Loading...
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmaengine.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/atmel.h>
23#include <linux/platform_data/dma-atmel.h>
24#include <linux/of.h>
25
26#include <linux/io.h>
27#include <linux/gpio.h>
28#include <linux/pinctrl/consumer.h>
29
30/* SPI register offsets */
31#define SPI_CR 0x0000
32#define SPI_MR 0x0004
33#define SPI_RDR 0x0008
34#define SPI_TDR 0x000c
35#define SPI_SR 0x0010
36#define SPI_IER 0x0014
37#define SPI_IDR 0x0018
38#define SPI_IMR 0x001c
39#define SPI_CSR0 0x0030
40#define SPI_CSR1 0x0034
41#define SPI_CSR2 0x0038
42#define SPI_CSR3 0x003c
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64
65/* Bitfields in MR */
66#define SPI_MSTR_OFFSET 0
67#define SPI_MSTR_SIZE 1
68#define SPI_PS_OFFSET 1
69#define SPI_PS_SIZE 1
70#define SPI_PCSDEC_OFFSET 2
71#define SPI_PCSDEC_SIZE 1
72#define SPI_FDIV_OFFSET 3
73#define SPI_FDIV_SIZE 1
74#define SPI_MODFDIS_OFFSET 4
75#define SPI_MODFDIS_SIZE 1
76#define SPI_WDRBT_OFFSET 5
77#define SPI_WDRBT_SIZE 1
78#define SPI_LLB_OFFSET 7
79#define SPI_LLB_SIZE 1
80#define SPI_PCS_OFFSET 16
81#define SPI_PCS_SIZE 4
82#define SPI_DLYBCS_OFFSET 24
83#define SPI_DLYBCS_SIZE 8
84
85/* Bitfields in RDR */
86#define SPI_RD_OFFSET 0
87#define SPI_RD_SIZE 16
88
89/* Bitfields in TDR */
90#define SPI_TD_OFFSET 0
91#define SPI_TD_SIZE 16
92
93/* Bitfields in SR */
94#define SPI_RDRF_OFFSET 0
95#define SPI_RDRF_SIZE 1
96#define SPI_TDRE_OFFSET 1
97#define SPI_TDRE_SIZE 1
98#define SPI_MODF_OFFSET 2
99#define SPI_MODF_SIZE 1
100#define SPI_OVRES_OFFSET 3
101#define SPI_OVRES_SIZE 1
102#define SPI_ENDRX_OFFSET 4
103#define SPI_ENDRX_SIZE 1
104#define SPI_ENDTX_OFFSET 5
105#define SPI_ENDTX_SIZE 1
106#define SPI_RXBUFF_OFFSET 6
107#define SPI_RXBUFF_SIZE 1
108#define SPI_TXBUFE_OFFSET 7
109#define SPI_TXBUFE_SIZE 1
110#define SPI_NSSR_OFFSET 8
111#define SPI_NSSR_SIZE 1
112#define SPI_TXEMPTY_OFFSET 9
113#define SPI_TXEMPTY_SIZE 1
114#define SPI_SPIENS_OFFSET 16
115#define SPI_SPIENS_SIZE 1
116
117/* Bitfields in CSR0 */
118#define SPI_CPOL_OFFSET 0
119#define SPI_CPOL_SIZE 1
120#define SPI_NCPHA_OFFSET 1
121#define SPI_NCPHA_SIZE 1
122#define SPI_CSAAT_OFFSET 3
123#define SPI_CSAAT_SIZE 1
124#define SPI_BITS_OFFSET 4
125#define SPI_BITS_SIZE 4
126#define SPI_SCBR_OFFSET 8
127#define SPI_SCBR_SIZE 8
128#define SPI_DLYBS_OFFSET 16
129#define SPI_DLYBS_SIZE 8
130#define SPI_DLYBCT_OFFSET 24
131#define SPI_DLYBCT_SIZE 8
132
133/* Bitfields in RCR */
134#define SPI_RXCTR_OFFSET 0
135#define SPI_RXCTR_SIZE 16
136
137/* Bitfields in TCR */
138#define SPI_TXCTR_OFFSET 0
139#define SPI_TXCTR_SIZE 16
140
141/* Bitfields in RNCR */
142#define SPI_RXNCR_OFFSET 0
143#define SPI_RXNCR_SIZE 16
144
145/* Bitfields in TNCR */
146#define SPI_TXNCR_OFFSET 0
147#define SPI_TXNCR_SIZE 16
148
149/* Bitfields in PTCR */
150#define SPI_RXTEN_OFFSET 0
151#define SPI_RXTEN_SIZE 1
152#define SPI_RXTDIS_OFFSET 1
153#define SPI_RXTDIS_SIZE 1
154#define SPI_TXTEN_OFFSET 8
155#define SPI_TXTEN_SIZE 1
156#define SPI_TXTDIS_OFFSET 9
157#define SPI_TXTDIS_SIZE 1
158
159/* Constants for BITS */
160#define SPI_BITS_8_BPT 0
161#define SPI_BITS_9_BPT 1
162#define SPI_BITS_10_BPT 2
163#define SPI_BITS_11_BPT 3
164#define SPI_BITS_12_BPT 4
165#define SPI_BITS_13_BPT 5
166#define SPI_BITS_14_BPT 6
167#define SPI_BITS_15_BPT 7
168#define SPI_BITS_16_BPT 8
169
170/* Bit manipulation macros */
171#define SPI_BIT(name) \
172 (1 << SPI_##name##_OFFSET)
173#define SPI_BF(name, value) \
174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175#define SPI_BFEXT(name, value) \
176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177#define SPI_BFINS(name, value, old) \
178 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 | SPI_BF(name, value))
180
181/* Register access macros */
182#define spi_readl(port, reg) \
183 __raw_readl((port)->regs + SPI_##reg)
184#define spi_writel(port, reg, value) \
185 __raw_writel((value), (port)->regs + SPI_##reg)
186
187/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190#define DMA_MIN_BYTES 16
191
192#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
193
194struct atmel_spi_dma {
195 struct dma_chan *chan_rx;
196 struct dma_chan *chan_tx;
197 struct scatterlist sgrx;
198 struct scatterlist sgtx;
199 struct dma_async_tx_descriptor *data_desc_rx;
200 struct dma_async_tx_descriptor *data_desc_tx;
201
202 struct at_dma_slave dma_slave;
203};
204
205struct atmel_spi_caps {
206 bool is_spi2;
207 bool has_wdrbt;
208 bool has_dma_support;
209};
210
211/*
212 * The core SPI transfer engine just talks to a register bank to set up
213 * DMA transfers; transfer queue progress is driven by IRQs. The clock
214 * framework provides the base clock, subdivided for each spi_device.
215 */
216struct atmel_spi {
217 spinlock_t lock;
218 unsigned long flags;
219
220 phys_addr_t phybase;
221 void __iomem *regs;
222 int irq;
223 struct clk *clk;
224 struct platform_device *pdev;
225
226 struct spi_transfer *current_transfer;
227 unsigned long current_remaining_bytes;
228 int done_status;
229
230 struct completion xfer_completion;
231
232 /* scratch buffer */
233 void *buffer;
234 dma_addr_t buffer_dma;
235
236 struct atmel_spi_caps caps;
237
238 bool use_dma;
239 bool use_pdc;
240 /* dmaengine data */
241 struct atmel_spi_dma dma;
242
243 bool keep_cs;
244 bool cs_active;
245};
246
247/* Controller-specific per-slave state */
248struct atmel_spi_device {
249 unsigned int npcs_pin;
250 u32 csr;
251};
252
253#define BUFFER_SIZE PAGE_SIZE
254#define INVALID_DMA_ADDRESS 0xffffffff
255
256/*
257 * Version 2 of the SPI controller has
258 * - CR.LASTXFER
259 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
260 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
261 * - SPI_CSRx.CSAAT
262 * - SPI_CSRx.SBCR allows faster clocking
263 */
264static bool atmel_spi_is_v2(struct atmel_spi *as)
265{
266 return as->caps.is_spi2;
267}
268
269/*
270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
271 * they assume that spi slave device state will not change on deselect, so
272 * that automagic deselection is OK. ("NPCSx rises if no data is to be
273 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
274 * controllers have CSAAT and friends.
275 *
276 * Since the CSAAT functionality is a bit weird on newer controllers as
277 * well, we use GPIO to control nCSx pins on all controllers, updating
278 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
279 * support active-high chipselects despite the controller's belief that
280 * only active-low devices/systems exists.
281 *
282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
283 * right when driven with GPIO. ("Mode Fault does not allow more than one
284 * Master on Chip Select 0.") No workaround exists for that ... so for
285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
286 * and (c) will trigger that first erratum in some cases.
287 */
288
289static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
290{
291 struct atmel_spi_device *asd = spi->controller_state;
292 unsigned active = spi->mode & SPI_CS_HIGH;
293 u32 mr;
294
295 if (atmel_spi_is_v2(as)) {
296 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
297 /* For the low SPI version, there is a issue that PDC transfer
298 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
299 */
300 spi_writel(as, CSR0, asd->csr);
301 if (as->caps.has_wdrbt) {
302 spi_writel(as, MR,
303 SPI_BF(PCS, ~(0x01 << spi->chip_select))
304 | SPI_BIT(WDRBT)
305 | SPI_BIT(MODFDIS)
306 | SPI_BIT(MSTR));
307 } else {
308 spi_writel(as, MR,
309 SPI_BF(PCS, ~(0x01 << spi->chip_select))
310 | SPI_BIT(MODFDIS)
311 | SPI_BIT(MSTR));
312 }
313
314 mr = spi_readl(as, MR);
315 gpio_set_value(asd->npcs_pin, active);
316 } else {
317 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
318 int i;
319 u32 csr;
320
321 /* Make sure clock polarity is correct */
322 for (i = 0; i < spi->master->num_chipselect; i++) {
323 csr = spi_readl(as, CSR0 + 4 * i);
324 if ((csr ^ cpol) & SPI_BIT(CPOL))
325 spi_writel(as, CSR0 + 4 * i,
326 csr ^ SPI_BIT(CPOL));
327 }
328
329 mr = spi_readl(as, MR);
330 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
331 if (spi->chip_select != 0)
332 gpio_set_value(asd->npcs_pin, active);
333 spi_writel(as, MR, mr);
334 }
335
336 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
337 asd->npcs_pin, active ? " (high)" : "",
338 mr);
339}
340
341static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
342{
343 struct atmel_spi_device *asd = spi->controller_state;
344 unsigned active = spi->mode & SPI_CS_HIGH;
345 u32 mr;
346
347 /* only deactivate *this* device; sometimes transfers to
348 * another device may be active when this routine is called.
