Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * f2fs extent cache support
  4 *
  5 * Copyright (c) 2015 Motorola Mobility
  6 * Copyright (c) 2015 Samsung Electronics
  7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
  8 *          Chao Yu <chao2.yu@samsung.com>
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/f2fs_fs.h>
 13
 14#include "f2fs.h"
 15#include "node.h"
 16#include <trace/events/f2fs.h>
 17
 18static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
 19							unsigned int ofs)
 20{
 21	if (cached_re) {
 22		if (cached_re->ofs <= ofs &&
 23				cached_re->ofs + cached_re->len > ofs) {
 24			return cached_re;
 25		}
 26	}
 27	return NULL;
 28}
 29
 30static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
 31							unsigned int ofs)
 32{
 33	struct rb_node *node = root->rb_root.rb_node;
 34	struct rb_entry *re;
 35
 36	while (node) {
 37		re = rb_entry(node, struct rb_entry, rb_node);
 38
 39		if (ofs < re->ofs)
 40			node = node->rb_left;
 41		else if (ofs >= re->ofs + re->len)
 42			node = node->rb_right;
 43		else
 44			return re;
 45	}
 46	return NULL;
 47}
 48
 49struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
 50				struct rb_entry *cached_re, unsigned int ofs)
 51{
 52	struct rb_entry *re;
 53
 54	re = __lookup_rb_tree_fast(cached_re, ofs);
 55	if (!re)
 56		return __lookup_rb_tree_slow(root, ofs);
 57
 58	return re;
 59}
 60
 61struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
 62				struct rb_root_cached *root,
 63				struct rb_node **parent,
 64				unsigned int ofs, bool *leftmost)
 65{
 66	struct rb_node **p = &root->rb_root.rb_node;
 67	struct rb_entry *re;
 68
 69	while (*p) {
 70		*parent = *p;
 71		re = rb_entry(*parent, struct rb_entry, rb_node);
 72
 73		if (ofs < re->ofs) {
 74			p = &(*p)->rb_left;
 75		} else if (ofs >= re->ofs + re->len) {
 76			p = &(*p)->rb_right;
 77			*leftmost = false;
 78		} else {
 79			f2fs_bug_on(sbi, 1);
 80		}
 81	}
 82
 83	return p;
 84}
 85
 86/*
 87 * lookup rb entry in position of @ofs in rb-tree,
 88 * if hit, return the entry, otherwise, return NULL
 89 * @prev_ex: extent before ofs
 90 * @next_ex: extent after ofs
 91 * @insert_p: insert point for new extent at ofs
 92 * in order to simpfy the insertion after.
 93 * tree must stay unchanged between lookup and insertion.
 94 */
 95struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
 96				struct rb_entry *cached_re,
 97				unsigned int ofs,
 98				struct rb_entry **prev_entry,
 99				struct rb_entry **next_entry,
100				struct rb_node ***insert_p,
101				struct rb_node **insert_parent,
102				bool force, bool *leftmost)
103{
104	struct rb_node **pnode = &root->rb_root.rb_node;
105	struct rb_node *parent = NULL, *tmp_node;
106	struct rb_entry *re = cached_re;
107
108	*insert_p = NULL;
109	*insert_parent = NULL;
110	*prev_entry = NULL;
111	*next_entry = NULL;
112
113	if (RB_EMPTY_ROOT(&root->rb_root))
114		return NULL;
115
116	if (re) {
117		if (re->ofs <= ofs && re->ofs + re->len > ofs)
118			goto lookup_neighbors;
119	}
120
121	if (leftmost)
122		*leftmost = true;
123
124	while (*pnode) {
