Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/proc_fs.h>
 41
 42#define pid_hashfn(nr, ns)	\
 43	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 44static struct hlist_head *pid_hash;
 45static unsigned int pidhash_shift = 4;
 46struct pid init_struct_pid = INIT_STRUCT_PID;
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48int pid_max = PID_MAX_DEFAULT;
 49
 50#define RESERVED_PIDS		300
 51
 52int pid_max_min = RESERVED_PIDS + 1;
 53int pid_max_max = PID_MAX_LIMIT;
 54
 55static inline int mk_pid(struct pid_namespace *pid_ns,
 56		struct pidmap *map, int off)
 57{
 58	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 59}
 60
 61#define find_next_offset(map, off)					\
 62		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 63
 64/*
 65 * PID-map pages start out as NULL, they get allocated upon
 66 * first use and are never deallocated. This way a low pid_max
 67 * value does not cause lots of bitmaps to be allocated, but
 68 * the scheme scales to up to 4 million PIDs, runtime.
 69 */
 70struct pid_namespace init_pid_ns = {
 71	.kref = {
 72		.refcount       = ATOMIC_INIT(2),
 73	},
 74	.pidmap = {
 75		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 76	},
 77	.last_pid = 0,
 78	.nr_hashed = PIDNS_HASH_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.proc_inum = PROC_PID_INIT_INO,
 
 
 
