Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kmod.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/cache.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dmaengine.h>
  29#include <linux/mutex.h>
  30#include <linux/of_device.h>
  31#include <linux/of_irq.h>
 
  32#include <linux/slab.h>
  33#include <linux/mod_devicetable.h>
  34#include <linux/spi/spi.h>
 
  35#include <linux/of_gpio.h>
 
  36#include <linux/pm_runtime.h>
 
 
  37#include <linux/export.h>
  38#include <linux/sched/rt.h>
 
  39#include <linux/delay.h>
  40#include <linux/kthread.h>
  41#include <linux/ioport.h>
  42#include <linux/acpi.h>
 
 
 
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/spi.h>
 
 
 
 
 
 
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	/* spi masters may cleanup for released devices */
  52	if (spi->master->cleanup)
  53		spi->master->cleanup(spi);
  54
  55	spi_master_put(spi->master);
 
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73static struct attribute *spi_dev_attrs[] = {
  74	&dev_attr_modalias.attr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75	NULL,
  76};
  77ATTRIBUTE_GROUPS(spi_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  80 * and the sysfs version makes coldplug work too.
  81 */
  82
  83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  84						const struct spi_device *sdev)
  85{
  86	while (id->name[0]) {
  87		if (!strcmp(sdev->modalias, id->name))
  88			return id;
  89		id++;
  90	}
  91	return NULL;
  92}
  93
  94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  95{
  96	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  97
  98	return spi_match_id(sdrv->id_table, sdev);
  99}
 100EXPORT_SYMBOL_GPL(spi_get_device_id);
 101
 102static int spi_match_device(struct device *dev, struct device_driver *drv)
 103{
 104	const struct spi_device	*spi = to_spi_device(dev);
 105	const struct spi_driver	*sdrv = to_spi_driver(drv);
 106
 
 
 
 
 107	/* Attempt an OF style match */
 108	if (of_driver_match_device(dev, drv))
 109		return 1;
 110
 111	/* Then try ACPI */
 112	if (acpi_driver_match_device(dev, drv))
 113		return 1;
 114
 115	if (sdrv->id_table)
 116		return !!spi_match_id(sdrv->id_table, spi);
 117
 118	return strcmp(spi->modalias, drv->name) == 0;
 119}
 120
 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 122{
 123	const struct spi_device		*spi = to_spi_device(dev);
 124	int rc;
 125
 126	rc = acpi_device_uevent_modalias(dev, env);
 127	if (rc != -ENODEV)
 128		return rc;
 129
 130	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 131	return 0;
 132}
 133
 134#ifdef CONFIG_PM_SLEEP
 135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 136{
 137	int			value = 0;
 138	struct spi_driver	*drv = to_spi_driver(dev->driver);
 139
 140	/* suspend will stop irqs and dma; no more i/o */
 141	if (drv) {
 142		if (drv->suspend)
 143			value = drv->suspend(to_spi_device(dev), message);
 144		else
 145			dev_dbg(dev, "... can't suspend\n");
 146	}
 147	return value;
 148}
 149
 150static int spi_legacy_resume(struct device *dev)
 151{
 152	int			value = 0;
 153	struct spi_driver	*drv = to_spi_driver(dev->driver);
 154
 155	/* resume may restart the i/o queue */
 156	if (drv) {
 157		if (drv->resume)
 158			value = drv->resume(to_spi_device(dev));
 159		else
 160			dev_dbg(dev, "... can't resume\n");
 161	}
 162	return value;
 163}
 164
 165static int spi_pm_suspend(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_suspend(dev);
 171	else
 172		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 173}
 174
 175static int spi_pm_resume(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_resume(dev);
 181	else
 182		return spi_legacy_resume(dev);
 183}
 184
 185static int spi_pm_freeze(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_freeze(dev);
 191	else
 192		return spi_legacy_suspend(dev, PMSG_FREEZE);
 193}
 194
 195static int spi_pm_thaw(struct device *dev)
 196{
 197	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 198
 199	if (pm)
 200		return pm_generic_thaw(dev);
 201	else
 202		return spi_legacy_resume(dev);
 203}
 204
 205static int spi_pm_poweroff(struct device *dev)
 206{
 207	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 208
 209	if (pm)
 210		return pm_generic_poweroff(dev);
 211	else
 212		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 213}
 214
 215static int spi_pm_restore(struct device *dev)
 216{
 217	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 218
 219	if (pm)
 220		return pm_generic_restore(dev);
 221	else
 222		return spi_legacy_resume(dev);
 223}
 224#else
 225#define spi_pm_suspend	NULL
 226#define spi_pm_resume	NULL
 227#define spi_pm_freeze	NULL
 228#define spi_pm_thaw	NULL
 229#define spi_pm_poweroff	NULL
 230#define spi_pm_restore	NULL
 231#endif
 232
 233static const struct dev_pm_ops spi_pm = {
 234	.suspend = spi_pm_suspend,
 235	.resume = spi_pm_resume,
 236	.freeze = spi_pm_freeze,
 237	.thaw = spi_pm_thaw,
 238	.poweroff = spi_pm_poweroff,
 239	.restore = spi_pm_restore,
 240	SET_RUNTIME_PM_OPS(
 241		pm_generic_runtime_suspend,
 242		pm_generic_runtime_resume,
 243		NULL
 244	)
 245};
 246
 247struct bus_type spi_bus_type = {
 248	.name		= "spi",
 249	.dev_groups	= spi_dev_groups,
 250	.match		= spi_match_device,
 251	.uevent		= spi_uevent,
 252	.pm		= &spi_pm,
 253};
 254EXPORT_SYMBOL_GPL(spi_bus_type);
 255
 256
 257static int spi_drv_probe(struct device *dev)
 258{
 259	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 260	int ret;
 261
 262	acpi_dev_pm_attach(dev, true);
 263	ret = sdrv->probe(to_spi_device(dev));
 264	if (ret)
 265		acpi_dev_pm_detach(dev, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266
 267	return ret;
 268}
 269
 270static int spi_drv_remove(struct device *dev)
 271{
 272	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 273	int ret;
 274
 275	ret = sdrv->remove(to_spi_device(dev));
 276	acpi_dev_pm_detach(dev, true);
 277
 278	return ret;
 279}
 280
 281static void spi_drv_shutdown(struct device *dev)
 282{
 283	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 284
 285	sdrv->shutdown(to_spi_device(dev));
 286}
 287
 288/**
 289 * spi_register_driver - register a SPI driver
 
 290 * @sdrv: the driver to register
 291 * Context: can sleep
 
 
 292 */
 293int spi_register_driver(struct spi_driver *sdrv)
 294{
 
 295	sdrv->driver.bus = &spi_bus_type;
 296	if (sdrv->probe)
 297		sdrv->driver.probe = spi_drv_probe;
 298	if (sdrv->remove)
 299		sdrv->driver.remove = spi_drv_remove;
 300	if (sdrv->shutdown)
 301		sdrv->driver.shutdown = spi_drv_shutdown;
 302	return driver_register(&sdrv->driver);
 303}
 304EXPORT_SYMBOL_GPL(spi_register_driver);
 305
 306/*-------------------------------------------------------------------------*/
 307
 308/* SPI devices should normally not be created by SPI device drivers; that
 309 * would make them board-specific.  Similarly with SPI master drivers.
 310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 311 * with other readonly (flashable) information about mainboard devices.
 312 */
 313
 314struct boardinfo {
 315	struct list_head	list;
 316	struct spi_board_info	board_info;
 317};
 318
 319static LIST_HEAD(board_list);
 320static LIST_HEAD(spi_master_list);
 321
 322/*
 323 * Used to protect add/del opertion for board_info list and
 324 * spi_master list, and their matching process
 
 325 */
 326static DEFINE_MUTEX(board_lock);
 327
 328/**
 329 * spi_alloc_device - Allocate a new SPI device
 330 * @master: Controller to which device is connected
 331 * Context: can sleep
 332 *
 333 * Allows a driver to allocate and initialize a spi_device without
 334 * registering it immediately.  This allows a driver to directly
 335 * fill the spi_device with device parameters before calling
 336 * spi_add_device() on it.
 337 *
 338 * Caller is responsible to call spi_add_device() on the returned
 339 * spi_device structure to add it to the SPI master.  If the caller
 340 * needs to discard the spi_device without adding it, then it should
 341 * call spi_dev_put() on it.
 342 *
 343 * Returns a pointer to the new device, or NULL.
 344 */
 345struct spi_device *spi_alloc_device(struct spi_master *master)
 346{
 347	struct spi_device	*spi;
 348	struct device		*dev = master->dev.parent;
 349
 350	if (!spi_master_get(master))
 351		return NULL;
 352
 353	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 354	if (!spi) {
 355		dev_err(dev, "cannot alloc spi_device\n");
 356		spi_master_put(master);
 357		return NULL;
 358	}
 359
 360	spi->master = master;
 361	spi->dev.parent = &master->dev;
 362	spi->dev.bus = &spi_bus_type;
 363	spi->dev.release = spidev_release;
 364	spi->cs_gpio = -ENOENT;
 
 
 
 365	device_initialize(&spi->dev);
 366	return spi;
 367}
 368EXPORT_SYMBOL_GPL(spi_alloc_device);
 369
 370static void spi_dev_set_name(struct spi_device *spi)
 371{
 372	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 373
 374	if (adev) {
 375		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 376		return;
 377	}
 378
 379	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 380		     spi->chip_select);
 381}
 382
 383static int spi_dev_check(struct device *dev, void *data)
 384{
 385	struct spi_device *spi = to_spi_device(dev);
 386	struct spi_device *new_spi = data;
 387
 388	if (spi->master == new_spi->master &&
 389	    spi->chip_select == new_spi->chip_select)
 390		return -EBUSY;
 391	return 0;
 392}
 393
 394/**
 395 * spi_add_device - Add spi_device allocated with spi_alloc_device
 396 * @spi: spi_device to register
 397 *
 398 * Companion function to spi_alloc_device.  Devices allocated with
 399 * spi_alloc_device can be added onto the spi bus with this function.
 400 *
 401 * Returns 0 on success; negative errno on failure
 402 */
 403int spi_add_device(struct spi_device *spi)
 404{
 405	static DEFINE_MUTEX(spi_add_lock);
 406	struct spi_master *master = spi->master;
 407	struct device *dev = master->dev.parent;
 408	int status;
 409
 410	/* Chipselects are numbered 0..max; validate. */
 411	if (spi->chip_select >= master->num_chipselect) {
 412		dev_err(dev, "cs%d >= max %d\n",
 413			spi->chip_select,
 414			master->num_chipselect);
 415		return -EINVAL;
 416	}
 417
 418	/* Set the bus ID string */
 419	spi_dev_set_name(spi);
 420
 421	/* We need to make sure there's no other device with this
 422	 * chipselect **BEFORE** we call setup(), else we'll trash
 423	 * its configuration.  Lock against concurrent add() calls.
 424	 */
 425	mutex_lock(&spi_add_lock);
 426
 427	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 428	if (status) {
 429		dev_err(dev, "chipselect %d already in use\n",
 430				spi->chip_select);
 431		goto done;
 432	}
 433
 434	if (master->cs_gpios)
 435		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 
 
 
 436
 437	/* Drivers may modify this initial i/o setup, but will
 438	 * normally rely on the device being setup.  Devices
 439	 * using SPI_CS_HIGH can't coexist well otherwise...
 440	 */
 441	status = spi_setup(spi);
 442	if (status < 0) {
 443		dev_err(dev, "can't setup %s, status %d\n",
 444				dev_name(&spi->dev), status);
 445		goto done;
 446	}
 447
 448	/* Device may be bound to an active driver when this returns */
 449	status = device_add(&spi->dev);
 450	if (status < 0)
 451		dev_err(dev, "can't add %s, status %d\n",
 452				dev_name(&spi->dev), status);
 453	else
 454		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 455
 456done:
 457	mutex_unlock(&spi_add_lock);
 458	return status;
 459}
 460EXPORT_SYMBOL_GPL(spi_add_device);
 461
 462/**
 463 * spi_new_device - instantiate one new SPI device
 464 * @master: Controller to which device is connected
 465 * @chip: Describes the SPI device
 466 * Context: can sleep
 467 *
 468 * On typical mainboards, this is purely internal; and it's not needed
 469 * after board init creates the hard-wired devices.  Some development
 470 * platforms may not be able to use spi_register_board_info though, and
 471 * this is exported so that for example a USB or parport based adapter
 472 * driver could add devices (which it would learn about out-of-band).
 473 *
 474 * Returns the new device, or NULL.
 475 */
 476struct spi_device *spi_new_device(struct spi_master *master,
 477				  struct spi_board_info *chip)
 478{
 479	struct spi_device	*proxy;
 480	int			status;
 481
 482	/* NOTE:  caller did any chip->bus_num checks necessary.
 483	 *
 484	 * Also, unless we change the return value convention to use
 485	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 486	 * suggests syslogged diagnostics are best here (ugh).
 487	 */
 488
 489	proxy = spi_alloc_device(master);
 490	if (!proxy)
 491		return NULL;
 492
 493	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 494
 495	proxy->chip_select = chip->chip_select;
 496	proxy->max_speed_hz = chip->max_speed_hz;
 497	proxy->mode = chip->mode;
 498	proxy->irq = chip->irq;
 499	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 500	proxy->dev.platform_data = (void *) chip->platform_data;
 501	proxy->controller_data = chip->controller_data;
 502	proxy->controller_state = NULL;
 503
 504	status = spi_add_device(proxy);
 505	if (status < 0) {
 506		spi_dev_put(proxy);
 507		return NULL;
 
 
 
 
 508	}
 509
 
 
 
 
 510	return proxy;
 
 
 
 
 
 
 
 511}
 512EXPORT_SYMBOL_GPL(spi_new_device);
 513
 514static void spi_match_master_to_boardinfo(struct spi_master *master,
 515				struct spi_board_info *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516{
 517	struct spi_device *dev;
 518
 519	if (master->bus_num != bi->bus_num)
 520		return;
 521
 522	dev = spi_new_device(master, bi);
 523	if (!dev)
 524		dev_err(master->dev.parent, "can't create new device for %s\n",
 525			bi->modalias);
 526}
 527
 528/**
 529 * spi_register_board_info - register SPI devices for a given board
 530 * @info: array of chip descriptors
 531 * @n: how many descriptors are provided
 532 * Context: can sleep
 533 *
 534 * Board-specific early init code calls this (probably during arch_initcall)
 535 * with segments of the SPI device table.  Any device nodes are created later,
 536 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 537 * this table of devices forever, so that reloading a controller driver will
 538 * not make Linux forget about these hard-wired devices.
 539 *
 540 * Other code can also call this, e.g. a particular add-on board might provide
 541 * SPI devices through its expansion connector, so code initializing that board
 542 * would naturally declare its SPI devices.
 543 *
 544 * The board info passed can safely be __initdata ... but be careful of
 545 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 
 
 546 */
 547int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 548{
 549	struct boardinfo *bi;
 550	int i;
 551
 552	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 
 
 
 553	if (!bi)
 554		return -ENOMEM;
 555
 556	for (i = 0; i < n; i++, bi++, info++) {
 557		struct spi_master *master;
 558
 559		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 
 560		mutex_lock(&board_lock);
 561		list_add_tail(&bi->list, &board_list);
 562		list_for_each_entry(master, &spi_master_list, list)
 563			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 564		mutex_unlock(&board_lock);
 565	}
 566
 567	return 0;
 568}
 569
 570/*-------------------------------------------------------------------------*/
 571
 572static void spi_set_cs(struct spi_device *spi, bool enable)
 573{
 574	if (spi->mode & SPI_CS_HIGH)
 575		enable = !enable;
 576
 577	if (spi->cs_gpio >= 0)
 578		gpio_set_value(spi->cs_gpio, !enable);
 579	else if (spi->master->set_cs)
 580		spi->master->set_cs(spi, !enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583#ifdef CONFIG_HAS_DMA
 584static int spi_map_buf(struct spi_master *master, struct device *dev,
 585		       struct sg_table *sgt, void *buf, size_t len,
 586		       enum dma_data_direction dir)
 587{
 588	const bool vmalloced_buf = is_vmalloc_addr(buf);
 589	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
 590	const int sgs = DIV_ROUND_UP(len, desc_len);
 
 
 
 
 
 
 
 
 591	struct page *vm_page;
 
 592	void *sg_buf;
 593	size_t min;
 594	int i, ret;
 595
 
 
 
 
 
 
 
 
 
 
 596	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 597	if (ret != 0)
 598		return ret;
 599
 
 600	for (i = 0; i < sgs; i++) {
 601		min = min_t(size_t, len, desc_len);
 602
 603		if (vmalloced_buf) {
 604			vm_page = vmalloc_to_page(buf);
 
 
 
 
 
 
 
 
 
 
 
 605			if (!vm_page) {
 606				sg_free_table(sgt);
 607				return -ENOMEM;
 608			}
 609			sg_buf = page_address(vm_page) +
 610				((size_t)buf & ~PAGE_MASK);
 611		} else {
 
 612			sg_buf = buf;
 
 613		}
 614
 615		sg_set_buf(&sgt->sgl[i], sg_buf, min);
 616
 617		buf += min;
 618		len -= min;
 
 619	}
 620
 621	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 
 
 622	if (ret < 0) {
 623		sg_free_table(sgt);
 624		return ret;
 625	}
 626
 627	sgt->nents = ret;
 628
 629	return 0;
 630}
 631
 632static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 633			  struct sg_table *sgt, enum dma_data_direction dir)
 634{
 635	if (sgt->orig_nents) {
 636		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 637		sg_free_table(sgt);
 638	}
 639}
 640
 641static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 642{
 643	struct device *tx_dev, *rx_dev;
 644	struct spi_transfer *xfer;
 645	int ret;
 646
 647	if (!master->can_dma)
 648		return 0;
 649
 650	tx_dev = &master->dma_tx->dev->device;
 651	rx_dev = &master->dma_rx->dev->device;
 
 
 
 
 
 
 
 652
 653	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 654		if (!master->can_dma(master, msg->spi, xfer))
 655			continue;
 656
 657		if (xfer->tx_buf != NULL) {
 658			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 659					  (void *)xfer->tx_buf, xfer->len,
 660					  DMA_TO_DEVICE);
 661			if (ret != 0)
 662				return ret;
 663		}
 664
 665		if (xfer->rx_buf != NULL) {
 666			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 667					  xfer->rx_buf, xfer->len,
 668					  DMA_FROM_DEVICE);
 669			if (ret != 0) {
 670				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 671					      DMA_TO_DEVICE);
 672				return ret;
 673			}
 674		}
 675	}
 676
 677	master->cur_msg_mapped = true;
 678
 679	return 0;
 680}
 681
 682static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 683{
 684	struct spi_transfer *xfer;
 685	struct device *tx_dev, *rx_dev;
 686
 687	if (!master->cur_msg_mapped || !master->can_dma)
 688		return 0;
 689
 690	tx_dev = &master->dma_tx->dev->device;
 691	rx_dev = &master->dma_rx->dev->device;
 
 
 
 
 
 
 
 692
 693	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 694		if (!master->can_dma(master, msg->spi, xfer))
 695			continue;
 696
 697		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 698		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 699	}
 700
 701	return 0;
 702}
 703#else /* !CONFIG_HAS_DMA */
 704static inline int __spi_map_msg(struct spi_master *master,
 705				struct spi_message *msg)
 706{
 707	return 0;
 708}
 709
 710static inline int spi_unmap_msg(struct spi_master *master,
 711				struct spi_message *msg)
 712{
 713	return 0;
 714}
 715#endif /* !CONFIG_HAS_DMA */
 716
 717static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	struct spi_transfer *xfer;
 720	void *tmp;
 721	unsigned int max_tx, max_rx;
 722
 723	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 724		max_tx = 0;
 725		max_rx = 0;
 726
 727		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 728			if ((master->flags & SPI_MASTER_MUST_TX) &&
 729			    !xfer->tx_buf)
 730				max_tx = max(xfer->len, max_tx);
 731			if ((master->flags & SPI_MASTER_MUST_RX) &&
 732			    !xfer->rx_buf)
 733				max_rx = max(xfer->len, max_rx);
 734		}
 735
 736		if (max_tx) {
 737			tmp = krealloc(master->dummy_tx, max_tx,
 738				       GFP_KERNEL | GFP_DMA);
 739			if (!tmp)
 740				return -ENOMEM;
 741			master->dummy_tx = tmp;
 742			memset(tmp, 0, max_tx);
 743		}
 744
 745		if (max_rx) {
 746			tmp = krealloc(master->dummy_rx, max_rx,
 747				       GFP_KERNEL | GFP_DMA);
 748			if (!tmp)
 749				return -ENOMEM;
 750			master->dummy_rx = tmp;
 751		}
 752
 753		if (max_tx || max_rx) {
 754			list_for_each_entry(xfer, &msg->transfers,
 755					    transfer_list) {
 
