Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v3.15
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8
  9
 10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 11
 12/*
 13 * There are no locks covering percpu hardirq/softirq time.
 14 * They are only modified in vtime_account, on corresponding CPU
 15 * with interrupts disabled. So, writes are safe.
 16 * They are read and saved off onto struct rq in update_rq_clock().
 17 * This may result in other CPU reading this CPU's irq time and can
 18 * race with irq/vtime_account on this CPU. We would either get old
 19 * or new value with a side effect of accounting a slice of irq time to wrong
 20 * task when irq is in progress while we read rq->clock. That is a worthy
 21 * compromise in place of having locks on each irq in account_system_time.
 22 */
 23DEFINE_PER_CPU(u64, cpu_hardirq_time);
 24DEFINE_PER_CPU(u64, cpu_softirq_time);
 25
 26static DEFINE_PER_CPU(u64, irq_start_time);
 27static int sched_clock_irqtime;
 28
 29void enable_sched_clock_irqtime(void)
 30{
 31	sched_clock_irqtime = 1;
 32}
 33
 34void disable_sched_clock_irqtime(void)
 35{
 36	sched_clock_irqtime = 0;
 37}
 38
 39#ifndef CONFIG_64BIT
 40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 41#endif /* CONFIG_64BIT */
 
 
 
 
 
 
 
 
 42
 43/*
 44 * Called before incrementing preempt_count on {soft,}irq_enter
 45 * and before decrementing preempt_count on {soft,}irq_exit.
 46 */
 47void irqtime_account_irq(struct task_struct *curr)
 48{
 49	unsigned long flags;
 50	s64 delta;
 51	int cpu;
 52
 53	if (!sched_clock_irqtime)
 54		return;
 55
 56	local_irq_save(flags);
 57
 58	cpu = smp_processor_id();
 59	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 60	__this_cpu_add(irq_start_time, delta);
 61
 62	irq_time_write_begin();
 63	/*
 64	 * We do not account for softirq time from ksoftirqd here.
 65	 * We want to continue accounting softirq time to ksoftirqd thread
 66	 * in that case, so as not to confuse scheduler with a special task
 67	 * that do not consume any time, but still wants to run.
 68	 */
 69	if (hardirq_count())
 70		__this_cpu_add(cpu_hardirq_time, delta);
 71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 72		__this_cpu_add(cpu_softirq_time, delta);
 73
 74	irq_time_write_end();
 75	local_irq_restore(flags);
 76}
 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
 78
 79static int irqtime_account_hi_update(void)
 80{
 81	u64 *cpustat = kcpustat_this_cpu->cpustat;
 82	unsigned long flags;
 83	u64 latest_ns;
 84	int ret = 0;
 85
 86	local_irq_save(flags);
 87	latest_ns = this_cpu_read(cpu_hardirq_time);
 88	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 89		ret = 1;
 90	local_irq_restore(flags);
 91	return ret;
 92}
 93
 94static int irqtime_account_si_update(void)
 95{
 96	u64 *cpustat = kcpustat_this_cpu->cpustat;
 97	unsigned long flags;
 98	u64 latest_ns;
 99	int ret = 0;
100
101	local_irq_save(flags);
102	latest_ns = this_cpu_read(cpu_softirq_time);
103	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104		ret = 1;
105	local_irq_restore(flags);
106	return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime	(0)
112
 
 
 
 
 
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116					    u64 tmp)
117{
118	/*
119	 * Since all updates are sure to touch the root cgroup, we
120	 * get ourselves ahead and touch it first. If the root cgroup
121	 * is the only cgroup, then nothing else should be necessary.
122	 *
123	 */
124	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126	cpuacct_account_field(p, index, tmp);
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136		       cputime_t cputime_scaled)
137{
138	int index;
139
140	/* Add user time to process. */
141	p->utime += cputime;
142	p->utimescaled += cputime_scaled;
143	account_group_user_time(p, cputime);
144
145	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147	/* Add user time to cpustat. */
148	task_group_account_field(p, index, (__force u64) cputime);
149
150	/* Account for user time used */
151	acct_account_cputime(p);
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161			       cputime_t cputime_scaled)
162{
163	u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165	/* Add guest time to process. */
166	p->utime += cputime;
167	p->utimescaled += cputime_scaled;
168	account_group_user_time(p, cputime);
169	p->gtime += cputime;
170
171	/* Add guest time to cpustat. */
172	if (task_nice(p) > 0) {
173		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175	} else {
176		cpustat[CPUTIME_USER] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178	}
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190			cputime_t cputime_scaled, int index)
191{
192	/* Add system time to process. */
193	p->stime += cputime;
194	p->stimescaled += cputime_scaled;
195	account_group_system_time(p, cputime);
196
197	/* Add system time to cpustat. */
198	task_group_account_field(p, index, (__force u64) cputime);
199
200	/* Account for system time used */
201	acct_account_cputime(p);
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212			 cputime_t cputime, cputime_t cputime_scaled)
213{
214	int index;
215
216	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217		account_guest_time(p, cputime, cputime_scaled);
218		return;
219	}
220
221	if (hardirq_count() - hardirq_offset)
222		index = CPUTIME_IRQ;
223	else if (in_serving_softirq())
224		index = CPUTIME_SOFTIRQ;
225	else
226		index = CPUTIME_SYSTEM;
227
228	__account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237	u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248	u64 *cpustat = kcpustat_this_cpu->cpustat;
249	struct rq *rq = this_rq();
250
251	if (atomic_read(&rq->nr_iowait) > 0)
252		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253	else
254		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
 
 
 
 
 
258{
259#ifdef CONFIG_PARAVIRT
260	if (static_key_false(&paravirt_steal_enabled)) {
261		u64 steal;
262		cputime_t steal_ct;
263
264		steal = paravirt_steal_clock(smp_processor_id());
265		steal -= this_rq()->prev_steal_time;
 