 83};
 84EXPORT_SYMBOL_GPL(init_pid_ns);
 85
 86/*
 87 * Note: disable interrupts while the pidmap_lock is held as an
 88 * interrupt might come in and do read_lock(&tasklist_lock).
 89 *
 90 * If we don't disable interrupts there is a nasty deadlock between
 91 * detach_pid()->free_pid() and another cpu that does
 92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 93 * read_lock(&tasklist_lock);
 94 *
 95 * After we clean up the tasklist_lock and know there are no
 96 * irq handlers that take it we can leave the interrupts enabled.
 97 * For now it is easier to be safe than to prove it can't happen.
 98 */
 99
100static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
101
102static void free_pidmap(struct upid *upid)
103{
104	int nr = upid->nr;
105	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
106	int offset = nr & BITS_PER_PAGE_MASK;
107
108	clear_bit(offset, map->page);
109	atomic_inc(&map->nr_free);
110}
111
112/*
113 * If we started walking pids at 'base', is 'a' seen before 'b'?
114 */
115static int pid_before(int base, int a, int b)
116{
117	/*
118	 * This is the same as saying
119	 *
120	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121	 * and that mapping orders 'a' and 'b' with respect to 'base'.
122	 */
123	return (unsigned)(a - base) < (unsigned)(b - base);
124}
125
126/*
127 * We might be racing with someone else trying to set pid_ns->last_pid
128 * at the pid allocation time (there's also a sysctl for this, but racing
129 * with this one is OK, see comment in kernel/pid_namespace.c about it).
130 * We want the winner to have the "later" value, because if the
131 * "earlier" value prevails, then a pid may get reused immediately.
132 *
133 * Since pids rollover, it is not sufficient to just pick the bigger
134 * value.  We have to consider where we started counting from.
135 *
136 * 'base' is the value of pid_ns->last_pid that we observed when
137 * we started looking for a pid.
138 *
139 * 'pid' is the pid that we eventually found.
140 */
141static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
142{
143	int prev;
144	int last_write = base;
145	do {
146		prev = last_write;
147		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
148	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
149}
150
151static int alloc_pidmap(struct pid_namespace *pid_ns)
152{
153	int i, offset, max_scan, pid, last = pid_ns->last_pid;
154	struct pidmap *map;
155
156	pid = last + 1;
157	if (pid >= pid_max)
158		pid = RESERVED_PIDS;
159	offset = pid & BITS_PER_PAGE_MASK;
160	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
161	/*
162	 * If last_pid points into the middle of the map->page we
163	 * want to scan this bitmap block twice, the second time
164	 * we start with offset == 0 (or RESERVED_PIDS).
165	 */
166	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
167	for (i = 0; i <= max_scan; ++i) {
168		if (unlikely(!map->page)) {
169			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
170			/*
171			 * Free the page if someone raced with us
172			 * installing it:
173			 */
174			spin_lock_irq(&pidmap_lock);
175			if (!map->page) {
176				map->page = page;
177				page = NULL;
178			}
179			spin_unlock_irq(&pidmap_lock);
180			kfree(page);
181			if (unlikely(!map->page))
182				break;
183		}
184		if (likely(atomic_read(&map->nr_free))) {
185			for ( ; ; ) {
186				if (!test_and_set_bit(offset, map->page)) {
187					atomic_dec(&map->nr_free);
188					set_last_pid(pid_ns, last, pid);
189					return pid;
190				}
191				offset = find_next_offset(map, offset);
192				if (offset >= BITS_PER_PAGE)
193					break;
194				pid = mk_pid(pid_ns, map, offset);
195				if (pid >= pid_max)
196					break;
197			}
198		}
199		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
200			++map;
201			offset = 0;
202		} else {
203			map = &pid_ns->pidmap[0];
204			offset = RESERVED_PIDS;
205			if (unlikely(last == offset))
206				break;
207		}
208		pid = mk_pid(pid_ns, map, offset);
209	}
210	return -1;
211}
212
213int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
214{
215	int offset;
216	struct pidmap *map, *end;
217
218	if (last >= PID_MAX_LIMIT)
219		return -1;
220
221	offset = (last + 1) & BITS_PER_PAGE_MASK;
222	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
223	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
224	for (; map < end; map++, offset = 0) {
225		if (unlikely(!map->page))
226			continue;
227		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
228		if (offset < BITS_PER_PAGE)
229			return mk_pid(pid_ns, map, offset);
230	}
231	return -1;
232}
233
234void put_pid(struct pid *pid)
235{
236	struct pid_namespace *ns;
237
238	if (!pid)
239		return;
240
241	ns = pid->numbers[pid->level].ns;
242	if ((atomic_read(&pid->count) == 1) ||
243	     atomic_dec_and_test(&pid->count)) {
244		kmem_cache_free(ns->pid_cachep, pid);
245		put_pid_ns(ns);
246	}
247}
248EXPORT_SYMBOL_GPL(put_pid);
249
250static void delayed_put_pid(struct rcu_head *rhp)
251{
252	struct pid *pid = container_of(rhp, struct pid, rcu);
253	put_pid(pid);
254}
255
256void free_pid(struct pid *pid)
257{
258	/* We can be called with write_lock_irq(&tasklist_lock) held */
259	int i;
260	unsigned long flags;
261
262	spin_lock_irqsave(&pidmap_lock, flags);
263	for (i = 0; i <= pid->level; i++) {
264		struct upid *upid = pid->numbers + i;
265		struct pid_namespace *ns = upid->ns;
266		hlist_del_rcu(&upid->pid_chain);
267		switch(--ns->nr_hashed) {
268		case 2:
269		case 1:
270			/* When all that is left in the pid namespace
271			 * is the reaper wake up the reaper.  The reaper
272			 * may be sleeping in zap_pid_ns_processes().
273			 */
274			wake_up_process(ns->child_reaper);
275			break;
276		case PIDNS_HASH_ADDING:
277			/* Handle a fork failure of the first process */
278			WARN_ON(ns->child_reaper);
279			ns->nr_hashed = 0;
280			/* fall through */
281		case 0:
282			schedule_work(&ns->proc_work);
283			break;
284		}
 
 
285	}
286	spin_unlock_irqrestore(&pidmap_lock, flags);
287
288	for (i = 0; i <= pid->level; i++)
289		free_pidmap(pid->numbers + i);
290
291	call_rcu(&pid->rcu, delayed_put_pid);
292}
293
294struct pid *alloc_pid(struct pid_namespace *ns)
295{
296	struct pid *pid;
297	enum pid_type type;
298	int i, nr;
299	struct pid_namespace *tmp;
300	struct upid *upid;
 
301
302	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
303	if (!pid)
304		goto out;
305
306	tmp = ns;
307	pid->level = ns->level;
 
308	for (i = ns->level; i >= 0; i--) {
309		nr = alloc_pidmap(tmp);
310		if (nr < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311			goto out_free;
 
312
313		pid->numbers[i].nr = nr;
314		pid->numbers[i].ns = tmp;
315		tmp = tmp->parent;
316	}
317
318	if (unlikely(is_child_reaper(pid))) {
319		if (pid_ns_prepare_proc(ns))
320			goto out_free;
321	}
322
323	get_pid_ns(ns);
324	atomic_set(&pid->count, 1);
325	for (type = 0; type < PIDTYPE_MAX; ++type)
326		INIT_HLIST_HEAD(&pid->tasks[type]);
327
 