 
 756				if (!xfer->tx_buf)
 757					xfer->tx_buf = master->dummy_tx;
 758				if (!xfer->rx_buf)
 759					xfer->rx_buf = master->dummy_rx;
 760			}
 761		}
 762	}
 763
 764	return __spi_map_msg(master, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767/*
 768 * spi_transfer_one_message - Default implementation of transfer_one_message()
 769 *
 770 * This is a standard implementation of transfer_one_message() for
 771 * drivers which impelment a transfer_one() operation.  It provides
 772 * standard handling of delays and chip select management.
 773 */
 774static int spi_transfer_one_message(struct spi_master *master,
 775				    struct spi_message *msg)
 776{
 777	struct spi_transfer *xfer;
 778	bool keep_cs = false;
 779	int ret = 0;
 780	int ms = 1;
 
 781
 782	spi_set_cs(msg->spi, true);
 783
 
 
 
 784	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 785		trace_spi_transfer_start(msg, xfer);
 786
 787		reinit_completion(&master->xfer_completion);
 788
 789		ret = master->transfer_one(master, msg->spi, xfer);
 790		if (ret < 0) {
 791			dev_err(&msg->spi->dev,
 792				"SPI transfer failed: %d\n", ret);
 793			goto out;
 794		}
 795
 796		if (ret > 0) {
 797			ret = 0;
 798			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 799			ms += 10; /* some tolerance */
 800
 801			ms = wait_for_completion_timeout(&master->xfer_completion,
 802							 msecs_to_jiffies(ms));
 803		}
 
 
 
 
 
 
 
 804
 805		if (ms == 0) {
 806			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
 807			msg->status = -ETIMEDOUT;
 
 
 
 
 
 
 
 808		}
 809
 810		trace_spi_transfer_stop(msg, xfer);
 811
 812		if (msg->status != -EINPROGRESS)
 813			goto out;
 814
 815		if (xfer->delay_usecs)
 816			udelay(xfer->delay_usecs);
 817
 818		if (xfer->cs_change) {
 819			if (list_is_last(&xfer->transfer_list,
 820					 &msg->transfers)) {
 821				keep_cs = true;
 822			} else {
 823				spi_set_cs(msg->spi, false);
 824				udelay(10);
 825				spi_set_cs(msg->spi, true);
 826			}
 827		}
 828
 829		msg->actual_length += xfer->len;
 830	}
 831
 832out:
 833	if (ret != 0 || !keep_cs)
 834		spi_set_cs(msg->spi, false);
 835
 836	if (msg->status == -EINPROGRESS)
 837		msg->status = ret;
 838
 839	spi_finalize_current_message(master);
 
 
 
 
 
 840
 841	return ret;
 842}
 843
 844/**
 845 * spi_finalize_current_transfer - report completion of a transfer
 
 846 *
 847 * Called by SPI drivers using the core transfer_one_message()
 848 * implementation to notify it that the current interrupt driven
 849 * transfer has finished and the next one may be scheduled.
 850 */
 851void spi_finalize_current_transfer(struct spi_master *master)
 852{
 853	complete(&master->xfer_completion);
 854}
 855EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 856
 857/**
 858 * spi_pump_messages - kthread work function which processes spi message queue
 859 * @work: pointer to kthread work struct contained in the master struct
 
 860 *
 861 * This function checks if there is any spi message in the queue that
 862 * needs processing and if so call out to the driver to initialize hardware
 863 * and transfer each message.
 864 *
 
 
 
 865 */
 866static void spi_pump_messages(struct kthread_work *work)
 867{
 868	struct spi_master *master =
 869		container_of(work, struct spi_master, pump_messages);
 870	unsigned long flags;
 871	bool was_busy = false;
 
 872	int ret;
 873
 874	/* Lock queue and check for queue work */
 875	spin_lock_irqsave(&master->queue_lock, flags);
 876	if (list_empty(&master->queue) || !master->running) {
 877		if (!master->busy) {
 878			spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879			return;
 880		}
 881		master->busy = false;
 882		spin_unlock_irqrestore(&master->queue_lock, flags);
 883		kfree(master->dummy_rx);
 884		master->dummy_rx = NULL;
 885		kfree(master->dummy_tx);
 886		master->dummy_tx = NULL;
 887		if (master->unprepare_transfer_hardware &&
 888		    master->unprepare_transfer_hardware(master))
 889			dev_err(&master->dev,
 890				"failed to unprepare transfer hardware\n");
 891		if (master->auto_runtime_pm) {
 892			pm_runtime_mark_last_busy(master->dev.parent);
 893			pm_runtime_put_autosuspend(master->dev.parent);
 894		}
 895		trace_spi_master_idle(master);
 896		return;
 897	}
 898
 899	/* Make sure we are not already running a message */
 900	if (master->cur_msg) {
 901		spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902		return;
 903	}
 
 904	/* Extract head of queue */
 905	master->cur_msg =
 906		list_first_entry(&master->queue, struct spi_message, queue);
 907
 908	list_del_init(&master->cur_msg->queue);
 909	if (master->busy)
 910		was_busy = true;
 911	else
 912		master->busy = true;
 913	spin_unlock_irqrestore(&master->queue_lock, flags);
 914
 915	if (!was_busy && master->auto_runtime_pm) {
 916		ret = pm_runtime_get_sync(master->dev.parent);
 
 
 917		if (ret < 0) {
 918			dev_err(&master->dev, "Failed to power device: %d\n",
 
 919				ret);
 
 920			return;
 921		}
 922	}
 923
 924	if (!was_busy)
 925		trace_spi_master_busy(master);
 926
 927	if (!was_busy && master->prepare_transfer_hardware) {
 928		ret = master->prepare_transfer_hardware(master);
 929		if (ret) {
 930			dev_err(&master->dev,
 931				"failed to prepare transfer hardware\n");
 
 
 
 
 932
 933			if (master->auto_runtime_pm)
 934				pm_runtime_put(master->dev.parent);
 
 
 935			return;
 936		}
 937	}
 938
 939	trace_spi_message_start(master->cur_msg);
 940
 941	if (master->prepare_message) {
 942		ret = master->prepare_message(master, master->cur_msg);
 943		if (ret) {
 944			dev_err(&master->dev,
 945				"failed to prepare message: %d\n", ret);
 946			master->cur_msg->status = ret;
 947			spi_finalize_current_message(master);
 948			return;
 949		}
 950		master->cur_msg_prepared = true;
 951	}
 952
 953	ret = spi_map_msg(master, master->cur_msg);
 954	if (ret) {
 955		master->cur_msg->status = ret;
 956		spi_finalize_current_message(master);
 957		return;
 958	}
 959
 960	ret = master->transfer_one_message(master, master->cur_msg);
 961	if (ret) {
 962		dev_err(&master->dev,
 963			"failed to transfer one message from queue\n");
 964		return;
 965	}
 
 
 
 
 
 
 
 966}
 967
 968static int spi_init_queue(struct spi_master *master)
 
 
 
 
 969{
 970	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 
 971
 972	INIT_LIST_HEAD(&master->queue);
 973	spin_lock_init(&master->queue_lock);
 974
 975	master->running = false;
 976	master->busy = false;
 977
 978	init_kthread_worker(&master->kworker);
 979	master->kworker_task = kthread_run(kthread_worker_fn,
 980					   &master->kworker, "%s",
 981					   dev_name(&master->dev));
 982	if (IS_ERR(master->kworker_task)) {
 983		dev_err(&master->dev, "failed to create message pump task\n");
 984		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	}
 986	init_kthread_work(&master->pump_messages, spi_pump_messages);
 987
 988	/*
 989	 * Master config will indicate if this controller should run the
 990	 * message pump with high (realtime) priority to reduce the transfer
 991	 * latency on the bus by minimising the delay between a transfer
 992	 * request and the scheduling of the message pump thread. Without this
 993	 * setting the message pump thread will remain at default priority.
 994	 */
 995	if (master->rt) {
 996		dev_info(&master->dev,
 997			"will run message pump with realtime priority\n");
 998		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
 999	}
1000
1001	return 0;
1002}
1003
1004/**
1005 * spi_get_next_queued_message() - called by driver to check for queued
1006 * messages
1007 * @master: the master to check for queued messages
1008 *
1009 * If there are more messages in the queue, the next message is returned from
1010 * this call.
 
 
1011 */
1012struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1013{
1014	struct spi_message *next;
1015	unsigned long flags;
1016
1017	/* get a pointer to the next message, if any */
1018	spin_lock_irqsave(&master->queue_lock, flags);
1019	next = list_first_entry_or_null(&master->queue, struct spi_message,
1020					queue);
1021	spin_unlock_irqrestore(&master->queue_lock, flags);
1022
1023	return next;
1024}
1025EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1026
1027/**
1028 * spi_finalize_current_message() - the current message is complete
1029 * @master: the master to return the message to
1030 *
1031 * Called by the driver to notify the core that the message in the front of the
1032 * queue is complete and can be removed from the queue.
1033 */
1034void spi_finalize_current_message(struct spi_master *master)
1035{
1036	struct spi_message *mesg;
1037	unsigned long flags;
1038	int ret;
1039
1040	spin_lock_irqsave(&master->queue_lock, flags);
1041	mesg = master->cur_msg;
1042	master->cur_msg = NULL;
1043
1044	queue_kthread_work(&master->kworker, &master->pump_messages);
1045	spin_unlock_irqrestore(&master->queue_lock, flags);
1046
1047	spi_unmap_msg(master, mesg);
1048
1049	if (master->cur_msg_prepared && master->unprepare_message) {
1050		ret = master->unprepare_message(master, mesg);
1051		if (ret) {
1052			dev_err(&master->dev,
1053				"failed to unprepare message: %d\n", ret);
1054		}
1055	}
1056	master->cur_msg_prepared = false;
 
 
 
 
 
 
 
1057
1058	mesg->state = NULL;
1059	if (mesg->complete)
1060		mesg->complete(mesg->context);
1061
1062	trace_spi_message_done(mesg);
1063}
1064EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1065
1066static int spi_start_queue(struct spi_master *master)
1067{
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&master->queue_lock, flags);
1071
1072	if (master->running || master->busy) {
1073		spin_unlock_irqrestore(&master->queue_lock, flags);
1074		return -EBUSY;
1075	}
1076
1077	master->running = true;
1078	master->cur_msg = NULL;
1079	spin_unlock_irqrestore(&master->queue_lock, flags);
1080
1081	queue_kthread_work(&master->kworker, &master->pump_messages);
1082
1083	return 0;
1084}
1085
1086static int spi_stop_queue(struct spi_master *master)
1087{
1088	unsigned long flags;
1089	unsigned limit = 500;
1090	int ret = 0;
1091
1092	spin_lock_irqsave(&master->queue_lock, flags);
1093
1094	/*
1095	 * This is a bit lame, but is optimized for the common execution path.
1096	 * A wait_queue on the master->busy could be used, but then the common
1097	 * execution path (pump_messages) would be required to call wake_up or
1098	 * friends on every SPI message. Do this instead.
1099	 */
1100	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1101		spin_unlock_irqrestore(&master->queue_lock, flags);
1102		usleep_range(10000, 11000);
1103		spin_lock_irqsave(&master->queue_lock, flags);
1104	}
1105
1106	if (!list_empty(&master->queue) || master->busy)
1107		ret = -EBUSY;
1108	else
1109		master->running = false;
1110
1111	spin_unlock_irqrestore(&master->queue_lock, flags);
1112
1113	if (ret) {
1114		dev_warn(&master->dev,
1115			 "could not stop message queue\n");
1116		return ret;
1117	}
1118	return ret;
1119}
1120
1121static int spi_destroy_queue(struct spi_master *master)
1122{
1123	int ret;
1124
1125	ret = spi_stop_queue(master);
1126
1127	/*
1128	 * flush_kthread_worker will block until all work is done.
1129	 * If the reason that stop_queue timed out is that the work will never
1130	 * finish, then it does no good to call flush/stop thread, so
1131	 * return anyway.
1132	 */
1133	if (ret) {
1134		dev_err(&master->dev, "problem destroying queue\n");
1135		return ret;
1136	}
1137
1138	flush_kthread_worker(&master->kworker);
1139	kthread_stop(master->kworker_task);
1140
1141	return 0;
1142}
1143
1144/**
1145 * spi_queued_transfer - transfer function for queued transfers
1146 * @spi: spi device which is requesting transfer
1147 * @msg: spi message which is to handled is queued to driver queue
1148 */
1149static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1150{
1151	struct spi_master *master = spi->master;
1152	unsigned long flags;
1153
1154	spin_lock_irqsave(&master->queue_lock, flags);
1155
1156	if (!master->running) {
1157		spin_unlock_irqrestore(&master->queue_lock, flags);
1158		return -ESHUTDOWN;
1159	}
1160	msg->actual_length = 0;
1161	msg->status = -EINPROGRESS;
1162
1163	list_add_tail(&msg->queue, &master->queue);
1164	if (!master->busy)
1165		queue_kthread_work(&master->kworker, &master->pump_messages);
1166
1167	spin_unlock_irqrestore(&master->queue_lock, flags);
1168	return 0;
1169}
1170
1171static int spi_master_initialize_queue(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
1172{
1173	int ret;
1174
1175	master->transfer = spi_queued_transfer;
1176	if (!master->transfer_one_message)
1177		master->transfer_one_message = spi_transfer_one_message;
1178
1179	/* Initialize and start queue */
1180	ret = spi_init_queue(master);
1181	if (ret) {
1182		dev_err(&master->dev, "problem initializing queue\n");
1183		goto err_init_queue;
1184	}
1185	master->queued = true;
1186	ret = spi_start_queue(master);
1187	if (ret) {
1188		dev_err(&master->dev, "problem starting queue\n");
1189		goto err_start_queue;
1190	}
1191
1192	return 0;
1193
1194err_start_queue:
1195	spi_destroy_queue(master);
1196err_init_queue:
1197	return ret;
1198}
1199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200/*-------------------------------------------------------------------------*/
1201
1202#if defined(CONFIG_OF)
1203/**
1204 * of_register_spi_devices() - Register child devices onto the SPI bus
1205 * @master:	Pointer to spi_master device
1206 *
1207 * Registers an spi_device for each child node of master node which has a 'reg'
1208 * property.
1209 */
1210static void of_register_spi_devices(struct spi_master *master)
1211{
1212	struct spi_device *spi;
1213	struct device_node *nc;
1214	int rc;
1215	u32 value;
 
1216
1217	if (!master->dev.of_node)
1218		return;
 
 
 
 
 
 
 
1219
1220	for_each_available_child_of_node(master->dev.of_node, nc) {
1221		/* Alloc an spi_device */
1222		spi = spi_alloc_device(master);
1223		if (!spi) {
1224			dev_err(&master->dev, "spi_device alloc error for %s\n",
1225				nc->full_name);
1226			spi_dev_put(spi);
1227			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228		}
 
1229
1230		/* Select device driver */
1231		if (of_modalias_node(nc, spi->modalias,
1232				     sizeof(spi->modalias)) < 0) {
1233			dev_err(&master->dev, "cannot find modalias for %s\n",
1234				nc->full_name);
1235			spi_dev_put(spi);
1236			continue;
 
 
 
 
 
 
 
 
 
 
 
1237		}
 
1238
1239		/* Device address */
1240		rc = of_property_read_u32(nc, "reg", &value);
1241		if (rc) {
1242			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1243				nc->full_name, rc);
1244			spi_dev_put(spi);
1245			continue;
1246		}
1247		spi->chip_select = value;
 
1248
1249		/* Mode (clock phase/polarity/etc.) */
1250		if (of_find_property(nc, "spi-cpha", NULL))
1251			spi->mode |= SPI_CPHA;
1252		if (of_find_property(nc, "spi-cpol", NULL))
1253			spi->mode |= SPI_CPOL;
1254		if (of_find_property(nc, "spi-cs-high", NULL))
1255			spi->mode |= SPI_CS_HIGH;
1256		if (of_find_property(nc, "spi-3wire", NULL))
1257			spi->mode |= SPI_3WIRE;
1258
1259		/* Device DUAL/QUAD mode */
1260		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1261			switch (value) {
1262			case 1:
1263				break;
1264			case 2:
1265				spi->mode |= SPI_TX_DUAL;
1266				break;
1267			case 4:
1268				spi->mode |= SPI_TX_QUAD;
1269				break;
1270			default:
1271				dev_err(&master->dev,
1272					"spi-tx-bus-width %d not supported\n",
1273					value);
1274				spi_dev_put(spi);
1275				continue;
1276			}
1277		}
1278
1279		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1280			switch (value) {
1281			case 1:
1282				break;
1283			case 2:
1284				spi->mode |= SPI_RX_DUAL;
1285				break;
1286			case 4:
1287				spi->mode |= SPI_RX_QUAD;
1288				break;
1289			default:
1290				dev_err(&master->dev,
1291					"spi-rx-bus-width %d not supported\n",
1292					value);
1293				spi_dev_put(spi);
1294				continue;
1295			}
1296		}
1297
1298		/* Device speed */
1299		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1300		if (rc) {
1301			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1302				nc->full_name, rc);
1303			spi_dev_put(spi);
1304			continue;
1305		}
1306		spi->max_speed_hz = value;
1307
1308		/* IRQ */
1309		spi->irq = irq_of_parse_and_map(nc, 0);
 
 
 
1310
1311		/* Store a pointer to the node in the device structure */
1312		of_node_get(nc);
1313		spi->dev.of_node = nc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314
1315		/* Register the new device */
1316		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317		rc = spi_add_device(spi);
1318		if (rc) {
1319			dev_err(&master->dev, "spi_device register error %s\n",
1320				nc->full_name);
1321			spi_dev_put(spi);
1322		}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	}
1325}
1326#else
1327static void of_register_spi_devices(struct spi_master *master) { }
1328#endif
1329
1330#ifdef CONFIG_ACPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1332{
1333	struct spi_device *spi = data;
 
1334
1335	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1336		struct acpi_resource_spi_serialbus *sb;
 
 
1337
1338		sb = &ares->data.spi_serial_bus;
1339		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1340			spi->chip_select = sb->device_selection;
1341			spi->max_speed_hz = sb->connection_speed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1344				spi->mode |= SPI_CPHA;
1345			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1346				spi->mode |= SPI_CPOL;
1347			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1348				spi->mode |= SPI_CS_HIGH;
1349		}
1350	} else if (spi->irq < 0) {
1351		struct resource r;
1352
1353		if (acpi_dev_resource_interrupt(ares, 0, &r))
1354			spi->irq = r.start;
1355	}
1356
1357	/* Always tell the ACPI core to skip this resource */
1358	return 1;
1359}
1360
1361static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1362				       void *data, void **return_value)
1363{
1364	struct spi_master *master = data;
1365	struct list_head resource_list;
1366	struct acpi_device *adev;
1367	struct spi_device *spi;
1368	int ret;
1369
1370	if (acpi_bus_get_device(handle, &adev))
 
1371		return AE_OK;
1372	if (acpi_bus_get_status(adev) || !adev->status.present)
 
 
 
 
 
 
 
 
 
 
1373		return AE_OK;
1374
1375	spi = spi_alloc_device(master);
 
 
 
 
 
 
 
 
 
 
1376	if (!spi) {
1377		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1378			dev_name(&adev->dev));
1379		return AE_NO_MEMORY;
1380	}
1381
1382	ACPI_COMPANION_SET(&spi->dev, adev);
1383	spi->irq = -1;
 
 
 
 
1384
1385	INIT_LIST_HEAD(&resource_list);
1386	ret = acpi_dev_get_resources(adev, &resource_list,
1387				     acpi_spi_add_resource, spi);
1388	acpi_dev_free_resource_list(&resource_list);
1389
1390	if (ret < 0 || !spi->max_speed_hz) {
1391		spi_dev_put(spi);
1392		return AE_OK;
1393	}
1394
1395	adev->power.flags.ignore_parent = true;
1396	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397	if (spi_add_device(spi)) {
1398		adev->power.flags.ignore_parent = false;
1399		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1400			dev_name(&adev->dev));
1401		spi_dev_put(spi);
1402	}
1403
1404	return AE_OK;
1405}
1406
1407static void acpi_register_spi_devices(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408{
1409	acpi_status status;
1410	acpi_handle handle;
1411
1412	handle = ACPI_HANDLE(master->dev.parent);
1413	if (!handle)
1414		return;
1415
1416	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1417				     acpi_spi_add_device, NULL,
1418				     master, NULL);
1419	if (ACPI_FAILURE(status))
1420		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1421}
1422#else
1423static inline void acpi_register_spi_devices(struct spi_master *master) {}
1424#endif /* CONFIG_ACPI */
1425
1426static void spi_master_release(struct device *dev)
1427{
1428	struct spi_master *master;
1429
1430	master = container_of(dev, struct spi_master, dev);
1431	kfree(master);
1432}
1433
1434static struct class spi_master_class = {
1435	.name		= "spi_master",
1436	.owner		= THIS_MODULE,
1437	.dev_release	= spi_master_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438};
1439
 
 
 
1440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442/**
1443 * spi_alloc_master - allocate SPI master controller
1444 * @dev: the controller, possibly using the platform_bus
1445 * @size: how much zeroed driver-private data to allocate; the pointer to this
1446 *	memory is in the driver_data field of the returned device,
1447 *	accessible with spi_master_get_devdata().
 
