Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2016 Thomas Gleixner.
  4 * Copyright (C) 2016-2017 Christoph Hellwig.
  5 */
  6#include <linux/interrupt.h>
  7#include <linux/kernel.h>
  8#include <linux/slab.h>
  9#include <linux/cpu.h>
 10#include <linux/sort.h>
 11
 12static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 13				unsigned int cpus_per_vec)
 14{
 15	const struct cpumask *siblmsk;
 16	int cpu, sibl;
 17
 18	for ( ; cpus_per_vec > 0; ) {
 19		cpu = cpumask_first(nmsk);
 20
 21		/* Should not happen, but I'm too lazy to think about it */
 22		if (cpu >= nr_cpu_ids)
 23			return;
 24
 25		cpumask_clear_cpu(cpu, nmsk);
 26		cpumask_set_cpu(cpu, irqmsk);
 27		cpus_per_vec--;
 28
 29		/* If the cpu has siblings, use them first */
 30		siblmsk = topology_sibling_cpumask(cpu);
 31		for (sibl = -1; cpus_per_vec > 0; ) {
 32			sibl = cpumask_next(sibl, siblmsk);
 33			if (sibl >= nr_cpu_ids)
 34				break;
 35			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 36				continue;
 37			cpumask_set_cpu(sibl, irqmsk);
 38			cpus_per_vec--;
 39		}
 40	}
 41}
 42
 43static cpumask_var_t *alloc_node_to_cpumask(void)
 44{
 45	cpumask_var_t *masks;
 46	int node;
 47
 48	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 49	if (!masks)
 50		return NULL;
 51
 52	for (node = 0; node < nr_node_ids; node++) {
 53		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 54			goto out_unwind;
 55	}
 56
 57	return masks;
 58
 59out_unwind:
 60	while (--node >= 0)
 61		free_cpumask_var(masks[node]);
 62	kfree(masks);
 63	return NULL;
 64}
 65
 66static void free_node_to_cpumask(cpumask_var_t *masks)
 67{
 68	int node;
 69
 70	for (node = 0; node < nr_node_ids; node++)
 71		free_cpumask_var(masks[node]);
 72	kfree(masks);
 73}
 74
 75static void build_node_to_cpumask(cpumask_var_t *masks)
 76{
 77	int cpu;
 78
 79	for_each_possible_cpu(cpu)
 80		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 81}
 82
 83static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 84				const struct cpumask *mask, nodemask_t *nodemsk)
 85{
 86	int n, nodes = 0;
 87
 88	/* Calculate the number of nodes in the supplied affinity mask */
 89	for_each_node(n) {
 90		if (cpumask_intersects(mask, node_to_cpumask[n])) {
 91			node_set(n, *nodemsk);
 92			nodes++;
 93		}
 94	}
 95	return nodes;
 96}
 97
 98struct node_vectors {
 99	unsigned id;
100
101	union {
102		unsigned nvectors;
103		unsigned ncpus;
104	};
105};
106
107static int ncpus_cmp_func(const void *l, const void *r)
108{
109	const struct node_vectors *ln = l;
110	const struct node_vectors *rn = r;
111
112	return ln->ncpus - rn->ncpus;
113}
114
115/*
116 * Allocate vector number for each node, so that for each node:
117 *
118 * 1) the allocated number is >= 1
119 *
120 * 2) the allocated numbver is <= active CPU number of this node
121 *
122 * The actual allocated total vectors may be less than @numvecs when
123 * active total CPU number is less than @numvecs.
124 *
125 * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
126 * for each node.