 
328	upid = pid->numbers + ns->level;
329	spin_lock_irq(&pidmap_lock);
330	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
331		goto out_unlock;
332	for ( ; upid >= pid->numbers; --upid) {
333		hlist_add_head_rcu(&upid->pid_chain,
334				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
335		upid->ns->nr_hashed++;
336	}
337	spin_unlock_irq(&pidmap_lock);
338
339out:
340	return pid;
341
342out_unlock:
343	spin_unlock_irq(&pidmap_lock);
 
 
344out_free:
345	while (++i <= ns->level)
346		free_pidmap(pid->numbers + i);
 
 
 
 
 
 
 
 
 
347
348	kmem_cache_free(ns->pid_cachep, pid);
349	pid = NULL;
350	goto out;
351}
352
353void disable_pid_allocation(struct pid_namespace *ns)
354{
355	spin_lock_irq(&pidmap_lock);
356	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
357	spin_unlock_irq(&pidmap_lock);
358}
359
360struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
361{
362	struct upid *pnr;
363
364	hlist_for_each_entry_rcu(pnr,
365			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
366		if (pnr->nr == nr && pnr->ns == ns)
367			return container_of(pnr, struct pid,
368					numbers[ns->level]);
369
370	return NULL;
371}
372EXPORT_SYMBOL_GPL(find_pid_ns);
373
374struct pid *find_vpid(int nr)
375{
376	return find_pid_ns(nr, task_active_pid_ns(current));
377}
378EXPORT_SYMBOL_GPL(find_vpid);
379
 
 
 
 
 
 
 
380/*
381 * attach_pid() must be called with the tasklist_lock write-held.
382 */
383void attach_pid(struct task_struct *task, enum pid_type type)
384{
385	struct pid_link *link = &task->pids[type];
386	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
387}
388
389static void __change_pid(struct task_struct *task, enum pid_type type,
390			struct pid *new)
391{
392	struct pid_link *link;
393	struct pid *pid;
394	int tmp;
395
396	link = &task->pids[type];
397	pid = link->pid;
398
399	hlist_del_rcu(&link->node);
400	link->pid = new;
401
402	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
403		if (!hlist_empty(&pid->tasks[tmp]))
404			return;
405
406	free_pid(pid);
407}
408
409void detach_pid(struct task_struct *task, enum pid_type type)
410{
411	__change_pid(task, type, NULL);
412}
413
414void change_pid(struct task_struct *task, enum pid_type type,
415		struct pid *pid)
416{
417	__change_pid(task, type, pid);
418	attach_pid(task, type);
419}
420
421/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
422void transfer_pid(struct task_struct *old, struct task_struct *new,
423			   enum pid_type type)
424{
425	new->pids[type].pid = old->pids[type].pid;
426	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 
427}
428
429struct task_struct *pid_task(struct pid *pid, enum pid_type type)
430{
431	struct task_struct *result = NULL;
432	if (pid) {
433		struct hlist_node *first;
434		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
435					      lockdep_tasklist_lock_is_held());
436		if (first)
437			result = hlist_entry(first, struct task_struct, pids[(type)].node);
438	}
439	return result;
440}
441EXPORT_SYMBOL(pid_task);
442
443/*
444 * Must be called under rcu_read_lock().
445 */
446struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
447{
448	rcu_lockdep_assert(rcu_read_lock_held(),
449			   "find_task_by_pid_ns() needs rcu_read_lock()"
450			   " protection");
451	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
452}
453
454struct task_struct *find_task_by_vpid(pid_t vnr)
455{
456	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
457}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
459struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
460{
461	struct pid *pid;
462	rcu_read_lock();
463	if (type != PIDTYPE_PID)
464		task = task->group_leader;
465	pid = get_pid(task->pids[type].pid);
466	rcu_read_unlock();
467	return pid;
468}
469EXPORT_SYMBOL_GPL(get_task_pid);
470
471struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
472{
473	struct task_struct *result;
474	rcu_read_lock();
475	result = pid_task(pid, type);
476	if (result)
477		get_task_struct(result);
478	rcu_read_unlock();
479	return result;
480}
481EXPORT_SYMBOL_GPL(get_pid_task);
482
483struct pid *find_get_pid(pid_t nr)
484{
485	struct pid *pid;
486
487	rcu_read_lock();
488	pid = get_pid(find_vpid(nr));
489	rcu_read_unlock();
490
491	return pid;
492}
493EXPORT_SYMBOL_GPL(find_get_pid);
494
495pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
496{
497	struct upid *upid;
498	pid_t nr = 0;
499
500	if (pid && ns->level <= pid->level) {
501		upid = &pid->numbers[ns->level];
502		if (upid->ns == ns)
503			nr = upid->nr;
504	}
505	return nr;
506}
507EXPORT_SYMBOL_GPL(pid_nr_ns);
508
509pid_t pid_vnr(struct pid *pid)
510{
511	return pid_nr_ns(pid, task_active_pid_ns(current));
512}
513EXPORT_SYMBOL_GPL(pid_vnr);
514
515pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
516			struct pid_namespace *ns)
517{
518	pid_t nr = 0;
519
520	rcu_read_lock();
521	if (!ns)
522		ns = task_active_pid_ns(current);
523	if (likely(pid_alive(task))) {
524		if (type != PIDTYPE_PID)
525			task = task->group_leader;
526		nr = pid_nr_ns(task->pids[type].pid, ns);
527	}
528	rcu_read_unlock();
529
530	return nr;
531}
532EXPORT_SYMBOL(__task_pid_nr_ns);
533
534pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
535{
536	return pid_nr_ns(task_tgid(tsk), ns);
537}
538EXPORT_SYMBOL(task_tgid_nr_ns);
539
540struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
541{
542	return ns_of_pid(task_pid(tsk));
543}
544EXPORT_SYMBOL_GPL(task_active_pid_ns);
545
546/*
547 * Used by proc to find the first pid that is greater than or equal to nr.
548 *
549 * If there is a pid at nr this function is exactly the same as find_pid_ns.
550 */
551struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
552{
553	struct pid *pid;
 