 
 
 
1448 * Context: can sleep
1449 *
1450 * This call is used only by SPI master controller drivers, which are the
1451 * only ones directly touching chip registers.  It's how they allocate
1452 * an spi_master structure, prior to calling spi_register_master().
1453 *
1454 * This must be called from context that can sleep.  It returns the SPI
1455 * master structure on success, else NULL.
1456 *
1457 * The caller is responsible for assigning the bus number and initializing
1458 * the master's methods before calling spi_register_master(); and (after errors
1459 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1460 * leak.
 
 
1461 */
1462struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
1463{
1464	struct spi_master	*master;
 
1465
1466	if (!dev)
1467		return NULL;
1468
1469	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470	if (!master)
1471		return NULL;
1472
1473	device_initialize(&master->dev);
1474	master->bus_num = -1;
1475	master->num_chipselect = 1;
1476	master->dev.class = &spi_master_class;
1477	master->dev.parent = get_device(dev);
1478	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
1479
1480	return master;
1481}
1482EXPORT_SYMBOL_GPL(spi_alloc_master);
1483
1484#ifdef CONFIG_OF
1485static int of_spi_register_master(struct spi_master *master)
1486{
1487	int nb, i, *cs;
1488	struct device_node *np = master->dev.of_node;
1489
1490	if (!np)
1491		return 0;
1492
1493	nb = of_gpio_named_count(np, "cs-gpios");
1494	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1495
1496	/* Return error only for an incorrectly formed cs-gpios property */
1497	if (nb == 0 || nb == -ENOENT)
1498		return 0;
1499	else if (nb < 0)
1500		return nb;
1501
1502	cs = devm_kzalloc(&master->dev,
1503			  sizeof(int) * master->num_chipselect,
1504			  GFP_KERNEL);
1505	master->cs_gpios = cs;
1506
1507	if (!master->cs_gpios)
1508		return -ENOMEM;
1509
1510	for (i = 0; i < master->num_chipselect; i++)
1511		cs[i] = -ENOENT;
1512
1513	for (i = 0; i < nb; i++)
1514		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1515
1516	return 0;
1517}
1518#else
1519static int of_spi_register_master(struct spi_master *master)
1520{
1521	return 0;
1522}
1523#endif
1524
1525/**
1526 * spi_register_master - register SPI master controller
1527 * @master: initialized master, originally from spi_alloc_master()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528 * Context: can sleep
1529 *
1530 * SPI master controllers connect to their drivers using some non-SPI bus,
1531 * such as the platform bus.  The final stage of probe() in that code
1532 * includes calling spi_register_master() to hook up to this SPI bus glue.
1533 *
1534 * SPI controllers use board specific (often SOC specific) bus numbers,
1535 * and board-specific addressing for SPI devices combines those numbers
1536 * with chip select numbers.  Since SPI does not directly support dynamic
1537 * device identification, boards need configuration tables telling which
1538 * chip is at which address.
1539 *
1540 * This must be called from context that can sleep.  It returns zero on
1541 * success, else a negative error code (dropping the master's refcount).
1542 * After a successful return, the caller is responsible for calling
1543 * spi_unregister_master().
 
 
1544 */
1545int spi_register_master(struct spi_master *master)
1546{
1547	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1548	struct device		*dev = master->dev.parent;
1549	struct boardinfo	*bi;
1550	int			status = -ENODEV;
1551	int			dynamic = 0;
1552
1553	if (!dev)
1554		return -ENODEV;
1555
1556	status = of_spi_register_master(master);
 
 
 
 
1557	if (status)
1558		return status;
1559
1560	/* even if it's just one always-selected device, there must
1561	 * be at least one chipselect
1562	 */
1563	if (master->num_chipselect == 0)
1564		return -EINVAL;
1565
1566	if ((master->bus_num < 0) && master->dev.of_node)
1567		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	/* convention:  dynamically assigned bus IDs count down from the max */
1570	if (master->bus_num < 0) {
1571		/* FIXME switch to an IDR based scheme, something like
1572		 * I2C now uses, so we can't run out of "dynamic" IDs
1573		 */
1574		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575		dynamic = 1;
1576	}
1577
1578	spin_lock_init(&master->bus_lock_spinlock);
1579	mutex_init(&master->bus_lock_mutex);
1580	master->bus_lock_flag = 0;
1581	init_completion(&master->xfer_completion);
1582	if (!master->max_dma_len)
1583		master->max_dma_len = INT_MAX;
 
 
1584
1585	/* register the device, then userspace will see it.
1586	 * registration fails if the bus ID is in use.
1587	 */
1588	dev_set_name(&master->dev, "spi%u", master->bus_num);
1589	status = device_add(&master->dev);
1590	if (status < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591		goto done;
1592	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593			dynamic ? " (dynamic)" : "");
 
 
1594
1595	/* If we're using a queued driver, start the queue */
1596	if (master->transfer)
1597		dev_info(dev, "master is unqueued, this is deprecated\n");
1598	else {
1599		status = spi_master_initialize_queue(master);
 
 
 
 
1600		if (status) {
1601			device_del(&master->dev);
 
 
 
 
1602			goto done;
1603		}
1604	}
 
 
1605
1606	mutex_lock(&board_lock);
1607	list_add_tail(&master->list, &spi_master_list);
1608	list_for_each_entry(bi, &board_list, list)
1609		spi_match_master_to_boardinfo(master, &bi->board_info);
1610	mutex_unlock(&board_lock);
1611
1612	/* Register devices from the device tree and ACPI */
1613	of_register_spi_devices(master);
1614	acpi_register_spi_devices(master);
1615done:
1616	return status;
1617}
1618EXPORT_SYMBOL_GPL(spi_register_master);
1619
1620static void devm_spi_unregister(struct device *dev, void *res)
1621{
1622	spi_unregister_master(*(struct spi_master **)res);
1623}
1624
1625/**
1626 * dev_spi_register_master - register managed SPI master controller
1627 * @dev:    device managing SPI master
1628 * @master: initialized master, originally from spi_alloc_master()
 
 
1629 * Context: can sleep
1630 *
1631 * Register a SPI device as with spi_register_master() which will
1632 * automatically be unregister
 
 
1633 */
1634int devm_spi_register_master(struct device *dev, struct spi_master *master)
 
1635{
1636	struct spi_master **ptr;
1637	int ret;
1638
1639	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1640	if (!ptr)
1641		return -ENOMEM;
1642
1643	ret = spi_register_master(master);
1644	if (!ret) {
1645		*ptr = master;
1646		devres_add(dev, ptr);
1647	} else {
1648		devres_free(ptr);
1649	}
1650
1651	return ret;
1652}
1653EXPORT_SYMBOL_GPL(devm_spi_register_master);
1654
1655static int __unregister(struct device *dev, void *null)
1656{
1657	spi_unregister_device(to_spi_device(dev));
1658	return 0;
1659}
1660
1661/**
1662 * spi_unregister_master - unregister SPI master controller
1663 * @master: the master being unregistered
1664 * Context: can sleep
1665 *
1666 * This call is used only by SPI master controller drivers, which are the
1667 * only ones directly touching chip registers.
1668 *
1669 * This must be called from context that can sleep.
 
 
1670 */
1671void spi_unregister_master(struct spi_master *master)
1672{
1673	int dummy;
 
1674
1675	if (master->queued) {
1676		if (spi_destroy_queue(master))
1677			dev_err(&master->dev, "queue remove failed\n");
 
 
 
 
1678	}
1679
1680	mutex_lock(&board_lock);
1681	list_del(&master->list);
1682	mutex_unlock(&board_lock);
1683
1684	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1685	device_unregister(&master->dev);
 
 
 
 
 
1686}
1687EXPORT_SYMBOL_GPL(spi_unregister_master);
1688
1689int spi_master_suspend(struct spi_master *master)
1690{
1691	int ret;
1692
1693	/* Basically no-ops for non-queued masters */
1694	if (!master->queued)
1695		return 0;
1696
1697	ret = spi_stop_queue(master);
1698	if (ret)
1699		dev_err(&master->dev, "queue stop failed\n");
1700
1701	return ret;
1702}
1703EXPORT_SYMBOL_GPL(spi_master_suspend);
1704
1705int spi_master_resume(struct spi_master *master)
1706{
1707	int ret;
1708
1709	if (!master->queued)
1710		return 0;
1711
1712	ret = spi_start_queue(master);
1713	if (ret)
1714		dev_err(&master->dev, "queue restart failed\n");
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL_GPL(spi_master_resume);
1719
1720static int __spi_master_match(struct device *dev, const void *data)
1721{
1722	struct spi_master *m;
1723	const u16 *bus_num = data;
1724
1725	m = container_of(dev, struct spi_master, dev);
1726	return m->bus_num == *bus_num;
1727}
1728
1729/**
1730 * spi_busnum_to_master - look up master associated with bus_num
1731 * @bus_num: the master's bus number
1732 * Context: can sleep
1733 *
1734 * This call may be used with devices that are registered after
1735 * arch init time.  It returns a refcounted pointer to the relevant
1736 * spi_master (which the caller must release), or NULL if there is
1737 * no such master registered.
 
 
1738 */
1739struct spi_master *spi_busnum_to_master(u16 bus_num)
1740{
1741	struct device		*dev;
1742	struct spi_master	*master = NULL;
1743
1744	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1745				__spi_master_match);
1746	if (dev)
1747		master = container_of(dev, struct spi_master, dev);
1748	/* reference got in class_find_device */
1749	return master;
1750}
1751EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753
1754/*-------------------------------------------------------------------------*/
1755
1756/* Core methods for SPI master protocol drivers.  Some of the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757 * other core methods are currently defined as inline functions.
1758 */
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760/**
1761 * spi_setup - setup SPI mode and clock rate
1762 * @spi: the device whose settings are being modified
1763 * Context: can sleep, and no requests are queued to the device
1764 *
1765 * SPI protocol drivers may need to update the transfer mode if the
1766 * device doesn't work with its default.  They may likewise need
1767 * to update clock rates or word sizes from initial values.  This function
1768 * changes those settings, and must be called from a context that can sleep.
1769 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1770 * effect the next time the device is selected and data is transferred to
1771 * or from it.  When this function returns, the spi device is deselected.
1772 *
1773 * Note that this call will fail if the protocol driver specifies an option
1774 * that the underlying controller or its driver does not support.  For
1775 * example, not all hardware supports wire transfers using nine bit words,
1776 * LSB-first wire encoding, or active-high chipselects.
 
 
1777 */
1778int spi_setup(struct spi_device *spi)
1779{
1780	unsigned	bad_bits, ugly_bits;
1781	int		status = 0;
1782
1783	/* check mode to prevent that DUAL and QUAD set at the same time
1784	 */
1785	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1786		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1787		dev_err(&spi->dev,
1788		"setup: can not select dual and quad at the same time\n");
1789		return -EINVAL;
1790	}
1791	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1792	 */
1793	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1794		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 
1795		return -EINVAL;
1796	/* help drivers fail *cleanly* when they need options
1797	 * that aren't supported with their current master
 
 
 
 
 
 
1798	 */
1799	bad_bits = spi->mode & ~spi->master->mode_bits;
 
1800	ugly_bits = bad_bits &
1801		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
 
1802	if (ugly_bits) {
1803		dev_warn(&spi->dev,
1804			 "setup: ignoring unsupported mode bits %x\n",
1805			 ugly_bits);
1806		spi->mode &= ~ugly_bits;
1807		bad_bits &= ~ugly_bits;
1808	}
1809	if (bad_bits) {
1810		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811			bad_bits);
1812		return -EINVAL;
1813	}
1814
1815	if (!spi->bits_per_word)
1816		spi->bits_per_word = 8;
1817
 
 
 
 
 
1818	if (!spi->max_speed_hz)
1819		spi->max_speed_hz = spi->master->max_speed_hz;
 
 
 
1820
1821	if (spi->master->setup)
1822		status = spi->master->setup(spi);
 
 
 
 
1823
1824	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1825			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1826			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1827			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1828			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1829			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1830			spi->bits_per_word, spi->max_speed_hz,
1831			status);
1832
1833	return status;
1834}
1835EXPORT_SYMBOL_GPL(spi_setup);
1836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838{
1839	struct spi_master *master = spi->master;
1840	struct spi_transfer *xfer;
1841	int w_size;
1842
1843	if (list_empty(&message->transfers))
1844		return -EINVAL;
1845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846	/* Half-duplex links include original MicroWire, and ones with
1847	 * only one data pin like SPI_3WIRE (switches direction) or where
1848	 * either MOSI or MISO is missing.  They can also be caused by
1849	 * software limitations.
1850	 */
1851	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1852			|| (spi->mode & SPI_3WIRE)) {
1853		unsigned flags = master->flags;
1854
1855		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1856			if (xfer->rx_buf && xfer->tx_buf)
1857				return -EINVAL;
1858			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1859				return -EINVAL;
1860			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1861				return -EINVAL;
1862		}
1863	}
1864
1865	/**
1866	 * Set transfer bits_per_word and max speed as spi device default if
1867	 * it is not set for this transfer.
1868	 * Set transfer tx_nbits and rx_nbits as single transfer default
1869	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 
 
1870	 */
 
1871	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 
1872		message->frame_length += xfer->len;
1873		if (!xfer->bits_per_word)
1874			xfer->bits_per_word = spi->bits_per_word;
1875
1876		if (!xfer->speed_hz)
1877			xfer->speed_hz = spi->max_speed_hz;
1878
1879		if (master->max_speed_hz &&
1880		    xfer->speed_hz > master->max_speed_hz)
1881			xfer->speed_hz = master->max_speed_hz;
1882
1883		if (master->bits_per_word_mask) {
1884			/* Only 32 bits fit in the mask */
1885			if (xfer->bits_per_word > 32)
1886				return -EINVAL;
1887			if (!(master->bits_per_word_mask &
1888					BIT(xfer->bits_per_word - 1)))
1889				return -EINVAL;
1890		}
1891
1892		/*
1893		 * SPI transfer length should be multiple of SPI word size
1894		 * where SPI word size should be power-of-two multiple
1895		 */
1896		if (xfer->bits_per_word <= 8)
1897			w_size = 1;
1898		else if (xfer->bits_per_word <= 16)
1899			w_size = 2;
1900		else
1901			w_size = 4;
1902
1903		/* No partial transfers accepted */
1904		if (xfer->len % w_size)
1905			return -EINVAL;
1906
1907		if (xfer->speed_hz && master->min_speed_hz &&
1908		    xfer->speed_hz < master->min_speed_hz)
1909			return -EINVAL;
1910
1911		if (xfer->tx_buf && !xfer->tx_nbits)
1912			xfer->tx_nbits = SPI_NBITS_SINGLE;
1913		if (xfer->rx_buf && !xfer->rx_nbits)
1914			xfer->rx_nbits = SPI_NBITS_SINGLE;
1915		/* check transfer tx/rx_nbits:
1916		 * 1. check the value matches one of single, dual and quad
1917		 * 2. check tx/rx_nbits match the mode in spi_device
1918		 */
1919		if (xfer->tx_buf) {
1920			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1921				xfer->tx_nbits != SPI_NBITS_DUAL &&
1922				xfer->tx_nbits != SPI_NBITS_QUAD)
1923				return -EINVAL;
1924			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1925				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1926				return -EINVAL;
1927			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1928				!(spi->mode & SPI_TX_QUAD))
1929				return -EINVAL;
1930		}
1931		/* check transfer rx_nbits */
1932		if (xfer->rx_buf) {
1933			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1934				xfer->rx_nbits != SPI_NBITS_DUAL &&
1935				xfer->rx_nbits != SPI_NBITS_QUAD)
1936				return -EINVAL;
1937			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1938				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1939				return -EINVAL;
1940			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1941				!(spi->mode & SPI_RX_QUAD))
1942				return -EINVAL;
1943		}
 
 
 
1944	}
1945
1946	message->status = -EINPROGRESS;
1947
1948	return 0;
1949}
1950
1951static int __spi_async(struct spi_device *spi, struct spi_message *message)
1952{
1953	struct spi_master *master = spi->master;
 
 
 
 
 
 
 
1954
1955	message->spi = spi;
1956
 
 
 
1957	trace_spi_message_submit(message);
1958
1959	return master->transfer(spi, message);
1960}
1961
1962/**
1963 * spi_async - asynchronous SPI transfer
1964 * @spi: device with which data will be exchanged
1965 * @message: describes the data transfers, including completion callback
1966 * Context: any (irqs may be blocked, etc)
1967 *
1968 * This call may be used in_irq and other contexts which can't sleep,
1969 * as well as from task contexts which can sleep.
1970 *
1971 * The completion callback is invoked in a context which can't sleep.
1972 * Before that invocation, the value of message->status is undefined.
1973 * When the callback is issued, message->status holds either zero (to
1974 * indicate complete success) or a negative error code.  After that
1975 * callback returns, the driver which issued the transfer request may
1976 * deallocate the associated memory; it's no longer in use by any SPI
1977 * core or controller driver code.
1978 *
1979 * Note that although all messages to a spi_device are handled in
1980 * FIFO order, messages may go to different devices in other orders.
1981 * Some device might be higher priority, or have various "hard" access
1982 * time requirements, for example.
1983 *
1984 * On detection of any fault during the transfer, processing of
1985 * the entire message is aborted, and the device is deselected.
1986 * Until returning from the associated message completion callback,
1987 * no other spi_message queued to that device will be processed.
1988 * (This rule applies equally to all the synchronous transfer calls,
1989 * which are wrappers around this core asynchronous primitive.)
 
 
1990 */
1991int spi_async(struct spi_device *spi, struct spi_message *message)
1992{
1993	struct spi_master *master = spi->master;
1994	int ret;
1995	unsigned long flags;
1996
1997	ret = __spi_validate(spi, message);
1998	if (ret != 0)
1999		return ret;
2000
2001	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2002
2003	if (master->bus_lock_flag)
2004		ret = -EBUSY;
2005	else
2006		ret = __spi_async(spi, message);
2007
2008	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL_GPL(spi_async);
2013
2014/**
2015 * spi_async_locked - version of spi_async with exclusive bus usage
2016 * @spi: device with which data will be exchanged
2017 * @message: describes the data transfers, including completion callback
2018 * Context: any (irqs may be blocked, etc)
2019 *
2020 * This call may be used in_irq and other contexts which can't sleep,
2021 * as well as from task contexts which can sleep.
2022 *
2023 * The completion callback is invoked in a context which can't sleep.
2024 * Before that invocation, the value of message->status is undefined.
2025 * When the callback is issued, message->status holds either zero (to
2026 * indicate complete success) or a negative error code.  After that
2027 * callback returns, the driver which issued the transfer request may
2028 * deallocate the associated memory; it's no longer in use by any SPI
2029 * core or controller driver code.
2030 *
2031 * Note that although all messages to a spi_device are handled in
2032 * FIFO order, messages may go to different devices in other orders.
2033 * Some device might be higher priority, or have various "hard" access
2034 * time requirements, for example.
2035 *
2036 * On detection of any fault during the transfer, processing of
2037 * the entire message is aborted, and the device is deselected.
2038 * Until returning from the associated message completion callback,
2039 * no other spi_message queued to that device will be processed.
2040 * (This rule applies equally to all the synchronous transfer calls,
2041 * which are wrappers around this core asynchronous primitive.)
 