 
 
266
267		/*
268		 * cputime_t may be less precise than nsecs (eg: if it's
269		 * based on jiffies). Lets cast the result to cputime
270		 * granularity and account the rest on the next rounds.
271		 */
272		steal_ct = nsecs_to_cputime(steal);
273		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275		account_steal_time(steal_ct);
276		return steal_ct;
277	}
278#endif
279	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288	struct signal_struct *sig = tsk->signal;
289	cputime_t utime, stime;
290	struct task_struct *t;
 
 
291
292	times->utime = sig->utime;
293	times->stime = sig->stime;
294	times->sum_exec_runtime = sig->sum_sched_runtime;
 
 
 
 
 
 
 
295
296	rcu_read_lock();
297	/* make sure we can trust tsk->thread_group list */
298	if (!likely(pid_alive(tsk)))
299		goto out;
300
301	t = tsk;
302	do {
303		task_cputime(t, &utime, &stime);
304		times->utime += utime;
305		times->stime += stime;
306		times->sum_exec_runtime += task_sched_runtime(t);
307	} while_each_thread(tsk, t);
308out:
 
 
 
 
 
 
 
 
 
 
309	rcu_read_unlock();
310}
311
312#ifdef CONFIG_IRQ_TIME_ACCOUNTING
313/*
314 * Account a tick to a process and cpustat
315 * @p: the process that the cpu time gets accounted to
316 * @user_tick: is the tick from userspace
317 * @rq: the pointer to rq
318 *
319 * Tick demultiplexing follows the order
320 * - pending hardirq update
321 * - pending softirq update
322 * - user_time
323 * - idle_time
324 * - system time
325 *   - check for guest_time
326 *   - else account as system_time
327 *
328 * Check for hardirq is done both for system and user time as there is
329 * no timer going off while we are on hardirq and hence we may never get an
330 * opportunity to update it solely in system time.
331 * p->stime and friends are only updated on system time and not on irq
332 * softirq as those do not count in task exec_runtime any more.
333 */
334static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
335					 struct rq *rq, int ticks)
336{
337	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
338	u64 cputime = (__force u64) cputime_one_jiffy;
339	u64 *cpustat = kcpustat_this_cpu->cpustat;
340
341	if (steal_account_process_tick())
 
 
 
 
 
 
 
 
342		return;
343
344	cputime *= ticks;
345	scaled *= ticks;
346
347	if (irqtime_account_hi_update()) {
348		cpustat[CPUTIME_IRQ] += cputime;
349	} else if (irqtime_account_si_update()) {
350		cpustat[CPUTIME_SOFTIRQ] += cputime;
351	} else if (this_cpu_ksoftirqd() == p) {
352		/*
353		 * ksoftirqd time do not get accounted in cpu_softirq_time.
354		 * So, we have to handle it separately here.
355		 * Also, p->stime needs to be updated for ksoftirqd.
356		 */
357		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
358	} else if (user_tick) {
359		account_user_time(p, cputime, scaled);
360	} else if (p == rq->idle) {
361		account_idle_time(cputime);
362	} else if (p->flags & PF_VCPU) { /* System time or guest time */
363		account_guest_time(p, cputime, scaled);
364	} else {
365		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
366	}
367}
368
369static void irqtime_account_idle_ticks(int ticks)
370{
371	struct rq *rq = this_rq();
372
373	irqtime_account_process_tick(current, 0, rq, ticks);
374}
375#else /* CONFIG_IRQ_TIME_ACCOUNTING */
376static inline void irqtime_account_idle_ticks(int ticks) {}
377static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
378						struct rq *rq, int nr_ticks) {}
379#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
380
381/*
382 * Use precise platform statistics if available:
383 */
384#ifdef CONFIG_VIRT_CPU_ACCOUNTING
385
386#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
387void vtime_common_task_switch(struct task_struct *prev)
388{
389	if (is_idle_task(prev))
390		vtime_account_idle(prev);
391	else
392		vtime_account_system(prev);
393
394#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
395	vtime_account_user(prev);
396#endif
397	arch_vtime_task_switch(prev);
398}
399#endif
 
 
400
 
401/*
402 * Archs that account the whole time spent in the idle task
403 * (outside irq) as idle time can rely on this and just implement
404 * vtime_account_system() and vtime_account_idle(). Archs that
405 * have other meaning of the idle time (s390 only includes the
406 * time spent by the CPU when it's in low power mode) must override
407 * vtime_account().
408 */
409#ifndef __ARCH_HAS_VTIME_ACCOUNT
410void vtime_common_account_irq_enter(struct task_struct *tsk)
411{
412	if (!in_interrupt()) {
413		/*
414		 * If we interrupted user, context_tracking_in_user()
415		 * is 1 because the context tracking don't hook
416		 * on irq entry/exit. This way we know if
417		 * we need to flush user time on kernel entry.
418		 */
419		if (context_tracking_in_user()) {
420			vtime_account_user(tsk);
421			return;
422		}
423
424		if (is_idle_task(tsk)) {
425			vtime_account_idle(tsk);
426			return;
427		}
428	}
429	vtime_account_system(tsk);
430}
431EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
 
 
 
 
 
 
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439	*ut = p->utime;
440	*st = p->stime;
441}
 
442
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445	struct task_cputime cputime;
446
447	thread_group_cputime(p, &cputime);
448
449	*ut = cputime.utime;
450	*st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 
 
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
459{
460	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461	struct rq *rq = this_rq();
462
463	if (vtime_accounting_enabled())
464		return;
465
466	if (sched_clock_irqtime) {
467		irqtime_account_process_tick(p, user_tick, rq, 1);
468		return;
469	}
470
471	if (steal_account_process_tick())
 
 
 
472		return;
473
 
 
474	if (user_tick)
475		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478				    one_jiffy_scaled);
479	else
480		account_idle_time(cputime_one_jiffy);
481}
482
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490	account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
 