127 */
128static void alloc_nodes_vectors(unsigned int numvecs,
129				cpumask_var_t *node_to_cpumask,
130				const struct cpumask *cpu_mask,
131				const nodemask_t nodemsk,
132				struct cpumask *nmsk,
133				struct node_vectors *node_vectors)
134{
135	unsigned n, remaining_ncpus = 0;
136
137	for (n = 0; n < nr_node_ids; n++) {
138		node_vectors[n].id = n;
139		node_vectors[n].ncpus = UINT_MAX;
140	}
141
142	for_each_node_mask(n, nodemsk) {
143		unsigned ncpus;
144
145		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
146		ncpus = cpumask_weight(nmsk);
147
148		if (!ncpus)
149			continue;
150		remaining_ncpus += ncpus;
151		node_vectors[n].ncpus = ncpus;
152	}
153
154	numvecs = min_t(unsigned, remaining_ncpus, numvecs);
155
156	sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
157	     ncpus_cmp_func, NULL);
158
159	/*
160	 * Allocate vectors for each node according to the ratio of this
161	 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
162	 * bigger than number of active numa nodes. Always start the
163	 * allocation from the node with minimized nr_cpus.
164	 *
165	 * This way guarantees that each active node gets allocated at
166	 * least one vector, and the theory is simple: over-allocation
167	 * is only done when this node is assigned by one vector, so
168	 * other nodes will be allocated >= 1 vector, since 'numvecs' is
169	 * bigger than number of numa nodes.
170	 *
171	 * One perfect invariant is that number of allocated vectors for
172	 * each node is <= CPU count of this node:
173	 *
174	 * 1) suppose there are two nodes: A and B
175	 * 	ncpu(X) is CPU count of node X
176	 * 	vecs(X) is the vector count allocated to node X via this
177	 * 	algorithm
178	 *
179	 * 	ncpu(A) <= ncpu(B)
180	 * 	ncpu(A) + ncpu(B) = N
181	 * 	vecs(A) + vecs(B) = V
182	 *
183	 * 	vecs(A) = max(1, round_down(V * ncpu(A) / N))
184	 * 	vecs(B) = V - vecs(A)
185	 *
186	 * 	both N and V are integer, and 2 <= V <= N, suppose
187	 * 	V = N - delta, and 0 <= delta <= N - 2
188	 *
189	 * 2) obviously vecs(A) <= ncpu(A) because:
190	 *
191	 * 	if vecs(A) is 1, then vecs(A) <= ncpu(A) given
192	 * 	ncpu(A) >= 1
193	 *
194	 * 	otherwise,
195	 * 		vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
196	 *
197	 * 3) prove how vecs(B) <= ncpu(B):
198	 *
199	 * 	if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
200	 * 	over-allocated, so vecs(B) <= ncpu(B),
201	 *
202	 * 	otherwise:
203	 *
204	 * 	vecs(A) =
205	 * 		round_down(V * ncpu(A) / N) =
206	 * 		round_down((N - delta) * ncpu(A) / N) =
207	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >=
208	 * 		round_down((N * ncpu(A) - delta * N) / N)	 =
209	 * 		cpu(A) - delta
210	 *
211	 * 	then:
212	 *
213	 * 	vecs(A) - V >= ncpu(A) - delta - V
214	 * 	=>
215	 * 	V - vecs(A) <= V + delta - ncpu(A)
216	 * 	=>
217	 * 	vecs(B) <= N - ncpu(A)
218	 * 	=>
219	 * 	vecs(B) <= cpu(B)
220	 *
221	 * For nodes >= 3, it can be thought as one node and another big
222	 * node given that is exactly what this algorithm is implemented,
223	 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
224	 * finally for each node X: vecs(X) <= ncpu(X).
