Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Cleancache frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of cleancache.  See
  6 * Documentation/vm/cleancache.txt for more information.
  7 *
  8 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/fs.h>
 16#include <linux/exportfs.h>
 17#include <linux/mm.h>
 18#include <linux/debugfs.h>
 19#include <linux/cleancache.h>
 20
 21/*
 22 * cleancache_ops is set by cleancache_ops_register to contain the pointers
 23 * to the cleancache "backend" implementation functions.
 24 */
 25static struct cleancache_ops *cleancache_ops __read_mostly;
 26
 27/*
 28 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 29 * properly configured.  These are for information only so are not protected
 30 * against increment races.
 31 */
 32static u64 cleancache_succ_gets;
 33static u64 cleancache_failed_gets;
 34static u64 cleancache_puts;
 35static u64 cleancache_invalidates;
 36
 37/*
 38 * When no backend is registered all calls to init_fs and init_shared_fs
 39 * are registered and fake poolids (FAKE_FS_POOLID_OFFSET or
 40 * FAKE_SHARED_FS_POOLID_OFFSET, plus offset in the respective array
 41 * [shared_|]fs_poolid_map) are given to the respective super block
 42 * (sb->cleancache_poolid) and no tmem_pools are created. When a backend
 43 * registers with cleancache the previous calls to init_fs and init_shared_fs
 44 * are executed to create tmem_pools and set the respective poolids. While no
 45 * backend is registered all "puts", "gets" and "flushes" are ignored or failed.
 46 */
 47#define MAX_INITIALIZABLE_FS 32
 48#define FAKE_FS_POOLID_OFFSET 1000
 49#define FAKE_SHARED_FS_POOLID_OFFSET 2000
 50
 51#define FS_NO_BACKEND (-1)
 52#define FS_UNKNOWN (-2)
 53static int fs_poolid_map[MAX_INITIALIZABLE_FS];
 54static int shared_fs_poolid_map[MAX_INITIALIZABLE_FS];
 55static char *uuids[MAX_INITIALIZABLE_FS];
 56/*
 57 * Mutex for the [shared_|]fs_poolid_map to guard against multiple threads
 58 * invoking umount (and ending in __cleancache_invalidate_fs) and also multiple
 59 * threads calling mount (and ending up in __cleancache_init_[shared|]fs).
 60 */
 61static DEFINE_MUTEX(poolid_mutex);
 62/*
 63 * When set to false (default) all calls to the cleancache functions, except
 64 * the __cleancache_invalidate_fs and __cleancache_init_[shared|]fs are guarded
 65 * by the if (!cleancache_ops) return. This means multiple threads (from
 66 * different filesystems) will be checking cleancache_ops. The usage of a
 67 * bool instead of a atomic_t or a bool guarded by a spinlock is OK - we are
 68 * OK if the time between the backend's have been initialized (and
 69 * cleancache_ops has been set to not NULL) and when the filesystems start
 70 * actually calling the backends. The inverse (when unloading) is obviously
 71 * not good - but this shim does not do that (yet).
 72 */
 73
 74/*
 75 * The backends and filesystems work all asynchronously. This is b/c the
 76 * backends can be built as modules.
 77 * The usual sequence of events is:
 78 *	a) mount /	-> __cleancache_init_fs is called. We set the
 79 *		[shared_|]fs_poolid_map and uuids for.
 80 *
 81 *	b). user does I/Os -> we call the rest of __cleancache_* functions
 82 *		which return immediately as cleancache_ops is false.
 83 *
 84 *	c). modprobe zcache -> cleancache_register_ops. We init the backend
 85 *		and set cleancache_ops to true, and for any fs_poolid_map
 86 *		(which is set by __cleancache_init_fs) we initialize the poolid.
 87 *
 88 *	d). user does I/Os -> now that cleancache_ops is true all the
 89 *		__cleancache_* functions can call the backend. They all check
 90 *		that fs_poolid_map is valid and if so invoke the backend.
 91 *
 92 *	e). umount /	-> __cleancache_invalidate_fs, the fs_poolid_map is
 93 *		reset (which is the second check in the __cleancache_* ops
 94 *		to call the backend).
 95 *
 96 * The sequence of event could also be c), followed by a), and d). and e). The
 97 * c) would not happen anymore. There is also the chance of c), and one thread
 98 * doing a) + d), and another doing e). For that case we depend on the
 99 * filesystem calling __cleancache_invalidate_fs in the proper sequence (so
100 * that it handles all I/Os before it invalidates the fs (which is last part
101 * of unmounting process).
102 *
103 * Note: The acute reader will notice that there is no "rmmod zcache" case.
104 * This is b/c the functionality for that is not yet implemented and when
105 * done, will require some extra locking not yet devised.
106 */
107
108/*
109 * Register operations for cleancache, returning previous thus allowing
110 * detection of multiple backends and possible nesting.
111 */
112struct cleancache_ops *cleancache_register_ops(struct cleancache_ops *ops)
113{
114	struct cleancache_ops *old = cleancache_ops;
115	int i;