554
555	do {
556		pid = find_pid_ns(nr, ns);
557		if (pid)
558			break;
559		nr = next_pidmap(ns, nr);
560	} while (nr > 0);
 
 
 
 
 
 
 
 
 
 
561
562	return pid;
 
 
 
 
 
563}
564
565/*
566 * The pid hash table is scaled according to the amount of memory in the
567 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
568 * more.
 
 
 
 
 
 
 
 
 
 
 
569 */
570void __init pidhash_init(void)
571{
572	unsigned int i, pidhash_size;
 
573
574	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
575					   HASH_EARLY | HASH_SMALL,
576					   &pidhash_shift, NULL,
577					   0, 4096);
578	pidhash_size = 1U << pidhash_shift;
 
 
 
 
 
 
 
 
 
 
579
580	for (i = 0; i < pidhash_size; i++)
581		INIT_HLIST_HEAD(&pid_hash[i]);
 
582}
583
584void __init pidmap_init(void)
585{
586	/* Veryify no one has done anything silly */
587	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
588
589	/* bump default and minimum pid_max based on number of cpus */
590	pid_max = min(pid_max_max, max_t(int, pid_max,
591				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
592	pid_max_min = max_t(int, pid_max_min,
593				PIDS_PER_CPU_MIN * num_possible_cpus());
594	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
595
596	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
597	/* Reserve PID 0. We never call free_pidmap(0) */
598	set_bit(0, init_pid_ns.pidmap[0].page);
599	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
600
601	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
603}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45
 46struct pid init_struct_pid = {
 47	.count		= REFCOUNT_INIT(1),
 48	.tasks		= {
 49		{ .first = NULL },
 50		{ .first = NULL },
 51		{ .first = NULL },
 52	},
 53	.level		= 0,
 54	.numbers	= { {
 55		.nr		= 0,
 56		.ns		= &init_pid_ns,
 57	}, }
 58};
 59
 60int pid_max = PID_MAX_DEFAULT;
 61
 62#define RESERVED_PIDS		300
 63
 64int pid_max_min = RESERVED_PIDS + 1;
 65int pid_max_max = PID_MAX_LIMIT;
 66
 
 
 
 
 
 
 
 
 