499
500	if (sched_clock_irqtime) {
501		irqtime_account_idle_ticks(ticks);
502		return;
503	}
504
505	account_idle_time(jiffies_to_cputime(ticks));
 
 
 
 
 
 
 
506}
507
508/*
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
513{
514	u64 scaled;
515
516	for (;;) {
517		/* Make sure "rtime" is the bigger of stime/rtime */
518		if (stime > rtime)
519			swap(rtime, stime);
520
521		/* Make sure 'total' fits in 32 bits */
522		if (total >> 32)
523			goto drop_precision;
524
525		/* Does rtime (and thus stime) fit in 32 bits? */
526		if (!(rtime >> 32))
527			break;
528
529		/* Can we just balance rtime/stime rather than dropping bits? */
530		if (stime >> 31)
531			goto drop_precision;
532
533		/* We can grow stime and shrink rtime and try to make them both fit */
534		stime <<= 1;
535		rtime >>= 1;
536		continue;
537
538drop_precision:
539		/* We drop from rtime, it has more bits than stime */
540		rtime >>= 1;
541		total >>= 1;
542	}
543
544	/*
545	 * Make sure gcc understands that this is a 32x32->64 multiply,
546	 * followed by a 64/32->64 divide.
547	 */
548	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549	return (__force cputime_t) scaled;
550}
551
552/*
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555 */
556static void cputime_adjust(struct task_cputime *curr,
557			   struct cputime *prev,
558			   cputime_t *ut, cputime_t *st)
559{
560	cputime_t rtime, stime, utime;
 
561
562	/*
563	 * Tick based cputime accounting depend on random scheduling
564	 * timeslices of a task to be interrupted or not by the timer.
565	 * Depending on these circumstances, the number of these interrupts
566	 * may be over or under-optimistic, matching the real user and system
567	 * cputime with a variable precision.
568	 *
569	 * Fix this by scaling these tick based values against the total
570	 * runtime accounted by the CFS scheduler.
571	 */
572	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
573
574	/*
575	 * Update userspace visible utime/stime values only if actual execution
576	 * time is bigger than already exported. Note that can happen, that we
577	 * provided bigger values due to scaling inaccuracy on big numbers.
 
 
 
578	 */
579	if (prev->stime + prev->utime >= rtime)
580		goto out;
581
582	stime = curr->stime;
583	utime = curr->utime;
584
585	if (utime == 0) {
586		stime = rtime;
587	} else if (stime == 0) {
 
 
 
588		utime = rtime;
589	} else {
590		cputime_t total = stime + utime;
591
592		stime = scale_stime((__force u64)stime,
593				    (__force u64)rtime, (__force u64)total);
594		utime = rtime - stime;
595	}
596
 
 
 
597	/*
598	 * If the tick based count grows faster than the scheduler one,
599	 * the result of the scaling may go backward.
600	 * Let's enforce monotonicity.
 
 
 
 
601	 */
602	prev->stime = max(prev->stime, stime);
603	prev->utime = max(prev->utime, utime);
 
 
 
 
 
 
 
 
 
 
604
 
 
605out:
606	*ut = prev->utime;
607	*st = prev->stime;
 
608}
609
610void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
611{
612	struct task_cputime cputime = {
613		.sum_exec_runtime = p->se.sum_exec_runtime,
614	};
615
616	task_cputime(p, &cputime.utime, &cputime.stime);
617	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
618}
 
619
620/*
621 * Must be called with siglock held.
622 */
623void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
624{
625	struct task_cputime cputime;
626
627	thread_group_cputime(p, &cputime);
628	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
629}
630#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
631
632#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
633static unsigned long long vtime_delta(struct task_struct *tsk)
634{
635	unsigned long long clock;
636
637	clock = local_clock();
638	if (clock < tsk->vtime_snap)
639		return 0;
640
641	return clock - tsk->vtime_snap;
642}
643
644static cputime_t get_vtime_delta(struct task_struct *tsk)
645{
646	unsigned long long delta = vtime_delta(tsk);
 
647
648	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
649	tsk->vtime_snap += delta;
 
 
 
 
 
 
 
 
650
651	/* CHECKME: always safe to convert nsecs to cputime? */
652	return nsecs_to_cputime(delta);
653}
654
655static void __vtime_account_system(struct task_struct *tsk)
 
656{
657	cputime_t delta_cpu = get_vtime_delta(tsk);
658
659	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 
 
660}
661
662void vtime_account_system(struct task_struct *tsk)
 
663{
664	write_seqlock(&tsk->vtime_seqlock);
665	__vtime_account_system(tsk);
666	write_sequnlock(&tsk->vtime_seqlock);
 
 
667}
668
669void vtime_gen_account_irq_exit(struct task_struct *tsk)
670{
671	write_seqlock(&tsk->vtime_seqlock);
672	__vtime_account_system(tsk);
673	if (context_tracking_in_user())
674		tsk->vtime_snap_whence = VTIME_USER;
675	write_sequnlock(&tsk->vtime_seqlock);
 
 
 
 
 
 
 
676}
677
678void vtime_account_user(struct task_struct *tsk)
679{
680	cputime_t delta_cpu;
681
682	write_seqlock(&tsk->vtime_seqlock);
683	delta_cpu = get_vtime_delta(tsk);
684	tsk->vtime_snap_whence = VTIME_SYS;
685	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
686	write_sequnlock(&tsk->vtime_seqlock);
687}
688
689void vtime_user_enter(struct task_struct *tsk)
690{
691	write_seqlock(&tsk->vtime_seqlock);
692	__vtime_account_system(tsk);
693	tsk->vtime_snap_whence = VTIME_USER;
694	write_sequnlock(&tsk->vtime_seqlock);
 
 
 
 
 