125		parent = *pnode;
126		re = rb_entry(*pnode, struct rb_entry, rb_node);
127
128		if (ofs < re->ofs) {
129			pnode = &(*pnode)->rb_left;
130		} else if (ofs >= re->ofs + re->len) {
131			pnode = &(*pnode)->rb_right;
132			if (leftmost)
133				*leftmost = false;
134		} else {
135			goto lookup_neighbors;
136		}
137	}
138
139	*insert_p = pnode;
140	*insert_parent = parent;
141
142	re = rb_entry(parent, struct rb_entry, rb_node);
143	tmp_node = parent;
144	if (parent && ofs > re->ofs)
145		tmp_node = rb_next(parent);
146	*next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
147
148	tmp_node = parent;
149	if (parent && ofs < re->ofs)
150		tmp_node = rb_prev(parent);
151	*prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
152	return NULL;
153
154lookup_neighbors:
155	if (ofs == re->ofs || force) {
156		/* lookup prev node for merging backward later */
157		tmp_node = rb_prev(&re->rb_node);
158		*prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
159	}
160	if (ofs == re->ofs + re->len - 1 || force) {
161		/* lookup next node for merging frontward later */
162		tmp_node = rb_next(&re->rb_node);
163		*next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
164	}
165	return re;
166}
167
168bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
169						struct rb_root_cached *root)
170{
171#ifdef CONFIG_F2FS_CHECK_FS
172	struct rb_node *cur = rb_first_cached(root), *next;
173	struct rb_entry *cur_re, *next_re;
174
175	if (!cur)
176		return true;
177
178	while (cur) {
179		next = rb_next(cur);
180		if (!next)
181			return true;
182
183		cur_re = rb_entry(cur, struct rb_entry, rb_node);
184		next_re = rb_entry(next, struct rb_entry, rb_node);
185
186		if (cur_re->ofs + cur_re->len > next_re->ofs) {
187			f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
188				  cur_re->ofs, cur_re->len,
189				  next_re->ofs, next_re->len);
190			return false;
191		}
192
193		cur = next;
194	}
195#endif
196	return true;
197}
198
199static struct kmem_cache *extent_tree_slab;
200static struct kmem_cache *extent_node_slab;
201
202static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
203				struct extent_tree *et, struct extent_info *ei,
204				struct rb_node *parent, struct rb_node **p,
205				bool leftmost)
206{
207	struct extent_node *en;
208
209	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
210	if (!en)
211		return NULL;
212
213	en->ei = *ei;
214	INIT_LIST_HEAD(&en->list);
215	en->et = et;
216
217	rb_link_node(&en->rb_node, parent, p);
218	rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
219	atomic_inc(&et->node_cnt);
220	atomic_inc(&sbi->total_ext_node);
221	return en;
222}
223
224static void __detach_extent_node(struct f2fs_sb_info *sbi,
225				struct extent_tree *et, struct extent_node *en)
226{
227	rb_erase_cached(&en->rb_node, &et->root);
228	atomic_dec(&et->node_cnt);
229	atomic_dec(&sbi->total_ext_node);
230
231	if (et->cached_en == en)
232		et->cached_en = NULL;
233	kmem_cache_free(extent_node_slab, en);
234}
235
236/*
237 * Flow to release an extent_node:
238 * 1. list_del_init
239 * 2. __detach_extent_node
240 * 3. kmem_cache_free.