349 */
350 mr = spi_readl(as, MR);
351 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
352 mr = SPI_BFINS(PCS, 0xf, mr);
353 spi_writel(as, MR, mr);
354 }
355
356 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
357 asd->npcs_pin, active ? " (low)" : "",
358 mr);
359
360 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
361 gpio_set_value(asd->npcs_pin, !active);
362}
363
364static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
365{
366 spin_lock_irqsave(&as->lock, as->flags);
367}
368
369static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
370{
371 spin_unlock_irqrestore(&as->lock, as->flags);
372}
373
374static inline bool atmel_spi_use_dma(struct atmel_spi *as,
375 struct spi_transfer *xfer)
376{
377 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
378}
379
380static int atmel_spi_dma_slave_config(struct atmel_spi *as,
381 struct dma_slave_config *slave_config,
382 u8 bits_per_word)
383{
384 int err = 0;
385
386 if (bits_per_word > 8) {
387 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
388 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389 } else {
390 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
391 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
392 }
393
394 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
395 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
396 slave_config->src_maxburst = 1;
397 slave_config->dst_maxburst = 1;
398 slave_config->device_fc = false;
399
400 slave_config->direction = DMA_MEM_TO_DEV;
401 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
402 dev_err(&as->pdev->dev,
403 "failed to configure tx dma channel\n");
404 err = -EINVAL;
405 }
406
407 slave_config->direction = DMA_DEV_TO_MEM;
408 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
409 dev_err(&as->pdev->dev,
410 "failed to configure rx dma channel\n");
411 err = -EINVAL;
412 }
413
414 return err;
415}
416
417static bool filter(struct dma_chan *chan, void *pdata)
418{
419 struct atmel_spi_dma *sl_pdata = pdata;
420 struct at_dma_slave *sl;
421
422 if (!sl_pdata)
423 return false;
424
425 sl = &sl_pdata->dma_slave;
426 if (sl->dma_dev == chan->device->dev) {
427 chan->private = sl;
428 return true;
429 } else {
430 return false;
431 }
432}
433
434static int atmel_spi_configure_dma(struct atmel_spi *as)
435{
436 struct dma_slave_config slave_config;
437 struct device *dev = &as->pdev->dev;
438 int err;
439
440 dma_cap_mask_t mask;
441 dma_cap_zero(mask);
442 dma_cap_set(DMA_SLAVE, mask);
443
444 as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
445 &as->dma,
446 dev, "tx");
447 if (!as->dma.chan_tx) {
448 dev_err(dev,
449 "DMA TX channel not available, SPI unable to use DMA\n");
450 err = -EBUSY;
451 goto error;
452 }
453
454 as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
455 &as->dma,
456 dev, "rx");
457
458 if (!as->dma.chan_rx) {
459 dev_err(dev,
460 "DMA RX channel not available, SPI unable to use DMA\n");
461 err = -EBUSY;
462 goto error;
463 }
464
465 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
466 if (err)
467 goto error;
468
469 dev_info(&as->pdev->dev,
470 "Using %s (tx) and %s (rx) for DMA transfers\n",
471 dma_chan_name(as->dma.chan_tx),
472 dma_chan_name(as->dma.chan_rx));
473 return 0;
474error:
475 if (as->dma.chan_rx)
476 dma_release_channel(as->dma.chan_rx);
477 if (as->dma.chan_tx)
478 dma_release_channel(as->dma.chan_tx);
479 return err;
480}
481
482static void atmel_spi_stop_dma(struct atmel_spi *as)
483{
484 if (as->dma.chan_rx)
485 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
486 DMA_TERMINATE_ALL, 0);
487 if (as->dma.chan_tx)
488 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
489 DMA_TERMINATE_ALL, 0);
490}
491
492static void atmel_spi_release_dma(struct atmel_spi *as)
493{
494 if (as->dma.chan_rx)
495 dma_release_channel(as->dma.chan_rx);
496 if (as->dma.chan_tx)
497 dma_release_channel(as->dma.chan_tx);
498}
499
500/* This function is called by the DMA driver from tasklet context */
501static void dma_callback(void *data)
502{
503 struct spi_master *master = data;
504 struct atmel_spi *as = spi_master_get_devdata(master);
505
506 complete(&as->xfer_completion);
507}
508
509/*
510 * Next transfer using PIO.
511 */
512static void atmel_spi_next_xfer_pio(struct spi_master *master,
513 struct spi_transfer *xfer)
514{
515 struct atmel_spi *as = spi_master_get_devdata(master);
516 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
517
518 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
519
520 /* Make sure data is not remaining in RDR */
521 spi_readl(as, RDR);
522 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
523 spi_readl(as, RDR);
524 cpu_relax();
525 }
526
527 if (xfer->tx_buf) {
528 if (xfer->bits_per_word > 8)
529 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
530 else
531 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
532 } else {
533 spi_writel(as, TDR, 0);
534 }
535
536 dev_dbg(master->dev.parent,
537 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
539 xfer->bits_per_word);
540
541 /* Enable relevant interrupts */
542 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
543}
544
545/*
546 * Submit next transfer for DMA.
547 */
548static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
549 struct spi_transfer *xfer,
550 u32 *plen)
551{
552 struct atmel_spi *as = spi_master_get_devdata(master);
553 struct dma_chan *rxchan = as->dma.chan_rx;
554 struct dma_chan *txchan = as->dma.chan_tx;
555 struct dma_async_tx_descriptor *rxdesc;
556 struct dma_async_tx_descriptor *txdesc;
557 struct dma_slave_config slave_config;
558 dma_cookie_t cookie;
559 u32 len = *plen;
560
561 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
562
563 /* Check that the channels are available */
564 if (!rxchan || !txchan)
565 return -ENODEV;
566
567 /* release lock for DMA operations */
568 atmel_spi_unlock(as);
569
570 /* prepare the RX dma transfer */
571 sg_init_table(&as->dma.sgrx, 1);
572 if (xfer->rx_buf) {
573 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
574 } else {
575 as->dma.sgrx.dma_address = as->buffer_dma;
576 if (len > BUFFER_SIZE)
577 len = BUFFER_SIZE;
578 }
579
580 /* prepare the TX dma transfer */
581 sg_init_table(&as->dma.sgtx, 1);
582 if (xfer->tx_buf) {
583 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
584 } else {
585 as->dma.sgtx.dma_address = as->buffer_dma;
586 if (len > BUFFER_SIZE)
587 len = BUFFER_SIZE;
588 memset(as->buffer, 0, len);
589 }
590
591 sg_dma_len(&as->dma.sgtx) = len;
592 sg_dma_len(&as->dma.sgrx) = len;
593
594 *plen = len;
595
596 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
597 goto err_exit;
598
599 /* Send both scatterlists */
600 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
601 &as->dma.sgrx,
602 1,
603 DMA_FROM_DEVICE,
604 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
605 NULL);
606 if (!rxdesc)
607 goto err_dma;
608
609 txdesc = txchan->device->device_prep_slave_sg(txchan,
610 &as->dma.sgtx,
611 1,
612 DMA_TO_DEVICE,
613 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
614 NULL);
615 if (!txdesc)
616 goto err_dma;
617
618 dev_dbg(master->dev.parent,
619 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
620 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
621 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
622
623 /* Enable relevant interrupts */
624 spi_writel(as, IER, SPI_BIT(OVRES));
625
626 /* Put the callback on the RX transfer only, that should finish last */
627 rxdesc->callback = dma_callback;
628 rxdesc->callback_param = master;
629
630 /* Submit and fire RX and TX with TX last so we're ready to read! */
631 cookie = rxdesc->tx_submit(rxdesc);
632 if (dma_submit_error(cookie))
633 goto err_dma;
634 cookie = txdesc->tx_submit(txdesc);
635 if (dma_submit_error(cookie))
636 goto err_dma;
637 rxchan->device->device_issue_pending(rxchan);
638 txchan->device->device_issue_pending(txchan);
639
640 /* take back lock */
641 atmel_spi_lock(as);
642 return 0;
643
644err_dma:
645 spi_writel(as, IDR, SPI_BIT(OVRES));
646 atmel_spi_stop_dma(as);
647err_exit:
648 atmel_spi_lock(as);
649 return -ENOMEM;
650}
651
652static void atmel_spi_next_xfer_data(struct spi_master *master,
653 struct spi_transfer *xfer,
654 dma_addr_t *tx_dma,
655 dma_addr_t *rx_dma,
656 u32 *plen)
657{
658 struct atmel_spi *as = spi_master_get_devdata(master);
659 u32 len = *plen;
660
661 /* use scratch buffer only when rx or tx data is unspecified */
662 if (xfer->rx_buf)
663 *rx_dma = xfer->rx_dma + xfer->len - *plen;
664 else {
665 *rx_dma = as->buffer_dma;
666 if (len > BUFFER_SIZE)
667 len = BUFFER_SIZE;
668 }
669
670 if (xfer->tx_buf)
671 *tx_dma = xfer->tx_dma + xfer->len - *plen;
672 else {
673 *tx_dma = as->buffer_dma;
674 if (len > BUFFER_SIZE)
675 len = BUFFER_SIZE;
676 memset(as->buffer, 0, len);
677 dma_sync_single_for_device(&as->pdev->dev,
678 as->buffer_dma, len, DMA_TO_DEVICE);
679 }
680
681 *plen = len;
682}
683
684static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
685 struct spi_device *spi,
686 struct spi_transfer *xfer)
687{
688 u32 scbr, csr;
689 unsigned long bus_hz;
690
691 /* v1 chips start out at half the peripheral bus speed. */
692 bus_hz = clk_get_rate(as->clk);
693 if (!atmel_spi_is_v2(as))
694 bus_hz /= 2;
695
696 /*
697 * Calculate the lowest divider that satisfies the
698 * constraint, assuming div32/fdiv/mbz == 0.
699 */
700 if (xfer->speed_hz)
701 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
702 else
703 /*
704 * This can happend if max_speed is null.
705 * In this case, we set the lowest possible speed
706 */
707 scbr = 0xff;
708
709 /*
710 * If the resulting divider doesn't fit into the
711 * register bitfield, we can't satisfy the constraint.
712 */
713 if (scbr >= (1 << SPI_SCBR_SIZE)) {
714 dev_err(&spi->dev,
715 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
716 xfer->speed_hz, scbr, bus_hz/255);
717 return -EINVAL;
718 }
719 if (scbr == 0) {
720 dev_err(&spi->dev,
721 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
722 xfer->speed_hz, scbr, bus_hz);
723 return -EINVAL;
724 }
725 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
726 csr = SPI_BFINS(SCBR, scbr, csr);
727 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
728
729 return 0;
730}
731
732/*
733 * Submit next transfer for PDC.