 
695}
696
697void vtime_guest_enter(struct task_struct *tsk)
698{
 
699	/*
700	 * The flags must be updated under the lock with
701	 * the vtime_snap flush and update.
702	 * That enforces a right ordering and update sequence
703	 * synchronization against the reader (task_gtime())
704	 * that can thus safely catch up with a tickless delta.
705	 */
706	write_seqlock(&tsk->vtime_seqlock);
707	__vtime_account_system(tsk);
708	current->flags |= PF_VCPU;
709	write_sequnlock(&tsk->vtime_seqlock);
710}
711EXPORT_SYMBOL_GPL(vtime_guest_enter);
712
713void vtime_guest_exit(struct task_struct *tsk)
714{
715	write_seqlock(&tsk->vtime_seqlock);
716	__vtime_account_system(tsk);
717	current->flags &= ~PF_VCPU;
718	write_sequnlock(&tsk->vtime_seqlock);
 
 
719}
720EXPORT_SYMBOL_GPL(vtime_guest_exit);
721
722void vtime_account_idle(struct task_struct *tsk)
723{
724	cputime_t delta_cpu = get_vtime_delta(tsk);
725
726	account_idle_time(delta_cpu);
727}
728
729void arch_vtime_task_switch(struct task_struct *prev)
730{
731	write_seqlock(&prev->vtime_seqlock);
732	prev->vtime_snap_whence = VTIME_SLEEPING;
733	write_sequnlock(&prev->vtime_seqlock);
734
735	write_seqlock(&current->vtime_seqlock);
736	current->vtime_snap_whence = VTIME_SYS;
737	current->vtime_snap = sched_clock_cpu(smp_processor_id());
738	write_sequnlock(&current->vtime_seqlock);
 
 
 
 
739}
740
741void vtime_init_idle(struct task_struct *t, int cpu)
742{
 
743	unsigned long flags;
744
745	write_seqlock_irqsave(&t->vtime_seqlock, flags);
746	t->vtime_snap_whence = VTIME_SYS;
747	t->vtime_snap = sched_clock_cpu(cpu);
748	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
 
 
749}
750
751cputime_t task_gtime(struct task_struct *t)
752{
 
753	unsigned int seq;
754	cputime_t gtime;
 
 
 
755
756	do {
757		seq = read_seqbegin(&t->vtime_seqlock);
758
759		gtime = t->gtime;
760		if (t->flags & PF_VCPU)
761			gtime += vtime_delta(t);
762
763	} while (read_seqretry(&t->vtime_seqlock, seq));
764
765	return gtime;
766}
767
768/*
769 * Fetch cputime raw values from fields of task_struct and
770 * add up the pending nohz execution time since the last
771 * cputime snapshot.
772 */
773static void
774fetch_task_cputime(struct task_struct *t,
775		   cputime_t *u_dst, cputime_t *s_dst,
776		   cputime_t *u_src, cputime_t *s_src,
777		   cputime_t *udelta, cputime_t *sdelta)
778{
 
779	unsigned int seq;
780	unsigned long long delta;
781
782	do {
783		*udelta = 0;
784		*sdelta = 0;
 
 
785
786		seq = read_seqbegin(&t->vtime_seqlock);
 
787
788		if (u_dst)
789			*u_dst = *u_src;
790		if (s_dst)
791			*s_dst = *s_src;
792
793		/* Task is sleeping, nothing to add */
794		if (t->vtime_snap_whence == VTIME_SLEEPING ||
795		    is_idle_task(t))
796			continue;
797
798		delta = vtime_delta(t);
799
800		/*
801		 * Task runs either in user or kernel space, add pending nohz time to
802		 * the right place.
803		 */
804		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
805			*udelta = delta;
806		} else {
807			if (t->vtime_snap_whence == VTIME_SYS)
808				*sdelta = delta;
809		}
810	} while (read_seqretry(&t->vtime_seqlock, seq));
811}
812
813
814void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
815{
816	cputime_t udelta, sdelta;
817
818	fetch_task_cputime(t, utime, stime, &t->utime,
819			   &t->stime, &udelta, &sdelta);
820	if (utime)
821		*utime += udelta;
822	if (stime)
823		*stime += sdelta;
824}
825
826void task_cputime_scaled(struct task_struct *t,
827			 cputime_t *utimescaled, cputime_t *stimescaled)
828{
829	cputime_t udelta, sdelta;
830
831	fetch_task_cputime(t, utimescaled, stimescaled,
832			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
833	if (utimescaled)
834		*utimescaled += cputime_to_scaled(udelta);
835	if (stimescaled)
836		*stimescaled += cputime_to_scaled(sdelta);
837}
838#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Simple CPU accounting cgroup controller
  4 */
 
 
  5#include "sched.h"
  6
 
  7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  8
  9/*
 10 * There are no locks covering percpu hardirq/softirq time.
 11 * They are only modified in vtime_account, on corresponding CPU
 12 * with interrupts disabled. So, writes are safe.
 13 * They are read and saved off onto struct rq in update_rq_clock().
 14 * This may result in other CPU reading this CPU's irq time and can
 15 * race with irq/vtime_account on this CPU. We would either get old
 16 * or new value with a side effect of accounting a slice of irq time to wrong
 17 * task when irq is in progress while we read rq->clock. That is a worthy
 18 * compromise in place of having locks on each irq in account_system_time.
 19 */
 20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 
 21
 
 22static int sched_clock_irqtime;
 23
 24void enable_sched_clock_irqtime(void)
 25{
 26	sched_clock_irqtime = 1;
 27}
 28
 29void disable_sched_clock_irqtime(void)
 30{
 31	sched_clock_irqtime = 0;
 32}
 33
 34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 35				  enum cpu_usage_stat idx)
 36{
 37	u64 *cpustat = kcpustat_this_cpu->cpustat;
 38
 39	u64_stats_update_begin(&irqtime->sync);
 40	cpustat[idx] += delta;
 41	irqtime->total += delta;
 42	irqtime->tick_delta += delta;
 43	u64_stats_update_end(&irqtime->sync);
 44}
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 
 
