Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * File Name:
   3 *   defxx.c
   4 *
   5 * Copyright Information:
   6 *   Copyright Digital Equipment Corporation 1996.
   7 *
   8 *   This software may be used and distributed according to the terms of
   9 *   the GNU General Public License, incorporated herein by reference.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the Digital Equipment Corporation
  13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
  14 *   adapters include:
  15 *
  16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
  17 *		DEC FDDIcontroller/EISA         (DEFEA)
  18 *		DEC FDDIcontroller/PCI          (DEFPA)
  19 *
  20 * The original author:
  21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
  22 *
  23 * Maintainers:
  24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
  25 *
  26 * Credits:
  27 *   I'd like to thank Patricia Cross for helping me get started with
  28 *   Linux, David Davies for a lot of help upgrading and configuring
  29 *   my development system and for answering many OS and driver
  30 *   development questions, and Alan Cox for recommendations and
  31 *   integration help on getting FDDI support into Linux.  LVS
  32 *
  33 * Driver Architecture:
  34 *   The driver architecture is largely based on previous driver work
  35 *   for other operating systems.  The upper edge interface and
  36 *   functions were largely taken from existing Linux device drivers
  37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
  38 *   driver.
  39 *
  40 *   Adapter Probe -
  41 *		The driver scans for supported EISA adapters by reading the
  42 *		SLOT ID register for each EISA slot and making a match
  43 *		against the expected value.
  44 *
  45 *   Bus-Specific Initialization -
  46 *		This driver currently supports both EISA and PCI controller
  47 *		families.  While the custom DMA chip and FDDI logic is similar
  48 *		or identical, the bus logic is very different.  After
  49 *		initialization, the	only bus-specific differences is in how the
  50 *		driver enables and disables interrupts.  Other than that, the
  51 *		run-time critical code behaves the same on both families.
  52 *		It's important to note that both adapter families are configured
  53 *		to I/O map, rather than memory map, the adapter registers.
  54 *
  55 *   Driver Open/Close -
  56 *		In the driver open routine, the driver ISR (interrupt service
  57 *		routine) is registered and the adapter is brought to an
  58 *		operational state.  In the driver close routine, the opposite
  59 *		occurs; the driver ISR is deregistered and the adapter is
  60 *		brought to a safe, but closed state.  Users may use consecutive
  61 *		commands to bring the adapter up and down as in the following
  62 *		example:
  63 *					ifconfig fddi0 up
  64 *					ifconfig fddi0 down
  65 *					ifconfig fddi0 up
  66 *
  67 *   Driver Shutdown -
  68 *		Apparently, there is no shutdown or halt routine support under
  69 *		Linux.  This routine would be called during "reboot" or
  70 *		"shutdown" to allow the driver to place the adapter in a safe
  71 *		state before a warm reboot occurs.  To be really safe, the user
  72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
  73 *		to ensure that the adapter DMA engine is taken off-line.  However,
  74 *		the current driver code anticipates this problem and always issues
  75 *		a soft reset of the adapter	at the beginning of driver initialization.
  76 *		A future driver enhancement in this area may occur in 2.1.X where
  77 *		Alan indicated that a shutdown handler may be implemented.
  78 *
  79 *   Interrupt Service Routine -
  80 *		The driver supports shared interrupts, so the ISR is registered for
  81 *		each board with the appropriate flag and the pointer to that board's
  82 *		device structure.  This provides the context during interrupt
  83 *		processing to support shared interrupts and multiple boards.
  84 *
  85 *		Interrupt enabling/disabling can occur at many levels.  At the host
  86 *		end, you can disable system interrupts, or disable interrupts at the
  87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
  88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
  89 *		controller interrupt enable/disable.
  90 *
  91 *		The driver currently enables and disables adapter interrupts at the
  92 *		bus-logic chip and assumes that Linux will take care of clearing or
  93 *		acknowledging any host-based interrupt chips.
  94 *
  95 *   Control Functions -
  96 *		Control functions are those used to support functions such as adding
  97 *		or deleting multicast addresses, enabling or disabling packet
  98 *		reception filters, or other custom/proprietary commands.  Presently,
  99 *		the driver supports the "get statistics", "set multicast list", and
 100 *		"set mac address" functions defined by Linux.  A list of possible
 101 *		enhancements include:
 102 *
 103 *				- Custom ioctl interface for executing port interface commands
 104 *				- Custom ioctl interface for adding unicast addresses to
 105 *				  adapter CAM (to support bridge functions).
 106 *				- Custom ioctl interface for supporting firmware upgrades.
 107 *
 108 *   Hardware (port interface) Support Routines -
 109 *		The driver function names that start with "dfx_hw_" represent
 110 *		low-level port interface routines that are called frequently.  They
 111 *		include issuing a DMA or port control command to the adapter,
 112 *		resetting the adapter, or reading the adapter state.  Since the
 113 *		driver initialization and run-time code must make calls into the
 114 *		port interface, these routines were written to be as generic and
 115 *		usable as possible.
 116 *
 117 *   Receive Path -
 118 *		The adapter DMA engine supports a 256 entry receive descriptor block
 119 *		of which up to 255 entries can be used at any given time.  The
 120 *		architecture is a standard producer, consumer, completion model in
 121 *		which the driver "produces" receive buffers to the adapter, the
 122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
 123 *		and the driver "completes" the receive buffers by servicing the
 124 *		incoming packet, then "produces" a new buffer and starts the cycle
 125 *		again.  Receive buffers can be fragmented in up to 16 fragments
 126 *		(descriptor	entries).  For simplicity, this driver posts
 127 *		single-fragment receive buffers of 4608 bytes, then allocates a
 128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
 129 *		utilization, a better approach would be to pass up the receive
 130 *		buffer (no extra copy) then allocate and post a replacement buffer.
 131 *		This is a performance enhancement that should be looked into at
 132 *		some point.
 133 *
 134 *   Transmit Path -
 135 *		Like the receive path, the adapter DMA engine supports a 256 entry
 136 *		transmit descriptor block of which up to 255 entries can be used at
 137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
 138 *		fragments (descriptor entries).  This driver always posts one
 139 *		fragment per transmit packet request.
 140 *
 141 *		The fragment contains the entire packet from FC to end of data.
 142 *		Before posting the buffer to the adapter, the driver sets a three-byte
 143 *		packet request header (PRH) which is required by the Motorola MAC chip
 144 *		used on the adapters.  The PRH tells the MAC the type of token to
 145 *		receive/send, whether or not to generate and append the CRC, whether
 146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
 147 *		definition is not necessarily consistent across all FDDI chipsets,
 148 *		the driver, rather than the common FDDI packet handler routines,
 149 *		sets these bytes.
 150 *
 151 *		To reduce the amount of descriptor fetches needed per transmit request,
 152 *		the driver takes advantage of the fact that there are at least three
 153 *		bytes available before the skb->data field on the outgoing transmit
 154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
 155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
 156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
 157 *		bytes which we'll use to store the PRH.
 158 *
 159 *		There's a subtle advantage to adding these pad bytes to the
 160 *		hard_header_len, it ensures that the data portion of the packet for
 161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
 162 *		implementations may not need the extra padding and can start copying
 163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
 164 *		another driver implementation need ADDITIONAL padding, the net_init.c
 165 *		module should be updated and dev->hard_header_len should be increased.
 166 *		NOTE: To maintain the alignment on the data portion of the packet,
 167 *		dev->hard_header_len should always be evenly divisible by 4 and at
 168 *		least 24 bytes in size.
 169 *
 170 * Modification History:
 171 *		Date		Name	Description
 172 *		16-Aug-96	LVS		Created.
 173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
 174 *							string is only displayed if 1 or more cards are
 175 *							found.  Changed dfx_rcv_queue_process to copy
 176 *							3 NULL bytes before FC to ensure that data is
 177 *							longword aligned in receive buffer.
 178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
 179 *							LLC group promiscuous mode if multicast list
 180 *							is too large.  LLC individual/group promiscuous
 181 *							mode is now disabled if IFF_PROMISC flag not set.
 182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
 183 *							on Alan Cox recommendation.  Added node address
 184 *							override support.
 185 *		12-Sep-96	LVS		Reset current address to factory address during
 186 *							device open.  Updated transmit path to post a
 187 *							single fragment which includes PRH->end of data.
 188 *		Mar 2000	AC		Did various cleanups for 2.3.x
 189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
 190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
 191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
 192 *		Feb 2001			Skb allocation fixes
 193 *		Feb 2001	davej		PCI enable cleanups.
 194 *		04 Aug 2003	macro		Converted to the DMA API.
 195 *		14 Aug 2004	macro		Fix device names reported.
 196 *		14 Jun 2005	macro		Use irqreturn_t.
 197 *		23 Oct 2006	macro		Big-endian host support.
 198 *		14 Dec 2006	macro		TURBOchannel support.
 
 199 */
 200
 201/* Include files */
 202#include <linux/bitops.h>
 203#include <linux/compiler.h>
 204#include <linux/delay.h>
 205#include <linux/dma-mapping.h>
 206#include <linux/eisa.h>
 207#include <linux/errno.h>
 208#include <linux/fddidevice.h>
 209#include <linux/interrupt.h>
 210#include <linux/ioport.h>
 211#include <linux/kernel.h>
 212#include <linux/module.h>
 213#include <linux/netdevice.h>
 214#include <linux/pci.h>
 215#include <linux/skbuff.h>
 216#include <linux/slab.h>
 217#include <linux/string.h>
 218#include <linux/tc.h>
 219
 220#include <asm/byteorder.h>
 221#include <asm/io.h>
 222
 223#include "defxx.h"
 224
 225/* Version information string should be updated prior to each new release!  */
 226#define DRV_NAME "defxx"
 227#define DRV_VERSION "v1.10"
 228#define DRV_RELDATE "2006/12/14"
 229
 230static char version[] =
 231	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
 232	"  Lawrence V. Stefani and others\n";
 233
 234#define DYNAMIC_BUFFERS 1
 235
 236#define SKBUFF_RX_COPYBREAK 200
 237/*
 238 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
 239 * alignment for compatibility with old EISA boards.
 240 */
 241#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
 242
 243#ifdef CONFIG_EISA
 244#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
 245#else
 246#define DFX_BUS_EISA(dev) 0
 247#endif
 248
 249#ifdef CONFIG_TC
 250#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
 251#else
 252#define DFX_BUS_TC(dev) 0
 253#endif
 254
 255#ifdef CONFIG_DEFXX_MMIO
 256#define DFX_MMIO 1
 257#else
 258#define DFX_MMIO 0
 259#endif
 260
 261/* Define module-wide (static) routines */
 262
 263static void		dfx_bus_init(struct net_device *dev);
 264static void		dfx_bus_uninit(struct net_device *dev);
 265static void		dfx_bus_config_check(DFX_board_t *bp);
 266
 267static int		dfx_driver_init(struct net_device *dev,
 268					const char *print_name,
 269					resource_size_t bar_start);
 270static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
 271
 272static int		dfx_open(struct net_device *dev);
 273static int		dfx_close(struct net_device *dev);
 274
 275static void		dfx_int_pr_halt_id(DFX_board_t *bp);
 276static void		dfx_int_type_0_process(DFX_board_t *bp);
 277static void		dfx_int_common(struct net_device *dev);
 278static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
 279
 280static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
 281static void		dfx_ctl_set_multicast_list(struct net_device *dev);
 282static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
 283static int		dfx_ctl_update_cam(DFX_board_t *bp);
 284static int		dfx_ctl_update_filters(DFX_board_t *bp);
 285
 286static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
 287static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
 288static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
 289static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
 290static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
 291
 292static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
 293static void		dfx_rcv_queue_process(DFX_board_t *bp);
 
 294static void		dfx_rcv_flush(DFX_board_t *bp);
 
 
 
 295
 296static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
 297				     struct net_device *dev);
 298static int		dfx_xmt_done(DFX_board_t *bp);
 299static void		dfx_xmt_flush(DFX_board_t *bp);
 300
 301/* Define module-wide (static) variables */
 302
 303static struct pci_driver dfx_pci_driver;
 304static struct eisa_driver dfx_eisa_driver;
 305static struct tc_driver dfx_tc_driver;
 306
 307
 308/*
 309 * =======================
 310 * = dfx_port_write_long =
 311 * = dfx_port_read_long  =
 312 * =======================
 313 *
 314 * Overview:
 315 *   Routines for reading and writing values from/to adapter
 316 *
 317 * Returns:
 318 *   None
 319 *
 320 * Arguments:
 321 *   bp		- pointer to board information
 322 *   offset	- register offset from base I/O address
 323 *   data	- for dfx_port_write_long, this is a value to write;
 324 *		  for dfx_port_read_long, this is a pointer to store
 325 *		  the read value
 326 *
 327 * Functional Description:
 328 *   These routines perform the correct operation to read or write
 329 *   the adapter register.
 330 *
 331 *   EISA port block base addresses are based on the slot number in which the
 332 *   controller is installed.  For example, if the EISA controller is installed
 333 *   in slot 4, the port block base address is 0x4000.  If the controller is
 334 *   installed in slot 2, the port block base address is 0x2000, and so on.
 335 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
 336 *   registers using the register offsets defined in DEFXX.H.
 337 *
 338 *   PCI port block base addresses are assigned by the PCI BIOS or system
 339 *   firmware.  There is one 128 byte port block which can be accessed.  It
 340 *   allows for I/O mapping of both PDQ and PFI registers using the register
 341 *   offsets defined in DEFXX.H.
 342 *
 343 * Return Codes:
 344 *   None
 345 *
 346 * Assumptions:
 347 *   bp->base is a valid base I/O address for this adapter.
 348 *   offset is a valid register offset for this adapter.
 349 *
 350 * Side Effects:
 351 *   Rather than produce macros for these functions, these routines
 352 *   are defined using "inline" to ensure that the compiler will
 353 *   generate inline code and not waste a procedure call and return.
 354 *   This provides all the benefits of macros, but with the
 355 *   advantage of strict data type checking.
 356 */
 357
 358static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
 359{
 360	writel(data, bp->base.mem + offset);
 361	mb();
 362}
 363
 364static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
 365{
 366	outl(data, bp->base.port + offset);
 367}
 368
 369static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
 370{
 371	struct device __maybe_unused *bdev = bp->bus_dev;
 372	int dfx_bus_tc = DFX_BUS_TC(bdev);
 373	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 374
 375	if (dfx_use_mmio)
 376		dfx_writel(bp, offset, data);
 377	else
 378		dfx_outl(bp, offset, data);
 379}
 380
 381
 382static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
 383{
 384	mb();
 385	*data = readl(bp->base.mem + offset);
 386}
 387
 388static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
 389{
 390	*data = inl(bp->base.port + offset);
 391}
 392
 393static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
 394{
 395	struct device __maybe_unused *bdev = bp->bus_dev;
 396	int dfx_bus_tc = DFX_BUS_TC(bdev);
 397	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 398
 399	if (dfx_use_mmio)
 400		dfx_readl(bp, offset, data);
 401	else
 402		dfx_inl(bp, offset, data);
 403}
 404
 405
 406/*
 407 * ================
 408 * = dfx_get_bars =
 409 * ================
 410 *
 411 * Overview:
 412 *   Retrieves the address range used to access control and status
 413 *   registers.
 414 *
 415 * Returns:
 416 *   None
 417 *
 418 * Arguments:
 419 *   bdev	- pointer to device information
 420 *   bar_start	- pointer to store the start address
 421 *   bar_len	- pointer to store the length of the area
 422 *
 423 * Assumptions:
 424 *   I am sure there are some.
 425 *
 426 * Side Effects:
 427 *   None
 428 */
 429static void dfx_get_bars(struct device *bdev,
 430			 resource_size_t *bar_start, resource_size_t *bar_len)
 431{
 432	int dfx_bus_pci = dev_is_pci(bdev);
 433	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 434	int dfx_bus_tc = DFX_BUS_TC(bdev);
 435	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 436
 437	if (dfx_bus_pci) {
 438		int num = dfx_use_mmio ? 0 : 1;
 439
 440		*bar_start = pci_resource_start(to_pci_dev(bdev), num);
 441		*bar_len = pci_resource_len(to_pci_dev(bdev), num);
 
 
 442	}
 443	if (dfx_bus_eisa) {
 444		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 445		resource_size_t bar;
 
 446
 447		if (dfx_use_mmio) {
 448			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
 449			bar <<= 8;
 450			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
 451			bar <<= 8;
 452			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
 453			bar <<= 16;
 454			*bar_start = bar;
 455			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
 456			bar <<= 8;
 457			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
 458			bar <<= 8;
 459			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
 460			bar <<= 16;
 461			*bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
 
 462		} else {
 463			*bar_start = base_addr;
 464			*bar_len = PI_ESIC_K_CSR_IO_LEN;
 465		}
 
 
 
 
 466	}
 467	if (dfx_bus_tc) {
 468		*bar_start = to_tc_dev(bdev)->resource.start +
 469			     PI_TC_K_CSR_OFFSET;
 470		*bar_len = PI_TC_K_CSR_LEN;
 
 
 471	}
 472}
 473
 474static const struct net_device_ops dfx_netdev_ops = {
 475	.ndo_open		= dfx_open,
 476	.ndo_stop		= dfx_close,
 477	.ndo_start_xmit		= dfx_xmt_queue_pkt,
 478	.ndo_get_stats		= dfx_ctl_get_stats,
 479	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
 480	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
 481};
 482
 483/*
 484 * ================
 485 * = dfx_register =
 486 * ================
 487 *
 488 * Overview:
 489 *   Initializes a supported FDDI controller
 490 *
 491 * Returns:
 492 *   Condition code
 493 *
 494 * Arguments:
 495 *   bdev - pointer to device information
 496 *
 497 * Functional Description:
 498 *
 499 * Return Codes:
 500 *   0		 - This device (fddi0, fddi1, etc) configured successfully
 501 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
 502 *
 503 * Assumptions:
 504 *   It compiles so it should work :-( (PCI cards do :-)
 505 *
 506 * Side Effects:
 507 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 508 *   initialized and the board resources are read and stored in
 509 *   the device structure.
 510 */
 511static int dfx_register(struct device *bdev)
 512{
 513	static int version_disp;
 514	int dfx_bus_pci = dev_is_pci(bdev);
 
 515	int dfx_bus_tc = DFX_BUS_TC(bdev);
 516	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 517	const char *print_name = dev_name(bdev);
 518	struct net_device *dev;
 519	DFX_board_t	  *bp;			/* board pointer */
 520	resource_size_t bar_start = 0;		/* pointer to port */
 521	resource_size_t bar_len = 0;		/* resource length */
 522	int alloc_size;				/* total buffer size used */
 523	struct resource *region;
 524	int err = 0;
 525
 526	if (!version_disp) {	/* display version info if adapter is found */
 527		version_disp = 1;	/* set display flag to TRUE so that */
 528		printk(version);	/* we only display this string ONCE */
 529	}
 530
 531	dev = alloc_fddidev(sizeof(*bp));
 532	if (!dev) {
 533		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
 534		       print_name);
 535		return -ENOMEM;
 536	}
 537
 538	/* Enable PCI device. */
 539	if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
 540		printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
 541		       print_name);
 542		goto err_out;
 
 
 
 543	}
 544
 545	SET_NETDEV_DEV(dev, bdev);
 546
 547	bp = netdev_priv(dev);
 548	bp->bus_dev = bdev;
 549	dev_set_drvdata(bdev, dev);
 550
 551	dfx_get_bars(bdev, &bar_start, &bar_len);
 
 
 
 
 
 
 
 
 
 
 552
 553	if (dfx_use_mmio)
 554		region = request_mem_region(bar_start, bar_len, print_name);
 
 555	else
 556		region = request_region(bar_start, bar_len, print_name);
 557	if (!region) {
 558		printk(KERN_ERR "%s: Cannot reserve I/O resource "
 559		       "0x%lx @ 0x%lx, aborting\n",
 560		       print_name, (long)bar_len, (long)bar_start);
 561		err = -EBUSY;
 562		goto err_out_disable;
 563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565	/* Set up I/O base address. */
 566	if (dfx_use_mmio) {
 567		bp->base.mem = ioremap_nocache(bar_start, bar_len);
 568		if (!bp->base.mem) {
 569			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
 570			err = -ENOMEM;
 571			goto err_out_region;
 572		}
 573	} else {
 574		bp->base.port = bar_start;
 575		dev->base_addr = bar_start;
 576	}
 577
 578	/* Initialize new device structure */
 579	dev->netdev_ops			= &dfx_netdev_ops;
 580
 581	if (dfx_bus_pci)
 582		pci_set_master(to_pci_dev(bdev));
 583
 584	if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
 585		err = -ENODEV;
 586		goto err_out_unmap;
 587	}
 588
 589	err = register_netdev(dev);
 590	if (err)
 591		goto err_out_kfree;
 592
 593	printk("%s: registered as %s\n", print_name, dev->name);
 594	return 0;
 595
 596err_out_kfree:
 597	alloc_size = sizeof(PI_DESCR_BLOCK) +
 598		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
 599#ifndef DYNAMIC_BUFFERS
 600		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
 601#endif
 602		     sizeof(PI_CONSUMER_BLOCK) +
 603		     (PI_ALIGN_K_DESC_BLK - 1);
 604	if (bp->kmalloced)
 605		dma_free_coherent(bdev, alloc_size,
 606				  bp->kmalloced, bp->kmalloced_dma);
 607
 608err_out_unmap:
 609	if (dfx_use_mmio)
 610		iounmap(bp->base.mem);
 611
 612err_out_region:
 
 
 
 
 
 
 
 
 613	if (dfx_use_mmio)
 614		release_mem_region(bar_start, bar_len);
 615	else
 616		release_region(bar_start, bar_len);
 617
 618err_out_disable:
 619	if (dfx_bus_pci)
 620		pci_disable_device(to_pci_dev(bdev));
 621
 622err_out:
 623	free_netdev(dev);
 624	return err;
 625}
 626
 627
 628/*
 629 * ================
 630 * = dfx_bus_init =
 631 * ================
 632 *
 633 * Overview:
 634 *   Initializes the bus-specific controller logic.
 635 *
 636 * Returns:
 637 *   None
 638 *
 639 * Arguments:
 640 *   dev - pointer to device information
 641 *
 642 * Functional Description:
 643 *   Determine and save adapter IRQ in device table,
 644 *   then perform bus-specific logic initialization.
 645 *
 646 * Return Codes:
 647 *   None
 648 *
 649 * Assumptions:
 650 *   bp->base has already been set with the proper
 651 *	 base I/O address for this device.
 652 *
 653 * Side Effects:
 654 *   Interrupts are enabled at the adapter bus-specific logic.
 655 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
 656 *   enabled yet.
 657 */
 658
 659static void dfx_bus_init(struct net_device *dev)
 660{
 661	DFX_board_t *bp = netdev_priv(dev);
 662	struct device *bdev = bp->bus_dev;
 663	int dfx_bus_pci = dev_is_pci(bdev);
 664	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 665	int dfx_bus_tc = DFX_BUS_TC(bdev);
 666	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 667	u8 val;
 668
 669	DBG_printk("In dfx_bus_init...\n");
 670
 671	/* Initialize a pointer back to the net_device struct */
 672	bp->dev = dev;
 673
 674	/* Initialize adapter based on bus type */
 675
 676	if (dfx_bus_tc)
 677		dev->irq = to_tc_dev(bdev)->interrupt;
 678	if (dfx_bus_eisa) {
 679		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 680
 
 
 