734 * lock is held, spi irq is blocked
735 */
736static void atmel_spi_pdc_next_xfer(struct spi_master *master,
737 struct spi_message *msg,
738 struct spi_transfer *xfer)
739{
740 struct atmel_spi *as = spi_master_get_devdata(master);
741 u32 len;
742 dma_addr_t tx_dma, rx_dma;
743
744 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
745
746 len = as->current_remaining_bytes;
747 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
748 as->current_remaining_bytes -= len;
749
750 spi_writel(as, RPR, rx_dma);
751 spi_writel(as, TPR, tx_dma);
752
753 if (msg->spi->bits_per_word > 8)
754 len >>= 1;
755 spi_writel(as, RCR, len);
756 spi_writel(as, TCR, len);
757
758 dev_dbg(&msg->spi->dev,
759 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 xfer, xfer->len, xfer->tx_buf,
761 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
762 (unsigned long long)xfer->rx_dma);
763
764 if (as->current_remaining_bytes) {
765 len = as->current_remaining_bytes;
766 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
767 as->current_remaining_bytes -= len;
768
769 spi_writel(as, RNPR, rx_dma);
770 spi_writel(as, TNPR, tx_dma);
771
772 if (msg->spi->bits_per_word > 8)
773 len >>= 1;
774 spi_writel(as, RNCR, len);
775 spi_writel(as, TNCR, len);
776
777 dev_dbg(&msg->spi->dev,
778 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
779 xfer, xfer->len, xfer->tx_buf,
780 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
781 (unsigned long long)xfer->rx_dma);
782 }
783
784 /* REVISIT: We're waiting for ENDRX before we start the next
785 * transfer because we need to handle some difficult timing
786 * issues otherwise. If we wait for ENDTX in one transfer and
787 * then starts waiting for ENDRX in the next, it's difficult
788 * to tell the difference between the ENDRX interrupt we're
789 * actually waiting for and the ENDRX interrupt of the
790 * previous transfer.
791 *
792 * It should be doable, though. Just not now...
793 */
794 spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
795 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
796}
797
798/*
799 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
800 * - The buffer is either valid for CPU access, else NULL
801 * - If the buffer is valid, so is its DMA address
802 *
803 * This driver manages the dma address unless message->is_dma_mapped.
804 */
805static int
806atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
807{
808 struct device *dev = &as->pdev->dev;
809
810 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
811 if (xfer->tx_buf) {
812 /* tx_buf is a const void* where we need a void * for the dma
813 * mapping */
814 void *nonconst_tx = (void *)xfer->tx_buf;
815
816 xfer->tx_dma = dma_map_single(dev,
817 nonconst_tx, xfer->len,
818 DMA_TO_DEVICE);
819 if (dma_mapping_error(dev, xfer->tx_dma))
820 return -ENOMEM;
821 }
822 if (xfer->rx_buf) {
823 xfer->rx_dma = dma_map_single(dev,
824 xfer->rx_buf, xfer->len,
825 DMA_FROM_DEVICE);
826 if (dma_mapping_error(dev, xfer->rx_dma)) {
827 if (xfer->tx_buf)
828 dma_unmap_single(dev,
829 xfer->tx_dma, xfer->len,
830 DMA_TO_DEVICE);
831 return -ENOMEM;
832 }
833 }
834 return 0;
835}
836
837static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
838 struct spi_transfer *xfer)
839{
840 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
841 dma_unmap_single(master->dev.parent, xfer->tx_dma,
842 xfer->len, DMA_TO_DEVICE);
843 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
844 dma_unmap_single(master->dev.parent, xfer->rx_dma,
845 xfer->len, DMA_FROM_DEVICE);
846}
847
848static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
849{
850 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
851}
852
853/* Called from IRQ
854 *
855 * Must update "current_remaining_bytes" to keep track of data
856 * to transfer.
857 */
858static void
859atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
860{
861 u8 *rxp;
862 u16 *rxp16;
863 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
864
865 if (xfer->rx_buf) {
866 if (xfer->bits_per_word > 8) {
867 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
868 *rxp16 = spi_readl(as, RDR);
869 } else {
870 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
871 *rxp = spi_readl(as, RDR);
872 }
873 } else {
874 spi_readl(as, RDR);
875 }
876 if (xfer->bits_per_word > 8) {
877 as->current_remaining_bytes -= 2;
878 if (as->current_remaining_bytes < 0)
879 as->current_remaining_bytes = 0;
880 } else {
881 as->current_remaining_bytes--;
882 }
883}
884
885/* Interrupt
886 *
887 * No need for locking in this Interrupt handler: done_status is the
888 * only information modified.
889 */
890static irqreturn_t
891atmel_spi_pio_interrupt(int irq, void *dev_id)
892{
893 struct spi_master *master = dev_id;
894 struct atmel_spi *as = spi_master_get_devdata(master);
895 u32 status, pending, imr;
896 struct spi_transfer *xfer;
897 int ret = IRQ_NONE;
898
899 imr = spi_readl(as, IMR);
900 status = spi_readl(as, SR);
901 pending = status & imr;
902
903 if (pending & SPI_BIT(OVRES)) {
904 ret = IRQ_HANDLED;
905 spi_writel(as, IDR, SPI_BIT(OVRES));
906 dev_warn(master->dev.parent, "overrun\n");
907
908 /*
909 * When we get an overrun, we disregard the current
910 * transfer. Data will not be copied back from any
911 * bounce buffer and msg->actual_len will not be
912 * updated with the last xfer.
913 *
914 * We will also not process any remaning transfers in
915 * the message.
916 */
917 as->done_status = -EIO;
918 smp_wmb();
919
920 /* Clear any overrun happening while cleaning up */
921 spi_readl(as, SR);
922
923 complete(&as->xfer_completion);
924
925 } else if (pending & SPI_BIT(RDRF)) {
926 atmel_spi_lock(as);
927
928 if (as->current_remaining_bytes) {
929 ret = IRQ_HANDLED;
930 xfer = as->current_transfer;
931 atmel_spi_pump_pio_data(as, xfer);
932 if (!as->current_remaining_bytes)
933 spi_writel(as, IDR, pending);
934
935 complete(&as->xfer_completion);
936 }
937
938 atmel_spi_unlock(as);
939 } else {
940 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
941 ret = IRQ_HANDLED;
942 spi_writel(as, IDR, pending);
943 }
944
945 return ret;
946}
947
948static irqreturn_t
949atmel_spi_pdc_interrupt(int irq, void *dev_id)
950{
951 struct spi_master *master = dev_id;
952 struct atmel_spi *as = spi_master_get_devdata(master);
953 u32 status, pending, imr;
954 int ret = IRQ_NONE;
955
956 imr = spi_readl(as, IMR);
957 status = spi_readl(as, SR);
958 pending = status & imr;
959
960 if (pending & SPI_BIT(OVRES)) {
961
962 ret = IRQ_HANDLED;
963
964 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
965 | SPI_BIT(OVRES)));
966
967 /* Clear any overrun happening while cleaning up */
968 spi_readl(as, SR);
969
970 as->done_status = -EIO;
971
972 complete(&as->xfer_completion);
973
974 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
975 ret = IRQ_HANDLED;
976
977 spi_writel(as, IDR, pending);
978
979 complete(&as->xfer_completion);
980 }
981
982 return ret;
983}
984
985static int atmel_spi_setup(struct spi_device *spi)
986{
987 struct atmel_spi *as;
988 struct atmel_spi_device *asd;
989 u32 csr;
990 unsigned int bits = spi->bits_per_word;
991 unsigned int npcs_pin;
992 int ret;
993
994 as = spi_master_get_devdata(spi->master);
995
996 /* see notes above re chipselect */
997 if (!atmel_spi_is_v2(as)
998 && spi->chip_select == 0
999 && (spi->mode & SPI_CS_HIGH)) {
1000 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1001 return -EINVAL;
1002 }
1003
1004 csr = SPI_BF(BITS, bits - 8);
1005 if (spi->mode & SPI_CPOL)
1006 csr |= SPI_BIT(CPOL);
1007 if (!(spi->mode & SPI_CPHA))
1008 csr |= SPI_BIT(NCPHA);
1009
1010 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1011 *
1012 * DLYBCT would add delays between words, slowing down transfers.
1013 * It could potentially be useful to cope with DMA bottlenecks, but
1014 * in those cases it's probably best to just use a lower bitrate.
1015 */
1016 csr |= SPI_BF(DLYBS, 0);
1017 csr |= SPI_BF(DLYBCT, 0);
1018
1019 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1020 npcs_pin = (unsigned int)spi->controller_data;
1021
1022 if (gpio_is_valid(spi->cs_gpio))
1023 npcs_pin = spi->cs_gpio;
1024
1025 asd = spi->controller_state;
1026 if (!asd) {
1027 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1028 if (!asd)
1029 return -ENOMEM;
1030
1031 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1032 if (ret) {
1033 kfree(asd);
1034 return ret;
1035 }
1036
1037 asd->npcs_pin = npcs_pin;
1038 spi->controller_state = asd;
1039 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1040 }
1041
1042 asd->csr = csr;
1043
1044 dev_dbg(&spi->dev,
1045 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1046 bits, spi->mode, spi->chip_select, csr);
1047
1048 if (!atmel_spi_is_v2(as))
1049 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1050
1051 return 0;
1052}
1053
1054static int atmel_spi_one_transfer(struct spi_master *master,
1055 struct spi_message *msg,
1056 struct spi_transfer *xfer)
1057{
1058 struct atmel_spi *as;
1059 struct spi_device *spi = msg->spi;
1060 u8 bits;
1061 u32 len;
1062 struct atmel_spi_device *asd;
1063 int timeout;
1064 int ret;
1065
1066 as = spi_master_get_devdata(master);
1067
1068 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1069 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1070 return -EINVAL;
1071 }
1072
1073 if (xfer->bits_per_word) {
1074 asd = spi->controller_state;
1075 bits = (asd->csr >> 4) & 0xf;
1076 if (bits != xfer->bits_per_word - 8) {
1077 dev_dbg(&spi->dev,
1078 "you can't yet change bits_per_word in transfers\n");
1079 return -ENOPROTOOPT;
1080 }
1081 }
1082
1083 /*
1084 * DMA map early, for performance (empties dcache ASAP) and
1085 * better fault reporting.
1086 */
1087 if ((!msg->is_dma_mapped)
1088 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1089 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1090 return -ENOMEM;
1091 }
1092
1093 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1094
1095 as->done_status = 0;
1096 as->current_transfer = xfer;
1097 as->current_remaining_bytes = xfer->len;
1098 while (as->current_remaining_bytes) {
1099 reinit_completion(&as->xfer_completion);
1100
1101 if (as->use_pdc) {
1102 atmel_spi_pdc_next_xfer(master, msg, xfer);
1103 } else if (atmel_spi_use_dma(as, xfer)) {
1104 len = as->current_remaining_bytes;
1105 ret = atmel_spi_next_xfer_dma_submit(master,
1106 xfer, &len);
1107 if (ret) {
1108 dev_err(&spi->dev,
1109 "unable to use DMA, fallback to PIO\n");
1110 atmel_spi_next_xfer_pio(master, xfer);
1111 } else {
1112 as->current_remaining_bytes -= len;
1113 }
1114 } else {
1115 atmel_spi_next_xfer_pio(master, xfer);
1116 }
1117
1118 /* interrupts are disabled, so free the lock for schedule */
1119 atmel_spi_unlock(as);
1120 ret = wait_for_completion_timeout(&as->xfer_completion,
1121 SPI_DMA_TIMEOUT);
1122 atmel_spi_lock(as);
1123 if (WARN_ON(ret == 0)) {
1124 dev_err(&spi->dev,
1125 "spi trasfer timeout, err %d\n", ret);
1126 as->done_status = -EIO;
1127 } else {
1128 ret = 0;
1129 }
1130
1131 if (as->done_status)
1132 break;
1133 }
1134
1135 if (as->done_status) {
1136 if (as->use_pdc) {
1137 dev_warn(master->dev.parent,
1138 "overrun (%u/%u remaining)\n",
1139 spi_readl(as, TCR), spi_readl(as, RCR));
1140
1141 /*
1142 * Clean up DMA registers and make sure the data
1143 * registers are empty.