225	 *
226	 */
227	for (n = 0; n < nr_node_ids; n++) {
228		unsigned nvectors, ncpus;
229
230		if (node_vectors[n].ncpus == UINT_MAX)
231			continue;
232
233		WARN_ON_ONCE(numvecs == 0);
234
235		ncpus = node_vectors[n].ncpus;
236		nvectors = max_t(unsigned, 1,
237				 numvecs * ncpus / remaining_ncpus);
238		WARN_ON_ONCE(nvectors > ncpus);
239
240		node_vectors[n].nvectors = nvectors;
241
242		remaining_ncpus -= ncpus;
243		numvecs -= nvectors;
244	}
245}
246
247static int __irq_build_affinity_masks(unsigned int startvec,
248				      unsigned int numvecs,
249				      unsigned int firstvec,
250				      cpumask_var_t *node_to_cpumask,
251				      const struct cpumask *cpu_mask,
252				      struct cpumask *nmsk,
253				      struct irq_affinity_desc *masks)
254{
255	unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
256	unsigned int last_affv = firstvec + numvecs;
257	unsigned int curvec = startvec;
258	nodemask_t nodemsk = NODE_MASK_NONE;
259	struct node_vectors *node_vectors;
260
261	if (!cpumask_weight(cpu_mask))
262		return 0;
263
264	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
265
266	/*
267	 * If the number of nodes in the mask is greater than or equal the
268	 * number of vectors we just spread the vectors across the nodes.
269	 */
270	if (numvecs <= nodes) {
271		for_each_node_mask(n, nodemsk) {
272			cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
273				   node_to_cpumask[n]);
274			if (++curvec == last_affv)
275				curvec = firstvec;
276		}
277		return numvecs;
278	}
279
280	node_vectors = kcalloc(nr_node_ids,
281			       sizeof(struct node_vectors),
282			       GFP_KERNEL);
283	if (!node_vectors)
284		return -ENOMEM;
285
286	/* allocate vector number for each node */
287	alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
288			    nodemsk, nmsk, node_vectors);
289
290	for (i = 0; i < nr_node_ids; i++) {
291		unsigned int ncpus, v;
292		struct node_vectors *nv = &node_vectors[i];
293
294		if (nv->nvectors == UINT_MAX)
295			continue;
296
297		/* Get the cpus on this node which are in the mask */
298		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
299		ncpus = cpumask_weight(nmsk);
300		if (!ncpus)
301			continue;
302
303		WARN_ON_ONCE(nv->nvectors > ncpus);
304
305		/* Account for rounding errors */
306		extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
307
308		/* Spread allocated vectors on CPUs of the current node */
309		for (v = 0; v < nv->nvectors; v++, curvec++) {
310			cpus_per_vec = ncpus / nv->nvectors;
311
312			/* Account for extra vectors to compensate rounding errors */
313			if (extra_vecs) {
314				cpus_per_vec++;
315				--extra_vecs;
316			}
317
318			/*
319			 * wrapping has to be considered given 'startvec'
320			 * may start anywhere
321			 */
322			if (curvec >= last_affv)
323				curvec = firstvec;
324			irq_spread_init_one(&masks[curvec].mask, nmsk,
325						cpus_per_vec);
326		}
327		done += nv->nvectors;
328	}
329	kfree(node_vectors);
330	return done;
331}
332
333/*
334 * build affinity in two stages:
335 *	1) spread present CPU on these vectors
336 *	2) spread other possible CPUs on these vectors
337 */
338static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
339				    unsigned int firstvec,
340				    struct irq_affinity_desc *masks)
341{
342	unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
343	cpumask_var_t *node_to_cpumask;
344	cpumask_var_t nmsk, npresmsk;
345	int ret = -ENOMEM;
346
347	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
348		return ret;
349
350	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
351		goto fail_nmsk;
352
353	node_to_cpumask = alloc_node_to_cpumask();
354	if (!node_to_cpumask)
355		goto fail_npresmsk;
356
357	/* Stabilize the cpumasks */
358	get_online_cpus();
359	build_node_to_cpumask(node_to_cpumask);
360
361	/* Spread on present CPUs starting from affd->pre_vectors */
362	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
363					 node_to_cpumask, cpu_present_mask,
364					 nmsk, masks);
365	if (ret < 0)
366		goto fail_build_affinity;
367	nr_present = ret;
368
369	/*
370	 * Spread on non present CPUs starting from the next vector to be
371	 * handled. If the spreading of present CPUs already exhausted the
372	 * vector space, assign the non present CPUs to the already spread
373	 * out vectors.
