_pages) {
484			ra->async_size = add_pages;
485			ra->size += add_pages;
486		} else {
487			ra->size = max_pages;
488			ra->async_size = max_pages >> 1;
489		}
490	}
491
492	return ra_submit(ra, mapping, filp);
493}
494
495/**
496 * page_cache_sync_readahead - generic file readahead
497 * @mapping: address_space which holds the pagecache and I/O vectors
498 * @ra: file_ra_state which holds the readahead state
499 * @filp: passed on to ->readpage() and ->readpages()
500 * @offset: start offset into @mapping, in pagecache page-sized units
501 * @req_size: hint: total size of the read which the caller is performing in
502 *            pagecache pages
503 *
504 * page_cache_sync_readahead() should be called when a cache miss happened:
505 * it will submit the read.  The readahead logic may decide to piggyback more
506 * pages onto the read request if access patterns suggest it will improve
507 * performance.
508 */
509void page_cache_sync_readahead(struct address_space *mapping,
510			       struct file_ra_state *ra, struct file *filp,
511			       pgoff_t offset, unsigned long req_size)
512{
513	/* no read-ahead */
514	if (!ra->ra_pages)
515		return;
516
517	if (blk_cgroup_congested())
518		return;
519
520	/* be dumb */
521	if (filp && (filp->f_mode & FMODE_RANDOM)) {
522		force_page_cache_readahead(mapping, filp, offset, req_size);
523		return;
524	}
525
526	/* do read-ahead */
527	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
528}
529EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
530
531/**
532 * page_cache_async_readahead - file readahead for marked pages
533 * @mapping: address_space which holds the pagecache and I/O vectors
534 * @ra: file_ra_state which holds the readahead state
535 * @filp: passed on to ->readpage() and ->readpages()
536 * @page: the page at @offset which has the PG_readahead flag set
537 * @offset: start offset into @mapping, in pagecache page-sized units
538 * @req_size: hint: total size of the read which the caller is performing in
539 *            pagecache pages
540 *
541 * page_cache_async_readahead() should be called when a page is used which
542 * has the PG_readahead flag; this is a marker to suggest that the application
543 * has used up enough of the readahead window that we should start pulling in
544 * more pages.
545 */
546void
547page_cache_async_readahead(struct address_space *mapping,
548			   struct file_ra_state *ra, struct file *filp,
549			   struct page *page, pgoff_t offset,
550			   unsigned long req_size)
551{
552	/* no read-ahead */
553	if (!ra->ra_pages)
554		return;
555
556	/*
557	 * Same bit is used for PG_readahead and PG_reclaim.
558	 */
559	if (PageWriteback(page))
560		return;
561
562	ClearPageReadahead(page);
563
564	/*
565	 * Defer asynchronous read-ahead on IO congestion.
566	 */
567	if (inode_read_congested(mapping->host))
568		return;
569
570	if (blk_cgroup_congested())
571		return;
572
573	/* do read-ahead */
574	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
575}
576EXPORT_SYMBOL_GPL(page_cache_async_readahead);
577
578ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 
 
 
 
 
 
 
 
 
 
579{
580	ssize_t ret;
581	struct fd f;
582
583	ret = -EBADF;
584	f = fdget(fd);
585	if (!f.file || !(f.file->f_mode & FMODE_READ))
586		goto out;
587
588	/*
589	 * The readahead() syscall is intended to run only on files
590	 * that can execute readahead. If readahead is not possible
591	 * on this file, then we must return -EINVAL.
592	 */
593	ret = -EINVAL;
594	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
595	    !S_ISREG(file_inode(f.file)->i_mode))
596		goto out;
597
598	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
599out:
600	fdput(f);
601	return ret;
602}
603
604SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
605{
606	return ksys_readahead(fd, offset, count);
607}