116
117	mutex_lock(&poolid_mutex);
118	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
119		if (fs_poolid_map[i] == FS_NO_BACKEND)
120			fs_poolid_map[i] = ops->init_fs(PAGE_SIZE);
121		if (shared_fs_poolid_map[i] == FS_NO_BACKEND)
122			shared_fs_poolid_map[i] = ops->init_shared_fs
123					(uuids[i], PAGE_SIZE);
124	}
125	/*
126	 * We MUST set cleancache_ops _after_ we have called the backends
127	 * init_fs or init_shared_fs functions. Otherwise the compiler might
128	 * re-order where cleancache_ops is set in this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129	 */
130	barrier();
131	cleancache_ops = ops;
132	mutex_unlock(&poolid_mutex);
133	return old;
134}
135EXPORT_SYMBOL(cleancache_register_ops);
136
137/* Called by a cleancache-enabled filesystem at time of mount */
138void __cleancache_init_fs(struct super_block *sb)
139{
140	int i;
141
142	mutex_lock(&poolid_mutex);
143	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
144		if (fs_poolid_map[i] == FS_UNKNOWN) {
145			sb->cleancache_poolid = i + FAKE_FS_POOLID_OFFSET;
146			if (cleancache_ops)
147				fs_poolid_map[i] = cleancache_ops->init_fs(PAGE_SIZE);
148			else
149				fs_poolid_map[i] = FS_NO_BACKEND;
150			break;
151		}
152	}
153	mutex_unlock(&poolid_mutex);
154}
155EXPORT_SYMBOL(__cleancache_init_fs);
156
157/* Called by a cleancache-enabled clustered filesystem at time of mount */
158void __cleancache_init_shared_fs(char *uuid, struct super_block *sb)
159{
160	int i;
161
162	mutex_lock(&poolid_mutex);
163	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
164		if (shared_fs_poolid_map[i] == FS_UNKNOWN) {
165			sb->cleancache_poolid = i + FAKE_SHARED_FS_POOLID_OFFSET;
166			uuids[i] = uuid;
167			if (cleancache_ops)
168				shared_fs_poolid_map[i] = cleancache_ops->init_shared_fs
169						(uuid, PAGE_SIZE);
170			else
171				shared_fs_poolid_map[i] = FS_NO_BACKEND;
172			break;
173		}
174	}
175	mutex_unlock(&poolid_mutex);
176}
177EXPORT_SYMBOL(__cleancache_init_shared_fs);
178
179/*
180 * If the filesystem uses exportable filehandles, use the filehandle as
181 * the key, else use the inode number.
182 */
183static int cleancache_get_key(struct inode *inode,
184			      struct cleancache_filekey *key)
185{
186	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
187	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
188	struct super_block *sb = inode->i_sb;
189
190	key->u.ino = inode->i_ino;
191	if (sb->s_export_op != NULL) {
192		fhfn = sb->s_export_op->encode_fh;
193		if  (fhfn) {
194			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
195			if (len <= FILEID_ROOT || len == FILEID_INVALID)
196				return -1;
197			if (maxlen > CLEANCACHE_KEY_MAX)
198				return -1;
199		}
200	}
201	return 0;
202}
203
204/*
205 * Returns a pool_id that is associated with a given fake poolid.
206 */
207static int get_poolid_from_fake(int fake_pool_id)
208{
209	if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET)
210		return shared_fs_poolid_map[fake_pool_id -
211			FAKE_SHARED_FS_POOLID_OFFSET];
212	else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET)
213		return fs_poolid_map[fake_pool_id - FAKE_FS_POOLID_OFFSET];
214	return FS_NO_BACKEND;
215}
216
217/*
218 * "Get" data from cleancache associated with the poolid/inode/index
219 * that were specified when the data was put to cleanache and, if
220 * successful, use it to fill the specified page with data and return 0.
221 * The pageframe is unchanged and returns -1 if the get fails.
222 * Page must be locked by caller.
223 *
224 * The function has two checks before any action is taken - whether
225 * a backend is registered and whether the sb->cleancache_poolid
226 * is correct.
227 */
228int __cleancache_get_page(struct page *page)
229{
230	int ret = -1;
231	int pool_id;
232	int fake_pool_id;
233	struct cleancache_filekey key = { .u.key = { 0 } };
234
235	if (!cleancache_ops) {
236		cleancache_failed_gets++;
237		goto out;
238	}
239
240	VM_BUG_ON_PAGE(!PageLocked(page), page);
241	fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
242	if (fake_pool_id < 0)
243		goto out;
244	pool_id = get_poolid_from_fake(fake_pool_id);
245
246	if (cleancache_get_key(page->mapping->host, &key) < 0)
247		goto out;
248
249	if (pool_id >= 0)
250		ret = cleancache_ops->get_page(pool_id,
251				key, page->index, page);
252	if (ret == 0)
253		cleancache_succ_gets++;
254	else
255		cleancache_failed_gets++;
256out:
257	return ret;
258}
259EXPORT_SYMBOL(__cleancache_get_page);
260
261/*
262 * "Put" data from a page to cleancache and associate it with the
263 * (previously-obtained per-filesystem) poolid and the page's,
264 * inode and page index.  Page must be locked.  Note that a put_page
265 * always "succeeds", though a subsequent get_page may succeed or fail.
266 *
267 * The function has two checks before any action is taken - whether
