Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/delay.h>
  41#include <linux/mm.h>
  42#include <linux/slab.h>
  43#include <net/sock.h>
  44
  45#include <asm/cache.h>
  46#include <asm/byteorder.h>
  47#include <asm/io.h>
  48#include <asm/irq.h>
  49#include <asm/uaccess.h>
  50
  51#define rr_if_busy(dev)     netif_queue_stopped(dev)
  52#define rr_if_running(dev)  netif_running(dev)
  53
  54#include "rrunner.h"
  55
  56#define RUN_AT(x) (jiffies + (x))
  57
  58
  59MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  60MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  61MODULE_LICENSE("GPL");
  62
  63static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
 
  64
  65
  66static const struct net_device_ops rr_netdev_ops = {
  67	.ndo_open 		= rr_open,
  68	.ndo_stop		= rr_close,
  69	.ndo_do_ioctl		= rr_ioctl,
  70	.ndo_start_xmit		= rr_start_xmit,
  71	.ndo_change_mtu		= hippi_change_mtu,
  72	.ndo_set_mac_address	= hippi_mac_addr,
  73};
  74
  75/*
  76 * Implementation notes:
  77 *
  78 * The DMA engine only allows for DMA within physical 64KB chunks of
  79 * memory. The current approach of the driver (and stack) is to use
  80 * linear blocks of memory for the skbuffs. However, as the data block
  81 * is always the first part of the skb and skbs are 2^n aligned so we
  82 * are guarantted to get the whole block within one 64KB align 64KB
  83 * chunk.
  84 *
  85 * On the long term, relying on being able to allocate 64KB linear
  86 * chunks of memory is not feasible and the skb handling code and the
  87 * stack will need to know about I/O vectors or something similar.
  88 */
  89
  90static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  91{
  92	struct net_device *dev;
  93	static int version_disp;
  94	u8 pci_latency;
  95	struct rr_private *rrpriv;
  96	void *tmpptr;
  97	dma_addr_t ring_dma;
  98	int ret = -ENOMEM;
  99
 100	dev = alloc_hippi_dev(sizeof(struct rr_private));
 101	if (!dev)
 102		goto out3;
 103
 104	ret = pci_enable_device(pdev);
 105	if (ret) {
 106		ret = -ENODEV;
 107		goto out2;
 108	}
 109
 110	rrpriv = netdev_priv(dev);
 111
 112	SET_NETDEV_DEV(dev, &pdev->dev);
 113
 114	ret = pci_request_regions(pdev, "rrunner");
 115	if (ret < 0)
 116		goto out;
 117
 118	pci_set_drvdata(pdev, dev);
 119
 120	rrpriv->pci_dev = pdev;
 121
 122	spin_lock_init(&rrpriv->lock);
 123
 124	dev->netdev_ops = &rr_netdev_ops;
 125
 126	/* display version info if adapter is found */
 127	if (!version_disp) {
 128		/* set display flag to TRUE so that */
 129		/* we only display this string ONCE */
 130		version_disp = 1;
 131		printk(version);
 132	}
 133
 134	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 135	if (pci_latency <= 0x58){
 136		pci_latency = 0x58;
 137		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 138	}
 139
 140	pci_set_master(pdev);
 141
 142	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 143	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 144	       (unsigned long long)pci_resource_start(pdev, 0),
 145	       pdev->irq, pci_latency);
 146
 147	/*
 148	 * Remap the MMIO regs into kernel space.
 149	 */
 150	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 151	if (!rrpriv->regs) {
 152		printk(KERN_ERR "%s:  Unable to map I/O register, "
 153			"RoadRunner will be disabled.\n", dev->name);
 154		ret = -EIO;
 155		goto out;
 156	}
 157
 158	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 159	rrpriv->tx_ring = tmpptr;
 160	rrpriv->tx_ring_dma = ring_dma;
 161
 162	if (!tmpptr) {
 163		ret = -ENOMEM;
 164		goto out;
 165	}
 166
 167	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 168	rrpriv->rx_ring = tmpptr;
 169	rrpriv->rx_ring_dma = ring_dma;
 170
 171	if (!tmpptr) {
 172		ret = -ENOMEM;
 173		goto out;
 174	}
 175
 176	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 177	rrpriv->evt_ring = tmpptr;
 178	rrpriv->evt_ring_dma = ring_dma;
 179
 180	if (!tmpptr) {
 181		ret = -ENOMEM;
 182		goto out;
 183	}
 184
 185	/*
 186	 * Don't access any register before this point!
 187	 */
 188#ifdef __BIG_ENDIAN
 189	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 190		&rrpriv->regs->HostCtrl);
 191#endif
 192	/*
 193	 * Need to add a case for little-endian 64-bit hosts here.
 194	 */
 195
 196	rr_init(dev);
 197
 198	ret = register_netdev(dev);
 199	if (ret)
 200		goto out;
 201	return 0;
 202
 203 out:
 204	if (rrpriv->evt_ring)
 205		pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 206				    rrpriv->evt_ring_dma);
 207	if (rrpriv->rx_ring)
 208		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 209				    rrpriv->rx_ring_dma);
 210	if (rrpriv->tx_ring)
 211		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 212				    rrpriv->tx_ring_dma);
 213	if (rrpriv->regs)
 214		pci_iounmap(pdev, rrpriv->regs);
 215	if (pdev)
 216		pci_release_regions(pdev);
 217 out2:
 218	free_netdev(dev);
 219 out3:
 220	return ret;
 221}
 222
 223static void rr_remove_one(struct pci_dev *pdev)
 224{
 225	struct net_device *dev = pci_get_drvdata(pdev);
 226	struct rr_private *rr = netdev_priv(dev);
 227
 228	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 229		printk(KERN_ERR "%s: trying to unload running NIC\n",
 230		       dev->name);
 231		writel(HALT_NIC, &rr->regs->HostCtrl);
 232	}
 233
 234	unregister_netdev(dev);
 235	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 236			    rr->evt_ring_dma);
 237	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 238			    rr->rx_ring_dma);
 239	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 240			    rr->tx_ring_dma);
 241	pci_iounmap(pdev, rr->regs);
 242	pci_release_regions(pdev);
 243	pci_disable_device(pdev);
 244	free_netdev(dev);
 245}
 246
 247
 248/*
 249 * Commands are considered to be slow, thus there is no reason to
 250 * inline this.
 251 */
 252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 253{
 254	struct rr_regs __iomem *regs;
 255	u32 idx;
 256
 257	regs = rrpriv->regs;
 258	/*
 259	 * This is temporary - it will go away in the final version.
 260	 * We probably also want to make this function inline.
 261	 */
 262	if (readl(&regs->HostCtrl) & NIC_HALTED){
 263		printk("issuing command for halted NIC, code 0x%x, "
 264		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 265		if (readl(&regs->Mode) & FATAL_ERR)
 266			printk("error codes Fail1 %02x, Fail2 %02x\n",
 267			       readl(&regs->Fail1), readl(&regs->Fail2));
 268	}
 269
 270	idx = rrpriv->info->cmd_ctrl.pi;
 271
 272	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 273	wmb();
 274
 275	idx = (idx - 1) % CMD_RING_ENTRIES;
 276	rrpriv->info->cmd_ctrl.pi = idx;
 277	wmb();
 278
 279	if (readl(&regs->Mode) & FATAL_ERR)
 280		printk("error code %02x\n", readl(&regs->Fail1));
 281}
 282
 283
 284/*
 285 * Reset the board in a sensible manner. The NIC is already halted
 286 * when we get here and a spin-lock is held.
 287 */
 288static int rr_reset(struct net_device *dev)
 289{
 290	struct rr_private *rrpriv;
 291	struct rr_regs __iomem *regs;
 292	u32 start_pc;
 293	int i;
 294
 295	rrpriv = netdev_priv(dev);
 296	regs = rrpriv->regs;
 297
 298	rr_load_firmware(dev);
 299
 300	writel(0x01000000, &regs->TX_state);
 301	writel(0xff800000, &regs->RX_state);
 302	writel(0, &regs->AssistState);
 303	writel(CLEAR_INTA, &regs->LocalCtrl);
 304	writel(0x01, &regs->BrkPt);
 305	writel(0, &regs->Timer);
 306	writel(0, &regs->TimerRef);
 307	writel(RESET_DMA, &regs->DmaReadState);
 308	writel(RESET_DMA, &regs->DmaWriteState);
 309	writel(0, &regs->DmaWriteHostHi);
 310	writel(0, &regs->DmaWriteHostLo);
 311	writel(0, &regs->DmaReadHostHi);
 312	writel(0, &regs->DmaReadHostLo);
 313	writel(0, &regs->DmaReadLen);
 314	writel(0, &regs->DmaWriteLen);
 315	writel(0, &regs->DmaWriteLcl);
 316	writel(0, &regs->DmaWriteIPchecksum);
 317	writel(0, &regs->DmaReadLcl);
 318	writel(0, &regs->DmaReadIPchecksum);
 319	writel(0, &regs->PciState);
 320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 321	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 322#elif (BITS_PER_LONG == 64)
 323	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 324#else
 325	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 326#endif
 327
 328#if 0
 329	/*
 330	 * Don't worry, this is just black magic.
 331	 */
 332	writel(0xdf000, &regs->RxBase);
 333	writel(0xdf000, &regs->RxPrd);
 334	writel(0xdf000, &regs->RxCon);
 335	writel(0xce000, &regs->TxBase);
 336	writel(0xce000, &regs->TxPrd);
 337	writel(0xce000, &regs->TxCon);
 338	writel(0, &regs->RxIndPro);
 339	writel(0, &regs->RxIndCon);
 340	writel(0, &regs->RxIndRef);
 341	writel(0, &regs->TxIndPro);
 342	writel(0, &regs->TxIndCon);
 343	writel(0, &regs->TxIndRef);
 344	writel(0xcc000, &regs->pad10[0]);
 345	writel(0, &regs->DrCmndPro);
 346	writel(0, &regs->DrCmndCon);
 347	writel(0, &regs->DwCmndPro);
 348	writel(0, &regs->DwCmndCon);
 349	writel(0, &regs->DwCmndRef);
 350	writel(0, &regs->DrDataPro);
 351	writel(0, &regs->DrDataCon);
 352	writel(0, &regs->DrDataRef);
 353	writel(0, &regs->DwDataPro);
 354	writel(0, &regs->DwDataCon);
 355	writel(0, &regs->DwDataRef);
 356#endif
 357
 358	writel(0xffffffff, &regs->MbEvent);
 359	writel(0, &regs->Event);
 360
 361	writel(0, &regs->TxPi);
 362	writel(0, &regs->IpRxPi);
 363
 364	writel(0, &regs->EvtCon);
 365	writel(0, &regs->EvtPrd);
 366
 367	rrpriv->info->evt_ctrl.pi = 0;
 368
 369	for (i = 0; i < CMD_RING_ENTRIES; i++)
 370		writel(0, &regs->CmdRing[i]);
 371
 372/*
 373 * Why 32 ? is this not cache line size dependent?
 374 */
 375	writel(RBURST_64|WBURST_64, &regs->PciState);
 376	wmb();
 377
 378	start_pc = rr_read_eeprom_word(rrpriv,
 379			offsetof(struct eeprom, rncd_info.FwStart));
 380
 381#if (DEBUG > 1)
 382	printk("%s: Executing firmware at address 0x%06x\n",
 383	       dev->name, start_pc);
 384#endif
 385
 386	writel(start_pc + 0x800, &regs->Pc);
 387	wmb();
 388	udelay(5);
 389
 390	writel(start_pc, &regs->Pc);
 391	wmb();
 392
 393	return 0;
 394}
 395
 396
 397/*
 398 * Read a string from the EEPROM.
 399 */
 400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 401				unsigned long offset,
 402				unsigned char *buf,
 403				unsigned long length)
 404{
 405	struct rr_regs __iomem *regs = rrpriv->regs;
 406	u32 misc, io, host, i;
 407
 408	io = readl(&regs->ExtIo);
 409	writel(0, &regs->ExtIo);
 410	misc = readl(&regs->LocalCtrl);
 411	writel(0, &regs->LocalCtrl);
 412	host = readl(&regs->HostCtrl);
 413	writel(host | HALT_NIC, &regs->HostCtrl);
 414	mb();
 415
 416	for (i = 0; i < length; i++){
 417		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 418		mb();
 419		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 420		mb();
 421	}
 422
 423	writel(host, &regs->HostCtrl);
 424	writel(misc, &regs->LocalCtrl);
 425	writel(io, &regs->ExtIo);
 426	mb();
 427	return i;
 428}
 429
 430
 431/*
 432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 433 * it to our CPU byte-order.
 434 */
 435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 436			    size_t offset)
 437{
 438	__be32 word;
 439
 440	if ((rr_read_eeprom(rrpriv, offset,
 441			    (unsigned char *)&word, 4) == 4))
 442		return be32_to_cpu(word);
 443	return 0;
 444}
 445
 446
 447/*
 448 * Write a string to the EEPROM.