1144 */
1145 spi_writel(as, RNCR, 0);
1146 spi_writel(as, TNCR, 0);
1147 spi_writel(as, RCR, 0);
1148 spi_writel(as, TCR, 0);
1149 for (timeout = 1000; timeout; timeout--)
1150 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1151 break;
1152 if (!timeout)
1153 dev_warn(master->dev.parent,
1154 "timeout waiting for TXEMPTY");
1155 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1156 spi_readl(as, RDR);
1157
1158 /* Clear any overrun happening while cleaning up */
1159 spi_readl(as, SR);
1160
1161 } else if (atmel_spi_use_dma(as, xfer)) {
1162 atmel_spi_stop_dma(as);
1163 }
1164
1165 if (!msg->is_dma_mapped
1166 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1167 atmel_spi_dma_unmap_xfer(master, xfer);
1168
1169 return 0;
1170
1171 } else {
1172 /* only update length if no error */
1173 msg->actual_length += xfer->len;
1174 }
1175
1176 if (!msg->is_dma_mapped
1177 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1178 atmel_spi_dma_unmap_xfer(master, xfer);
1179
1180 if (xfer->delay_usecs)
1181 udelay(xfer->delay_usecs);
1182
1183 if (xfer->cs_change) {
1184 if (list_is_last(&xfer->transfer_list,
1185 &msg->transfers)) {
1186 as->keep_cs = true;
1187 } else {
1188 as->cs_active = !as->cs_active;
1189 if (as->cs_active)
1190 cs_activate(as, msg->spi);
1191 else
1192 cs_deactivate(as, msg->spi);
1193 }
1194 }
1195
1196 return 0;
1197}
1198
1199static int atmel_spi_transfer_one_message(struct spi_master *master,
1200 struct spi_message *msg)
1201{
1202 struct atmel_spi *as;
1203 struct spi_transfer *xfer;
1204 struct spi_device *spi = msg->spi;
1205 int ret = 0;
1206
1207 as = spi_master_get_devdata(master);
1208
1209 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1210 msg, dev_name(&spi->dev));
1211
1212 atmel_spi_lock(as);
1213 cs_activate(as, spi);
1214
1215 as->cs_active = true;
1216 as->keep_cs = false;
1217
1218 msg->status = 0;
1219 msg->actual_length = 0;
1220
1221 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222 ret = atmel_spi_one_transfer(master, msg, xfer);
1223 if (ret)
1224 goto msg_done;
1225 }
1226
1227 if (as->use_pdc)
1228 atmel_spi_disable_pdc_transfer(as);
1229
1230 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1231 dev_dbg(&spi->dev,
1232 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1233 xfer, xfer->len,
1234 xfer->tx_buf, &xfer->tx_dma,
1235 xfer->rx_buf, &xfer->rx_dma);
1236 }
1237
1238msg_done:
1239 if (!as->keep_cs)
1240 cs_deactivate(as, msg->spi);
1241
1242 atmel_spi_unlock(as);
1243
1244 msg->status = as->done_status;
1245 spi_finalize_current_message(spi->master);
1246
1247 return ret;
1248}
1249
1250static void atmel_spi_cleanup(struct spi_device *spi)
1251{
1252 struct atmel_spi_device *asd = spi->controller_state;
1253 unsigned gpio = (unsigned) spi->controller_data;
1254
1255 if (!asd)
1256 return;
1257
1258 spi->controller_state = NULL;
1259 gpio_free(gpio);
1260 kfree(asd);
1261}
1262
1263static inline unsigned int atmel_get_version(struct atmel_spi *as)
1264{
1265 return spi_readl(as, VERSION) & 0x00000fff;
1266}
1267
1268static void atmel_get_caps(struct atmel_spi *as)
1269{
1270 unsigned int version;
1271
1272 version = atmel_get_version(as);
1273 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1274
1275 as->caps.is_spi2 = version > 0x121;
1276 as->caps.has_wdrbt = version >= 0x210;
1277 as->caps.has_dma_support = version >= 0x212;
1278}
1279
1280/*-------------------------------------------------------------------------*/
1281
1282static int atmel_spi_probe(struct platform_device *pdev)
1283{
1284 struct resource *regs;
1285 int irq;
1286 struct clk *clk;
1287 int ret;
1288 struct spi_master *master;
1289 struct atmel_spi *as;
1290
1291 /* Select default pin state */
1292 pinctrl_pm_select_default_state(&pdev->dev);
1293
1294 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295 if (!regs)
1296 return -ENXIO;
1297
1298 irq = platform_get_irq(pdev, 0);
1299 if (irq < 0)
1300 return irq;
1301
1302 clk = devm_clk_get(&pdev->dev, "spi_clk");
1303 if (IS_ERR(clk))
1304 return PTR_ERR(clk);
1305
1306 /* setup spi core then atmel-specific driver state */
1307 ret = -ENOMEM;
1308 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1309 if (!master)
1310 goto out_free;
1311
1312 /* the spi->mode bits understood by this driver: */
1313 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1314 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1315 master->dev.of_node = pdev->dev.of_node;
1316 master->bus_num = pdev->id;
1317 master->num_chipselect = master->dev.of_node ? 0 : 4;
1318 master->setup = atmel_spi_setup;
1319 master->transfer_one_message = atmel_spi_transfer_one_message;
1320 master->cleanup = atmel_spi_cleanup;
1321 platform_set_drvdata(pdev, master);
1322
1323 as = spi_master_get_devdata(master);
1324
1325 /*
1326 * Scratch buffer is used for throwaway rx and tx data.
1327 * It's coherent to minimize dcache pollution.
1328 */
1329 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1330 &as->buffer_dma, GFP_KERNEL);
1331 if (!as->buffer)
1332 goto out_free;
1333
1334 spin_lock_init(&as->lock);
1335
1336 as->pdev = pdev;
1337 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1338 if (IS_ERR(as->regs)) {
1339 ret = PTR_ERR(as->regs);
1340 goto out_free_buffer;
1341 }
1342 as->phybase = regs->start;
1343 as->irq = irq;
1344 as->clk = clk;
1345
1346 init_completion(&as->xfer_completion);
1347
1348 atmel_get_caps(as);
1349
1350 as->use_dma = false;
1351 as->use_pdc = false;
1352 if (as->caps.has_dma_support) {
1353 if (atmel_spi_configure_dma(as) == 0)
1354 as->use_dma = true;
1355 } else {
1356 as->use_pdc = true;
1357 }
1358
1359 if (as->caps.has_dma_support && !as->use_dma)
1360 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1361
1362 if (as->use_pdc) {
1363 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1364 0, dev_name(&pdev->dev), master);
1365 } else {
1366 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1367 0, dev_name(&pdev->dev), master);
1368 }
1369 if (ret)
1370 goto out_unmap_regs;
1371
1372 /* Initialize the hardware */
1373 ret = clk_prepare_enable(clk);
1374 if (ret)
1375 goto out_free_irq;
1376 spi_writel(as, CR, SPI_BIT(SWRST));
1377 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1378 if (as->caps.has_wdrbt) {
1379 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1380 | SPI_BIT(MSTR));
1381 } else {
1382 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1383 }
1384
1385 if (as->use_pdc)
1386 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1387 spi_writel(as, CR, SPI_BIT(SPIEN));
1388
1389 /* go! */
1390 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1391 (unsigned long)regs->start, irq);
1392
1393 ret = devm_spi_register_master(&pdev->dev, master);
1394 if (ret)
1395 goto out_free_dma;
1396
1397 return 0;
1398
1399out_free_dma:
1400 if (as->use_dma)
1401 atmel_spi_release_dma(as);
1402
1403 spi_writel(as, CR, SPI_BIT(SWRST));
1404 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1405 clk_disable_unprepare(clk);
1406out_free_irq:
1407out_unmap_regs:
1408out_free_buffer:
1409 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1410 as->buffer_dma);
1411out_free:
1412 spi_master_put(master);
1413 return ret;
1414}
1415
1416static int atmel_spi_remove(struct platform_device *pdev)
1417{
1418 struct spi_master *master = platform_get_drvdata(pdev);
1419 struct atmel_spi *as = spi_master_get_devdata(master);
1420
1421 /* reset the hardware and block queue progress */
1422 spin_lock_irq(&as->lock);
1423 if (as->use_dma) {
1424 atmel_spi_stop_dma(as);
1425 atmel_spi_release_dma(as);
1426 }
1427
1428 spi_writel(as, CR, SPI_BIT(SWRST));
1429 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1430 spi_readl(as, SR);
1431 spin_unlock_irq(&as->lock);
1432
1433 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1434 as->buffer_dma);
1435
1436 clk_disable_unprepare(as->clk);
1437
1438 return 0;
1439}
1440
1441#ifdef CONFIG_PM_SLEEP
1442static int atmel_spi_suspend(struct device *dev)
1443{
1444 struct spi_master *master = dev_get_drvdata(dev);
1445 struct atmel_spi *as = spi_master_get_devdata(master);
1446 int ret;
1447
1448 /* Stop the queue running */
1449 ret = spi_master_suspend(master);
1450 if (ret) {
1451 dev_warn(dev, "cannot suspend master\n");
1452 return ret;
1453 }
1454
1455 clk_disable_unprepare(as->clk);
1456
1457 pinctrl_pm_select_sleep_state(dev);
1458
1459 return 0;
1460}
1461
1462static int atmel_spi_resume(struct device *dev)
1463{
1464 struct spi_master *master = dev_get_drvdata(dev);
1465 struct atmel_spi *as = spi_master_get_devdata(master);
1466 int ret;
1467
1468 pinctrl_pm_select_default_state(dev);
1469
1470 clk_prepare_enable(as->clk);
1471
1472 /* Start the queue running */
1473 ret = spi_master_resume(master);
1474 if (ret)
1475 dev_err(dev, "problem starting queue (%d)\n", ret);
1476
1477 return ret;
1478}
1479
1480static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1481
1482#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1483#else
1484#define ATMEL_SPI_PM_OPS NULL
1485#endif
1486
1487#if defined(CONFIG_OF)
1488static const struct of_device_id atmel_spi_dt_ids[] = {
1489 { .compatible = "atmel,at91rm9200-spi" },
1490 { /* sentinel */ }
1491};
1492
1493MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1494#endif
1495
1496static struct platform_driver atmel_spi_driver = {
1497 .driver = {
1498 .name = "atmel_spi",
1499 .owner = THIS_MODULE,
1500 .pm = ATMEL_SPI_PM_OPS,
1501 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1502 },
1503 .probe = atmel_spi_probe,
1504 .remove = atmel_spi_remove,
1505};
1506module_platform_driver(atmel_spi_driver);
1507
1508MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1509MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1510MODULE_LICENSE("GPL");
1511MODULE_ALIAS("platform:atmel_spi");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/platform_data/dma-atmel.h>
20#include <linux/of.h>
21
22#include <linux/io.h>
23#include <linux/gpio/consumer.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/pm_runtime.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#ifdef CONFIG_AVR32
226#define spi_readl(port, reg) \
227 __raw_readl((port)->regs + SPI_##reg)
228#define spi_writel(port, reg, value) \
229 __raw_writel((value), (port)->regs + SPI_##reg)
230
231#define spi_readw(port, reg) \
232 __raw_readw((port)->regs + SPI_##reg)
233#define spi_writew(port, reg, value) \
234 __raw_writew((value), (port)->regs + SPI_##reg)
235
236#define spi_readb(port, reg) \
237 __raw_readb((port)->regs + SPI_##reg)
238#define spi_writeb(port, reg, value) \
239 __raw_writeb((value), (port)->regs + SPI_##reg)
240#else
241#define spi_readl(port, reg) \
242 readl_relaxed((port)->regs + SPI_##reg)
243#define spi_writel(port, reg, value) \
244 writel_relaxed((value), (port)->regs + SPI_##reg)
245
246#define spi_readw(port, reg) \
247 readw_relaxed((port)->regs + SPI_##reg)
248#define spi_writew(port, reg, value) \
249 writew_relaxed((value), (port)->regs + SPI_##reg)
250
251#define spi_readb(port, reg) \
252 readb_relaxed((port)->regs + SPI_##reg)
253#define spi_writeb(port, reg, value) \
254 writeb_relaxed((value), (port)->regs + SPI_##reg)
255#endif
256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257 * cache operations; better heuristics consider wordsize and bitrate.