 59	cpu = smp_processor_id();
 60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 61	irqtime->irq_start_time += delta;
 62
 
 63	/*
 64	 * We do not account for softirq time from ksoftirqd here.
 65	 * We want to continue accounting softirq time to ksoftirqd thread
 66	 * in that case, so as not to confuse scheduler with a special task
 67	 * that do not consume any time, but still wants to run.
 68	 */
 69	if (hardirq_count())
 70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 
 
 
 73}
 74EXPORT_SYMBOL_GPL(irqtime_account_irq);
 75
 76static u64 irqtime_tick_accounted(u64 maxtime)
 77{
 78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 79	u64 delta;
 
 
 80
 81	delta = min(irqtime->tick_delta, maxtime);
 82	irqtime->tick_delta -= delta;
 
 
 
 
 
 
 
 
 
 
 
 
 83
 84	return delta;
 
 
 
 
 
 85}
 86
 87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 88
 89#define sched_clock_irqtime	(0)
 90
 91static u64 irqtime_tick_accounted(u64 dummy)
 92{
 93	return 0;
 94}
 95
 96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 97
 98static inline void task_group_account_field(struct task_struct *p, int index,
 99					    u64 tmp)
100{
101	/*
102	 * Since all updates are sure to touch the root cgroup, we
103	 * get ourselves ahead and touch it first. If the root cgroup
104	 * is the only cgroup, then nothing else should be necessary.
105	 *
106	 */
107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108
109	cgroup_account_cputime_field(p, index, tmp);
110}
111
112/*
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
 
116 */
117void account_user_time(struct task_struct *p, u64 cputime)
 
118{
119	int index;
120
121	/* Add user time to process. */
122	p->utime += cputime;
 
123	account_group_user_time(p, cputime);
124
125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126
127	/* Add user time to cpustat. */
128	task_group_account_field(p, index, cputime);
129
130	/* Account for user time used */
131	acct_account_cputime(p);
132}
133
134/*
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
 
138 */
139void account_guest_time(struct task_struct *p, u64 cputime)
 
140{
141	u64 *cpustat = kcpustat_this_cpu->cpustat;
142
143	/* Add guest time to process. */
144	p->utime += cputime;
 
145	account_group_user_time(p, cputime);
146	p->gtime += cputime;
147
148	/* Add guest time to cpustat. */
149	if (task_nice(p) > 0) {
150		cpustat[CPUTIME_NICE] += cputime;
151		cpustat[CPUTIME_GUEST_NICE] += cputime;
152	} else {
153		cpustat[CPUTIME_USER] += cputime;
154		cpustat[CPUTIME_GUEST] += cputime;
155	}
156}
157
158/*
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
 
163 */
164void account_system_index_time(struct task_struct *p,
165			       u64 cputime, enum cpu_usage_stat index)
 
166{
167	/* Add system time to process. */
168	p->stime += cputime;
 
169	account_group_system_time(p, cputime);
170
171	/* Add system time to cpustat. */
172	task_group_account_field(p, index, cputime);
173
174	/* Account for system time used */
175	acct_account_cputime(p);
176}
177
178/*
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
 
183 */
184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 
185{
186	int index;
187
188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189		account_guest_time(p, cputime);
190		return;
191	}
192
193	if (hardirq_count() - hardirq_offset)
194		index = CPUTIME_IRQ;
195	else if (in_serving_softirq())
196		index = CPUTIME_SOFTIRQ;
197	else
198		index = CPUTIME_SYSTEM;
199
200	account_system_index_time(p, cputime, index);
201}
202
203/*
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
206 */
207void account_steal_time(u64 cputime)
208{
209	u64 *cpustat = kcpustat_this_cpu->cpustat;
210
211	cpustat[CPUTIME_STEAL] += cputime;
212}
213
214/*
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
217 */
218void account_idle_time(u64 cputime)
219{
220	u64 *cpustat = kcpustat_this_cpu->cpustat;
221	struct rq *rq = this_rq();
222
223	if (atomic_read(&rq->nr_iowait) > 0)
224		cpustat[CPUTIME_IOWAIT] += cputime;
225	else
226		cpustat[CPUTIME_IDLE] += cputime;
227}
228
229/*
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
233 */
234static __always_inline u64 steal_account_process_time(u64 maxtime)
235{
236#ifdef CONFIG_PARAVIRT
237	if (static_key_false(&paravirt_steal_enabled)) {
238		u64 steal;
 
239
240		steal = paravirt_steal_clock(smp_processor_id());
241		steal -= this_rq()->prev_steal_time;
242		steal = min(steal, maxtime);
243		account_steal_time(steal);
244		this_rq()->prev_steal_time += steal;
245
246		return steal;
 
 
 
 
 
 
 
 
 
247	}
248#endif
249	return 0;
250}
251
252/*
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
254 */
255static inline u64 account_other_time(u64 max)
256{
257	u64 accounted;
258
259	lockdep_assert_irqs_disabled();
260
261	accounted = steal_account_process_time(max);
262
263	if (accounted < max)
264		accounted += irqtime_tick_accounted(max - accounted);
265
266	return accounted;
267}
268
269#ifdef CONFIG_64BIT
270static inline u64 read_sum_exec_runtime(struct task_struct *t)
271{
272	return t->se.sum_exec_runtime;
273}
274#else
275static u64 read_sum_exec_runtime(struct task_struct *t)
276{
277	u64 ns;
278	struct rq_flags rf;
279	struct rq *rq;
280
281	rq = task_rq_lock(t, &rf);
282	ns = t->se.sum_exec_runtime;
283	task_rq_unlock(rq, t, &rf);
284
285	return ns;
286}
287#endif
288
289/*
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
292 */
293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294{
295	struct signal_struct *sig = tsk->signal;
296	u64 utime, stime;
297	struct task_struct *t;
298	unsigned int seq, nextseq;
299	unsigned long flags;
300
301	/*
302	 * Update current task runtime to account pending time since last
303	 * scheduler action or thread_group_cputime() call. This thread group
304	 * might have other running tasks on different CPUs, but updating
305	 * their runtime can affect syscall performance, so we skip account
306	 * those pending times and rely only on values updated on tick or
307	 * other scheduler action.
308	 */
309	if (same_thread_group(current, tsk))
310		(void) task_sched_runtime(current);
311
312	rcu_read_lock();
313	/* Attempt a lockless read on the first round. */
314	nextseq = 0;
 