 449 *
 450 * This is only called when the firmware is not running.
 451 */
 452static unsigned int write_eeprom(struct rr_private *rrpriv,
 453				 unsigned long offset,
 454				 unsigned char *buf,
 455				 unsigned long length)
 456{
 457	struct rr_regs __iomem *regs = rrpriv->regs;
 458	u32 misc, io, data, i, j, ready, error = 0;
 459
 460	io = readl(&regs->ExtIo);
 461	writel(0, &regs->ExtIo);
 462	misc = readl(&regs->LocalCtrl);
 463	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 464	mb();
 465
 466	for (i = 0; i < length; i++){
 467		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 468		mb();
 469		data = buf[i] << 24;
 470		/*
 471		 * Only try to write the data if it is not the same
 472		 * value already.
 473		 */
 474		if ((readl(&regs->WinData) & 0xff000000) != data){
 475			writel(data, &regs->WinData);
 476			ready = 0;
 477			j = 0;
 478			mb();
 479			while(!ready){
 480				udelay(20);
 481				if ((readl(&regs->WinData) & 0xff000000) ==
 482				    data)
 483					ready = 1;
 484				mb();
 485				if (j++ > 5000){
 486					printk("data mismatch: %08x, "
 487					       "WinData %08x\n", data,
 488					       readl(&regs->WinData));
 489					ready = 1;
 490					error = 1;
 491				}
 492			}
 493		}
 494	}
 495
 496	writel(misc, &regs->LocalCtrl);
 497	writel(io, &regs->ExtIo);
 498	mb();
 499
 500	return error;
 501}
 502
 503
 504static int rr_init(struct net_device *dev)
 505{
 506	struct rr_private *rrpriv;
 507	struct rr_regs __iomem *regs;
 508	u32 sram_size, rev;
 509
 510	rrpriv = netdev_priv(dev);
 511	regs = rrpriv->regs;
 512
 513	rev = readl(&regs->FwRev);
 514	rrpriv->fw_rev = rev;
 515	if (rev > 0x00020024)
 516		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 517		       ((rev >> 8) & 0xff), (rev & 0xff));
 518	else if (rev >= 0x00020000) {
 519		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 520		       "later is recommended)\n", (rev >> 16),
 521		       ((rev >> 8) & 0xff), (rev & 0xff));
 522	}else{
 523		printk("  Firmware revision too old: %i.%i.%i, please "
 524		       "upgrade to 2.0.37 or later.\n",
 525		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 526	}
 527
 528#if (DEBUG > 2)
 529	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 530#endif
 531
 532	/*
 533	 * Read the hardware address from the eeprom.  The HW address
 534	 * is not really necessary for HIPPI but awfully convenient.
 535	 * The pointer arithmetic to put it in dev_addr is ugly, but
 536	 * Donald Becker does it this way for the GigE version of this
 537	 * card and it's shorter and more portable than any
 538	 * other method I've seen.  -VAL
 539	 */
 540
 541	*(__be16 *)(dev->dev_addr) =
 542	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 543	*(__be32 *)(dev->dev_addr+2) =
 544	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 545
 546	printk("  MAC: %pM\n", dev->dev_addr);
 547
 548	sram_size = rr_read_eeprom_word(rrpriv, 8);
 549	printk("  SRAM size 0x%06x\n", sram_size);
 550
 551	return 0;
 552}
 553
 554
 555static int rr_init1(struct net_device *dev)
 556{
 557	struct rr_private *rrpriv;
 558	struct rr_regs __iomem *regs;
 559	unsigned long myjif, flags;
 560	struct cmd cmd;
 561	u32 hostctrl;
 562	int ecode = 0;
 563	short i;
 564
 565	rrpriv = netdev_priv(dev);
 566	regs = rrpriv->regs;
 567
 568	spin_lock_irqsave(&rrpriv->lock, flags);
 569
 570	hostctrl = readl(&regs->HostCtrl);
 571	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 572	wmb();
 573
 574	if (hostctrl & PARITY_ERR){
 575		printk("%s: Parity error halting NIC - this is serious!\n",
 576		       dev->name);
 577		spin_unlock_irqrestore(&rrpriv->lock, flags);
 578		ecode = -EFAULT;
 579		goto error;
 580	}
 581
 582	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 583	set_infoaddr(regs, rrpriv->info_dma);
 584
 585	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 586	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 587	rrpriv->info->evt_ctrl.mode = 0;
 588	rrpriv->info->evt_ctrl.pi = 0;
 589	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 590
 591	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 592	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 593	rrpriv->info->cmd_ctrl.mode = 0;
 594	rrpriv->info->cmd_ctrl.pi = 15;
 595
 596	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 597		writel(0, &regs->CmdRing[i]);
 598	}
 599
 600	for (i = 0; i < TX_RING_ENTRIES; i++) {
 601		rrpriv->tx_ring[i].size = 0;
 602		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 603		rrpriv->tx_skbuff[i] = NULL;
 604	}
 605	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 606	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 607	rrpriv->info->tx_ctrl.mode = 0;
 608	rrpriv->info->tx_ctrl.pi = 0;
 609	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 610
 611	/*
 612	 * Set dirty_tx before we start receiving interrupts, otherwise
 613	 * the interrupt handler might think it is supposed to process
 614	 * tx ints before we are up and running, which may cause a null
 615	 * pointer access in the int handler.
 616	 */
 617	rrpriv->tx_full = 0;
 618	rrpriv->cur_rx = 0;
 619	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 620
 621	rr_reset(dev);
 622
 623	/* Tuning values */
 624	writel(0x5000, &regs->ConRetry);
 625	writel(0x100, &regs->ConRetryTmr);
 626	writel(0x500000, &regs->ConTmout);
 627 	writel(0x60, &regs->IntrTmr);
 628	writel(0x500000, &regs->TxDataMvTimeout);
 629	writel(0x200000, &regs->RxDataMvTimeout);
 630 	writel(0x80, &regs->WriteDmaThresh);
 631 	writel(0x80, &regs->ReadDmaThresh);
 632
 633	rrpriv->fw_running = 0;
 634	wmb();
 635
 636	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 637	writel(hostctrl, &regs->HostCtrl);
 638	wmb();
 639
 640	spin_unlock_irqrestore(&rrpriv->lock, flags);
 641
 642	for (i = 0; i < RX_RING_ENTRIES; i++) {
 643		struct sk_buff *skb;
 644		dma_addr_t addr;
 645
 646		rrpriv->rx_ring[i].mode = 0;
 647		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 648		if (!skb) {
 649			printk(KERN_WARNING "%s: Unable to allocate memory "
 650			       "for receive ring - halting NIC\n", dev->name);
 651			ecode = -ENOMEM;
 652			goto error;
 653		}
 654		rrpriv->rx_skbuff[i] = skb;
 655	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
 656			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 657		/*
 658		 * Sanity test to see if we conflict with the DMA
 659		 * limitations of the Roadrunner.
 660		 */
 661		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 662			printk("skb alloc error\n");
 663
 664		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 665		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 666	}
 667
 668	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 669	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 670	rrpriv->rx_ctrl[4].mode = 8;
 671	rrpriv->rx_ctrl[4].pi = 0;
 672	wmb();
 673	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 674
 675	udelay(1000);
 676
 677	/*
 678	 * Now start the FirmWare.
 679	 */
 680	cmd.code = C_START_FW;
 681	cmd.ring = 0;
 682	cmd.index = 0;
 683
 684	rr_issue_cmd(rrpriv, &cmd);
 685
 686	/*
 687	 * Give the FirmWare time to chew on the `get running' command.
 688	 */
 689	myjif = jiffies + 5 * HZ;
 690	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 691		cpu_relax();
 692
 693	netif_start_queue(dev);
 694
 695	return ecode;
 696
 697 error:
 698	/*
 699	 * We might have gotten here because we are out of memory,
 700	 * make sure we release everything we allocated before failing
 701	 */
 702	for (i = 0; i < RX_RING_ENTRIES; i++) {
 703		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 704
 705		if (skb) {
 706	        	pci_unmap_single(rrpriv->pci_dev,
 707					 rrpriv->rx_ring[i].addr.addrlo,
 708					 dev->mtu + HIPPI_HLEN,
 709					 PCI_DMA_FROMDEVICE);
 710			rrpriv->rx_ring[i].size = 0;
 711			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 712			dev_kfree_skb(skb);
 713			rrpriv->rx_skbuff[i] = NULL;
 714		}
 715	}
 716	return ecode;
 717}
 718
 719
 720/*
 721 * All events are considered to be slow (RX/TX ints do not generate
 722 * events) and are handled here, outside the main interrupt handler,
 723 * to reduce the size of the handler.
 724 */
 725static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 726{
 727	struct rr_private *rrpriv;
 728	struct rr_regs __iomem *regs;
 729	u32 tmp;
 730
 731	rrpriv = netdev_priv(dev);
 732	regs = rrpriv->regs;
 733
 734	while (prodidx != eidx){
 735		switch (rrpriv->evt_ring[eidx].code){
 736		case E_NIC_UP:
 737			tmp = readl(&regs->FwRev);
 738			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 739			       "up and running\n", dev->name,
 740			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 741			rrpriv->fw_running = 1;
 742			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 743			wmb();
 744			break;
 745		case E_LINK_ON:
 746			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 747			break;
 748		case E_LINK_OFF:
 749			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 750			break;
 751		case E_RX_IDLE:
 752			printk(KERN_WARNING "%s: RX data not moving\n",
 753			       dev->name);
 754			goto drop;
 755		case E_WATCHDOG:
 756			printk(KERN_INFO "%s: The watchdog is here to see "
 757			       "us\n", dev->name);
 758			break;
 759		case E_INTERN_ERR:
 760			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 761			       dev->name);
 762			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 763			       &regs->HostCtrl);
 764			wmb();
 765			break;
 766		case E_HOST_ERR:
 767			printk(KERN_ERR "%s: Host software error\n",
 768			       dev->name);
 769			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 770			       &regs->HostCtrl);
 771			wmb();
 772			break;
 773		/*
 774		 * TX events.
 775		 */
 776		case E_CON_REJ:
 777			printk(KERN_WARNING "%s: Connection rejected\n",
 778			       dev->name);
 779			dev->stats.tx_aborted_errors++;
 780			break;
 781		case E_CON_TMOUT:
 782			printk(KERN_WARNING "%s: Connection timeout\n",
 783			       dev->name);
 784			break;
 785		case E_DISC_ERR:
 786			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 787			       dev->name);
 788			dev->stats.tx_aborted_errors++;
 789			break;
 790		case E_INT_PRTY:
 791			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 792			       dev->name);
 793			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 794			       &regs->HostCtrl);
 795			wmb();
 796			break;
 797		case E_TX_IDLE:
 798			printk(KERN_WARNING "%s: Transmitter idle\n",
 799			       dev->name);
 800			break;
 801		case E_TX_LINK_DROP:
 802			printk(KERN_WARNING "%s: Link lost during transmit\n",
 803			       dev->name);
 804			dev->stats.tx_aborted_errors++;
 805			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 806			       &regs->HostCtrl);
 807			wmb();
 808			break;
 809		case E_TX_INV_RNG:
 810			printk(KERN_ERR "%s: Invalid send ring block\n",
 811			       dev->name);
 812			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 813			       &regs->HostCtrl);
 814			wmb();
 815			break;
 816		case E_TX_INV_BUF:
 817			printk(KERN_ERR "%s: Invalid send buffer address\n",
 818			       dev->name);
 819			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 820			       &regs->HostCtrl);
 821			wmb();
 822			break;
 823		case E_TX_INV_DSC:
 824			printk(KERN_ERR "%s: Invalid descriptor address\n",
 825			       dev->name);
 826			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 827			       &regs->HostCtrl);
 828			wmb();
 829			break;
 830		/*
 831		 * RX events.