 67/*
 68 * PID-map pages start out as NULL, they get allocated upon
 69 * first use and are never deallocated. This way a low pid_max
 70 * value does not cause lots of bitmaps to be allocated, but
 71 * the scheme scales to up to 4 million PIDs, runtime.
 72 */
 73struct pid_namespace init_pid_ns = {
 74	.kref = KREF_INIT(2),
 75	.idr = IDR_INIT(init_pid_ns.idr),
 76	.pid_allocated = PIDNS_ADDING,
 
 
 
 
 
 77	.level = 0,
 78	.child_reaper = &init_task,
 79	.user_ns = &init_user_ns,
 80	.ns.inum = PROC_PID_INIT_INO,
 81#ifdef CONFIG_PID_NS
 82	.ns.ops = &pidns_operations,
 83#endif
 84};
 85EXPORT_SYMBOL_GPL(init_pid_ns);
 86
 87/*
 88 * Note: disable interrupts while the pidmap_lock is held as an
 89 * interrupt might come in and do read_lock(&tasklist_lock).
 90 *
 91 * If we don't disable interrupts there is a nasty deadlock between
 92 * detach_pid()->free_pid() and another cpu that does
 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 94 * read_lock(&tasklist_lock);
 95 *
 96 * After we clean up the tasklist_lock and know there are no
 97 * irq handlers that take it we can leave the interrupts enabled.
 98 * For now it is easier to be safe than to prove it can't happen.
 99 */
100
101static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103void put_pid(struct pid *pid)
104{
105	struct pid_namespace *ns;
106
107	if (!pid)
108		return;
109
110	ns = pid->numbers[pid->level].ns;
111	if (refcount_dec_and_test(&pid->count)) {
 
112		kmem_cache_free(ns->pid_cachep, pid);
113		put_pid_ns(ns);
114	}
115}
116EXPORT_SYMBOL_GPL(put_pid);
117
118static void delayed_put_pid(struct rcu_head *rhp)
119{
120	struct pid *pid = container_of(rhp, struct pid, rcu);
121	put_pid(pid);
122}
123
124void free_pid(struct pid *pid)
125{
126	/* We can be called with write_lock_irq(&tasklist_lock) held */
127	int i;
128	unsigned long flags;
129
130	spin_lock_irqsave(&pidmap_lock, flags);
131	for (i = 0; i <= pid->level; i++) {
132		struct upid *upid = pid->numbers + i;
133		struct pid_namespace *ns = upid->ns;
134		switch (--ns->pid_allocated) {
 
135		case 2:
136		case 1:
137			/* When all that is left in the pid namespace
138			 * is the reaper wake up the reaper.  The reaper
139			 * may be sleeping in zap_pid_ns_processes().
140			 */
141			wake_up_process(ns->child_reaper);
142			break;
143		case PIDNS_ADDING:
144			/* Handle a fork failure of the first process */
145			WARN_ON(ns->child_reaper);
146			ns->pid_allocated = 0;
147			/* fall through */
148		case 0:
149			schedule_work(&ns->proc_work);
150			break;
151		}
152
153		idr_remove(&ns->idr, upid->nr);
154	}
155	spin_unlock_irqrestore(&pidmap_lock, flags);
156
 
 
 
157	call_rcu(&pid->rcu, delayed_put_pid);
158}
159
160struct pid *alloc_pid(struct pid_namespace *ns)
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
169	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170	if (!pid)
171		return ERR_PTR(retval);
172
173	tmp = ns;
174	pid->level = ns->level;
175
176	for (i = ns->level; i >= 0; i--) {
177		int pid_min = 1;
178
179		idr_preload(GFP_KERNEL);
180		spin_lock_irq(&pidmap_lock);
181
182		/*
183		 * init really needs pid 1, but after reaching the maximum
184		 * wrap back to RESERVED_PIDS
185		 */
186		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187			pid_min = RESERVED_PIDS;
188
189		/*
190		 * Store a null pointer so find_pid_ns does not find
191		 * a partially initialized PID (see below).
192		 */
193		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194				      pid_max, GFP_ATOMIC);
195		spin_unlock_irq(&pidmap_lock);
196		idr_preload_end();
197
198		if (nr < 0) {
199			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200			goto out_free;
201		}
202
203		pid->numbers[i].nr = nr;
204		pid->numbers[i].ns = tmp;
205		tmp = tmp->parent;
206	}
207
208	if (unlikely(is_child_reaper(pid))) {
209		if (pid_ns_prepare_proc(ns))
210			goto out_free;
211	}
212
213	get_pid_ns(ns);
214	refcount_set(&pid->count, 1);
215	for (type = 0; type < PIDTYPE_MAX; ++type)
216		INIT_HLIST_HEAD(&pid->tasks[type]);
217
218	init_waitqueue_head(&pid->wait_pidfd);
219
220	upid = pid->numbers + ns->level;
221	spin_lock_irq(&pidmap_lock);
222	if (!(ns->pid_allocated & PIDNS_ADDING))
223		goto out_unlock;
224	for ( ; upid >= pid->numbers; --upid) {
225		/* Make the PID visible to find_pid_ns. */
226		idr_replace(&upid->ns->idr, pid, upid->nr);
227		upid->ns->pid_allocated++;
228	}
229	spin_unlock_irq(&pidmap_lock);
230
 