268 * a backend is registered and whether the sb->cleancache_poolid
269 * is correct.
270 */
271void __cleancache_put_page(struct page *page)
272{
273	int pool_id;
274	int fake_pool_id;
275	struct cleancache_filekey key = { .u.key = { 0 } };
276
277	if (!cleancache_ops) {
278		cleancache_puts++;
279		return;
280	}
281
282	VM_BUG_ON_PAGE(!PageLocked(page), page);
283	fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
284	if (fake_pool_id < 0)
285		return;
286
287	pool_id = get_poolid_from_fake(fake_pool_id);
288
289	if (pool_id >= 0 &&
290		cleancache_get_key(page->mapping->host, &key) >= 0) {
291		cleancache_ops->put_page(pool_id, key, page->index, page);
292		cleancache_puts++;
293	}
294}
295EXPORT_SYMBOL(__cleancache_put_page);
296
297/*
298 * Invalidate any data from cleancache associated with the poolid and the
299 * page's inode and page index so that a subsequent "get" will fail.
300 *
301 * The function has two checks before any action is taken - whether
302 * a backend is registered and whether the sb->cleancache_poolid
303 * is correct.
304 */
305void __cleancache_invalidate_page(struct address_space *mapping,
306					struct page *page)
307{
308	/* careful... page->mapping is NULL sometimes when this is called */
309	int pool_id;
310	int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
311	struct cleancache_filekey key = { .u.key = { 0 } };
312
313	if (!cleancache_ops)
314		return;
315
316	if (fake_pool_id >= 0) {
317		pool_id = get_poolid_from_fake(fake_pool_id);
318		if (pool_id < 0)
319			return;
320
321		VM_BUG_ON_PAGE(!PageLocked(page), page);
322		if (cleancache_get_key(mapping->host, &key) >= 0) {
323			cleancache_ops->invalidate_page(pool_id,
324					key, page->index);
325			cleancache_invalidates++;
326		}
327	}
328}
329EXPORT_SYMBOL(__cleancache_invalidate_page);
330
331/*
332 * Invalidate all data from cleancache associated with the poolid and the
333 * mappings's inode so that all subsequent gets to this poolid/inode
334 * will fail.
335 *
336 * The function has two checks before any action is taken - whether
337 * a backend is registered and whether the sb->cleancache_poolid
338 * is correct.
339 */
340void __cleancache_invalidate_inode(struct address_space *mapping)
341{
342	int pool_id;
343	int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
344	struct cleancache_filekey key = { .u.key = { 0 } };
345
346	if (!cleancache_ops)
347		return;
348
349	if (fake_pool_id < 0)
350		return;
351
352	pool_id = get_poolid_from_fake(fake_pool_id);
353
354	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
355		cleancache_ops->invalidate_inode(pool_id, key);
356}
357EXPORT_SYMBOL(__cleancache_invalidate_inode);
358
359/*
360 * Called by any cleancache-enabled filesystem at time of unmount;
361 * note that pool_id is surrendered and may be returned by a subsequent
362 * cleancache_init_fs or cleancache_init_shared_fs.
363 */
364void __cleancache_invalidate_fs(struct super_block *sb)
365{
366	int index;
367	int fake_pool_id = sb->cleancache_poolid;
368	int old_poolid = fake_pool_id;
369
370	mutex_lock(&poolid_mutex);
371	if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET) {
372		index = fake_pool_id - FAKE_SHARED_FS_POOLID_OFFSET;
373		old_poolid = shared_fs_poolid_map[index];
374		shared_fs_poolid_map[index] = FS_UNKNOWN;
375		uuids[index] = NULL;
376	} else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET) {
377		index = fake_pool_id - FAKE_FS_POOLID_OFFSET;
378		old_poolid = fs_poolid_map[index];
379		fs_poolid_map[index] = FS_UNKNOWN;
380	}
381	sb->cleancache_poolid = -1;
382	if (cleancache_ops)
383		cleancache_ops->invalidate_fs(old_poolid);
384	mutex_unlock(&poolid_mutex);
385}
386EXPORT_SYMBOL(__cleancache_invalidate_fs);
387
388static int __init init_cleancache(void)
389{
390	int i;
391
392#ifdef CONFIG_DEBUG_FS
393	struct dentry *root = debugfs_create_dir("cleancache", NULL);
394	if (root == NULL)
395		return -ENXIO;
396	debugfs_create_u64("succ_gets", S_IRUGO, root, &cleancache_succ_gets);
397	debugfs_create_u64("failed_gets", S_IRUGO,
398				root, &cleancache_failed_gets);
399	debugfs_create_u64("puts", S_IRUGO, root, &cleancache_puts);
400	debugfs_create_u64("invalidates", S_IRUGO,
401				root, &cleancache_invalidates);
402#endif
403	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
404		fs_poolid_map[i] = FS_UNKNOWN;
405		shared_fs_poolid_map[i] = FS_UNKNOWN;
406	}
407	return 0;
408}
409module_init(init_cleancache)
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Cleancache frontend
  4 *
  5 * This code provides the generic "frontend" layer to call a matching
  6 * "backend" driver implementation of cleancache.  See
  7 * Documentation/vm/cleancache.rst for more information.
  8 *
  9 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
 10 * Author: Dan Magenheimer
 