 681		/* Get the interrupt level from the ESIC chip.  */
 682		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 683		val &= PI_CONFIG_STAT_0_M_IRQ;
 684		val >>= PI_CONFIG_STAT_0_V_IRQ;
 685
 686		switch (val) {
 687		case PI_CONFIG_STAT_0_IRQ_K_9:
 688			dev->irq = 9;
 689			break;
 690
 691		case PI_CONFIG_STAT_0_IRQ_K_10:
 692			dev->irq = 10;
 693			break;
 694
 695		case PI_CONFIG_STAT_0_IRQ_K_11:
 696			dev->irq = 11;
 697			break;
 698
 699		case PI_CONFIG_STAT_0_IRQ_K_15:
 700			dev->irq = 15;
 701			break;
 702		}
 703
 704		/*
 705		 * Enable memory decoding (MEMCS0) and/or port decoding
 706		 * (IOCS1/IOCS0) as appropriate in Function Control
 707		 * Register.  One of the port chip selects seems to be
 708		 * used for the Burst Holdoff register, but this bit of
 709		 * documentation is missing and as yet it has not been
 710		 * determined which of the two.  This is also the reason
 711		 * the size of the decoded port range is twice as large
 712		 * as one required by the PDQ.
 713		 */
 714
 715		/* Set the decode range of the board.  */
 716		val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
 717		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
 718		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
 719		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
 720		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
 721		val = PI_ESIC_K_CSR_IO_LEN - 1;
 722		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
 723		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
 724		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
 725		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
 
 
 
 
 
 
 
 
 
 726
 727		/* Enable the decoders.  */
 728		val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
 729		if (dfx_use_mmio)
 730			val |= PI_FUNCTION_CNTRL_M_MEMCS0;
 731		outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
 
 
 732
 733		/*
 734		 * Enable access to the rest of the module
 735		 * (including PDQ and packet memory).
 736		 */
 737		val = PI_SLOT_CNTRL_M_ENB;
 738		outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
 739
 740		/*
 741		 * Map PDQ registers into memory or port space.  This is
 742		 * done with a bit in the Burst Holdoff register.
 743		 */
 744		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 745		if (dfx_use_mmio)
 746			val |= PI_BURST_HOLDOFF_V_MEM_MAP;
 747		else
 748			val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
 749		outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
 750
 751		/* Enable interrupts at EISA bus interface chip (ESIC) */
 752		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 753		val |= PI_CONFIG_STAT_0_M_INT_ENB;
 754		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
 755	}
 756	if (dfx_bus_pci) {
 757		struct pci_dev *pdev = to_pci_dev(bdev);
 758
 759		/* Get the interrupt level from the PCI Configuration Table */
 760
 761		dev->irq = pdev->irq;
 762
 763		/* Check Latency Timer and set if less than minimal */
 764
 765		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
 766		if (val < PFI_K_LAT_TIMER_MIN) {
 767			val = PFI_K_LAT_TIMER_DEF;
 768			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
 769		}
 770
 771		/* Enable interrupts at PCI bus interface chip (PFI) */
 772		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
 773		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
 774	}
 775}
 776
 777/*
 778 * ==================
 779 * = dfx_bus_uninit =
 780 * ==================
 781 *
 782 * Overview:
 783 *   Uninitializes the bus-specific controller logic.
 784 *
 785 * Returns:
 786 *   None
 787 *
 788 * Arguments:
 789 *   dev - pointer to device information
 790 *
 791 * Functional Description:
 792 *   Perform bus-specific logic uninitialization.
 793 *
 794 * Return Codes:
 795 *   None
 796 *
 797 * Assumptions:
 798 *   bp->base has already been set with the proper
 799 *	 base I/O address for this device.
 800 *
 801 * Side Effects:
 802 *   Interrupts are disabled at the adapter bus-specific logic.
 803 */
 804
 805static void dfx_bus_uninit(struct net_device *dev)
 806{
 807	DFX_board_t *bp = netdev_priv(dev);
 808	struct device *bdev = bp->bus_dev;
 809	int dfx_bus_pci = dev_is_pci(bdev);
 810	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 811	u8 val;
 812
 813	DBG_printk("In dfx_bus_uninit...\n");
 814
 815	/* Uninitialize adapter based on bus type */
 816
 817	if (dfx_bus_eisa) {
 818		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 819
 820		/* Disable interrupts at EISA bus interface chip (ESIC) */
 821		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 822		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
 823		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
 
 
 
 
 