258 */
259#define DMA_MIN_BYTES 16
260
261#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
262
263#define AUTOSUSPEND_TIMEOUT 2000
264
265struct atmel_spi_caps {
266 bool is_spi2;
267 bool has_wdrbt;
268 bool has_dma_support;
269 bool has_pdc_support;
270};
271
272/*
273 * The core SPI transfer engine just talks to a register bank to set up
274 * DMA transfers; transfer queue progress is driven by IRQs. The clock
275 * framework provides the base clock, subdivided for each spi_device.
276 */
277struct atmel_spi {
278 spinlock_t lock;
279 unsigned long flags;
280
281 phys_addr_t phybase;
282 void __iomem *regs;
283 int irq;
284 struct clk *clk;
285 struct platform_device *pdev;
286 unsigned long spi_clk;
287
288 struct spi_transfer *current_transfer;
289 int current_remaining_bytes;
290 int done_status;
291 dma_addr_t dma_addr_rx_bbuf;
292 dma_addr_t dma_addr_tx_bbuf;
293 void *addr_rx_bbuf;
294 void *addr_tx_bbuf;
295
296 struct completion xfer_completion;
297
298 struct atmel_spi_caps caps;
299
300 bool use_dma;
301 bool use_pdc;
302 bool use_cs_gpios;
303
304 bool keep_cs;
305 bool cs_active;
306
307 u32 fifo_size;
308};
309
310/* Controller-specific per-slave state */
311struct atmel_spi_device {
312 struct gpio_desc *npcs_pin;
313 u32 csr;
314};
315
316#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
317#define INVALID_DMA_ADDRESS 0xffffffff
318
319/*
320 * Version 2 of the SPI controller has
321 * - CR.LASTXFER
322 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
323 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324 * - SPI_CSRx.CSAAT
325 * - SPI_CSRx.SBCR allows faster clocking
326 */
327static bool atmel_spi_is_v2(struct atmel_spi *as)
328{
329 return as->caps.is_spi2;
330}
331
332/*
333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
334 * they assume that spi slave device state will not change on deselect, so
335 * that automagic deselection is OK. ("NPCSx rises if no data is to be
336 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
337 * controllers have CSAAT and friends.
338 *
339 * Since the CSAAT functionality is a bit weird on newer controllers as
340 * well, we use GPIO to control nCSx pins on all controllers, updating
341 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
342 * support active-high chipselects despite the controller's belief that
343 * only active-low devices/systems exists.
344 *
345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
346 * right when driven with GPIO. ("Mode Fault does not allow more than one
347 * Master on Chip Select 0.") No workaround exists for that ... so for
348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
349 * and (c) will trigger that first erratum in some cases.
350 */
351
352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353{
354 struct atmel_spi_device *asd = spi->controller_state;
355 u32 mr;
356
357 if (atmel_spi_is_v2(as)) {
358 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
359 /* For the low SPI version, there is a issue that PDC transfer
360 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 */
362 spi_writel(as, CSR0, asd->csr);
363 if (as->caps.has_wdrbt) {
364 spi_writel(as, MR,
365 SPI_BF(PCS, ~(0x01 << spi->chip_select))
366 | SPI_BIT(WDRBT)
367 | SPI_BIT(MODFDIS)
368 | SPI_BIT(MSTR));
369 } else {
370 spi_writel(as, MR,
371 SPI_BF(PCS, ~(0x01 << spi->chip_select))
372 | SPI_BIT(MODFDIS)
373 | SPI_BIT(MSTR));
374 }
375
376 mr = spi_readl(as, MR);
377 if (as->use_cs_gpios)
378 gpiod_set_value(asd->npcs_pin, 1);
379 } else {
380 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
381 int i;
382 u32 csr;
383
384 /* Make sure clock polarity is correct */
385 for (i = 0; i < spi->master->num_chipselect; i++) {
386 csr = spi_readl(as, CSR0 + 4 * i);
387 if ((csr ^ cpol) & SPI_BIT(CPOL))
388 spi_writel(as, CSR0 + 4 * i,
389 csr ^ SPI_BIT(CPOL));
390 }
391
392 mr = spi_readl(as, MR);
393 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
394 if (as->use_cs_gpios && spi->chip_select != 0)
395 gpiod_set_value(asd->npcs_pin, 1);
396 spi_writel(as, MR, mr);
397 }
398
399 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
400}
401
402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403{
404 struct atmel_spi_device *asd = spi->controller_state;
405 u32 mr;
406
407 /* only deactivate *this* device; sometimes transfers to
408 * another device may be active when this routine is called.
409 */
410 mr = spi_readl(as, MR);
411 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
412 mr = SPI_BFINS(PCS, 0xf, mr);
413 spi_writel(as, MR, mr);
414 }
415
416 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417
418 if (!as->use_cs_gpios)
419 spi_writel(as, CR, SPI_BIT(LASTXFER));
420 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
421 gpiod_set_value(asd->npcs_pin, 0);
422}
423
424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425{
426 spin_lock_irqsave(&as->lock, as->flags);
427}
428
429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430{
431 spin_unlock_irqrestore(&as->lock, as->flags);
432}
433
434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435{
436 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
437}
438
439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
440 struct spi_transfer *xfer)
441{
442 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
443}
444
445static bool atmel_spi_can_dma(struct spi_master *master,
446 struct spi_device *spi,
447 struct spi_transfer *xfer)
448{
449 struct atmel_spi *as = spi_master_get_devdata(master);
450
451 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
452 return atmel_spi_use_dma(as, xfer) &&
453 !atmel_spi_is_vmalloc_xfer(xfer);
454 else
455 return atmel_spi_use_dma(as, xfer);
456
457}
458
459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 struct dma_slave_config *slave_config,
461 u8 bits_per_word)
462{
463 struct spi_master *master = platform_get_drvdata(as->pdev);
464 int err = 0;
465
466 if (bits_per_word > 8) {
467 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 } else {
470 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 }
473
474 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476 slave_config->src_maxburst = 1;
477 slave_config->dst_maxburst = 1;
478 slave_config->device_fc = false;
479
480 /*
481 * This driver uses fixed peripheral select mode (PS bit set to '0' in
482 * the Mode Register).
483 * So according to the datasheet, when FIFOs are available (and
484 * enabled), the Transmit FIFO operates in Multiple Data Mode.
485 * In this mode, up to 2 data, not 4, can be written into the Transmit
486 * Data Register in a single access.
487 * However, the first data has to be written into the lowest 16 bits and
488 * the second data into the highest 16 bits of the Transmit
489 * Data Register. For 8bit data (the most frequent case), it would
490 * require to rework tx_buf so each data would actualy fit 16 bits.
491 * So we'd rather write only one data at the time. Hence the transmit
492 * path works the same whether FIFOs are available (and enabled) or not.
493 */
494 slave_config->direction = DMA_MEM_TO_DEV;
495 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
496 dev_err(&as->pdev->dev,
497 "failed to configure tx dma channel\n");
498 err = -EINVAL;
499 }
500
501 /*
502 * This driver configures the spi controller for master mode (MSTR bit
503 * set to '1' in the Mode Register).
504 * So according to the datasheet, when FIFOs are available (and
505 * enabled), the Receive FIFO operates in Single Data Mode.
506 * So the receive path works the same whether FIFOs are available (and
507 * enabled) or not.
508 */
509 slave_config->direction = DMA_DEV_TO_MEM;
510 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
511 dev_err(&as->pdev->dev,
512 "failed to configure rx dma channel\n");
513 err = -EINVAL;
514 }
515
516 return err;
517}
518
519static int atmel_spi_configure_dma(struct spi_master *master,
520 struct atmel_spi *as)
521{
522 struct dma_slave_config slave_config;
523 struct device *dev = &as->pdev->dev;
524 int err;
525
526 dma_cap_mask_t mask;
527 dma_cap_zero(mask);
528 dma_cap_set(DMA_SLAVE, mask);
529
530 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
531 if (IS_ERR(master->dma_tx)) {
532 err = PTR_ERR(master->dma_tx);
533 if (err == -EPROBE_DEFER) {
534 dev_warn(dev, "no DMA channel available at the moment\n");
535 goto error_clear;
536 }
537 dev_err(dev,
538 "DMA TX channel not available, SPI unable to use DMA\n");
539 err = -EBUSY;
540 goto error_clear;
541 }
542
543 /*
544 * No reason to check EPROBE_DEFER here since we have already requested
545 * tx channel. If it fails here, it's for another reason.