374	 */
375	if (nr_present >= numvecs)
376		curvec = firstvec;
377	else
378		curvec = firstvec + nr_present;
379	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
380	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
381					 node_to_cpumask, npresmsk, nmsk,
382					 masks);
383	if (ret >= 0)
384		nr_others = ret;
385
386 fail_build_affinity:
387	put_online_cpus();
388
389	if (ret >= 0)
390		WARN_ON(nr_present + nr_others < numvecs);
391
392	free_node_to_cpumask(node_to_cpumask);
393
394 fail_npresmsk:
395	free_cpumask_var(npresmsk);
396
397 fail_nmsk:
398	free_cpumask_var(nmsk);
399	return ret < 0 ? ret : 0;
400}
401
402static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
403{
404	affd->nr_sets = 1;
405	affd->set_size[0] = affvecs;
406}
407
408/**
409 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
410 * @nvecs:	The total number of vectors
411 * @affd:	Description of the affinity requirements
412 *
413 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
414 */
415struct irq_affinity_desc *
416irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
417{
418	unsigned int affvecs, curvec, usedvecs, i;
419	struct irq_affinity_desc *masks = NULL;
420
421	/*
422	 * Determine the number of vectors which need interrupt affinities
423	 * assigned. If the pre/post request exhausts the available vectors
424	 * then nothing to do here except for invoking the calc_sets()
425	 * callback so the device driver can adjust to the situation.
426	 */
427	if (nvecs > affd->pre_vectors + affd->post_vectors)
428		affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
429	else
430		affvecs = 0;
431
432	/*
433	 * Simple invocations do not provide a calc_sets() callback. Install
434	 * the generic one.
435	 */
436	if (!affd->calc_sets)
437		affd->calc_sets = default_calc_sets;
438
439	/* Recalculate the sets */
440	affd->calc_sets(affd, affvecs);
441
442	if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
443		return NULL;
444
445	/* Nothing to assign? */
446	if (!affvecs)
447		return NULL;
448
449	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
450	if (!masks)
451		return NULL;
452
453	/* Fill out vectors at the beginning that don't need affinity */
454	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
455		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
456
457	/*
458	 * Spread on present CPUs starting from affd->pre_vectors. If we
459	 * have multiple sets, build each sets affinity mask separately.
460	 */
461	for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
462		unsigned int this_vecs = affd->set_size[i];
463		int ret;
464
465		ret = irq_build_affinity_masks(curvec, this_vecs,
466					       curvec, masks);
467		if (ret) {
468			kfree(masks);
469			return NULL;
470		}
471		curvec += this_vecs;
472		usedvecs += this_vecs;
473	}
474
475	/* Fill out vectors at the end that don't need affinity */
476	if (usedvecs >= affvecs)
477		curvec = affd->pre_vectors + affvecs;
478	else
479		curvec = affd->pre_vectors + usedvecs;
480	for (; curvec < nvecs; curvec++)
481		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
482
483	/* Mark the managed interrupts */
484	for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
485		masks[i].is_managed = 1;
486
487	return masks;
488}
489
490/**
491 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
492 * @minvec:	The minimum number of vectors available
493 * @maxvec:	The maximum number of vectors available
494 * @affd:	Description of the affinity requirements
495 */
496unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
497				       const struct irq_affinity *affd)
498{
499	unsigned int resv = affd->pre_vectors + affd->post_vectors;
500	unsigned int set_vecs;
501
502	if (resv > minvec)
503		return 0;
504
505	if (affd->calc_sets) {
506		set_vecs = maxvec - resv;
507	} else {
508		get_online_cpus();
509		set_vecs = cpumask_weight(cpu_possible_mask);
510		put_online_cpus();
511	}
512
513	return resv + min(set_vecs, maxvec - resv);
514}