 
 824	}
 825	if (dfx_bus_pci) {
 826		/* Disable interrupts at PCI bus interface chip (PFI) */
 827		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
 828	}
 829}
 830
 831
 832/*
 833 * ========================
 834 * = dfx_bus_config_check =
 835 * ========================
 836 *
 837 * Overview:
 838 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
 839 *   are illegal, then this routine will set new defaults.
 840 *
 841 * Returns:
 842 *   None
 843 *
 844 * Arguments:
 845 *   bp - pointer to board information
 846 *
 847 * Functional Description:
 848 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
 849 *   PDQ, and all FDDI PCI controllers, all values are legal.
 850 *
 851 * Return Codes:
 852 *   None
 853 *
 854 * Assumptions:
 855 *   dfx_adap_init has NOT been called yet so burst size and other items have
 856 *   not been set.
 857 *
 858 * Side Effects:
 859 *   None
 860 */
 861
 862static void dfx_bus_config_check(DFX_board_t *bp)
 863{
 864	struct device __maybe_unused *bdev = bp->bus_dev;
 865	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 866	int	status;				/* return code from adapter port control call */
 867	u32	host_data;			/* LW data returned from port control call */
 868
 869	DBG_printk("In dfx_bus_config_check...\n");
 870
 871	/* Configuration check only valid for EISA adapter */
 872
 873	if (dfx_bus_eisa) {
 874		/*
 875		 * First check if revision 2 EISA controller.  Rev. 1 cards used
 876		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
 877		 * cards used PDQ revision E, so no workaround needed in this
 878		 * case, either.  Only Rev. 2 cards used either Rev. D or E
 879		 * chips, so we must verify the chip revision on Rev. 2 cards.
 880		 */
 881		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
 882			/*
 883			 * Revision 2 FDDI EISA controller found,
 884			 * so let's check PDQ revision of adapter.
 885			 */
 886			status = dfx_hw_port_ctrl_req(bp,
 887											PI_PCTRL_M_SUB_CMD,
 888											PI_SUB_CMD_K_PDQ_REV_GET,
 889											0,
 890											&host_data);
 891			if ((status != DFX_K_SUCCESS) || (host_data == 2))
 892				{
 893				/*
 894				 * Either we couldn't determine the PDQ revision, or
 895				 * we determined that it is at revision D.  In either case,
 896				 * we need to implement the workaround.
 897				 */
 898
 899				/* Ensure that the burst size is set to 8 longwords or less */
 900
 901				switch (bp->burst_size)
 902					{
 903					case PI_PDATA_B_DMA_BURST_SIZE_32:
 904					case PI_PDATA_B_DMA_BURST_SIZE_16:
 905						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
 906						break;
 907
 908					default:
 909						break;
 910					}
 911
 912				/* Ensure that full-duplex mode is not enabled */
 913
 914				bp->full_duplex_enb = PI_SNMP_K_FALSE;
 915				}
 916			}
 917		}
 918	}
 919
 920
 921/*
 922 * ===================
 923 * = dfx_driver_init =
 924 * ===================
 925 *
 926 * Overview:
 927 *   Initializes remaining adapter board structure information
 928 *   and makes sure adapter is in a safe state prior to dfx_open().
 929 *
 930 * Returns:
 931 *   Condition code
 932 *
 933 * Arguments:
 934 *   dev - pointer to device information
 935 *   print_name - printable device name
 936 *
 937 * Functional Description:
 938 *   This function allocates additional resources such as the host memory
 939 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
 940 *	 Remaining bus initialization steps are also completed.  The adapter
 941 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
 942 *   must call dfx_open() to open the adapter and bring it on-line.
 943 *
 944 * Return Codes:
 945 *   DFX_K_SUCCESS	- initialization succeeded
 946 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
 947 *						or read adapter MAC address
 948 *
 949 * Assumptions:
 950 *   Memory allocated from pci_alloc_consistent() call is physically
 951 *   contiguous, locked memory.
 952 *
 953 * Side Effects:
 954 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
 955 *   returning from this routine.
 956 */
 957
 958static int dfx_driver_init(struct net_device *dev, const char *print_name,
 959			   resource_size_t bar_start)
 960{
 961	DFX_board_t *bp = netdev_priv(dev);
 962	struct device *bdev = bp->bus_dev;
 963	int dfx_bus_pci = dev_is_pci(bdev);
 964	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 965	int dfx_bus_tc = DFX_BUS_TC(bdev);
 966	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 967	int alloc_size;			/* total buffer size needed */
 968	char *top_v, *curr_v;		/* virtual addrs into memory block */
 969	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
 970	u32 data;			/* host data register value */
 971	__le32 le32;
 972	char *board_name = NULL;
 973
 974	DBG_printk("In dfx_driver_init...\n");
 975
 976	/* Initialize bus-specific hardware registers */
 977
 978	dfx_bus_init(dev);
 979
 980	/*
 981	 * Initialize default values for configurable parameters
 982	 *
 983	 * Note: All of these parameters are ones that a user may
 984	 *       want to customize.  It'd be nice to break these
 985	 *		 out into Space.c or someplace else that's more
 986	 *		 accessible/understandable than this file.
 987	 */
 988
 989	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
 990	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
 991	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
 992	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
 993
 994	/*
 995	 * Ensure that HW configuration is OK
 996	 *
 997	 * Note: Depending on the hardware revision, we may need to modify
 998	 *       some of the configurable parameters to workaround hardware
 999	 *       limitations.  We'll perform this configuration check AFTER
1000	 *       setting the parameters to their default values.
1001	 */
1002
1003	dfx_bus_config_check(bp);
1004
1005	/* Disable PDQ interrupts first */
1006
1007	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1008
1009	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1010
1011	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1012
1013	/*  Read the factory MAC address from the adapter then save it */
1014
1015	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1016				 &data) != DFX_K_SUCCESS) {
1017		printk("%s: Could not read adapter factory MAC address!\n",
1018		       print_name);
1019		return DFX_K_FAILURE;
1020	}
1021	le32 = cpu_to_le32(data);
1022	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1023
1024	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1025				 &data) != DFX_K_SUCCESS) {
1026		printk("%s: Could not read adapter factory MAC address!\n",
1027		       print_name);
1028		return DFX_K_FAILURE;
1029	}
1030	le32 = cpu_to_le32(data);
1031	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1032
1033	/*
1034	 * Set current address to factory address
1035	 *
1036	 * Note: Node address override support is handled through
1037	 *       dfx_ctl_set_mac_address.
1038	 */
1039
1040	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1041	if (dfx_bus_tc)
1042		board_name = "DEFTA";
1043	if (dfx_bus_eisa)
1044		board_name = "DEFEA";
1045	if (dfx_bus_pci)
1046		board_name = "DEFPA";
1047	pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1048		print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1049		(long long)bar_start, dev->irq, dev->dev_addr);
1050
1051	/*
1052	 * Get memory for descriptor block, consumer block, and other buffers
1053	 * that need to be DMA read or written to by the adapter.
1054	 */
1055
1056	alloc_size = sizeof(PI_DESCR_BLOCK) +
1057					PI_CMD_REQ_K_SIZE_MAX +
1058					PI_CMD_RSP_K_SIZE_MAX +
1059#ifndef DYNAMIC_BUFFERS
1060					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1061#endif
1062					sizeof(PI_CONSUMER_BLOCK) +
1063					(PI_ALIGN_K_DESC_BLK - 1);
1064	bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1065						    &bp->kmalloced_dma,
1066						    GFP_ATOMIC);
1067	if (top_v == NULL)
1068		return DFX_K_FAILURE;
1069
1070	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1071
1072	/*
1073	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1074	 *  plus the amount of memory needed was allocated.  The physical address
1075	 *	is now 8K aligned.  By carving up the memory in a specific order,
1076	 *  we'll guarantee the alignment requirements for all other structures.
1077	 *
1078	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1079	 *		  physically contiguous nature of the memory block or the address
1080	 *		  alignments, then we'll need to implement a different algorithm
1081	 *		  for allocating the needed memory.
1082	 */
1083
1084	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1085	curr_v = top_v + (curr_p - top_p);
1086
1087	/* Reserve space for descriptor block */
1088
1089	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1090	bp->descr_block_phys = curr_p;
1091	curr_v += sizeof(PI_DESCR_BLOCK);
1092	curr_p += sizeof(PI_DESCR_BLOCK);
1093
1094	/* Reserve space for command request buffer */
1095
1096	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1097	bp->cmd_req_phys = curr_p;
1098	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1099	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1100
1101	/* Reserve space for command response buffer */
1102
1103	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1104	bp->cmd_rsp_phys = curr_p;
1105	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1106	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1107
1108	/* Reserve space for the LLC host receive queue buffers */
1109
1110	bp->rcv_block_virt = curr_v;
1111	bp->rcv_block_phys = curr_p;
1112
1113#ifndef DYNAMIC_BUFFERS
1114	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1115	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1116#endif
1117
1118	/* Reserve space for the consumer block */
1119
1120	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1121	bp->cons_block_phys = curr_p;
1122
1123	/* Display virtual and physical addresses if debug driver */
1124
1125	DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1126		   print_name,
1127		   (long)bp->descr_block_virt, bp->descr_block_phys);
1128	DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1129		   print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1130	DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1131		   print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1132	DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1133		   print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1134	DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1135		   print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1136
1137	return DFX_K_SUCCESS;
1138}
1139
1140
1141/*
1142 * =================
1143 * = dfx_adap_init =
1144 * =================
1145 *
1146 * Overview:
1147 *   Brings the adapter to the link avail/link unavailable state.
1148 *
1149 * Returns:
1150 *   Condition code
1151 *
1152 * Arguments:
1153 *   bp - pointer to board information
1154 *   get_buffers - non-zero if buffers to be allocated
1155 *
1156 * Functional Description:
1157 *   Issues the low-level firmware/hardware calls necessary to bring
1158 *   the adapter up, or to properly reset and restore adapter during
1159 *   run-time.
1160 *
1161 * Return Codes:
1162 *   DFX_K_SUCCESS - Adapter brought up successfully
1163 *   DFX_K_FAILURE - Adapter initialization failed
1164 *
1165 * Assumptions:
1166 *   bp->reset_type should be set to a valid reset type value before
1167 *   calling this routine.
1168 *
1169 * Side Effects:
1170 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1171 *   upon a successful return of this routine.
1172 */
1173
1174static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1175	{
1176	DBG_printk("In dfx_adap_init...\n");
1177
1178	/* Disable PDQ interrupts first */
1179
1180	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1181
1182	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1183
1184	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1185		{
1186		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1187		return DFX_K_FAILURE;
1188		}
1189
1190	/*
1191	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1192	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1193	 */
1194
1195	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1196
1197	/*
1198	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1199	 *
1200	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1201	 *       takes care of the on-board register values.
1202	 */
1203
1204	bp->cmd_req_reg.lword	= 0;
1205	bp->cmd_rsp_reg.lword	= 0;
1206	bp->rcv_xmt_reg.lword	= 0;
1207
1208	/* Clear consumer block before going to DMA_AVAILABLE state */
1209
1210	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1211
1212	/* Initialize the DMA Burst Size */
1213
1214	if (dfx_hw_port_ctrl_req(bp,
1215							PI_PCTRL_M_SUB_CMD,
1216							PI_SUB_CMD_K_BURST_SIZE_SET,
1217							bp->burst_size,
1218							NULL) != DFX_K_SUCCESS)
1219		{
1220		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1221		return DFX_K_FAILURE;
1222		}
1223
1224	/*
1225	 * Set base address of Consumer Block
1226	 *
1227	 * Assumption: 32-bit physical address of consumer block is 64 byte
1228	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1229	 */
1230
1231	if (dfx_hw_port_ctrl_req(bp,
1232							PI_PCTRL_M_CONS_BLOCK,
1233							bp->cons_block_phys,
1234							0,
1235							NULL) != DFX_K_SUCCESS)
1236		{
1237		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1238		return DFX_K_FAILURE;
1239		}
1240
1241	/*
1242	 * Set the base address of Descriptor Block and bring adapter
1243	 * to DMA_AVAILABLE state.
1244	 *
1245	 * Note: We also set the literal and data swapping requirements
1246	 *       in this command.
1247	 *
1248	 * Assumption: 32-bit physical address of descriptor block
1249	 *       is 8Kbyte aligned.
1250	 */
1251	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1252				 (u32)(bp->descr_block_phys |
1253				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1254				 0, NULL) != DFX_K_SUCCESS) {
1255		printk("%s: Could not set descriptor block address!\n",
1256		       bp->dev->name);
1257		return DFX_K_FAILURE;
1258	}
1259
1260	/* Set transmit flush timeout value */
1261
1262	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1263	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1264	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1265	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1266	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1267	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1268		{
1269		printk("%s: DMA command request failed!\n", bp->dev->name);
1270		return DFX_K_FAILURE;
1271		}
1272
1273	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1274
1275	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1276	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1277	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1278	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1279	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1280	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1281	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1282	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1283	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1284		{
1285		printk("%s: DMA command request failed!\n", bp->dev->name);
1286		return DFX_K_FAILURE;
1287		}
1288
1289	/* Initialize adapter CAM */
1290
1291	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1292		{
1293		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1294		return DFX_K_FAILURE;
1295		}
1296
1297	/* Initialize adapter filters */
1298
1299	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1300		{
1301		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1302		return DFX_K_FAILURE;
1303		}
1304
1305	/*
1306	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1307	 * reinitialized)
1308	 */
1309
1310	if (get_buffers)
1311		dfx_rcv_flush(bp);
1312
1313	/* Initialize receive descriptor block and produce buffers */
1314
1315	if (dfx_rcv_init(bp, get_buffers))
1316	        {
1317		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1318		if (get_buffers)
1319			dfx_rcv_flush(bp);
1320		return DFX_K_FAILURE;
1321		}
1322
1323	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1324
1325	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1326	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1327		{
1328		printk("%s: Start command failed\n", bp->dev->name);
1329		if (get_buffers)
1330			dfx_rcv_flush(bp);
1331		return DFX_K_FAILURE;
1332		}
1333
1334	/* Initialization succeeded, reenable PDQ interrupts */
1335
1336	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1337	return DFX_K_SUCCESS;
1338	}
1339
1340
1341/*
1342 * ============
1343 * = dfx_open =
1344 * ============
1345 *
1346 * Overview:
1347 *   Opens the adapter
1348 *
1349 * Returns:
1350 *   Condition code
1351 *
1352 * Arguments:
1353 *   dev - pointer to device information
1354 *
1355 * Functional Description:
1356 *   This function brings the adapter to an operational state.
1357 *
1358 * Return Codes:
1359 *   0		 - Adapter was successfully opened
1360 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1361 *
1362 * Assumptions:
1363 *   This routine should only be called for a device that was
1364 *   initialized successfully.
1365 *
1366 * Side Effects:
1367 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1368 *   if the open is successful.
1369 */
1370
1371static int dfx_open(struct net_device *dev)
1372{
1373	DFX_board_t *bp = netdev_priv(dev);
1374	int ret;
1375
1376	DBG_printk("In dfx_open...\n");
1377
1378	/* Register IRQ - support shared interrupts by passing device ptr */
1379
1380	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1381			  dev);
1382	if (ret) {
1383		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1384		return ret;
1385	}
1386
1387	/*
1388	 * Set current address to factory MAC address
1389	 *
1390	 * Note: We've already done this step in dfx_driver_init.
1391	 *       However, it's possible that a user has set a node
1392	 *		 address override, then closed and reopened the
1393	 *		 adapter.  Unless we reset the device address field
1394	 *		 now, we'll continue to use the existing modified
1395	 *		 address.
1396	 */
1397
1398	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1399
1400	/* Clear local unicast/multicast address tables and counts */
1401
1402	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1403	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1404	bp->uc_count = 0;
1405	bp->mc_count = 0;
1406
1407	/* Disable promiscuous filter settings */
1408
1409	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1410	bp->group_prom		= PI_FSTATE_K_BLOCK;
1411
1412	spin_lock_init(&bp->lock);
1413
1414	/* Reset and initialize adapter */
1415
1416	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1417	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1418	{
1419		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1420		free_irq(dev->irq, dev);
1421		return -EAGAIN;
1422	}
1423
1424	/* Set device structure info */
1425	netif_start_queue(dev);
1426	return 0;
1427}
1428
1429
1430/*
1431 * =============
1432 * = dfx_close =
1433 * =============
1434 *
1435 * Overview:
1436 *   Closes the device/module.
1437 *
1438 * Returns:
1439 *   Condition code
1440 *
1441 * Arguments:
1442 *   dev - pointer to device information
1443 *
1444 * Functional Description:
1445 *   This routine closes the adapter and brings it to a safe state.
1446 *   The interrupt service routine is deregistered with the OS.
1447 *   The adapter can be opened again with another call to dfx_open().
1448 *
1449 * Return Codes:
1450 *   Always return 0.
1451 *
1452 * Assumptions:
1453 *   No further requests for this adapter are made after this routine is
1454 *   called.  dfx_open() can be called to reset and reinitialize the
1455 *   adapter.
1456 *
1457 * Side Effects:
1458 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1459 *   routine.
1460 */
1461
1462static int dfx_close(struct net_device *dev)
1463{
1464	DFX_board_t *bp = netdev_priv(dev);
1465
1466	DBG_printk("In dfx_close...\n");
1467
1468	/* Disable PDQ interrupts first */
1469
1470	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1471
1472	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1473
1474	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1475
1476	/*
1477	 * Flush any pending transmit buffers
1478	 *
1479	 * Note: It's important that we flush the transmit buffers
1480	 *		 BEFORE we clear our copy of the Type 2 register.
1481	 *		 Otherwise, we'll have no idea how many buffers
1482	 *		 we need to free.
1483	 */
1484
1485	dfx_xmt_flush(bp);
1486
1487	/*
1488	 * Clear Type 1 and Type 2 registers after adapter reset
1489	 *
1490	 * Note: Even though we're closing the adapter, it's
1491	 *       possible that an interrupt will occur after
1492	 *		 dfx_close is called.  Without some assurance to
1493	 *		 the contrary we want to make sure that we don't
1494	 *		 process receive and transmit LLC frames and update
1495	 *		 the Type 2 register with bad information.
1496	 */
1497
1498	bp->cmd_req_reg.lword	= 0;
1499	bp->cmd_rsp_reg.lword	= 0;
1500	bp->rcv_xmt_reg.lword	= 0;
1501
1502	/* Clear consumer block for the same reason given above */
1503
1504	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1505
1506	/* Release all dynamically allocate skb in the receive ring. */
1507
1508	dfx_rcv_flush(bp);
1509
1510	/* Clear device structure flags */
1511
1512	netif_stop_queue(dev);
1513
1514	/* Deregister (free) IRQ */
1515
1516	free_irq(dev->irq, dev);
1517
1518	return 0;
1519}
1520
1521
1522/*
1523 * ======================
1524 * = dfx_int_pr_halt_id =
1525 * ======================
1526 *
1527 * Overview:
1528 *   Displays halt id's in string form.
1529 *
1530 * Returns:
1531 *   None
1532 *
1533 * Arguments:
1534 *   bp - pointer to board information
1535 *
1536 * Functional Description:
1537 *   Determine current halt id and display appropriate string.
1538 *
1539 * Return Codes:
1540 *   None
1541 *
1542 * Assumptions:
1543 *   None
1544 *
1545 * Side Effects:
1546 *   None
1547 */
1548
1549static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1550	{
1551	PI_UINT32	port_status;			/* PDQ port status register value */
1552	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1553
1554	/* Read the latest port status */
1555
1556	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1557
1558	/* Display halt state transition information */
1559
1560	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1561	switch (halt_id)
1562		{
1563		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1564			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1565			break;
1566
1567		case PI_HALT_ID_K_PARITY_ERROR:
1568			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1569			break;
1570
1571		case PI_HALT_ID_K_HOST_DIR_HALT:
1572			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1573			break;
1574
1575		case PI_HALT_ID_K_SW_FAULT:
1576			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1577			break;
1578
1579		case PI_HALT_ID_K_HW_FAULT:
1580			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1581			break;
1582
1583		case PI_HALT_ID_K_PC_TRACE:
1584			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1585			break;
1586
1587		case PI_HALT_ID_K_DMA_ERROR:
1588			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1589			break;
1590
1591		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1592			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1593			break;
1594
1595		case PI_HALT_ID_K_BUS_EXCEPTION:
1596			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1597			break;
1598
1599		default:
1600			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1601			break;
1602		}
1603	}
1604
1605
1606/*
1607 * ==========================
1608 * = dfx_int_type_0_process =
1609 * ==========================
1610 *
1611 * Overview:
1612 *   Processes Type 0 interrupts.
1613 *
1614 * Returns:
1615 *   None
1616 *
1617 * Arguments:
1618 *   bp - pointer to board information
1619 *
1620 * Functional Description:
1621 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1622 *   is a serious fault on the adapter, then an error message is displayed
1623 *   and the adapter is reset.
1624 *
1625 *   One tricky potential timing window is the rapid succession of "link avail"
1626 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1627 *   interrupt must be done before reading the state from the Port Status
1628 *   register.  This is true because a state change could occur after reading
1629 *   the data, but before acknowledging the interrupt.  If this state change
1630 *   does happen, it would be lost because the driver is using the old state,
1631 *   and it will never know about the new state because it subsequently
1632 *   acknowledges the state change interrupt.
1633 *
1634 *          INCORRECT                                      CORRECT
1635 *      read type 0 int reasons                   read type 0 int reasons
1636 *      read adapter state                        ack type 0 interrupts
1637 *      ack type 0 interrupts                     read adapter state
1638 *      ... process interrupt ...                 ... process interrupt ...
1639 *
1640 * Return Codes:
1641 *   None
1642 *
1643 * Assumptions:
1644 *   None
1645 *
1646 * Side Effects:
1647 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1648 *   or if the port status indicates that the adapter is halted.  The driver
1649 *   is responsible for reinitializing the adapter with the current CAM
1650 *   contents and adapter filter settings.
1651 */
1652
1653static void dfx_int_type_0_process(DFX_board_t	*bp)
1654
1655	{
1656	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1657	PI_UINT32	state;				/* current adap state (from port status) */
1658
1659	/*
1660	 * Read host interrupt Type 0 register to determine which Type 0
1661	 * interrupts are pending.  Immediately write it back out to clear
1662	 * those interrupts.
1663	 */
1664
1665	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1666	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1667
1668	/* Check for Type 0 error interrupts */
1669
1670	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1671							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1672							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1673		{
1674		/* Check for Non-Existent Memory error */
1675
1676		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1677			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1678
1679		/* Check for Packet Memory Parity error */
1680
1681		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1682			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1683
1684		/* Check for Host Bus Parity error */
1685
1686		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1687			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1688
1689		/* Reset adapter and bring it back on-line */
1690
1691		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1692		bp->reset_type = 0;					/* rerun on-board diagnostics */
1693		printk("%s: Resetting adapter...\n", bp->dev->name);
1694		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1695			{
1696			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1697			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1698			return;
1699			}
1700		printk("%s: Adapter reset successful!\n", bp->dev->name);
1701		return;
1702		}
1703
1704	/* Check for transmit flush interrupt */
1705
1706	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1707		{
1708		/* Flush any pending xmt's and acknowledge the flush interrupt */
1709
1710		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1711		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1712		(void) dfx_hw_port_ctrl_req(bp,
1713									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1714									0,
1715									0,
1716									NULL);
1717		}
1718
1719	/* Check for adapter state change */
1720
1721	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1722		{
1723		/* Get latest adapter state */
1724
1725		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1726		if (state == PI_STATE_K_HALTED)
1727			{
1728			/*
1729			 * Adapter has transitioned to HALTED state, try to reset
1730			 * adapter to bring it back on-line.  If reset fails,
1731			 * leave the adapter in the broken state.
1732			 */
1733
1734			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1735			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1736
1737			/* Reset adapter and bring it back on-line */
1738
1739			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1740			bp->reset_type = 0;					/* rerun on-board diagnostics */
1741			printk("%s: Resetting adapter...\n", bp->dev->name);
1742			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1743				{
1744				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1745				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1746				return;
1747				}
1748			printk("%s: Adapter reset successful!\n", bp->dev->name);
1749			}
1750		else if (state == PI_STATE_K_LINK_AVAIL)
1751			{
1752			bp->link_available = PI_K_TRUE;		/* set link available flag */
1753			}
1754		}
1755	}
1756
1757
1758/*
1759 * ==================
1760 * = dfx_int_common =
1761 * ==================
1762 *
1763 * Overview:
1764 *   Interrupt service routine (ISR)
1765 *
1766 * Returns:
1767 *   None
1768 *
1769 * Arguments:
1770 *   bp - pointer to board information
1771 *
1772 * Functional Description:
1773 *   This is the ISR which processes incoming adapter interrupts.
1774 *
1775 * Return Codes:
1776 *   None
1777 *
1778 * Assumptions:
1779 *   This routine assumes PDQ interrupts have not been disabled.
1780 *   When interrupts are disabled at the PDQ, the Port Status register
1781 *   is automatically cleared.  This routine uses the Port Status
1782 *   register value to determine whether a Type 0 interrupt occurred,
1783 *   so it's important that adapter interrupts are not normally
1784 *   enabled/disabled at the PDQ.
1785 *
1786 *   It's vital that this routine is NOT reentered for the
1787 *   same board and that the OS is not in another section of
1788 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1789 *   different thread.
1790 *
1791 * Side Effects:
1792 *   Pending interrupts are serviced.  Depending on the type of
1793 *   interrupt, acknowledging and clearing the interrupt at the
1794 *   PDQ involves writing a register to clear the interrupt bit
1795 *   or updating completion indices.
1796 */
1797
1798static void dfx_int_common(struct net_device *dev)
1799{
1800	DFX_board_t *bp = netdev_priv(dev);
1801	PI_UINT32	port_status;		/* Port Status register */
1802
1803	/* Process xmt interrupts - frequent case, so always call this routine */
1804
1805	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1806		netif_wake_queue(dev);
1807
1808	/* Process rcv interrupts - frequent case, so always call this routine */
1809
1810	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1811
1812	/*
1813	 * Transmit and receive producer and completion indices are updated on the
1814	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1815	 * case is that we'll be processing either LLC transmit or receive buffers,
1816	 * we'll optimize I/O writes by doing a single register write here.
1817	 */
1818
1819	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1820
1821	/* Read PDQ Port Status register to find out which interrupts need processing */
1822
1823	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1824
1825	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1826
1827	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1828		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1829	}
1830
1831
1832/*
1833 * =================
1834 * = dfx_interrupt =
1835 * =================
1836 *
1837 * Overview:
1838 *   Interrupt processing routine
1839 *
1840 * Returns:
1841 *   Whether a valid interrupt was seen.
1842 *
1843 * Arguments:
1844 *   irq	- interrupt vector
1845 *   dev_id	- pointer to device information
1846 *
1847 * Functional Description:
1848 *   This routine calls the interrupt processing routine for this adapter.  It
1849 *   disables and reenables adapter interrupts, as appropriate.  We can support
1850 *   shared interrupts since the incoming dev_id pointer provides our device
1851 *   structure context.
1852 *
1853 * Return Codes:
1854 *   IRQ_HANDLED - an IRQ was handled.
1855 *   IRQ_NONE    - no IRQ was handled.
1856 *
1857 * Assumptions:
1858 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1859 *   on Intel-based systems) is done by the operating system outside this
1860 *   routine.
1861 *
1862 *	 System interrupts are enabled through this call.
1863 *
1864 * Side Effects:
1865 *   Interrupts are disabled, then reenabled at the adapter.
1866 */
1867
1868static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1869{
1870	struct net_device *dev = dev_id;
1871	DFX_board_t *bp = netdev_priv(dev);
1872	struct device *bdev = bp->bus_dev;
1873	int dfx_bus_pci = dev_is_pci(bdev);
1874	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1875	int dfx_bus_tc = DFX_BUS_TC(bdev);
1876
1877	/* Service adapter interrupts */
1878
1879	if (dfx_bus_pci) {
1880		u32 status;
1881
1882		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1883		if (!(status & PFI_STATUS_M_PDQ_INT))
1884			return IRQ_NONE;
1885
1886		spin_lock(&bp->lock);
1887
1888		/* Disable PDQ-PFI interrupts at PFI */
1889		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1890				    PFI_MODE_M_DMA_ENB);
1891
1892		/* Call interrupt service routine for this adapter */
1893		dfx_int_common(dev);
1894
1895		/* Clear PDQ interrupt status bit and reenable interrupts */
1896		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1897				    PFI_STATUS_M_PDQ_INT);
1898		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1899				    (PFI_MODE_M_PDQ_INT_ENB |
1900				     PFI_MODE_M_DMA_ENB));
1901
1902		spin_unlock(&bp->lock);
1903	}
1904	if (dfx_bus_eisa) {
1905		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1906		u8 status;
1907
1908		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1909		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1910			return IRQ_NONE;
1911