 
 
315	do {
316		seq = nextseq;
317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318		times->utime = sig->utime;
319		times->stime = sig->stime;
320		times->sum_exec_runtime = sig->sum_sched_runtime;
321
322		for_each_thread(tsk, t) {
323			task_cputime(t, &utime, &stime);
324			times->utime += utime;
325			times->stime += stime;
326			times->sum_exec_runtime += read_sum_exec_runtime(t);
327		}
328		/* If lockless access failed, take the lock. */
329		nextseq = 1;
330	} while (need_seqretry(&sig->stats_lock, seq));
331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332	rcu_read_unlock();
333}
334
335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
336/*
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
341 *
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
345 * - user_time
346 * - idle_time
347 * - system time
348 *   - check for guest_time
349 *   - else account as system_time
350 *
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
356 */
357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358					 struct rq *rq, int ticks)
359{
360	u64 other, cputime = TICK_NSEC * ticks;
 
 
361
362	/*
363	 * When returning from idle, many ticks can get accounted at
364	 * once, including some ticks of steal, irq, and softirq time.
365	 * Subtract those ticks from the amount of time accounted to
366	 * idle, or potentially user or system time. Due to rounding,
367	 * other time can exceed ticks occasionally.
368	 */
369	other = account_other_time(ULONG_MAX);
370	if (other >= cputime)
371		return;
372
373	cputime -= other;
 
374
375	if (this_cpu_ksoftirqd() == p) {
 
 
 
 
376		/*
377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
378		 * So, we have to handle it separately here.
379		 * Also, p->stime needs to be updated for ksoftirqd.
380		 */
381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382	} else if (user_tick) {
383		account_user_time(p, cputime);
384	} else if (p == rq->idle) {
385		account_idle_time(cputime);
386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
387		account_guest_time(p, cputime);
388	} else {
389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390	}
391}
392
393static void irqtime_account_idle_ticks(int ticks)
394{
395	struct rq *rq = this_rq();
396
397	irqtime_account_process_tick(current, 0, rq, ticks);
398}
399#else /* CONFIG_IRQ_TIME_ACCOUNTING */
400static inline void irqtime_account_idle_ticks(int ticks) { }
401static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
402						struct rq *rq, int nr_ticks) { }
403#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404
405/*
406 * Use precise platform statistics if available:
407 */
408#ifdef CONFIG_VIRT_CPU_ACCOUNTING
409# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 
410void vtime_common_task_switch(struct task_struct *prev)
411{
412	if (is_idle_task(prev))
413		vtime_account_idle(prev);
414	else
415		vtime_account_system(prev);
416
417	vtime_flush(prev);
 
 
418	arch_vtime_task_switch(prev);
419}
420# endif
421#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
422
423
424#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
425/*
426 * Archs that account the whole time spent in the idle task
427 * (outside irq) as idle time can rely on this and just implement
428 * vtime_account_system() and vtime_account_idle(). Archs that
429 * have other meaning of the idle time (s390 only includes the
430 * time spent by the CPU when it's in low power mode) must override
431 * vtime_account().
432 */
433#ifndef __ARCH_HAS_VTIME_ACCOUNT
434void vtime_account_irq_enter(struct task_struct *tsk)
435{
436	if (!in_interrupt() && is_idle_task(tsk))
437		vtime_account_idle(tsk);
438	else
439		vtime_account_system(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440}
441EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
442#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 
443
444void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
445		    u64 *ut, u64 *st)
446{
447	*ut = curr->utime;
448	*st = curr->stime;
449}
450
451void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 
452{
453	*ut = p->utime;
454	*st = p->stime;
455}
456EXPORT_SYMBOL_GPL(task_cputime_adjusted);
457
458void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
459{
460	struct task_cputime cputime;
461
462	thread_group_cputime(p, &cputime);
463
464	*ut = cputime.utime;
465	*st = cputime.stime;
466}
467
468#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
469
470/*
471 * Account a single tick of CPU time.
472 * @p: the process that the CPU time gets accounted to
473 * @user_tick: indicates if the tick is a user or a system tick
474 */
475void account_process_tick(struct task_struct *p, int user_tick)
476{
477	u64 cputime, steal;
478	struct rq *rq = this_rq();
479
480	if (vtime_accounting_cpu_enabled())
481		return;
482
483	if (sched_clock_irqtime) {
484		irqtime_account_process_tick(p, user_tick, rq, 1);
485		return;
486	}
487
488	cputime = TICK_NSEC;
489	steal = steal_account_process_time(ULONG_MAX);
490
491	if (steal >= cputime)
492		return;
493
494	cputime -= steal;
495
496	if (user_tick)
497		account_user_time(p, cputime);
498	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
499		account_system_time(p, HARDIRQ_OFFSET, cputime);
 
500	else
501		account_idle_time(cputime);
 
 
 
 
 
 
 
 
 