546 */
547 master->dma_rx = dma_request_slave_channel(dev, "rx");
548
549 if (!master->dma_rx) {
550 dev_err(dev,
551 "DMA RX channel not available, SPI unable to use DMA\n");
552 err = -EBUSY;
553 goto error;
554 }
555
556 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557 if (err)
558 goto error;
559
560 dev_info(&as->pdev->dev,
561 "Using %s (tx) and %s (rx) for DMA transfers\n",
562 dma_chan_name(master->dma_tx),
563 dma_chan_name(master->dma_rx));
564
565 return 0;
566error:
567 if (master->dma_rx)
568 dma_release_channel(master->dma_rx);
569 if (!IS_ERR(master->dma_tx))
570 dma_release_channel(master->dma_tx);
571error_clear:
572 master->dma_tx = master->dma_rx = NULL;
573 return err;
574}
575
576static void atmel_spi_stop_dma(struct spi_master *master)
577{
578 if (master->dma_rx)
579 dmaengine_terminate_all(master->dma_rx);
580 if (master->dma_tx)
581 dmaengine_terminate_all(master->dma_tx);
582}
583
584static void atmel_spi_release_dma(struct spi_master *master)
585{
586 if (master->dma_rx) {
587 dma_release_channel(master->dma_rx);
588 master->dma_rx = NULL;
589 }
590 if (master->dma_tx) {
591 dma_release_channel(master->dma_tx);
592 master->dma_tx = NULL;
593 }
594}
595
596/* This function is called by the DMA driver from tasklet context */
597static void dma_callback(void *data)
598{
599 struct spi_master *master = data;
600 struct atmel_spi *as = spi_master_get_devdata(master);
601
602 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
603 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
604 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
605 as->current_transfer->len);
606 }
607 complete(&as->xfer_completion);
608}
609
610/*
611 * Next transfer using PIO without FIFO.
612 */
613static void atmel_spi_next_xfer_single(struct spi_master *master,
614 struct spi_transfer *xfer)
615{
616 struct atmel_spi *as = spi_master_get_devdata(master);
617 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618
619 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620
621 /* Make sure data is not remaining in RDR */
622 spi_readl(as, RDR);
623 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
624 spi_readl(as, RDR);
625 cpu_relax();
626 }
627
628 if (xfer->bits_per_word > 8)
629 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
630 else
631 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632
633 dev_dbg(master->dev.parent,
634 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
635 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
636 xfer->bits_per_word);
637
638 /* Enable relevant interrupts */
639 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
640}
641
642/*
643 * Next transfer using PIO with FIFO.
644 */
645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
646 struct spi_transfer *xfer)
647{
648 struct atmel_spi *as = spi_master_get_devdata(master);
649 u32 current_remaining_data, num_data;
650 u32 offset = xfer->len - as->current_remaining_bytes;
651 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
652 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
653 u16 td0, td1;
654 u32 fifomr;
655
656 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657
658 /* Compute the number of data to transfer in the current iteration */
659 current_remaining_data = ((xfer->bits_per_word > 8) ?
660 ((u32)as->current_remaining_bytes >> 1) :
661 (u32)as->current_remaining_bytes);
662 num_data = min(current_remaining_data, as->fifo_size);
663
664 /* Flush RX and TX FIFOs */
665 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
666 while (spi_readl(as, FLR))
667 cpu_relax();
668
669 /* Set RX FIFO Threshold to the number of data to transfer */
670 fifomr = spi_readl(as, FMR);
671 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672
673 /* Clear FIFO flags in the Status Register, especially RXFTHF */
674 (void)spi_readl(as, SR);
675
676 /* Fill TX FIFO */
677 while (num_data >= 2) {
678 if (xfer->bits_per_word > 8) {
679 td0 = *words++;
680 td1 = *words++;
681 } else {
682 td0 = *bytes++;
683 td1 = *bytes++;
684 }
685
686 spi_writel(as, TDR, (td1 << 16) | td0);
687 num_data -= 2;
688 }
689
690 if (num_data) {
691 if (xfer->bits_per_word > 8)
692 td0 = *words++;
693 else
694 td0 = *bytes++;
695
696 spi_writew(as, TDR, td0);
697 num_data--;
698 }
699
700 dev_dbg(master->dev.parent,
701 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703 xfer->bits_per_word);
704
705 /*
706 * Enable RX FIFO Threshold Flag interrupt to be notified about
707 * transfer completion.
708 */
709 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710}
711
712/*
713 * Next transfer using PIO.
714 */
715static void atmel_spi_next_xfer_pio(struct spi_master *master,
716 struct spi_transfer *xfer)
717{
718 struct atmel_spi *as = spi_master_get_devdata(master);
719
720 if (as->fifo_size)
721 atmel_spi_next_xfer_fifo(master, xfer);
722 else
723 atmel_spi_next_xfer_single(master, xfer);
724}
725
726/*
727 * Submit next transfer for DMA.
728 */
729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730 struct spi_transfer *xfer,
731 u32 *plen)
732{
733 struct atmel_spi *as = spi_master_get_devdata(master);
734 struct dma_chan *rxchan = master->dma_rx;
735 struct dma_chan *txchan = master->dma_tx;
736 struct dma_async_tx_descriptor *rxdesc;
737 struct dma_async_tx_descriptor *txdesc;
738 struct dma_slave_config slave_config;
739 dma_cookie_t cookie;
740
741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743 /* Check that the channels are available */
744 if (!rxchan || !txchan)
745 return -ENODEV;
746
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as);
749
750 *plen = xfer->len;
751
752 if (atmel_spi_dma_slave_config(as, &slave_config,
753 xfer->bits_per_word))
754 goto err_exit;
755
756 /* Send both scatterlists */
757 if (atmel_spi_is_vmalloc_xfer(xfer) &&
758 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
759 rxdesc = dmaengine_prep_slave_single(rxchan,
760 as->dma_addr_rx_bbuf,
761 xfer->len,
762 DMA_DEV_TO_MEM,
763 DMA_PREP_INTERRUPT |
764 DMA_CTRL_ACK);
765 } else {
766 rxdesc = dmaengine_prep_slave_sg(rxchan,
767 xfer->rx_sg.sgl,
768 xfer->rx_sg.nents,
769 DMA_DEV_TO_MEM,
770 DMA_PREP_INTERRUPT |
771 DMA_CTRL_ACK);
772 }
773 if (!rxdesc)
774 goto err_dma;
775
776 if (atmel_spi_is_vmalloc_xfer(xfer) &&
777 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
778 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
779 txdesc = dmaengine_prep_slave_single(txchan,
780 as->dma_addr_tx_bbuf,
781 xfer->len, DMA_MEM_TO_DEV,
782 DMA_PREP_INTERRUPT |
783 DMA_CTRL_ACK);
784 } else {
785 txdesc = dmaengine_prep_slave_sg(txchan,
786 xfer->tx_sg.sgl,
787 xfer->tx_sg.nents,
788 DMA_MEM_TO_DEV,
789 DMA_PREP_INTERRUPT |
790 DMA_CTRL_ACK);
791 }
792 if (!txdesc)
793 goto err_dma;
794
795 dev_dbg(master->dev.parent,
796 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799
800 /* Enable relevant interrupts */
801 spi_writel(as, IER, SPI_BIT(OVRES));
802
803 /* Put the callback on the RX transfer only, that should finish last */
804 rxdesc->callback = dma_callback;
805 rxdesc->callback_param = master;
806
807 /* Submit and fire RX and TX with TX last so we're ready to read! */
808 cookie = rxdesc->tx_submit(rxdesc);
809 if (dma_submit_error(cookie))
810 goto err_dma;
811 cookie = txdesc->tx_submit(txdesc);
812 if (dma_submit_error(cookie))
813 goto err_dma;
814 rxchan->device->device_issue_pending(rxchan);
815 txchan->device->device_issue_pending(txchan);
816
817 /* take back lock */
818 atmel_spi_lock(as);
819 return 0;
820
821err_dma:
822 spi_writel(as, IDR, SPI_BIT(OVRES));
823 atmel_spi_stop_dma(master);
824err_exit:
825 atmel_spi_lock(as);
826 return -ENOMEM;
827}
828
829static void atmel_spi_next_xfer_data(struct spi_master *master,
830 struct spi_transfer *xfer,
831 dma_addr_t *tx_dma,
832 dma_addr_t *rx_dma,
833 u32 *plen)
834{
835 *rx_dma = xfer->rx_dma + xfer->len - *plen;
836 *tx_dma = xfer->tx_dma + xfer->len - *plen;
837 if (*plen > master->max_dma_len)
838 *plen = master->max_dma_len;
839}
840
841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
842 struct spi_device *spi,
843 struct spi_transfer *xfer)
844{
845 u32 scbr, csr;
846 unsigned long bus_hz;
847
848 /* v1 chips start out at half the peripheral bus speed. */
849 bus_hz = as->spi_clk;
850 if (!atmel_spi_is_v2(as))
851 bus_hz /= 2;
852
853 /*
854 * Calculate the lowest divider that satisfies the
855 * constraint, assuming div32/fdiv/mbz == 0.
856 */
857 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
858
859 /*
860 * If the resulting divider doesn't fit into the
861 * register bitfield, we can't satisfy the constraint.
862 */
863 if (scbr >= (1 << SPI_SCBR_SIZE)) {
864 dev_err(&spi->dev,
865 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
866 xfer->speed_hz, scbr, bus_hz/255);
867 return -EINVAL;
868 }
869 if (scbr == 0) {
870 dev_err(&spi->dev,
871 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
872 xfer->speed_hz, scbr, bus_hz);
873 return -EINVAL;
874 }
875 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
876 csr = SPI_BFINS(SCBR, scbr, csr);
877 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878
879 return 0;
880}
881
882/*
883 * Submit next transfer for PDC.
884 * lock is held, spi irq is blocked
885 */
886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
887 struct spi_message *msg,
888 struct spi_transfer *xfer)
889{
890 struct atmel_spi *as = spi_master_get_devdata(master);
891 u32 len;
892 dma_addr_t tx_dma, rx_dma;
893
894 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895
896 len = as->current_remaining_bytes;
897 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
898 as->current_remaining_bytes -= len;
899
900 spi_writel(as, RPR, rx_dma);
901 spi_writel(as, TPR, tx_dma);
902
903 if (msg->spi->bits_per_word > 8)
904 len >>= 1;
905 spi_writel(as, RCR, len);
906 spi_writel(as, TCR, len);
907
908 dev_dbg(&msg->spi->dev,
909 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
910 xfer, xfer->len, xfer->tx_buf,
911 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
912 (unsigned long long)xfer->rx_dma);
913
914 if (as->current_remaining_bytes) {
915 len = as->current_remaining_bytes;
916 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
917 as->current_remaining_bytes -= len;
918
919 spi_writel(as, RNPR, rx_dma);
920 spi_writel(as, TNPR, tx_dma);
921
922 if (msg->spi->bits_per_word > 8)
923 len >>= 1;
924 spi_writel(as, RNCR, len);
925 spi_writel(as, TNCR, len);
926
927 dev_dbg(&msg->spi->dev,
928 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
929 xfer, xfer->len, xfer->tx_buf,
930 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
931 (unsigned long long)xfer->rx_dma);
932 }
933
934 /* REVISIT: We're waiting for RXBUFF before we start the next
935 * transfer because we need to handle some difficult timing
936 * issues otherwise. If we wait for TXBUFE in one transfer and
937 * then starts waiting for RXBUFF in the next, it's difficult
938 * to tell the difference between the RXBUFF interrupt we're
939 * actually waiting for and the RXBUFF interrupt of the
940 * previous transfer.
941 *
942 * It should be doable, though. Just not now...
943 */
944 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
945 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
946}
947
948/*
949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
950 * - The buffer is either valid for CPU access, else NULL
951 * - If the buffer is valid, so is its DMA address
952 *
953 * This driver manages the dma address unless message->is_dma_mapped.