1912		spin_lock(&bp->lock);
1913
1914		/* Disable interrupts at the ESIC */
1915		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1916		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1917
1918		/* Call interrupt service routine for this adapter */
1919		dfx_int_common(dev);
1920
1921		/* Reenable interrupts at the ESIC */
1922		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1923		status |= PI_CONFIG_STAT_0_M_INT_ENB;
1924		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1925
1926		spin_unlock(&bp->lock);
1927	}
1928	if (dfx_bus_tc) {
1929		u32 status;
1930
1931		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1932		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1933				PI_PSTATUS_M_XMT_DATA_PENDING |
1934				PI_PSTATUS_M_SMT_HOST_PENDING |
1935				PI_PSTATUS_M_UNSOL_PENDING |
1936				PI_PSTATUS_M_CMD_RSP_PENDING |
1937				PI_PSTATUS_M_CMD_REQ_PENDING |
1938				PI_PSTATUS_M_TYPE_0_PENDING)))
1939			return IRQ_NONE;
1940
1941		spin_lock(&bp->lock);
1942
1943		/* Call interrupt service routine for this adapter */
1944		dfx_int_common(dev);
1945
1946		spin_unlock(&bp->lock);
1947	}
1948
1949	return IRQ_HANDLED;
1950}
1951
1952
1953/*
1954 * =====================
1955 * = dfx_ctl_get_stats =
1956 * =====================
1957 *
1958 * Overview:
1959 *   Get statistics for FDDI adapter
1960 *
1961 * Returns:
1962 *   Pointer to FDDI statistics structure
1963 *
1964 * Arguments:
1965 *   dev - pointer to device information
1966 *
1967 * Functional Description:
1968 *   Gets current MIB objects from adapter, then
1969 *   returns FDDI statistics structure as defined
1970 *   in if_fddi.h.
1971 *
1972 *   Note: Since the FDDI statistics structure is
1973 *   still new and the device structure doesn't
1974 *   have an FDDI-specific get statistics handler,
1975 *   we'll return the FDDI statistics structure as
1976 *   a pointer to an Ethernet statistics structure.
1977 *   That way, at least the first part of the statistics
1978 *   structure can be decoded properly, and it allows
1979 *   "smart" applications to perform a second cast to
1980 *   decode the FDDI-specific statistics.
1981 *
1982 *   We'll have to pay attention to this routine as the
1983 *   device structure becomes more mature and LAN media
1984 *   independent.
1985 *
1986 * Return Codes:
1987 *   None
1988 *
1989 * Assumptions:
1990 *   None
1991 *
1992 * Side Effects:
1993 *   None
1994 */
1995
1996static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1997	{
1998	DFX_board_t *bp = netdev_priv(dev);
1999
2000	/* Fill the bp->stats structure with driver-maintained counters */
2001
2002	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2003	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2004	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2005	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2006	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2007				   bp->rcv_frame_status_errors +
2008				   bp->rcv_length_errors;
2009	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2010	bp->stats.gen.rx_dropped = bp->rcv_discards;
2011	bp->stats.gen.tx_dropped = bp->xmt_discards;
2012	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2013	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2014
2015	/* Get FDDI SMT MIB objects */
2016
2017	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2018	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2019		return (struct net_device_stats *)&bp->stats;
2020
2021	/* Fill the bp->stats structure with the SMT MIB object values */
2022
2023	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2024	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2025	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2026	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2027	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2028	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2029	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2030	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2031	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2032	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2033	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2034	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2035	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2036	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2037	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2038	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2039	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2040	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2041	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2042	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2043	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2044	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2045	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2046	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2047	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2048	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2049	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2050	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2051	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2052	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2053	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2054	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2055	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2056	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2057	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2058	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2059	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2060	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2061	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2062	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2063	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2064	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2065	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2066	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2067	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2068	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2069	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2070	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2071	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2072	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2073	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2074	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2075	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2076	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2077	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2078	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2079	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2080	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2081	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2082	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2083	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2084	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2085	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2086	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2087	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2088	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2089	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2090	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2091	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2092	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2093	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2094	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2095	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2096	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2097	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2098	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2099	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2100	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2101	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2102	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2103	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2104	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2105	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2106	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2107	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2108	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2109	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2110	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2111	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2112	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2113	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2114	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2115
2116	/* Get FDDI counters */
2117
2118	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2119	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2120		return (struct net_device_stats *)&bp->stats;
2121
2122	/* Fill the bp->stats structure with the FDDI counter values */
2123
2124	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2125	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2126	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2127	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2128	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2129	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2130	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2131	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2132	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2133	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2134	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2135
2136	return (struct net_device_stats *)&bp->stats;
2137	}
2138
2139
2140/*
2141 * ==============================
2142 * = dfx_ctl_set_multicast_list =
2143 * ==============================
2144 *
2145 * Overview:
2146 *   Enable/Disable LLC frame promiscuous mode reception
2147 *   on the adapter and/or update multicast address table.
2148 *
2149 * Returns:
2150 *   None
2151 *
2152 * Arguments:
2153 *   dev - pointer to device information
2154 *
2155 * Functional Description:
2156 *   This routine follows a fairly simple algorithm for setting the
2157 *   adapter filters and CAM:
2158 *
2159 *		if IFF_PROMISC flag is set
2160 *			enable LLC individual/group promiscuous mode
2161 *		else
2162 *			disable LLC individual/group promiscuous mode
2163 *			if number of incoming multicast addresses >
2164 *					(CAM max size - number of unicast addresses in CAM)
2165 *				enable LLC group promiscuous mode
2166 *				set driver-maintained multicast address count to zero
2167 *			else
2168 *				disable LLC group promiscuous mode
2169 *				set driver-maintained multicast address count to incoming count
2170 *			update adapter CAM
2171 *		update adapter filters
2172 *
2173 * Return Codes:
2174 *   None
2175 *
2176 * Assumptions:
2177 *   Multicast addresses are presented in canonical (LSB) format.
2178 *
2179 * Side Effects:
2180 *   On-board adapter CAM and filters are updated.
2181 */
2182
2183static void dfx_ctl_set_multicast_list(struct net_device *dev)
2184{
2185	DFX_board_t *bp = netdev_priv(dev);
2186	int					i;			/* used as index in for loop */
2187	struct netdev_hw_addr *ha;
2188
2189	/* Enable LLC frame promiscuous mode, if necessary */
2190
2191	if (dev->flags & IFF_PROMISC)
2192		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2193
2194	/* Else, update multicast address table */
2195
2196	else
2197		{
2198		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2199		/*
2200		 * Check whether incoming multicast address count exceeds table size
2201		 *
2202		 * Note: The adapters utilize an on-board 64 entry CAM for
2203		 *       supporting perfect filtering of multicast packets
2204		 *		 and bridge functions when adding unicast addresses.
2205		 *		 There is no hash function available.  To support
2206		 *		 additional multicast addresses, the all multicast
2207		 *		 filter (LLC group promiscuous mode) must be enabled.
2208		 *
2209		 *		 The firmware reserves two CAM entries for SMT-related
2210		 *		 multicast addresses, which leaves 62 entries available.
2211		 *		 The following code ensures that we're not being asked
2212		 *		 to add more than 62 addresses to the CAM.  If we are,
2213		 *		 the driver will enable the all multicast filter.
2214		 *		 Should the number of multicast addresses drop below
2215		 *		 the high water mark, the filter will be disabled and
2216		 *		 perfect filtering will be used.
2217		 */
2218
2219		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2220			{
2221			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2222			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2223			}
2224		else
2225			{
2226			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2227			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2228			}
2229
2230		/* Copy addresses to multicast address table, then update adapter CAM */
2231
2232		i = 0;
2233		netdev_for_each_mc_addr(ha, dev)
2234			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2235			       ha->addr, FDDI_K_ALEN);
2236
2237		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2238			{
2239			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2240			}
2241		else
2242			{
2243			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2244			}
2245		}
2246
2247	/* Update adapter filters */
2248
2249	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2250		{
2251		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2252		}
2253	else
2254		{
2255		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2256		}
2257	}
2258
2259
2260/*
2261 * ===========================
2262 * = dfx_ctl_set_mac_address =
2263 * ===========================
2264 *
2265 * Overview:
2266 *   Add node address override (unicast address) to adapter
2267 *   CAM and update dev_addr field in device table.
2268 *
2269 * Returns:
2270 *   None
2271 *
2272 * Arguments:
2273 *   dev  - pointer to device information
2274 *   addr - pointer to sockaddr structure containing unicast address to add
2275 *
2276 * Functional Description:
2277 *   The adapter supports node address overrides by adding one or more
2278 *   unicast addresses to the adapter CAM.  This is similar to adding
2279 *   multicast addresses.  In this routine we'll update the driver and
2280 *   device structures with the new address, then update the adapter CAM
2281 *   to ensure that the adapter will copy and strip frames destined and
2282 *   sourced by that address.
2283 *
2284 * Return Codes:
2285 *   Always returns zero.
2286 *
2287 * Assumptions:
2288 *   The address pointed to by addr->sa_data is a valid unicast
2289 *   address and is presented in canonical (LSB) format.
2290 *
2291 * Side Effects:
2292 *   On-board adapter CAM is updated.  On-board adapter filters
2293 *   may be updated.
2294 */
2295
2296static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2297	{
2298	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2299	DFX_board_t *bp = netdev_priv(dev);
2300
2301	/* Copy unicast address to driver-maintained structs and update count */
2302
2303	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2304	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2305	bp->uc_count = 1;
2306
2307	/*
2308	 * Verify we're not exceeding the CAM size by adding unicast address
2309	 *
2310	 * Note: It's possible that before entering this routine we've
2311	 *       already filled the CAM with 62 multicast addresses.
2312	 *		 Since we need to place the node address override into
2313	 *		 the CAM, we have to check to see that we're not
2314	 *		 exceeding the CAM size.  If we are, we have to enable
2315	 *		 the LLC group (multicast) promiscuous mode filter as
2316	 *		 in dfx_ctl_set_multicast_list.
2317	 */
2318
2319	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2320		{
2321		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2322		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2323
2324		/* Update adapter filters */
2325
2326		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327			{
2328			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329			}
2330		else
2331			{
2332			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333			}
2334		}
2335
2336	/* Update adapter CAM with new unicast address */
2337
2338	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2339		{
2340		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2341		}
2342	else
2343		{
2344		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2345		}
2346	return 0;			/* always return zero */
2347	}
2348
2349
2350/*
2351 * ======================
2352 * = dfx_ctl_update_cam =
2353 * ======================
2354 *
2355 * Overview:
2356 *   Procedure to update adapter CAM (Content Addressable Memory)
2357 *   with desired unicast and multicast address entries.
2358 *
2359 * Returns:
2360 *   Condition code
2361 *
2362 * Arguments:
2363 *   bp - pointer to board information
2364 *
2365 * Functional Description:
2366 *   Updates adapter CAM with current contents of board structure
2367 *   unicast and multicast address tables.  Since there are only 62
2368 *   free entries in CAM, this routine ensures that the command
2369 *   request buffer is not overrun.
2370 *
2371 * Return Codes:
2372 *   DFX_K_SUCCESS - Request succeeded
2373 *   DFX_K_FAILURE - Request failed
2374 *
2375 * Assumptions:
2376 *   All addresses being added (unicast and multicast) are in canonical
2377 *   order.
2378 *
2379 * Side Effects:
2380 *   On-board adapter CAM is updated.
2381 */
2382
2383static int dfx_ctl_update_cam(DFX_board_t *bp)
2384	{
2385	int			i;				/* used as index */
2386	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2387
2388	/*
2389	 * Fill in command request information
2390	 *
2391	 * Note: Even though both the unicast and multicast address
2392	 *       table entries are stored as contiguous 6 byte entries,
2393	 *		 the firmware address filter set command expects each
2394	 *		 entry to be two longwords (8 bytes total).  We must be
2395	 *		 careful to only copy the six bytes of each unicast and
2396	 *		 multicast table entry into each command entry.  This
2397	 *		 is also why we must first clear the entire command
2398	 *		 request buffer.
2399	 */
2400
2401	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2402	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2403	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2404
2405	/* Now add unicast addresses to command request buffer, if any */
2406
2407	for (i=0; i < (int)bp->uc_count; i++)
2408		{
2409		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2410			{
2411			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2412			p_addr++;			/* point to next command entry */
2413			}
2414		}
2415
2416	/* Now add multicast addresses to command request buffer, if any */
2417
2418	for (i=0; i < (int)bp->mc_count; i++)
2419		{
2420		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2421			{
2422			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2423			p_addr++;			/* point to next command entry */
2424			}
2425		}
2426
2427	/* Issue command to update adapter CAM, then return */
2428
2429	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2430		return DFX_K_FAILURE;
2431	return DFX_K_SUCCESS;
2432	}
2433
2434
2435/*
2436 * ==========================
2437 * = dfx_ctl_update_filters =
2438 * ==========================
2439 *
2440 * Overview:
2441 *   Procedure to update adapter filters with desired
2442 *   filter settings.
2443 *
2444 * Returns:
2445 *   Condition code
2446 *
2447 * Arguments:
2448 *   bp - pointer to board information
2449 *
2450 * Functional Description:
2451 *   Enables or disables filter using current filter settings.
2452 *
2453 * Return Codes:
2454 *   DFX_K_SUCCESS - Request succeeded.
2455 *   DFX_K_FAILURE - Request failed.
2456 *
2457 * Assumptions:
2458 *   We must always pass up packets destined to the broadcast
2459 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2460 *   broadcast filter enabled.
2461 *
2462 * Side Effects:
2463 *   On-board adapter filters are updated.
2464 */
2465
2466static int dfx_ctl_update_filters(DFX_board_t *bp)
2467	{
2468	int	i = 0;					/* used as index */
2469
2470	/* Fill in command request information */
2471
2472	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2473
2474	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2475
2476	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2477	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2478
2479	/* Initialize LLC Individual/Group Promiscuous filter */
2480
2481	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2482	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2483
2484	/* Initialize LLC Group Promiscuous filter */
2485
2486	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2487	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2488
2489	/* Terminate the item code list */
2490
2491	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2492
2493	/* Issue command to update adapter filters, then return */
2494
2495	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2496		return DFX_K_FAILURE;
2497	return DFX_K_SUCCESS;
2498	}
2499
2500
2501/*
2502 * ======================
2503 * = dfx_hw_dma_cmd_req =
2504 * ======================
2505 *
2506 * Overview:
2507 *   Sends PDQ DMA command to adapter firmware
2508 *
2509 * Returns:
2510 *   Condition code
2511 *
2512 * Arguments:
2513 *   bp - pointer to board information
2514 *
2515 * Functional Description:
2516 *   The command request and response buffers are posted to the adapter in the manner
2517 *   described in the PDQ Port Specification:
2518 *
2519 *		1. Command Response Buffer is posted to adapter.
2520 *		2. Command Request Buffer is posted to adapter.
2521 *		3. Command Request consumer index is polled until it indicates that request
2522 *         buffer has been DMA'd to adapter.
2523 *		4. Command Response consumer index is polled until it indicates that response
2524 *         buffer has been DMA'd from adapter.
2525 *
2526 *   This ordering ensures that a response buffer is already available for the firmware
2527 *   to use once it's done processing the request buffer.
2528 *
2529 * Return Codes:
2530 *   DFX_K_SUCCESS	  - DMA command succeeded
2531 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2532 *   DFX_K_HW_TIMEOUT - DMA command timed out
2533 *
2534 * Assumptions:
2535 *   Command request buffer has already been filled with desired DMA command.
2536 *
2537 * Side Effects:
2538 *   None
2539 */
2540
2541static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2542	{
2543	int status;			/* adapter status */
2544	int timeout_cnt;	/* used in for loops */
2545
2546	/* Make sure the adapter is in a state that we can issue the DMA command in */
2547
2548	status = dfx_hw_adap_state_rd(bp);
2549	if ((status == PI_STATE_K_RESET)		||
2550		(status == PI_STATE_K_HALTED)		||
2551		(status == PI_STATE_K_DMA_UNAVAIL)	||
2552		(status == PI_STATE_K_UPGRADE))
2553		return DFX_K_OUTSTATE;
2554
2555	/* Put response buffer on the command response queue */
2556
2557	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2558			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2559	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2560
2561	/* Bump (and wrap) the producer index and write out to register */
2562
2563	bp->cmd_rsp_reg.index.prod += 1;
2564	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2565	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2566
2567	/* Put request buffer on the command request queue */
2568
2569	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2570			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2571	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2572
2573	/* Bump (and wrap) the producer index and write out to register */
2574
2575	bp->cmd_req_reg.index.prod += 1;
2576	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2577	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2578
2579	/*
2580	 * Here we wait for the command request consumer index to be equal
2581	 * to the producer, indicating that the adapter has DMAed the request.
2582	 */
2583
2584	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2585		{
2586		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2587			break;
2588		udelay(100);			/* wait for 100 microseconds */
2589		}
2590	if (timeout_cnt == 0)
2591		return DFX_K_HW_TIMEOUT;
2592
2593	/* Bump (and wrap) the completion index and write out to register */
2594
2595	bp->cmd_req_reg.index.comp += 1;
2596	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2597	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2598
2599	/*
2600	 * Here we wait for the command response consumer index to be equal
2601	 * to the producer, indicating that the adapter has DMAed the response.
2602	 */
2603
2604	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2605		{
2606		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2607			break;
2608		udelay(100);			/* wait for 100 microseconds */
2609		}
2610	if (timeout_cnt == 0)
2611		return DFX_K_HW_TIMEOUT;
2612
2613	/* Bump (and wrap) the completion index and write out to register */
2614
2615	bp->cmd_rsp_reg.index.comp += 1;
2616	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2617	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2618	return DFX_K_SUCCESS;
2619	}
2620
2621
2622/*
2623 * ========================
2624 * = dfx_hw_port_ctrl_req =
2625 * ========================
2626 *
2627 * Overview:
2628 *   Sends PDQ port control command to adapter firmware
2629 *
2630 * Returns:
2631 *   Host data register value in host_data if ptr is not NULL
2632 *
2633 * Arguments:
2634 *   bp			- pointer to board information
2635 *	 command	- port control command
2636 *	 data_a		- port data A register value
2637 *	 data_b		- port data B register value
2638 *	 host_data	- ptr to host data register value
2639 *
2640 * Functional Description:
2641 *   Send generic port control command to adapter by writing
2642 *   to various PDQ port registers, then polling for completion.
2643 *
2644 * Return Codes:
2645 *   DFX_K_SUCCESS	  - port control command succeeded
2646 *   DFX_K_HW_TIMEOUT - port control command timed out
2647 *
2648 * Assumptions:
2649 *   None
2650 *
2651 * Side Effects:
2652 *   None
2653 */
2654
2655static int dfx_hw_port_ctrl_req(
2656	DFX_board_t	*bp,
2657	PI_UINT32	command,
2658	PI_UINT32	data_a,
2659	PI_UINT32	data_b,
2660	PI_UINT32	*host_data
2661	)
2662
2663	{
2664	PI_UINT32	port_cmd;		/* Port Control command register value */
2665	int			timeout_cnt;	/* used in for loops */
2666
2667	/* Set Command Error bit in command longword */
2668
2669	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2670
2671	/* Issue port command to the adapter */
2672
2673	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2674	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2675	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2676
2677	/* Now wait for command to complete */
2678
2679	if (command == PI_PCTRL_M_BLAST_FLASH)
2680		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2681	else
2682		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2683
2684	for (; timeout_cnt > 0; timeout_cnt--)
2685		{
2686		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2687		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2688			break;
2689		udelay(100);			/* wait for 100 microseconds */
2690		}
2691	if (timeout_cnt == 0)
2692		return DFX_K_HW_TIMEOUT;
2693
2694	/*
2695	 * If the address of host_data is non-zero, assume caller has supplied a
2696	 * non NULL pointer, and return the contents of the HOST_DATA register in
2697	 * it.
2698	 */
2699
2700	if (host_data != NULL)
2701		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2702	return DFX_K_SUCCESS;
2703	}
2704
2705
2706/*
2707 * =====================
2708 * = dfx_hw_adap_reset =
2709 * =====================
2710 *
2711 * Overview:
2712 *   Resets adapter
2713 *
2714 * Returns:
2715 *   None
2716 *
2717 * Arguments:
2718 *   bp   - pointer to board information
2719 *   type - type of reset to perform
2720 *
2721 * Functional Description:
2722 *   Issue soft reset to adapter by writing to PDQ Port Reset
2723 *   register.  Use incoming reset type to tell adapter what
2724 *   kind of reset operation to perform.
2725 *
2726 * Return Codes:
2727 *   None
2728 *
2729 * Assumptions:
2730 *   This routine merely issues a soft reset to the adapter.
2731 *   It is expected that after this routine returns, the caller
2732 *   will appropriately poll the Port Status register for the
2733 *   adapter to enter the proper state.
2734 *
2735 * Side Effects:
2736 *   Internal adapter registers are cleared.
2737 */
2738
2739static void dfx_hw_adap_reset(
2740	DFX_board_t	*bp,
2741	PI_UINT32	type
2742	)
2743
2744	{
2745	/* Set Reset type and assert reset */
2746
2747	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2748	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2749
2750	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2751
2752	udelay(20);
2753
2754	/* Deassert reset */
2755
2756	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2757	}
2758
2759
2760/*
2761 * ========================
2762 * = dfx_hw_adap_state_rd =
2763 * ========================
2764 *
2765 * Overview:
2766 *   Returns current adapter state
2767 *
2768 * Returns:
2769 *   Adapter state per PDQ Port Specification
2770 *
2771 * Arguments:
2772 *   bp - pointer to board information
2773 *
2774 * Functional Description:
2775 *   Reads PDQ Port Status register and returns adapter state.
2776 *
2777 * Return Codes:
2778 *   None
2779 *
2780 * Assumptions:
2781 *   None
2782 *
2783 * Side Effects:
2784 *   None
2785 */
2786
2787static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2788	{
2789	PI_UINT32 port_status;		/* Port Status register value */
2790
2791	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2792	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2793	}
2794
2795
2796/*
2797 * =====================
2798 * = dfx_hw_dma_uninit =
2799 * =====================
2800 *
2801 * Overview:
2802 *   Brings adapter to DMA_UNAVAILABLE state
2803 *
2804 * Returns:
2805 *   Condition code
2806 *
2807 * Arguments:
2808 *   bp   - pointer to board information
2809 *   type - type of reset to perform
2810 *
2811 * Functional Description:
2812 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2813 *		1. Set reset type bit in Port Data A Register then reset adapter.
2814 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2815 *
2816 * Return Codes:
2817 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2818 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2819 *
2820 * Assumptions:
2821 *   None
2822 *
2823 * Side Effects:
2824 *   Internal adapter registers are cleared.
2825 */
2826
2827static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2828	{
2829	int timeout_cnt;	/* used in for loops */
2830
2831	/* Set reset type bit and reset adapter */
2832
2833	dfx_hw_adap_reset(bp, type);
2834
2835	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2836
2837	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2838		{
2839		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2840			break;
2841		udelay(100);					/* wait for 100 microseconds */
2842		}
2843	if (timeout_cnt == 0)
2844		return DFX_K_HW_TIMEOUT;
2845	return DFX_K_SUCCESS;
2846	}
2847
2848/*
2849 *	Align an sk_buff to a boundary power of 2
2850 *
2851 */
2852
2853static void my_skb_align(struct sk_buff *skb, int n)
2854{
2855	unsigned long x = (unsigned long)skb->data;
2856	unsigned long v;
2857
2858	v = ALIGN(x, n);	/* Where we want to be */
2859
2860	skb_reserve(skb, v - x);
2861}
2862
2863
2864/*
2865 * ================
2866 * = dfx_rcv_init =
2867 * ================
2868 *
2869 * Overview:
2870 *   Produces buffers to adapter LLC Host receive descriptor block
2871 *
2872 * Returns:
2873 *   None
2874 *
2875 * Arguments:
2876 *   bp - pointer to board information
2877 *   get_buffers - non-zero if buffers to be allocated
2878 *
2879 * Functional Description:
2880 *   This routine can be called during dfx_adap_init() or during an adapter
2881 *	 reset.  It initializes the descriptor block and produces all allocated
2882 *   LLC Host queue receive buffers.
2883 *
2884 * Return Codes:
2885 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2886 *   dynamic buffer allocation). If the buffer allocation failed, the
2887 *   already allocated buffers will not be released and the caller should do
2888 *   this.
2889 *
2890 * Assumptions:
2891 *   The PDQ has been reset and the adapter and driver maintained Type 2
2892 *   register indices are cleared.
2893 *
2894 * Side Effects:
2895 *   Receive buffers are posted to the adapter LLC queue and the adapter
2896 *   is notified.
2897 */
2898
2899static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2900	{
2901	int	i, j;					/* used in for loop */
2902
2903	/*
2904	 *  Since each receive buffer is a single fragment of same length, initialize
2905	 *  first longword in each receive descriptor for entire LLC Host descriptor
2906	 *  block.  Also initialize second longword in each receive descriptor with
2907	 *  physical address of receive buffer.  We'll always allocate receive
2908	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2909	 *  block and produce new receive buffers by simply updating the receive
2910	 *  producer index.
2911	 *
2912	 * 	Assumptions:
2913	 *		To support all shipping versions of PDQ, the receive buffer size
2914	 *		must be mod 128 in length and the physical address must be 128 byte
2915	 *		aligned.  In other words, bits 0-6 of the length and address must
2916	 *		be zero for the following descriptor field entries to be correct on
2917	 *		all PDQ-based boards.  We guaranteed both requirements during
2918	 *		driver initialization when we allocated memory for the receive buffers.
2919	 */
2920
2921	if (get_buffers) {
2922#ifdef DYNAMIC_BUFFERS
2923	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2924		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2925		{
2926			struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
 
 
 
 
2927			if (!newskb)
2928				return -ENOMEM;
2929			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2930				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2931			/*
2932			 * align to 128 bytes for compatibility with
2933			 * the old EISA boards.
2934			 */
2935
2936			my_skb_align(newskb, 128);
 
 
 
 
 
 
 
 
 
 
 
 
 
2937			bp->descr_block_virt->rcv_data[i + j].long_1 =
2938				(u32)dma_map_single(bp->bus_dev, newskb->data,
2939						    NEW_SKB_SIZE,
2940						    DMA_FROM_DEVICE);
2941			/*
2942			 * p_rcv_buff_va is only used inside the
2943			 * kernel so we put the skb pointer here.
2944			 */
2945			bp->p_rcv_buff_va[i+j] = (char *) newskb;
2946		}
2947#else
2948	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2949		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2950			{
2951			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2952				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2953			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2954			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2955			}
2956#endif
2957	}
2958
2959	/* Update receive producer and Type 2 register */
2960
2961	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2962	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2963	return 0;
2964	}
2965
2966
2967/*
2968 * =========================
2969 * = dfx_rcv_queue_process =
2970 * =========================
2971 *
2972 * Overview:
2973 *   Process received LLC frames.
2974 *
2975 * Returns:
2976 *   None
2977 *
2978 * Arguments:
2979 *   bp - pointer to board information
2980 *
2981 * Functional Description:
2982 *   Received LLC frames are processed until there are no more consumed frames.
2983 *   Once all frames are processed, the receive buffers are returned to the
2984 *   adapter.  Note that this algorithm fixes the length of time that can be spent
2985 *   in this routine, because there are a fixed number of receive buffers to
2986 *   process and buffers are not produced until this routine exits and returns
2987 *   to the ISR.
2988 *
2989 * Return Codes:
2990 *   None
2991 *
2992 * Assumptions:
2993 *   None
2994 *
2995 * Side Effects:
2996 *   None
2997 */
2998
2999static void dfx_rcv_queue_process(
3000	DFX_board_t *bp
3001	)
3002
3003	{
3004	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3005	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3006	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3007	struct sk_buff		*skb;				/* pointer to a sk_buff to hold incoming packet data */
3008
3009	/* Service all consumed LLC receive frames */
3010
3011	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3012	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3013		{
3014		/* Process any errors */
3015
3016		int entry;
3017
3018		entry = bp->rcv_xmt_reg.index.rcv_comp;
3019#ifdef DYNAMIC_BUFFERS
3020		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3021#else
3022		p_buff = bp->p_rcv_buff_va[entry];
3023#endif
 
 
 
 
 
3024		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3025
3026		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3027			{
3028			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3029				bp->rcv_crc_errors++;
3030			else
3031				bp->rcv_frame_status_errors++;
3032			}
3033		else
3034		{
3035			int rx_in_place = 0;
3036
3037			/* The frame was received without errors - verify packet length */
3038
3039			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3040			pkt_len -= 4;				/* subtract 4 byte CRC */
3041			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3042				bp->rcv_length_errors++;
3043			else{
3044#ifdef DYNAMIC_BUFFERS
 
 
3045				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3046					struct sk_buff *newskb;
3047
3048					newskb = dev_alloc_skb(NEW_SKB_SIZE);
 
3049					if (newskb){
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3050						rx_in_place = 1;
3051
3052						my_skb_align(newskb, 128);
3053						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3054						dma_unmap_single(bp->bus_dev,
3055							bp->descr_block_virt->rcv_data[entry].long_1,
3056							NEW_SKB_SIZE,
3057							DMA_FROM_DEVICE);
3058						skb_reserve(skb, RCV_BUFF_K_PADDING);
3059						bp->p_rcv_buff_va[entry] = (char *)newskb;
3060						bp->descr_block_virt->rcv_data[entry].long_1 =
3061							(u32)dma_map_single(bp->bus_dev,
3062								newskb->data,
3063								NEW_SKB_SIZE,
3064								DMA_FROM_DEVICE);
3065					} else
3066						skb = NULL;
3067				} else
3068#endif
3069					skb = dev_alloc_skb(pkt_len+3);	/* alloc new buffer to pass up, add room for PRH */
 
 
 
3070				if (skb == NULL)
3071					{
3072					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3073					bp->rcv_discards++;
3074					break;
3075					}
3076				else {
3077#ifndef DYNAMIC_BUFFERS
3078					if (! rx_in_place)
3079#endif
3080					{
3081						/* Receive buffer allocated, pass receive packet up */
 
 
 
 
 
 
3082
3083						skb_copy_to_linear_data(skb,
3084							       p_buff + RCV_BUFF_K_PADDING,
3085							       pkt_len + 3);
3086					}
3087
3088					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3089					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3090					skb->protocol = fddi_type_trans(skb, bp->dev);
3091					bp->rcv_total_bytes += skb->len;
3092					netif_rx(skb);
3093
3094					/* Update the rcv counters */
3095					bp->rcv_total_frames++;
3096					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3097						bp->rcv_multicast_frames++;
3098				}
3099			}
3100			}
3101
3102		/*
3103		 * Advance the producer (for recycling) and advance the completion
3104		 * (for servicing received frames).  Note that it is okay to
3105		 * advance the producer without checking that it passes the
3106		 * completion index because they are both advanced at the same
3107		 * rate.
3108		 */
3109
3110		bp->rcv_xmt_reg.index.rcv_prod += 1;
3111		bp->rcv_xmt_reg.index.rcv_comp += 1;
3112		}
3113	}
3114
3115
3116/*
3117 * =====================
3118 * = dfx_xmt_queue_pkt =
3119 * =====================
3120 *
3121 * Overview:
3122 *   Queues packets for transmission
3123 *
3124 * Returns:
3125 *   Condition code
3126 *
3127 * Arguments:
3128 *   skb - pointer to sk_buff to queue for transmission
3129 *   dev - pointer to device information
3130 *
3131 * Functional Description:
3132 *   Here we assume that an incoming skb transmit request
3133 *   is contained in a single physically contiguous buffer
3134 *   in which the virtual address of the start of packet
3135 *   (skb->data) can be converted to a physical address
3136 *   by using pci_map_single().
3137 *
3138 *   Since the adapter architecture requires a three byte
3139 *   packet request header to prepend the start of packet,
3140 *   we'll write the three byte field immediately prior to
3141 *   the FC byte.  This assumption is valid because we've
3142 *   ensured that dev->hard_header_len includes three pad
3143 *   bytes.  By posting a single fragment to the adapter,
3144 *   we'll reduce the number of descriptor fetches and
3145 *   bus traffic needed to send the request.
3146 *
3147 *   Also, we can't free the skb until after it's been DMA'd
3148 *   out by the adapter, so we'll queue it in the driver and
3149 *   return it in dfx_xmt_done.
3150 *
3151 * Return Codes:
3152 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3153 *	 1 - caller should requeue the sk_buff for later transmission
3154 *
3155 * Assumptions:
3156 *	 First and foremost, we assume the incoming skb pointer
3157 *   is NOT NULL and is pointing to a valid sk_buff structure.
3158 *
3159 *   The outgoing packet is complete, starting with the
3160 *   frame control byte including the last byte of data,
3161 *   but NOT including the 4 byte CRC.  We'll let the
3162 *   adapter hardware generate and append the CRC.
3163 *
3164 *   The entire packet is stored in one physically
3165 *   contiguous buffer which is not cached and whose
3166 *   32-bit physical address can be determined.
3167 *
3168 *   It's vital that this routine is NOT reentered for the
3169 *   same board and that the OS is not in another section of
3170 *   code (eg. dfx_int_common) for the same board on a
3171 *   different thread.
3172 *
3173 * Side Effects:
3174 *   None
3175 */
3176
3177static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3178				     struct net_device *dev)
3179	{
3180	DFX_board_t		*bp = netdev_priv(dev);
3181	u8			prod;				/* local transmit producer index */
3182	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3183	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
 