 
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/fs.h>
 15#include <linux/exportfs.h>
 16#include <linux/mm.h>
 17#include <linux/debugfs.h>
 18#include <linux/cleancache.h>
 19
 20/*
 21 * cleancache_ops is set by cleancache_register_ops to contain the pointers
 22 * to the cleancache "backend" implementation functions.
 23 */
 24static const struct cleancache_ops *cleancache_ops __read_mostly;
 25
 26/*
 27 * Counters available via /sys/kernel/debug/cleancache (if debugfs is
 28 * properly configured.  These are for information only so are not protected
 29 * against increment races.
 30 */
 31static u64 cleancache_succ_gets;
 32static u64 cleancache_failed_gets;
 33static u64 cleancache_puts;
 34static u64 cleancache_invalidates;
 35
 36static void cleancache_register_ops_sb(struct super_block *sb, void *unused)
 37{
 38	switch (sb->cleancache_poolid) {
 39	case CLEANCACHE_NO_BACKEND:
 40		__cleancache_init_fs(sb);
 41		break;
 42	case CLEANCACHE_NO_BACKEND_SHARED:
 43		__cleancache_init_shared_fs(sb);
 44		break;
 45	}
 46}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48/*
 49 * Register operations for cleancache. Returns 0 on success.
 
 50 */
 51int cleancache_register_ops(const struct cleancache_ops *ops)
 52{
 53	if (cmpxchg(&cleancache_ops, NULL, ops))
 54		return -EBUSY;
 55
 