 
2042 */
2043int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2044{
2045	struct spi_master *master = spi->master;
2046	int ret;
2047	unsigned long flags;
2048
2049	ret = __spi_validate(spi, message);
2050	if (ret != 0)
2051		return ret;
2052
2053	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2054
2055	ret = __spi_async(spi, message);
2056
2057	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2058
2059	return ret;
2060
2061}
2062EXPORT_SYMBOL_GPL(spi_async_locked);
2063
2064
2065/*-------------------------------------------------------------------------*/
2066
2067/* Utility methods for SPI master protocol drivers, layered on
2068 * top of the core.  Some other utility methods are defined as
2069 * inline functions.
2070 */
2071
2072static void spi_complete(void *arg)
2073{
2074	complete(arg);
2075}
2076
2077static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2078		      int bus_locked)
2079{
2080	DECLARE_COMPLETION_ONSTACK(done);
2081	int status;
2082	struct spi_master *master = spi->master;
 
 
 
 
 
2083
2084	message->complete = spi_complete;
2085	message->context = &done;
 
2086
2087	if (!bus_locked)
2088		mutex_lock(&master->bus_lock_mutex);
2089
2090	status = spi_async_locked(spi, message);
 
 
 
 
 
 
 
 
2091
2092	if (!bus_locked)
2093		mutex_unlock(&master->bus_lock_mutex);
 
 
 
 
2094
2095	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
2096		wait_for_completion(&done);
2097		status = message->status;
2098	}
2099	message->context = NULL;
2100	return status;
2101}
2102
2103/**
2104 * spi_sync - blocking/synchronous SPI data transfers
2105 * @spi: device with which data will be exchanged
2106 * @message: describes the data transfers
2107 * Context: can sleep
2108 *
2109 * This call may only be used from a context that may sleep.  The sleep
2110 * is non-interruptible, and has no timeout.  Low-overhead controller
2111 * drivers may DMA directly into and out of the message buffers.
2112 *
2113 * Note that the SPI device's chip select is active during the message,
2114 * and then is normally disabled between messages.  Drivers for some
2115 * frequently-used devices may want to minimize costs of selecting a chip,
2116 * by leaving it selected in anticipation that the next message will go
2117 * to the same chip.  (That may increase power usage.)
2118 *
2119 * Also, the caller is guaranteeing that the memory associated with the
2120 * message will not be freed before this call returns.
2121 *
2122 * It returns zero on success, else a negative error code.
2123 */
2124int spi_sync(struct spi_device *spi, struct spi_message *message)
2125{
2126	return __spi_sync(spi, message, 0);
 
 
 
 
 
 
2127}
2128EXPORT_SYMBOL_GPL(spi_sync);
2129
2130/**
2131 * spi_sync_locked - version of spi_sync with exclusive bus usage
2132 * @spi: device with which data will be exchanged
2133 * @message: describes the data transfers
2134 * Context: can sleep
2135 *
2136 * This call may only be used from a context that may sleep.  The sleep
2137 * is non-interruptible, and has no timeout.  Low-overhead controller
2138 * drivers may DMA directly into and out of the message buffers.
2139 *
2140 * This call should be used by drivers that require exclusive access to the
2141 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142 * be released by a spi_bus_unlock call when the exclusive access is over.
2143 *
2144 * It returns zero on success, else a negative error code.
2145 */
2146int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2147{
2148	return __spi_sync(spi, message, 1);
2149}
2150EXPORT_SYMBOL_GPL(spi_sync_locked);
2151
2152/**
2153 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2154 * @master: SPI bus master that should be locked for exclusive bus access
2155 * Context: can sleep
2156 *
2157 * This call may only be used from a context that may sleep.  The sleep
2158 * is non-interruptible, and has no timeout.
2159 *
2160 * This call should be used by drivers that require exclusive access to the
2161 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2162 * exclusive access is over. Data transfer must be done by spi_sync_locked
2163 * and spi_async_locked calls when the SPI bus lock is held.
2164 *
2165 * It returns zero on success, else a negative error code.
2166 */
2167int spi_bus_lock(struct spi_master *master)
2168{
2169	unsigned long flags;
2170
2171	mutex_lock(&master->bus_lock_mutex);
2172
2173	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2174	master->bus_lock_flag = 1;
2175	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2176
2177	/* mutex remains locked until spi_bus_unlock is called */
2178
2179	return 0;
2180}
2181EXPORT_SYMBOL_GPL(spi_bus_lock);
2182
2183/**
2184 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2185 * @master: SPI bus master that was locked for exclusive bus access
2186 * Context: can sleep
2187 *
2188 * This call may only be used from a context that may sleep.  The sleep
2189 * is non-interruptible, and has no timeout.
2190 *
2191 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2192 * call.
2193 *
2194 * It returns zero on success, else a negative error code.
2195 */
2196int spi_bus_unlock(struct spi_master *master)
2197{
2198	master->bus_lock_flag = 0;
2199
2200	mutex_unlock(&master->bus_lock_mutex);
2201
2202	return 0;
2203}
2204EXPORT_SYMBOL_GPL(spi_bus_unlock);
2205
2206/* portable code must never pass more than 32 bytes */
2207#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208
2209static u8	*buf;
2210
2211/**
2212 * spi_write_then_read - SPI synchronous write followed by read
2213 * @spi: device with which data will be exchanged
2214 * @txbuf: data to be written (need not be dma-safe)
2215 * @n_tx: size of txbuf, in bytes
2216 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2217 * @n_rx: size of rxbuf, in bytes
2218 * Context: can sleep
2219 *
2220 * This performs a half duplex MicroWire style transaction with the
2221 * device, sending txbuf and then reading rxbuf.  The return value
2222 * is zero for success, else a negative errno status code.
2223 * This call may only be used from a context that may sleep.
2224 *
2225 * Parameters to this routine are always copied using a small buffer;
2226 * portable code should never use this for more than 32 bytes.
2227 * Performance-sensitive or bulk transfer code should instead use
2228 * spi_{async,sync}() calls with dma-safe buffers.
 
 
2229 */
2230int spi_write_then_read(struct spi_device *spi,
2231		const void *txbuf, unsigned n_tx,
2232		void *rxbuf, unsigned n_rx)
2233{
2234	static DEFINE_MUTEX(lock);
2235
2236	int			status;
2237	struct spi_message	message;
2238	struct spi_transfer	x[2];
2239	u8			*local_buf;
2240
2241	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2242	 * copying here, (as a pure convenience thing), but we can
2243	 * keep heap costs out of the hot path unless someone else is
2244	 * using the pre-allocated buffer or the transfer is too large.
2245	 */
2246	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2248				    GFP_KERNEL | GFP_DMA);
2249		if (!local_buf)
2250			return -ENOMEM;
2251	} else {
2252		local_buf = buf;
2253	}
2254
2255	spi_message_init(&message);
2256	memset(x, 0, sizeof(x));
2257	if (n_tx) {
2258		x[0].len = n_tx;
2259		spi_message_add_tail(&x[0], &message);
2260	}
2261	if (n_rx) {
2262		x[1].len = n_rx;
2263		spi_message_add_tail(&x[1], &message);
2264	}
2265
2266	memcpy(local_buf, txbuf, n_tx);
2267	x[0].tx_buf = local_buf;
2268	x[1].rx_buf = local_buf + n_tx;
2269
2270	/* do the i/o */
2271	status = spi_sync(spi, &message);
2272	if (status == 0)
2273		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274
2275	if (x[0].tx_buf == buf)
2276		mutex_unlock(&lock);
2277	else
2278		kfree(local_buf);
2279
2280	return status;
2281}
2282EXPORT_SYMBOL_GPL(spi_write_then_read);
2283
2284/*-------------------------------------------------------------------------*/
2285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286static int __init spi_init(void)
2287{
2288	int	status;
2289
2290	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291	if (!buf) {
2292		status = -ENOMEM;
2293		goto err0;
2294	}
2295
2296	status = bus_register(&spi_bus_type);
2297	if (status < 0)
2298		goto err1;
2299
2300	status = class_register(&spi_master_class);
2301	if (status < 0)
2302		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
2303	return 0;
2304
 
 
2305err2:
2306	bus_unregister(&spi_bus_type);
2307err1:
2308	kfree(buf);
2309	buf = NULL;
2310err0:
2311	return status;
2312}
2313
2314/* board_info is normally registered in arch_initcall(),
2315 * but even essential drivers wait till later
2316 *
2317 * REVISIT only boardinfo really needs static linking. the rest (device and
2318 * driver registration) _could_ be dynamically linked (modular) ... costs
2319 * include needing to have boardinfo data structures be much more public.
2320 */
2321postcore_initcall(spi_init);
2322
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/kernel.h>
 
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Emptry string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 429
 430	sdrv->shutdown(to_spi_device(dev));
 431}
 432
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del opertion for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/**
 479 * spi_alloc_device - Allocate a new SPI device
 480 * @ctlr: Controller to which device is connected
 481 * Context: can sleep
 482 *
 483 * Allows a driver to allocate and initialize a spi_device without
 484 * registering it immediately.  This allows a driver to directly
 485 * fill the spi_device with device parameters before calling
 486 * spi_add_device() on it.
 487 *
 488 * Caller is responsible to call spi_add_device() on the returned
 489 * spi_device structure to add it to the SPI controller.  If the caller
 490 * needs to discard the spi_device without adding it, then it should
 491 * call spi_dev_put() on it.
 492 *
 493 * Return: a pointer to the new device, or NULL.
 494 */
 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 496{
 497	struct spi_device	*spi;
 
 498
 499	if (!spi_controller_get(ctlr))
 500		return NULL;
 501
 502	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 503	if (!spi) {
 504		spi_controller_put(ctlr);
 
 505		return NULL;
 506	}
 507
 508	spi->master = spi->controller = ctlr;
 509	spi->dev.parent = &ctlr->dev;
 510	spi->dev.bus = &spi_bus_type;
 511	spi->dev.release = spidev_release;
 512	spi->cs_gpio = -ENOENT;
 513
 514	spin_lock_init(&spi->statistics.lock);
 515
 516	device_initialize(&spi->dev);
 517	return spi;
 518}
 519EXPORT_SYMBOL_GPL(spi_alloc_device);
 520
 521static void spi_dev_set_name(struct spi_device *spi)
 522{
 523	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 524
 525	if (adev) {
 526		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 527		return;
 528	}
 529
 530	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 531		     spi->chip_select);
 532}
 533
 534static int spi_dev_check(struct device *dev, void *data)
 535{
 536	struct spi_device *spi = to_spi_device(dev);
 537	struct spi_device *new_spi = data;
 538
 539	if (spi->controller == new_spi->controller &&
 540	    spi->chip_select == new_spi->chip_select)
 541		return -EBUSY;
 542	return 0;
 543}
 544
 545/**
 546 * spi_add_device - Add spi_device allocated with spi_alloc_device
 547 * @spi: spi_device to register
 548 *
 549 * Companion function to spi_alloc_device.  Devices allocated with
 550 * spi_alloc_device can be added onto the spi bus with this function.
 551 *
 552 * Return: 0 on success; negative errno on failure
 553 */
 554int spi_add_device(struct spi_device *spi)
 555{
 556	static DEFINE_MUTEX(spi_add_lock);
 557	struct spi_controller *ctlr = spi->controller;
 558	struct device *dev = ctlr->dev.parent;
 559	int status;
 560
 561	/* Chipselects are numbered 0..max; validate. */
 562	if (spi->chip_select >= ctlr->num_chipselect) {
 563		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 564			ctlr->num_chipselect);
 
 565		return -EINVAL;
 566	}
 567
 568	/* Set the bus ID string */
 569	spi_dev_set_name(spi);
 570
 571	/* We need to make sure there's no other device with this
 572	 * chipselect **BEFORE** we call setup(), else we'll trash
 573	 * its configuration.  Lock against concurrent add() calls.
 574	 */
 575	mutex_lock(&spi_add_lock);
 576
 577	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 578	if (status) {
 579		dev_err(dev, "chipselect %d already in use\n",
 580				spi->chip_select);
 581		goto done;
 582	}
 583
 584	/* Descriptors take precedence */
 585	if (ctlr->cs_gpiods)
 586		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 587	else if (ctlr->cs_gpios)
 588		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 589
 590	/* Drivers may modify this initial i/o setup, but will
 591	 * normally rely on the device being setup.  Devices
 592	 * using SPI_CS_HIGH can't coexist well otherwise...
 593	 */
 594	status = spi_setup(spi);
 595	if (status < 0) {
 596		dev_err(dev, "can't setup %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		goto done;
 599	}
 600
 601	/* Device may be bound to an active driver when this returns */
 602	status = device_add(&spi->dev);
 603	if (status < 0)
 604		dev_err(dev, "can't add %s, status %d\n",
 605				dev_name(&spi->dev), status);
 606	else
 607		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 608
 609done:
 610	mutex_unlock(&spi_add_lock);
 611	return status;
 612}
 613EXPORT_SYMBOL_GPL(spi_add_device);
 614
 615/**
 616 * spi_new_device - instantiate one new SPI device
 617 * @ctlr: Controller to which device is connected
 618 * @chip: Describes the SPI device
 619 * Context: can sleep
 620 *
 621 * On typical mainboards, this is purely internal; and it's not needed
 622 * after board init creates the hard-wired devices.  Some development
 623 * platforms may not be able to use spi_register_board_info though, and
 624 * this is exported so that for example a USB or parport based adapter
 625 * driver could add devices (which it would learn about out-of-band).
 626 *
 627 * Return: the new device, or NULL.
 628 */
 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
 630				  struct spi_board_info *chip)
 631{
 632	struct spi_device	*proxy;
 633	int			status;
 634
 635	/* NOTE:  caller did any chip->bus_num checks necessary.
 636	 *
 637	 * Also, unless we change the return value convention to use
 638	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 639	 * suggests syslogged diagnostics are best here (ugh).
 640	 */
 641
 642	proxy = spi_alloc_device(ctlr);
 643	if (!proxy)
 644		return NULL;
 645
 646	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 647
 648	proxy->chip_select = chip->chip_select;
 649	proxy->max_speed_hz = chip->max_speed_hz;
 650	proxy->mode = chip->mode;
 651	proxy->irq = chip->irq;
 652	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 653	proxy->dev.platform_data = (void *) chip->platform_data;
 654	proxy->controller_data = chip->controller_data;
 655	proxy->controller_state = NULL;
 656
 657	if (chip->properties) {
 658		status = device_add_properties(&proxy->dev, chip->properties);
 659		if (status) {
 660			dev_err(&ctlr->dev,
 661				"failed to add properties to '%s': %d\n",
 662				chip->modalias, status);
 663			goto err_dev_put;
 664		}
 665	}
 666
 667	status = spi_add_device(proxy);
 668	if (status < 0)
 669		goto err_remove_props;
 670
 671	return proxy;
 672
 673err_remove_props:
 674	if (chip->properties)
 675		device_remove_properties(&proxy->dev);
 676err_dev_put:
 677	spi_dev_put(proxy);
 678	return NULL;
 679}
 680EXPORT_SYMBOL_GPL(spi_new_device);
 681
 682/**
 683 * spi_unregister_device - unregister a single SPI device
 684 * @spi: spi_device to unregister
 685 *
 686 * Start making the passed SPI device vanish. Normally this would be handled
 687 * by spi_unregister_controller().
 688 */
 689void spi_unregister_device(struct spi_device *spi)
 690{
 691	if (!spi)
 692		return;
 693
 694	if (spi->dev.of_node) {
 695		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 696		of_node_put(spi->dev.of_node);
 697	}
 698	if (ACPI_COMPANION(&spi->dev))
 699		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 700	device_unregister(&spi->dev);
 701}
 702EXPORT_SYMBOL_GPL(spi_unregister_device);
 703
 704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 705					      struct spi_board_info *bi)
 706{
 707	struct spi_device *dev;
 708
 709	if (ctlr->bus_num != bi->bus_num)
 710		return;
 711
 712	dev = spi_new_device(ctlr, bi);
 713	if (!dev)
 714		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 715			bi->modalias);
 716}
 717
 718/**
 719 * spi_register_board_info - register SPI devices for a given board
 720 * @info: array of chip descriptors
 721 * @n: how many descriptors are provided
 722 * Context: can sleep
 723 *
 724 * Board-specific early init code calls this (probably during arch_initcall)
 725 * with segments of the SPI device table.  Any device nodes are created later,
 726 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 727 * this table of devices forever, so that reloading a controller driver will
 728 * not make Linux forget about these hard-wired devices.
 729 *
 730 * Other code can also call this, e.g. a particular add-on board might provide
 731 * SPI devices through its expansion connector, so code initializing that board
 732 * would naturally declare its SPI devices.
 733 *
 734 * The board info passed can safely be __initdata ... but be careful of
 735 * any embedded pointers (platform_data, etc), they're copied as-is.
 736 * Device properties are deep-copied though.
 737 *
 738 * Return: zero on success, else a negative error code.
 739 */
 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 741{
 742	struct boardinfo *bi;
 743	int i;
 744
 745	if (!n)
 746		return 0;
 747
 748	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 749	if (!bi)
 750		return -ENOMEM;
 751
 752	for (i = 0; i < n; i++, bi++, info++) {
 753		struct spi_controller *ctlr;
 754
 755		memcpy(&bi->board_info, info, sizeof(*info));
 756		if (info->properties) {
 757			bi->board_info.properties =
 758					property_entries_dup(info->properties);
 759			if (IS_ERR(bi->board_info.properties))
 760				return PTR_ERR(bi->board_info.properties);
 761		}
 762
 763		mutex_lock(&board_lock);
 764		list_add_tail(&bi->list, &board_list);
 765		list_for_each_entry(ctlr, &spi_controller_list, list)
 766			spi_match_controller_to_boardinfo(ctlr,
 767							  &bi->board_info);
 768		mutex_unlock(&board_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774/*-------------------------------------------------------------------------*/
 775
 776static void spi_set_cs(struct spi_device *spi, bool enable)
 777{
 778	if (spi->mode & SPI_CS_HIGH)
 779		enable = !enable;
 780
 781	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 782		/*
 783		 * Honour the SPI_NO_CS flag and invert the enable line, as
 784		 * active low is default for SPI. Execution paths that handle
 785		 * polarity inversion in gpiolib (such as device tree) will
 786		 * enforce active high using the SPI_CS_HIGH resulting in a
 787		 * double inversion through the code above.
 788		 */
 789		if (!(spi->mode & SPI_NO_CS)) {
 790			if (spi->cs_gpiod)
 791				gpiod_set_value_cansleep(spi->cs_gpiod,
 792							 !enable);
 793			else
 794				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 795		}
 796		/* Some SPI masters need both GPIO CS & slave_select */
 797		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 798		    spi->controller->set_cs)
 799			spi->controller->set_cs(spi, !enable);
 800	} else if (spi->controller->set_cs) {
 801		spi->controller->set_cs(spi, !enable);
 802	}
 803}
 804
 805#ifdef CONFIG_HAS_DMA
 806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 807		struct sg_table *sgt, void *buf, size_t len,
 808		enum dma_data_direction dir)
 809{
 810	const bool vmalloced_buf = is_vmalloc_addr(buf);
 811	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 812#ifdef CONFIG_HIGHMEM
 813	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 814				(unsigned long)buf < (PKMAP_BASE +
 815					(LAST_PKMAP * PAGE_SIZE)));
 816#else
 817	const bool kmap_buf = false;
 818#endif
 819	int desc_len;
 820	int sgs;
 821	struct page *vm_page;
 822	struct scatterlist *sg;
 823	void *sg_buf;
 824	size_t min;
 825	int i, ret;
 826
 827	if (vmalloced_buf || kmap_buf) {
 828		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 829		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 830	} else if (virt_addr_valid(buf)) {
 831		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 832		sgs = DIV_ROUND_UP(len, desc_len);
 833	} else {
 834		return -EINVAL;
 835	}
 836
 837	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 838	if (ret != 0)
 839		return ret;
 840
 841	sg = &sgt->sgl[0];
 842	for (i = 0; i < sgs; i++) {
 
 843
 844		if (vmalloced_buf || kmap_buf) {
 845			/*
 846			 * Next scatterlist entry size is the minimum between
 847			 * the desc_len and the remaining buffer length that
 848			 * fits in a page.
 849			 */
 850			min = min_t(size_t, desc_len,
 851				    min_t(size_t, len,
 852					  PAGE_SIZE - offset_in_page(buf)));
 853			if (vmalloced_buf)
 854				vm_page = vmalloc_to_page(buf);
 855			else
 856				vm_page = kmap_to_page(buf);
 857			if (!vm_page) {
 858				sg_free_table(sgt);
 859				return -ENOMEM;
 860			}
 861			sg_set_page(sg, vm_page,
 862				    min, offset_in_page(buf));
 863		} else {
 864			min = min_t(size_t, len, desc_len);
 865			sg_buf = buf;
 866			sg_set_buf(sg, sg_buf, min);
 867		}
 868
 