3184	unsigned long		flags;
3185
3186	netif_stop_queue(dev);
3187
3188	/*
3189	 * Verify that incoming transmit request is OK
3190	 *
3191	 * Note: The packet size check is consistent with other
3192	 *		 Linux device drivers, although the correct packet
3193	 *		 size should be verified before calling the
3194	 *		 transmit routine.
3195	 */
3196
3197	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3198	{
3199		printk("%s: Invalid packet length - %u bytes\n",
3200			dev->name, skb->len);
3201		bp->xmt_length_errors++;		/* bump error counter */
3202		netif_wake_queue(dev);
3203		dev_kfree_skb(skb);
3204		return NETDEV_TX_OK;			/* return "success" */
3205	}
3206	/*
3207	 * See if adapter link is available, if not, free buffer
3208	 *
3209	 * Note: If the link isn't available, free buffer and return 0
3210	 *		 rather than tell the upper layer to requeue the packet.
3211	 *		 The methodology here is that by the time the link
3212	 *		 becomes available, the packet to be sent will be
3213	 *		 fairly stale.  By simply dropping the packet, the
3214	 *		 higher layer protocols will eventually time out
3215	 *		 waiting for response packets which it won't receive.
3216	 */
3217
3218	if (bp->link_available == PI_K_FALSE)
3219		{
3220		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3221			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3222		else
3223			{
3224			bp->xmt_discards++;					/* bump error counter */
3225			dev_kfree_skb(skb);		/* free sk_buff now */
3226			netif_wake_queue(dev);
3227			return NETDEV_TX_OK;		/* return "success" */
3228			}
3229		}
3230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3231	spin_lock_irqsave(&bp->lock, flags);
3232
3233	/* Get the current producer and the next free xmt data descriptor */
3234
3235	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3236	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3237
3238	/*
3239	 * Get pointer to auxiliary queue entry to contain information
3240	 * for this packet.
3241	 *
3242	 * Note: The current xmt producer index will become the
3243	 *	 current xmt completion index when we complete this
3244	 *	 packet later on.  So, we'll get the pointer to the
3245	 *	 next auxiliary queue entry now before we bump the
3246	 *	 producer index.
3247	 */
3248
3249	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3250
3251	/* Write the three PRH bytes immediately before the FC byte */
3252
3253	skb_push(skb,3);
3254	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3255	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3256	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3257
3258	/*
3259	 * Write the descriptor with buffer info and bump producer
3260	 *
3261	 * Note: Since we need to start DMA from the packet request
3262	 *		 header, we'll add 3 bytes to the DMA buffer length,
3263	 *		 and we'll determine the physical address of the
3264	 *		 buffer from the PRH, not skb->data.
3265	 *
3266	 * Assumptions:
3267	 *		 1. Packet starts with the frame control (FC) byte
3268	 *		    at skb->data.
3269	 *		 2. The 4-byte CRC is not appended to the buffer or
3270	 *			included in the length.
3271	 *		 3. Packet length (skb->len) is from FC to end of
3272	 *			data, inclusive.
3273	 *		 4. The packet length does not exceed the maximum
3274	 *			FDDI LLC frame length of 4491 bytes.
3275	 *		 5. The entire packet is contained in a physically
3276	 *			contiguous, non-cached, locked memory space
3277	 *			comprised of a single buffer pointed to by
3278	 *			skb->data.
3279	 *		 6. The physical address of the start of packet
3280	 *			can be determined from the virtual address
3281	 *			by using pci_map_single() and is only 32-bits
3282	 *			wide.
3283	 */
3284
3285	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3286	p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3287						  skb->len, DMA_TO_DEVICE);
3288
3289	/*
3290	 * Verify that descriptor is actually available
3291	 *
3292	 * Note: If descriptor isn't available, return 1 which tells
3293	 *	 the upper layer to requeue the packet for later
3294	 *	 transmission.
3295	 *
3296	 *       We need to ensure that the producer never reaches the
3297	 *	 completion, except to indicate that the queue is empty.
3298	 */
3299
3300	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3301	{
3302		skb_pull(skb,3);
3303		spin_unlock_irqrestore(&bp->lock, flags);
3304		return NETDEV_TX_BUSY;	/* requeue packet for later */
3305	}
3306
3307	/*
3308	 * Save info for this packet for xmt done indication routine
3309	 *
3310	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3311	 * structure so that we'd have it handy when we complete this
3312	 * packet later (in dfx_xmt_done).  However, since the current
3313	 * transmit architecture guarantees a single fragment for the
3314	 * entire packet, we can simply bump the completion index by
3315	 * one (1) for each completed packet.
3316	 *
3317	 * Note: If this assumption changes and we're presented with
3318	 *	 an inconsistent number of transmit fragments for packet
3319	 *	 data, we'll need to modify this code to save the current
3320	 *	 transmit producer index.
3321	 */
3322
3323	p_xmt_drv_descr->p_skb = skb;
3324
3325	/* Update Type 2 register */
3326
3327	bp->rcv_xmt_reg.index.xmt_prod = prod;
3328	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3329	spin_unlock_irqrestore(&bp->lock, flags);
3330	netif_wake_queue(dev);
3331	return NETDEV_TX_OK;	/* packet queued to adapter */
3332	}
3333
3334
3335/*
3336 * ================
3337 * = dfx_xmt_done =
3338 * ================
3339 *
3340 * Overview:
3341 *   Processes all frames that have been transmitted.
3342 *
3343 * Returns:
3344 *   None
3345 *
3346 * Arguments:
3347 *   bp - pointer to board information
3348 *
3349 * Functional Description:
3350 *   For all consumed transmit descriptors that have not
3351 *   yet been completed, we'll free the skb we were holding
3352 *   onto using dev_kfree_skb and bump the appropriate
3353 *   counters.
3354 *
3355 * Return Codes:
3356 *   None
3357 *
3358 * Assumptions:
3359 *   The Type 2 register is not updated in this routine.  It is
3360 *   assumed that it will be updated in the ISR when dfx_xmt_done
3361 *   returns.
3362 *
3363 * Side Effects:
3364 *   None
3365 */
3366
3367static int dfx_xmt_done(DFX_board_t *bp)
3368	{
3369	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3370	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3371	u8			comp;			/* local transmit completion index */
3372	int 			freed = 0;		/* buffers freed */
3373
3374	/* Service all consumed transmit frames */
3375
3376	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3377	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3378		{
3379		/* Get pointer to the transmit driver descriptor block information */
3380
3381		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3382
3383		/* Increment transmit counters */
3384
3385		bp->xmt_total_frames++;
3386		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3387
3388		/* Return skb to operating system */
3389		comp = bp->rcv_xmt_reg.index.xmt_comp;
3390		dma_unmap_single(bp->bus_dev,
3391				 bp->descr_block_virt->xmt_data[comp].long_1,
3392				 p_xmt_drv_descr->p_skb->len,
3393				 DMA_TO_DEVICE);
3394		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3395
3396		/*
3397		 * Move to start of next packet by updating completion index
3398		 *
3399		 * Here we assume that a transmit packet request is always
3400		 * serviced by posting one fragment.  We can therefore
3401		 * simplify the completion code by incrementing the
3402		 * completion index by one.  This code will need to be
3403		 * modified if this assumption changes.  See comments
3404		 * in dfx_xmt_queue_pkt for more details.
3405		 */
3406
3407		bp->rcv_xmt_reg.index.xmt_comp += 1;
3408		freed++;
3409		}
3410	return freed;
3411	}
3412
3413
3414/*
3415 * =================
3416 * = dfx_rcv_flush =
3417 * =================
3418 *
3419 * Overview:
3420 *   Remove all skb's in the receive ring.
3421 *
3422 * Returns:
3423 *   None
3424 *
3425 * Arguments:
3426 *   bp - pointer to board information
3427 *
3428 * Functional Description:
3429 *   Free's all the dynamically allocated skb's that are
3430 *   currently attached to the device receive ring. This
3431 *   function is typically only used when the device is
3432 *   initialized or reinitialized.
3433 *
3434 * Return Codes:
3435 *   None
3436 *
3437 * Side Effects:
3438 *   None
3439 */
3440#ifdef DYNAMIC_BUFFERS
3441static void dfx_rcv_flush( DFX_board_t *bp )
3442	{
3443	int i, j;
3444
3445	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3446		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3447		{
3448			struct sk_buff *skb;
3449			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3450			if (skb)
 
 
 
 
3451				dev_kfree_skb(skb);
 
3452			bp->p_rcv_buff_va[i+j] = NULL;
3453		}
3454
3455	}
3456#else
3457static inline void dfx_rcv_flush( DFX_board_t *bp )
3458{
3459}
3460#endif /* DYNAMIC_BUFFERS */
3461
3462/*
3463 * =================
3464 * = dfx_xmt_flush =
3465 * =================
3466 *
3467 * Overview:
3468 *   Processes all frames whether they've been transmitted
3469 *   or not.
3470 *
3471 * Returns:
3472 *   None
3473 *
3474 * Arguments:
3475 *   bp - pointer to board information
3476 *
3477 * Functional Description:
3478 *   For all produced transmit descriptors that have not
3479 *   yet been completed, we'll free the skb we were holding
3480 *   onto using dev_kfree_skb and bump the appropriate
3481 *   counters.  Of course, it's possible that some of
3482 *   these transmit requests actually did go out, but we
3483 *   won't make that distinction here.  Finally, we'll
3484 *   update the consumer index to match the producer.
3485 *
3486 * Return Codes:
3487 *   None
3488 *
3489 * Assumptions:
3490 *   This routine does NOT update the Type 2 register.  It
3491 *   is assumed that this routine is being called during a
3492 *   transmit flush interrupt, or a shutdown or close routine.
3493 *
3494 * Side Effects:
3495 *   None
3496 */
3497
3498static void dfx_xmt_flush( DFX_board_t *bp )
3499	{
3500	u32			prod_cons;		/* rcv/xmt consumer block longword */
3501	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3502	u8			comp;			/* local transmit completion index */
3503
3504	/* Flush all outstanding transmit frames */
3505
3506	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3507		{
3508		/* Get pointer to the transmit driver descriptor block information */
3509
3510		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3511
3512		/* Return skb to operating system */
3513		comp = bp->rcv_xmt_reg.index.xmt_comp;
3514		dma_unmap_single(bp->bus_dev,
3515				 bp->descr_block_virt->xmt_data[comp].long_1,
3516				 p_xmt_drv_descr->p_skb->len,
3517				 DMA_TO_DEVICE);
3518		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3519
3520		/* Increment transmit error counter */
3521
3522		bp->xmt_discards++;
3523
3524		/*
3525		 * Move to start of next packet by updating completion index
3526		 *
3527		 * Here we assume that a transmit packet request is always
3528		 * serviced by posting one fragment.  We can therefore
3529		 * simplify the completion code by incrementing the
3530		 * completion index by one.  This code will need to be
3531		 * modified if this assumption changes.  See comments
3532		 * in dfx_xmt_queue_pkt for more details.
3533		 */
3534
3535		bp->rcv_xmt_reg.index.xmt_comp += 1;
3536		}
3537
3538	/* Update the transmit consumer index in the consumer block */
3539
3540	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3541	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3542	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3543	}
3544
3545/*
3546 * ==================
3547 * = dfx_unregister =
3548 * ==================
3549 *
3550 * Overview:
3551 *   Shuts down an FDDI controller
3552 *
3553 * Returns:
3554 *   Condition code
3555 *
3556 * Arguments:
3557 *   bdev - pointer to device information
3558 *
3559 * Functional Description:
3560 *
3561 * Return Codes:
3562 *   None
3563 *
3564 * Assumptions:
3565 *   It compiles so it should work :-( (PCI cards do :-)
3566 *
3567 * Side Effects:
3568 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3569 *   freed.
3570 */
3571static void dfx_unregister(struct device *bdev)
3572{
3573	struct net_device *dev = dev_get_drvdata(bdev);
3574	DFX_board_t *bp = netdev_priv(dev);
3575	int dfx_bus_pci = dev_is_pci(bdev);
3576	int dfx_bus_tc = DFX_BUS_TC(bdev);
3577	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3578	resource_size_t bar_start = 0;		/* pointer to port */
3579	resource_size_t bar_len = 0;		/* resource length */
3580	int		alloc_size;		/* total buffer size used */
3581
3582	unregister_netdev(dev);
3583
3584	alloc_size = sizeof(PI_DESCR_BLOCK) +
3585		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3586#ifndef DYNAMIC_BUFFERS
3587		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3588#endif
3589		     sizeof(PI_CONSUMER_BLOCK) +
3590		     (PI_ALIGN_K_DESC_BLK - 1);
3591	if (bp->kmalloced)
3592		dma_free_coherent(bdev, alloc_size,
3593				  bp->kmalloced, bp->kmalloced_dma);
3594
3595	dfx_bus_uninit(dev);
3596
3597	dfx_get_bars(bdev, &bar_start, &bar_len);
 
 
 