 
 
 
 
 
 
 
 56	/*
 57	 * A cleancache backend can be built as a module and hence loaded after
 58	 * a cleancache enabled filesystem has called cleancache_init_fs. To
 59	 * handle such a scenario, here we call ->init_fs or ->init_shared_fs
 60	 * for each active super block. To differentiate between local and
 61	 * shared filesystems, we temporarily initialize sb->cleancache_poolid
 62	 * to CLEANCACHE_NO_BACKEND or CLEANCACHE_NO_BACKEND_SHARED
 63	 * respectively in case there is no backend registered at the time
 64	 * cleancache_init_fs or cleancache_init_shared_fs is called.
 65	 *
 66	 * Since filesystems can be mounted concurrently with cleancache
 67	 * backend registration, we have to be careful to guarantee that all
 68	 * cleancache enabled filesystems that has been mounted by the time
 69	 * cleancache_register_ops is called has got and all mounted later will
 70	 * get cleancache_poolid. This is assured by the following statements
 71	 * tied together:
 72	 *
 73	 * a) iterate_supers skips only those super blocks that has started
 74	 *    ->kill_sb
 75	 *
 76	 * b) if iterate_supers encounters a super block that has not finished
 77	 *    ->mount yet, it waits until it is finished
 78	 *
 79	 * c) cleancache_init_fs is called from ->mount and
 80	 *    cleancache_invalidate_fs is called from ->kill_sb
 81	 *
 82	 * d) we call iterate_supers after cleancache_ops has been set
 83	 *
 84	 * From a) it follows that if iterate_supers skips a super block, then
 85	 * either the super block is already dead, in which case we do not need
 86	 * to bother initializing cleancache for it, or it was mounted after we
 87	 * initiated iterate_supers. In the latter case, it must have seen
 88	 * cleancache_ops set according to d) and initialized cleancache from
 89	 * ->mount by itself according to c). This proves that we call
 90	 * ->init_fs at least once for each active super block.
 91	 *
 92	 * From b) and c) it follows that if iterate_supers encounters a super
 93	 * block that has already started ->init_fs, it will wait until ->mount
 94	 * and hence ->init_fs has finished, then check cleancache_poolid, see
 95	 * that it has already been set and therefore do nothing. This proves
 96	 * that we call ->init_fs no more than once for each super block.
 97	 *
 98	 * Combined together, the last two paragraphs prove the function
 99	 * correctness.
100	 *
101	 * Note that various cleancache callbacks may proceed before this
102	 * function is called or even concurrently with it, but since
103	 * CLEANCACHE_NO_BACKEND is negative, they will all result in a noop
104	 * until the corresponding ->init_fs has been actually called and
105	 * cleancache_ops has been set.
106	 */
107	iterate_supers(cleancache_register_ops_sb, NULL);
108	return 0;
 