231	return pid;
232
233out_unlock:
234	spin_unlock_irq(&pidmap_lock);
235	put_pid_ns(ns);
236
237out_free:
238	spin_lock_irq(&pidmap_lock);
239	while (++i <= ns->level) {
240		upid = pid->numbers + i;
241		idr_remove(&upid->ns->idr, upid->nr);
242	}
243
244	/* On failure to allocate the first pid, reset the state */
245	if (ns->pid_allocated == PIDNS_ADDING)
246		idr_set_cursor(&ns->idr, 0);
247
248	spin_unlock_irq(&pidmap_lock);
249
250	kmem_cache_free(ns->pid_cachep, pid);
251	return ERR_PTR(retval);
 
252}
253
254void disable_pid_allocation(struct pid_namespace *ns)
255{
256	spin_lock_irq(&pidmap_lock);
257	ns->pid_allocated &= ~PIDNS_ADDING;
258	spin_unlock_irq(&pidmap_lock);
259}
260
261struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262{
263	return idr_find(&ns->idr, nr);
 
 
 
 
 
 
 
 
264}
265EXPORT_SYMBOL_GPL(find_pid_ns);
266
267struct pid *find_vpid(int nr)
268{
269	return find_pid_ns(nr, task_active_pid_ns(current));
270}
271EXPORT_SYMBOL_GPL(find_vpid);
272
273static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274{
275	return (type == PIDTYPE_PID) ?
276		&task->thread_pid :
277		&task->signal->pids[type];
278}
279
280/*
281 * attach_pid() must be called with the tasklist_lock write-held.
282 */
283void attach_pid(struct task_struct *task, enum pid_type type)
284{
285	struct pid *pid = *task_pid_ptr(task, type);
286	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
287}
288
289static void __change_pid(struct task_struct *task, enum pid_type type,
290			struct pid *new)
291{
292	struct pid **pid_ptr = task_pid_ptr(task, type);
293	struct pid *pid;
294	int tmp;
295
296	pid = *pid_ptr;
 
297
298	hlist_del_rcu(&task->pid_links[type]);
299	*pid_ptr = new;
300
301	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302		if (!hlist_empty(&pid->tasks[tmp]))
303			return;
304
305	free_pid(pid);
306}
307
308void detach_pid(struct task_struct *task, enum pid_type type)
309{
310	__change_pid(task, type, NULL);
311}
312
313void change_pid(struct task_struct *task, enum pid_type type,
314		struct pid *pid)
315{
316	__change_pid(task, type, pid);
317	attach_pid(task, type);
318}
319
320/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321void transfer_pid(struct task_struct *old, struct task_struct *new,
322			   enum pid_type type)
323{
324	if (type == PIDTYPE_PID)
325		new->thread_pid = old->thread_pid;
326	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327}
328
329struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330{
331	struct task_struct *result = NULL;
332	if (pid) {
333		struct hlist_node *first;
334		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335					      lockdep_tasklist_lock_is_held());
336		if (first)
337			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338	}
339	return result;
340}
341EXPORT_SYMBOL(pid_task);
342
343/*
344 * Must be called under rcu_read_lock().
345 */
346struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347{
348	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 
350	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351}
352
353struct task_struct *find_task_by_vpid(pid_t vnr)
354{
355	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356}
357
358struct task_struct *find_get_task_by_vpid(pid_t nr)
359{
360	struct task_struct *task;
361
362	rcu_read_lock();
363	task = find_task_by_vpid(nr);
364	if (task)
365		get_task_struct(task);
366	rcu_read_unlock();
367
368	return task;
369}
370
371struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372{
373	struct pid *pid;
374	rcu_read_lock();
375	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 
 