 
3598	if (dfx_use_mmio) {
3599		iounmap(bp->base.mem);
3600		release_mem_region(bar_start, bar_len);
3601	} else
3602		release_region(bar_start, bar_len);
3603
3604	if (dfx_bus_pci)
3605		pci_disable_device(to_pci_dev(bdev));
3606
3607	free_netdev(dev);
3608}
3609
3610
3611static int __maybe_unused dfx_dev_register(struct device *);
3612static int __maybe_unused dfx_dev_unregister(struct device *);
3613
3614#ifdef CONFIG_PCI
3615static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3616static void dfx_pci_unregister(struct pci_dev *);
3617
3618static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3619	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3620	{ }
3621};
3622MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3623
3624static struct pci_driver dfx_pci_driver = {
3625	.name		= "defxx",
3626	.id_table	= dfx_pci_table,
3627	.probe		= dfx_pci_register,
3628	.remove		= dfx_pci_unregister,
3629};
3630
3631static int dfx_pci_register(struct pci_dev *pdev,
3632			    const struct pci_device_id *ent)
3633{
3634	return dfx_register(&pdev->dev);
3635}
3636
3637static void dfx_pci_unregister(struct pci_dev *pdev)
3638{
3639	dfx_unregister(&pdev->dev);
3640}
3641#endif /* CONFIG_PCI */
3642
3643#ifdef CONFIG_EISA
3644static struct eisa_device_id dfx_eisa_table[] = {
3645        { "DEC3001", DEFEA_PROD_ID_1 },
3646        { "DEC3002", DEFEA_PROD_ID_2 },
3647        { "DEC3003", DEFEA_PROD_ID_3 },
3648        { "DEC3004", DEFEA_PROD_ID_4 },
3649        { }
3650};
3651MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3652
3653static struct eisa_driver dfx_eisa_driver = {
3654	.id_table	= dfx_eisa_table,
3655	.driver		= {
3656		.name	= "defxx",
3657		.bus	= &eisa_bus_type,
3658		.probe	= dfx_dev_register,
3659		.remove	= dfx_dev_unregister,
3660	},
3661};
3662#endif /* CONFIG_EISA */
3663
3664#ifdef CONFIG_TC
3665static struct tc_device_id const dfx_tc_table[] = {
3666	{ "DEC     ", "PMAF-FA " },
3667	{ "DEC     ", "PMAF-FD " },
3668	{ "DEC     ", "PMAF-FS " },
3669	{ "DEC     ", "PMAF-FU " },
3670	{ }
3671};
3672MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3673
3674static struct tc_driver dfx_tc_driver = {
3675	.id_table	= dfx_tc_table,
3676	.driver		= {
3677		.name	= "defxx",
3678		.bus	= &tc_bus_type,
3679		.probe	= dfx_dev_register,
3680		.remove	= dfx_dev_unregister,
3681	},
3682};
3683#endif /* CONFIG_TC */
3684
3685static int __maybe_unused dfx_dev_register(struct device *dev)
3686{
3687	int status;
3688
3689	status = dfx_register(dev);
3690	if (!status)
3691		get_device(dev);
3692	return status;
3693}
3694
3695static int __maybe_unused dfx_dev_unregister(struct device *dev)
3696{
3697	put_device(dev);
3698	dfx_unregister(dev);
3699	return 0;
3700}
3701
3702
3703static int dfx_init(void)
3704{
3705	int status;
3706
3707	status = pci_register_driver(&dfx_pci_driver);
3708	if (!status)
3709		status = eisa_driver_register(&dfx_eisa_driver);
3710	if (!status)
3711		status = tc_register_driver(&dfx_tc_driver);
3712	return status;
3713}
3714
3715static void dfx_cleanup(void)
3716{
3717	tc_unregister_driver(&dfx_tc_driver);
3718	eisa_driver_unregister(&dfx_eisa_driver);
3719	pci_unregister_driver(&dfx_pci_driver);
3720}
3721
3722module_init(dfx_init);
3723module_exit(dfx_cleanup);
3724MODULE_AUTHOR("Lawrence V. Stefani");
3725MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3726		   DRV_VERSION " " DRV_RELDATE);
3727MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * File Name:
   3 *   defxx.c
   4 *
   5 * Copyright Information:
   6 *   Copyright Digital Equipment Corporation 1996.
   7 *
   8 *   This software may be used and distributed according to the terms of
   9 *   the GNU General Public License, incorporated herein by reference.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the Digital Equipment Corporation
  13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
  14 *   adapters include:
  15 *
  16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
  17 *		DEC FDDIcontroller/EISA         (DEFEA)
  18 *		DEC FDDIcontroller/PCI          (DEFPA)
  19 *
  20 * The original author:
  21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
  22 *
  23 * Maintainers:
  24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
  25 *
  26 * Credits:
  27 *   I'd like to thank Patricia Cross for helping me get started with
  28 *   Linux, David Davies for a lot of help upgrading and configuring
  29 *   my development system and for answering many OS and driver
  30 *   development questions, and Alan Cox for recommendations and
  31 *   integration help on getting FDDI support into Linux.  LVS
  32 *
  33 * Driver Architecture:
  34 *   The driver architecture is largely based on previous driver work
  35 *   for other operating systems.  The upper edge interface and
  36 *   functions were largely taken from existing Linux device drivers
  37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
  38 *   driver.
  39 *
  40 *   Adapter Probe -
  41 *		The driver scans for supported EISA adapters by reading the
  42 *		SLOT ID register for each EISA slot and making a match
  43 *		against the expected value.
  44 *
  45 *   Bus-Specific Initialization -
  46 *		This driver currently supports both EISA and PCI controller
  47 *		families.  While the custom DMA chip and FDDI logic is similar
  48 *		or identical, the bus logic is very different.  After
  49 *		initialization, the	only bus-specific differences is in how the
  50 *		driver enables and disables interrupts.  Other than that, the
  51 *		run-time critical code behaves the same on both families.
  52 *		It's important to note that both adapter families are configured
  53 *		to I/O map, rather than memory map, the adapter registers.
  54 *
  55 *   Driver Open/Close -
  56 *		In the driver open routine, the driver ISR (interrupt service
  57 *		routine) is registered and the adapter is brought to an
  58 *		operational state.  In the driver close routine, the opposite
  59 *		occurs; the driver ISR is deregistered and the adapter is
  60 *		brought to a safe, but closed state.  Users may use consecutive
  61 *		commands to bring the adapter up and down as in the following
  62 *		example:
  63 *					ifconfig fddi0 up
  64 *					ifconfig fddi0 down
  65 *					ifconfig fddi0 up
  66 *
  67 *   Driver Shutdown -
  68 *		Apparently, there is no shutdown or halt routine support under
  69 *		Linux.  This routine would be called during "reboot" or
  70 *		"shutdown" to allow the driver to place the adapter in a safe
  71 *		state before a warm reboot occurs.  To be really safe, the user
  72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
  73 *		to ensure that the adapter DMA engine is taken off-line.  However,
  74 *		the current driver code anticipates this problem and always issues
  75 *		a soft reset of the adapter	at the beginning of driver initialization.
  76 *		A future driver enhancement in this area may occur in 2.1.X where
  77 *		Alan indicated that a shutdown handler may be implemented.
  78 *
  79 *   Interrupt Service Routine -
  80 *		The driver supports shared interrupts, so the ISR is registered for
  81 *		each board with the appropriate flag and the pointer to that board's
  82 *		device structure.  This provides the context during interrupt
  83 *		processing to support shared interrupts and multiple boards.
  84 *
  85 *		Interrupt enabling/disabling can occur at many levels.  At the host
  86 *		end, you can disable system interrupts, or disable interrupts at the
  87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
  88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
  89 *		controller interrupt enable/disable.
  90 *
  91 *		The driver currently enables and disables adapter interrupts at the
  92 *		bus-logic chip and assumes that Linux will take care of clearing or
  93 *		acknowledging any host-based interrupt chips.
  94 *
  95 *   Control Functions -
  96 *		Control functions are those used to support functions such as adding
  97 *		or deleting multicast addresses, enabling or disabling packet
  98 *		reception filters, or other custom/proprietary commands.  Presently,
  99 *		the driver supports the "get statistics", "set multicast list", and
 100 *		"set mac address" functions defined by Linux.  A list of possible
 101 *		enhancements include:
 102 *
 103 *				- Custom ioctl interface for executing port interface commands
 104 *				- Custom ioctl interface for adding unicast addresses to
 105 *				  adapter CAM (to support bridge functions).
 106 *				- Custom ioctl interface for supporting firmware upgrades.
 107 *
 108 *   Hardware (port interface) Support Routines -
 109 *		The driver function names that start with "dfx_hw_" represent
 110 *		low-level port interface routines that are called frequently.  They
 111 *		include issuing a DMA or port control command to the adapter,
 112 *		resetting the adapter, or reading the adapter state.  Since the
 113 *		driver initialization and run-time code must make calls into the
 114 *		port interface, these routines were written to be as generic and
 115 *		usable as possible.
 116 *
 117 *   Receive Path -
 118 *		The adapter DMA engine supports a 256 entry receive descriptor block
 119 *		of which up to 255 entries can be used at any given time.  The
 120 *		architecture is a standard producer, consumer, completion model in
 121 *		which the driver "produces" receive buffers to the adapter, the
 122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
 123 *		and the driver "completes" the receive buffers by servicing the
 124 *		incoming packet, then "produces" a new buffer and starts the cycle
 125 *		again.  Receive buffers can be fragmented in up to 16 fragments
 126 *		(descriptor	entries).  For simplicity, this driver posts
 127 *		single-fragment receive buffers of 4608 bytes, then allocates a
 128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
 129 *		utilization, a better approach would be to pass up the receive
 130 *		buffer (no extra copy) then allocate and post a replacement buffer.
 131 *		This is a performance enhancement that should be looked into at
 132 *		some point.
 133 *
 134 *   Transmit Path -
 135 *		Like the receive path, the adapter DMA engine supports a 256 entry
 136 *		transmit descriptor block of which up to 255 entries can be used at
 137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
 138 *		fragments (descriptor entries).  This driver always posts one
 139 *		fragment per transmit packet request.
 140 *
 141 *		The fragment contains the entire packet from FC to end of data.
 142 *		Before posting the buffer to the adapter, the driver sets a three-byte
 143 *		packet request header (PRH) which is required by the Motorola MAC chip
 144 *		used on the adapters.  The PRH tells the MAC the type of token to
 145 *		receive/send, whether or not to generate and append the CRC, whether
 146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
 147 *		definition is not necessarily consistent across all FDDI chipsets,
 148 *		the driver, rather than the common FDDI packet handler routines,
 149 *		sets these bytes.
 150 *
 151 *		To reduce the amount of descriptor fetches needed per transmit request,
 152 *		the driver takes advantage of the fact that there are at least three
 153 *		bytes available before the skb->data field on the outgoing transmit
 154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
 155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
 156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
 157 *		bytes which we'll use to store the PRH.
 158 *
 159 *		There's a subtle advantage to adding these pad bytes to the
 160 *		hard_header_len, it ensures that the data portion of the packet for
 161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
 162 *		implementations may not need the extra padding and can start copying
 163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
 164 *		another driver implementation need ADDITIONAL padding, the net_init.c
 165 *		module should be updated and dev->hard_header_len should be increased.
 166 *		NOTE: To maintain the alignment on the data portion of the packet,
 167 *		dev->hard_header_len should always be evenly divisible by 4 and at
 168 *		least 24 bytes in size.
 169 *
 170 * Modification History:
 171 *		Date		Name	Description
 172 *		16-Aug-96	LVS		Created.
 173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
 174 *							string is only displayed if 1 or more cards are
 175 *							found.  Changed dfx_rcv_queue_process to copy
 176 *							3 NULL bytes before FC to ensure that data is
 177 *							longword aligned in receive buffer.
 178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
 179 *							LLC group promiscuous mode if multicast list
 180 *							is too large.  LLC individual/group promiscuous
 181 *							mode is now disabled if IFF_PROMISC flag not set.
 182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
 183 *							on Alan Cox recommendation.  Added node address
 184 *							override support.
 185 *		12-Sep-96	LVS		Reset current address to factory address during
 186 *							device open.  Updated transmit path to post a
 187 *							single fragment which includes PRH->end of data.
 188 *		Mar 2000	AC		Did various cleanups for 2.3.x
 189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
 190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
 191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
 192 *		Feb 2001			Skb allocation fixes
 193 *		Feb 2001	davej		PCI enable cleanups.
 194 *		04 Aug 2003	macro		Converted to the DMA API.
 195 *		14 Aug 2004	macro		Fix device names reported.
 196 *		14 Jun 2005	macro		Use irqreturn_t.
 197 *		23 Oct 2006	macro		Big-endian host support.
 198 *		14 Dec 2006	macro		TURBOchannel support.
 199 *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
 200 */
 201
 202/* Include files */
 203#include <linux/bitops.h>
 204#include <linux/compiler.h>
 205#include <linux/delay.h>
 206#include <linux/dma-mapping.h>
 207#include <linux/eisa.h>
 208#include <linux/errno.h>
 209#include <linux/fddidevice.h>
 210#include <linux/interrupt.h>
 211#include <linux/ioport.h>
 212#include <linux/kernel.h>
 213#include <linux/module.h>
 214#include <linux/netdevice.h>
 215#include <linux/pci.h>
 216#include <linux/skbuff.h>
 217#include <linux/slab.h>
 218#include <linux/string.h>
 219#include <linux/tc.h>
 220
 221#include <asm/byteorder.h>
 222#include <asm/io.h>
 223
 224#include "defxx.h"
 225
 226/* Version information string should be updated prior to each new release!  */
 227#define DRV_NAME "defxx"
 228#define DRV_VERSION "v1.11"
 229#define DRV_RELDATE "2014/07/01"
 230
 231static const char version[] =
 232	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
 233	"  Lawrence V. Stefani and others\n";
 234
 235#define DYNAMIC_BUFFERS 1
 236
 237#define SKBUFF_RX_COPYBREAK 200
 238/*
 239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
 240 * alignment for compatibility with old EISA boards.
 241 */
 242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
 243
 244#ifdef CONFIG_EISA
 245#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
 246#else
 247#define DFX_BUS_EISA(dev) 0
 248#endif
 249
 250#ifdef CONFIG_TC
 251#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
 252#else
 253#define DFX_BUS_TC(dev) 0
 254#endif
 255
 256#ifdef CONFIG_DEFXX_MMIO
 257#define DFX_MMIO 1
 258#else
 259#define DFX_MMIO 0
 260#endif
 261
 262/* Define module-wide (static) routines */
 263
 264static void		dfx_bus_init(struct net_device *dev);
 265static void		dfx_bus_uninit(struct net_device *dev);
 266static void		dfx_bus_config_check(DFX_board_t *bp);
 267
 268static int		dfx_driver_init(struct net_device *dev,
 269					const char *print_name,
 270					resource_size_t bar_start);
 271static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
 272
 273static int		dfx_open(struct net_device *dev);
 274static int		dfx_close(struct net_device *dev);
 275
 276static void		dfx_int_pr_halt_id(DFX_board_t *bp);
 277static void		dfx_int_type_0_process(DFX_board_t *bp);
 278static void		dfx_int_common(struct net_device *dev);
 279static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
 280
 281static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
 282static void		dfx_ctl_set_multicast_list(struct net_device *dev);
 283static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
 284static int		dfx_ctl_update_cam(DFX_board_t *bp);
 285static int		dfx_ctl_update_filters(DFX_board_t *bp);
 286
 287static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
 288static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
 289static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
 290static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
 291static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
 292
 293static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
 294static void		dfx_rcv_queue_process(DFX_board_t *bp);
 295#ifdef DYNAMIC_BUFFERS
 296static void		dfx_rcv_flush(DFX_board_t *bp);
 297#else
 298static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
 299#endif
 300
 301static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
 302				     struct net_device *dev);
 303static int		dfx_xmt_done(DFX_board_t *bp);
 304static void		dfx_xmt_flush(DFX_board_t *bp);
 305
 306/* Define module-wide (static) variables */
 307
 308static struct pci_driver dfx_pci_driver;
 309static struct eisa_driver dfx_eisa_driver;
 310static struct tc_driver dfx_tc_driver;
 311
 312
 313/*
 314 * =======================
 315 * = dfx_port_write_long =
 316 * = dfx_port_read_long  =
 317 * =======================
 318 *
 319 * Overview:
 320 *   Routines for reading and writing values from/to adapter
 321 *
 322 * Returns:
 323 *   None
 324 *
 325 * Arguments:
 326 *   bp		- pointer to board information
 327 *   offset	- register offset from base I/O address
 328 *   data	- for dfx_port_write_long, this is a value to write;
 329 *		  for dfx_port_read_long, this is a pointer to store
 330 *		  the read value
 331 *
 332 * Functional Description:
 333 *   These routines perform the correct operation to read or write
 334 *   the adapter register.
 335 *
 336 *   EISA port block base addresses are based on the slot number in which the
 337 *   controller is installed.  For example, if the EISA controller is installed
 338 *   in slot 4, the port block base address is 0x4000.  If the controller is
 339 *   installed in slot 2, the port block base address is 0x2000, and so on.
 340 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
 341 *   registers using the register offsets defined in DEFXX.H.
 342 *
 343 *   PCI port block base addresses are assigned by the PCI BIOS or system
 344 *   firmware.  There is one 128 byte port block which can be accessed.  It
 345 *   allows for I/O mapping of both PDQ and PFI registers using the register
 346 *   offsets defined in DEFXX.H.
 347 *
 348 * Return Codes:
 349 *   None
 350 *
 351 * Assumptions:
 352 *   bp->base is a valid base I/O address for this adapter.
 353 *   offset is a valid register offset for this adapter.
 354 *
 355 * Side Effects:
 356 *   Rather than produce macros for these functions, these routines
 357 *   are defined using "inline" to ensure that the compiler will
 358 *   generate inline code and not waste a procedure call and return.
 359 *   This provides all the benefits of macros, but with the
 360 *   advantage of strict data type checking.
 361 */
 362
 363static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
 364{
 365	writel(data, bp->base.mem + offset);
 366	mb();
 367}
 368
 369static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
 370{
 371	outl(data, bp->base.port + offset);
 372}
 373
 374static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
 375{
 376	struct device __maybe_unused *bdev = bp->bus_dev;
 377	int dfx_bus_tc = DFX_BUS_TC(bdev);
 378	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 379
 380	if (dfx_use_mmio)
 381		dfx_writel(bp, offset, data);
 382	else
 383		dfx_outl(bp, offset, data);
 384}
 385
 386
 387static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
 388{
 389	mb();
 390	*data = readl(bp->base.mem + offset);
 391}
 392
 393static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
 394{
 395	*data = inl(bp->base.port + offset);
 396}
 397
 398static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
 399{
 400	struct device __maybe_unused *bdev = bp->bus_dev;
 401	int dfx_bus_tc = DFX_BUS_TC(bdev);
 402	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 403
 404	if (dfx_use_mmio)
 405		dfx_readl(bp, offset, data);
 406	else
 407		dfx_inl(bp, offset, data);
 408}
 409
 410
 411/*
 412 * ================
 413 * = dfx_get_bars =
 414 * ================
 415 *
 416 * Overview:
 417 *   Retrieves the address ranges used to access control and status
 418 *   registers.
 419 *
 420 * Returns:
 421 *   None
 422 *
 423 * Arguments:
 424 *   bdev	- pointer to device information
 425 *   bar_start	- pointer to store the start addresses
 426 *   bar_len	- pointer to store the lengths of the areas
 427 *
 428 * Assumptions:
 429 *   I am sure there are some.
 430 *
 431 * Side Effects:
 432 *   None
 433 */
 434static void dfx_get_bars(struct device *bdev,
 435			 resource_size_t *bar_start, resource_size_t *bar_len)
 436{
 437	int dfx_bus_pci = dev_is_pci(bdev);
 438	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 439	int dfx_bus_tc = DFX_BUS_TC(bdev);
 440	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 441
 442	if (dfx_bus_pci) {
 443		int num = dfx_use_mmio ? 0 : 1;
 444
 445		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
 446		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
 447		bar_start[2] = bar_start[1] = 0;
 448		bar_len[2] = bar_len[1] = 0;
 449	}
 450	if (dfx_bus_eisa) {
 451		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 452		resource_size_t bar_lo;
 453		resource_size_t bar_hi;
 454
 455		if (dfx_use_mmio) {
 456			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
 457			bar_lo <<= 8;
 458			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
 459			bar_lo <<= 8;
 460			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
 461			bar_lo <<= 8;
 462			bar_start[0] = bar_lo;
 463			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
 464			bar_hi <<= 8;
 465			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
 466			bar_hi <<= 8;
 467			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
 468			bar_hi <<= 8;
 469			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
 470				     1;
 471		} else {
 472			bar_start[0] = base_addr;
 473			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
 474		}
 475		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
 476		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
 477		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
 478		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
 479	}
 480	if (dfx_bus_tc) {
 481		bar_start[0] = to_tc_dev(bdev)->resource.start +
 482			       PI_TC_K_CSR_OFFSET;
 483		bar_len[0] = PI_TC_K_CSR_LEN;
 484		bar_start[2] = bar_start[1] = 0;
 485		bar_len[2] = bar_len[1] = 0;
 486	}
 487}
 488
 489static const struct net_device_ops dfx_netdev_ops = {
 490	.ndo_open		= dfx_open,
 491	.ndo_stop		= dfx_close,
 492	.ndo_start_xmit		= dfx_xmt_queue_pkt,
 493	.ndo_get_stats		= dfx_ctl_get_stats,
 494	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
 495	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
 496};
 497
 498/*
 499 * ================
 500 * = dfx_register =
 501 * ================
 502 *
 503 * Overview:
 504 *   Initializes a supported FDDI controller
 505 *
 506 * Returns:
 507 *   Condition code
 508 *
 509 * Arguments:
 510 *   bdev - pointer to device information
 511 *
 512 * Functional Description:
 513 *
 514 * Return Codes:
 515 *   0		 - This device (fddi0, fddi1, etc) configured successfully
 516 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
 517 *
 518 * Assumptions:
 519 *   It compiles so it should work :-( (PCI cards do :-)
 520 *
 521 * Side Effects:
 522 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 523 *   initialized and the board resources are read and stored in
 524 *   the device structure.
 525 */
 526static int dfx_register(struct device *bdev)
 527{
 528	static int version_disp;
 529	int dfx_bus_pci = dev_is_pci(bdev);
 530	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 531	int dfx_bus_tc = DFX_BUS_TC(bdev);
 532	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 533	const char *print_name = dev_name(bdev);
 534	struct net_device *dev;
 535	DFX_board_t	  *bp;			/* board pointer */
 536	resource_size_t bar_start[3] = {0};	/* pointers to ports */
 537	resource_size_t bar_len[3] = {0};	/* resource length */
 538	int alloc_size;				/* total buffer size used */
 539	struct resource *region;
 540	int err = 0;
 541
 542	if (!version_disp) {	/* display version info if adapter is found */
 543		version_disp = 1;	/* set display flag to TRUE so that */
 544		printk(version);	/* we only display this string ONCE */
 545	}
 546
 547	dev = alloc_fddidev(sizeof(*bp));
 548	if (!dev) {
 549		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
 550		       print_name);
 551		return -ENOMEM;
 552	}
 553
 554	/* Enable PCI device. */
 555	if (dfx_bus_pci) {
 556		err = pci_enable_device(to_pci_dev(bdev));
 557		if (err) {
 558			pr_err("%s: Cannot enable PCI device, aborting\n",
 559			       print_name);
 560			goto err_out;
 561		}
 562	}
 563
 564	SET_NETDEV_DEV(dev, bdev);
 565
 566	bp = netdev_priv(dev);
 567	bp->bus_dev = bdev;
 568	dev_set_drvdata(bdev, dev);
 569
 570	dfx_get_bars(bdev, bar_start, bar_len);
 571	if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) {
 572		pr_err("%s: Cannot use MMIO, no address set, aborting\n",
 573		       print_name);
 574		pr_err("%s: Run ECU and set adapter's MMIO location\n",
 575		       print_name);
 576		pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
 577		       "\n", print_name);
 578		err = -ENXIO;
 579		goto err_out;
 580	}
 581
 582	if (dfx_use_mmio)
 583		region = request_mem_region(bar_start[0], bar_len[0],
 584					    print_name);
 585	else
 586		region = request_region(bar_start[0], bar_len[0], print_name);
 587	if (!region) {
 588		pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
 589		       "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name,
 590		       (long)bar_len[0], (long)bar_start[0]);
 591		err = -EBUSY;
 592		goto err_out_disable;
 593	}
 594	if (bar_start[1] != 0) {
 595		region = request_region(bar_start[1], bar_len[1], print_name);
 596		if (!region) {
 597			pr_err("%s: Cannot reserve I/O resource "
 598			       "0x%lx @ 0x%lx, aborting\n", print_name,
 599			       (long)bar_len[1], (long)bar_start[1]);
 600			err = -EBUSY;
 601			goto err_out_csr_region;
 602		}
 603	}
 604	if (bar_start[2] != 0) {
 605		region = request_region(bar_start[2], bar_len[2], print_name);
 606		if (!region) {
 607			pr_err("%s: Cannot reserve I/O resource "
 608			       "0x%lx @ 0x%lx, aborting\n", print_name,
 609			       (long)bar_len[2], (long)bar_start[2]);
 610			err = -EBUSY;
 611			goto err_out_bh_region;
 612		}
 613	}
 614
 615	/* Set up I/O base address. */
 616	if (dfx_use_mmio) {
 617		bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
 618		if (!bp->base.mem) {
 619			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
 620			err = -ENOMEM;
 621			goto err_out_esic_region;
 622		}
 623	} else {
 624		bp->base.port = bar_start[0];
 625		dev->base_addr = bar_start[0];
 626	}
 627
 628	/* Initialize new device structure */
 629	dev->netdev_ops			= &dfx_netdev_ops;
 630
 631	if (dfx_bus_pci)
 632		pci_set_master(to_pci_dev(bdev));
 633
 634	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
 635		err = -ENODEV;
 636		goto err_out_unmap;
 637	}
 638
 639	err = register_netdev(dev);
 640	if (err)
 641		goto err_out_kfree;
 642
 643	printk("%s: registered as %s\n", print_name, dev->name);
 644	return 0;
 645
 646err_out_kfree:
 647	alloc_size = sizeof(PI_DESCR_BLOCK) +
 648		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
 649#ifndef DYNAMIC_BUFFERS
 650		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
 651#endif
 652		     sizeof(PI_CONSUMER_BLOCK) +
 653		     (PI_ALIGN_K_DESC_BLK - 1);
 654	if (bp->kmalloced)
 655		dma_free_coherent(bdev, alloc_size,
 656				  bp->kmalloced, bp->kmalloced_dma);
 657
 658err_out_unmap:
 659	if (dfx_use_mmio)
 660		iounmap(bp->base.mem);
 661
 662err_out_esic_region:
 663	if (bar_start[2] != 0)
 664		release_region(bar_start[2], bar_len[2]);
 665
 666err_out_bh_region:
 667	if (bar_start[1] != 0)
 668		release_region(bar_start[1], bar_len[1]);
 669
 670err_out_csr_region:
 671	if (dfx_use_mmio)
 672		release_mem_region(bar_start[0], bar_len[0]);
 673	else
 674		release_region(bar_start[0], bar_len[0]);
 675
 676err_out_disable:
 677	if (dfx_bus_pci)
 678		pci_disable_device(to_pci_dev(bdev));
 679
 680err_out:
 681	free_netdev(dev);
 682	return err;
 683}
 684
 685
 686/*
 687 * ================
 688 * = dfx_bus_init =
 689 * ================
 690 *
 691 * Overview:
 692 *   Initializes the bus-specific controller logic.
 693 *
 694 * Returns:
 695 *   None
 696 *
 697 * Arguments:
 698 *   dev - pointer to device information
 699 *
 700 * Functional Description:
 701 *   Determine and save adapter IRQ in device table,
 702 *   then perform bus-specific logic initialization.
 703 *
 704 * Return Codes:
 705 *   None
 706 *
 707 * Assumptions:
 708 *   bp->base has already been set with the proper
 709 *	 base I/O address for this device.
 710 *
 711 * Side Effects:
 712 *   Interrupts are enabled at the adapter bus-specific logic.
 713 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
 714 *   enabled yet.
 715 */
 716
 717static void dfx_bus_init(struct net_device *dev)
 718{
 719	DFX_board_t *bp = netdev_priv(dev);
 720	struct device *bdev = bp->bus_dev;
 721	int dfx_bus_pci = dev_is_pci(bdev);
 722	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 723	int dfx_bus_tc = DFX_BUS_TC(bdev);
 724	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
 725	u8 val;
 726
 727	DBG_printk("In dfx_bus_init...\n");
 728
 729	/* Initialize a pointer back to the net_device struct */
 730	bp->dev = dev;
 731
 732	/* Initialize adapter based on bus type */
 733
 734	if (dfx_bus_tc)
 735		dev->irq = to_tc_dev(bdev)->interrupt;
 736	if (dfx_bus_eisa) {
 737		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 738
 739		/* Disable the board before fiddling with the decoders.  */
 740		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
 741
 742		/* Get the interrupt level from the ESIC chip.  */
 743		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 744		val &= PI_CONFIG_STAT_0_M_IRQ;
 745		val >>= PI_CONFIG_STAT_0_V_IRQ;
 746
 747		switch (val) {
 748		case PI_CONFIG_STAT_0_IRQ_K_9:
 749			dev->irq = 9;
 750			break;
 751
 752		case PI_CONFIG_STAT_0_IRQ_K_10:
 753			dev->irq = 10;
 754			break;
 755
 756		case PI_CONFIG_STAT_0_IRQ_K_11:
 757			dev->irq = 11;
 758			break;
 759
 760		case PI_CONFIG_STAT_0_IRQ_K_15:
 761			dev->irq = 15;
 762			break;
 763		}
 764
 765		/*
 766		 * Enable memory decoding (MEMCS1) and/or port decoding
 767		 * (IOCS1/IOCS0) as appropriate in Function Control
 768		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
 769		 * taking 16 32-bit words, while IOCS1 is used for the
 770		 * Burst Holdoff register, taking a single 32-bit word
 771		 * only.  We use the slot-specific I/O range as per the
 772		 * ESIC spec, that is set bits 15:12 in the mask registers
 773		 * to mask them out.
 774		 */
 775
 776		/* Set the decode range of the board.  */
 777		val = 0;
 778		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
 779		val = PI_DEFEA_K_CSR_IO;
 780		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
 781
 782		val = PI_IO_CMP_M_SLOT;
 783		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
 784		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
 785		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
 786
 787		val = 0;
 788		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
 789		val = PI_DEFEA_K_BURST_HOLDOFF;
 790		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
 791
 792		val = PI_IO_CMP_M_SLOT;
 793		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
 794		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
 795		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
 796
 797		/* Enable the decoders.  */
 798		val = PI_FUNCTION_CNTRL_M_IOCS1;
 799		if (dfx_use_mmio)
 800			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
 801		else
 802			val |= PI_FUNCTION_CNTRL_M_IOCS0;
 803		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
 804
 805		/*
 806		 * Enable access to the rest of the module
 807		 * (including PDQ and packet memory).
 808		 */
 809		val = PI_SLOT_CNTRL_M_ENB;
 810		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
 811
 812		/*
 813		 * Map PDQ registers into memory or port space.  This is
 814		 * done with a bit in the Burst Holdoff register.
 815		 */
 816		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 817		if (dfx_use_mmio)
 818			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
 819		else
 820			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
 821		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 822
 823		/* Enable interrupts at EISA bus interface chip (ESIC) */
 824		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 825		val |= PI_CONFIG_STAT_0_M_INT_ENB;
 826		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 827	}
 828	if (dfx_bus_pci) {
 829		struct pci_dev *pdev = to_pci_dev(bdev);
 830
 831		/* Get the interrupt level from the PCI Configuration Table */
 832
 833		dev->irq = pdev->irq;
 834
 835		/* Check Latency Timer and set if less than minimal */
 836
 837		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
 838		if (val < PFI_K_LAT_TIMER_MIN) {
 839			val = PFI_K_LAT_TIMER_DEF;
 840			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
 841		}
 842
 843		/* Enable interrupts at PCI bus interface chip (PFI) */
 844		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
 845		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
 846	}
 847}
 848
 849/*
 850 * ==================
 851 * = dfx_bus_uninit =
 852 * ==================
 853 *
 854 * Overview:
 855 *   Uninitializes the bus-specific controller logic.
 856 *
 857 * Returns:
 858 *   None
 859 *
 860 * Arguments:
 861 *   dev - pointer to device information
 862 *
 863 * Functional Description:
 864 *   Perform bus-specific logic uninitialization.
 865 *
 866 * Return Codes:
 867 *   None
 868 *
 869 * Assumptions:
 870 *   bp->base has already been set with the proper
 871 *	 base I/O address for this device.
 872 *
 873 * Side Effects:
 874 *   Interrupts are disabled at the adapter bus-specific logic.
 875 */
 876
 877static void dfx_bus_uninit(struct net_device *dev)
 878{
 879	DFX_board_t *bp = netdev_priv(dev);
 880	struct device *bdev = bp->bus_dev;
 881	int dfx_bus_pci = dev_is_pci(bdev);
 882	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 883	u8 val;
 884
 885	DBG_printk("In dfx_bus_uninit...\n");
 886
 887	/* Uninitialize adapter based on bus type */
 888
 889	if (dfx_bus_eisa) {
 890		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 891
 892		/* Disable interrupts at EISA bus interface chip (ESIC) */
 893		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 894		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
 895		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 896
 897		/* Disable the board.  */
 898		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
 899
 900		/* Disable memory and port decoders.  */
 901		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
 902	}
 903	if (dfx_bus_pci) {
 904		/* Disable interrupts at PCI bus interface chip (PFI) */
 905		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
 906	}
 907}
 908
 909
 910/*
 911 * ========================
 912 * = dfx_bus_config_check =
 913 * ========================
 914 *
 915 * Overview:
 916 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
 917 *   are illegal, then this routine will set new defaults.
 918 *
 919 * Returns:
 920 *   None
 921 *
 922 * Arguments:
 923 *   bp - pointer to board information
 924 *
 925 * Functional Description:
 926 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
 927 *   PDQ, and all FDDI PCI controllers, all values are legal.
 928 *
 929 * Return Codes:
 930 *   None
 931 *
 932 * Assumptions:
 933 *   dfx_adap_init has NOT been called yet so burst size and other items have
 934 *   not been set.
 935 *
 936 * Side Effects:
 937 *   None
 938 */
 939
 940static void dfx_bus_config_check(DFX_board_t *bp)
 941{
 942	struct device __maybe_unused *bdev = bp->bus_dev;
 943	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 944	int	status;				/* return code from adapter port control call */
 945	u32	host_data;			/* LW data returned from port control call */
 946
 947	DBG_printk("In dfx_bus_config_check...\n");
 948
 949	/* Configuration check only valid for EISA adapter */
 950
 951	if (dfx_bus_eisa) {
 952		/*
 953		 * First check if revision 2 EISA controller.  Rev. 1 cards used
 954		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
 955		 * cards used PDQ revision E, so no workaround needed in this
 956		 * case, either.  Only Rev. 2 cards used either Rev. D or E
 957		 * chips, so we must verify the chip revision on Rev. 2 cards.
 958		 */
 959		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
 960			/*
 961			 * Revision 2 FDDI EISA controller found,
 962			 * so let's check PDQ revision of adapter.
 963			 */
 964			status = dfx_hw_port_ctrl_req(bp,
 965											PI_PCTRL_M_SUB_CMD,
 966											PI_SUB_CMD_K_PDQ_REV_GET,
 967											0,
 968											&host_data);
 969			if ((status != DFX_K_SUCCESS) || (host_data == 2))
 970				{
 971				/*
 972				 * Either we couldn't determine the PDQ revision, or
 973				 * we determined that it is at revision D.  In either case,
 974				 * we need to implement the workaround.
 975				 */
 976
 977				/* Ensure that the burst size is set to 8 longwords or less */
 978
 979				switch (bp->burst_size)
 980					{
 981					case PI_PDATA_B_DMA_BURST_SIZE_32:
 982					case PI_PDATA_B_DMA_BURST_SIZE_16:
 983						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
 984						break;
 985
 986					default:
 987						break;
 988					}
 989
 990				/* Ensure that full-duplex mode is not enabled */
 991
 992				bp->full_duplex_enb = PI_SNMP_K_FALSE;
 993				}
 994			}
 995		}
 996	}
 997
 998
 999/*
1000 * ===================
1001 * = dfx_driver_init =
1002 * ===================
1003 *
1004 * Overview:
1005 *   Initializes remaining adapter board structure information
1006 *   and makes sure adapter is in a safe state prior to dfx_open().
1007 *
1008 * Returns:
1009 *   Condition code
1010 *
1011 * Arguments:
1012 *   dev - pointer to device information
1013 *   print_name - printable device name
1014 *
1015 * Functional Description:
1016 *   This function allocates additional resources such as the host memory
1017 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1018 *	 Remaining bus initialization steps are also completed.  The adapter
1019 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1020 *   must call dfx_open() to open the adapter and bring it on-line.
1021 *
1022 * Return Codes:
1023 *   DFX_K_SUCCESS	- initialization succeeded
1024 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
1025 *						or read adapter MAC address
1026 *
1027 * Assumptions:
1028 *   Memory allocated from pci_alloc_consistent() call is physically
1029 *   contiguous, locked memory.
1030 *
1031 * Side Effects:
1032 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1033 *   returning from this routine.
1034 */
1035
1036static int dfx_driver_init(struct net_device *dev, const char *print_name,
1037			   resource_size_t bar_start)
1038{
1039	DFX_board_t *bp = netdev_priv(dev);
1040	struct device *bdev = bp->bus_dev;
1041	int dfx_bus_pci = dev_is_pci(bdev);
1042	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1043	int dfx_bus_tc = DFX_BUS_TC(bdev);
1044	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1045	int alloc_size;			/* total buffer size needed */
1046	char *top_v, *curr_v;		/* virtual addrs into memory block */
1047	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
1048	u32 data;			/* host data register value */
1049	__le32 le32;
1050	char *board_name = NULL;
1051
1052	DBG_printk("In dfx_driver_init...\n");
1053
1054	/* Initialize bus-specific hardware registers */
1055
1056	dfx_bus_init(dev);
1057
1058	/*
1059	 * Initialize default values for configurable parameters
1060	 *
1061	 * Note: All of these parameters are ones that a user may
1062	 *       want to customize.  It'd be nice to break these
1063	 *		 out into Space.c or someplace else that's more
1064	 *		 accessible/understandable than this file.
1065	 */
1066
1067	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1068	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1069	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1070	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1071
1072	/*
1073	 * Ensure that HW configuration is OK
1074	 *
1075	 * Note: Depending on the hardware revision, we may need to modify
1076	 *       some of the configurable parameters to workaround hardware
1077	 *       limitations.  We'll perform this configuration check AFTER
1078	 *       setting the parameters to their default values.
1079	 */
1080
1081	dfx_bus_config_check(bp);
1082
1083	/* Disable PDQ interrupts first */
1084
1085	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1086
1087	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1088
1089	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1090
1091	/*  Read the factory MAC address from the adapter then save it */
1092
1093	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1094				 &data) != DFX_K_SUCCESS) {
1095		printk("%s: Could not read adapter factory MAC address!\n",
1096		       print_name);
1097		return DFX_K_FAILURE;
1098	}
1099	le32 = cpu_to_le32(data);
1100	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1101
1102	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1103				 &data) != DFX_K_SUCCESS) {
1104		printk("%s: Could not read adapter factory MAC address!\n",
1105		       print_name);
1106		return DFX_K_FAILURE;
1107	}
1108	le32 = cpu_to_le32(data);
1109	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1110
1111	/*
1112	 * Set current address to factory address
1113	 *
1114	 * Note: Node address override support is handled through
1115	 *       dfx_ctl_set_mac_address.
1116	 */
1117
1118	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1119	if (dfx_bus_tc)
1120		board_name = "DEFTA";
1121	if (dfx_bus_eisa)
1122		board_name = "DEFEA";
1123	if (dfx_bus_pci)
1124		board_name = "DEFPA";
1125	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1126		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1127		(long long)bar_start, dev->irq, dev->dev_addr);
1128
1129	/*
1130	 * Get memory for descriptor block, consumer block, and other buffers
1131	 * that need to be DMA read or written to by the adapter.
1132	 */
1133
1134	alloc_size = sizeof(PI_DESCR_BLOCK) +
1135					PI_CMD_REQ_K_SIZE_MAX +
1136					PI_CMD_RSP_K_SIZE_MAX +
1137#ifndef DYNAMIC_BUFFERS
1138					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1139#endif
1140					sizeof(PI_CONSUMER_BLOCK) +
1141					(PI_ALIGN_K_DESC_BLK - 1);
1142	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1143						   &bp->kmalloced_dma,
1144						   GFP_ATOMIC);
1145	if (top_v == NULL)
1146		return DFX_K_FAILURE;
1147
1148	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1149
1150	/*
1151	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1152	 *  plus the amount of memory needed was allocated.  The physical address
1153	 *	is now 8K aligned.  By carving up the memory in a specific order,
1154	 *  we'll guarantee the alignment requirements for all other structures.
1155	 *
1156	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1157	 *		  physically contiguous nature of the memory block or the address
1158	 *		  alignments, then we'll need to implement a different algorithm
1159	 *		  for allocating the needed memory.
1160	 */
1161
1162	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1163	curr_v = top_v + (curr_p - top_p);
1164
1165	/* Reserve space for descriptor block */
1166
1167	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1168	bp->descr_block_phys = curr_p;
1169	curr_v += sizeof(PI_DESCR_BLOCK);
1170	curr_p += sizeof(PI_DESCR_BLOCK);
1171
1172	/* Reserve space for command request buffer */
1173
1174	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1175	bp->cmd_req_phys = curr_p;
1176	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1177	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1178
1179	/* Reserve space for command response buffer */
1180
1181	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1182	bp->cmd_rsp_phys = curr_p;
1183	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1184	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1185
1186	/* Reserve space for the LLC host receive queue buffers */
1187
1188	bp->rcv_block_virt = curr_v;
1189	bp->rcv_block_phys = curr_p;
1190
1191#ifndef DYNAMIC_BUFFERS
1192	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1193	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1194#endif
1195
1196	/* Reserve space for the consumer block */
1197
1198	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1199	bp->cons_block_phys = curr_p;
1200
1201	/* Display virtual and physical addresses if debug driver */
1202
1203	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1204		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1205	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1206		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1207	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1208		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1209	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1210		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1211	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1212		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
 