 
109}
110EXPORT_SYMBOL(cleancache_register_ops);
111
112/* Called by a cleancache-enabled filesystem at time of mount */
113void __cleancache_init_fs(struct super_block *sb)
114{
115	int pool_id = CLEANCACHE_NO_BACKEND;
116
117	if (cleancache_ops) {
118		pool_id = cleancache_ops->init_fs(PAGE_SIZE);
119		if (pool_id < 0)
120			pool_id = CLEANCACHE_NO_POOL;
 
 
 
 
 
 
121	}
122	sb->cleancache_poolid = pool_id;
123}
124EXPORT_SYMBOL(__cleancache_init_fs);
125
126/* Called by a cleancache-enabled clustered filesystem at time of mount */
127void __cleancache_init_shared_fs(struct super_block *sb)
128{
129	int pool_id = CLEANCACHE_NO_BACKEND_SHARED;
130
131	if (cleancache_ops) {
132		pool_id = cleancache_ops->init_shared_fs(&sb->s_uuid, PAGE_SIZE);
133		if (pool_id < 0)
134			pool_id = CLEANCACHE_NO_POOL;
 
 
 
 
 
 
 
 
135	}
136	sb->cleancache_poolid = pool_id;
137}
138EXPORT_SYMBOL(__cleancache_init_shared_fs);
139
140/*
141 * If the filesystem uses exportable filehandles, use the filehandle as
142 * the key, else use the inode number.
143 */
144static int cleancache_get_key(struct inode *inode,
145			      struct cleancache_filekey *key)
146{
147	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
148	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
149	struct super_block *sb = inode->i_sb;
150
151	key->u.ino = inode->i_ino;
152	if (sb->s_export_op != NULL) {
153		fhfn = sb->s_export_op->encode_fh;
154		if  (fhfn) {
155			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
156			if (len <= FILEID_ROOT || len == FILEID_INVALID)
157				return -1;
158			if (maxlen > CLEANCACHE_KEY_MAX)
159				return -1;
160		}
161	}
162	return 0;
163}
164
165/*
 
 
 
 
 
 
 
 
 
 
 
 
 
166 * "Get" data from cleancache associated with the poolid/inode/index
167 * that were specified when the data was put to cleanache and, if
168 * successful, use it to fill the specified page with data and return 0.
169 * The pageframe is unchanged and returns -1 if the get fails.
170 * Page must be locked by caller.
171 *
172 * The function has two checks before any action is taken - whether
173 * a backend is registered and whether the sb->cleancache_poolid
174 * is correct.
175 */
176int __cleancache_get_page(struct page *page)
177{
178	int ret = -1;
179	int pool_id;
 
180	struct cleancache_filekey key = { .u.key = { 0 } };
181
182	if (!cleancache_ops) {
183		cleancache_failed_gets++;
184		goto out;
185	}
186
187	VM_BUG_ON_PAGE(!PageLocked(page), page);
188	pool_id = page->mapping->host->i_sb->cleancache_poolid;
189	if (pool_id < 0)
190		goto out;
 
191
192	if (cleancache_get_key(page->mapping->host, &key) < 0)
193		goto out;
194
195	ret = cleancache_ops->get_page(pool_id, key, page->index, page);
 
 
196	if (ret == 0)
197		cleancache_succ_gets++;
198	else
199		cleancache_failed_gets++;
200out:
201	return ret;
202}
203EXPORT_SYMBOL(__cleancache_get_page);
204
205/*
206 * "Put" data from a page to cleancache and associate it with the
207 * (previously-obtained per-filesystem) poolid and the page's,
208 * inode and page index.  Page must be locked.  Note that a put_page
209 * always "succeeds", though a subsequent get_page may succeed or fail.
210 *
211 * The function has two checks before any action is taken - whether
212 * a backend is registered and whether the sb->cleancache_poolid
213 * is correct.
214 */
215void __cleancache_put_page(struct page *page)
216{
217	int pool_id;
 