 
 869		buf += min;
 870		len -= min;
 871		sg = sg_next(sg);
 872	}
 873
 874	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 875	if (!ret)
 876		ret = -ENOMEM;
 877	if (ret < 0) {
 878		sg_free_table(sgt);
 879		return ret;
 880	}
 881
 882	sgt->nents = ret;
 883
 884	return 0;
 885}
 886
 887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 888		   struct sg_table *sgt, enum dma_data_direction dir)
 889{
 890	if (sgt->orig_nents) {
 891		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 892		sg_free_table(sgt);
 893	}
 894}
 895
 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 897{
 898	struct device *tx_dev, *rx_dev;
 899	struct spi_transfer *xfer;
 900	int ret;
 901
 902	if (!ctlr->can_dma)
 903		return 0;
 904
 905	if (ctlr->dma_tx)
 906		tx_dev = ctlr->dma_tx->device->dev;
 907	else
 908		tx_dev = ctlr->dev.parent;
 909
 910	if (ctlr->dma_rx)
 911		rx_dev = ctlr->dma_rx->device->dev;
 912	else
 913		rx_dev = ctlr->dev.parent;
 914
 915	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 916		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 917			continue;
 918
 919		if (xfer->tx_buf != NULL) {
 920			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 921					  (void *)xfer->tx_buf, xfer->len,
 922					  DMA_TO_DEVICE);
 923			if (ret != 0)
 924				return ret;
 925		}
 926
 927		if (xfer->rx_buf != NULL) {
 928			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 929					  xfer->rx_buf, xfer->len,
 930					  DMA_FROM_DEVICE);
 931			if (ret != 0) {
 932				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 933					      DMA_TO_DEVICE);
 934				return ret;
 935			}
 936		}
 937	}
 938
 939	ctlr->cur_msg_mapped = true;
 940
 941	return 0;
 942}
 943
 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 945{
 946	struct spi_transfer *xfer;
 947	struct device *tx_dev, *rx_dev;
 948
 949	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 950		return 0;
 951
 952	if (ctlr->dma_tx)
 953		tx_dev = ctlr->dma_tx->device->dev;
 954	else
 955		tx_dev = ctlr->dev.parent;
 956
 957	if (ctlr->dma_rx)
 958		rx_dev = ctlr->dma_rx->device->dev;
 959	else
 960		rx_dev = ctlr->dev.parent;
 961
 962	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 963		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 964			continue;
 965
 966		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 967		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 968	}
 969
 970	return 0;
 971}
 972#else /* !CONFIG_HAS_DMA */
 973static inline int __spi_map_msg(struct spi_controller *ctlr,
 974				struct spi_message *msg)
 975{
 976	return 0;
 977}
 978
 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 980				  struct spi_message *msg)
 981{
 982	return 0;
 983}
 984#endif /* !CONFIG_HAS_DMA */
 985
 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
 987				struct spi_message *msg)
 988{
 989	struct spi_transfer *xfer;
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		/*
 993		 * Restore the original value of tx_buf or rx_buf if they are
 994		 * NULL.
 995		 */
 996		if (xfer->tx_buf == ctlr->dummy_tx)
 997			xfer->tx_buf = NULL;
 998		if (xfer->rx_buf == ctlr->dummy_rx)
 999			xfer->rx_buf = NULL;
1000	}
1001
1002	return __spi_unmap_msg(ctlr, msg);
1003}
1004
1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006{
1007	struct spi_transfer *xfer;
1008	void *tmp;
1009	unsigned int max_tx, max_rx;
1010
1011	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012		max_tx = 0;
1013		max_rx = 0;
1014
1015		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017			    !xfer->tx_buf)
1018				max_tx = max(xfer->len, max_tx);
1019			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020			    !xfer->rx_buf)
1021				max_rx = max(xfer->len, max_rx);
1022		}
1023
1024		if (max_tx) {
1025			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026				       GFP_KERNEL | GFP_DMA);
1027			if (!tmp)
1028				return -ENOMEM;
1029			ctlr->dummy_tx = tmp;
1030			memset(tmp, 0, max_tx);
1031		}
1032
1033		if (max_rx) {
1034			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035				       GFP_KERNEL | GFP_DMA);
1036			if (!tmp)
1037				return -ENOMEM;
1038			ctlr->dummy_rx = tmp;
1039		}
1040
1041		if (max_tx || max_rx) {
1042			list_for_each_entry(xfer, &msg->transfers,
1043					    transfer_list) {
1044				if (!xfer->len)
1045					continue;
1046				if (!xfer->tx_buf)
1047					xfer->tx_buf = ctlr->dummy_tx;
1048				if (!xfer->rx_buf)
1049					xfer->rx_buf = ctlr->dummy_rx;
1050			}
1051		}
1052	}
1053
1054	return __spi_map_msg(ctlr, msg);
1055}
1056
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058			     struct spi_message *msg,
1059			     struct spi_transfer *xfer)
1060{
1061	struct spi_statistics *statm = &ctlr->statistics;
1062	struct spi_statistics *stats = &msg->spi->statistics;
1063	unsigned long long ms = 1;
1064
1065	if (spi_controller_is_slave(ctlr)) {
1066		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068			return -EINTR;
1069		}
1070	} else {
1071		ms = 8LL * 1000LL * xfer->len;
1072		do_div(ms, xfer->speed_hz);
1073		ms += ms + 200; /* some tolerance */
1074
1075		if (ms > UINT_MAX)
1076			ms = UINT_MAX;
1077
1078		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079						 msecs_to_jiffies(ms));
1080
1081		if (ms == 0) {
1082			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084			dev_err(&msg->spi->dev,
1085				"SPI transfer timed out\n");
1086			return -ETIMEDOUT;
1087		}
1088	}
1089
1090	return 0;
1091}
1092
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095	if (!ns)
1096		return;
1097	if (ns <= 1000) {
1098		ndelay(ns);
1099	} else {
1100		u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102		if (us <= 10)
1103			udelay(us);
1104		else
1105			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106	}
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110					  struct spi_transfer *xfer)
1111{
1112	u32 delay = xfer->cs_change_delay;
1113	u32 unit = xfer->cs_change_delay_unit;
1114	u32 hz;
1115
1116	/* return early on "fast" mode - for everything but USECS */
1117	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118		return;
1119
1120	switch (unit) {
1121	case SPI_DELAY_UNIT_USECS:
1122		/* for compatibility use default of 10us */
1123		if (!delay)
1124			delay = 10000;
1125		else
1126			delay *= 1000;
1127		break;
1128	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129		break;
1130	case SPI_DELAY_UNIT_SCK:
1131		/* if there is no effective speed know, then approximate
1132		 * by underestimating with half the requested hz
1133		 */
1134		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135		delay *= DIV_ROUND_UP(1000000000, hz);
1136		break;
1137	default:
1138		dev_err_once(&msg->spi->dev,
1139			     "Use of unsupported delay unit %i, using default of 10us\n",
1140			     xfer->cs_change_delay_unit);
1141		delay = 10000;
1142	}
1143	/* now sleep for the requested amount of time */
1144	_spi_transfer_delay_ns(delay);
1145}
1146
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation.  It provides
1152 * standard handling of delays and chip select management.
1153 */
1154static int spi_transfer_one_message(struct spi_controller *ctlr,
1155				    struct spi_message *msg)
1156{
1157	struct spi_transfer *xfer;
1158	bool keep_cs = false;
1159	int ret = 0;
1160	struct spi_statistics *statm = &ctlr->statistics;
1161	struct spi_statistics *stats = &msg->spi->statistics;
1162
1163	spi_set_cs(msg->spi, true);
1164
1165	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
1168	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169		trace_spi_transfer_start(msg, xfer);
1170
1171		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
 
 
 
 
 
 
1173
1174		if (xfer->tx_buf || xfer->rx_buf) {
1175			reinit_completion(&ctlr->xfer_completion);
 
 
1176
1177			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178			if (ret < 0) {
1179				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180							       errors);
1181				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182							       errors);
1183				dev_err(&msg->spi->dev,
1184					"SPI transfer failed: %d\n", ret);
1185				goto out;
1186			}
1187
1188			if (ret > 0) {
1189				ret = spi_transfer_wait(ctlr, msg, xfer);
1190				if (ret < 0)
1191					msg->status = ret;
1192			}
1193		} else {
1194			if (xfer->len)
1195				dev_err(&msg->spi->dev,
1196					"Bufferless transfer has length %u\n",
1197					xfer->len);
1198		}
1199
1200		trace_spi_transfer_stop(msg, xfer);
1201
1202		if (msg->status != -EINPROGRESS)
1203			goto out;
1204
1205		if (xfer->delay_usecs)
1206			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207
1208		if (xfer->cs_change) {
1209			if (list_is_last(&xfer->transfer_list,
1210					 &msg->transfers)) {
1211				keep_cs = true;
1212			} else {
1213				spi_set_cs(msg->spi, false);
1214				_spi_transfer_cs_change_delay(msg, xfer);
1215				spi_set_cs(msg->spi, true);
1216			}
1217		}
1218
1219		msg->actual_length += xfer->len;
1220	}
1221
1222out:
1223	if (ret != 0 || !keep_cs)
1224		spi_set_cs(msg->spi, false);
1225
1226	if (msg->status == -EINPROGRESS)
1227		msg->status = ret;
1228
1229	if (msg->status && ctlr->handle_err)
1230		ctlr->handle_err(ctlr, msg);
1231
1232	spi_res_release(ctlr, msg);
1233
1234	spi_finalize_current_message(ctlr);
1235
1236	return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1246 */
1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248{
1249	complete(&ctlr->xfer_completion);
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
1253/**
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1265 */
1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267{
1268	struct spi_message *msg;
 
 
1269	bool was_busy = false;
1270	unsigned long flags;
1271	int ret;
1272
1273	/* Lock queue */
1274	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275
1276	/* Make sure we are not already running a message */
1277	if (ctlr->cur_msg) {
1278		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279		return;
1280	}
1281
1282	/* If another context is idling the device then defer */
1283	if (ctlr->idling) {
1284		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286		return;
1287	}
1288
1289	/* Check if the queue is idle */
1290	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291		if (!ctlr->busy) {
1292			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293			return;
1294		}
1295
1296		/* Only do teardown in the thread */
1297		if (!in_kthread) {
1298			kthread_queue_work(&ctlr->kworker,
1299					   &ctlr->pump_messages);
1300			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301			return;
 
 
 
 
 
 
1302		}
 
 
 
1303
1304		ctlr->busy = false;
1305		ctlr->idling = true;
1306		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307
1308		kfree(ctlr->dummy_rx);
1309		ctlr->dummy_rx = NULL;
1310		kfree(ctlr->dummy_tx);
1311		ctlr->dummy_tx = NULL;
1312		if (ctlr->unprepare_transfer_hardware &&
1313		    ctlr->unprepare_transfer_hardware(ctlr))
1314			dev_err(&ctlr->dev,
1315				"failed to unprepare transfer hardware\n");
1316		if (ctlr->auto_runtime_pm) {
1317			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319		}
1320		trace_spi_controller_idle(ctlr);
1321
1322		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323		ctlr->idling = false;
1324		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325		return;
1326	}
1327
1328	/* Extract head of queue */
1329	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330	ctlr->cur_msg = msg;
1331
1332	list_del_init(&msg->queue);
1333	if (ctlr->busy)
1334		was_busy = true;
1335	else
1336		ctlr->busy = true;
1337	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339	mutex_lock(&ctlr->io_mutex);
1340
1341	if (!was_busy && ctlr->auto_runtime_pm) {
1342		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343		if (ret < 0) {
1344			pm_runtime_put_noidle(ctlr->dev.parent);
1345			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346				ret);
1347			mutex_unlock(&ctlr->io_mutex);
1348			return;
1349		}
1350	}
1351
1352	if (!was_busy)
1353		trace_spi_controller_busy(ctlr);
1354
1355	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356		ret = ctlr->prepare_transfer_hardware(ctlr);
1357		if (ret) {
1358			dev_err(&ctlr->dev,
1359				"failed to prepare transfer hardware: %d\n",
1360				ret);
1361
1362			if (ctlr->auto_runtime_pm)
1363				pm_runtime_put(ctlr->dev.parent);
1364
1365			msg->status = ret;
1366			spi_finalize_current_message(ctlr);
1367
1368			mutex_unlock(&ctlr->io_mutex);
1369			return;
1370		}
1371	}
1372
1373	trace_spi_message_start(msg);
1374
1375	if (ctlr->prepare_message) {
1376		ret = ctlr->prepare_message(ctlr, msg);
1377		if (ret) {
1378			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379				ret);
1380			msg->status = ret;
1381			spi_finalize_current_message(ctlr);
1382			goto out;
1383		}
1384		ctlr->cur_msg_prepared = true;
1385	}
1386
1387	ret = spi_map_msg(ctlr, msg);
1388	if (ret) {
1389		msg->status = ret;
1390		spi_finalize_current_message(ctlr);
1391		goto out;
1392	}
1393
1394	ret = ctlr->transfer_one_message(ctlr, msg);
1395	if (ret) {
1396		dev_err(&ctlr->dev,
1397			"failed to transfer one message from queue\n");
1398		goto out;
1399	}
1400
1401out:
1402	mutex_unlock(&ctlr->io_mutex);
1403
1404	/* Prod the scheduler in case transfer_one() was busy waiting */
1405	if (!ret)
1406		cond_resched();
1407}
1408
1409/**
1410 * spi_pump_messages - kthread work function which processes spi message queue
1411 * @work: pointer to kthread work struct contained in the controller struct
1412 */
1413static void spi_pump_messages(struct kthread_work *work)
1414{
1415	struct spi_controller *ctlr =
1416		container_of(work, struct spi_controller, pump_messages);
1417
1418	__spi_pump_messages(ctlr, true);
1419}
1420
1421/**
1422 * spi_set_thread_rt - set the controller to pump at realtime priority
1423 * @ctlr: controller to boost priority of
1424 *
1425 * This can be called because the controller requested realtime priority
1426 * (by setting the ->rt value before calling spi_register_controller()) or
1427 * because a device on the bus said that its transfers needed realtime
1428 * priority.
1429 *
1430 * NOTE: at the moment if any device on a bus says it needs realtime then
1431 * the thread will be at realtime priority for all transfers on that
1432 * controller.  If this eventually becomes a problem we may see if we can
1433 * find a way to boost the priority only temporarily during relevant
1434 * transfers.
1435 */
1436static void spi_set_thread_rt(struct spi_controller *ctlr)
1437{
1438	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439
1440	dev_info(&ctlr->dev,
1441		"will run message pump with realtime priority\n");
1442	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443}
1444
1445static int spi_init_queue(struct spi_controller *ctlr)
1446{
1447	ctlr->running = false;
1448	ctlr->busy = false;
1449
1450	kthread_init_worker(&ctlr->kworker);
1451	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452					 "%s", dev_name(&ctlr->dev));
1453	if (IS_ERR(ctlr->kworker_task)) {
1454		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455		return PTR_ERR(ctlr->kworker_task);
1456	}
1457	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458
1459	/*
1460	 * Controller config will indicate if this controller should run the
1461	 * message pump with high (realtime) priority to reduce the transfer
1462	 * latency on the bus by minimising the delay between a transfer
1463	 * request and the scheduling of the message pump thread. Without this
1464	 * setting the message pump thread will remain at default priority.
1465	 */
1466	if (ctlr->rt)
1467		spi_set_thread_rt(ctlr);
 
 
 
1468
1469	return 0;
1470}
1471
1472/**
1473 * spi_get_next_queued_message() - called by driver to check for queued
1474 * messages
1475 * @ctlr: the controller to check for queued messages
1476 *
1477 * If there are more messages in the queue, the next message is returned from
1478 * this call.
1479 *
1480 * Return: the next message in the queue, else NULL if the queue is empty.
1481 */
1482struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483{
1484	struct spi_message *next;
1485	unsigned long flags;
1486
1487	/* get a pointer to the next message, if any */
1488	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490					queue);
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492
1493	return next;
1494}
1495EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496
1497/**
1498 * spi_finalize_current_message() - the current message is complete
1499 * @ctlr: the controller to return the message to
1500 *
1501 * Called by the driver to notify the core that the message in the front of the
1502 * queue is complete and can be removed from the queue.
1503 */
1504void spi_finalize_current_message(struct spi_controller *ctlr)
1505{
1506	struct spi_message *mesg;
1507	unsigned long flags;
1508	int ret;
1509
1510	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511	mesg = ctlr->cur_msg;
1512	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
1513
1514	spi_unmap_msg(ctlr, mesg);
1515
1516	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517		ret = ctlr->unprepare_message(ctlr, mesg);
1518		if (ret) {
1519			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520				ret);
1521		}
1522	}
1523
1524	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525	ctlr->cur_msg = NULL;
1526	ctlr->cur_msg_prepared = false;
1527	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529
1530	trace_spi_message_done(mesg);
1531
1532	mesg->state = NULL;
1533	if (mesg->complete)
1534		mesg->complete(mesg->context);
 
 
1535}
1536EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537
1538static int spi_start_queue(struct spi_controller *ctlr)
1539{
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543
1544	if (ctlr->running || ctlr->busy) {
1545		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546		return -EBUSY;
1547	}
1548
1549	ctlr->running = true;
1550	ctlr->cur_msg = NULL;
1551	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552
1553	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554
1555	return 0;
1556}
1557
1558static int spi_stop_queue(struct spi_controller *ctlr)
1559{
1560	unsigned long flags;
1561	unsigned limit = 500;
1562	int ret = 0;
1563
1564	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565
1566	/*
1567	 * This is a bit lame, but is optimized for the common execution path.
1568	 * A wait_queue on the ctlr->busy could be used, but then the common
1569	 * execution path (pump_messages) would be required to call wake_up or
1570	 * friends on every SPI message. Do this instead.
1571	 */
1572	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574		usleep_range(10000, 11000);
1575		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576	}
1577
1578	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579		ret = -EBUSY;
1580	else
1581		ctlr->running = false;
1582
1583	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584
1585	if (ret) {
1586		dev_warn(&ctlr->dev, "could not stop message queue\n");
 
1587		return ret;
1588	}
1589	return ret;
1590}
1591
1592static int spi_destroy_queue(struct spi_controller *ctlr)
1593{
1594	int ret;
1595
1596	ret = spi_stop_queue(ctlr);
1597
1598	/*
1599	 * kthread_flush_worker will block until all work is done.
1600	 * If the reason that stop_queue timed out is that the work will never
1601	 * finish, then it does no good to call flush/stop thread, so
1602	 * return anyway.
1603	 */
1604	if (ret) {
1605		dev_err(&ctlr->dev, "problem destroying queue\n");
1606		return ret;
1607	}
1608
1609	kthread_flush_worker(&ctlr->kworker);
1610	kthread_stop(ctlr->kworker_task);
1611
1612	return 0;
1613}
1614
1615static int __spi_queued_transfer(struct spi_device *spi,
1616				 struct spi_message *msg,
1617				 bool need_pump)
 
 
 
1618{
1619	struct spi_controller *ctlr = spi->controller;
1620	unsigned long flags;
1621
1622	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623
1624	if (!ctlr->running) {
1625		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626		return -ESHUTDOWN;
1627	}
1628	msg->actual_length = 0;
1629	msg->status = -EINPROGRESS;
1630
1631	list_add_tail(&msg->queue, &ctlr->queue);
1632	if (!ctlr->busy && need_pump)
1633		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634
1635	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636	return 0;
1637}
1638
1639/**
1640 * spi_queued_transfer - transfer function for queued transfers
1641 * @spi: spi device which is requesting transfer
1642 * @msg: spi message which is to handled is queued to driver queue
1643 *
1644 * Return: zero on success, else a negative error code.
1645 */
1646static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647{
1648	return __spi_queued_transfer(spi, msg, true);
1649}
1650
1651static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652{
1653	int ret;
1654
1655	ctlr->transfer = spi_queued_transfer;
1656	if (!ctlr->transfer_one_message)
1657		ctlr->transfer_one_message = spi_transfer_one_message;
1658
1659	/* Initialize and start queue */
1660	ret = spi_init_queue(ctlr);
1661	if (ret) {
1662		dev_err(&ctlr->dev, "problem initializing queue\n");
1663		goto err_init_queue;
1664	}
1665	ctlr->queued = true;
1666	ret = spi_start_queue(ctlr);
1667	if (ret) {
1668		dev_err(&ctlr->dev, "problem starting queue\n");
1669		goto err_start_queue;
1670	}
1671
1672	return 0;
1673
1674err_start_queue:
1675	spi_destroy_queue(ctlr);
1676err_init_queue:
1677	return ret;
1678}
1679
1680/**
1681 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 *		     context
1683 * @ctlr: controller to process queue for
1684 *
1685 * This should be used when one wants to ensure all pending messages have been
1686 * sent before doing something. Is used by the spi-mem code to make sure SPI
1687 * memory operations do not preempt regular SPI transfers that have been queued
1688 * before the spi-mem operation.
1689 */
1690void spi_flush_queue(struct spi_controller *ctlr)
1691{
1692	if (ctlr->transfer == spi_queued_transfer)
1693		__spi_pump_messages(ctlr, false);
1694}
1695
1696/*-------------------------------------------------------------------------*/
1697
1698#if defined(CONFIG_OF)
1699static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700			   struct device_node *nc)
 
 
 
 
 
 
1701{
 
 
 
1702	u32 value;
1703	int rc;
1704
1705	/* Mode (clock phase/polarity/etc.) */
1706	if (of_property_read_bool(nc, "spi-cpha"))
1707		spi->mode |= SPI_CPHA;
1708	if (of_property_read_bool(nc, "spi-cpol"))
1709		spi->mode |= SPI_CPOL;
1710	if (of_property_read_bool(nc, "spi-3wire"))
1711		spi->mode |= SPI_3WIRE;
1712	if (of_property_read_bool(nc, "spi-lsb-first"))
1713		spi->mode |= SPI_LSB_FIRST;
1714
1715	/*
1716	 * For descriptors associated with the device, polarity inversion is
1717	 * handled in the gpiolib, so all chip selects are "active high" in
1718	 * the logical sense, the gpiolib will invert the line if need be.
1719	 */
1720	if (ctlr->use_gpio_descriptors)
1721		spi->mode |= SPI_CS_HIGH;
1722	else if (of_property_read_bool(nc, "spi-cs-high"))
1723		spi->mode |= SPI_CS_HIGH;
1724
1725	/* Device DUAL/QUAD mode */
1726	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1727		switch (value) {
1728		case 1:
1729			break;
1730		case 2:
1731			spi->mode |= SPI_TX_DUAL;
1732			break;
1733		case 4:
1734			spi->mode |= SPI_TX_QUAD;
1735			break;
1736		case 8:
1737			spi->mode |= SPI_TX_OCTAL;
1738			break;
1739		default:
1740			dev_warn(&ctlr->dev,
1741				"spi-tx-bus-width %d not supported\n",
1742				value);
1743			break;
1744		}
1745	}
1746
1747	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1748		switch (value) {
1749		case 1:
1750			break;
1751		case 2:
1752			spi->mode |= SPI_RX_DUAL;
1753			break;
1754		case 4:
1755			spi->mode |= SPI_RX_QUAD;
1756			break;
1757		case 8:
1758			spi->mode |= SPI_RX_OCTAL;
1759			break;
1760		default:
1761			dev_warn(&ctlr->dev,
1762				"spi-rx-bus-width %d not supported\n",
1763				value);
1764			break;
1765		}
1766	}
1767
1768	if (spi_controller_is_slave(ctlr)) {
1769		if (!of_node_name_eq(nc, "slave")) {
1770			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1771				nc);
1772			return -EINVAL;
 
 
1773		}
1774		return 0;
1775	}
1776
1777	/* Device address */
1778	rc = of_property_read_u32(nc, "reg", &value);
1779	if (rc) {
1780		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1781			nc, rc);
1782		return rc;
1783	}
1784	spi->chip_select = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	/* Device speed */
1787	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1788	if (rc) {
1789		dev_err(&ctlr->dev,
1790			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1791		return rc;
1792	}
1793	spi->max_speed_hz = value;
 
 
 
 
 
 
 
 
 
 
1794
1795	return 0;
1796}
 
 
 
 
 
 
 
1797
1798static struct spi_device *
1799of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800{
1801	struct spi_device *spi;
1802	int rc;
1803
1804	/* Alloc an spi_device */
1805	spi = spi_alloc_device(ctlr);
1806	if (!spi) {
1807		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1808		rc = -ENOMEM;
1809		goto err_out;
1810	}
1811
1812	/* Select device driver */
1813	rc = of_modalias_node(nc, spi->modalias,
1814				sizeof(spi->modalias));
1815	if (rc < 0) {
1816		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1817		goto err_out;
1818	}
1819
1820	rc = of_spi_parse_dt(ctlr, spi, nc);
1821	if (rc)
1822		goto err_out;
1823
1824	/* Store a pointer to the node in the device structure */
1825	of_node_get(nc);
1826	spi->dev.of_node = nc;
1827
1828	/* Register the new device */
1829	rc = spi_add_device(spi);
1830	if (rc) {
1831		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1832		goto err_of_node_put;
1833	}
1834
1835	return spi;
 
 
 
 
 
 
 
1836
1837err_of_node_put:
1838	of_node_put(nc);
1839err_out:
1840	spi_dev_put(spi);
1841	return ERR_PTR(rc);
1842}
1843
1844/**
1845 * of_register_spi_devices() - Register child devices onto the SPI bus
1846 * @ctlr:	Pointer to spi_controller device
1847 *
1848 * Registers an spi_device for each child node of controller node which
1849 * represents a valid SPI slave.
1850 */
1851static void of_register_spi_devices(struct spi_controller *ctlr)
1852{
1853	struct spi_device *spi;
1854	struct device_node *nc;
1855
1856	if (!ctlr->dev.of_node)
1857		return;
1858
1859	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1860		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861			continue;
1862		spi = of_register_spi_device(ctlr, nc);
1863		if (IS_ERR(spi)) {
1864			dev_warn(&ctlr->dev,
1865				 "Failed to create SPI device for %pOF\n", nc);
1866			of_node_clear_flag(nc, OF_POPULATED);
1867		}
1868	}
1869}
1870#else
1871static void of_register_spi_devices(struct spi_controller *ctlr) { }
1872#endif
1873
1874#ifdef CONFIG_ACPI
1875struct acpi_spi_lookup {
1876	struct spi_controller 	*ctlr;
1877	u32			max_speed_hz;
1878	u32			mode;
1879	int			irq;
1880	u8			bits_per_word;
1881	u8			chip_select;
1882};
1883
1884static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1885					    struct acpi_spi_lookup *lookup)
1886{
1887	const union acpi_object *obj;
1888
1889	if (!x86_apple_machine)
1890		return;
1891
1892	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1893	    && obj->buffer.length >= 4)
1894		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895
1896	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1897	    && obj->buffer.length == 8)
1898		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899
1900	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1901	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1902		lookup->mode |= SPI_LSB_FIRST;
1903
1904	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1905	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1906		lookup->mode |= SPI_CPOL;
1907
1908	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1909	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1910		lookup->mode |= SPI_CPHA;
1911}
1912
1913static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914{
1915	struct acpi_spi_lookup *lookup = data;
1916	struct spi_controller *ctlr = lookup->ctlr;
1917
1918	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1919		struct acpi_resource_spi_serialbus *sb;
1920		acpi_handle parent_handle;
1921		acpi_status status;
1922
1923		sb = &ares->data.spi_serial_bus;
1924		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925
1926			status = acpi_get_handle(NULL,
1927						 sb->resource_source.string_ptr,
1928						 &parent_handle);
1929
1930			if (ACPI_FAILURE(status) ||
1931			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1932				return -ENODEV;
1933
1934			/*
1935			 * ACPI DeviceSelection numbering is handled by the
1936			 * host controller driver in Windows and can vary
1937			 * from driver to driver. In Linux we always expect
1938			 * 0 .. max - 1 so we need to ask the driver to
1939			 * translate between the two schemes.
1940			 */
1941			if (ctlr->fw_translate_cs) {
1942				int cs = ctlr->fw_translate_cs(ctlr,
1943						sb->device_selection);
1944				if (cs < 0)
1945					return cs;
1946				lookup->chip_select = cs;
1947			} else {
1948				lookup->chip_select = sb->device_selection;
1949			}
1950
1951			lookup->max_speed_hz = sb->connection_speed;
1952
1953			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1954				lookup->mode |= SPI_CPHA;
1955			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1956				lookup->mode |= SPI_CPOL;
1957			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1958				lookup->mode |= SPI_CS_HIGH;
1959		}
1960	} else if (lookup->irq < 0) {
1961		struct resource r;
1962
1963		if (acpi_dev_resource_interrupt(ares, 0, &r))
1964			lookup->irq = r.start;
1965	}
1966
1967	/* Always tell the ACPI core to skip this resource */
1968	return 1;
1969}
1970
1971static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1972					    struct acpi_device *adev)
1973{
1974	acpi_handle parent_handle = NULL;
1975	struct list_head resource_list;
1976	struct acpi_spi_lookup lookup = {};
1977	struct spi_device *spi;
1978	int ret;
1979
1980	if (acpi_bus_get_status(adev) || !adev->status.present ||
1981	    acpi_device_enumerated(adev))
1982		return AE_OK;
1983
1984	lookup.ctlr		= ctlr;
1985	lookup.irq		= -1;
1986
1987	INIT_LIST_HEAD(&resource_list);
1988	ret = acpi_dev_get_resources(adev, &resource_list,
1989				     acpi_spi_add_resource, &lookup);
1990	acpi_dev_free_resource_list(&resource_list);
1991
1992	if (ret < 0)
1993		/* found SPI in _CRS but it points to another controller */
1994		return AE_OK;
1995
1996	if (!lookup.max_speed_hz &&
1997	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1998	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1999		/* Apple does not use _CRS but nested devices for SPI slaves */
2000		acpi_spi_parse_apple_properties(adev, &lookup);
2001	}
2002
2003	if (!lookup.max_speed_hz)
2004		return AE_OK;
2005
2006	spi = spi_alloc_device(ctlr);
2007	if (!spi) {
2008		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2009			dev_name(&adev->dev));
2010		return AE_NO_MEMORY;
2011	}
2012
2013	ACPI_COMPANION_SET(&spi->dev, adev);
2014	spi->max_speed_hz	= lookup.max_speed_hz;
2015	spi->mode		= lookup.mode;
2016	spi->irq		= lookup.irq;
2017	spi->bits_per_word	= lookup.bits_per_word;
2018	spi->chip_select	= lookup.chip_select;
2019
2020	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2021			  sizeof(spi->modalias));
 
 
2022
2023	if (spi->irq < 0)
2024		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025
2026	acpi_device_set_enumerated(adev);
2027
2028	adev->power.flags.ignore_parent = true;
 
2029	if (spi_add_device(spi)) {
2030		adev->power.flags.ignore_parent = false;
2031		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2032			dev_name(&adev->dev));
2033		spi_dev_put(spi);
2034	}
2035
2036	return AE_OK;
2037}
2038
2039static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2040				       void *data, void **return_value)
2041{
2042	struct spi_controller *ctlr = data;
2043	struct acpi_device *adev;
2044
2045	if (acpi_bus_get_device(handle, &adev))
2046		return AE_OK;
2047
2048	return acpi_register_spi_device(ctlr, adev);
2049}
2050
2051#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2052
2053static void acpi_register_spi_devices(struct spi_controller *ctlr)
2054{
2055	acpi_status status;
2056	acpi_handle handle;
2057
2058	handle = ACPI_HANDLE(ctlr->dev.parent);
2059	if (!handle)
2060		return;
2061
2062	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2063				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2064				     acpi_spi_add_device, NULL, ctlr, NULL);
2065	if (ACPI_FAILURE(status))
2066		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2067}
2068#else
2069static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2070#endif /* CONFIG_ACPI */
2071
2072static void spi_controller_release(struct device *dev)
2073{
2074	struct spi_controller *ctlr;
2075
2076	ctlr = container_of(dev, struct spi_controller, dev);
2077	kfree(ctlr);
2078}
2079
2080static struct class spi_master_class = {
2081	.name		= "spi_master",
2082	.owner		= THIS_MODULE,
2083	.dev_release	= spi_controller_release,
2084	.dev_groups	= spi_master_groups,
2085};
2086
2087#ifdef CONFIG_SPI_SLAVE
2088/**
2089 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090 *		     controller
2091 * @spi: device used for the current transfer
2092 */
2093int spi_slave_abort(struct spi_device *spi)
2094{
2095	struct spi_controller *ctlr = spi->controller;
2096
2097	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2098		return ctlr->slave_abort(ctlr);
2099
2100	return -ENOTSUPP;
2101}
2102EXPORT_SYMBOL_GPL(spi_slave_abort);
2103
2104static int match_true(struct device *dev, void *data)
2105{
2106	return 1;
2107}
2108
2109static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2110			  char *buf)
2111{
2112	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113						   dev);
2114	struct device *child;
2115
2116	child = device_find_child(&ctlr->dev, NULL, match_true);
2117	return sprintf(buf, "%s\n",
2118		       child ? to_spi_device(child)->modalias : NULL);
2119}
2120
2121static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2122			   const char *buf, size_t count)
2123{
2124	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125						   dev);
2126	struct spi_device *spi;
2127	struct device *child;
2128	char name[32];
2129	int rc;
2130
2131	rc = sscanf(buf, "%31s", name);
2132	if (rc != 1 || !name[0])
2133		return -EINVAL;
2134
2135	child = device_find_child(&ctlr->dev, NULL, match_true);
2136	if (child) {
2137		/* Remove registered slave */
2138		device_unregister(child);
2139		put_device(child);
2140	}
2141
2142	if (strcmp(name, "(null)")) {
2143		/* Register new slave */
2144		spi = spi_alloc_device(ctlr);
2145		if (!spi)
2146			return -ENOMEM;
2147
2148		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149
2150		rc = spi_add_device(spi);
2151		if (rc) {
2152			spi_dev_put(spi);
2153			return rc;
2154		}
2155	}
2156
2157	return count;
2158}
2159
2160static DEVICE_ATTR_RW(slave);
2161
2162static struct attribute *spi_slave_attrs[] = {
2163	&dev_attr_slave.attr,
2164	NULL,
2165};
2166
2167static const struct attribute_group spi_slave_group = {
2168	.attrs = spi_slave_attrs,
2169};
2170
2171static const struct attribute_group *spi_slave_groups[] = {
2172	&spi_controller_statistics_group,
2173	&spi_slave_group,
2174	NULL,
2175};
2176
2177static struct class spi_slave_class = {
2178	.name		= "spi_slave",
2179	.owner		= THIS_MODULE,
2180	.dev_release	= spi_controller_release,
2181	.dev_groups	= spi_slave_groups,
2182};
2183#else
2184extern struct class spi_slave_class;	/* dummy */
2185#endif
2186
2187/**
2188 * __spi_alloc_controller - allocate an SPI master or slave controller
2189 * @dev: the controller, possibly using the platform_bus
2190 * @size: how much zeroed driver-private data to allocate; the pointer to this
2191 *	memory is in the driver_data field of the returned device, accessible
2192 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2193 *	drivers granting DMA access to portions of their private data need to
2194 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2195 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2196 *	slave (true) controller
2197 * Context: can sleep
2198 *
2199 * This call is used only by SPI controller drivers, which are the
2200 * only ones directly touching chip registers.  It's how they allocate
2201 * an spi_controller structure, prior to calling spi_register_controller().
2202 *
2203 * This must be called from context that can sleep.
 
2204 *
2205 * The caller is responsible for assigning the bus number and initializing the
2206 * controller's methods before calling spi_register_controller(); and (after
2207 * errors adding the device) calling spi_controller_put() to prevent a memory
2208 * leak.
2209 *
2210 * Return: the SPI controller structure on success, else NULL.
2211 */
2212struct spi_controller *__spi_alloc_controller(struct device *dev,
2213					      unsigned int size, bool slave)
2214{
2215	struct spi_controller	*ctlr;
2216	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2217
2218	if (!dev)
2219		return NULL;
2220
2221	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2222	if (!ctlr)
2223		return NULL;
2224
2225	device_initialize(&ctlr->dev);
2226	ctlr->bus_num = -1;
2227	ctlr->num_chipselect = 1;
2228	ctlr->slave = slave;
2229	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2230		ctlr->dev.class = &spi_slave_class;
2231	else
2232		ctlr->dev.class = &spi_master_class;
2233	ctlr->dev.parent = dev;
2234	pm_suspend_ignore_children(&ctlr->dev, true);
2235	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2236
2237	return ctlr;
2238}
2239EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2240
2241#ifdef CONFIG_OF
2242static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2243{
2244	int nb, i, *cs;
2245	struct device_node *np = ctlr->dev.of_node;
2246
2247	if (!np)
2248		return 0;
2249
2250	nb = of_gpio_named_count(np, "cs-gpios");
2251	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2252
2253	/* Return error only for an incorrectly formed cs-gpios property */
2254	if (nb == 0 || nb == -ENOENT)
2255		return 0;
2256	else if (nb < 0)
2257		return nb;
2258
2259	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
 
2260			  GFP_KERNEL);
2261	ctlr->cs_gpios = cs;
2262
2263	if (!ctlr->cs_gpios)
2264		return -ENOMEM;
2265
2266	for (i = 0; i < ctlr->num_chipselect; i++)
2267		cs[i] = -ENOENT;
2268
2269	for (i = 0; i < nb; i++)
2270		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2271
2272	return 0;
2273}
2274#else
2275static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2276{
2277	return 0;
2278}
2279#endif
2280
2281/**
2282 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2283 * @ctlr: The SPI master to grab GPIO descriptors for
2284 */
2285static int spi_get_gpio_descs(struct spi_controller *ctlr)
2286{
2287	int nb, i;
2288	struct gpio_desc **cs;
2289	struct device *dev = &ctlr->dev;
2290
2291	nb = gpiod_count(dev, "cs");
2292	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2293
2294	/* No GPIOs at all is fine, else return the error */
2295	if (nb == 0 || nb == -ENOENT)
2296		return 0;
2297	else if (nb < 0)
2298		return nb;
2299
2300	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301			  GFP_KERNEL);
2302	if (!cs)
2303		return -ENOMEM;
2304	ctlr->cs_gpiods = cs;
2305
2306	for (i = 0; i < nb; i++) {
2307		/*
2308		 * Most chipselects are active low, the inverted
2309		 * semantics are handled by special quirks in gpiolib,
2310		 * so initializing them GPIOD_OUT_LOW here means
2311		 * "unasserted", in most cases this will drive the physical
2312		 * line high.
2313		 */
2314		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2315						      GPIOD_OUT_LOW);
2316		if (IS_ERR(cs[i]))
2317			return PTR_ERR(cs[i]);
2318
2319		if (cs[i]) {
2320			/*
2321			 * If we find a CS GPIO, name it after the device and
2322			 * chip select line.
2323			 */
2324			char *gpioname;
2325
2326			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327						  dev_name(dev), i);
2328			if (!gpioname)
2329				return -ENOMEM;
2330			gpiod_set_consumer_name(cs[i], gpioname);
2331		}
2332	}
2333
2334	return 0;
2335}
2336
2337static int spi_controller_check_ops(struct spi_controller *ctlr)
2338{
2339	/*
2340	 * The controller may implement only the high-level SPI-memory like
2341	 * operations if it does not support regular SPI transfers, and this is
2342	 * valid use case.
2343	 * If ->mem_ops is NULL, we request that at least one of the
2344	 * ->transfer_xxx() method be implemented.
2345	 */
2346	if (ctlr->mem_ops) {
2347		if (!ctlr->mem_ops->exec_op)
2348			return -EINVAL;
2349	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2350		   !ctlr->transfer_one_message) {
2351		return -EINVAL;
2352	}
2353
2354	return 0;
2355}
2356
2357/**
2358 * spi_register_controller - register SPI master or slave controller
2359 * @ctlr: initialized master, originally from spi_alloc_master() or
2360 *	spi_alloc_slave()
2361 * Context: can sleep
2362 *
2363 * SPI controllers connect to their drivers using some non-SPI bus,
2364 * such as the platform bus.  The final stage of probe() in that code
2365 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2366 *
2367 * SPI controllers use board specific (often SOC specific) bus numbers,
2368 * and board-specific addressing for SPI devices combines those numbers
2369 * with chip select numbers.  Since SPI does not directly support dynamic
2370 * device identification, boards need configuration tables telling which
2371 * chip is at which address.
2372 *
2373 * This must be called from context that can sleep.  It returns zero on
2374 * success, else a negative error code (dropping the controller's refcount).
2375 * After a successful return, the caller is responsible for calling
2376 * spi_unregister_controller().
2377 *
2378 * Return: zero on success, else a negative error code.
2379 */
2380int spi_register_controller(struct spi_controller *ctlr)
2381{
2382	struct device		*dev = ctlr->dev.parent;
 
2383	struct boardinfo	*bi;
2384	int			status;
2385	int			id, first_dynamic;
2386
2387	if (!dev)
2388		return -ENODEV;
2389
2390	/*
2391	 * Make sure all necessary hooks are implemented before registering
2392	 * the SPI controller.
2393	 */
2394	status = spi_controller_check_ops(ctlr);
2395	if (status)
2396		return status;
2397
2398	if (ctlr->bus_num >= 0) {
2399		/* devices with a fixed bus num must check-in with the num */
2400		mutex_lock(&board_lock);
2401		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2402			ctlr->bus_num + 1, GFP_KERNEL);
2403		mutex_unlock(&board_lock);
2404		if (WARN(id < 0, "couldn't get idr"))
2405			return id == -ENOSPC ? -EBUSY : id;
2406		ctlr->bus_num = id;
2407	} else if (ctlr->dev.of_node) {
2408		/* allocate dynamic bus number using Linux idr */
2409		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2410		if (id >= 0) {
2411			ctlr->bus_num = id;
2412			mutex_lock(&board_lock);
2413			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2414				       ctlr->bus_num + 1, GFP_KERNEL);
2415			mutex_unlock(&board_lock);
2416			if (WARN(id < 0, "couldn't get idr"))
2417				return id == -ENOSPC ? -EBUSY : id;
2418		}
2419	}
2420	if (ctlr->bus_num < 0) {
2421		first_dynamic = of_alias_get_highest_id("spi");
2422		if (first_dynamic < 0)
2423			first_dynamic = 0;
2424		else
2425			first_dynamic++;
2426
2427		mutex_lock(&board_lock);
2428		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2429			       0, GFP_KERNEL);
2430		mutex_unlock(&board_lock);
2431		if (WARN(id < 0, "couldn't get idr"))
2432			return id;
2433		ctlr->bus_num = id;
2434	}
2435	INIT_LIST_HEAD(&ctlr->queue);
2436	spin_lock_init(&ctlr->queue_lock);
2437	spin_lock_init(&ctlr->bus_lock_spinlock);
2438	mutex_init(&ctlr->bus_lock_mutex);
2439	mutex_init(&ctlr->io_mutex);
2440	ctlr->bus_lock_flag = 0;
2441	init_completion(&ctlr->xfer_completion);
2442	if (!ctlr->max_dma_len)
2443		ctlr->max_dma_len = INT_MAX;
2444
2445	/* register the device, then userspace will see it.
2446	 * registration fails if the bus ID is in use.
2447	 */
2448	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2449
2450	if (!spi_controller_is_slave(ctlr)) {
2451		if (ctlr->use_gpio_descriptors) {
2452			status = spi_get_gpio_descs(ctlr);
2453			if (status)
2454				return status;
2455			/*
2456			 * A controller using GPIO descriptors always
2457			 * supports SPI_CS_HIGH if need be.
2458			 */
2459			ctlr->mode_bits |= SPI_CS_HIGH;
2460		} else {
2461			/* Legacy code path for GPIOs from DT */
2462			status = of_spi_get_gpio_numbers(ctlr);
2463			if (status)
2464				return status;
2465		}
2466	}
2467
2468	/*
2469	 * Even if it's just one always-selected device, there must
2470	 * be at least one chipselect.
2471	 */
2472	if (!ctlr->num_chipselect)
2473		return -EINVAL;
2474
2475	status = device_add(&ctlr->dev);
2476	if (status < 0) {
2477		/* free bus id */
2478		mutex_lock(&board_lock);
2479		idr_remove(&spi_master_idr, ctlr->bus_num);
2480		mutex_unlock(&board_lock);
2481		goto done;
2482	}
2483	dev_dbg(dev, "registered %s %s\n",
2484			spi_controller_is_slave(ctlr) ? "slave" : "master",
2485			dev_name(&ctlr->dev));
2486
2487	/*
2488	 * If we're using a queued driver, start the queue. Note that we don't
2489	 * need the queueing logic if the driver is only supporting high-level
2490	 * memory operations.
2491	 */
2492	if (ctlr->transfer) {
2493		dev_info(dev, "controller is unqueued, this is deprecated\n");
2494	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2495		status = spi_controller_initialize_queue(ctlr);
2496		if (status) {
2497			device_del(&ctlr->dev);
2498			/* free bus id */
2499			mutex_lock(&board_lock);
2500			idr_remove(&spi_master_idr, ctlr->bus_num);
2501			mutex_unlock(&board_lock);
2502			goto done;
2503		}
2504	}
2505	/* add statistics */
2506	spin_lock_init(&ctlr->statistics.lock);
2507
2508	mutex_lock(&board_lock);
2509	list_add_tail(&ctlr->list, &spi_controller_list);
2510	list_for_each_entry(bi, &board_list, list)
2511		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2512	mutex_unlock(&board_lock);
2513
2514	/* Register devices from the device tree and ACPI */
2515	of_register_spi_devices(ctlr);
2516	acpi_register_spi_devices(ctlr);
2517done:
2518	return status;
2519}
2520EXPORT_SYMBOL_GPL(spi_register_controller);
2521
2522static void devm_spi_unregister(struct device *dev, void *res)
2523{
2524	spi_unregister_controller(*(struct spi_controller **)res);
2525}
2526
2527/**
2528 * devm_spi_register_controller - register managed SPI master or slave
2529 *	controller
2530 * @dev:    device managing SPI controller
2531 * @ctlr: initialized controller, originally from spi_alloc_master() or
2532 *	spi_alloc_slave()
2533 * Context: can sleep
2534 *
2535 * Register a SPI device as with spi_register_controller() which will
2536 * automatically be unregistered and freed.
2537 *
2538 * Return: zero on success, else a negative error code.
2539 */
2540int devm_spi_register_controller(struct device *dev,
2541				 struct spi_controller *ctlr)
2542{
2543	struct spi_controller **ptr;
2544	int ret;
2545
2546	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547	if (!ptr)
2548		return -ENOMEM;
2549
2550	ret = spi_register_controller(ctlr);
2551	if (!ret) {
2552		*ptr = ctlr;
2553		devres_add(dev, ptr);
2554	} else {
2555		devres_free(ptr);
2556	}
2557
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2561
2562static int __unregister(struct device *dev, void *null)
2563{
2564	spi_unregister_device(to_spi_device(dev));
2565	return 0;
2566}
2567
2568/**
2569 * spi_unregister_controller - unregister SPI master or slave controller
2570 * @ctlr: the controller being unregistered
2571 * Context: can sleep
2572 *
2573 * This call is used only by SPI controller drivers, which are the
2574 * only ones directly touching chip registers.
2575 *
2576 * This must be called from context that can sleep.
2577 *
2578 * Note that this function also drops a reference to the controller.
2579 */
2580void spi_unregister_controller(struct spi_controller *ctlr)
2581{
2582	struct spi_controller *found;
2583	int id = ctlr->bus_num;
2584
2585	/* First make sure that this controller was ever added */
2586	mutex_lock(&board_lock);
2587	found = idr_find(&spi_master_idr, id);
2588	mutex_unlock(&board_lock);
2589	if (ctlr->queued) {
2590		if (spi_destroy_queue(ctlr))
2591			dev_err(&ctlr->dev, "queue remove failed\n");
2592	}
 
2593	mutex_lock(&board_lock);
2594	list_del(&ctlr->list);
2595	mutex_unlock(&board_lock);
2596
2597	device_for_each_child(&ctlr->dev, NULL, __unregister);
2598	device_unregister(&ctlr->dev);
2599	/* free bus id */
2600	mutex_lock(&board_lock);
2601	if (found == ctlr)
2602		idr_remove(&spi_master_idr, id);
2603	mutex_unlock(&board_lock);
2604}
2605EXPORT_SYMBOL_GPL(spi_unregister_controller);
2606
2607int spi_controller_suspend(struct spi_controller *ctlr)
2608{
2609	int ret;
2610
2611	/* Basically no-ops for non-queued controllers */
2612	if (!ctlr->queued)
2613		return 0;
2614
2615	ret = spi_stop_queue(ctlr);
2616	if (ret)
2617		dev_err(&ctlr->dev, "queue stop failed\n");
2618
2619	return ret;
2620}
2621EXPORT_SYMBOL_GPL(spi_controller_suspend);
2622
2623int spi_controller_resume(struct spi_controller *ctlr)
2624{
2625	int ret;
2626
2627	if (!ctlr->queued)
2628		return 0;
2629
2630	ret = spi_start_queue(ctlr);
2631	if (ret)
2632		dev_err(&ctlr->dev, "queue restart failed\n");
2633
2634	return ret;
2635}
2636EXPORT_SYMBOL_GPL(spi_controller_resume);
2637
2638static int __spi_controller_match(struct device *dev, const void *data)
2639{
2640	struct spi_controller *ctlr;
2641	const u16 *bus_num = data;
2642
2643	ctlr = container_of(dev, struct spi_controller, dev);
2644	return ctlr->bus_num == *bus_num;
2645}
2646
2647/**
2648 * spi_busnum_to_master - look up master associated with bus_num
2649 * @bus_num: the master's bus number
2650 * Context: can sleep
2651 *
2652 * This call may be used with devices that are registered after
2653 * arch init time.  It returns a refcounted pointer to the relevant
2654 * spi_controller (which the caller must release), or NULL if there is
2655 * no such master registered.
2656 *
2657 * Return: the SPI master structure on success, else NULL.
2658 */
2659struct spi_controller *spi_busnum_to_master(u16 bus_num)
2660{
2661	struct device		*dev;
2662	struct spi_controller	*ctlr = NULL;
2663
2664	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2665				__spi_controller_match);
2666	if (dev)
2667		ctlr = container_of(dev, struct spi_controller, dev);
2668	/* reference got in class_find_device */
2669	return ctlr;
2670}
2671EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2672
2673/*-------------------------------------------------------------------------*/
2674
2675/* Core methods for SPI resource management */
2676
2677/**
2678 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2679 *                 during the processing of a spi_message while using
2680 *                 spi_transfer_one
2681 * @spi:     the spi device for which we allocate memory
2682 * @release: the release code to execute for this resource
2683 * @size:    size to alloc and return
2684 * @gfp:     GFP allocation flags
2685 *
2686 * Return: the pointer to the allocated data
2687 *
2688 * This may get enhanced in the future to allocate from a memory pool
2689 * of the @spi_device or @spi_controller to avoid repeated allocations.
2690 */
2691void *spi_res_alloc(struct spi_device *spi,
2692		    spi_res_release_t release,
2693		    size_t size, gfp_t gfp)
2694{
2695	struct spi_res *sres;
2696
2697	sres = kzalloc(sizeof(*sres) + size, gfp);
2698	if (!sres)
2699		return NULL;
2700
2701	INIT_LIST_HEAD(&sres->entry);
2702	sres->release = release;
2703
2704	return sres->data;
2705}
2706EXPORT_SYMBOL_GPL(spi_res_alloc);
2707
2708/**
2709 * spi_res_free - free an spi resource
2710 * @res: pointer to the custom data of a resource
2711 *
2712 */
2713void spi_res_free(void *res)
2714{
2715	struct spi_res *sres = container_of(res, struct spi_res, data);
2716
2717	if (!res)
2718		return;
2719
2720	WARN_ON(!list_empty(&sres->entry));
2721	kfree(sres);
2722}
2723EXPORT_SYMBOL_GPL(spi_res_free);
2724
2725/**
2726 * spi_res_add - add a spi_res to the spi_message
2727 * @message: the spi message
2728 * @res:     the spi_resource
2729 */
2730void spi_res_add(struct spi_message *message, void *res)
2731{
2732	struct spi_res *sres = container_of(res, struct spi_res, data);
2733
2734	WARN_ON(!list_empty(&sres->entry));
2735	list_add_tail(&sres->entry, &message->resources);
2736}
2737EXPORT_SYMBOL_GPL(spi_res_add);
2738
2739/**
2740 * spi_res_release - release all spi resources for this message
2741 * @ctlr:  the @spi_controller
2742 * @message: the @spi_message
2743 */
2744void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2745{
2746	struct spi_res *res, *tmp;
2747
2748	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2749		if (res->release)
2750			res->release(ctlr, message, res->data);
2751
2752		list_del(&res->entry);
2753
2754		kfree(res);
2755	}
2756}
2757EXPORT_SYMBOL_GPL(spi_res_release);
2758
2759/*-------------------------------------------------------------------------*/
2760
2761/* Core methods for spi_message alterations */
2762
2763static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2764					    struct spi_message *msg,
2765					    void *res)
2766{
2767	struct spi_replaced_transfers *rxfer = res;
2768	size_t i;
2769
2770	/* call extra callback if requested */
2771	if (rxfer->release)
2772		rxfer->release(ctlr, msg, res);
2773
2774	/* insert replaced transfers back into the message */
2775	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2776
2777	/* remove the formerly inserted entries */
2778	for (i = 0; i < rxfer->inserted; i++)
2779		list_del(&rxfer->inserted_transfers[i].transfer_list);
2780}
2781
2782/**
2783 * spi_replace_transfers - replace transfers with several transfers
2784 *                         and register change with spi_message.resources
2785 * @msg:           the spi_message we work upon
2786 * @xfer_first:    the first spi_transfer we want to replace
2787 * @remove:        number of transfers to remove
2788 * @insert:        the number of transfers we want to insert instead
2789 * @release:       extra release code necessary in some circumstances
2790 * @extradatasize: extra data to allocate (with alignment guarantees
2791 *                 of struct @spi_transfer)
2792 * @gfp:           gfp flags
2793 *
2794 * Returns: pointer to @spi_replaced_transfers,
2795 *          PTR_ERR(...) in case of errors.
2796 */
2797struct spi_replaced_transfers *spi_replace_transfers(
2798	struct spi_message *msg,
2799	struct spi_transfer *xfer_first,
2800	size_t remove,
2801	size_t insert,
2802	spi_replaced_release_t release,
2803	size_t extradatasize,
2804	gfp_t gfp)
2805{
2806	struct spi_replaced_transfers *rxfer;
2807	struct spi_transfer *xfer;
2808	size_t i;
2809
2810	/* allocate the structure using spi_res */
2811	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2812			      struct_size(rxfer, inserted_transfers, insert)
2813			      + extradatasize,
2814			      gfp);
2815	if (!rxfer)
2816		return ERR_PTR(-ENOMEM);
2817
2818	/* the release code to invoke before running the generic release */
2819	rxfer->release = release;
2820
2821	/* assign extradata */
2822	if (extradatasize)
2823		rxfer->extradata =
2824			&rxfer->inserted_transfers[insert];
2825
2826	/* init the replaced_transfers list */
2827	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2828
2829	/* assign the list_entry after which we should reinsert
2830	 * the @replaced_transfers - it may be spi_message.messages!
2831	 */
2832	rxfer->replaced_after = xfer_first->transfer_list.prev;
2833
2834	/* remove the requested number of transfers */
2835	for (i = 0; i < remove; i++) {
2836		/* if the entry after replaced_after it is msg->transfers
2837		 * then we have been requested to remove more transfers
2838		 * than are in the list
2839		 */
2840		if (rxfer->replaced_after->next == &msg->transfers) {
2841			dev_err(&msg->spi->dev,
2842				"requested to remove more spi_transfers than are available\n");
2843			/* insert replaced transfers back into the message */
2844			list_splice(&rxfer->replaced_transfers,
2845				    rxfer->replaced_after);
2846
2847			/* free the spi_replace_transfer structure */
2848			spi_res_free(rxfer);
2849
2850			/* and return with an error */
2851			return ERR_PTR(-EINVAL);
2852		}
2853
2854		/* remove the entry after replaced_after from list of
2855		 * transfers and add it to list of replaced_transfers
2856		 */
2857		list_move_tail(rxfer->replaced_after->next,
2858			       &rxfer->replaced_transfers);
2859	}
2860
2861	/* create copy of the given xfer with identical settings
2862	 * based on the first transfer to get removed
2863	 */
2864	for (i = 0; i < insert; i++) {
2865		/* we need to run in reverse order */
2866		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2867
2868		/* copy all spi_transfer data */
2869		memcpy(xfer, xfer_first, sizeof(*xfer));
2870
2871		/* add to list */
2872		list_add(&xfer->transfer_list, rxfer->replaced_after);
2873
2874		/* clear cs_change and delay_usecs for all but the last */
2875		if (i) {
2876			xfer->cs_change = false;
2877			xfer->delay_usecs = 0;
2878		}
2879	}
2880
2881	/* set up inserted */
2882	rxfer->inserted = insert;
2883
2884	/* and register it with spi_res/spi_message */
2885	spi_res_add(msg, rxfer);
2886
2887	return rxfer;
2888}
2889EXPORT_SYMBOL_GPL(spi_replace_transfers);
2890
2891static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2892					struct spi_message *msg,
2893					struct spi_transfer **xferp,
2894					size_t maxsize,
2895					gfp_t gfp)
2896{
2897	struct spi_transfer *xfer = *xferp, *xfers;
2898	struct spi_replaced_transfers *srt;
2899	size_t offset;
2900	size_t count, i;
2901
2902	/* calculate how many we have to replace */
2903	count = DIV_ROUND_UP(xfer->len, maxsize);
2904
2905	/* create replacement */
2906	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2907	if (IS_ERR(srt))
2908		return PTR_ERR(srt);
2909	xfers = srt->inserted_transfers;
2910
2911	/* now handle each of those newly inserted spi_transfers
2912	 * note that the replacements spi_transfers all are preset
2913	 * to the same values as *xferp, so tx_buf, rx_buf and len
2914	 * are all identical (as well as most others)
2915	 * so we just have to fix up len and the pointers.
2916	 *
2917	 * this also includes support for the depreciated
2918	 * spi_message.is_dma_mapped interface
2919	 */
2920
2921	/* the first transfer just needs the length modified, so we
2922	 * run it outside the loop
2923	 */
2924	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2925
2926	/* all the others need rx_buf/tx_buf also set */
2927	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2928		/* update rx_buf, tx_buf and dma */
2929		if (xfers[i].rx_buf)
2930			xfers[i].rx_buf += offset;
2931		if (xfers[i].rx_dma)
2932			xfers[i].rx_dma += offset;
2933		if (xfers[i].tx_buf)
2934			xfers[i].tx_buf += offset;
2935		if (xfers[i].tx_dma)
2936			xfers[i].tx_dma += offset;
2937
2938		/* update length */
2939		xfers[i].len = min(maxsize, xfers[i].len - offset);
2940	}
2941
2942	/* we set up xferp to the last entry we have inserted,
2943	 * so that we skip those already split transfers
2944	 */
2945	*xferp = &xfers[count - 1];
2946
2947	/* increment statistics counters */
2948	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2949				       transfers_split_maxsize);
2950	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2951				       transfers_split_maxsize);
2952
2953	return 0;
2954}
2955
2956/**
2957 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2958 *                              when an individual transfer exceeds a
2959 *                              certain size
2960 * @ctlr:    the @spi_controller for this transfer
2961 * @msg:   the @spi_message to transform
2962 * @maxsize:  the maximum when to apply this
2963 * @gfp: GFP allocation flags
2964 *
2965 * Return: status of transformation
2966 */
2967int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2968				struct spi_message *msg,
2969				size_t maxsize,
2970				gfp_t gfp)
2971{
2972	struct spi_transfer *xfer;
2973	int ret;
2974
2975	/* iterate over the transfer_list,
2976	 * but note that xfer is advanced to the last transfer inserted
2977	 * to avoid checking sizes again unnecessarily (also xfer does
2978	 * potentiall belong to a different list by the time the
2979	 * replacement has happened
2980	 */
2981	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2982		if (xfer->len > maxsize) {
2983			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2984							   maxsize, gfp);
2985			if (ret)
2986				return ret;
2987		}
2988	}
2989
2990	return 0;
2991}
2992EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2993
2994/*-------------------------------------------------------------------------*/
2995
2996/* Core methods for SPI controller protocol drivers.  Some of the
2997 * other core methods are currently defined as inline functions.
2998 */
2999
3000static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3001					u8 bits_per_word)
3002{
3003	if (ctlr->bits_per_word_mask) {
3004		/* Only 32 bits fit in the mask */
3005		if (bits_per_word > 32)
3006			return -EINVAL;
3007		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3008			return -EINVAL;
3009	}
3010
3011	return 0;
3012}
3013
3014/**
3015 * spi_setup - setup SPI mode and clock rate
3016 * @spi: the device whose settings are being modified
3017 * Context: can sleep, and no requests are queued to the device
3018 *
3019 * SPI protocol drivers may need to update the transfer mode if the
3020 * device doesn't work with its default.  They may likewise need
3021 * to update clock rates or word sizes from initial values.  This function
3022 * changes those settings, and must be called from a context that can sleep.
3023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3024 * effect the next time the device is selected and data is transferred to
3025 * or from it.  When this function returns, the spi device is deselected.
3026 *
3027 * Note that this call will fail if the protocol driver specifies an option
3028 * that the underlying controller or its driver does not support.  For
3029 * example, not all hardware supports wire transfers using nine bit words,
3030 * LSB-first wire encoding, or active-high chipselects.
3031 *
3032 * Return: zero on success, else a negative error code.
3033 */
3034int spi_setup(struct spi_device *spi)
3035{
3036	unsigned	bad_bits, ugly_bits;
3037	int		status;
3038
3039	/* check mode to prevent that DUAL and QUAD set at the same time
3040	 */
3041	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3042		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3043		dev_err(&spi->dev,
3044		"setup: can not select dual and quad at the same time\n");
3045		return -EINVAL;
3046	}
3047	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3048	 */
3049	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3050		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3051		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3052		return -EINVAL;
3053	/* help drivers fail *cleanly* when they need options
3054	 * that aren't supported with their current controller
3055	 * SPI_CS_WORD has a fallback software implementation,
3056	 * so it is ignored here.
3057	 */
3058	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3059	/* nothing prevents from working with active-high CS in case if it
3060	 * is driven by GPIO.
3061	 */
3062	if (gpio_is_valid(spi->cs_gpio))
3063		bad_bits &= ~SPI_CS_HIGH;
3064	ugly_bits = bad_bits &
3065		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3066		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3067	if (ugly_bits) {
3068		dev_warn(&spi->dev,
3069			 "setup: ignoring unsupported mode bits %x\n",
3070			 ugly_bits);
3071		spi->mode &= ~ugly_bits;
3072		bad_bits &= ~ugly_bits;
3073	}
3074	if (bad_bits) {
3075		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3076			bad_bits);
3077		return -EINVAL;
3078	}
3079
3080	if (!spi->bits_per_word)
3081		spi->bits_per_word = 8;
3082
3083	status = __spi_validate_bits_per_word(spi->controller,
3084					      spi->bits_per_word);
3085	if (status)
3086		return status;
3087
3088	if (!spi->max_speed_hz)
3089		spi->max_speed_hz = spi->controller->max_speed_hz;
3090
3091	if (spi->controller->setup)
3092		status = spi->controller->setup(spi);
3093
3094	spi_set_cs(spi, false);
3095
3096	if (spi->rt && !spi->controller->rt) {
3097		spi->controller->rt = true;
3098		spi_set_thread_rt(spi->controller);
3099	}
3100
3101	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3102			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3103			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3104			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3105			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3106			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3107			spi->bits_per_word, spi->max_speed_hz,
3108			status);
3109
3110	return status;
3111}
3112EXPORT_SYMBOL_GPL(spi_setup);
3113
3114/**
3115 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3116 * @spi: the device that requires specific CS timing configuration
3117 * @setup: CS setup time in terms of clock count
3118 * @hold: CS hold time in terms of clock count
3119 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3120 */
3121void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3122		       u8 inactive_dly)
3123{
3124	if (spi->controller->set_cs_timing)
3125		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3126}
3127EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3128
3129static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3130{
3131	struct spi_controller *ctlr = spi->controller;
3132	struct spi_transfer *xfer;
3133	int w_size;
3134
3135	if (list_empty(&message->transfers))
3136		return -EINVAL;
3137
3138	/* If an SPI controller does not support toggling the CS line on each
3139	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3140	 * for the CS line, we can emulate the CS-per-word hardware function by
3141	 * splitting transfers into one-word transfers and ensuring that
3142	 * cs_change is set for each transfer.
3143	 */
3144	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3145					  spi->cs_gpiod ||
3146					  gpio_is_valid(spi->cs_gpio))) {
3147		size_t maxsize;
3148		int ret;
3149
3150		maxsize = (spi->bits_per_word + 7) / 8;
3151
3152		/* spi_split_transfers_maxsize() requires message->spi */
3153		message->spi = spi;
3154
3155		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3156						  GFP_KERNEL);
3157		if (ret)
3158			return ret;
3159
3160		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3161			/* don't change cs_change on the last entry in the list */
3162			if (list_is_last(&xfer->transfer_list, &message->transfers))
3163				break;
3164			xfer->cs_change = 1;
3165		}
3166	}
3167
3168	/* Half-duplex links include original MicroWire, and ones with
3169	 * only one data pin like SPI_3WIRE (switches direction) or where
3170	 * either MOSI or MISO is missing.  They can also be caused by
3171	 * software limitations.
3172	 */
3173	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3174	    (spi->mode & SPI_3WIRE)) {
3175		unsigned flags = ctlr->flags;
3176
3177		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3178			if (xfer->rx_buf && xfer->tx_buf)
3179				return -EINVAL;
3180			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3181				return -EINVAL;
3182			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3183				return -EINVAL;
3184		}
3185	}
3186
3187	/**
3188	 * Set transfer bits_per_word and max speed as spi device default if
3189	 * it is not set for this transfer.
3190	 * Set transfer tx_nbits and rx_nbits as single transfer default
3191	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3192	 * Ensure transfer word_delay is at least as long as that required by
3193	 * device itself.
3194	 */
3195	message->frame_length = 0;
3196	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3197		xfer->effective_speed_hz = 0;
3198		message->frame_length += xfer->len;
3199		if (!xfer->bits_per_word)
3200			xfer->bits_per_word = spi->bits_per_word;
3201
3202		if (!xfer->speed_hz)
3203			xfer->speed_hz = spi->max_speed_hz;
3204
3205		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3206			xfer->speed_hz = ctlr->max_speed_hz;
3207
3208		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209			return -EINVAL;
 
 
 
 
 
 
 
3210
3211		/*
3212		 * SPI transfer length should be multiple of SPI word size
3213		 * where SPI word size should be power-of-two multiple
3214		 */
3215		if (xfer->bits_per_word <= 8)
3216			w_size = 1;
3217		else if (xfer->bits_per_word <= 16)
3218			w_size = 2;
3219		else
3220			w_size = 4;
3221
3222		/* No partial transfers accepted */
3223		if (xfer->len % w_size)
3224			return -EINVAL;
3225
3226		if (xfer->speed_hz && ctlr->min_speed_hz &&
3227		    xfer->speed_hz < ctlr->min_speed_hz)
3228			return -EINVAL;
3229
3230		if (xfer->tx_buf && !xfer->tx_nbits)
3231			xfer->tx_nbits = SPI_NBITS_SINGLE;
3232		if (xfer->rx_buf && !xfer->rx_nbits)
3233			xfer->rx_nbits = SPI_NBITS_SINGLE;
3234		/* check transfer tx/rx_nbits:
3235		 * 1. check the value matches one of single, dual and quad
3236		 * 2. check tx/rx_nbits match the mode in spi_device
3237		 */
3238		if (xfer->tx_buf) {
3239			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3240				xfer->tx_nbits != SPI_NBITS_DUAL &&
3241				xfer->tx_nbits != SPI_NBITS_QUAD)
3242				return -EINVAL;
3243			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3244				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3245				return -EINVAL;
3246			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3247				!(spi->mode & SPI_TX_QUAD))
3248				return -EINVAL;
3249		}
3250		/* check transfer rx_nbits */
3251		if (xfer->rx_buf) {
3252			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3253				xfer->rx_nbits != SPI_NBITS_DUAL &&
3254				xfer->rx_nbits != SPI_NBITS_QUAD)
3255				return -EINVAL;
3256			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3257				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3258				return -EINVAL;
3259			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3260				!(spi->mode & SPI_RX_QUAD))
3261				return -EINVAL;
3262		}
3263
3264		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3265			xfer->word_delay_usecs = spi->word_delay_usecs;
3266	}
3267
3268	message->status = -EINPROGRESS;
3269
3270	return 0;
3271}
3272
3273static int __spi_async(struct spi_device *spi, struct spi_message *message)
3274{
3275	struct spi_controller *ctlr = spi->controller;
3276
3277	/*
3278	 * Some controllers do not support doing regular SPI transfers. Return
3279	 * ENOTSUPP when this is the case.
3280	 */
3281	if (!ctlr->transfer)
3282		return -ENOTSUPP;
3283
3284	message->spi = spi;
3285
3286	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3287	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3288
3289	trace_spi_message_submit(message);
3290
3291	return ctlr->transfer(spi, message);
3292}
3293
3294/**
3295 * spi_async - asynchronous SPI transfer
3296 * @spi: device with which data will be exchanged
3297 * @message: describes the data transfers, including completion callback
3298 * Context: any (irqs may be blocked, etc)
3299 *
3300 * This call may be used in_irq and other contexts which can't sleep,
3301 * as well as from task contexts which can sleep.
3302 *
3303 * The completion callback is invoked in a context which can't sleep.
3304 * Before that invocation, the value of message->status is undefined.
3305 * When the callback is issued, message->status holds either zero (to
3306 * indicate complete success) or a negative error code.  After that
3307 * callback returns, the driver which issued the transfer request may
3308 * deallocate the associated memory; it's no longer in use by any SPI
3309 * core or controller driver code.
3310 *
3311 * Note that although all messages to a spi_device are handled in
3312 * FIFO order, messages may go to different devices in other orders.
3313 * Some device might be higher priority, or have various "hard" access
3314 * time requirements, for example.
3315 *
3316 * On detection of any fault during the transfer, processing of
3317 * the entire message is aborted, and the device is deselected.
3318 * Until returning from the associated message completion callback,
3319 * no other spi_message queued to that device will be processed.
3320 * (This rule applies equally to all the synchronous transfer calls,
3321 * which are wrappers around this core asynchronous primitive.)
3322 *
3323 * Return: zero on success, else a negative error code.
3324 */
3325int spi_async(struct spi_device *spi, struct spi_message *message)
3326{
3327	struct spi_controller *ctlr = spi->controller;
3328	int ret;
3329	unsigned long flags;
3330
3331	ret = __spi_validate(spi, message);
3332	if (ret != 0)
3333		return ret;
3334
3335	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3336
3337	if (ctlr->bus_lock_flag)
3338		ret = -EBUSY;
3339	else
3340		ret = __spi_async(spi, message);
3341
3342	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343
3344	return ret;
3345}
3346EXPORT_SYMBOL_GPL(spi_async);
3347
3348/**
3349 * spi_async_locked - version of spi_async with exclusive bus usage
3350 * @spi: device with which data will be exchanged
3351 * @message: describes the data transfers, including completion callback
3352 * Context: any (irqs may be blocked, etc)
3353 *
3354 * This call may be used in_irq and other contexts which can't sleep,
3355 * as well as from task contexts which can sleep.
3356 *
3357 * The completion callback is invoked in a context which can't sleep.
3358 * Before that invocation, the value of message->status is undefined.
3359 * When the callback is issued, message->status holds either zero (to
3360 * indicate complete success) or a negative error code.  After that
3361 * callback returns, the driver which issued the transfer request may
3362 * deallocate the associated memory; it's no longer in use by any SPI
3363 * core or controller driver code.
3364 *
3365 * Note that although all messages to a spi_device are handled in
3366 * FIFO order, messages may go to different devices in other orders.
3367 * Some device might be higher priority, or have various "hard" access
3368 * time requirements, for example.
3369 *
3370 * On detection of any fault during the transfer, processing of
3371 * the entire message is aborted, and the device is deselected.
3372 * Until returning from the associated message completion callback,
3373 * no other spi_message queued to that device will be processed.
3374 * (This rule applies equally to all the synchronous transfer calls,
3375 * which are wrappers around this core asynchronous primitive.)
3376 *
3377 * Return: zero on success, else a negative error code.
3378 */
3379int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3380{
3381	struct spi_controller *ctlr = spi->controller;
3382	int ret;
3383	unsigned long flags;
3384
3385	ret = __spi_validate(spi, message);
3386	if (ret != 0)
3387		return ret;
3388
3389	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3390
3391	ret = __spi_async(spi, message);
3392
3393	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3394
3395	return ret;
3396
3397}
3398EXPORT_SYMBOL_GPL(spi_async_locked);
3399
 
3400/*-------------------------------------------------------------------------*/
3401
3402/* Utility methods for SPI protocol drivers, layered on
3403 * top of the core.  Some other utility methods are defined as
3404 * inline functions.
3405 */
3406
3407static void spi_complete(void *arg)
3408{
3409	complete(arg);
3410}
3411
3412static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
3413{
3414	DECLARE_COMPLETION_ONSTACK(done);
3415	int status;
3416	struct spi_controller *ctlr = spi->controller;
3417	unsigned long flags;
3418
3419	status = __spi_validate(spi, message);
3420	if (status != 0)
3421		return status;
3422
3423	message->complete = spi_complete;
3424	message->context = &done;
3425	message->spi = spi;
3426
3427	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3428	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3429
3430	/* If we're not using the legacy transfer method then we will
3431	 * try to transfer in the calling context so special case.
3432	 * This code would be less tricky if we could remove the
3433	 * support for driver implemented message queues.
3434	 */
3435	if (ctlr->transfer == spi_queued_transfer) {
3436		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3437
3438		trace_spi_message_submit(message);
3439
3440		status = __spi_queued_transfer(spi, message, false);
3441
3442		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3443	} else {
3444		status = spi_async_locked(spi, message);
3445	}
3446
3447	if (status == 0) {
3448		/* Push out the messages in the calling context if we
3449		 * can.
3450		 */
3451		if (ctlr->transfer == spi_queued_transfer) {
3452			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3453						       spi_sync_immediate);
3454			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3455						       spi_sync_immediate);
3456			__spi_pump_messages(ctlr, false);
3457		}
3458
3459		wait_for_completion(&done);
3460		status = message->status;
3461	}
3462	message->context = NULL;
3463	return status;
3464}
3465
3466/**
3467 * spi_sync - blocking/synchronous SPI data transfers
3468 * @spi: device with which data will be exchanged
3469 * @message: describes the data transfers
3470 * Context: can sleep
3471 *
3472 * This call may only be used from a context that may sleep.  The sleep
3473 * is non-interruptible, and has no timeout.  Low-overhead controller
3474 * drivers may DMA directly into and out of the message buffers.
3475 *
3476 * Note that the SPI device's chip select is active during the message,
3477 * and then is normally disabled between messages.  Drivers for some
3478 * frequently-used devices may want to minimize costs of selecting a chip,
3479 * by leaving it selected in anticipation that the next message will go
3480 * to the same chip.  (That may increase power usage.)
3481 *
3482 * Also, the caller is guaranteeing that the memory associated with the
3483 * message will not be freed before this call returns.
3484 *
3485 * Return: zero on success, else a negative error code.
3486 */
3487int spi_sync(struct spi_device *spi, struct spi_message *message)
3488{
3489	int ret;
3490
3491	mutex_lock(&spi->controller->bus_lock_mutex);
3492	ret = __spi_sync(spi, message);
3493	mutex_unlock(&spi->controller->bus_lock_mutex);
3494
3495	return ret;
3496}
3497EXPORT_SYMBOL_GPL(spi_sync);
3498
3499/**
3500 * spi_sync_locked - version of spi_sync with exclusive bus usage
3501 * @spi: device with which data will be exchanged
3502 * @message: describes the data transfers
3503 * Context: can sleep
3504 *
3505 * This call may only be used from a context that may sleep.  The sleep
3506 * is non-interruptible, and has no timeout.  Low-overhead controller
3507 * drivers may DMA directly into and out of the message buffers.
3508 *
3509 * This call should be used by drivers that require exclusive access to the
3510 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3511 * be released by a spi_bus_unlock call when the exclusive access is over.
3512 *
3513 * Return: zero on success, else a negative error code.
3514 */
3515int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3516{
3517	return __spi_sync(spi, message);
3518}
3519EXPORT_SYMBOL_GPL(spi_sync_locked);
3520
3521/**
3522 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3523 * @ctlr: SPI bus master that should be locked for exclusive bus access
3524 * Context: can sleep
3525 *
3526 * This call may only be used from a context that may sleep.  The sleep
3527 * is non-interruptible, and has no timeout.
3528 *
3529 * This call should be used by drivers that require exclusive access to the
3530 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3531 * exclusive access is over. Data transfer must be done by spi_sync_locked
3532 * and spi_async_locked calls when the SPI bus lock is held.
3533 *
3534 * Return: always zero.
3535 */
3536int spi_bus_lock(struct spi_controller *ctlr)
3537{
3538	unsigned long flags;
3539
3540	mutex_lock(&ctlr->bus_lock_mutex);
3541
3542	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3543	ctlr->bus_lock_flag = 1;
3544	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3545
3546	/* mutex remains locked until spi_bus_unlock is called */
3547
3548	return 0;
3549}
3550EXPORT_SYMBOL_GPL(spi_bus_lock);
3551
3552/**
3553 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3554 * @ctlr: SPI bus master that was locked for exclusive bus access
3555 * Context: can sleep
3556 *
3557 * This call may only be used from a context that may sleep.  The sleep
3558 * is non-interruptible, and has no timeout.
3559 *
3560 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3561 * call.
3562 *
3563 * Return: always zero.
3564 */
3565int spi_bus_unlock(struct spi_controller *ctlr)
3566{
3567	ctlr->bus_lock_flag = 0;
3568
3569	mutex_unlock(&ctlr->bus_lock_mutex);
3570
3571	return 0;
3572}
3573EXPORT_SYMBOL_GPL(spi_bus_unlock);
3574
3575/* portable code must never pass more than 32 bytes */
3576#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3577
3578static u8	*buf;
3579
3580/**
3581 * spi_write_then_read - SPI synchronous write followed by read
3582 * @spi: device with which data will be exchanged
3583 * @txbuf: data to be written (need not be dma-safe)
3584 * @n_tx: size of txbuf, in bytes
3585 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3586 * @n_rx: size of rxbuf, in bytes
3587 * Context: can sleep
3588 *
3589 * This performs a half duplex MicroWire style transaction with the
3590 * device, sending txbuf and then reading rxbuf.  The return value
3591 * is zero for success, else a negative errno status code.
3592 * This call may only be used from a context that may sleep.
3593 *
3594 * Parameters to this routine are always copied using a small buffer;
3595 * portable code should never use this for more than 32 bytes.
3596 * Performance-sensitive or bulk transfer code should instead use
3597 * spi_{async,sync}() calls with dma-safe buffers.
3598 *
3599 * Return: zero on success, else a negative error code.
3600 */
3601int spi_write_then_read(struct spi_device *spi,
3602		const void *txbuf, unsigned n_tx,
3603		void *rxbuf, unsigned n_rx)
3604{
3605	static DEFINE_MUTEX(lock);
3606
3607	int			status;
3608	struct spi_message	message;
3609	struct spi_transfer	x[2];
3610	u8			*local_buf;
3611
3612	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3613	 * copying here, (as a pure convenience thing), but we can
3614	 * keep heap costs out of the hot path unless someone else is
3615	 * using the pre-allocated buffer or the transfer is too large.
3616	 */
3617	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3618		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3619				    GFP_KERNEL | GFP_DMA);
3620		if (!local_buf)
3621			return -ENOMEM;
3622	} else {
3623		local_buf = buf;
3624	}
3625
3626	spi_message_init(&message);
3627	memset(x, 0, sizeof(x));
3628	if (n_tx) {
3629		x[0].len = n_tx;
3630		spi_message_add_tail(&x[0], &message);
3631	}
3632	if (n_rx) {
3633		x[1].len = n_rx;
3634		spi_message_add_tail(&x[1], &message);
3635	}
3636
3637	memcpy(local_buf, txbuf, n_tx);
3638	x[0].tx_buf = local_buf;
3639	x[1].rx_buf = local_buf + n_tx;
3640
3641	/* do the i/o */
3642	status = spi_sync(spi, &message);
3643	if (status == 0)
3644		memcpy(rxbuf, x[1].rx_buf, n_rx);
3645
3646	if (x[0].tx_buf == buf)
3647		mutex_unlock(&lock);
3648	else
3649		kfree(local_buf);
3650
3651	return status;
3652}
3653EXPORT_SYMBOL_GPL(spi_write_then_read);
3654
3655/*-------------------------------------------------------------------------*/
3656
3657#if IS_ENABLED(CONFIG_OF)
3658/* must call put_device() when done with returned spi_device device */
3659struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3660{
3661	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3662
3663	return dev ? to_spi_device(dev) : NULL;
3664}
3665EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3666#endif /* IS_ENABLED(CONFIG_OF) */
3667
3668#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3669/* the spi controllers are not using spi_bus, so we find it with another way */
3670static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3671{
3672	struct device *dev;
3673
3674	dev = class_find_device_by_of_node(&spi_master_class, node);
3675	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3676		dev = class_find_device_by_of_node(&spi_slave_class, node);
3677	if (!dev)
3678		return NULL;
3679
3680	/* reference got in class_find_device */
3681	return container_of(dev, struct spi_controller, dev);
3682}
3683
3684static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3685			 void *arg)
3686{
3687	struct of_reconfig_data *rd = arg;
3688	struct spi_controller *ctlr;
3689	struct spi_device *spi;
3690
3691	switch (of_reconfig_get_state_change(action, arg)) {
3692	case OF_RECONFIG_CHANGE_ADD:
3693		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3694		if (ctlr == NULL)
3695			return NOTIFY_OK;	/* not for us */
3696
3697		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3698			put_device(&ctlr->dev);
3699			return NOTIFY_OK;
3700		}
3701
3702		spi = of_register_spi_device(ctlr, rd->dn);
3703		put_device(&ctlr->dev);
3704
3705		if (IS_ERR(spi)) {
3706			pr_err("%s: failed to create for '%pOF'\n",
3707					__func__, rd->dn);
3708			of_node_clear_flag(rd->dn, OF_POPULATED);
3709			return notifier_from_errno(PTR_ERR(spi));
3710		}
3711		break;
3712
3713	case OF_RECONFIG_CHANGE_REMOVE:
3714		/* already depopulated? */
3715		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3716			return NOTIFY_OK;
3717
3718		/* find our device by node */
3719		spi = of_find_spi_device_by_node(rd->dn);
3720		if (spi == NULL)
3721			return NOTIFY_OK;	/* no? not meant for us */
3722
3723		/* unregister takes one ref away */
3724		spi_unregister_device(spi);
3725
3726		/* and put the reference of the find */
3727		put_device(&spi->dev);
3728		break;
3729	}
3730
3731	return NOTIFY_OK;
3732}
3733
3734static struct notifier_block spi_of_notifier = {
3735	.notifier_call = of_spi_notify,
3736};
3737#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3738extern struct notifier_block spi_of_notifier;
3739#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3740
3741#if IS_ENABLED(CONFIG_ACPI)
3742static int spi_acpi_controller_match(struct device *dev, const void *data)
3743{
3744	return ACPI_COMPANION(dev->parent) == data;
3745}
3746
3747static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3748{
3749	struct device *dev;
3750
3751	dev = class_find_device(&spi_master_class, NULL, adev,
3752				spi_acpi_controller_match);
3753	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3754		dev = class_find_device(&spi_slave_class, NULL, adev,
3755					spi_acpi_controller_match);
3756	if (!dev)
3757		return NULL;
3758
3759	return container_of(dev, struct spi_controller, dev);
3760}
3761
3762static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3763{
3764	struct device *dev;
3765
3766	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3767	return dev ? to_spi_device(dev) : NULL;
3768}
3769
3770static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3771			   void *arg)
3772{
3773	struct acpi_device *adev = arg;
3774	struct spi_controller *ctlr;
3775	struct spi_device *spi;
3776
3777	switch (value) {
3778	case ACPI_RECONFIG_DEVICE_ADD:
3779		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3780		if (!ctlr)
3781			break;
3782
3783		acpi_register_spi_device(ctlr, adev);
3784		put_device(&ctlr->dev);
3785		break;
3786	case ACPI_RECONFIG_DEVICE_REMOVE:
3787		if (!acpi_device_enumerated(adev))
3788			break;
3789
3790		spi = acpi_spi_find_device_by_adev(adev);
3791		if (!spi)
3792			break;
3793
3794		spi_unregister_device(spi);
3795		put_device(&spi->dev);
3796		break;
3797	}
3798
3799	return NOTIFY_OK;
3800}
3801
3802static struct notifier_block spi_acpi_notifier = {
3803	.notifier_call = acpi_spi_notify,
3804};
3805#else
3806extern struct notifier_block spi_acpi_notifier;
3807#endif
3808
3809static int __init spi_init(void)
3810{
3811	int	status;
3812
3813	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3814	if (!buf) {
3815		status = -ENOMEM;
3816		goto err0;
3817	}
3818
3819	status = bus_register(&spi_bus_type);
3820	if (status < 0)
3821		goto err1;
3822
3823	status = class_register(&spi_master_class);
3824	if (status < 0)
3825		goto err2;
3826
3827	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3828		status = class_register(&spi_slave_class);
3829		if (status < 0)
3830			goto err3;
3831	}
3832
3833	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3834		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3835	if (IS_ENABLED(CONFIG_ACPI))
3836		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3837
3838	return 0;
3839
3840err3:
3841	class_unregister(&spi_master_class);
3842err2:
3843	bus_unregister(&spi_bus_type);
3844err1:
3845	kfree(buf);
3846	buf = NULL;
3847err0:
3848	return status;
3849}
3850
3851/* board_info is normally registered in arch_initcall(),
3852 * but even essential drivers wait till later
3853 *
3854 * REVISIT only boardinfo really needs static linking. the rest (device and
3855 * driver registration) _could_ be dynamically linked (modular) ... costs
3856 * include needing to have boardinfo data structures be much more public.
3857 */
3858postcore_initcall(spi_init);