954 */
955static int
956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957{
958 struct device *dev = &as->pdev->dev;
959
960 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
961 if (xfer->tx_buf) {
962 /* tx_buf is a const void* where we need a void * for the dma
963 * mapping */
964 void *nonconst_tx = (void *)xfer->tx_buf;
965
966 xfer->tx_dma = dma_map_single(dev,
967 nonconst_tx, xfer->len,
968 DMA_TO_DEVICE);
969 if (dma_mapping_error(dev, xfer->tx_dma))
970 return -ENOMEM;
971 }
972 if (xfer->rx_buf) {
973 xfer->rx_dma = dma_map_single(dev,
974 xfer->rx_buf, xfer->len,
975 DMA_FROM_DEVICE);
976 if (dma_mapping_error(dev, xfer->rx_dma)) {
977 if (xfer->tx_buf)
978 dma_unmap_single(dev,
979 xfer->tx_dma, xfer->len,
980 DMA_TO_DEVICE);
981 return -ENOMEM;
982 }
983 }
984 return 0;
985}
986
987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
988 struct spi_transfer *xfer)
989{
990 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
991 dma_unmap_single(master->dev.parent, xfer->tx_dma,
992 xfer->len, DMA_TO_DEVICE);
993 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
994 dma_unmap_single(master->dev.parent, xfer->rx_dma,
995 xfer->len, DMA_FROM_DEVICE);
996}
997
998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999{
1000 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006 u8 *rxp;
1007 u16 *rxp16;
1008 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010 if (xfer->bits_per_word > 8) {
1011 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012 *rxp16 = spi_readl(as, RDR);
1013 } else {
1014 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015 *rxp = spi_readl(as, RDR);
1016 }
1017 if (xfer->bits_per_word > 8) {
1018 if (as->current_remaining_bytes > 2)
1019 as->current_remaining_bytes -= 2;
1020 else
1021 as->current_remaining_bytes = 0;
1022 } else {
1023 as->current_remaining_bytes--;
1024 }
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030 u32 fifolr = spi_readl(as, FLR);
1031 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032 u32 offset = xfer->len - as->current_remaining_bytes;
1033 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1035 u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037 /* Update the number of remaining bytes to transfer */
1038 num_bytes = ((xfer->bits_per_word > 8) ?
1039 (num_data << 1) :
1040 num_data);
1041
1042 if (as->current_remaining_bytes > num_bytes)
1043 as->current_remaining_bytes -= num_bytes;
1044 else
1045 as->current_remaining_bytes = 0;
1046
1047 /* Handle odd number of bytes when data are more than 8bit width */
1048 if (xfer->bits_per_word > 8)
1049 as->current_remaining_bytes &= ~0x1;
1050
1051 /* Read data */
1052 while (num_data) {
1053 rd = spi_readl(as, RDR);
1054 if (xfer->bits_per_word > 8)
1055 *words++ = rd;
1056 else
1057 *bytes++ = rd;
1058 num_data--;
1059 }
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070 if (as->fifo_size)
1071 atmel_spi_pump_fifo_data(as, xfer);
1072 else
1073 atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084 struct spi_master *master = dev_id;
1085 struct atmel_spi *as = spi_master_get_devdata(master);
1086 u32 status, pending, imr;
1087 struct spi_transfer *xfer;
1088 int ret = IRQ_NONE;
1089
1090 imr = spi_readl(as, IMR);
1091 status = spi_readl(as, SR);
1092 pending = status & imr;
1093
1094 if (pending & SPI_BIT(OVRES)) {
1095 ret = IRQ_HANDLED;
1096 spi_writel(as, IDR, SPI_BIT(OVRES));
1097 dev_warn(master->dev.parent, "overrun\n");
1098
1099 /*
1100 * When we get an overrun, we disregard the current
1101 * transfer. Data will not be copied back from any
1102 * bounce buffer and msg->actual_len will not be
1103 * updated with the last xfer.
1104 *
1105 * We will also not process any remaning transfers in
1106 * the message.
1107 */
1108 as->done_status = -EIO;
1109 smp_wmb();
1110
1111 /* Clear any overrun happening while cleaning up */
1112 spi_readl(as, SR);
1113
1114 complete(&as->xfer_completion);
1115
1116 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117 atmel_spi_lock(as);
1118
1119 if (as->current_remaining_bytes) {
1120 ret = IRQ_HANDLED;
1121 xfer = as->current_transfer;
1122 atmel_spi_pump_pio_data(as, xfer);
1123 if (!as->current_remaining_bytes)
1124 spi_writel(as, IDR, pending);
1125
1126 complete(&as->xfer_completion);
1127 }
1128
1129 atmel_spi_unlock(as);
1130 } else {
1131 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132 ret = IRQ_HANDLED;
1133 spi_writel(as, IDR, pending);
1134 }
1135
1136 return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142 struct spi_master *master = dev_id;
1143 struct atmel_spi *as = spi_master_get_devdata(master);
1144 u32 status, pending, imr;
1145 int ret = IRQ_NONE;
1146
1147 imr = spi_readl(as, IMR);
1148 status = spi_readl(as, SR);
1149 pending = status & imr;
1150
1151 if (pending & SPI_BIT(OVRES)) {
1152
1153 ret = IRQ_HANDLED;
1154
1155 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156 | SPI_BIT(OVRES)));
1157
1158 /* Clear any overrun happening while cleaning up */
1159 spi_readl(as, SR);
1160
1161 as->done_status = -EIO;
1162
1163 complete(&as->xfer_completion);
1164
1165 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166 ret = IRQ_HANDLED;
1167
1168 spi_writel(as, IDR, pending);
1169
1170 complete(&as->xfer_completion);
1171 }
1172
1173 return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178 struct atmel_spi *as;
1179 struct atmel_spi_device *asd;
1180 u32 csr;
1181 unsigned int bits = spi->bits_per_word;
1182
1183 as = spi_master_get_devdata(spi->master);
1184
1185 /* see notes above re chipselect */
1186 if (!atmel_spi_is_v2(as)
1187 && spi->chip_select == 0
1188 && (spi->mode & SPI_CS_HIGH)) {
1189 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190 return -EINVAL;
1191 }
1192
1193 csr = SPI_BF(BITS, bits - 8);
1194 if (spi->mode & SPI_CPOL)
1195 csr |= SPI_BIT(CPOL);
1196 if (!(spi->mode & SPI_CPHA))
1197 csr |= SPI_BIT(NCPHA);
1198 if (!as->use_cs_gpios)
1199 csr |= SPI_BIT(CSAAT);
1200
1201 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1202 */
1203 csr |= SPI_BF(DLYBS, 0);
1204
1205 /* DLYBCT adds delays between words. This is useful for slow devices
1206 * that need a bit of time to setup the next transfer.
1207 */
1208 csr |= SPI_BF(DLYBCT,
1209 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211 asd = spi->controller_state;
1212 if (!asd) {
1213 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214 if (!asd)
1215 return -ENOMEM;
1216
1217 /*
1218 * If use_cs_gpios is true this means that we have "cs-gpios"
1219 * defined in the device tree node so we should have
1220 * gotten the GPIO lines from the device tree inside the
1221 * SPI core. Warn if this is not the case but continue since
1222 * CS GPIOs are after all optional.
1223 */
1224 if (as->use_cs_gpios) {
1225 if (!spi->cs_gpiod) {
1226 dev_err(&spi->dev,
1227 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228 }
1229 asd->npcs_pin = spi->cs_gpiod;
1230 }
1231
1232 spi->controller_state = asd;
1233 }
1234
1235 asd->csr = csr;
1236
1237 dev_dbg(&spi->dev,
1238 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239 bits, spi->mode, spi->chip_select, csr);
1240
1241 if (!atmel_spi_is_v2(as))
1242 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244 return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248 struct spi_message *msg,
1249 struct spi_transfer *xfer)
1250{
1251 struct atmel_spi *as;
1252 struct spi_device *spi = msg->spi;
1253 u8 bits;
1254 u32 len;
1255 struct atmel_spi_device *asd;
1256 int timeout;
1257 int ret;
1258 unsigned long dma_timeout;
1259
1260 as = spi_master_get_devdata(master);
1261
1262 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264 return -EINVAL;
1265 }
1266
1267 asd = spi->controller_state;
1268 bits = (asd->csr >> 4) & 0xf;
1269 if (bits != xfer->bits_per_word - 8) {
1270 dev_dbg(&spi->dev,
1271 "you can't yet change bits_per_word in transfers\n");
1272 return -ENOPROTOOPT;
1273 }
1274
1275 /*
1276 * DMA map early, for performance (empties dcache ASAP) and
1277 * better fault reporting.
1278 */
1279 if ((!msg->is_dma_mapped)
1280 && as->use_pdc) {
1281 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282 return -ENOMEM;
1283 }
1284
1285 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287 as->done_status = 0;
1288 as->current_transfer = xfer;
1289 as->current_remaining_bytes = xfer->len;
1290 while (as->current_remaining_bytes) {
1291 reinit_completion(&as->xfer_completion);
1292
1293 if (as->use_pdc) {
1294 atmel_spi_pdc_next_xfer(master, msg, xfer);
1295 } else if (atmel_spi_use_dma(as, xfer)) {
1296 len = as->current_remaining_bytes;
1297 ret = atmel_spi_next_xfer_dma_submit(master,
1298 xfer, &len);
1299 if (ret) {
1300 dev_err(&spi->dev,
1301 "unable to use DMA, fallback to PIO\n");
1302 atmel_spi_next_xfer_pio(master, xfer);
1303 } else {
1304 as->current_remaining_bytes -= len;
1305 if (as->current_remaining_bytes < 0)
1306 as->current_remaining_bytes = 0;
1307 }
1308 } else {
1309 atmel_spi_next_xfer_pio(master, xfer);
1310 }
1311
1312 /* interrupts are disabled, so free the lock for schedule */
1313 atmel_spi_unlock(as);
1314 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315 SPI_DMA_TIMEOUT);
1316 atmel_spi_lock(as);
1317 if (WARN_ON(dma_timeout == 0)) {
1318 dev_err(&spi->dev, "spi transfer timeout\n");
1319 as->done_status = -EIO;
1320 }
1321
1322 if (as->done_status)
1323 break;
1324 }
1325
1326 if (as->done_status) {
1327 if (as->use_pdc) {
1328 dev_warn(master->dev.parent,
1329 "overrun (%u/%u remaining)\n",
1330 spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332 /*
1333 * Clean up DMA registers and make sure the data
1334 * registers are empty.