241 */
242static void __release_extent_node(struct f2fs_sb_info *sbi,
243			struct extent_tree *et, struct extent_node *en)
244{
245	spin_lock(&sbi->extent_lock);
246	f2fs_bug_on(sbi, list_empty(&en->list));
247	list_del_init(&en->list);
248	spin_unlock(&sbi->extent_lock);
249
250	__detach_extent_node(sbi, et, en);
251}
252
253static struct extent_tree *__grab_extent_tree(struct inode *inode)
254{
255	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256	struct extent_tree *et;
257	nid_t ino = inode->i_ino;
258
259	mutex_lock(&sbi->extent_tree_lock);
260	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
261	if (!et) {
262		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
263		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
264		memset(et, 0, sizeof(struct extent_tree));
265		et->ino = ino;
266		et->root = RB_ROOT_CACHED;
267		et->cached_en = NULL;
268		rwlock_init(&et->lock);
269		INIT_LIST_HEAD(&et->list);
270		atomic_set(&et->node_cnt, 0);
271		atomic_inc(&sbi->total_ext_tree);
272	} else {
273		atomic_dec(&sbi->total_zombie_tree);
274		list_del_init(&et->list);
275	}
276	mutex_unlock(&sbi->extent_tree_lock);
277
278	/* never died until evict_inode */
279	F2FS_I(inode)->extent_tree = et;
280
281	return et;
282}
283
284static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
285				struct extent_tree *et, struct extent_info *ei)
286{
287	struct rb_node **p = &et->root.rb_root.rb_node;
288	struct extent_node *en;
289
290	en = __attach_extent_node(sbi, et, ei, NULL, p, true);
291	if (!en)
292		return NULL;
293
294	et->largest = en->ei;
295	et->cached_en = en;
296	return en;
297}
298
299static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
300					struct extent_tree *et)
301{
302	struct rb_node *node, *next;
303	struct extent_node *en;
304	unsigned int count = atomic_read(&et->node_cnt);
305
306	node = rb_first_cached(&et->root);
307	while (node) {
308		next = rb_next(node);
309		en = rb_entry(node, struct extent_node, rb_node);
310		__release_extent_node(sbi, et, en);
311		node = next;
312	}
313
314	return count - atomic_read(&et->node_cnt);
315}
316
317static void __drop_largest_extent(struct extent_tree *et,
318					pgoff_t fofs, unsigned int len)
319{
320	if (fofs < et->largest.fofs + et->largest.len &&
321			fofs + len > et->largest.fofs) {
322		et->largest.len = 0;
323		et->largest_updated = true;
324	}
325}
326
327/* return true, if inode page is changed */
328static bool __f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
329{
330	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
331	struct extent_tree *et;
332	struct extent_node *en;
333	struct extent_info ei;
334
335	if (!f2fs_may_extent_tree(inode)) {
336		/* drop largest extent */
337		if (i_ext && i_ext->len) {
338			i_ext->len = 0;
339			return true;
340		}
341		return false;
342	}
343
344	et = __grab_extent_tree(inode);
345
346	if (!i_ext || !i_ext->len)
347		return false;
348
349	get_extent_info(&ei, i_ext);
350
351	write_lock(&et->lock);
352	if (atomic_read(&et->node_cnt))
353		goto out;
354
355	en = __init_extent_tree(sbi, et, &ei);
356	if (en) {
357		spin_lock(&sbi->extent_lock);
358		list_add_tail(&en->list, &sbi->extent_list);
359		spin_unlock(&sbi->extent_lock);
360	}
361out:
362	write_unlock(&et->lock);
363	return false;
364}
365
366bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
367{
368	bool ret =  __f2fs_init_extent_tree(inode, i_ext);
369
370	if (!F2FS_I(inode)->extent_tree)
371		set_inode_flag(inode, FI_NO_EXTENT);
372
373	return ret;
374}
375
376static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
377							struct extent_info *ei)
378{
379	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380	struct extent_tree *et = F2FS_I(inode)->extent_tree;
381	struct extent_node *en;
382	bool ret = false;
383
384	f2fs_bug_on(sbi, !et);
385
386	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
387
388	read_lock(&et->lock);
389
390	if (et->largest.fofs <= pgofs &&
391			et->largest.fofs + et->largest.len > pgofs) {
392		*ei = et->largest;
393		ret = true;
394		stat_inc_largest_node_hit(sbi);
395		goto out;
396	}
397
398	en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
399				(struct rb_entry *)et->cached_en, pgofs);
400	if (!en)
401		goto out;
402
403	if (en == et->cached_en)
404		stat_inc_cached_node_hit(sbi);
405	else
406		stat_inc_rbtree_node_hit(sbi);
407
408	*ei = en->ei;
409	spin_lock(&sbi->extent_lock);
410	if (!list_empty(&en->list)) {
411		list_move_tail(&en->list, &sbi->extent_list);
412		et->cached_en = en;
413	}
414	spin_unlock(&sbi->extent_lock);
415	ret = true;
416out:
417	stat_inc_total_hit(sbi);
418	read_unlock(&et->lock);