218	struct cleancache_filekey key = { .u.key = { 0 } };
219
220	if (!cleancache_ops) {
221		cleancache_puts++;
222		return;
223	}
224
225	VM_BUG_ON_PAGE(!PageLocked(page), page);
226	pool_id = page->mapping->host->i_sb->cleancache_poolid;
 
 
 
 
 
227	if (pool_id >= 0 &&
228		cleancache_get_key(page->mapping->host, &key) >= 0) {
229		cleancache_ops->put_page(pool_id, key, page->index, page);
230		cleancache_puts++;
231	}
232}
233EXPORT_SYMBOL(__cleancache_put_page);
234
235/*
236 * Invalidate any data from cleancache associated with the poolid and the
237 * page's inode and page index so that a subsequent "get" will fail.
238 *
239 * The function has two checks before any action is taken - whether
240 * a backend is registered and whether the sb->cleancache_poolid
241 * is correct.
242 */
243void __cleancache_invalidate_page(struct address_space *mapping,
244					struct page *page)
245{
246	/* careful... page->mapping is NULL sometimes when this is called */
247	int pool_id = mapping->host->i_sb->cleancache_poolid;
 
248	struct cleancache_filekey key = { .u.key = { 0 } };
249
250	if (!cleancache_ops)
251		return;
252
253	if (pool_id >= 0) {
 
 
 
 
254		VM_BUG_ON_PAGE(!PageLocked(page), page);
255		if (cleancache_get_key(mapping->host, &key) >= 0) {
256			cleancache_ops->invalidate_page(pool_id,
257					key, page->index);
258			cleancache_invalidates++;
259		}
260	}
261}
262EXPORT_SYMBOL(__cleancache_invalidate_page);
263
264/*
265 * Invalidate all data from cleancache associated with the poolid and the
266 * mappings's inode so that all subsequent gets to this poolid/inode
267 * will fail.
268 *
269 * The function has two checks before any action is taken - whether
270 * a backend is registered and whether the sb->cleancache_poolid
271 * is correct.
272 */
273void __cleancache_invalidate_inode(struct address_space *mapping)
274{
275	int pool_id = mapping->host->i_sb->cleancache_poolid;
 
276	struct cleancache_filekey key = { .u.key = { 0 } };
277
278	if (!cleancache_ops)
279		return;
280
 
 
 
 
 
281	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
282		cleancache_ops->invalidate_inode(pool_id, key);
283}
284EXPORT_SYMBOL(__cleancache_invalidate_inode);
285
286/*
287 * Called by any cleancache-enabled filesystem at time of unmount;
288 * note that pool_id is surrendered and may be returned by a subsequent
289 * cleancache_init_fs or cleancache_init_shared_fs.
290 */
291void __cleancache_invalidate_fs(struct super_block *sb)
292{
293	int pool_id;
294
295	pool_id = sb->cleancache_poolid;
296	sb->cleancache_poolid = CLEANCACHE_NO_POOL;
297
298	if (cleancache_ops && pool_id >= 0)
299		cleancache_ops->invalidate_fs(pool_id);
 
 
 
 
 
 
 
 
 
 
 
 
300}
301EXPORT_SYMBOL(__cleancache_invalidate_fs);
302
303static int __init init_cleancache(void)
304{
 
 
305#ifdef CONFIG_DEBUG_FS
306	struct dentry *root = debugfs_create_dir("cleancache", NULL);
307
308	debugfs_create_u64("succ_gets", 0444, root, &cleancache_succ_gets);
309	debugfs_create_u64("failed_gets", 0444, root, &cleancache_failed_gets);
310	debugfs_create_u64("puts", 0444, root, &cleancache_puts);
311	debugfs_create_u64("invalidates", 0444, root, &cleancache_invalidates);
 
 
 
312#endif
 
 
 
 
313	return 0;
314}
315module_init(init_cleancache)