 
502}
503
504/*
505 * Account multiple ticks of idle time.
506 * @ticks: number of stolen ticks
507 */
508void account_idle_ticks(unsigned long ticks)
509{
510	u64 cputime, steal;
511
512	if (sched_clock_irqtime) {
513		irqtime_account_idle_ticks(ticks);
514		return;
515	}
516
517	cputime = ticks * TICK_NSEC;
518	steal = steal_account_process_time(ULONG_MAX);
519
520	if (steal >= cputime)
521		return;
522
523	cputime -= steal;
524	account_idle_time(cputime);
525}
526
527/*
528 * Perform (stime * rtime) / total, but avoid multiplication overflow by
529 * losing precision when the numbers are big.
530 */
531static u64 scale_stime(u64 stime, u64 rtime, u64 total)
532{
533	u64 scaled;
534
535	for (;;) {
536		/* Make sure "rtime" is the bigger of stime/rtime */
537		if (stime > rtime)
538			swap(rtime, stime);
539
540		/* Make sure 'total' fits in 32 bits */
541		if (total >> 32)
542			goto drop_precision;
543
544		/* Does rtime (and thus stime) fit in 32 bits? */
545		if (!(rtime >> 32))
546			break;
547
548		/* Can we just balance rtime/stime rather than dropping bits? */
549		if (stime >> 31)
550			goto drop_precision;
551
552		/* We can grow stime and shrink rtime and try to make them both fit */
553		stime <<= 1;
554		rtime >>= 1;
555		continue;
556
557drop_precision:
558		/* We drop from rtime, it has more bits than stime */
559		rtime >>= 1;
560		total >>= 1;
561	}
562
563	/*
564	 * Make sure gcc understands that this is a 32x32->64 multiply,
565	 * followed by a 64/32->64 divide.
566	 */
567	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
568	return scaled;
569}
570
571/*
572 * Adjust tick based cputime random precision against scheduler runtime
573 * accounting.
574 *
575 * Tick based cputime accounting depend on random scheduling timeslices of a
576 * task to be interrupted or not by the timer.  Depending on these
577 * circumstances, the number of these interrupts may be over or
578 * under-optimistic, matching the real user and system cputime with a variable
579 * precision.
580 *
581 * Fix this by scaling these tick based values against the total runtime
582 * accounted by the CFS scheduler.
583 *
584 * This code provides the following guarantees:
585 *
586 *   stime + utime == rtime
587 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
588 *
589 * Assuming that rtime_i+1 >= rtime_i.
590 */
591void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
592		    u64 *ut, u64 *st)
 
593{
594	u64 rtime, stime, utime;
595	unsigned long flags;
596
597	/* Serialize concurrent callers such that we can honour our guarantees */
598	raw_spin_lock_irqsave(&prev->lock, flags);
599	rtime = curr->sum_exec_runtime;
 
 
 
 
 
 
 
 
600
601	/*
602	 * This is possible under two circumstances:
603	 *  - rtime isn't monotonic after all (a bug);
604	 *  - we got reordered by the lock.
605	 *
606	 * In both cases this acts as a filter such that the rest of the code
607	 * can assume it is monotonic regardless of anything else.
608	 */
609	if (prev->stime + prev->utime >= rtime)
610		goto out;
611
612	stime = curr->stime;
613	utime = curr->utime;
614
615	/*
616	 * If either stime or utime are 0, assume all runtime is userspace.
617	 * Once a task gets some ticks, the monotonicy code at 'update:'
618	 * will ensure things converge to the observed ratio.
619	 */
620	if (stime == 0) {
621		utime = rtime;
622		goto update;
623	}
624
625	if (utime == 0) {
626		stime = rtime;
627		goto update;
628	}
629
630	stime = scale_stime(stime, rtime, stime + utime);
631
632update:
633	/*
634	 * Make sure stime doesn't go backwards; this preserves monotonicity
635	 * for utime because rtime is monotonic.
636	 *
637	 *  utime_i+1 = rtime_i+1 - stime_i
638	 *            = rtime_i+1 - (rtime_i - utime_i)
639	 *            = (rtime_i+1 - rtime_i) + utime_i
640	 *            >= utime_i
641	 */
642	if (stime < prev->stime)
643		stime = prev->stime;
644	utime = rtime - stime;
645
646	/*
647	 * Make sure utime doesn't go backwards; this still preserves
648	 * monotonicity for stime, analogous argument to above.
649	 */
650	if (utime < prev->utime) {
651		utime = prev->utime;
652		stime = rtime - utime;
653	}
654
655	prev->stime = stime;
656	prev->utime = utime;
657out:
658	*ut = prev->utime;
659	*st = prev->stime;
660	raw_spin_unlock_irqrestore(&prev->lock, flags);
661}
662
663void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
664{
665	struct task_cputime cputime = {
666		.sum_exec_runtime = p->se.sum_exec_runtime,
667	};
668
669	task_cputime(p, &cputime.utime, &cputime.stime);
670	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
671}
672EXPORT_SYMBOL_GPL(task_cputime_adjusted);
673
674void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 
 
 
675{
676	struct task_cputime cputime;
677
678	thread_group_cputime(p, &cputime);
679	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
680}
681#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
682
683#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
684static u64 vtime_delta(struct vtime *vtime)
685{
686	unsigned long long clock;
687
688	clock = sched_clock();
689	if (clock < vtime->starttime)
690		return 0;
691
692	return clock - vtime->starttime;
693}
694
695static u64 get_vtime_delta(struct vtime *vtime)
696{
697	u64 delta = vtime_delta(vtime);
698	u64 other;
699
700	/*
701	 * Unlike tick based timing, vtime based timing never has lost
702	 * ticks, and no need for steal time accounting to make up for
703	 * lost ticks. Vtime accounts a rounded version of actual
704	 * elapsed time. Limit account_other_time to prevent rounding
705	 * errors from causing elapsed vtime to go negative.
706	 */
707	other = account_other_time(delta);
708	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
709	vtime->starttime += delta;
710
711	return delta - other;
 