 832		 */
 833		case E_RX_RNG_OUT:
 834			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 835			break;
 836
 837		case E_RX_PAR_ERR:
 838			printk(KERN_WARNING "%s: Receive parity error\n",
 839			       dev->name);
 840			goto drop;
 841		case E_RX_LLRC_ERR:
 842			printk(KERN_WARNING "%s: Receive LLRC error\n",
 843			       dev->name);
 844			goto drop;
 845		case E_PKT_LN_ERR:
 846			printk(KERN_WARNING "%s: Receive packet length "
 847			       "error\n", dev->name);
 848			goto drop;
 849		case E_DTA_CKSM_ERR:
 850			printk(KERN_WARNING "%s: Data checksum error\n",
 851			       dev->name);
 852			goto drop;
 853		case E_SHT_BST:
 854			printk(KERN_WARNING "%s: Unexpected short burst "
 855			       "error\n", dev->name);
 856			goto drop;
 857		case E_STATE_ERR:
 858			printk(KERN_WARNING "%s: Recv. state transition"
 859			       " error\n", dev->name);
 860			goto drop;
 861		case E_UNEXP_DATA:
 862			printk(KERN_WARNING "%s: Unexpected data error\n",
 863			       dev->name);
 864			goto drop;
 865		case E_LST_LNK_ERR:
 866			printk(KERN_WARNING "%s: Link lost error\n",
 867			       dev->name);
 868			goto drop;
 869		case E_FRM_ERR:
 870			printk(KERN_WARNING "%s: Framming Error\n",
 871			       dev->name);
 872			goto drop;
 873		case E_FLG_SYN_ERR:
 874			printk(KERN_WARNING "%s: Flag sync. lost during "
 875			       "packet\n", dev->name);
 876			goto drop;
 877		case E_RX_INV_BUF:
 878			printk(KERN_ERR "%s: Invalid receive buffer "
 879			       "address\n", dev->name);
 880			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 881			       &regs->HostCtrl);
 882			wmb();
 883			break;
 884		case E_RX_INV_DSC:
 885			printk(KERN_ERR "%s: Invalid receive descriptor "
 886			       "address\n", dev->name);
 887			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 888			       &regs->HostCtrl);
 889			wmb();
 890			break;
 891		case E_RNG_BLK:
 892			printk(KERN_ERR "%s: Invalid ring block\n",
 893			       dev->name);
 894			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 895			       &regs->HostCtrl);
 896			wmb();
 897			break;
 898		drop:
 899			/* Label packet to be dropped.
 900			 * Actual dropping occurs in rx
 901			 * handling.
 902			 *
 903			 * The index of packet we get to drop is
 904			 * the index of the packet following
 905			 * the bad packet. -kbf
 906			 */
 907			{
 908				u16 index = rrpriv->evt_ring[eidx].index;
 909				index = (index + (RX_RING_ENTRIES - 1)) %
 910					RX_RING_ENTRIES;
 911				rrpriv->rx_ring[index].mode |=
 912					(PACKET_BAD | PACKET_END);
 913			}
 914			break;
 915		default:
 916			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 917			       dev->name, rrpriv->evt_ring[eidx].code);
 918		}
 919		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 920	}
 921
 922	rrpriv->info->evt_ctrl.pi = eidx;
 923	wmb();
 924	return eidx;
 925}
 926
 927
 928static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 929{
 930	struct rr_private *rrpriv = netdev_priv(dev);
 931	struct rr_regs __iomem *regs = rrpriv->regs;
 932
 933	do {
 934		struct rx_desc *desc;
 935		u32 pkt_len;
 936
 937		desc = &(rrpriv->rx_ring[index]);
 938		pkt_len = desc->size;
 939#if (DEBUG > 2)
 940		printk("index %i, rxlimit %i\n", index, rxlimit);
 941		printk("len %x, mode %x\n", pkt_len, desc->mode);
 942#endif
 943		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 944			dev->stats.rx_dropped++;
 945			goto defer;
 946		}
 947
 948		if (pkt_len > 0){
 949			struct sk_buff *skb, *rx_skb;
 950
 951			rx_skb = rrpriv->rx_skbuff[index];
 952
 953			if (pkt_len < PKT_COPY_THRESHOLD) {
 954				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 955				if (skb == NULL){
 956					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 957					dev->stats.rx_dropped++;
 958					goto defer;
 959				} else {
 960					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 961								    desc->addr.addrlo,
 962								    pkt_len,
 963								    PCI_DMA_FROMDEVICE);
 964
 965					memcpy(skb_put(skb, pkt_len),
 966					       rx_skb->data, pkt_len);
 967
 968					pci_dma_sync_single_for_device(rrpriv->pci_dev,
 969								       desc->addr.addrlo,
 970								       pkt_len,
 971								       PCI_DMA_FROMDEVICE);
 972				}
 973			}else{
 974				struct sk_buff *newskb;
 975
 976				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 977					GFP_ATOMIC);
 978				if (newskb){
 979					dma_addr_t addr;
 980
 981	        			pci_unmap_single(rrpriv->pci_dev,
 982						desc->addr.addrlo, dev->mtu +
 983						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 984					skb = rx_skb;
 985					skb_put(skb, pkt_len);
 986					rrpriv->rx_skbuff[index] = newskb;
 987	        			addr = pci_map_single(rrpriv->pci_dev,
 988						newskb->data,
 989						dev->mtu + HIPPI_HLEN,
 990						PCI_DMA_FROMDEVICE);
 991					set_rraddr(&desc->addr, addr);
 992				} else {
 993					printk("%s: Out of memory, deferring "
 994					       "packet\n", dev->name);
 995					dev->stats.rx_dropped++;
 996					goto defer;
 997				}
 998			}
 999			skb->protocol = hippi_type_trans(skb, dev);
1000
1001			netif_rx(skb);		/* send it up */
1002
1003			dev->stats.rx_packets++;
1004			dev->stats.rx_bytes += pkt_len;
1005		}
1006	defer:
1007		desc->mode = 0;
1008		desc->size = dev->mtu + HIPPI_HLEN;
1009
1010		if ((index & 7) == 7)
1011			writel(index, &regs->IpRxPi);
1012
1013		index = (index + 1) % RX_RING_ENTRIES;
1014	} while(index != rxlimit);
1015
1016	rrpriv->cur_rx = index;
1017	wmb();
1018}
1019
1020
1021static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022{
1023	struct rr_private *rrpriv;
1024	struct rr_regs __iomem *regs;
1025	struct net_device *dev = (struct net_device *)dev_id;
1026	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028	rrpriv = netdev_priv(dev);
1029	regs = rrpriv->regs;
1030
1031	if (!(readl(&regs->HostCtrl) & RR_INT))
1032		return IRQ_NONE;
1033
1034	spin_lock(&rrpriv->lock);
1035
1036	prodidx = readl(&regs->EvtPrd);
1037	txcsmr = (prodidx >> 8) & 0xff;
1038	rxlimit = (prodidx >> 16) & 0xff;
1039	prodidx &= 0xff;
1040
1041#if (DEBUG > 2)
1042	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043	       prodidx, rrpriv->info->evt_ctrl.pi);
1044#endif
1045	/*
1046	 * Order here is important.  We must handle events
1047	 * before doing anything else in order to catch
1048	 * such things as LLRC errors, etc -kbf
1049	 */
1050
1051	eidx = rrpriv->info->evt_ctrl.pi;
1052	if (prodidx != eidx)
1053		eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055	rxindex = rrpriv->cur_rx;
1056	if (rxindex != rxlimit)
1057		rx_int(dev, rxlimit, rxindex);
1058
1059	txcon = rrpriv->dirty_tx;
1060	if (txcsmr != txcon) {
1061		do {
1062			/* Due to occational firmware TX producer/consumer out
1063			 * of sync. error need to check entry in ring -kbf
1064			 */
1065			if(rrpriv->tx_skbuff[txcon]){
1066				struct tx_desc *desc;
1067				struct sk_buff *skb;
1068
1069				desc = &(rrpriv->tx_ring[txcon]);
1070				skb = rrpriv->tx_skbuff[txcon];
1071
1072				dev->stats.tx_packets++;
1073				dev->stats.tx_bytes += skb->len;
1074
1075				pci_unmap_single(rrpriv->pci_dev,
1076						 desc->addr.addrlo, skb->len,
1077						 PCI_DMA_TODEVICE);
1078				dev_kfree_skb_irq(skb);
1079
1080				rrpriv->tx_skbuff[txcon] = NULL;
1081				desc->size = 0;
1082				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083				desc->mode = 0;
1084			}
1085			txcon = (txcon + 1) % TX_RING_ENTRIES;
1086		} while (txcsmr != txcon);
1087		wmb();
1088
1089		rrpriv->dirty_tx = txcon;
1090		if (rrpriv->tx_full && rr_if_busy(dev) &&
1091		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092		     != rrpriv->dirty_tx)){
1093			rrpriv->tx_full = 0;
1094			netif_wake_queue(dev);
1095		}
1096	}
1097
1098	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099	writel(eidx, &regs->EvtCon);
1100	wmb();
1101
1102	spin_unlock(&rrpriv->lock);
1103	return IRQ_HANDLED;
1104}
1105
1106static inline void rr_raz_tx(struct rr_private *rrpriv,
1107			     struct net_device *dev)
1108{
1109	int i;
1110
1111	for (i = 0; i < TX_RING_ENTRIES; i++) {
1112		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114		if (skb) {
1115			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118				skb->len, PCI_DMA_TODEVICE);
1119			desc->size = 0;
1120			set_rraddr(&desc->addr, 0);
1121			dev_kfree_skb(skb);
1122			rrpriv->tx_skbuff[i] = NULL;
1123		}
1124	}
1125}
1126
1127
1128static inline void rr_raz_rx(struct rr_private *rrpriv,
1129			     struct net_device *dev)
1130{
1131	int i;
1132
1133	for (i = 0; i < RX_RING_ENTRIES; i++) {
1134		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1135
1136		if (skb) {
1137			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1138
1139	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141			desc->size = 0;
1142			set_rraddr(&desc->addr, 0);
1143			dev_kfree_skb(skb);
1144			rrpriv->rx_skbuff[i] = NULL;
1145		}
1146	}
1147}
1148
1149static void rr_timer(unsigned long data)
1150{
1151	struct net_device *dev = (struct net_device *)data;
1152	struct rr_private *rrpriv = netdev_priv(dev);
1153	struct rr_regs __iomem *regs = rrpriv->regs;
1154	unsigned long flags;
1155
1156	if (readl(&regs->HostCtrl) & NIC_HALTED){
1157		printk("%s: Restarting nic\n", dev->name);
1158		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159		memset(rrpriv->info, 0, sizeof(struct rr_info));
1160		wmb();
1161
1162		rr_raz_tx(rrpriv, dev);
1163		rr_raz_rx(rrpriv, dev);
1164
1165		if (rr_init1(dev)) {
1166			spin_lock_irqsave(&rrpriv->lock, flags);
1167			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168			       &regs->HostCtrl);
1169			spin_unlock_irqrestore(&rrpriv->lock, flags);
1170		}
1171	}
1172	rrpriv->timer.expires = RUN_AT(5*HZ);
1173	add_timer(&rrpriv->timer);
1174}
1175
1176
1177static int rr_open(struct net_device *dev)
1178{
1179	struct rr_private *rrpriv = netdev_priv(dev);
1180	struct pci_dev *pdev = rrpriv->pci_dev;
1181	struct rr_regs __iomem *regs;
1182	int ecode = 0;
1183	unsigned long flags;
1184	dma_addr_t dma_addr;
1185
1186	regs = rrpriv->regs;
1187
1188	if (rrpriv->fw_rev < 0x00020000) {
1189		printk(KERN_WARNING "%s: trying to configure device with "
1190		       "obsolete firmware\n", dev->name);
1191		ecode = -EBUSY;
1192		goto error;
1193	}
1194
1195	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196					       256 * sizeof(struct ring_ctrl),
1197					       &dma_addr);
1198	if (!rrpriv->rx_ctrl) {
1199		ecode = -ENOMEM;
1200		goto error;
1201	}
1202	rrpriv->rx_ctrl_dma = dma_addr;
1203	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1204
1205	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206					    &dma_addr);
1207	if (!rrpriv->info) {
1208		ecode = -ENOMEM;
1209		goto error;
1210	}
1211	rrpriv->info_dma = dma_addr;
1212	memset(rrpriv->info, 0, sizeof(struct rr_info));
1213	wmb();
1214
1215	spin_lock_irqsave(&rrpriv->lock, flags);
1216	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217	readl(&regs->HostCtrl);
1218	spin_unlock_irqrestore(&rrpriv->lock, flags);
1219
1220	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222		       dev->name, pdev->irq);
1223		ecode = -EAGAIN;
1224		goto error;
1225	}
1226
1227	if ((ecode = rr_init1(dev)))
1228		goto error;
1229
1230	/* Set the timer to switch to check for link beat and perhaps switch
1231	   to an alternate media type. */
1232	init_timer(&rrpriv->timer);
1233	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1234	rrpriv->timer.data = (unsigned long)dev;
1235	rrpriv->timer.function = rr_timer;               /* timer handler */
1236	add_timer(&rrpriv->timer);
1237
1238	netif_start_queue(dev);
1239
1240	return ecode;
1241
1242 error:
1243	spin_lock_irqsave(&rrpriv->lock, flags);
1244	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1245	spin_unlock_irqrestore(&rrpriv->lock, flags);
1246
1247	if (rrpriv->info) {
1248		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1249				    rrpriv->info_dma);
1250		rrpriv->info = NULL;
1251	}
1252	if (rrpriv->rx_ctrl) {
1253		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1254				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1255		rrpriv->rx_ctrl = NULL;
1256	}
1257
1258	netif_stop_queue(dev);
1259
1260	return ecode;
1261}
1262
1263
1264static void rr_dump(struct net_device *dev)
1265{
1266	struct rr_private *rrpriv;
1267	struct rr_regs __iomem *regs;
1268	u32 index, cons;
1269	short i;
1270	int len;
1271
1272	rrpriv = netdev_priv(dev);
1273	regs = rrpriv->regs;
1274
1275	printk("%s: dumping NIC TX rings\n", dev->name);
1276
1277	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1278	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1279	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1280	       rrpriv->info->tx_ctrl.pi);
1281
1282	printk("Error code 0x%x\n", readl(&regs->Fail1));
1283
1284	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1285	cons = rrpriv->dirty_tx;
1286	printk("TX ring index %i, TX consumer %i\n",
1287	       index, cons);
1288
1289	if (rrpriv->tx_skbuff[index]){
1290		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1291		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1292		for (i = 0; i < len; i++){
1293			if (!(i & 7))
1294				printk("\n");
1295			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1296		}
1297		printk("\n");
1298	}
1299
1300	if (rrpriv->tx_skbuff[cons]){
1301		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1302		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1303		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1304		       rrpriv->tx_ring[cons].mode,
1305		       rrpriv->tx_ring[cons].size,
1306		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1307		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1308		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1309		for (i = 0; i < len; i++){
1310			if (!(i & 7))
1311				printk("\n");
1312			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1313		}
1314		printk("\n");
1315	}
1316
1317	printk("dumping TX ring info:\n");
1318	for (i = 0; i < TX_RING_ENTRIES; i++)
1319		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1320		       rrpriv->tx_ring[i].mode,
1321		       rrpriv->tx_ring[i].size,
1322		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1323
1324}
1325
1326
1327static int rr_close(struct net_device *dev)
1328{
1329	struct rr_private *rrpriv = netdev_priv(dev);
1330	struct rr_regs __iomem *regs = rrpriv->regs;
1331	struct pci_dev *pdev = rrpriv->pci_dev;
1332	unsigned long flags;
1333	u32 tmp;
1334	short i;
1335
1336	netif_stop_queue(dev);
1337
1338
1339	/*
1340	 * Lock to make sure we are not cleaning up while another CPU
1341	 * is handling interrupts.
1342	 */
1343	spin_lock_irqsave(&rrpriv->lock, flags);
1344
1345	tmp = readl(&regs->HostCtrl);
1346	if (tmp & NIC_HALTED){
1347		printk("%s: NIC already halted\n", dev->name);
1348		rr_dump(dev);
1349	}else{
1350		tmp |= HALT_NIC | RR_CLEAR_INT;
1351		writel(tmp, &regs->HostCtrl);
1352		readl(&regs->HostCtrl);
1353	}
1354
1355	rrpriv->fw_running = 0;
1356
1357	del_timer_sync(&rrpriv->timer);
1358
1359	writel(0, &regs->TxPi);
1360	writel(0, &regs->IpRxPi);
1361
1362	writel(0, &regs->EvtCon);
1363	writel(0, &regs->EvtPrd);
1364
1365	for (i = 0; i < CMD_RING_ENTRIES; i++)
1366		writel(0, &regs->CmdRing[i]);
1367
1368	rrpriv->info->tx_ctrl.entries = 0;
1369	rrpriv->info->cmd_ctrl.pi = 0;
1370	rrpriv->info->evt_ctrl.pi = 0;
1371	rrpriv->rx_ctrl[4].entries = 0;
1372
1373	rr_raz_tx(rrpriv, dev);
1374	rr_raz_rx(rrpriv, dev);
1375
1376	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1377			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1378	rrpriv->rx_ctrl = NULL;
1379
1380	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1381			    rrpriv->info_dma);
1382	rrpriv->info = NULL;
1383
1384	free_irq(pdev->irq, dev);
1385	spin_unlock_irqrestore(&rrpriv->lock, flags);
 
1386
1387	return 0;
1388}
1389
1390
1391static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1392				 struct net_device *dev)
1393{
1394	struct rr_private *rrpriv = netdev_priv(dev);
1395	struct rr_regs __iomem *regs = rrpriv->regs;
1396	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1397	struct ring_ctrl *txctrl;
1398	unsigned long flags;
1399	u32 index, len = skb->len;
1400	u32 *ifield;
1401	struct sk_buff *new_skb;
1402
1403	if (readl(&regs->Mode) & FATAL_ERR)
1404		printk("error codes Fail1 %02x, Fail2 %02x\n",
1405		       readl(&regs->Fail1), readl(&regs->Fail2));
1406
1407	/*
1408	 * We probably need to deal with tbusy here to prevent overruns.
1409	 */
1410
1411	if (skb_headroom(skb) < 8){
1412		printk("incoming skb too small - reallocating\n");
1413		if (!(new_skb = dev_alloc_skb(len + 8))) {
1414			dev_kfree_skb(skb);
1415			netif_wake_queue(dev);
1416			return NETDEV_TX_OK;
1417		}
1418		skb_reserve(new_skb, 8);
1419		skb_put(new_skb, len);
1420		skb_copy_from_linear_data(skb, new_skb->data, len);
1421		dev_kfree_skb(skb);
1422		skb = new_skb;
1423	}
1424
1425	ifield = (u32 *)skb_push(skb, 8);
1426
1427	ifield[0] = 0;
1428	ifield[1] = hcb->ifield;
1429
1430	/*
1431	 * We don't need the lock before we are actually going to start
1432	 * fiddling with the control blocks.
1433	 */
1434	spin_lock_irqsave(&rrpriv->lock, flags);
1435
1436	txctrl = &rrpriv->info->tx_ctrl;
1437
1438	index = txctrl->pi;
1439
1440	rrpriv->tx_skbuff[index] = skb;
1441	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1442		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1443	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1444	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1445	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1446	wmb();
1447	writel(txctrl->pi, &regs->TxPi);
1448
1449	if (txctrl->pi == rrpriv->dirty_tx){
1450		rrpriv->tx_full = 1;
1451		netif_stop_queue(dev);
1452	}
1453
1454	spin_unlock_irqrestore(&rrpriv->lock, flags);
1455
1456	return NETDEV_TX_OK;
1457}
1458
1459
1460/*
1461 * Read the firmware out of the EEPROM and put it into the SRAM
1462 * (or from user space - later)
1463 *
1464 * This operation requires the NIC to be halted and is performed with
1465 * interrupts disabled and with the spinlock hold.
1466 */
1467static int rr_load_firmware(struct net_device *dev)
1468{
1469	struct rr_private *rrpriv;
1470	struct rr_regs __iomem *regs;
1471	size_t eptr, segptr;
1472	int i, j;
1473	u32 localctrl, sptr, len, tmp;
1474	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1475
1476	rrpriv = netdev_priv(dev);
1477	regs = rrpriv->regs;
1478
1479	if (dev->flags & IFF_UP)
1480		return -EBUSY;
1481
1482	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1483		printk("%s: Trying to load firmware to a running NIC.\n",
1484		       dev->name);
1485		return -EBUSY;
1486	}
1487
1488	localctrl = readl(&regs->LocalCtrl);
1489	writel(0, &regs->LocalCtrl);
1490
1491	writel(0, &regs->EvtPrd);
1492	writel(0, &regs->RxPrd);
1493	writel(0, &regs->TxPrd);
1494
1495	/*
1496	 * First wipe the entire SRAM, otherwise we might run into all
1497	 * kinds of trouble ... sigh, this took almost all afternoon
1498	 * to track down ;-(
1499	 */
1500	io = readl(&regs->ExtIo);
1501	writel(0, &regs->ExtIo);
1502	sram_size = rr_read_eeprom_word(rrpriv, 8);
1503
1504	for (i = 200; i < sram_size / 4; i++){
1505		writel(i * 4, &regs->WinBase);
1506		mb();
1507		writel(0, &regs->WinData);
1508		mb();
1509	}
1510	writel(io, &regs->ExtIo);
1511	mb();
1512
1513	eptr = rr_read_eeprom_word(rrpriv,
1514		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1515	eptr = ((eptr & 0x1fffff) >> 3);
1516
1517	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1518	p2len = (p2len << 2);
1519	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1520	p2size = ((p2size & 0x1fffff) >> 3);
1521
1522	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1523		printk("%s: eptr is invalid\n", dev->name);
1524		goto out;
1525	}
1526
1527	revision = rr_read_eeprom_word(rrpriv,
1528			offsetof(struct eeprom, manf.HeaderFmt));
1529
1530	if (revision != 1){
1531		printk("%s: invalid firmware format (%i)\n",
1532		       dev->name, revision);
1533		goto out;
1534	}
1535
1536	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1537	eptr +=4;
1538#if (DEBUG > 1)
1539	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1540#endif
1541
1542	for (i = 0; i < nr_seg; i++){
1543		sptr = rr_read_eeprom_word(rrpriv, eptr);
1544		eptr += 4;
1545		len = rr_read_eeprom_word(rrpriv, eptr);
1546		eptr += 4;
1547		segptr = rr_read_eeprom_word(rrpriv, eptr);
1548		segptr = ((segptr & 0x1fffff) >> 3);
1549		eptr += 4;
1550#if (DEBUG > 1)
1551		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1552		       dev->name, i, sptr, len, segptr);
1553#endif
1554		for (j = 0; j < len; j++){
1555			tmp = rr_read_eeprom_word(rrpriv, segptr);
1556			writel(sptr, &regs->WinBase);
1557			mb();
1558			writel(tmp, &regs->WinData);
1559			mb();
1560			segptr += 4;
1561			sptr += 4;
1562		}
1563	}
1564
1565out:
1566	writel(localctrl, &regs->LocalCtrl);
1567	mb();
1568	return 0;
1569}
1570
1571
1572static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1573{
1574	struct rr_private *rrpriv;
1575	unsigned char *image, *oldimage;
1576	unsigned long flags;
1577	unsigned int i;
1578	int error = -EOPNOTSUPP;
1579
1580	rrpriv = netdev_priv(dev);
1581
1582	switch(cmd){
1583	case SIOCRRGFW:
1584		if (!capable(CAP_SYS_RAWIO)){
1585			return -EPERM;
1586		}
1587
1588		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1589		if (!image)
1590			return -ENOMEM;
1591
1592		if (rrpriv->fw_running){
1593			printk("%s: Firmware already running\n", dev->name);
1594			error = -EPERM;
1595			goto gf_out;
1596		}
1597
1598		spin_lock_irqsave(&rrpriv->lock, flags);
1599		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1600		spin_unlock_irqrestore(&rrpriv->lock, flags);
1601		if (i != EEPROM_BYTES){
1602			printk(KERN_ERR "%s: Error reading EEPROM\n",
1603			       dev->name);
1604			error = -EFAULT;
1605			goto gf_out;
1606		}
1607		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1608		if (error)
1609			error = -EFAULT;
1610	gf_out:
1611		kfree(image);
1612		return error;
1613
1614	case SIOCRRPFW:
1615		if (!capable(CAP_SYS_RAWIO)){
1616			return -EPERM;
1617		}
1618
1619		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1621		if (!image || !oldimage) {
1622			error = -ENOMEM;
1623			goto wf_out;
1624		}
1625
1626		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1627		if (error) {
1628			error = -EFAULT;
1629			goto wf_out;
1630		}
1631
1632		if (rrpriv->fw_running){
1633			printk("%s: Firmware already running\n", dev->name);
1634			error = -EPERM;
1635			goto wf_out;
1636		}
1637
1638		printk("%s: Updating EEPROM firmware\n", dev->name);
1639
1640		spin_lock_irqsave(&rrpriv->lock, flags);
1641		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1642		if (error)
1643			printk(KERN_ERR "%s: Error writing EEPROM\n",
1644			       dev->name);
1645
1646		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1647		spin_unlock_irqrestore(&rrpriv->lock, flags);
1648
1649		if (i != EEPROM_BYTES)
1650			printk(KERN_ERR "%s: Error reading back EEPROM "
1651			       "image\n", dev->name);
1652
1653		error = memcmp(image, oldimage, EEPROM_BYTES);
1654		if (error){
1655			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1656			       dev->name);
1657			error = -EFAULT;
1658		}
1659	wf_out:
1660		kfree(oldimage);
1661		kfree(image);
1662		return error;
1663
1664	case SIOCRRID:
1665		return put_user(0x52523032, (int __user *)rq->ifr_data);
1666	default:
1667		return error;
1668	}
1669}
1670
1671static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1672	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1673		PCI_ANY_ID, PCI_ANY_ID, },
1674	{ 0,}
1675};
1676MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1677
1678static struct pci_driver rr_driver = {
1679	.name		= "rrunner",
1680	.id_table	= rr_pci_tbl,
1681	.probe		= rr_init_one,
1682	.remove		= rr_remove_one,
1683};
1684
1685module_pci_driver(rr_driver);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   4 *
   5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   6 *
   7 * Thanks to Essential Communication for providing us with hardware
   8 * and very comprehensive documentation without which I would not have
   9 * been able to write this driver. A special thank you to John Gibbon
  10 * for sorting out the legal issues, with the NDA, allowing the code to
  11 * be released under the GPL.
  12 *
 
 
 
 
 
  13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  14 * stupid bugs in my code.
  15 *
  16 * Softnet support and various other patches from Val Henson of
  17 * ODS/Essential.
  18 *
  19 * PCI DMA mapping code partly based on work by Francois Romieu.
  20 */
  21
  22
  23#define DEBUG 1
  24#define RX_DMA_SKBUFF 1
  25#define PKT_COPY_THRESHOLD 512
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/pci.h>
  32#include <linux/kernel.h>
  33#include <linux/netdevice.h>
  34#include <linux/hippidevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/delay.h>
  37#include <linux/mm.h>
  38#include <linux/slab.h>
  39#include <net/sock.h>
  40
  41#include <asm/cache.h>
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/irq.h>
  45#include <linux/uaccess.h>
  46
  47#define rr_if_busy(dev)     netif_queue_stopped(dev)
  48#define rr_if_running(dev)  netif_running(dev)
  49
  50#include "rrunner.h"
  51
  52#define RUN_AT(x) (jiffies + (x))
  53
  54
  55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  57MODULE_LICENSE("GPL");
  58
  59static const char version[] =
  60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  61
  62
  63static const struct net_device_ops rr_netdev_ops = {
  64	.ndo_open 		= rr_open,
  65	.ndo_stop		= rr_close,
  66	.ndo_do_ioctl		= rr_ioctl,
  67	.ndo_start_xmit		= rr_start_xmit,
 
  68	.ndo_set_mac_address	= hippi_mac_addr,
  69};
  70
  71/*
  72 * Implementation notes:
  73 *
  74 * The DMA engine only allows for DMA within physical 64KB chunks of
  75 * memory. The current approach of the driver (and stack) is to use
  76 * linear blocks of memory for the skbuffs. However, as the data block
  77 * is always the first part of the skb and skbs are 2^n aligned so we
  78 * are guarantted to get the whole block within one 64KB align 64KB
  79 * chunk.
  80 *
  81 * On the long term, relying on being able to allocate 64KB linear
  82 * chunks of memory is not feasible and the skb handling code and the
  83 * stack will need to know about I/O vectors or something similar.
  84 */
  85
  86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  87{
  88	struct net_device *dev;
  89	static int version_disp;
  90	u8 pci_latency;
  91	struct rr_private *rrpriv;
  92	void *tmpptr;
  93	dma_addr_t ring_dma;
  94	int ret = -ENOMEM;
  95
  96	dev = alloc_hippi_dev(sizeof(struct rr_private));
  97	if (!dev)
  98		goto out3;
  99
 100	ret = pci_enable_device(pdev);
 101	if (ret) {
 102		ret = -ENODEV;
 103		goto out2;
 104	}
 105
 106	rrpriv = netdev_priv(dev);
 107
 108	SET_NETDEV_DEV(dev, &pdev->dev);
 109
 110	ret = pci_request_regions(pdev, "rrunner");
 111	if (ret < 0)
 112		goto out;
 113
 114	pci_set_drvdata(pdev, dev);
 115
 116	rrpriv->pci_dev = pdev;
 117
 118	spin_lock_init(&rrpriv->lock);
 119
 120	dev->netdev_ops = &rr_netdev_ops;
 121
 122	/* display version info if adapter is found */
 123	if (!version_disp) {
 124		/* set display flag to TRUE so that */
 125		/* we only display this string ONCE */
 126		version_disp = 1;
 127		printk(version);
 128	}
 129
 130	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 131	if (pci_latency <= 0x58){
 132		pci_latency = 0x58;
 133		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 134	}
 135
 136	pci_set_master(pdev);
 137
 138	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 139	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 140	       (unsigned long long)pci_resource_start(pdev, 0),
 141	       pdev->irq, pci_latency);
 142
 143	/*
 144	 * Remap the MMIO regs into kernel space.
 145	 */
 146	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 147	if (!rrpriv->regs) {
 148		printk(KERN_ERR "%s:  Unable to map I/O register, "
 149			"RoadRunner will be disabled.\n", dev->name);
 150		ret = -EIO;
 151		goto out;
 152	}
 153
 154	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 155	rrpriv->tx_ring = tmpptr;
 156	rrpriv->tx_ring_dma = ring_dma;
 157
 158	if (!tmpptr) {
 159		ret = -ENOMEM;
 160		goto out;
 161	}
 162
 163	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 164	rrpriv->rx_ring = tmpptr;
 165	rrpriv->rx_ring_dma = ring_dma;
 166
 167	if (!tmpptr) {
 168		ret = -ENOMEM;
 169		goto out;
 170	}
 171
 172	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 173	rrpriv->evt_ring = tmpptr;
 174	rrpriv->evt_ring_dma = ring_dma;
 175
 176	if (!tmpptr) {
 177		ret = -ENOMEM;
 178		goto out;
 179	}
 180
 181	/*
 182	 * Don't access any register before this point!
 183	 */
 184#ifdef __BIG_ENDIAN
 185	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 186		&rrpriv->regs->HostCtrl);
 187#endif
 188	/*
 189	 * Need to add a case for little-endian 64-bit hosts here.
 190	 */
 191
 192	rr_init(dev);
 193
 194	ret = register_netdev(dev);
 195	if (ret)
 196		goto out;
 197	return 0;
 198
 199 out:
 200	if (rrpriv->evt_ring)
 201		pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 202				    rrpriv->evt_ring_dma);
 203	if (rrpriv->rx_ring)
 204		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 205				    rrpriv->rx_ring_dma);
 206	if (rrpriv->tx_ring)
 207		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 208				    rrpriv->tx_ring_dma);
 209	if (rrpriv->regs)
 210		pci_iounmap(pdev, rrpriv->regs);
 211	if (pdev)
 212		pci_release_regions(pdev);
 213 out2:
 214	free_netdev(dev);
 215 out3:
 216	return ret;
 217}
 218
 219static void rr_remove_one(struct pci_dev *pdev)
 220{
 221	struct net_device *dev = pci_get_drvdata(pdev);
 222	struct rr_private *rr = netdev_priv(dev);
 223
 224	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 225		printk(KERN_ERR "%s: trying to unload running NIC\n",
 226		       dev->name);
 227		writel(HALT_NIC, &rr->regs->HostCtrl);
 228	}
 229
 230	unregister_netdev(dev);
 231	pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 232			    rr->evt_ring_dma);
 233	pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 234			    rr->rx_ring_dma);
 235	pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 236			    rr->tx_ring_dma);
 237	pci_iounmap(pdev, rr->regs);
 238	pci_release_regions(pdev);
 239	pci_disable_device(pdev);
 240	free_netdev(dev);
 241}
 242
 243
 244/*
 245 * Commands are considered to be slow, thus there is no reason to
 246 * inline this.
 247 */
 248static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 249{
 250	struct rr_regs __iomem *regs;
 251	u32 idx;
 252
 253	regs = rrpriv->regs;
 254	/*
 255	 * This is temporary - it will go away in the final version.
 256	 * We probably also want to make this function inline.
 257	 */
 258	if (readl(&regs->HostCtrl) & NIC_HALTED){
 259		printk("issuing command for halted NIC, code 0x%x, "
 260		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 261		if (readl(&regs->Mode) & FATAL_ERR)
 262			printk("error codes Fail1 %02x, Fail2 %02x\n",
 263			       readl(&regs->Fail1), readl(&regs->Fail2));
 264	}
 265
 266	idx = rrpriv->info->cmd_ctrl.pi;
 267
 268	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 269	wmb();
 270
 271	idx = (idx - 1) % CMD_RING_ENTRIES;
 272	rrpriv->info->cmd_ctrl.pi = idx;
 273	wmb();
 274
 275	if (readl(&regs->Mode) & FATAL_ERR)
 276		printk("error code %02x\n", readl(&regs->Fail1));
 277}
 278
 279
 280/*
 281 * Reset the board in a sensible manner. The NIC is already halted
 282 * when we get here and a spin-lock is held.
 283 */
 284static int rr_reset(struct net_device *dev)
 285{
 286	struct rr_private *rrpriv;
 287	struct rr_regs __iomem *regs;
 288	u32 start_pc;
 289	int i;
 290
 291	rrpriv = netdev_priv(dev);
 292	regs = rrpriv->regs;
 293
 294	rr_load_firmware(dev);
 295
 296	writel(0x01000000, &regs->TX_state);
 297	writel(0xff800000, &regs->RX_state);
 298	writel(0, &regs->AssistState);
 299	writel(CLEAR_INTA, &regs->LocalCtrl);
 300	writel(0x01, &regs->BrkPt);
 301	writel(0, &regs->Timer);
 302	writel(0, &regs->TimerRef);
 303	writel(RESET_DMA, &regs->DmaReadState);
 304	writel(RESET_DMA, &regs->DmaWriteState);
 305	writel(0, &regs->DmaWriteHostHi);
 306	writel(0, &regs->DmaWriteHostLo);
 307	writel(0, &regs->DmaReadHostHi);
 308	writel(0, &regs->DmaReadHostLo);
 309	writel(0, &regs->DmaReadLen);
 310	writel(0, &regs->DmaWriteLen);
 311	writel(0, &regs->DmaWriteLcl);
 312	writel(0, &regs->DmaWriteIPchecksum);
 313	writel(0, &regs->DmaReadLcl);
 314	writel(0, &regs->DmaReadIPchecksum);
 315	writel(0, &regs->PciState);
 316#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 317	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 318#elif (BITS_PER_LONG == 64)
 319	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 320#else
 321	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 322#endif
 323
 324#if 0
 325	/*
 326	 * Don't worry, this is just black magic.
 327	 */
 328	writel(0xdf000, &regs->RxBase);
 329	writel(0xdf000, &regs->RxPrd);
 330	writel(0xdf000, &regs->RxCon);
 331	writel(0xce000, &regs->TxBase);
 332	writel(0xce000, &regs->TxPrd);
 333	writel(0xce000, &regs->TxCon);
 334	writel(0, &regs->RxIndPro);
 335	writel(0, &regs->RxIndCon);
 336	writel(0, &regs->RxIndRef);
 337	writel(0, &regs->TxIndPro);
 338	writel(0, &regs->TxIndCon);
 339	writel(0, &regs->TxIndRef);
 340	writel(0xcc000, &regs->pad10[0]);
 341	writel(0, &regs->DrCmndPro);
 342	writel(0, &regs->DrCmndCon);
 343	writel(0, &regs->DwCmndPro);
 344	writel(0, &regs->DwCmndCon);
 345	writel(0, &regs->DwCmndRef);
 346	writel(0, &regs->DrDataPro);
 347	writel(0, &regs->DrDataCon);
 348	writel(0, &regs->DrDataRef);
 349	writel(0, &regs->DwDataPro);
 350	writel(0, &regs->DwDataCon);
 351	writel(0, &regs->DwDataRef);
 352#endif
 353
 354	writel(0xffffffff, &regs->MbEvent);
 355	writel(0, &regs->Event);
 356
 357	writel(0, &regs->TxPi);
 358	writel(0, &regs->IpRxPi);
 359
 360	writel(0, &regs->EvtCon);
 361	writel(0, &regs->EvtPrd);
 362
 363	rrpriv->info->evt_ctrl.pi = 0;
 364
 365	for (i = 0; i < CMD_RING_ENTRIES; i++)
 366		writel(0, &regs->CmdRing[i]);
 367
 368/*
 369 * Why 32 ? is this not cache line size dependent?
 370 */
 371	writel(RBURST_64|WBURST_64, &regs->PciState);
 372	wmb();
 373
 374	start_pc = rr_read_eeprom_word(rrpriv,
 375			offsetof(struct eeprom, rncd_info.FwStart));
 376
 377#if (DEBUG > 1)
 378	printk("%s: Executing firmware at address 0x%06x\n",
 379	       dev->name, start_pc);
 380#endif
 381
 382	writel(start_pc + 0x800, &regs->Pc);
 383	wmb();
 384	udelay(5);
 385
 386	writel(start_pc, &regs->Pc);
 387	wmb();
 388
 389	return 0;
 390}
 391
 392
 393/*
 394 * Read a string from the EEPROM.
 395 */
 396static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 397				unsigned long offset,
 398				unsigned char *buf,
 399				unsigned long length)
 400{
 401	struct rr_regs __iomem *regs = rrpriv->regs;
 402	u32 misc, io, host, i;
 403
 404	io = readl(&regs->ExtIo);
 405	writel(0, &regs->ExtIo);
 406	misc = readl(&regs->LocalCtrl);
 407	writel(0, &regs->LocalCtrl);
 408	host = readl(&regs->HostCtrl);
 409	writel(host | HALT_NIC, &regs->HostCtrl);
 410	mb();
 411
 412	for (i = 0; i < length; i++){
 413		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 414		mb();
 415		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 416		mb();
 417	}
 418
 419	writel(host, &regs->HostCtrl);
 420	writel(misc, &regs->LocalCtrl);
 421	writel(io, &regs->ExtIo);
 422	mb();
 423	return i;
 424}
 425
 426
 427/*
 428 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 429 * it to our CPU byte-order.
 430 */
 431static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 432			    size_t offset)
 433{
 434	__be32 word;
 435
 436	if ((rr_read_eeprom(rrpriv, offset,
 437			    (unsigned char *)&word, 4) == 4))
 438		return be32_to_cpu(word);
 439	return 0;
 440}
 441
 442
 443/*
 444 * Write a string to the EEPROM.
 445 *
 446 * This is only called when the firmware is not running.
 447 */
 448static unsigned int write_eeprom(struct rr_private *rrpriv,
 449				 unsigned long offset,
 450				 unsigned char *buf,
 451				 unsigned long length)
 452{
 453	struct rr_regs __iomem *regs = rrpriv->regs;
 454	u32 misc, io, data, i, j, ready, error = 0;
 455
 456	io = readl(&regs->ExtIo);
 457	writel(0, &regs->ExtIo);
 458	misc = readl(&regs->LocalCtrl);
 459	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 460	mb();
 461
 462	for (i = 0; i < length; i++){
 463		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 464		mb();
 465		data = buf[i] << 24;
 466		/*
 467		 * Only try to write the data if it is not the same
 468		 * value already.
 469		 */
 470		if ((readl(&regs->WinData) & 0xff000000) != data){
 471			writel(data, &regs->WinData);
 472			ready = 0;
 473			j = 0;
 474			mb();
 475			while(!ready){
 476				udelay(20);
 477				if ((readl(&regs->WinData) & 0xff000000) ==
 478				    data)
 479					ready = 1;
 480				mb();
 481				if (j++ > 5000){
 482					printk("data mismatch: %08x, "
 483					       "WinData %08x\n", data,
 484					       readl(&regs->WinData));
 485					ready = 1;
 486					error = 1;
 487				}
 488			}
 489		}
 490	}
 491
 492	writel(misc, &regs->LocalCtrl);
 493	writel(io, &regs->ExtIo);
 494	mb();
 495
 496	return error;
 497}
 498
 499
 500static int rr_init(struct net_device *dev)
 501{
 502	struct rr_private *rrpriv;
 503	struct rr_regs __iomem *regs;
 504	u32 sram_size, rev;
 505
 506	rrpriv = netdev_priv(dev);
 507	regs = rrpriv->regs;
 508
 509	rev = readl(&regs->FwRev);
 510	rrpriv->fw_rev = rev;
 511	if (rev > 0x00020024)
 512		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 513		       ((rev >> 8) & 0xff), (rev & 0xff));
 514	else if (rev >= 0x00020000) {
 515		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 516		       "later is recommended)\n", (rev >> 16),
 517		       ((rev >> 8) & 0xff), (rev & 0xff));
 518	}else{
 519		printk("  Firmware revision too old: %i.%i.%i, please "
 520		       "upgrade to 2.0.37 or later.\n",
 521		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 522	}
 523
 524#if (DEBUG > 2)
 525	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 526#endif
 527
 528	/*
 529	 * Read the hardware address from the eeprom.  The HW address
 530	 * is not really necessary for HIPPI but awfully convenient.
 531	 * The pointer arithmetic to put it in dev_addr is ugly, but
 532	 * Donald Becker does it this way for the GigE version of this
 533	 * card and it's shorter and more portable than any
 534	 * other method I've seen.  -VAL
 535	 */
 536
 537	*(__be16 *)(dev->dev_addr) =
 538	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 539	*(__be32 *)(dev->dev_addr+2) =
 540	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 541
 542	printk("  MAC: %pM\n", dev->dev_addr);
 543
 544	sram_size = rr_read_eeprom_word(rrpriv, 8);
 545	printk("  SRAM size 0x%06x\n", sram_size);
 546
 547	return 0;
 548}
 549
 550
 551static int rr_init1(struct net_device *dev)
 552{
 553	struct rr_private *rrpriv;
 554	struct rr_regs __iomem *regs;
 555	unsigned long myjif, flags;
 556	struct cmd cmd;
 557	u32 hostctrl;
 558	int ecode = 0;
 559	short i;
 560
 561	rrpriv = netdev_priv(dev);
 562	regs = rrpriv->regs;
 563
 564	spin_lock_irqsave(&rrpriv->lock, flags);
 565
 566	hostctrl = readl(&regs->HostCtrl);
 567	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 568	wmb();
 569
 570	if (hostctrl & PARITY_ERR){
 571		printk("%s: Parity error halting NIC - this is serious!\n",
 572		       dev->name);
 573		spin_unlock_irqrestore(&rrpriv->lock, flags);
 574		ecode = -EFAULT;
 575		goto error;
 576	}
 577
 578	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 579	set_infoaddr(regs, rrpriv->info_dma);
 580
 581	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 582	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 583	rrpriv->info->evt_ctrl.mode = 0;
 584	rrpriv->info->evt_ctrl.pi = 0;
 585	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 586
 587	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 588	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 589	rrpriv->info->cmd_ctrl.mode = 0;
 590	rrpriv->info->cmd_ctrl.pi = 15;
 591
 592	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 593		writel(0, &regs->CmdRing[i]);
 594	}
 595
 596	for (i = 0; i < TX_RING_ENTRIES; i++) {
 597		rrpriv->tx_ring[i].size = 0;
 598		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 599		rrpriv->tx_skbuff[i] = NULL;
 600	}
 601	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 602	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 603	rrpriv->info->tx_ctrl.mode = 0;
 604	rrpriv->info->tx_ctrl.pi = 0;
 605	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 606
 607	/*
 608	 * Set dirty_tx before we start receiving interrupts, otherwise
 609	 * the interrupt handler might think it is supposed to process
 610	 * tx ints before we are up and running, which may cause a null
 611	 * pointer access in the int handler.
 612	 */
 613	rrpriv->tx_full = 0;
 614	rrpriv->cur_rx = 0;
 615	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 616
 617	rr_reset(dev);
 618
 619	/* Tuning values */
 620	writel(0x5000, &regs->ConRetry);
 621	writel(0x100, &regs->ConRetryTmr);
 622	writel(0x500000, &regs->ConTmout);
 623 	writel(0x60, &regs->IntrTmr);
 624	writel(0x500000, &regs->TxDataMvTimeout);
 625	writel(0x200000, &regs->RxDataMvTimeout);
 626 	writel(0x80, &regs->WriteDmaThresh);
 627 	writel(0x80, &regs->ReadDmaThresh);
 628
 629	rrpriv->fw_running = 0;
 630	wmb();
 631
 632	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 633	writel(hostctrl, &regs->HostCtrl);
 634	wmb();
 635
 636	spin_unlock_irqrestore(&rrpriv->lock, flags);
 637
 638	for (i = 0; i < RX_RING_ENTRIES; i++) {
 639		struct sk_buff *skb;
 640		dma_addr_t addr;
 641
 642		rrpriv->rx_ring[i].mode = 0;
 643		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 644		if (!skb) {
 645			printk(KERN_WARNING "%s: Unable to allocate memory "
 646			       "for receive ring - halting NIC\n", dev->name);
 647			ecode = -ENOMEM;
 648			goto error;
 649		}
 650		rrpriv->rx_skbuff[i] = skb;
 651	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
 652			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 653		/*
 654		 * Sanity test to see if we conflict with the DMA
 655		 * limitations of the Roadrunner.
 656		 */
 657		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 658			printk("skb alloc error\n");
 659
 660		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 661		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 662	}
 663
 664	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 665	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 666	rrpriv->rx_ctrl[4].mode = 8;
 667	rrpriv->rx_ctrl[4].pi = 0;
 668	wmb();
 669	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 670
 671	udelay(1000);
 672
 673	/*
 674	 * Now start the FirmWare.
 675	 */
 676	cmd.code = C_START_FW;
 677	cmd.ring = 0;
 678	cmd.index = 0;
 679
 680	rr_issue_cmd(rrpriv, &cmd);
 681
 682	/*
 683	 * Give the FirmWare time to chew on the `get running' command.
 684	 */
 685	myjif = jiffies + 5 * HZ;
 686	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 687		cpu_relax();
 688
 689	netif_start_queue(dev);
 690
 691	return ecode;
 692
 693 error:
 694	/*
 695	 * We might have gotten here because we are out of memory,
 696	 * make sure we release everything we allocated before failing
 697	 */
 698	for (i = 0; i < RX_RING_ENTRIES; i++) {
 699		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 700
 701		if (skb) {
 702	        	pci_unmap_single(rrpriv->pci_dev,
 703					 rrpriv->rx_ring[i].addr.addrlo,
 704					 dev->mtu + HIPPI_HLEN,
 705					 PCI_DMA_FROMDEVICE);
 706			rrpriv->rx_ring[i].size = 0;
 707			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 708			dev_kfree_skb(skb);
 709			rrpriv->rx_skbuff[i] = NULL;
 710		}
 711	}
 712	return ecode;
 713}
 714
 715
 716/*
 717 * All events are considered to be slow (RX/TX ints do not generate
 718 * events) and are handled here, outside the main interrupt handler,
 719 * to reduce the size of the handler.
 720 */
 721static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 722{
 723	struct rr_private *rrpriv;
 724	struct rr_regs __iomem *regs;
 725	u32 tmp;
 726
 727	rrpriv = netdev_priv(dev);
 728	regs = rrpriv->regs;
 729
 730	while (prodidx != eidx){
 731		switch (rrpriv->evt_ring[eidx].code){
 732		case E_NIC_UP:
 733			tmp = readl(&regs->FwRev);
 734			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 735			       "up and running\n", dev->name,
 736			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 737			rrpriv->fw_running = 1;
 738			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 739			wmb();
 740			break;
 741		case E_LINK_ON:
 742			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 743			break;
 744		case E_LINK_OFF:
 745			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 746			break;
 747		case E_RX_IDLE:
 748			printk(KERN_WARNING "%s: RX data not moving\n",
 749			       dev->name);
 750			goto drop;
 751		case E_WATCHDOG:
 752			printk(KERN_INFO "%s: The watchdog is here to see "
 753			       "us\n", dev->name);
 754			break;
 755		case E_INTERN_ERR:
 756			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 757			       dev->name);
 758			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 759			       &regs->HostCtrl);
 760			wmb();
 761			break;
 762		case E_HOST_ERR:
 763			printk(KERN_ERR "%s: Host software error\n",
 764			       dev->name);
 765			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 766			       &regs->HostCtrl);
 767			wmb();
 768			break;
 769		/*
 770		 * TX events.
 771		 */
 772		case E_CON_REJ:
 773			printk(KERN_WARNING "%s: Connection rejected\n",
 774			       dev->name);
 775			dev->stats.tx_aborted_errors++;
 776			break;
 777		case E_CON_TMOUT:
 778			printk(KERN_WARNING "%s: Connection timeout\n",
 779			       dev->name);
 780			break;
 781		case E_DISC_ERR:
 782			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 783			       dev->name);
 784			dev->stats.tx_aborted_errors++;
 785			break;
 786		case E_INT_PRTY:
 787			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 788			       dev->name);
 789			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 790			       &regs->HostCtrl);
 791			wmb();
 792			break;
 793		case E_TX_IDLE:
 794			printk(KERN_WARNING "%s: Transmitter idle\n",
 795			       dev->name);
 796			break;
 797		case E_TX_LINK_DROP:
 798			printk(KERN_WARNING "%s: Link lost during transmit\n",
 799			       dev->name);
 800			dev->stats.tx_aborted_errors++;
 801			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 802			       &regs->HostCtrl);
 803			wmb();
 804			break;
 805		case E_TX_INV_RNG:
 806			printk(KERN_ERR "%s: Invalid send ring block\n",
 807			       dev->name);
 808			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 809			       &regs->HostCtrl);
 810			wmb();
 811			break;
 812		case E_TX_INV_BUF:
 813			printk(KERN_ERR "%s: Invalid send buffer address\n",
 814			       dev->name);
 815			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 816			       &regs->HostCtrl);
 817			wmb();
 818			break;
 819		case E_TX_INV_DSC:
 820			printk(KERN_ERR "%s: Invalid descriptor address\n",
 821			       dev->name);
 822			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 823			       &regs->HostCtrl);
 824			wmb();
 825			break;
 826		/*
 827		 * RX events.
 828		 */
 829		case E_RX_RNG_OUT:
 830			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 831			break;
 832
 833		case E_RX_PAR_ERR:
 834			printk(KERN_WARNING "%s: Receive parity error\n",
 835			       dev->name);
 836			goto drop;
 837		case E_RX_LLRC_ERR:
 838			printk(KERN_WARNING "%s: Receive LLRC error\n",
 839			       dev->name);
 840			goto drop;
 841		case E_PKT_LN_ERR:
 842			printk(KERN_WARNING "%s: Receive packet length "
 843			       "error\n", dev->name);
 844			goto drop;
 845		case E_DTA_CKSM_ERR:
 846			printk(KERN_WARNING "%s: Data checksum error\n",
 847			       dev->name);
 848			goto drop;
 849		case E_SHT_BST:
 850			printk(KERN_WARNING "%s: Unexpected short burst "
 851			       "error\n", dev->name);
 852			goto drop;
 853		case E_STATE_ERR:
 854			printk(KERN_WARNING "%s: Recv. state transition"
 855			       " error\n", dev->name);
 856			goto drop;
 857		case E_UNEXP_DATA:
 858			printk(KERN_WARNING "%s: Unexpected data error\n",
 859			       dev->name);
 860			goto drop;
 861		case E_LST_LNK_ERR:
 862			printk(KERN_WARNING "%s: Link lost error\n",
 863			       dev->name);
 864			goto drop;
 865		case E_FRM_ERR:
 866			printk(KERN_WARNING "%s: Framing Error\n",
 867			       dev->name);
 868			goto drop;
 869		case E_FLG_SYN_ERR:
 870			printk(KERN_WARNING "%s: Flag sync. lost during "
 871			       "packet\n", dev->name);
 872			goto drop;
 873		case E_RX_INV_BUF:
 874			printk(KERN_ERR "%s: Invalid receive buffer "
 875			       "address\n", dev->name);
 876			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 877			       &regs->HostCtrl);
 878			wmb();
 879			break;
 880		case E_RX_INV_DSC:
 881			printk(KERN_ERR "%s: Invalid receive descriptor "
 882			       "address\n", dev->name);
 883			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 884			       &regs->HostCtrl);
 885			wmb();
 886			break;
 887		case E_RNG_BLK:
 888			printk(KERN_ERR "%s: Invalid ring block\n",
 889			       dev->name);
 890			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 891			       &regs->HostCtrl);
 892			wmb();
 893			break;
 894		drop:
 895			/* Label packet to be dropped.
 896			 * Actual dropping occurs in rx
 897			 * handling.
 898			 *
 899			 * The index of packet we get to drop is
 900			 * the index of the packet following
 901			 * the bad packet. -kbf
 902			 */
 903			{
 904				u16 index = rrpriv->evt_ring[eidx].index;
 905				index = (index + (RX_RING_ENTRIES - 1)) %
 906					RX_RING_ENTRIES;
 907				rrpriv->rx_ring[index].mode |=
 908					(PACKET_BAD | PACKET_END);
 909			}
 910			break;
 911		default:
 912			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 913			       dev->name, rrpriv->evt_ring[eidx].code);
 914		}
 915		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 916	}
 917
 918	rrpriv->info->evt_ctrl.pi = eidx;
 919	wmb();
 920	return eidx;
 921}
 922
 923
 924static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 925{
 926	struct rr_private *rrpriv = netdev_priv(dev);
 927	struct rr_regs __iomem *regs = rrpriv->regs;
 928
 929	do {
 930		struct rx_desc *desc;
 931		u32 pkt_len;
 932
 933		desc = &(rrpriv->rx_ring[index]);
 934		pkt_len = desc->size;
 935#if (DEBUG > 2)
 936		printk("index %i, rxlimit %i\n", index, rxlimit);
 937		printk("len %x, mode %x\n", pkt_len, desc->mode);
 938#endif
 939		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 940			dev->stats.rx_dropped++;
 941			goto defer;
 942		}
 943
 944		if (pkt_len > 0){
 945			struct sk_buff *skb, *rx_skb;
 946
 947			rx_skb = rrpriv->rx_skbuff[index];
 948
 949			if (pkt_len < PKT_COPY_THRESHOLD) {
 950				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 951				if (skb == NULL){
 952					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 953					dev->stats.rx_dropped++;
 954					goto defer;
 955				} else {
 956					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 957								    desc->addr.addrlo,
 958								    pkt_len,
 959								    PCI_DMA_FROMDEVICE);
 960
 961					skb_put_data(skb, rx_skb->data,
 962						     pkt_len);
 963
 964					pci_dma_sync_single_for_device(rrpriv->pci_dev,
 965								       desc->addr.addrlo,
 966								       pkt_len,
 967								       PCI_DMA_FROMDEVICE);
 968				}
 969			}else{
 970				struct sk_buff *newskb;
 971
 972				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 973					GFP_ATOMIC);
 974				if (newskb){
 975					dma_addr_t addr;
 976
 977	        			pci_unmap_single(rrpriv->pci_dev,
 978						desc->addr.addrlo, dev->mtu +
 979						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 980					skb = rx_skb;
 981					skb_put(skb, pkt_len);
 982					rrpriv->rx_skbuff[index] = newskb;
 983	        			addr = pci_map_single(rrpriv->pci_dev,
 984						newskb->data,
 985						dev->mtu + HIPPI_HLEN,
 986						PCI_DMA_FROMDEVICE);
 987					set_rraddr(&desc->addr, addr);
 988				} else {
 989					printk("%s: Out of memory, deferring "
 990					       "packet\n", dev->name);
 991					dev->stats.rx_dropped++;
 992					goto defer;
 993				}
 994			}
 995			skb->protocol = hippi_type_trans(skb, dev);
 996
 997			netif_rx(skb);		/* send it up */
 998
 999			dev->stats.rx_packets++;
1000			dev->stats.rx_bytes += pkt_len;
1001		}
1002	defer:
1003		desc->mode = 0;
1004		desc->size = dev->mtu + HIPPI_HLEN;
1005
1006		if ((index & 7) == 7)
1007			writel(index, &regs->IpRxPi);
1008
1009		index = (index + 1) % RX_RING_ENTRIES;
1010	} while(index != rxlimit);
1011
1012	rrpriv->cur_rx = index;
1013	wmb();
1014}
1015
1016
1017static irqreturn_t rr_interrupt(int irq, void *dev_id)
1018{
1019	struct rr_private *rrpriv;
1020	struct rr_regs __iomem *regs;
1021	struct net_device *dev = (struct net_device *)dev_id;
1022	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1023
1024	rrpriv = netdev_priv(dev);
1025	regs = rrpriv->regs;
1026
1027	if (!(readl(&regs->HostCtrl) & RR_INT))
1028		return IRQ_NONE;
1029
1030	spin_lock(&rrpriv->lock);
1031
1032	prodidx = readl(&regs->EvtPrd);
1033	txcsmr = (prodidx >> 8) & 0xff;
1034	rxlimit = (prodidx >> 16) & 0xff;
1035	prodidx &= 0xff;
1036
1037#if (DEBUG > 2)
1038	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1039	       prodidx, rrpriv->info->evt_ctrl.pi);
1040#endif
1041	/*
1042	 * Order here is important.  We must handle events
1043	 * before doing anything else in order to catch
1044	 * such things as LLRC errors, etc -kbf
1045	 */
1046
1047	eidx = rrpriv->info->evt_ctrl.pi;
1048	if (prodidx != eidx)
1049		eidx = rr_handle_event(dev, prodidx, eidx);
1050
1051	rxindex = rrpriv->cur_rx;
1052	if (rxindex != rxlimit)
1053		rx_int(dev, rxlimit, rxindex);
1054
1055	txcon = rrpriv->dirty_tx;
1056	if (txcsmr != txcon) {
1057		do {
1058			/* Due to occational firmware TX producer/consumer out
1059			 * of sync. error need to check entry in ring -kbf
1060			 */
1061			if(rrpriv->tx_skbuff[txcon]){
1062				struct tx_desc *desc;
1063				struct sk_buff *skb;
1064
1065				desc = &(rrpriv->tx_ring[txcon]);
1066				skb = rrpriv->tx_skbuff[txcon];
1067
1068				dev->stats.tx_packets++;
1069				dev->stats.tx_bytes += skb->len;
1070
1071				pci_unmap_single(rrpriv->pci_dev,
1072						 desc->addr.addrlo, skb->len,
1073						 PCI_DMA_TODEVICE);
1074				dev_kfree_skb_irq(skb);
1075
1076				rrpriv->tx_skbuff[txcon] = NULL;
1077				desc->size = 0;
1078				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1079				desc->mode = 0;
1080			}
1081			txcon = (txcon + 1) % TX_RING_ENTRIES;
1082		} while (txcsmr != txcon);
1083		wmb();
1084
1085		rrpriv->dirty_tx = txcon;
1086		if (rrpriv->tx_full && rr_if_busy(dev) &&
1087		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1088		     != rrpriv->dirty_tx)){
1089			rrpriv->tx_full = 0;
1090			netif_wake_queue(dev);
1091		}
1092	}
1093
1094	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1095	writel(eidx, &regs->EvtCon);
1096	wmb();
1097
1098	spin_unlock(&rrpriv->lock);
1099	return IRQ_HANDLED;
1100}
1101
1102static inline void rr_raz_tx(struct rr_private *rrpriv,
1103			     struct net_device *dev)
1104{
1105	int i;
1106
1107	for (i = 0; i < TX_RING_ENTRIES; i++) {
1108		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1109
1110		if (skb) {
1111			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1112
1113	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1114				skb->len, PCI_DMA_TODEVICE);
1115			desc->size = 0;
1116			set_rraddr(&desc->addr, 0);
1117			dev_kfree_skb(skb);
1118			rrpriv->tx_skbuff[i] = NULL;
1119		}
1120	}
1121}
1122
1123
1124static inline void rr_raz_rx(struct rr_private *rrpriv,
1125			     struct net_device *dev)
1126{
1127	int i;
1128
1129	for (i = 0; i < RX_RING_ENTRIES; i++) {
1130		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1131
1132		if (skb) {
1133			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1134
1135	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1136				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1137			desc->size = 0;
1138			set_rraddr(&desc->addr, 0);
1139			dev_kfree_skb(skb);
1140			rrpriv->rx_skbuff[i] = NULL;
1141		}
1142	}
1143}
1144
1145static void rr_timer(struct timer_list *t)
1146{
1147	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1148	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1149	struct rr_regs __iomem *regs = rrpriv->regs;
1150	unsigned long flags;
1151
1152	if (readl(&regs->HostCtrl) & NIC_HALTED){
1153		printk("%s: Restarting nic\n", dev->name);
1154		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1155		memset(rrpriv->info, 0, sizeof(struct rr_info));
1156		wmb();
1157
1158		rr_raz_tx(rrpriv, dev);
1159		rr_raz_rx(rrpriv, dev);
1160
1161		if (rr_init1(dev)) {
1162			spin_lock_irqsave(&rrpriv->lock, flags);
1163			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1164			       &regs->HostCtrl);
1165			spin_unlock_irqrestore(&rrpriv->lock, flags);
1166		}
1167	}
1168	rrpriv->timer.expires = RUN_AT(5*HZ);
1169	add_timer(&rrpriv->timer);
1170}
1171
1172
1173static int rr_open(struct net_device *dev)
1174{
1175	struct rr_private *rrpriv = netdev_priv(dev);
1176	struct pci_dev *pdev = rrpriv->pci_dev;
1177	struct rr_regs __iomem *regs;
1178	int ecode = 0;
1179	unsigned long flags;
1180	dma_addr_t dma_addr;
1181
1182	regs = rrpriv->regs;
1183
1184	if (rrpriv->fw_rev < 0x00020000) {
1185		printk(KERN_WARNING "%s: trying to configure device with "
1186		       "obsolete firmware\n", dev->name);
1187		ecode = -EBUSY;
1188		goto error;
1189	}
1190
1191	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1192					       256 * sizeof(struct ring_ctrl),
1193					       &dma_addr);
1194	if (!rrpriv->rx_ctrl) {
1195		ecode = -ENOMEM;
1196		goto error;
1197	}
1198	rrpriv->rx_ctrl_dma = dma_addr;
 
1199
1200	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1201					    &dma_addr);
1202	if (!rrpriv->info) {
1203		ecode = -ENOMEM;
1204		goto error;
1205	}
1206	rrpriv->info_dma = dma_addr;
 
1207	wmb();
1208
1209	spin_lock_irqsave(&rrpriv->lock, flags);
1210	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1211	readl(&regs->HostCtrl);
1212	spin_unlock_irqrestore(&rrpriv->lock, flags);
1213
1214	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1215		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1216		       dev->name, pdev->irq);
1217		ecode = -EAGAIN;
1218		goto error;
1219	}
1220
1221	if ((ecode = rr_init1(dev)))
1222		goto error;
1223
1224	/* Set the timer to switch to check for link beat and perhaps switch
1225	   to an alternate media type. */
1226	timer_setup(&rrpriv->timer, rr_timer, 0);
1227	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
 
 
1228	add_timer(&rrpriv->timer);
1229
1230	netif_start_queue(dev);
1231
1232	return ecode;
1233
1234 error:
1235	spin_lock_irqsave(&rrpriv->lock, flags);
1236	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1237	spin_unlock_irqrestore(&rrpriv->lock, flags);
1238
1239	if (rrpriv->info) {
1240		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1241				    rrpriv->info_dma);
1242		rrpriv->info = NULL;
1243	}
1244	if (rrpriv->rx_ctrl) {
1245		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1246				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1247		rrpriv->rx_ctrl = NULL;
1248	}
1249
1250	netif_stop_queue(dev);
1251
1252	return ecode;
1253}
1254
1255
1256static void rr_dump(struct net_device *dev)
1257{
1258	struct rr_private *rrpriv;
1259	struct rr_regs __iomem *regs;
1260	u32 index, cons;
1261	short i;
1262	int len;
1263
1264	rrpriv = netdev_priv(dev);
1265	regs = rrpriv->regs;
1266
1267	printk("%s: dumping NIC TX rings\n", dev->name);
1268
1269	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1270	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1271	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1272	       rrpriv->info->tx_ctrl.pi);
1273
1274	printk("Error code 0x%x\n", readl(&regs->Fail1));
1275
1276	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1277	cons = rrpriv->dirty_tx;
1278	printk("TX ring index %i, TX consumer %i\n",
1279	       index, cons);
1280
1281	if (rrpriv->tx_skbuff[index]){
1282		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1283		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1284		for (i = 0; i < len; i++){
1285			if (!(i & 7))
1286				printk("\n");
1287			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1288		}
1289		printk("\n");
1290	}
1291
1292	if (rrpriv->tx_skbuff[cons]){
1293		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1294		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1295		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1296		       rrpriv->tx_ring[cons].mode,
1297		       rrpriv->tx_ring[cons].size,
1298		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1299		       rrpriv->tx_skbuff[cons]->data,
1300		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1301		for (i = 0; i < len; i++){
1302			if (!(i & 7))
1303				printk("\n");
1304			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1305		}
1306		printk("\n");
1307	}
1308
1309	printk("dumping TX ring info:\n");
1310	for (i = 0; i < TX_RING_ENTRIES; i++)
1311		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1312		       rrpriv->tx_ring[i].mode,
1313		       rrpriv->tx_ring[i].size,
1314		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1315
1316}
1317
1318
1319static int rr_close(struct net_device *dev)
1320{
1321	struct rr_private *rrpriv = netdev_priv(dev);
1322	struct rr_regs __iomem *regs = rrpriv->regs;
1323	struct pci_dev *pdev = rrpriv->pci_dev;
1324	unsigned long flags;
1325	u32 tmp;
1326	short i;
1327
1328	netif_stop_queue(dev);
1329
1330
1331	/*
1332	 * Lock to make sure we are not cleaning up while another CPU
1333	 * is handling interrupts.
1334	 */
1335	spin_lock_irqsave(&rrpriv->lock, flags);
1336
1337	tmp = readl(&regs->HostCtrl);
1338	if (tmp & NIC_HALTED){
1339		printk("%s: NIC already halted\n", dev->name);
1340		rr_dump(dev);
1341	}else{
1342		tmp |= HALT_NIC | RR_CLEAR_INT;
1343		writel(tmp, &regs->HostCtrl);
1344		readl(&regs->HostCtrl);
1345	}
1346
1347	rrpriv->fw_running = 0;
1348
1349	del_timer_sync(&rrpriv->timer);
1350
1351	writel(0, &regs->TxPi);
1352	writel(0, &regs->IpRxPi);
1353
1354	writel(0, &regs->EvtCon);
1355	writel(0, &regs->EvtPrd);
1356
1357	for (i = 0; i < CMD_RING_ENTRIES; i++)
1358		writel(0, &regs->CmdRing[i]);
1359
1360	rrpriv->info->tx_ctrl.entries = 0;
1361	rrpriv->info->cmd_ctrl.pi = 0;
1362	rrpriv->info->evt_ctrl.pi = 0;
1363	rrpriv->rx_ctrl[4].entries = 0;
1364
1365	rr_raz_tx(rrpriv, dev);
1366	rr_raz_rx(rrpriv, dev);
1367
1368	pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1369			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1370	rrpriv->rx_ctrl = NULL;
1371
1372	pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1373			    rrpriv->info_dma);
1374	rrpriv->info = NULL;
1375
 
1376	spin_unlock_irqrestore(&rrpriv->lock, flags);
1377	free_irq(pdev->irq, dev);
1378
1379	return 0;
1380}
1381
1382
1383static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1384				 struct net_device *dev)
1385{
1386	struct rr_private *rrpriv = netdev_priv(dev);
1387	struct rr_regs __iomem *regs = rrpriv->regs;
1388	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1389	struct ring_ctrl *txctrl;
1390	unsigned long flags;
1391	u32 index, len = skb->len;
1392	u32 *ifield;
1393	struct sk_buff *new_skb;
1394
1395	if (readl(&regs->Mode) & FATAL_ERR)
1396		printk("error codes Fail1 %02x, Fail2 %02x\n",
1397		       readl(&regs->Fail1), readl(&regs->Fail2));
1398
1399	/*
1400	 * We probably need to deal with tbusy here to prevent overruns.
1401	 */
1402
1403	if (skb_headroom(skb) < 8){
1404		printk("incoming skb too small - reallocating\n");
1405		if (!(new_skb = dev_alloc_skb(len + 8))) {
1406			dev_kfree_skb(skb);
1407			netif_wake_queue(dev);
1408			return NETDEV_TX_OK;
1409		}
1410		skb_reserve(new_skb, 8);
1411		skb_put(new_skb, len);
1412		skb_copy_from_linear_data(skb, new_skb->data, len);
1413		dev_kfree_skb(skb);
1414		skb = new_skb;
1415	}
1416
1417	ifield = skb_push(skb, 8);
1418
1419	ifield[0] = 0;
1420	ifield[1] = hcb->ifield;
1421
1422	/*
1423	 * We don't need the lock before we are actually going to start
1424	 * fiddling with the control blocks.
1425	 */
1426	spin_lock_irqsave(&rrpriv->lock, flags);
1427
1428	txctrl = &rrpriv->info->tx_ctrl;
1429
1430	index = txctrl->pi;
1431
1432	rrpriv->tx_skbuff[index] = skb;
1433	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1434		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1435	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1436	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1437	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1438	wmb();
1439	writel(txctrl->pi, &regs->TxPi);
1440
1441	if (txctrl->pi == rrpriv->dirty_tx){
1442		rrpriv->tx_full = 1;
1443		netif_stop_queue(dev);
1444	}
1445
1446	spin_unlock_irqrestore(&rrpriv->lock, flags);
1447
1448	return NETDEV_TX_OK;
1449}
1450
1451
1452/*
1453 * Read the firmware out of the EEPROM and put it into the SRAM
1454 * (or from user space - later)
1455 *
1456 * This operation requires the NIC to be halted and is performed with
1457 * interrupts disabled and with the spinlock hold.
1458 */
1459static int rr_load_firmware(struct net_device *dev)
1460{
1461	struct rr_private *rrpriv;
1462	struct rr_regs __iomem *regs;
1463	size_t eptr, segptr;
1464	int i, j;
1465	u32 localctrl, sptr, len, tmp;
1466	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1467
1468	rrpriv = netdev_priv(dev);
1469	regs = rrpriv->regs;
1470
1471	if (dev->flags & IFF_UP)
1472		return -EBUSY;
1473
1474	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1475		printk("%s: Trying to load firmware to a running NIC.\n",
1476		       dev->name);
1477		return -EBUSY;
1478	}
1479
1480	localctrl = readl(&regs->LocalCtrl);
1481	writel(0, &regs->LocalCtrl);
1482
1483	writel(0, &regs->EvtPrd);
1484	writel(0, &regs->RxPrd);
1485	writel(0, &regs->TxPrd);
1486
1487	/*
1488	 * First wipe the entire SRAM, otherwise we might run into all
1489	 * kinds of trouble ... sigh, this took almost all afternoon
1490	 * to track down ;-(
1491	 */
1492	io = readl(&regs->ExtIo);
1493	writel(0, &regs->ExtIo);
1494	sram_size = rr_read_eeprom_word(rrpriv, 8);
1495
1496	for (i = 200; i < sram_size / 4; i++){
1497		writel(i * 4, &regs->WinBase);
1498		mb();
1499		writel(0, &regs->WinData);
1500		mb();
1501	}
1502	writel(io, &regs->ExtIo);
1503	mb();
1504
1505	eptr = rr_read_eeprom_word(rrpriv,
1506		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1507	eptr = ((eptr & 0x1fffff) >> 3);
1508
1509	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1510	p2len = (p2len << 2);
1511	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1512	p2size = ((p2size & 0x1fffff) >> 3);
1513
1514	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1515		printk("%s: eptr is invalid\n", dev->name);
1516		goto out;
1517	}
1518
1519	revision = rr_read_eeprom_word(rrpriv,
1520			offsetof(struct eeprom, manf.HeaderFmt));
1521
1522	if (revision != 1){
1523		printk("%s: invalid firmware format (%i)\n",
1524		       dev->name, revision);
1525		goto out;
1526	}
1527
1528	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1529	eptr +=4;
1530#if (DEBUG > 1)
1531	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1532#endif
1533
1534	for (i = 0; i < nr_seg; i++){
1535		sptr = rr_read_eeprom_word(rrpriv, eptr);
1536		eptr += 4;
1537		len = rr_read_eeprom_word(rrpriv, eptr);
1538		eptr += 4;
1539		segptr = rr_read_eeprom_word(rrpriv, eptr);
1540		segptr = ((segptr & 0x1fffff) >> 3);
1541		eptr += 4;
1542#if (DEBUG > 1)
1543		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1544		       dev->name, i, sptr, len, segptr);
1545#endif
1546		for (j = 0; j < len; j++){
1547			tmp = rr_read_eeprom_word(rrpriv, segptr);
1548			writel(sptr, &regs->WinBase);
1549			mb();
1550			writel(tmp, &regs->WinData);
1551			mb();
1552			segptr += 4;
1553			sptr += 4;
1554		}
1555	}
1556
1557out:
1558	writel(localctrl, &regs->LocalCtrl);
1559	mb();
1560	return 0;
1561}
1562
1563
1564static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1565{
1566	struct rr_private *rrpriv;
1567	unsigned char *image, *oldimage;
1568	unsigned long flags;
1569	unsigned int i;
1570	int error = -EOPNOTSUPP;
1571
1572	rrpriv = netdev_priv(dev);
1573
1574	switch(cmd){
1575	case SIOCRRGFW:
1576		if (!capable(CAP_SYS_RAWIO)){
1577			return -EPERM;
1578		}
1579
1580		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1581		if (!image)
1582			return -ENOMEM;
1583
1584		if (rrpriv->fw_running){
1585			printk("%s: Firmware already running\n", dev->name);
1586			error = -EPERM;
1587			goto gf_out;
1588		}
1589
1590		spin_lock_irqsave(&rrpriv->lock, flags);
1591		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1592		spin_unlock_irqrestore(&rrpriv->lock, flags);
1593		if (i != EEPROM_BYTES){
1594			printk(KERN_ERR "%s: Error reading EEPROM\n",
1595			       dev->name);
1596			error = -EFAULT;
1597			goto gf_out;
1598		}
1599		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1600		if (error)
1601			error = -EFAULT;
1602	gf_out:
1603		kfree(image);
1604		return error;
1605
1606	case SIOCRRPFW:
1607		if (!capable(CAP_SYS_RAWIO)){
1608			return -EPERM;
1609		}
1610
1611		image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1612		if (IS_ERR(image))
1613			return PTR_ERR(image);
1614
1615		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1616		if (!oldimage) {
1617			kfree(image);
1618			return -ENOMEM;
 
 
 
1619		}
1620
1621		if (rrpriv->fw_running){
1622			printk("%s: Firmware already running\n", dev->name);
1623			error = -EPERM;
1624			goto wf_out;
1625		}
1626
1627		printk("%s: Updating EEPROM firmware\n", dev->name);
1628
1629		spin_lock_irqsave(&rrpriv->lock, flags);
1630		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1631		if (error)
1632			printk(KERN_ERR "%s: Error writing EEPROM\n",
1633			       dev->name);
1634
1635		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1636		spin_unlock_irqrestore(&rrpriv->lock, flags);
1637
1638		if (i != EEPROM_BYTES)
1639			printk(KERN_ERR "%s: Error reading back EEPROM "
1640			       "image\n", dev->name);
1641
1642		error = memcmp(image, oldimage, EEPROM_BYTES);
1643		if (error){
1644			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1645			       dev->name);
1646			error = -EFAULT;
1647		}
1648	wf_out:
1649		kfree(oldimage);
1650		kfree(image);
1651		return error;
1652
1653	case SIOCRRID:
1654		return put_user(0x52523032, (int __user *)rq->ifr_data);
1655	default:
1656		return error;
1657	}
1658}
1659
1660static const struct pci_device_id rr_pci_tbl[] = {
1661	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1662		PCI_ANY_ID, PCI_ANY_ID, },
1663	{ 0,}
1664};
1665MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1666
1667static struct pci_driver rr_driver = {
1668	.name		= "rrunner",
1669	.id_table	= rr_pci_tbl,
1670	.probe		= rr_init_one,
1671	.remove		= rr_remove_one,
1672};
1673
1674module_pci_driver(rr_driver);