419
420	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
421	return ret;
422}
423
424static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
425				struct extent_tree *et, struct extent_info *ei,
426				struct extent_node *prev_ex,
427				struct extent_node *next_ex)
428{
429	struct extent_node *en = NULL;
430
431	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
432		prev_ex->ei.len += ei->len;
433		ei = &prev_ex->ei;
434		en = prev_ex;
435	}
436
437	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
438		next_ex->ei.fofs = ei->fofs;
439		next_ex->ei.blk = ei->blk;
440		next_ex->ei.len += ei->len;
441		if (en)
442			__release_extent_node(sbi, et, prev_ex);
443
444		en = next_ex;
445	}
446
447	if (!en)
448		return NULL;
449
450	__try_update_largest_extent(et, en);
451
452	spin_lock(&sbi->extent_lock);
453	if (!list_empty(&en->list)) {
454		list_move_tail(&en->list, &sbi->extent_list);
455		et->cached_en = en;
456	}
457	spin_unlock(&sbi->extent_lock);
458	return en;
459}
460
461static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
462				struct extent_tree *et, struct extent_info *ei,
463				struct rb_node **insert_p,
464				struct rb_node *insert_parent,
465				bool leftmost)
466{
467	struct rb_node **p;
468	struct rb_node *parent = NULL;
469	struct extent_node *en = NULL;
470
471	if (insert_p && insert_parent) {
472		parent = insert_parent;
473		p = insert_p;
474		goto do_insert;
475	}
476
477	leftmost = true;
478
479	p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
480						ei->fofs, &leftmost);
481do_insert:
482	en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
483	if (!en)
484		return NULL;
485
486	__try_update_largest_extent(et, en);
487
488	/* update in global extent list */
489	spin_lock(&sbi->extent_lock);
490	list_add_tail(&en->list, &sbi->extent_list);
491	et->cached_en = en;
492	spin_unlock(&sbi->extent_lock);
493	return en;
494}
495
496static void f2fs_update_extent_tree_range(struct inode *inode,
497				pgoff_t fofs, block_t blkaddr, unsigned int len)
498{
499	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
500	struct extent_tree *et = F2FS_I(inode)->extent_tree;
501	struct extent_node *en = NULL, *en1 = NULL;
502	struct extent_node *prev_en = NULL, *next_en = NULL;
503	struct extent_info ei, dei, prev;
504	struct rb_node **insert_p = NULL, *insert_parent = NULL;
505	unsigned int end = fofs + len;
506	unsigned int pos = (unsigned int)fofs;
507	bool updated = false;
508	bool leftmost = false;
509
510	if (!et)
511		return;
512
513	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
514
515	write_lock(&et->lock);
516
517	if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
518		write_unlock(&et->lock);
519		return;
520	}
521
522	prev = et->largest;
523	dei.len = 0;
524
525	/*
526	 * drop largest extent before lookup, in case it's already
527	 * been shrunk from extent tree
528	 */
529	__drop_largest_extent(et, fofs, len);
530
531	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
532	en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
533					(struct rb_entry *)et->cached_en, fofs,
534					(struct rb_entry **)&prev_en,
535					(struct rb_entry **)&next_en,
536					&insert_p, &insert_parent, false,
537					&leftmost);
538	if (!en)
539		en = next_en;
540
541	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
542	while (en && en->ei.fofs < end) {
543		unsigned int org_end;
544		int parts = 0;	/* # of parts current extent split into */
545
546		next_en = en1 = NULL;
547
548		dei = en->ei;
549		org_end = dei.fofs + dei.len;
550		f2fs_bug_on(sbi, pos >= org_end);
551
552		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
553			en->ei.len = pos - en->ei.fofs;
554			prev_en = en;
555			parts = 1;
556		}
557
558		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
559			if (parts) {
560				set_extent_info(&ei, end,
561						end - dei.fofs + dei.blk,
562						org_end - end);
563				en1 = __insert_extent_tree(sbi, et, &ei,
564							NULL, NULL, true);
565				next_en = en1;
566			} else {
567				en->ei.fofs = end;
568				en->ei.blk += end - dei.fofs;
569				en->ei.len -= end - dei.fofs;
570				next_en = en;
571			}
572			parts++;
573		}
574
575		if (!next_en) {
576			struct rb_node *node = rb_next(&en->rb_node);
577
578			next_en = rb_entry_safe(node, struct extent_node,
579						rb_node);
580		}
581
582		if (parts)
583			__try_update_largest_extent(et, en);
584		else
585			__release_extent_node(sbi, et, en);
586
587		/*
588		 * if original extent is split into zero or two parts, extent
589		 * tree has been altered by deletion or insertion, therefore
590		 * invalidate pointers regard to tree.
591		 */
592		if (parts != 1) {
593			insert_p = NULL;
594			insert_parent = NULL;
595		}
596		en = next_en;
597	}
598
599	/* 3. update extent in extent cache */
600	if (blkaddr) {
601
602		set_extent_info(&ei, fofs, blkaddr, len);
603		if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
604			__insert_extent_tree(sbi, et, &ei,
605					insert_p, insert_parent, leftmost);
606
607		/* give up extent_cache, if split and small updates happen */
608		if (dei.len >= 1 &&
609				prev.len < F2FS_MIN_EXTENT_LEN &&
610				et->largest.len < F2FS_MIN_EXTENT_LEN) {
611			et->largest.len = 0;
612			et->largest_updated = true;
613			set_inode_flag(inode, FI_NO_EXTENT);
614		}
615	}
616
617	if (is_inode_flag_set(inode, FI_NO_EXTENT))
618		__free_extent_tree(sbi, et);
619
620	if (et->largest_updated) {
621		et->largest_updated = false;
622		updated = true;
623	}
624
625	write_unlock(&et->lock);
626
627	if (updated)
628		f2fs_mark_inode_dirty_sync(inode, true);
629}
630
631unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
632{
633	struct extent_tree *et, *next;
634	struct extent_node *en;
635	unsigned int node_cnt = 0, tree_cnt = 0;
636	int remained;
637
638	if (!test_opt(sbi, EXTENT_CACHE))
639		return 0;
640
641	if (!atomic_read(&sbi->total_zombie_tree))
642		goto free_node;
643
644	if (!mutex_trylock(&sbi->extent_tree_lock))
645		goto out;
646
647	/* 1. remove unreferenced extent tree */
648	list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
649		if (atomic_read(&et->node_cnt)) {
650			write_lock(&et->lock);
651			node_cnt += __free_extent_tree(sbi, et);
652			write_unlock(&et->lock);
653		}
654		f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
655		list_del_init(&et->list);
656		radix_tree_delete(&sbi->extent_tree_root, et->ino);
657		kmem_cache_free(extent_tree_slab, et);
658		atomic_dec(&sbi->total_ext_tree);
659		atomic_dec(&sbi->total_zombie_tree);
660		tree_cnt++;
661
662		if (node_cnt + tree_cnt >= nr_shrink)
663			goto unlock_out;
664		cond_resched();
665	}
666	mutex_unlock(&sbi->extent_tree_lock);
667
668free_node:
669	/* 2. remove LRU extent entries */
670	if (!mutex_trylock(&sbi->extent_tree_lock))
671		goto out;
672
673	remained = nr_shrink - (node_cnt + tree_cnt);
674
675	spin_lock(&sbi->extent_lock);
676	for (; remained > 0; remained--) {
677		if (list_empty(&sbi->extent_list))
678			break;
679		en = list_first_entry(&sbi->extent_list,
680					struct extent_node, list);
681		et = en->et;
682		if (!write_trylock(&et->lock)) {
683			/* refresh this extent node's position in extent list */
684			list_move_tail(&en->list, &sbi->extent_list);
685			continue;
686		}
687
688		list_del_init(&en->list);
689		spin_unlock(&sbi->extent_lock);
690
691		__detach_extent_node(sbi, et, en);
692
693		write_unlock(&et->lock);
694		node_cnt++;
695		spin_lock(&sbi->extent_lock);
696	}
697	spin_unlock(&sbi->extent_lock);
698
699unlock_out:
700	mutex_unlock(&sbi->extent_tree_lock);
701out:
702	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
703
704	return node_cnt + tree_cnt;
705}
706
707unsigned int f2fs_destroy_extent_node(struct inode *inode)
708{
709	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
710	struct extent_tree *et = F2FS_I(inode)->extent_tree;
711	unsigned int node_cnt = 0;
712
713	if (!et || !atomic_read(&et->node_cnt))
714		return 0;
715
716	write_lock(&et->lock);
717	node_cnt = __free_extent_tree(sbi, et);
718	write_unlock(&et->lock);
719
720	return node_cnt;
721}
722
723void f2fs_drop_extent_tree(struct inode *inode)
724{
725	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
726	struct extent_tree *et = F2FS_I(inode)->extent_tree;
727	bool updated = false;
728
729	if (!f2fs_may_extent_tree(inode))
730		return;
731
732	set_inode_flag(inode, FI_NO_EXTENT);
733
734	write_lock(&et->lock);
735	__free_extent_tree(sbi, et);
736	if (et->largest.len) {
737		et->largest.len = 0;
738		updated = true;
739	}
740	write_unlock(&et->lock);
741	if (updated)
742		f2fs_mark_inode_dirty_sync(inode, true);
743}
744
745void f2fs_destroy_extent_tree(struct inode *inode)
746{
747	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
748	struct extent_tree *et = F2FS_I(inode)->extent_tree;
749	unsigned int node_cnt = 0;
750
751	if (!et)
752		return;
753
754	if (inode->i_nlink && !is_bad_inode(inode) &&
755					atomic_read(&et->node_cnt)) {
756		mutex_lock(&sbi->extent_tree_lock);
757		list_add_tail(&et->list, &sbi->zombie_list);
758		atomic_inc(&sbi->total_zombie_tree);
759		mutex_unlock(&sbi->extent_tree_lock);
760		return;
761	}
762
763	/* free all extent info belong to this extent tree */
764	node_cnt = f2fs_destroy_extent_node(inode);
765
766	/* delete extent tree entry in radix tree */
767	mutex_lock(&sbi->extent_tree_lock);
768	f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
769	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
770	kmem_cache_free(extent_tree_slab, et);
771	atomic_dec(&sbi->total_ext_tree);
772	mutex_unlock(&sbi->extent_tree_lock);
773
774	F2FS_I(inode)->extent_tree = NULL;
775
776	trace_f2fs_destroy_extent_tree(inode, node_cnt);
777}
778
779bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
780					struct extent_info *ei)
781{
782	if (!f2fs_may_extent_tree(inode))
783		return false;
784
785	return f2fs_lookup_extent_tree(inode, pgofs, ei);
786}
787
788void f2fs_update_extent_cache(struct dnode_of_data *dn)
789{
790	pgoff_t fofs;
791	block_t blkaddr;
792
793	if (!f2fs_may_extent_tree(dn->inode))
794		return;
795
796	if (dn->data_blkaddr == NEW_ADDR)
797		blkaddr = NULL_ADDR;
798	else
799		blkaddr = dn->data_blkaddr;
800
801	fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
802								dn->ofs_in_node;
803	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
804}
805
806void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
807				pgoff_t fofs, block_t blkaddr, unsigned int len)
808
809{
810	if (!f2fs_may_extent_tree(dn->inode))
811		return;
812
813	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
814}
815
816void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
817{
818	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
819	mutex_init(&sbi->extent_tree_lock);
820	INIT_LIST_HEAD(&sbi->extent_list);
821	spin_lock_init(&sbi->extent_lock);
822	atomic_set(&sbi->total_ext_tree, 0);
823	INIT_LIST_HEAD(&sbi->zombie_list);
824	atomic_set(&sbi->total_zombie_tree, 0);
825	atomic_set(&sbi->total_ext_node, 0);
826}
827
828int __init f2fs_create_extent_cache(void)
829{
830	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
831			sizeof(struct extent_tree));
832	if (!extent_tree_slab)
833		return -ENOMEM;
834	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
835			sizeof(struct extent_node));
836	if (!extent_node_slab) {
837		kmem_cache_destroy(extent_tree_slab);
838		return -ENOMEM;
839	}
840	return 0;
841}
842
843void f2fs_destroy_extent_cache(void)
844{
845	kmem_cache_destroy(extent_node_slab);
846	kmem_cache_destroy(extent_tree_slab);
847}