712}
713
714static void __vtime_account_system(struct task_struct *tsk,
715				   struct vtime *vtime)
716{
717	vtime->stime += get_vtime_delta(vtime);
718	if (vtime->stime >= TICK_NSEC) {
719		account_system_time(tsk, irq_count(), vtime->stime);
720		vtime->stime = 0;
721	}
722}
723
724static void vtime_account_guest(struct task_struct *tsk,
725				struct vtime *vtime)
726{
727	vtime->gtime += get_vtime_delta(vtime);
728	if (vtime->gtime >= TICK_NSEC) {
729		account_guest_time(tsk, vtime->gtime);
730		vtime->gtime = 0;
731	}
732}
733
734void vtime_account_system(struct task_struct *tsk)
735{
736	struct vtime *vtime = &tsk->vtime;
737
738	if (!vtime_delta(vtime))
739		return;
740
741	write_seqcount_begin(&vtime->seqcount);
742	/* We might have scheduled out from guest path */
743	if (tsk->flags & PF_VCPU)
744		vtime_account_guest(tsk, vtime);
745	else
746		__vtime_account_system(tsk, vtime);
747	write_seqcount_end(&vtime->seqcount);
748}
749
750void vtime_user_enter(struct task_struct *tsk)
751{
752	struct vtime *vtime = &tsk->vtime;
753
754	write_seqcount_begin(&vtime->seqcount);
755	__vtime_account_system(tsk, vtime);
756	vtime->state = VTIME_USER;
757	write_seqcount_end(&vtime->seqcount);
 
758}
759
760void vtime_user_exit(struct task_struct *tsk)
761{
762	struct vtime *vtime = &tsk->vtime;
763
764	write_seqcount_begin(&vtime->seqcount);
765	vtime->utime += get_vtime_delta(vtime);
766	if (vtime->utime >= TICK_NSEC) {
767		account_user_time(tsk, vtime->utime);
768		vtime->utime = 0;
769	}
770	vtime->state = VTIME_SYS;
771	write_seqcount_end(&vtime->seqcount);
772}
773
774void vtime_guest_enter(struct task_struct *tsk)
775{
776	struct vtime *vtime = &tsk->vtime;
777	/*
778	 * The flags must be updated under the lock with
779	 * the vtime_starttime flush and update.
780	 * That enforces a right ordering and update sequence
781	 * synchronization against the reader (task_gtime())
782	 * that can thus safely catch up with a tickless delta.
783	 */
784	write_seqcount_begin(&vtime->seqcount);
785	__vtime_account_system(tsk, vtime);
786	tsk->flags |= PF_VCPU;
787	write_seqcount_end(&vtime->seqcount);
788}
789EXPORT_SYMBOL_GPL(vtime_guest_enter);
790
791void vtime_guest_exit(struct task_struct *tsk)
792{
793	struct vtime *vtime = &tsk->vtime;
794
795	write_seqcount_begin(&vtime->seqcount);
796	vtime_account_guest(tsk, vtime);
797	tsk->flags &= ~PF_VCPU;
798	write_seqcount_end(&vtime->seqcount);
799}
800EXPORT_SYMBOL_GPL(vtime_guest_exit);
801
802void vtime_account_idle(struct task_struct *tsk)
803{
804	account_idle_time(get_vtime_delta(&tsk->vtime));
 
 
805}
806
807void arch_vtime_task_switch(struct task_struct *prev)
808{
809	struct vtime *vtime = &prev->vtime;
810
811	write_seqcount_begin(&vtime->seqcount);
812	vtime->state = VTIME_INACTIVE;
813	write_seqcount_end(&vtime->seqcount);
814
815	vtime = &current->vtime;
816
817	write_seqcount_begin(&vtime->seqcount);
818	vtime->state = VTIME_SYS;
819	vtime->starttime = sched_clock();
820	write_seqcount_end(&vtime->seqcount);
821}
822
823void vtime_init_idle(struct task_struct *t, int cpu)
824{
825	struct vtime *vtime = &t->vtime;
826	unsigned long flags;
827
828	local_irq_save(flags);
829	write_seqcount_begin(&vtime->seqcount);
830	vtime->state = VTIME_SYS;
831	vtime->starttime = sched_clock();
832	write_seqcount_end(&vtime->seqcount);
833	local_irq_restore(flags);
834}
835
836u64 task_gtime(struct task_struct *t)
837{
838	struct vtime *vtime = &t->vtime;
839	unsigned int seq;
840	u64 gtime;
841
842	if (!vtime_accounting_enabled())
843		return t->gtime;
844
845	do {
846		seq = read_seqcount_begin(&vtime->seqcount);
847
848		gtime = t->gtime;
849		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
850			gtime += vtime->gtime + vtime_delta(vtime);
851
852	} while (read_seqcount_retry(&vtime->seqcount, seq));
853
854	return gtime;
855}
856
857/*
858 * Fetch cputime raw values from fields of task_struct and
859 * add up the pending nohz execution time since the last
860 * cputime snapshot.
861 */
862void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 
 
 
 
863{
864	struct vtime *vtime = &t->vtime;
865	unsigned int seq;
866	u64 delta;
867
868	if (!vtime_accounting_enabled()) {
869		*utime = t->utime;
870		*stime = t->stime;
871		return;
872	}
873
874	do {
875		seq = read_seqcount_begin(&vtime->seqcount);
876
877		*utime = t->utime;
878		*stime = t->stime;
 
 
879
880		/* Task is sleeping, nothing to add */
881		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
 
882			continue;
883
884		delta = vtime_delta(vtime);
885
886		/*
887		 * Task runs either in user or kernel space, add pending nohz time to
888		 * the right place.
889		 */
890		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
891			*utime += vtime->utime + delta;
892		else if (vtime->state == VTIME_SYS)
893			*stime += vtime->stime + delta;
894	} while (read_seqcount_retry(&vtime->seqcount, seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895}
896#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */