Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 
 
 
 250	spin_lock_bh(&sp->lock);
 251	/* We were not busy, so we are now... :-) */
 252	netif_stop_queue(dev);
 253	dev->stats.tx_bytes += skb->len;
 254	sp_encaps(sp, skb->data, skb->len);
 255	spin_unlock_bh(&sp->lock);
 256
 257	dev_kfree_skb(skb);
 258
 259	return NETDEV_TX_OK;
 260}
 261
 262static int sp_open_dev(struct net_device *dev)
 263{
 264	struct sixpack *sp = netdev_priv(dev);
 265
 266	if (sp->tty == NULL)
 267		return -ENODEV;
 268	return 0;
 269}
 270
 271/* Close the low-level part of the 6pack channel. */
 272static int sp_close(struct net_device *dev)
 273{
 274	struct sixpack *sp = netdev_priv(dev);
 275
 276	spin_lock_bh(&sp->lock);
 277	if (sp->tty) {
 278		/* TTY discipline is running. */
 279		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 280	}
 281	netif_stop_queue(dev);
 282	spin_unlock_bh(&sp->lock);
 283
 284	return 0;
 285}
 286
 287/* Return the frame type ID */
 288static int sp_header(struct sk_buff *skb, struct net_device *dev,
 289		     unsigned short type, const void *daddr,
 290		     const void *saddr, unsigned len)
 291{
 292#ifdef CONFIG_INET
 293	if (type != ETH_P_AX25)
 294		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 295#endif
 296	return 0;
 297}
 298
 299static int sp_set_mac_address(struct net_device *dev, void *addr)
 300{
 301	struct sockaddr_ax25 *sa = addr;
 302
 303	netif_tx_lock_bh(dev);
 304	netif_addr_lock(dev);
 305	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 306	netif_addr_unlock(dev);
 307	netif_tx_unlock_bh(dev);
 308
 309	return 0;
 310}
 311
 312static int sp_rebuild_header(struct sk_buff *skb)
 313{
 314#ifdef CONFIG_INET
 315	return ax25_rebuild_header(skb);
 316#else
 317	return 0;
 318#endif
 319}
 320
 321static const struct header_ops sp_header_ops = {
 322	.create		= sp_header,
 323	.rebuild	= sp_rebuild_header,
 324};
 325
 326static const struct net_device_ops sp_netdev_ops = {
 327	.ndo_open		= sp_open_dev,
 328	.ndo_stop		= sp_close,
 329	.ndo_start_xmit		= sp_xmit,
 330	.ndo_set_mac_address    = sp_set_mac_address,
 331};
 332
 333static void sp_setup(struct net_device *dev)
 334{
 335	/* Finish setting up the DEVICE info. */
 336	dev->netdev_ops		= &sp_netdev_ops;
 337	dev->destructor		= free_netdev;
 338	dev->mtu		= SIXP_MTU;
 339	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 340	dev->header_ops 	= &sp_header_ops;
 341
 342	dev->addr_len		= AX25_ADDR_LEN;
 343	dev->type		= ARPHRD_AX25;
 344	dev->tx_queue_len	= 10;
 345
 346	/* Only activated in AX.25 mode */
 347	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 348	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 349
 350	dev->flags		= 0;
 351}
 352
 353/* Send one completely decapsulated IP datagram to the IP layer. */
 354
 355/*
 356 * This is the routine that sends the received data to the kernel AX.25.
 357 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 358 */
 359
 360static void sp_bump(struct sixpack *sp, char cmd)
 361{
 362	struct sk_buff *skb;
 363	int count;
 364	unsigned char *ptr;
 365
 366	count = sp->rcount + 1;
 367
 368	sp->dev->stats.rx_bytes += count;
 369
 370	if ((skb = dev_alloc_skb(count)) == NULL)
 371		goto out_mem;
 372
 373	ptr = skb_put(skb, count);
 374	*ptr++ = cmd;	/* KISS command */
 375
 376	memcpy(ptr, sp->cooked_buf + 1, count);
 377	skb->protocol = ax25_type_trans(skb, sp->dev);
 378	netif_rx(skb);
 379	sp->dev->stats.rx_packets++;
 380
 381	return;
 382
 383out_mem:
 384	sp->dev->stats.rx_dropped++;
 385}
 386
 387
 388/* ----------------------------------------------------------------------- */
 389
 390/*
 391 * We have a potential race on dereferencing tty->disc_data, because the tty
 392 * layer provides no locking at all - thus one cpu could be running
 393 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 394 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 395 * best way to fix this is to use a rwlock in the tty struct, but for now we
 396 * use a single global rwlock for all ttys in ppp line discipline.
 397 */
 398static DEFINE_RWLOCK(disc_data_lock);
 399                                                                                
 400static struct sixpack *sp_get(struct tty_struct *tty)
 401{
 402	struct sixpack *sp;
 403
 404	read_lock(&disc_data_lock);
 405	sp = tty->disc_data;
 406	if (sp)
 407		atomic_inc(&sp->refcnt);
 408	read_unlock(&disc_data_lock);
 409
 410	return sp;
 411}
 412
 413static void sp_put(struct sixpack *sp)
 414{
 415	if (atomic_dec_and_test(&sp->refcnt))
 416		up(&sp->dead_sem);
 417}
 418
 419/*
 420 * Called by the TTY driver when there's room for more data.  If we have
 421 * more packets to send, we send them here.
 422 */
 423static void sixpack_write_wakeup(struct tty_struct *tty)
 424{
 425	struct sixpack *sp = sp_get(tty);
 426	int actual;
 427
 428	if (!sp)
 429		return;
 430	if (sp->xleft <= 0)  {
 431		/* Now serial buffer is almost free & we can start
 432		 * transmission of another packet */
 433		sp->dev->stats.tx_packets++;
 434		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 435		sp->tx_enable = 0;
 436		netif_wake_queue(sp->dev);
 437		goto out;
 438	}
 439
 440	if (sp->tx_enable) {
 441		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 442		sp->xleft -= actual;
 443		sp->xhead += actual;
 444	}
 445
 446out:
 447	sp_put(sp);
 448}
 449
 450/* ----------------------------------------------------------------------- */
 451
 452/*
 453 * Handle the 'receiver data ready' interrupt.
 454 * This function is called by the 'tty_io' module in the kernel when
 455 * a block of 6pack data has been received, which can now be decapsulated
 456 * and sent on to some IP layer for further processing.
 457 */
 458static void sixpack_receive_buf(struct tty_struct *tty,
 459	const unsigned char *cp, char *fp, int count)
 460{
 461	struct sixpack *sp;
 462	unsigned char buf[512];
 463	int count1;
 464
 465	if (!count)
 466		return;
 467
 468	sp = sp_get(tty);
 469	if (!sp)
 470		return;
 471
 472	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 473
 474	/* Read the characters out of the buffer */
 475
 476	count1 = count;
 477	while (count) {
 478		count--;
 479		if (fp && *fp++) {
 480			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 481				sp->dev->stats.rx_errors++;
 482			continue;
 483		}
 484	}
 485	sixpack_decode(sp, buf, count1);
 486
 487	sp_put(sp);
 488	tty_unthrottle(tty);
 489}
 490
 491/*
 492 * Try to resync the TNC. Called by the resync timer defined in
 493 * decode_prio_command
 494 */
 495
 496#define TNC_UNINITIALIZED	0
 497#define TNC_UNSYNC_STARTUP	1
 498#define TNC_UNSYNCED		2
 499#define TNC_IN_SYNC		3
 500
 501static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 502{
 503	char *msg;
 504
 505	switch (new_tnc_state) {
 506	default:			/* gcc oh piece-o-crap ... */
 507	case TNC_UNSYNC_STARTUP:
 508		msg = "Synchronizing with TNC";
 509		break;
 510	case TNC_UNSYNCED:
 511		msg = "Lost synchronization with TNC\n";
 512		break;
 513	case TNC_IN_SYNC:
 514		msg = "Found TNC";
 515		break;
 516	}
 517
 518	sp->tnc_state = new_tnc_state;
 519	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 520}
 521
 522static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 523{
 524	int old_tnc_state = sp->tnc_state;
 525
 526	if (old_tnc_state != new_tnc_state)
 527		__tnc_set_sync_state(sp, new_tnc_state);
 528}
 529
 530static void resync_tnc(unsigned long channel)
 531{
 532	struct sixpack *sp = (struct sixpack *) channel;
 533	static char resync_cmd = 0xe8;
 534
 535	/* clear any data that might have been received */
 536
 537	sp->rx_count = 0;
 538	sp->rx_count_cooked = 0;
 539
 540	/* reset state machine */
 541
 542	sp->status = 1;
 543	sp->status1 = 1;
 544	sp->status2 = 0;
 545
 546	/* resync the TNC */
 547
 548	sp->led_state = 0x60;
 549	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 550	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 551
 552
 553	/* Start resync timer again -- the TNC might be still absent */
 554
 555	del_timer(&sp->resync_t);
 556	sp->resync_t.data	= (unsigned long) sp;
 557	sp->resync_t.function	= resync_tnc;
 558	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 559	add_timer(&sp->resync_t);
 560}
 561
 562static inline int tnc_init(struct sixpack *sp)
 563{
 564	unsigned char inbyte = 0xe8;
 565
 566	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 567
 568	sp->tty->ops->write(sp->tty, &inbyte, 1);
 569
 570	del_timer(&sp->resync_t);
 571	sp->resync_t.data = (unsigned long) sp;
 572	sp->resync_t.function = resync_tnc;
 573	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 574	add_timer(&sp->resync_t);
 575
 576	return 0;
 577}
 578
 579/*
 580 * Open the high-level part of the 6pack channel.
 581 * This function is called by the TTY module when the
 582 * 6pack line discipline is called for.  Because we are
 583 * sure the tty line exists, we only have to link it to
 584 * a free 6pcack channel...
 585 */
 586static int sixpack_open(struct tty_struct *tty)
 587{
 588	char *rbuff = NULL, *xbuff = NULL;
 589	struct net_device *dev;
 590	struct sixpack *sp;
 591	unsigned long len;
 592	int err = 0;
 593
 594	if (!capable(CAP_NET_ADMIN))
 595		return -EPERM;
 596	if (tty->ops->write == NULL)
 597		return -EOPNOTSUPP;
 598
 599	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 
 600	if (!dev) {
 601		err = -ENOMEM;
 602		goto out;
 603	}
 604
 605	sp = netdev_priv(dev);
 606	sp->dev = dev;
 607
 608	spin_lock_init(&sp->lock);
 609	atomic_set(&sp->refcnt, 1);
 610	sema_init(&sp->dead_sem, 0);
 611
 612	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 613
 614	len = dev->mtu * 2;
 615
 616	rbuff = kmalloc(len + 4, GFP_KERNEL);
 617	xbuff = kmalloc(len + 4, GFP_KERNEL);
 618
 619	if (rbuff == NULL || xbuff == NULL) {
 620		err = -ENOBUFS;
 621		goto out_free;
 622	}
 623
 624	spin_lock_bh(&sp->lock);
 625
 626	sp->tty = tty;
 627
 628	sp->rbuff	= rbuff;
 629	sp->xbuff	= xbuff;
 630
 631	sp->mtu		= AX25_MTU + 73;
 632	sp->buffsize	= len;
 633	sp->rcount	= 0;
 634	sp->rx_count	= 0;
 635	sp->rx_count_cooked = 0;
 636	sp->xleft	= 0;
 637
 638	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 639
 640	sp->duplex	= 0;
 641	sp->tx_delay    = SIXP_TXDELAY;
 642	sp->persistence = SIXP_PERSIST;
 643	sp->slottime    = SIXP_SLOTTIME;
 644	sp->led_state   = 0x60;
 645	sp->status      = 1;
 646	sp->status1     = 1;
 647	sp->status2     = 0;
 648	sp->tx_enable   = 0;
 649
 650	netif_start_queue(dev);
 651
 652	init_timer(&sp->tx_t);
 653	sp->tx_t.function = sp_xmit_on_air;
 654	sp->tx_t.data = (unsigned long) sp;
 655
 656	init_timer(&sp->resync_t);
 657
 658	spin_unlock_bh(&sp->lock);
 659
 660	/* Done.  We have linked the TTY line to a channel. */
 661	tty->disc_data = sp;
 662	tty->receive_room = 65536;
 663
 664	/* Now we're ready to register. */
 665	err = register_netdev(dev);
 666	if (err)
 667		goto out_free;
 668
 669	tnc_init(sp);
 670
 671	return 0;
 672
 673out_free:
 674	kfree(xbuff);
 675	kfree(rbuff);
 676
 677	if (dev)
 678		free_netdev(dev);
 679
 680out:
 681	return err;
 682}
 683
 684
 685/*
 686 * Close down a 6pack channel.
 687 * This means flushing out any pending queues, and then restoring the
 688 * TTY line discipline to what it was before it got hooked to 6pack
 689 * (which usually is TTY again).
 690 */
 691static void sixpack_close(struct tty_struct *tty)
 692{
 693	struct sixpack *sp;
 694
 695	write_lock_bh(&disc_data_lock);
 696	sp = tty->disc_data;
 697	tty->disc_data = NULL;
 698	write_unlock_bh(&disc_data_lock);
 699	if (!sp)
 700		return;
 701
 702	/*
 703	 * We have now ensured that nobody can start using ap from now on, but
 704	 * we have to wait for all existing users to finish.
 705	 */
 706	if (!atomic_dec_and_test(&sp->refcnt))
 707		down(&sp->dead_sem);
 708
 709	unregister_netdev(sp->dev);
 
 
 
 
 710
 711	del_timer(&sp->tx_t);
 712	del_timer(&sp->resync_t);
 713
 714	/* Free all 6pack frame buffers. */
 715	kfree(sp->rbuff);
 716	kfree(sp->xbuff);
 
 
 717}
 718
 719/* Perform I/O control on an active 6pack channel. */
 720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct sixpack *sp = sp_get(tty);
 724	struct net_device *dev;
 725	unsigned int tmp, err;
 726
 727	if (!sp)
 728		return -ENXIO;
 729	dev = sp->dev;
 730
 731	switch(cmd) {
 732	case SIOCGIFNAME:
 733		err = copy_to_user((void __user *) arg, dev->name,
 734		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 735		break;
 736
 737	case SIOCGIFENCAP:
 738		err = put_user(0, (int __user *) arg);
 739		break;
 740
 741	case SIOCSIFENCAP:
 742		if (get_user(tmp, (int __user *) arg)) {
 743			err = -EFAULT;
 744			break;
 745		}
 746
 747		sp->mode = tmp;
 748		dev->addr_len        = AX25_ADDR_LEN;
 749		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 750		                       AX25_MAX_HEADER_LEN + 3;
 751		dev->type            = ARPHRD_AX25;
 752
 753		err = 0;
 754		break;
 755
 756	 case SIOCSIFHWADDR: {
 757		char addr[AX25_ADDR_LEN];
 758
 759		if (copy_from_user(&addr,
 760		                   (void __user *) arg, AX25_ADDR_LEN)) {
 761				err = -EFAULT;
 762				break;
 763			}
 764
 765			netif_tx_lock_bh(dev);
 766			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 767			netif_tx_unlock_bh(dev);
 768
 769			err = 0;
 770			break;
 771		}
 772
 773	default:
 774		err = tty_mode_ioctl(tty, file, cmd, arg);
 775	}
 776
 777	sp_put(sp);
 778
 779	return err;
 780}
 781
 782#ifdef CONFIG_COMPAT
 783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 784				unsigned int cmd, unsigned long arg)
 785{
 786	switch (cmd) {
 787	case SIOCGIFNAME:
 788	case SIOCGIFENCAP:
 789	case SIOCSIFENCAP:
 790	case SIOCSIFHWADDR:
 791		return sixpack_ioctl(tty, file, cmd,
 792				(unsigned long)compat_ptr(arg));
 793	}
 794
 795	return -ENOIOCTLCMD;
 796}
 797#endif
 798
 799static struct tty_ldisc_ops sp_ldisc = {
 800	.owner		= THIS_MODULE,
 801	.magic		= TTY_LDISC_MAGIC,
 802	.name		= "6pack",
 803	.open		= sixpack_open,
 804	.close		= sixpack_close,
 805	.ioctl		= sixpack_ioctl,
 806#ifdef CONFIG_COMPAT
 807	.compat_ioctl	= sixpack_compat_ioctl,
 808#endif
 809	.receive_buf	= sixpack_receive_buf,
 810	.write_wakeup	= sixpack_write_wakeup,
 811};
 812
 813/* Initialize 6pack control device -- register 6pack line discipline */
 814
 815static const char msg_banner[]  __initconst = KERN_INFO \
 816	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 817static const char msg_regfail[] __initconst = KERN_ERR  \
 818	"6pack: can't register line discipline (err = %d)\n";
 819
 820static int __init sixpack_init_driver(void)
 821{
 822	int status;
 823
 824	printk(msg_banner);
 825
 826	/* Register the provided line protocol discipline */
 827	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 828		printk(msg_regfail, status);
 829
 830	return status;
 831}
 832
 833static const char msg_unregfail[] = KERN_ERR \
 834	"6pack: can't unregister line discipline (err = %d)\n";
 835
 836static void __exit sixpack_exit_driver(void)
 837{
 838	int ret;
 839
 840	if ((ret = tty_unregister_ldisc(N_6PACK)))
 841		printk(msg_unregfail, ret);
 842}
 843
 844/* encode an AX.25 packet into 6pack */
 845
 846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 847	int length, unsigned char tx_delay)
 848{
 849	int count = 0;
 850	unsigned char checksum = 0, buf[400];
 851	int raw_count = 0;
 852
 853	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 854	tx_buf_raw[raw_count++] = SIXP_SEOF;
 855
 856	buf[0] = tx_delay;
 857	for (count = 1; count < length; count++)
 858		buf[count] = tx_buf[count];
 859
 860	for (count = 0; count < length; count++)
 861		checksum += buf[count];
 862	buf[length] = (unsigned char) 0xff - checksum;
 863
 864	for (count = 0; count <= length; count++) {
 865		if ((count % 3) == 0) {
 866			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 867			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 868		} else if ((count % 3) == 1) {
 869			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 870			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 871		} else {
 872			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 873			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 874		}
 875	}
 876	if ((length % 3) != 2)
 877		raw_count++;
 878	tx_buf_raw[raw_count++] = SIXP_SEOF;
 879	return raw_count;
 880}
 881
 882/* decode 4 sixpack-encoded bytes into 3 data bytes */
 883
 884static void decode_data(struct sixpack *sp, unsigned char inbyte)
 885{
 886	unsigned char *buf;
 887
 888	if (sp->rx_count != 3) {
 889		sp->raw_buf[sp->rx_count++] = inbyte;
 890
 891		return;
 892	}
 893
 894	buf = sp->raw_buf;
 895	sp->cooked_buf[sp->rx_count_cooked++] =
 896		buf[0] | ((buf[1] << 2) & 0xc0);
 897	sp->cooked_buf[sp->rx_count_cooked++] =
 898		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 899	sp->cooked_buf[sp->rx_count_cooked++] =
 900		(buf[2] & 0x03) | (inbyte << 2);
 901	sp->rx_count = 0;
 902}
 903
 904/* identify and execute a 6pack priority command byte */
 905
 906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 907{
 908	unsigned char channel;
 909	int actual;
 910
 911	channel = cmd & SIXP_CHN_MASK;
 912	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 913
 914	/* RX and DCD flags can only be set in the same prio command,
 915	   if the DCD flag has been set without the RX flag in the previous
 916	   prio command. If DCD has not been set before, something in the
 917	   transmission has gone wrong. In this case, RX and DCD are
 918	   cleared in order to prevent the decode_data routine from
 919	   reading further data that might be corrupt. */
 920
 921		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 922			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 923				if (sp->status != 1)
 924					printk(KERN_DEBUG "6pack: protocol violation\n");
 925				else
 926					sp->status = 0;
 927				cmd &= ~SIXP_RX_DCD_MASK;
 928		}
 929		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 930	} else { /* output watchdog char if idle */
 931		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 932			sp->led_state = 0x70;
 933			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 934			sp->tx_enable = 1;
 935			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 936			sp->xleft -= actual;
 937			sp->xhead += actual;
 938			sp->led_state = 0x60;
 939			sp->status2 = 0;
 940
 941		}
 942	}
 943
 944	/* needed to trigger the TNC watchdog */
 945	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 946
 947        /* if the state byte has been received, the TNC is present,
 948           so the resync timer can be reset. */
 949
 950	if (sp->tnc_state == TNC_IN_SYNC) {
 951		del_timer(&sp->resync_t);
 952		sp->resync_t.data	= (unsigned long) sp;
 953		sp->resync_t.function	= resync_tnc;
 954		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 955		add_timer(&sp->resync_t);
 956	}
 957
 958	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 959}
 960
 961/* identify and execute a standard 6pack command byte */
 962
 963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 964{
 965	unsigned char checksum = 0, rest = 0, channel;
 966	short i;
 967
 968	channel = cmd & SIXP_CHN_MASK;
 969	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 970	case SIXP_SEOF:
 971		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 972			if ((sp->status & SIXP_RX_DCD_MASK) ==
 973				SIXP_RX_DCD_MASK) {
 974				sp->led_state = 0x68;
 975				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 976			}
 977		} else {
 978			sp->led_state = 0x60;
 979			/* fill trailing bytes with zeroes */
 980			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 981			rest = sp->rx_count;
 982			if (rest != 0)
 983				 for (i = rest; i <= 3; i++)
 984					decode_data(sp, 0);
 985			if (rest == 2)
 986				sp->rx_count_cooked -= 2;
 987			else if (rest == 3)
 988				sp->rx_count_cooked -= 1;
 989			for (i = 0; i < sp->rx_count_cooked; i++)
 990				checksum += sp->cooked_buf[i];
 991			if (checksum != SIXP_CHKSUM) {
 992				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 993			} else {
 994				sp->rcount = sp->rx_count_cooked-2;
 995				sp_bump(sp, 0);
 996			}
 997			sp->rx_count_cooked = 0;
 998		}
 999		break;
1000	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001		break;
1002	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003		break;
1004	case SIXP_RX_BUF_OVL:
1005		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006	}
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014	unsigned char inbyte;
1015	int count1;
1016
1017	for (count1 = 0; count1 < count; count1++) {
1018		inbyte = pre_rbuff[count1];
1019		if (inbyte == SIXP_FOUND_TNC) {
1020			tnc_set_sync_state(sp, TNC_IN_SYNC);
1021			del_timer(&sp->resync_t);
1022		}
1023		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024			decode_prio_command(sp, inbyte);
1025		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026			decode_std_command(sp, inbyte);
1027		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028			decode_data(sp, inbyte);
1029	}
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 
 39
 40#define SIXPACK_VERSION    "Revision: 0.3.0"
 41
 42/* sixpack priority commands */
 43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 44#define SIXP_TX_URUN		0x48	/* transmit overrun */
 45#define SIXP_RX_ORUN		0x50	/* receive overrun */
 46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 47
 48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 49
 50/* masks to get certain bits out of the status bytes sent by the TNC */
 51
 52#define SIXP_CMD_MASK		0xC0
 53#define SIXP_CHN_MASK		0x07
 54#define SIXP_PRIO_CMD_MASK	0x80
 55#define SIXP_STD_CMD_MASK	0x40
 56#define SIXP_PRIO_DATA_MASK	0x38
 57#define SIXP_TX_MASK		0x20
 58#define SIXP_RX_MASK		0x10
 59#define SIXP_RX_DCD_MASK	0x18
 60#define SIXP_LEDS_ON		0x78
 61#define SIXP_LEDS_OFF		0x60
 62#define SIXP_CON		0x08
 63#define SIXP_STA		0x10
 64
 65#define SIXP_FOUND_TNC		0xe9
 66#define SIXP_CON_ON		0x68
 67#define SIXP_DCD_MASK		0x08
 68#define SIXP_DAMA_OFF		0
 69
 70/* default level 2 parameters */
 71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
 72#define SIXP_PERSIST			50	/* in 256ths */
 73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
 74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 76
 77/* 6pack configuration. */
 78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 79#define SIXP_MTU			256	/* Default MTU */
 80
 81enum sixpack_flags {
 82	SIXPF_ERROR,	/* Parity, etc. error	*/
 83};
 84
 85struct sixpack {
 86	/* Various fields. */
 87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 88	struct net_device	*dev;		/* easy for intr handling  */
 89
 90	/* These are pointers to the malloc()ed frame buffers. */
 91	unsigned char		*rbuff;		/* receiver buffer	*/
 92	int			rcount;         /* received chars counter  */
 93	unsigned char		*xbuff;		/* transmitter buffer	*/
 94	unsigned char		*xhead;         /* next byte to XMIT */
 95	int			xleft;          /* bytes left in XMIT queue  */
 96
 97	unsigned char		raw_buf[4];
 98	unsigned char		cooked_buf[400];
 99
100	unsigned int		rx_count;
101	unsigned int		rx_count_cooked;
102
103	int			mtu;		/* Our mtu (to spot changes!) */
104	int			buffsize;       /* Max buffers sizes */
105
106	unsigned long		flags;		/* Flag values/ mode etc */
107	unsigned char		mode;		/* 6pack mode */
108
109	/* 6pack stuff */
110	unsigned char		tx_delay;
111	unsigned char		persistence;
112	unsigned char		slottime;
113	unsigned char		duplex;
114	unsigned char		led_state;
115	unsigned char		status;
116	unsigned char		status1;
117	unsigned char		status2;
118	unsigned char		tx_enable;
119	unsigned char		tnc_state;
120
121	struct timer_list	tx_t;
122	struct timer_list	resync_t;
123	refcount_t		refcnt;
124	struct completion	dead;
125	spinlock_t		lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(struct timer_list *t)
140{
141	struct sixpack *sp = from_timer(sp, t, tx_t);
142	int actual, when = sp->slottime;
143	static unsigned char random;
144
145	random = random * 17 + 41;
146
147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148		sp->led_state = 0x70;
149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150		sp->tx_enable = 1;
151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152		sp->xleft -= actual;
153		sp->xhead += actual;
154		sp->led_state = 0x60;
155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156		sp->status2 = 0;
157	} else
158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166	unsigned char *msg, *p = icp;
167	int actual, count;
168
169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170		msg = "oversized transmit packet!";
171		goto out_drop;
172	}
173
174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175		msg = "oversized transmit packet!";
176		goto out_drop;
177	}
178
179	if (p[0] > 5) {
180		msg = "invalid KISS command";
181		goto out_drop;
182	}
183
184	if ((p[0] != 0) && (len > 2)) {
185		msg = "KISS control packet too long";
186		goto out_drop;
187	}
188
189	if ((p[0] == 0) && (len < 15)) {
190		msg = "bad AX.25 packet to transmit";
191		goto out_drop;
192	}
193
194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197	switch (p[0]) {
198	case 1:	sp->tx_delay = p[1];
199		return;
200	case 2:	sp->persistence = p[1];
201		return;
202	case 3:	sp->slottime = p[1];
203		return;
204	case 4:	/* ignored */
205		return;
206	case 5:	sp->duplex = p[1];
207		return;
208	}
209
210	if (p[0] != 0)
211		return;
212
213	/*
214	 * In case of fullduplex or DAMA operation, we don't take care about the
215	 * state of the DCD or of any timers, as the determination of the
216	 * correct time to send is the job of the AX.25 layer. We send
217	 * immediately after data has arrived.
218	 */
219	if (sp->duplex == 1) {
220		sp->led_state = 0x70;
221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222		sp->tx_enable = 1;
223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224		sp->xleft = count - actual;
225		sp->xhead = sp->xbuff + actual;
226		sp->led_state = 0x60;
227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228	} else {
229		sp->xleft = count;
230		sp->xhead = sp->xbuff;
231		sp->status2 = count;
232		sp_xmit_on_air(&sp->tx_t);
233	}
234
235	return;
236
237out_drop:
238	sp->dev->stats.tx_dropped++;
239	netif_start_queue(sp->dev);
240	if (net_ratelimit())
241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248	struct sixpack *sp = netdev_priv(dev);
249
250	if (skb->protocol == htons(ETH_P_IP))
251		return ax25_ip_xmit(skb);
252
253	spin_lock_bh(&sp->lock);
254	/* We were not busy, so we are now... :-) */
255	netif_stop_queue(dev);
256	dev->stats.tx_bytes += skb->len;
257	sp_encaps(sp, skb->data, skb->len);
258	spin_unlock_bh(&sp->lock);
259
260	dev_kfree_skb(skb);
261
262	return NETDEV_TX_OK;
263}
264
265static int sp_open_dev(struct net_device *dev)
266{
267	struct sixpack *sp = netdev_priv(dev);
268
269	if (sp->tty == NULL)
270		return -ENODEV;
271	return 0;
272}
273
274/* Close the low-level part of the 6pack channel. */
275static int sp_close(struct net_device *dev)
276{
277	struct sixpack *sp = netdev_priv(dev);
278
279	spin_lock_bh(&sp->lock);
280	if (sp->tty) {
281		/* TTY discipline is running. */
282		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283	}
284	netif_stop_queue(dev);
285	spin_unlock_bh(&sp->lock);
286
287	return 0;
288}
289
 
 
 
 
 
 
 
 
 
 
 
 
290static int sp_set_mac_address(struct net_device *dev, void *addr)
291{
292	struct sockaddr_ax25 *sa = addr;
293
294	netif_tx_lock_bh(dev);
295	netif_addr_lock(dev);
296	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297	netif_addr_unlock(dev);
298	netif_tx_unlock_bh(dev);
299
300	return 0;
301}
302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303static const struct net_device_ops sp_netdev_ops = {
304	.ndo_open		= sp_open_dev,
305	.ndo_stop		= sp_close,
306	.ndo_start_xmit		= sp_xmit,
307	.ndo_set_mac_address    = sp_set_mac_address,
308};
309
310static void sp_setup(struct net_device *dev)
311{
312	/* Finish setting up the DEVICE info. */
313	dev->netdev_ops		= &sp_netdev_ops;
314	dev->needs_free_netdev	= true;
315	dev->mtu		= SIXP_MTU;
316	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
317	dev->header_ops 	= &ax25_header_ops;
318
319	dev->addr_len		= AX25_ADDR_LEN;
320	dev->type		= ARPHRD_AX25;
321	dev->tx_queue_len	= 10;
322
323	/* Only activated in AX.25 mode */
324	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326
327	dev->flags		= 0;
328}
329
330/* Send one completely decapsulated IP datagram to the IP layer. */
331
332/*
333 * This is the routine that sends the received data to the kernel AX.25.
334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
335 */
336
337static void sp_bump(struct sixpack *sp, char cmd)
338{
339	struct sk_buff *skb;
340	int count;
341	unsigned char *ptr;
342
343	count = sp->rcount + 1;
344
345	sp->dev->stats.rx_bytes += count;
346
347	if ((skb = dev_alloc_skb(count + 1)) == NULL)
348		goto out_mem;
349
350	ptr = skb_put(skb, count + 1);
351	*ptr++ = cmd;	/* KISS command */
352
353	memcpy(ptr, sp->cooked_buf + 1, count);
354	skb->protocol = ax25_type_trans(skb, sp->dev);
355	netif_rx(skb);
356	sp->dev->stats.rx_packets++;
357
358	return;
359
360out_mem:
361	sp->dev->stats.rx_dropped++;
362}
363
364
365/* ----------------------------------------------------------------------- */
366
367/*
368 * We have a potential race on dereferencing tty->disc_data, because the tty
369 * layer provides no locking at all - thus one cpu could be running
370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372 * best way to fix this is to use a rwlock in the tty struct, but for now we
373 * use a single global rwlock for all ttys in ppp line discipline.
374 */
375static DEFINE_RWLOCK(disc_data_lock);
376                                                                                
377static struct sixpack *sp_get(struct tty_struct *tty)
378{
379	struct sixpack *sp;
380
381	read_lock(&disc_data_lock);
382	sp = tty->disc_data;
383	if (sp)
384		refcount_inc(&sp->refcnt);
385	read_unlock(&disc_data_lock);
386
387	return sp;
388}
389
390static void sp_put(struct sixpack *sp)
391{
392	if (refcount_dec_and_test(&sp->refcnt))
393		complete(&sp->dead);
394}
395
396/*
397 * Called by the TTY driver when there's room for more data.  If we have
398 * more packets to send, we send them here.
399 */
400static void sixpack_write_wakeup(struct tty_struct *tty)
401{
402	struct sixpack *sp = sp_get(tty);
403	int actual;
404
405	if (!sp)
406		return;
407	if (sp->xleft <= 0)  {
408		/* Now serial buffer is almost free & we can start
409		 * transmission of another packet */
410		sp->dev->stats.tx_packets++;
411		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412		sp->tx_enable = 0;
413		netif_wake_queue(sp->dev);
414		goto out;
415	}
416
417	if (sp->tx_enable) {
418		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419		sp->xleft -= actual;
420		sp->xhead += actual;
421	}
422
423out:
424	sp_put(sp);
425}
426
427/* ----------------------------------------------------------------------- */
428
429/*
430 * Handle the 'receiver data ready' interrupt.
431 * This function is called by the tty module in the kernel when
432 * a block of 6pack data has been received, which can now be decapsulated
433 * and sent on to some IP layer for further processing.
434 */
435static void sixpack_receive_buf(struct tty_struct *tty,
436	const unsigned char *cp, char *fp, int count)
437{
438	struct sixpack *sp;
 
439	int count1;
440
441	if (!count)
442		return;
443
444	sp = sp_get(tty);
445	if (!sp)
446		return;
447
 
 
448	/* Read the characters out of the buffer */
 
449	count1 = count;
450	while (count) {
451		count--;
452		if (fp && *fp++) {
453			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454				sp->dev->stats.rx_errors++;
455			continue;
456		}
457	}
458	sixpack_decode(sp, cp, count1);
459
460	sp_put(sp);
461	tty_unthrottle(tty);
462}
463
464/*
465 * Try to resync the TNC. Called by the resync timer defined in
466 * decode_prio_command
467 */
468
469#define TNC_UNINITIALIZED	0
470#define TNC_UNSYNC_STARTUP	1
471#define TNC_UNSYNCED		2
472#define TNC_IN_SYNC		3
473
474static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475{
476	char *msg;
477
478	switch (new_tnc_state) {
479	default:			/* gcc oh piece-o-crap ... */
480	case TNC_UNSYNC_STARTUP:
481		msg = "Synchronizing with TNC";
482		break;
483	case TNC_UNSYNCED:
484		msg = "Lost synchronization with TNC\n";
485		break;
486	case TNC_IN_SYNC:
487		msg = "Found TNC";
488		break;
489	}
490
491	sp->tnc_state = new_tnc_state;
492	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493}
494
495static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496{
497	int old_tnc_state = sp->tnc_state;
498
499	if (old_tnc_state != new_tnc_state)
500		__tnc_set_sync_state(sp, new_tnc_state);
501}
502
503static void resync_tnc(struct timer_list *t)
504{
505	struct sixpack *sp = from_timer(sp, t, resync_t);
506	static char resync_cmd = 0xe8;
507
508	/* clear any data that might have been received */
509
510	sp->rx_count = 0;
511	sp->rx_count_cooked = 0;
512
513	/* reset state machine */
514
515	sp->status = 1;
516	sp->status1 = 1;
517	sp->status2 = 0;
518
519	/* resync the TNC */
520
521	sp->led_state = 0x60;
522	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524
525
526	/* Start resync timer again -- the TNC might be still absent */
527	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
 
528}
529
530static inline int tnc_init(struct sixpack *sp)
531{
532	unsigned char inbyte = 0xe8;
533
534	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
535
536	sp->tty->ops->write(sp->tty, &inbyte, 1);
537
538	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
539
540	return 0;
541}
542
543/*
544 * Open the high-level part of the 6pack channel.
545 * This function is called by the TTY module when the
546 * 6pack line discipline is called for.  Because we are
547 * sure the tty line exists, we only have to link it to
548 * a free 6pcack channel...
549 */
550static int sixpack_open(struct tty_struct *tty)
551{
552	char *rbuff = NULL, *xbuff = NULL;
553	struct net_device *dev;
554	struct sixpack *sp;
555	unsigned long len;
556	int err = 0;
557
558	if (!capable(CAP_NET_ADMIN))
559		return -EPERM;
560	if (tty->ops->write == NULL)
561		return -EOPNOTSUPP;
562
563	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
564			   sp_setup);
565	if (!dev) {
566		err = -ENOMEM;
567		goto out;
568	}
569
570	sp = netdev_priv(dev);
571	sp->dev = dev;
572
573	spin_lock_init(&sp->lock);
574	refcount_set(&sp->refcnt, 1);
575	init_completion(&sp->dead);
576
577	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
578
579	len = dev->mtu * 2;
580
581	rbuff = kmalloc(len + 4, GFP_KERNEL);
582	xbuff = kmalloc(len + 4, GFP_KERNEL);
583
584	if (rbuff == NULL || xbuff == NULL) {
585		err = -ENOBUFS;
586		goto out_free;
587	}
588
589	spin_lock_bh(&sp->lock);
590
591	sp->tty = tty;
592
593	sp->rbuff	= rbuff;
594	sp->xbuff	= xbuff;
595
596	sp->mtu		= AX25_MTU + 73;
597	sp->buffsize	= len;
598	sp->rcount	= 0;
599	sp->rx_count	= 0;
600	sp->rx_count_cooked = 0;
601	sp->xleft	= 0;
602
603	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
604
605	sp->duplex	= 0;
606	sp->tx_delay    = SIXP_TXDELAY;
607	sp->persistence = SIXP_PERSIST;
608	sp->slottime    = SIXP_SLOTTIME;
609	sp->led_state   = 0x60;
610	sp->status      = 1;
611	sp->status1     = 1;
612	sp->status2     = 0;
613	sp->tx_enable   = 0;
614
615	netif_start_queue(dev);
616
617	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 
 
618
619	timer_setup(&sp->resync_t, resync_tnc, 0);
620
621	spin_unlock_bh(&sp->lock);
622
623	/* Done.  We have linked the TTY line to a channel. */
624	tty->disc_data = sp;
625	tty->receive_room = 65536;
626
627	/* Now we're ready to register. */
628	err = register_netdev(dev);
629	if (err)
630		goto out_free;
631
632	tnc_init(sp);
633
634	return 0;
635
636out_free:
637	kfree(xbuff);
638	kfree(rbuff);
639
640	free_netdev(dev);
 
641
642out:
643	return err;
644}
645
646
647/*
648 * Close down a 6pack channel.
649 * This means flushing out any pending queues, and then restoring the
650 * TTY line discipline to what it was before it got hooked to 6pack
651 * (which usually is TTY again).
652 */
653static void sixpack_close(struct tty_struct *tty)
654{
655	struct sixpack *sp;
656
657	write_lock_bh(&disc_data_lock);
658	sp = tty->disc_data;
659	tty->disc_data = NULL;
660	write_unlock_bh(&disc_data_lock);
661	if (!sp)
662		return;
663
664	/*
665	 * We have now ensured that nobody can start using ap from now on, but
666	 * we have to wait for all existing users to finish.
667	 */
668	if (!refcount_dec_and_test(&sp->refcnt))
669		wait_for_completion(&sp->dead);
670
671	/* We must stop the queue to avoid potentially scribbling
672	 * on the free buffers. The sp->dead completion is not sufficient
673	 * to protect us from sp->xbuff access.
674	 */
675	netif_stop_queue(sp->dev);
676
677	del_timer_sync(&sp->tx_t);
678	del_timer_sync(&sp->resync_t);
679
680	/* Free all 6pack frame buffers. */
681	kfree(sp->rbuff);
682	kfree(sp->xbuff);
683
684	unregister_netdev(sp->dev);
685}
686
687/* Perform I/O control on an active 6pack channel. */
688static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
689	unsigned int cmd, unsigned long arg)
690{
691	struct sixpack *sp = sp_get(tty);
692	struct net_device *dev;
693	unsigned int tmp, err;
694
695	if (!sp)
696		return -ENXIO;
697	dev = sp->dev;
698
699	switch(cmd) {
700	case SIOCGIFNAME:
701		err = copy_to_user((void __user *) arg, dev->name,
702		                   strlen(dev->name) + 1) ? -EFAULT : 0;
703		break;
704
705	case SIOCGIFENCAP:
706		err = put_user(0, (int __user *) arg);
707		break;
708
709	case SIOCSIFENCAP:
710		if (get_user(tmp, (int __user *) arg)) {
711			err = -EFAULT;
712			break;
713		}
714
715		sp->mode = tmp;
716		dev->addr_len        = AX25_ADDR_LEN;
717		dev->hard_header_len = AX25_KISS_HEADER_LEN +
718		                       AX25_MAX_HEADER_LEN + 3;
719		dev->type            = ARPHRD_AX25;
720
721		err = 0;
722		break;
723
724	 case SIOCSIFHWADDR: {
725		char addr[AX25_ADDR_LEN];
726
727		if (copy_from_user(&addr,
728		                   (void __user *) arg, AX25_ADDR_LEN)) {
729				err = -EFAULT;
730				break;
731			}
732
733			netif_tx_lock_bh(dev);
734			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
735			netif_tx_unlock_bh(dev);
736
737			err = 0;
738			break;
739		}
740
741	default:
742		err = tty_mode_ioctl(tty, file, cmd, arg);
743	}
744
745	sp_put(sp);
746
747	return err;
748}
749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750static struct tty_ldisc_ops sp_ldisc = {
751	.owner		= THIS_MODULE,
752	.magic		= TTY_LDISC_MAGIC,
753	.name		= "6pack",
754	.open		= sixpack_open,
755	.close		= sixpack_close,
756	.ioctl		= sixpack_ioctl,
 
 
 
757	.receive_buf	= sixpack_receive_buf,
758	.write_wakeup	= sixpack_write_wakeup,
759};
760
761/* Initialize 6pack control device -- register 6pack line discipline */
762
763static const char msg_banner[]  __initconst = KERN_INFO \
764	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
765static const char msg_regfail[] __initconst = KERN_ERR  \
766	"6pack: can't register line discipline (err = %d)\n";
767
768static int __init sixpack_init_driver(void)
769{
770	int status;
771
772	printk(msg_banner);
773
774	/* Register the provided line protocol discipline */
775	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
776		printk(msg_regfail, status);
777
778	return status;
779}
780
781static const char msg_unregfail[] = KERN_ERR \
782	"6pack: can't unregister line discipline (err = %d)\n";
783
784static void __exit sixpack_exit_driver(void)
785{
786	int ret;
787
788	if ((ret = tty_unregister_ldisc(N_6PACK)))
789		printk(msg_unregfail, ret);
790}
791
792/* encode an AX.25 packet into 6pack */
793
794static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
795	int length, unsigned char tx_delay)
796{
797	int count = 0;
798	unsigned char checksum = 0, buf[400];
799	int raw_count = 0;
800
801	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
802	tx_buf_raw[raw_count++] = SIXP_SEOF;
803
804	buf[0] = tx_delay;
805	for (count = 1; count < length; count++)
806		buf[count] = tx_buf[count];
807
808	for (count = 0; count < length; count++)
809		checksum += buf[count];
810	buf[length] = (unsigned char) 0xff - checksum;
811
812	for (count = 0; count <= length; count++) {
813		if ((count % 3) == 0) {
814			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
815			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
816		} else if ((count % 3) == 1) {
817			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
818			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
819		} else {
820			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
821			tx_buf_raw[raw_count++] = (buf[count] >> 2);
822		}
823	}
824	if ((length % 3) != 2)
825		raw_count++;
826	tx_buf_raw[raw_count++] = SIXP_SEOF;
827	return raw_count;
828}
829
830/* decode 4 sixpack-encoded bytes into 3 data bytes */
831
832static void decode_data(struct sixpack *sp, unsigned char inbyte)
833{
834	unsigned char *buf;
835
836	if (sp->rx_count != 3) {
837		sp->raw_buf[sp->rx_count++] = inbyte;
838
839		return;
840	}
841
842	buf = sp->raw_buf;
843	sp->cooked_buf[sp->rx_count_cooked++] =
844		buf[0] | ((buf[1] << 2) & 0xc0);
845	sp->cooked_buf[sp->rx_count_cooked++] =
846		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
847	sp->cooked_buf[sp->rx_count_cooked++] =
848		(buf[2] & 0x03) | (inbyte << 2);
849	sp->rx_count = 0;
850}
851
852/* identify and execute a 6pack priority command byte */
853
854static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
855{
 
856	int actual;
857
 
858	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
859
860	/* RX and DCD flags can only be set in the same prio command,
861	   if the DCD flag has been set without the RX flag in the previous
862	   prio command. If DCD has not been set before, something in the
863	   transmission has gone wrong. In this case, RX and DCD are
864	   cleared in order to prevent the decode_data routine from
865	   reading further data that might be corrupt. */
866
867		if (((sp->status & SIXP_DCD_MASK) == 0) &&
868			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
869				if (sp->status != 1)
870					printk(KERN_DEBUG "6pack: protocol violation\n");
871				else
872					sp->status = 0;
873				cmd &= ~SIXP_RX_DCD_MASK;
874		}
875		sp->status = cmd & SIXP_PRIO_DATA_MASK;
876	} else { /* output watchdog char if idle */
877		if ((sp->status2 != 0) && (sp->duplex == 1)) {
878			sp->led_state = 0x70;
879			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
880			sp->tx_enable = 1;
881			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
882			sp->xleft -= actual;
883			sp->xhead += actual;
884			sp->led_state = 0x60;
885			sp->status2 = 0;
886
887		}
888	}
889
890	/* needed to trigger the TNC watchdog */
891	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
892
893        /* if the state byte has been received, the TNC is present,
894           so the resync timer can be reset. */
895
896	if (sp->tnc_state == TNC_IN_SYNC)
897		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 
 
 
 
 
898
899	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
900}
901
902/* identify and execute a standard 6pack command byte */
903
904static void decode_std_command(struct sixpack *sp, unsigned char cmd)
905{
906	unsigned char checksum = 0, rest = 0;
907	short i;
908
 
909	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
910	case SIXP_SEOF:
911		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
912			if ((sp->status & SIXP_RX_DCD_MASK) ==
913				SIXP_RX_DCD_MASK) {
914				sp->led_state = 0x68;
915				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
916			}
917		} else {
918			sp->led_state = 0x60;
919			/* fill trailing bytes with zeroes */
920			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
921			rest = sp->rx_count;
922			if (rest != 0)
923				 for (i = rest; i <= 3; i++)
924					decode_data(sp, 0);
925			if (rest == 2)
926				sp->rx_count_cooked -= 2;
927			else if (rest == 3)
928				sp->rx_count_cooked -= 1;
929			for (i = 0; i < sp->rx_count_cooked; i++)
930				checksum += sp->cooked_buf[i];
931			if (checksum != SIXP_CHKSUM) {
932				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
933			} else {
934				sp->rcount = sp->rx_count_cooked-2;
935				sp_bump(sp, 0);
936			}
937			sp->rx_count_cooked = 0;
938		}
939		break;
940	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
941		break;
942	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
943		break;
944	case SIXP_RX_BUF_OVL:
945		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
946	}
947}
948
949/* decode a 6pack packet */
950
951static void
952sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
953{
954	unsigned char inbyte;
955	int count1;
956
957	for (count1 = 0; count1 < count; count1++) {
958		inbyte = pre_rbuff[count1];
959		if (inbyte == SIXP_FOUND_TNC) {
960			tnc_set_sync_state(sp, TNC_IN_SYNC);
961			del_timer(&sp->resync_t);
962		}
963		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
964			decode_prio_command(sp, inbyte);
965		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
966			decode_std_command(sp, inbyte);
967		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
968			decode_data(sp, inbyte);
969	}
970}
971
972MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
973MODULE_DESCRIPTION("6pack driver for AX.25");
974MODULE_LICENSE("GPL");
975MODULE_ALIAS_LDISC(N_6PACK);
976
977module_init(sixpack_init_driver);
978module_exit(sixpack_exit_driver);