1335 */
1336 spi_writel(as, RNCR, 0);
1337 spi_writel(as, TNCR, 0);
1338 spi_writel(as, RCR, 0);
1339 spi_writel(as, TCR, 0);
1340 for (timeout = 1000; timeout; timeout--)
1341 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342 break;
1343 if (!timeout)
1344 dev_warn(master->dev.parent,
1345 "timeout waiting for TXEMPTY");
1346 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347 spi_readl(as, RDR);
1348
1349 /* Clear any overrun happening while cleaning up */
1350 spi_readl(as, SR);
1351
1352 } else if (atmel_spi_use_dma(as, xfer)) {
1353 atmel_spi_stop_dma(master);
1354 }
1355
1356 if (!msg->is_dma_mapped
1357 && as->use_pdc)
1358 atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360 return 0;
1361
1362 } else {
1363 /* only update length if no error */
1364 msg->actual_length += xfer->len;
1365 }
1366
1367 if (!msg->is_dma_mapped
1368 && as->use_pdc)
1369 atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371 if (xfer->delay_usecs)
1372 udelay(xfer->delay_usecs);
1373
1374 if (xfer->cs_change) {
1375 if (list_is_last(&xfer->transfer_list,
1376 &msg->transfers)) {
1377 as->keep_cs = true;
1378 } else {
1379 as->cs_active = !as->cs_active;
1380 if (as->cs_active)
1381 cs_activate(as, msg->spi);
1382 else
1383 cs_deactivate(as, msg->spi);
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391 struct spi_message *msg)
1392{
1393 struct atmel_spi *as;
1394 struct spi_transfer *xfer;
1395 struct spi_device *spi = msg->spi;
1396 int ret = 0;
1397
1398 as = spi_master_get_devdata(master);
1399
1400 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401 msg, dev_name(&spi->dev));
1402
1403 atmel_spi_lock(as);
1404 cs_activate(as, spi);
1405
1406 as->cs_active = true;
1407 as->keep_cs = false;
1408
1409 msg->status = 0;
1410 msg->actual_length = 0;
1411
1412 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413 trace_spi_transfer_start(msg, xfer);
1414
1415 ret = atmel_spi_one_transfer(master, msg, xfer);
1416 if (ret)
1417 goto msg_done;
1418
1419 trace_spi_transfer_stop(msg, xfer);
1420 }
1421
1422 if (as->use_pdc)
1423 atmel_spi_disable_pdc_transfer(as);
1424
1425 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426 dev_dbg(&spi->dev,
1427 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428 xfer, xfer->len,
1429 xfer->tx_buf, &xfer->tx_dma,
1430 xfer->rx_buf, &xfer->rx_dma);
1431 }
1432
1433msg_done:
1434 if (!as->keep_cs)
1435 cs_deactivate(as, msg->spi);
1436
1437 atmel_spi_unlock(as);
1438
1439 msg->status = as->done_status;
1440 spi_finalize_current_message(spi->master);
1441
1442 return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
1447 struct atmel_spi_device *asd = spi->controller_state;
1448
1449 if (!asd)
1450 return;
1451
1452 spi->controller_state = NULL;
1453 kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458 return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463 unsigned int version;
1464
1465 version = atmel_get_version(as);
1466
1467 as->caps.is_spi2 = version > 0x121;
1468 as->caps.has_wdrbt = version >= 0x210;
1469 as->caps.has_dma_support = version >= 0x212;
1470 as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
1474{
1475 spi_writel(as, CR, SPI_BIT(SWRST));
1476 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478 /* It is recommended to enable FIFOs first thing after reset */
1479 if (as->fifo_size)
1480 spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482 if (as->caps.has_wdrbt) {
1483 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484 | SPI_BIT(MSTR));
1485 } else {
1486 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487 }
1488
1489 if (as->use_pdc)
1490 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491 spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496 struct resource *regs;
1497 int irq;
1498 struct clk *clk;
1499 int ret;
1500 struct spi_master *master;
1501 struct atmel_spi *as;
1502
1503 /* Select default pin state */
1504 pinctrl_pm_select_default_state(&pdev->dev);
1505
1506 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507 if (!regs)
1508 return -ENXIO;
1509
1510 irq = platform_get_irq(pdev, 0);
1511 if (irq < 0)
1512 return irq;
1513
1514 clk = devm_clk_get(&pdev->dev, "spi_clk");
1515 if (IS_ERR(clk))
1516 return PTR_ERR(clk);
1517
1518 /* setup spi core then atmel-specific driver state */
1519 ret = -ENOMEM;
1520 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521 if (!master)
1522 goto out_free;
1523
1524 /* the spi->mode bits understood by this driver: */
1525 master->use_gpio_descriptors = true;
1526 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528 master->dev.of_node = pdev->dev.of_node;
1529 master->bus_num = pdev->id;
1530 master->num_chipselect = master->dev.of_node ? 0 : 4;
1531 master->setup = atmel_spi_setup;
1532 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533 master->transfer_one_message = atmel_spi_transfer_one_message;
1534 master->cleanup = atmel_spi_cleanup;
1535 master->auto_runtime_pm = true;
1536 master->max_dma_len = SPI_MAX_DMA_XFER;
1537 master->can_dma = atmel_spi_can_dma;
1538 platform_set_drvdata(pdev, master);
1539
1540 as = spi_master_get_devdata(master);
1541
1542 spin_lock_init(&as->lock);
1543
1544 as->pdev = pdev;
1545 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546 if (IS_ERR(as->regs)) {
1547 ret = PTR_ERR(as->regs);
1548 goto out_unmap_regs;
1549 }
1550 as->phybase = regs->start;
1551 as->irq = irq;
1552 as->clk = clk;
1553
1554 init_completion(&as->xfer_completion);
1555
1556 atmel_get_caps(as);
1557
1558 /*
1559 * If there are chip selects in the device tree, those will be
1560 * discovered by the SPI core when registering the SPI master
1561 * and assigned to each SPI device.
1562 */
1563 as->use_cs_gpios = true;
1564 if (atmel_spi_is_v2(as) &&
1565 pdev->dev.of_node &&
1566 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567 as->use_cs_gpios = false;
1568 master->num_chipselect = 4;
1569 }
1570
1571 as->use_dma = false;
1572 as->use_pdc = false;
1573 if (as->caps.has_dma_support) {
1574 ret = atmel_spi_configure_dma(master, as);
1575 if (ret == 0) {
1576 as->use_dma = true;
1577 } else if (ret == -EPROBE_DEFER) {
1578 return ret;
1579 }
1580 } else if (as->caps.has_pdc_support) {
1581 as->use_pdc = true;
1582 }
1583
1584 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586 SPI_MAX_DMA_XFER,
1587 &as->dma_addr_rx_bbuf,
1588 GFP_KERNEL | GFP_DMA);
1589 if (!as->addr_rx_bbuf) {
1590 as->use_dma = false;
1591 } else {
1592 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593 SPI_MAX_DMA_XFER,
1594 &as->dma_addr_tx_bbuf,
1595 GFP_KERNEL | GFP_DMA);
1596 if (!as->addr_tx_bbuf) {
1597 as->use_dma = false;
1598 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599 as->addr_rx_bbuf,
1600 as->dma_addr_rx_bbuf);
1601 }
1602 }
1603 if (!as->use_dma)
1604 dev_info(master->dev.parent,
1605 " can not allocate dma coherent memory\n");
1606 }
1607
1608 if (as->caps.has_dma_support && !as->use_dma)
1609 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611 if (as->use_pdc) {
1612 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613 0, dev_name(&pdev->dev), master);
1614 } else {
1615 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616 0, dev_name(&pdev->dev), master);
1617 }
1618 if (ret)
1619 goto out_unmap_regs;
1620
1621 /* Initialize the hardware */
1622 ret = clk_prepare_enable(clk);
1623 if (ret)
1624 goto out_free_irq;
1625
1626 as->spi_clk = clk_get_rate(clk);
1627
1628 as->fifo_size = 0;
1629 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630 &as->fifo_size)) {
1631 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632 }
1633
1634 atmel_spi_init(as);
1635
1636 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637 pm_runtime_use_autosuspend(&pdev->dev);
1638 pm_runtime_set_active(&pdev->dev);
1639 pm_runtime_enable(&pdev->dev);
1640
1641 ret = devm_spi_register_master(&pdev->dev, master);
1642 if (ret)
1643 goto out_free_dma;
1644
1645 /* go! */
1646 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647 atmel_get_version(as), (unsigned long)regs->start,
1648 irq);
1649
1650 return 0;
1651
1652out_free_dma:
1653 pm_runtime_disable(&pdev->dev);
1654 pm_runtime_set_suspended(&pdev->dev);
1655
1656 if (as->use_dma)
1657 atmel_spi_release_dma(master);
1658
1659 spi_writel(as, CR, SPI_BIT(SWRST));
1660 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661 clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
1664out_free:
1665 spi_master_put(master);
1666 return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671 struct spi_master *master = platform_get_drvdata(pdev);
1672 struct atmel_spi *as = spi_master_get_devdata(master);
1673
1674 pm_runtime_get_sync(&pdev->dev);
1675
1676 /* reset the hardware and block queue progress */
1677 if (as->use_dma) {
1678 atmel_spi_stop_dma(master);
1679 atmel_spi_release_dma(master);
1680 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682 as->addr_tx_bbuf,
1683 as->dma_addr_tx_bbuf);
1684 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685 as->addr_rx_bbuf,
1686 as->dma_addr_rx_bbuf);
1687 }
1688 }
1689
1690 spin_lock_irq(&as->lock);
1691 spi_writel(as, CR, SPI_BIT(SWRST));
1692 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693 spi_readl(as, SR);
1694 spin_unlock_irq(&as->lock);
1695
1696 clk_disable_unprepare(as->clk);
1697
1698 pm_runtime_put_noidle(&pdev->dev);
1699 pm_runtime_disable(&pdev->dev);
1700
1701 return 0;
1702}
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707 struct spi_master *master = dev_get_drvdata(dev);
1708 struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710 clk_disable_unprepare(as->clk);
1711 pinctrl_pm_select_sleep_state(dev);
1712
1713 return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718 struct spi_master *master = dev_get_drvdata(dev);
1719 struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721 pinctrl_pm_select_default_state(dev);
1722
1723 return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729 struct spi_master *master = dev_get_drvdata(dev);
1730 int ret;
1731
1732 /* Stop the queue running */
1733 ret = spi_master_suspend(master);
1734 if (ret)
1735 return ret;
1736
1737 if (!pm_runtime_suspended(dev))
1738 atmel_spi_runtime_suspend(dev);
1739
1740 return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745 struct spi_master *master = dev_get_drvdata(dev);
1746 struct atmel_spi *as = spi_master_get_devdata(master);
1747 int ret;
1748
1749 ret = clk_prepare_enable(as->clk);
1750 if (ret)
1751 return ret;
1752
1753 atmel_spi_init(as);
1754
1755 clk_disable_unprepare(as->clk);
1756
1757 if (!pm_runtime_suspended(dev)) {
1758 ret = atmel_spi_runtime_resume(dev);
1759 if (ret)
1760 return ret;
1761 }
1762
1763 /* Start the queue running */
1764 return spi_master_resume(master);
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771 atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS NULL
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780 { .compatible = "atmel,at91rm9200-spi" },
1781 { /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788 .driver = {
1789 .name = "atmel_spi",
1790 .pm = ATMEL_SPI_PM_OPS,
1791 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1792 },
1793 .probe = atmel_spi_probe,
1794 .remove = atmel_spi_remove,
1795};
1796module_platform_driver(atmel_spi_driver);
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");