376	rcu_read_unlock();
377	return pid;
378}
379EXPORT_SYMBOL_GPL(get_task_pid);
380
381struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382{
383	struct task_struct *result;
384	rcu_read_lock();
385	result = pid_task(pid, type);
386	if (result)
387		get_task_struct(result);
388	rcu_read_unlock();
389	return result;
390}
391EXPORT_SYMBOL_GPL(get_pid_task);
392
393struct pid *find_get_pid(pid_t nr)
394{
395	struct pid *pid;
396
397	rcu_read_lock();
398	pid = get_pid(find_vpid(nr));
399	rcu_read_unlock();
400
401	return pid;
402}
403EXPORT_SYMBOL_GPL(find_get_pid);
404
405pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406{
407	struct upid *upid;
408	pid_t nr = 0;
409
410	if (pid && ns->level <= pid->level) {
411		upid = &pid->numbers[ns->level];
412		if (upid->ns == ns)
413			nr = upid->nr;
414	}
415	return nr;
416}
417EXPORT_SYMBOL_GPL(pid_nr_ns);
418
419pid_t pid_vnr(struct pid *pid)
420{
421	return pid_nr_ns(pid, task_active_pid_ns(current));
422}
423EXPORT_SYMBOL_GPL(pid_vnr);
424
425pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426			struct pid_namespace *ns)
427{
428	pid_t nr = 0;
429
430	rcu_read_lock();
431	if (!ns)
432		ns = task_active_pid_ns(current);
433	if (likely(pid_alive(task)))
434		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
 
 
435	rcu_read_unlock();
436
437	return nr;
438}
439EXPORT_SYMBOL(__task_pid_nr_ns);
440
 
 
 
 
 
 
441struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442{
443	return ns_of_pid(task_pid(tsk));
444}
445EXPORT_SYMBOL_GPL(task_active_pid_ns);
446
447/*
448 * Used by proc to find the first pid that is greater than or equal to nr.
449 *
450 * If there is a pid at nr this function is exactly the same as find_pid_ns.
451 */
452struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453{
454	return idr_get_next(&ns->idr, &nr);
455}
456
457/**
458 * pidfd_create() - Create a new pid file descriptor.
459 *
460 * @pid:  struct pid that the pidfd will reference
461 *
462 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463 *
464 * Note, that this function can only be called after the fd table has
465 * been unshared to avoid leaking the pidfd to the new process.
466 *
467 * Return: On success, a cloexec pidfd is returned.
468 *         On error, a negative errno number will be returned.
469 */
470static int pidfd_create(struct pid *pid)
471{
472	int fd;
473
474	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475			      O_RDWR | O_CLOEXEC);
476	if (fd < 0)
477		put_pid(pid);
478
479	return fd;
480}
481
482/**
483 * pidfd_open() - Open new pid file descriptor.
484 *
485 * @pid:   pid for which to retrieve a pidfd
486 * @flags: flags to pass
487 *
488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489 * the process identified by @pid. Currently, the process identified by
490 * @pid must be a thread-group leader. This restriction currently exists
491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493 * leaders).
494 *
495 * Return: On success, a cloexec pidfd is returned.
496 *         On error, a negative errno number will be returned.
497 */
498SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499{
500	int fd, ret;
501	struct pid *p;
502
503	if (flags)
504		return -EINVAL;
505
506	if (pid <= 0)
507		return -EINVAL;
508
509	p = find_get_pid(pid);
510	if (!p)
511		return -ESRCH;
512
513	ret = 0;
514	rcu_read_lock();
515	if (!pid_task(p, PIDTYPE_TGID))
516		ret = -EINVAL;
517	rcu_read_unlock();
518
519	fd = ret ?: pidfd_create(p);
520	put_pid(p);
521	return fd;
522}
523
524void __init pid_idr_init(void)
525{
526	/* Verify no one has done anything silly: */
527	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528
529	/* bump default and minimum pid_max based on number of cpus */
530	pid_max = min(pid_max_max, max_t(int, pid_max,
531				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532	pid_max_min = max_t(int, pid_max_min,
533				PIDS_PER_CPU_MIN * num_possible_cpus());
534	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535
536	idr_init(&init_pid_ns.idr);
 
 
 
537
538	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
540}