1213
1214	return DFX_K_SUCCESS;
1215}
1216
1217
1218/*
1219 * =================
1220 * = dfx_adap_init =
1221 * =================
1222 *
1223 * Overview:
1224 *   Brings the adapter to the link avail/link unavailable state.
1225 *
1226 * Returns:
1227 *   Condition code
1228 *
1229 * Arguments:
1230 *   bp - pointer to board information
1231 *   get_buffers - non-zero if buffers to be allocated
1232 *
1233 * Functional Description:
1234 *   Issues the low-level firmware/hardware calls necessary to bring
1235 *   the adapter up, or to properly reset and restore adapter during
1236 *   run-time.
1237 *
1238 * Return Codes:
1239 *   DFX_K_SUCCESS - Adapter brought up successfully
1240 *   DFX_K_FAILURE - Adapter initialization failed
1241 *
1242 * Assumptions:
1243 *   bp->reset_type should be set to a valid reset type value before
1244 *   calling this routine.
1245 *
1246 * Side Effects:
1247 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1248 *   upon a successful return of this routine.
1249 */
1250
1251static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1252	{
1253	DBG_printk("In dfx_adap_init...\n");
1254
1255	/* Disable PDQ interrupts first */
1256
1257	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1258
1259	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1260
1261	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1262		{
1263		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1264		return DFX_K_FAILURE;
1265		}
1266
1267	/*
1268	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1269	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1270	 */
1271
1272	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1273
1274	/*
1275	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1276	 *
1277	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1278	 *       takes care of the on-board register values.
1279	 */
1280
1281	bp->cmd_req_reg.lword	= 0;
1282	bp->cmd_rsp_reg.lword	= 0;
1283	bp->rcv_xmt_reg.lword	= 0;
1284
1285	/* Clear consumer block before going to DMA_AVAILABLE state */
1286
1287	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1288
1289	/* Initialize the DMA Burst Size */
1290
1291	if (dfx_hw_port_ctrl_req(bp,
1292							PI_PCTRL_M_SUB_CMD,
1293							PI_SUB_CMD_K_BURST_SIZE_SET,
1294							bp->burst_size,
1295							NULL) != DFX_K_SUCCESS)
1296		{
1297		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1298		return DFX_K_FAILURE;
1299		}
1300
1301	/*
1302	 * Set base address of Consumer Block
1303	 *
1304	 * Assumption: 32-bit physical address of consumer block is 64 byte
1305	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1306	 */
1307
1308	if (dfx_hw_port_ctrl_req(bp,
1309							PI_PCTRL_M_CONS_BLOCK,
1310							bp->cons_block_phys,
1311							0,
1312							NULL) != DFX_K_SUCCESS)
1313		{
1314		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1315		return DFX_K_FAILURE;
1316		}
1317
1318	/*
1319	 * Set the base address of Descriptor Block and bring adapter
1320	 * to DMA_AVAILABLE state.
1321	 *
1322	 * Note: We also set the literal and data swapping requirements
1323	 *       in this command.
1324	 *
1325	 * Assumption: 32-bit physical address of descriptor block
1326	 *       is 8Kbyte aligned.
1327	 */
1328	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1329				 (u32)(bp->descr_block_phys |
1330				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1331				 0, NULL) != DFX_K_SUCCESS) {
1332		printk("%s: Could not set descriptor block address!\n",
1333		       bp->dev->name);
1334		return DFX_K_FAILURE;
1335	}
1336
1337	/* Set transmit flush timeout value */
1338
1339	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1340	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1341	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1342	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1343	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1344	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1345		{
1346		printk("%s: DMA command request failed!\n", bp->dev->name);
1347		return DFX_K_FAILURE;
1348		}
1349
1350	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1351
1352	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1353	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1354	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1355	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1356	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1357	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1358	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1359	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1360	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1361		{
1362		printk("%s: DMA command request failed!\n", bp->dev->name);
1363		return DFX_K_FAILURE;
1364		}
1365
1366	/* Initialize adapter CAM */
1367
1368	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1369		{
1370		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1371		return DFX_K_FAILURE;
1372		}
1373
1374	/* Initialize adapter filters */
1375
1376	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1377		{
1378		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1379		return DFX_K_FAILURE;
1380		}
1381
1382	/*
1383	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1384	 * reinitialized)
1385	 */
1386
1387	if (get_buffers)
1388		dfx_rcv_flush(bp);
1389
1390	/* Initialize receive descriptor block and produce buffers */
1391
1392	if (dfx_rcv_init(bp, get_buffers))
1393	        {
1394		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1395		if (get_buffers)
1396			dfx_rcv_flush(bp);
1397		return DFX_K_FAILURE;
1398		}
1399
1400	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1401
1402	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1403	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1404		{
1405		printk("%s: Start command failed\n", bp->dev->name);
1406		if (get_buffers)
1407			dfx_rcv_flush(bp);
1408		return DFX_K_FAILURE;
1409		}
1410
1411	/* Initialization succeeded, reenable PDQ interrupts */
1412
1413	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1414	return DFX_K_SUCCESS;
1415	}
1416
1417
1418/*
1419 * ============
1420 * = dfx_open =
1421 * ============
1422 *
1423 * Overview:
1424 *   Opens the adapter
1425 *
1426 * Returns:
1427 *   Condition code
1428 *
1429 * Arguments:
1430 *   dev - pointer to device information
1431 *
1432 * Functional Description:
1433 *   This function brings the adapter to an operational state.
1434 *
1435 * Return Codes:
1436 *   0		 - Adapter was successfully opened
1437 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1438 *
1439 * Assumptions:
1440 *   This routine should only be called for a device that was
1441 *   initialized successfully.
1442 *
1443 * Side Effects:
1444 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1445 *   if the open is successful.
1446 */
1447
1448static int dfx_open(struct net_device *dev)
1449{
1450	DFX_board_t *bp = netdev_priv(dev);
1451	int ret;
1452
1453	DBG_printk("In dfx_open...\n");
1454
1455	/* Register IRQ - support shared interrupts by passing device ptr */
1456
1457	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1458			  dev);
1459	if (ret) {
1460		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1461		return ret;
1462	}
1463
1464	/*
1465	 * Set current address to factory MAC address
1466	 *
1467	 * Note: We've already done this step in dfx_driver_init.
1468	 *       However, it's possible that a user has set a node
1469	 *		 address override, then closed and reopened the
1470	 *		 adapter.  Unless we reset the device address field
1471	 *		 now, we'll continue to use the existing modified
1472	 *		 address.
1473	 */
1474
1475	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1476
1477	/* Clear local unicast/multicast address tables and counts */
1478
1479	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1480	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1481	bp->uc_count = 0;
1482	bp->mc_count = 0;
1483
1484	/* Disable promiscuous filter settings */
1485
1486	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1487	bp->group_prom		= PI_FSTATE_K_BLOCK;
1488
1489	spin_lock_init(&bp->lock);
1490
1491	/* Reset and initialize adapter */
1492
1493	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1494	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1495	{
1496		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1497		free_irq(dev->irq, dev);
1498		return -EAGAIN;
1499	}
1500
1501	/* Set device structure info */
1502	netif_start_queue(dev);
1503	return 0;
1504}
1505
1506
1507/*
1508 * =============
1509 * = dfx_close =
1510 * =============
1511 *
1512 * Overview:
1513 *   Closes the device/module.
1514 *
1515 * Returns:
1516 *   Condition code
1517 *
1518 * Arguments:
1519 *   dev - pointer to device information
1520 *
1521 * Functional Description:
1522 *   This routine closes the adapter and brings it to a safe state.
1523 *   The interrupt service routine is deregistered with the OS.
1524 *   The adapter can be opened again with another call to dfx_open().
1525 *
1526 * Return Codes:
1527 *   Always return 0.
1528 *
1529 * Assumptions:
1530 *   No further requests for this adapter are made after this routine is
1531 *   called.  dfx_open() can be called to reset and reinitialize the
1532 *   adapter.
1533 *
1534 * Side Effects:
1535 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1536 *   routine.
1537 */
1538
1539static int dfx_close(struct net_device *dev)
1540{
1541	DFX_board_t *bp = netdev_priv(dev);
1542
1543	DBG_printk("In dfx_close...\n");
1544
1545	/* Disable PDQ interrupts first */
1546
1547	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1548
1549	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1550
1551	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1552
1553	/*
1554	 * Flush any pending transmit buffers
1555	 *
1556	 * Note: It's important that we flush the transmit buffers
1557	 *		 BEFORE we clear our copy of the Type 2 register.
1558	 *		 Otherwise, we'll have no idea how many buffers
1559	 *		 we need to free.
1560	 */
1561
1562	dfx_xmt_flush(bp);
1563
1564	/*
1565	 * Clear Type 1 and Type 2 registers after adapter reset
1566	 *
1567	 * Note: Even though we're closing the adapter, it's
1568	 *       possible that an interrupt will occur after
1569	 *		 dfx_close is called.  Without some assurance to
1570	 *		 the contrary we want to make sure that we don't
1571	 *		 process receive and transmit LLC frames and update
1572	 *		 the Type 2 register with bad information.
1573	 */
1574
1575	bp->cmd_req_reg.lword	= 0;
1576	bp->cmd_rsp_reg.lword	= 0;
1577	bp->rcv_xmt_reg.lword	= 0;
1578
1579	/* Clear consumer block for the same reason given above */
1580
1581	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1582
1583	/* Release all dynamically allocate skb in the receive ring. */
1584
1585	dfx_rcv_flush(bp);
1586
1587	/* Clear device structure flags */
1588
1589	netif_stop_queue(dev);
1590
1591	/* Deregister (free) IRQ */
1592
1593	free_irq(dev->irq, dev);
1594
1595	return 0;
1596}
1597
1598
1599/*
1600 * ======================
1601 * = dfx_int_pr_halt_id =
1602 * ======================
1603 *
1604 * Overview:
1605 *   Displays halt id's in string form.
1606 *
1607 * Returns:
1608 *   None
1609 *
1610 * Arguments:
1611 *   bp - pointer to board information
1612 *
1613 * Functional Description:
1614 *   Determine current halt id and display appropriate string.
1615 *
1616 * Return Codes:
1617 *   None
1618 *
1619 * Assumptions:
1620 *   None
1621 *
1622 * Side Effects:
1623 *   None
1624 */
1625
1626static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1627	{
1628	PI_UINT32	port_status;			/* PDQ port status register value */
1629	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1630
1631	/* Read the latest port status */
1632
1633	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1634
1635	/* Display halt state transition information */
1636
1637	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1638	switch (halt_id)
1639		{
1640		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1641			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1642			break;
1643
1644		case PI_HALT_ID_K_PARITY_ERROR:
1645			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1646			break;
1647
1648		case PI_HALT_ID_K_HOST_DIR_HALT:
1649			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1650			break;
1651
1652		case PI_HALT_ID_K_SW_FAULT:
1653			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1654			break;
1655
1656		case PI_HALT_ID_K_HW_FAULT:
1657			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1658			break;
1659
1660		case PI_HALT_ID_K_PC_TRACE:
1661			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1662			break;
1663
1664		case PI_HALT_ID_K_DMA_ERROR:
1665			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1666			break;
1667
1668		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1669			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1670			break;
1671
1672		case PI_HALT_ID_K_BUS_EXCEPTION:
1673			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1674			break;
1675
1676		default:
1677			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1678			break;
1679		}
1680	}
1681
1682
1683/*
1684 * ==========================
1685 * = dfx_int_type_0_process =
1686 * ==========================
1687 *
1688 * Overview:
1689 *   Processes Type 0 interrupts.
1690 *
1691 * Returns:
1692 *   None
1693 *
1694 * Arguments:
1695 *   bp - pointer to board information
1696 *
1697 * Functional Description:
1698 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1699 *   is a serious fault on the adapter, then an error message is displayed
1700 *   and the adapter is reset.
1701 *
1702 *   One tricky potential timing window is the rapid succession of "link avail"
1703 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1704 *   interrupt must be done before reading the state from the Port Status
1705 *   register.  This is true because a state change could occur after reading
1706 *   the data, but before acknowledging the interrupt.  If this state change
1707 *   does happen, it would be lost because the driver is using the old state,
1708 *   and it will never know about the new state because it subsequently
1709 *   acknowledges the state change interrupt.
1710 *
1711 *          INCORRECT                                      CORRECT
1712 *      read type 0 int reasons                   read type 0 int reasons
1713 *      read adapter state                        ack type 0 interrupts
1714 *      ack type 0 interrupts                     read adapter state
1715 *      ... process interrupt ...                 ... process interrupt ...
1716 *
1717 * Return Codes:
1718 *   None
1719 *
1720 * Assumptions:
1721 *   None
1722 *
1723 * Side Effects:
1724 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1725 *   or if the port status indicates that the adapter is halted.  The driver
1726 *   is responsible for reinitializing the adapter with the current CAM
1727 *   contents and adapter filter settings.
1728 */
1729
1730static void dfx_int_type_0_process(DFX_board_t	*bp)
1731
1732	{
1733	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1734	PI_UINT32	state;				/* current adap state (from port status) */
1735
1736	/*
1737	 * Read host interrupt Type 0 register to determine which Type 0
1738	 * interrupts are pending.  Immediately write it back out to clear
1739	 * those interrupts.
1740	 */
1741
1742	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1743	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1744
1745	/* Check for Type 0 error interrupts */
1746
1747	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1748							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1749							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1750		{
1751		/* Check for Non-Existent Memory error */
1752
1753		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1754			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1755
1756		/* Check for Packet Memory Parity error */
1757
1758		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1759			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1760
1761		/* Check for Host Bus Parity error */
1762
1763		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1764			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1765
1766		/* Reset adapter and bring it back on-line */
1767
1768		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1769		bp->reset_type = 0;					/* rerun on-board diagnostics */
1770		printk("%s: Resetting adapter...\n", bp->dev->name);
1771		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1772			{
1773			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1774			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1775			return;
1776			}
1777		printk("%s: Adapter reset successful!\n", bp->dev->name);
1778		return;
1779		}
1780
1781	/* Check for transmit flush interrupt */
1782
1783	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1784		{
1785		/* Flush any pending xmt's and acknowledge the flush interrupt */
1786
1787		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1788		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1789		(void) dfx_hw_port_ctrl_req(bp,
1790									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1791									0,
1792									0,
1793									NULL);
1794		}
1795
1796	/* Check for adapter state change */
1797
1798	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1799		{
1800		/* Get latest adapter state */
1801
1802		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1803		if (state == PI_STATE_K_HALTED)
1804			{
1805			/*
1806			 * Adapter has transitioned to HALTED state, try to reset
1807			 * adapter to bring it back on-line.  If reset fails,
1808			 * leave the adapter in the broken state.
1809			 */
1810
1811			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1812			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1813
1814			/* Reset adapter and bring it back on-line */
1815
1816			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1817			bp->reset_type = 0;					/* rerun on-board diagnostics */
1818			printk("%s: Resetting adapter...\n", bp->dev->name);
1819			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1820				{
1821				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1822				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1823				return;
1824				}
1825			printk("%s: Adapter reset successful!\n", bp->dev->name);
1826			}
1827		else if (state == PI_STATE_K_LINK_AVAIL)
1828			{
1829			bp->link_available = PI_K_TRUE;		/* set link available flag */
1830			}
1831		}
1832	}
1833
1834
1835/*
1836 * ==================
1837 * = dfx_int_common =
1838 * ==================
1839 *
1840 * Overview:
1841 *   Interrupt service routine (ISR)
1842 *
1843 * Returns:
1844 *   None
1845 *
1846 * Arguments:
1847 *   bp - pointer to board information
1848 *
1849 * Functional Description:
1850 *   This is the ISR which processes incoming adapter interrupts.
1851 *
1852 * Return Codes:
1853 *   None
1854 *
1855 * Assumptions:
1856 *   This routine assumes PDQ interrupts have not been disabled.
1857 *   When interrupts are disabled at the PDQ, the Port Status register
1858 *   is automatically cleared.  This routine uses the Port Status
1859 *   register value to determine whether a Type 0 interrupt occurred,
1860 *   so it's important that adapter interrupts are not normally
1861 *   enabled/disabled at the PDQ.
1862 *
1863 *   It's vital that this routine is NOT reentered for the
1864 *   same board and that the OS is not in another section of
1865 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1866 *   different thread.
1867 *
1868 * Side Effects:
1869 *   Pending interrupts are serviced.  Depending on the type of
1870 *   interrupt, acknowledging and clearing the interrupt at the
1871 *   PDQ involves writing a register to clear the interrupt bit
1872 *   or updating completion indices.
1873 */
1874
1875static void dfx_int_common(struct net_device *dev)
1876{
1877	DFX_board_t *bp = netdev_priv(dev);
1878	PI_UINT32	port_status;		/* Port Status register */
1879
1880	/* Process xmt interrupts - frequent case, so always call this routine */
1881
1882	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1883		netif_wake_queue(dev);
1884
1885	/* Process rcv interrupts - frequent case, so always call this routine */
1886
1887	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1888
1889	/*
1890	 * Transmit and receive producer and completion indices are updated on the
1891	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1892	 * case is that we'll be processing either LLC transmit or receive buffers,
1893	 * we'll optimize I/O writes by doing a single register write here.
1894	 */
1895
1896	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1897
1898	/* Read PDQ Port Status register to find out which interrupts need processing */
1899
1900	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1901
1902	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1903
1904	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1905		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1906	}
1907
1908
1909/*
1910 * =================
1911 * = dfx_interrupt =
1912 * =================
1913 *
1914 * Overview:
1915 *   Interrupt processing routine
1916 *
1917 * Returns:
1918 *   Whether a valid interrupt was seen.
1919 *
1920 * Arguments:
1921 *   irq	- interrupt vector
1922 *   dev_id	- pointer to device information
1923 *
1924 * Functional Description:
1925 *   This routine calls the interrupt processing routine for this adapter.  It
1926 *   disables and reenables adapter interrupts, as appropriate.  We can support
1927 *   shared interrupts since the incoming dev_id pointer provides our device
1928 *   structure context.
1929 *
1930 * Return Codes:
1931 *   IRQ_HANDLED - an IRQ was handled.
1932 *   IRQ_NONE    - no IRQ was handled.
1933 *
1934 * Assumptions:
1935 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1936 *   on Intel-based systems) is done by the operating system outside this
1937 *   routine.
1938 *
1939 *	 System interrupts are enabled through this call.
1940 *
1941 * Side Effects:
1942 *   Interrupts are disabled, then reenabled at the adapter.
1943 */
1944
1945static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1946{
1947	struct net_device *dev = dev_id;
1948	DFX_board_t *bp = netdev_priv(dev);
1949	struct device *bdev = bp->bus_dev;
1950	int dfx_bus_pci = dev_is_pci(bdev);
1951	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1952	int dfx_bus_tc = DFX_BUS_TC(bdev);
1953
1954	/* Service adapter interrupts */
1955
1956	if (dfx_bus_pci) {
1957		u32 status;
1958
1959		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1960		if (!(status & PFI_STATUS_M_PDQ_INT))
1961			return IRQ_NONE;
1962
1963		spin_lock(&bp->lock);
1964
1965		/* Disable PDQ-PFI interrupts at PFI */
1966		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1967				    PFI_MODE_M_DMA_ENB);
1968
1969		/* Call interrupt service routine for this adapter */
1970		dfx_int_common(dev);
1971
1972		/* Clear PDQ interrupt status bit and reenable interrupts */
1973		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1974				    PFI_STATUS_M_PDQ_INT);
1975		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1976				    (PFI_MODE_M_PDQ_INT_ENB |
1977				     PFI_MODE_M_DMA_ENB));
1978
1979		spin_unlock(&bp->lock);
1980	}
1981	if (dfx_bus_eisa) {
1982		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1983		u8 status;
1984
1985		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1986		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1987			return IRQ_NONE;
1988
1989		spin_lock(&bp->lock);
1990
1991		/* Disable interrupts at the ESIC */
1992		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1993		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1994
1995		/* Call interrupt service routine for this adapter */
1996		dfx_int_common(dev);
1997
1998		/* Reenable interrupts at the ESIC */
1999		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2000		status |= PI_CONFIG_STAT_0_M_INT_ENB;
2001		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002
2003		spin_unlock(&bp->lock);
2004	}
2005	if (dfx_bus_tc) {
2006		u32 status;
2007
2008		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2009		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2010				PI_PSTATUS_M_XMT_DATA_PENDING |
2011				PI_PSTATUS_M_SMT_HOST_PENDING |
2012				PI_PSTATUS_M_UNSOL_PENDING |
2013				PI_PSTATUS_M_CMD_RSP_PENDING |
2014				PI_PSTATUS_M_CMD_REQ_PENDING |
2015				PI_PSTATUS_M_TYPE_0_PENDING)))
2016			return IRQ_NONE;
2017
2018		spin_lock(&bp->lock);
2019
2020		/* Call interrupt service routine for this adapter */
2021		dfx_int_common(dev);
2022
2023		spin_unlock(&bp->lock);
2024	}
2025
2026	return IRQ_HANDLED;
2027}
2028
2029
2030/*
2031 * =====================
2032 * = dfx_ctl_get_stats =
2033 * =====================
2034 *
2035 * Overview:
2036 *   Get statistics for FDDI adapter
2037 *
2038 * Returns:
2039 *   Pointer to FDDI statistics structure
2040 *
2041 * Arguments:
2042 *   dev - pointer to device information
2043 *
2044 * Functional Description:
2045 *   Gets current MIB objects from adapter, then
2046 *   returns FDDI statistics structure as defined
2047 *   in if_fddi.h.
2048 *
2049 *   Note: Since the FDDI statistics structure is
2050 *   still new and the device structure doesn't
2051 *   have an FDDI-specific get statistics handler,
2052 *   we'll return the FDDI statistics structure as
2053 *   a pointer to an Ethernet statistics structure.
2054 *   That way, at least the first part of the statistics
2055 *   structure can be decoded properly, and it allows
2056 *   "smart" applications to perform a second cast to
2057 *   decode the FDDI-specific statistics.
2058 *
2059 *   We'll have to pay attention to this routine as the
2060 *   device structure becomes more mature and LAN media
2061 *   independent.
2062 *
2063 * Return Codes:
2064 *   None
2065 *
2066 * Assumptions:
2067 *   None
2068 *
2069 * Side Effects:
2070 *   None
2071 */
2072
2073static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2074	{
2075	DFX_board_t *bp = netdev_priv(dev);
2076
2077	/* Fill the bp->stats structure with driver-maintained counters */
2078
2079	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2080	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2081	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2082	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2083	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2084				   bp->rcv_frame_status_errors +
2085				   bp->rcv_length_errors;
2086	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2087	bp->stats.gen.rx_dropped = bp->rcv_discards;
2088	bp->stats.gen.tx_dropped = bp->xmt_discards;
2089	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2090	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2091
2092	/* Get FDDI SMT MIB objects */
2093
2094	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2095	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2096		return (struct net_device_stats *)&bp->stats;
2097
2098	/* Fill the bp->stats structure with the SMT MIB object values */
2099
2100	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2101	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2102	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2103	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2104	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2105	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2106	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2107	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2108	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2109	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2110	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2111	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2112	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2113	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2114	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2115	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2116	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2117	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2118	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2119	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2120	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2121	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2122	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2123	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2124	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2125	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2126	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2127	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2128	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2129	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2130	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2131	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2132	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2133	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2134	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2135	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2136	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2137	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2138	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2139	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2140	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2141	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2142	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2143	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2144	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2145	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2146	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2147	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2148	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2149	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2150	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2151	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2152	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2153	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2154	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2155	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2156	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2157	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2158	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2159	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2160	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2161	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2162	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2163	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2164	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2165	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2166	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2167	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2168	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2169	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2170	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2171	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2172	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2173	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2174	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2175	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2176	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2177	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2178	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2179	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2180	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2181	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2182	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2183	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2184	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2185	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2186	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2187	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2188	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2189	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2190	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2191	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2192
2193	/* Get FDDI counters */
2194
2195	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2196	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2197		return (struct net_device_stats *)&bp->stats;
2198
2199	/* Fill the bp->stats structure with the FDDI counter values */
2200
2201	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2202	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2203	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2204	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2205	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2206	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2207	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2208	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2209	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2210	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2211	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2212
2213	return (struct net_device_stats *)&bp->stats;
2214	}
2215
2216
2217/*
2218 * ==============================
2219 * = dfx_ctl_set_multicast_list =
2220 * ==============================
2221 *
2222 * Overview:
2223 *   Enable/Disable LLC frame promiscuous mode reception
2224 *   on the adapter and/or update multicast address table.
2225 *
2226 * Returns:
2227 *   None
2228 *
2229 * Arguments:
2230 *   dev - pointer to device information
2231 *
2232 * Functional Description:
2233 *   This routine follows a fairly simple algorithm for setting the
2234 *   adapter filters and CAM:
2235 *
2236 *		if IFF_PROMISC flag is set
2237 *			enable LLC individual/group promiscuous mode
2238 *		else
2239 *			disable LLC individual/group promiscuous mode
2240 *			if number of incoming multicast addresses >
2241 *					(CAM max size - number of unicast addresses in CAM)
2242 *				enable LLC group promiscuous mode
2243 *				set driver-maintained multicast address count to zero
2244 *			else
2245 *				disable LLC group promiscuous mode
2246 *				set driver-maintained multicast address count to incoming count
2247 *			update adapter CAM
2248 *		update adapter filters
2249 *
2250 * Return Codes:
2251 *   None
2252 *
2253 * Assumptions:
2254 *   Multicast addresses are presented in canonical (LSB) format.
2255 *
2256 * Side Effects:
2257 *   On-board adapter CAM and filters are updated.
2258 */
2259
2260static void dfx_ctl_set_multicast_list(struct net_device *dev)
2261{
2262	DFX_board_t *bp = netdev_priv(dev);
2263	int					i;			/* used as index in for loop */
2264	struct netdev_hw_addr *ha;
2265
2266	/* Enable LLC frame promiscuous mode, if necessary */
2267
2268	if (dev->flags & IFF_PROMISC)
2269		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2270
2271	/* Else, update multicast address table */
2272
2273	else
2274		{
2275		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2276		/*
2277		 * Check whether incoming multicast address count exceeds table size
2278		 *
2279		 * Note: The adapters utilize an on-board 64 entry CAM for
2280		 *       supporting perfect filtering of multicast packets
2281		 *		 and bridge functions when adding unicast addresses.
2282		 *		 There is no hash function available.  To support
2283		 *		 additional multicast addresses, the all multicast
2284		 *		 filter (LLC group promiscuous mode) must be enabled.
2285		 *
2286		 *		 The firmware reserves two CAM entries for SMT-related
2287		 *		 multicast addresses, which leaves 62 entries available.
2288		 *		 The following code ensures that we're not being asked
2289		 *		 to add more than 62 addresses to the CAM.  If we are,
2290		 *		 the driver will enable the all multicast filter.
2291		 *		 Should the number of multicast addresses drop below
2292		 *		 the high water mark, the filter will be disabled and
2293		 *		 perfect filtering will be used.
2294		 */
2295
2296		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2297			{
2298			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2299			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2300			}
2301		else
2302			{
2303			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2304			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2305			}
2306
2307		/* Copy addresses to multicast address table, then update adapter CAM */
2308
2309		i = 0;
2310		netdev_for_each_mc_addr(ha, dev)
2311			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2312			       ha->addr, FDDI_K_ALEN);
2313
2314		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2315			{
2316			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2317			}
2318		else
2319			{
2320			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2321			}
2322		}
2323
2324	/* Update adapter filters */
2325
2326	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327		{
2328		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329		}
2330	else
2331		{
2332		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333		}
2334	}
2335
2336
2337/*
2338 * ===========================
2339 * = dfx_ctl_set_mac_address =
2340 * ===========================
2341 *
2342 * Overview:
2343 *   Add node address override (unicast address) to adapter
2344 *   CAM and update dev_addr field in device table.
2345 *
2346 * Returns:
2347 *   None
2348 *
2349 * Arguments:
2350 *   dev  - pointer to device information
2351 *   addr - pointer to sockaddr structure containing unicast address to add
2352 *
2353 * Functional Description:
2354 *   The adapter supports node address overrides by adding one or more
2355 *   unicast addresses to the adapter CAM.  This is similar to adding
2356 *   multicast addresses.  In this routine we'll update the driver and
2357 *   device structures with the new address, then update the adapter CAM
2358 *   to ensure that the adapter will copy and strip frames destined and
2359 *   sourced by that address.
2360 *
2361 * Return Codes:
2362 *   Always returns zero.
2363 *
2364 * Assumptions:
2365 *   The address pointed to by addr->sa_data is a valid unicast
2366 *   address and is presented in canonical (LSB) format.
2367 *
2368 * Side Effects:
2369 *   On-board adapter CAM is updated.  On-board adapter filters
2370 *   may be updated.
2371 */
2372
2373static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2374	{
2375	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2376	DFX_board_t *bp = netdev_priv(dev);
2377
2378	/* Copy unicast address to driver-maintained structs and update count */
2379
2380	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2381	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2382	bp->uc_count = 1;
2383
2384	/*
2385	 * Verify we're not exceeding the CAM size by adding unicast address
2386	 *
2387	 * Note: It's possible that before entering this routine we've
2388	 *       already filled the CAM with 62 multicast addresses.
2389	 *		 Since we need to place the node address override into
2390	 *		 the CAM, we have to check to see that we're not
2391	 *		 exceeding the CAM size.  If we are, we have to enable
2392	 *		 the LLC group (multicast) promiscuous mode filter as
2393	 *		 in dfx_ctl_set_multicast_list.
2394	 */
2395
2396	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2397		{
2398		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2399		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2400
2401		/* Update adapter filters */
2402
2403		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2404			{
2405			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2406			}
2407		else
2408			{
2409			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2410			}
2411		}
2412
2413	/* Update adapter CAM with new unicast address */
2414
2415	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2416		{
2417		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2418		}
2419	else
2420		{
2421		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2422		}
2423	return 0;			/* always return zero */
2424	}
2425
2426
2427/*
2428 * ======================
2429 * = dfx_ctl_update_cam =
2430 * ======================
2431 *
2432 * Overview:
2433 *   Procedure to update adapter CAM (Content Addressable Memory)
2434 *   with desired unicast and multicast address entries.
2435 *
2436 * Returns:
2437 *   Condition code
2438 *
2439 * Arguments:
2440 *   bp - pointer to board information
2441 *
2442 * Functional Description:
2443 *   Updates adapter CAM with current contents of board structure
2444 *   unicast and multicast address tables.  Since there are only 62
2445 *   free entries in CAM, this routine ensures that the command
2446 *   request buffer is not overrun.
2447 *
2448 * Return Codes:
2449 *   DFX_K_SUCCESS - Request succeeded
2450 *   DFX_K_FAILURE - Request failed
2451 *
2452 * Assumptions:
2453 *   All addresses being added (unicast and multicast) are in canonical
2454 *   order.
2455 *
2456 * Side Effects:
2457 *   On-board adapter CAM is updated.
2458 */
2459
2460static int dfx_ctl_update_cam(DFX_board_t *bp)
2461	{
2462	int			i;				/* used as index */
2463	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2464
2465	/*
2466	 * Fill in command request information
2467	 *
2468	 * Note: Even though both the unicast and multicast address
2469	 *       table entries are stored as contiguous 6 byte entries,
2470	 *		 the firmware address filter set command expects each
2471	 *		 entry to be two longwords (8 bytes total).  We must be
2472	 *		 careful to only copy the six bytes of each unicast and
2473	 *		 multicast table entry into each command entry.  This
2474	 *		 is also why we must first clear the entire command
2475	 *		 request buffer.
2476	 */
2477
2478	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2479	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2480	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2481
2482	/* Now add unicast addresses to command request buffer, if any */
2483
2484	for (i=0; i < (int)bp->uc_count; i++)
2485		{
2486		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2487			{
2488			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2489			p_addr++;			/* point to next command entry */
2490			}
2491		}
2492
2493	/* Now add multicast addresses to command request buffer, if any */
2494
2495	for (i=0; i < (int)bp->mc_count; i++)
2496		{
2497		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2498			{
2499			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2500			p_addr++;			/* point to next command entry */
2501			}
2502		}
2503
2504	/* Issue command to update adapter CAM, then return */
2505
2506	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507		return DFX_K_FAILURE;
2508	return DFX_K_SUCCESS;
2509	}
2510
2511
2512/*
2513 * ==========================
2514 * = dfx_ctl_update_filters =
2515 * ==========================
2516 *
2517 * Overview:
2518 *   Procedure to update adapter filters with desired
2519 *   filter settings.
2520 *
2521 * Returns:
2522 *   Condition code
2523 *
2524 * Arguments:
2525 *   bp - pointer to board information
2526 *
2527 * Functional Description:
2528 *   Enables or disables filter using current filter settings.
2529 *
2530 * Return Codes:
2531 *   DFX_K_SUCCESS - Request succeeded.
2532 *   DFX_K_FAILURE - Request failed.
2533 *
2534 * Assumptions:
2535 *   We must always pass up packets destined to the broadcast
2536 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2537 *   broadcast filter enabled.
2538 *
2539 * Side Effects:
2540 *   On-board adapter filters are updated.
2541 */
2542
2543static int dfx_ctl_update_filters(DFX_board_t *bp)
2544	{
2545	int	i = 0;					/* used as index */
2546
2547	/* Fill in command request information */
2548
2549	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2550
2551	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2552
2553	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2554	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2555
2556	/* Initialize LLC Individual/Group Promiscuous filter */
2557
2558	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2559	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2560
2561	/* Initialize LLC Group Promiscuous filter */
2562
2563	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2564	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2565
2566	/* Terminate the item code list */
2567
2568	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2569
2570	/* Issue command to update adapter filters, then return */
2571
2572	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2573		return DFX_K_FAILURE;
2574	return DFX_K_SUCCESS;
2575	}
2576
2577
2578/*
2579 * ======================
2580 * = dfx_hw_dma_cmd_req =
2581 * ======================
2582 *
2583 * Overview:
2584 *   Sends PDQ DMA command to adapter firmware
2585 *
2586 * Returns:
2587 *   Condition code
2588 *
2589 * Arguments:
2590 *   bp - pointer to board information
2591 *
2592 * Functional Description:
2593 *   The command request and response buffers are posted to the adapter in the manner
2594 *   described in the PDQ Port Specification:
2595 *
2596 *		1. Command Response Buffer is posted to adapter.
2597 *		2. Command Request Buffer is posted to adapter.
2598 *		3. Command Request consumer index is polled until it indicates that request
2599 *         buffer has been DMA'd to adapter.
2600 *		4. Command Response consumer index is polled until it indicates that response
2601 *         buffer has been DMA'd from adapter.
2602 *
2603 *   This ordering ensures that a response buffer is already available for the firmware
2604 *   to use once it's done processing the request buffer.
2605 *
2606 * Return Codes:
2607 *   DFX_K_SUCCESS	  - DMA command succeeded
2608 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2609 *   DFX_K_HW_TIMEOUT - DMA command timed out
2610 *
2611 * Assumptions:
2612 *   Command request buffer has already been filled with desired DMA command.
2613 *
2614 * Side Effects:
2615 *   None
2616 */
2617
2618static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2619	{
2620	int status;			/* adapter status */
2621	int timeout_cnt;	/* used in for loops */
2622
2623	/* Make sure the adapter is in a state that we can issue the DMA command in */
2624
2625	status = dfx_hw_adap_state_rd(bp);
2626	if ((status == PI_STATE_K_RESET)		||
2627		(status == PI_STATE_K_HALTED)		||
2628		(status == PI_STATE_K_DMA_UNAVAIL)	||
2629		(status == PI_STATE_K_UPGRADE))
2630		return DFX_K_OUTSTATE;
2631
2632	/* Put response buffer on the command response queue */
2633
2634	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2635			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2636	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2637
2638	/* Bump (and wrap) the producer index and write out to register */
2639
2640	bp->cmd_rsp_reg.index.prod += 1;
2641	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2642	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2643
2644	/* Put request buffer on the command request queue */
2645
2646	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2647			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2648	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2649
2650	/* Bump (and wrap) the producer index and write out to register */
2651
2652	bp->cmd_req_reg.index.prod += 1;
2653	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2654	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2655
2656	/*
2657	 * Here we wait for the command request consumer index to be equal
2658	 * to the producer, indicating that the adapter has DMAed the request.
2659	 */
2660
2661	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2662		{
2663		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2664			break;
2665		udelay(100);			/* wait for 100 microseconds */
2666		}
2667	if (timeout_cnt == 0)
2668		return DFX_K_HW_TIMEOUT;
2669
2670	/* Bump (and wrap) the completion index and write out to register */
2671
2672	bp->cmd_req_reg.index.comp += 1;
2673	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2674	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2675
2676	/*
2677	 * Here we wait for the command response consumer index to be equal
2678	 * to the producer, indicating that the adapter has DMAed the response.
2679	 */
2680
2681	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2682		{
2683		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2684			break;
2685		udelay(100);			/* wait for 100 microseconds */
2686		}
2687	if (timeout_cnt == 0)
2688		return DFX_K_HW_TIMEOUT;
2689
2690	/* Bump (and wrap) the completion index and write out to register */
2691
2692	bp->cmd_rsp_reg.index.comp += 1;
2693	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2694	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2695	return DFX_K_SUCCESS;
2696	}
2697
2698
2699/*
2700 * ========================
2701 * = dfx_hw_port_ctrl_req =
2702 * ========================
2703 *
2704 * Overview:
2705 *   Sends PDQ port control command to adapter firmware
2706 *
2707 * Returns:
2708 *   Host data register value in host_data if ptr is not NULL
2709 *
2710 * Arguments:
2711 *   bp			- pointer to board information
2712 *	 command	- port control command
2713 *	 data_a		- port data A register value
2714 *	 data_b		- port data B register value
2715 *	 host_data	- ptr to host data register value
2716 *
2717 * Functional Description:
2718 *   Send generic port control command to adapter by writing
2719 *   to various PDQ port registers, then polling for completion.
2720 *
2721 * Return Codes:
2722 *   DFX_K_SUCCESS	  - port control command succeeded
2723 *   DFX_K_HW_TIMEOUT - port control command timed out
2724 *
2725 * Assumptions:
2726 *   None
2727 *
2728 * Side Effects:
2729 *   None
2730 */
2731
2732static int dfx_hw_port_ctrl_req(
2733	DFX_board_t	*bp,
2734	PI_UINT32	command,
2735	PI_UINT32	data_a,
2736	PI_UINT32	data_b,
2737	PI_UINT32	*host_data
2738	)
2739
2740	{
2741	PI_UINT32	port_cmd;		/* Port Control command register value */
2742	int			timeout_cnt;	/* used in for loops */
2743
2744	/* Set Command Error bit in command longword */
2745
2746	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2747
2748	/* Issue port command to the adapter */
2749
2750	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2751	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2752	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2753
2754	/* Now wait for command to complete */
2755
2756	if (command == PI_PCTRL_M_BLAST_FLASH)
2757		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2758	else
2759		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2760
2761	for (; timeout_cnt > 0; timeout_cnt--)
2762		{
2763		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2764		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2765			break;
2766		udelay(100);			/* wait for 100 microseconds */
2767		}
2768	if (timeout_cnt == 0)
2769		return DFX_K_HW_TIMEOUT;
2770
2771	/*
2772	 * If the address of host_data is non-zero, assume caller has supplied a
2773	 * non NULL pointer, and return the contents of the HOST_DATA register in
2774	 * it.
2775	 */
2776
2777	if (host_data != NULL)
2778		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2779	return DFX_K_SUCCESS;
2780	}
2781
2782
2783/*
2784 * =====================
2785 * = dfx_hw_adap_reset =
2786 * =====================
2787 *
2788 * Overview:
2789 *   Resets adapter
2790 *
2791 * Returns:
2792 *   None
2793 *
2794 * Arguments:
2795 *   bp   - pointer to board information
2796 *   type - type of reset to perform
2797 *
2798 * Functional Description:
2799 *   Issue soft reset to adapter by writing to PDQ Port Reset
2800 *   register.  Use incoming reset type to tell adapter what
2801 *   kind of reset operation to perform.
2802 *
2803 * Return Codes:
2804 *   None
2805 *
2806 * Assumptions:
2807 *   This routine merely issues a soft reset to the adapter.
2808 *   It is expected that after this routine returns, the caller
2809 *   will appropriately poll the Port Status register for the
2810 *   adapter to enter the proper state.
2811 *
2812 * Side Effects:
2813 *   Internal adapter registers are cleared.
2814 */
2815
2816static void dfx_hw_adap_reset(
2817	DFX_board_t	*bp,
2818	PI_UINT32	type
2819	)
2820
2821	{
2822	/* Set Reset type and assert reset */
2823
2824	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2825	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2826
2827	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2828
2829	udelay(20);
2830
2831	/* Deassert reset */
2832
2833	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2834	}
2835
2836
2837/*
2838 * ========================
2839 * = dfx_hw_adap_state_rd =
2840 * ========================
2841 *
2842 * Overview:
2843 *   Returns current adapter state
2844 *
2845 * Returns:
2846 *   Adapter state per PDQ Port Specification
2847 *
2848 * Arguments:
2849 *   bp - pointer to board information
2850 *
2851 * Functional Description:
2852 *   Reads PDQ Port Status register and returns adapter state.
2853 *
2854 * Return Codes:
2855 *   None
2856 *
2857 * Assumptions:
2858 *   None
2859 *
2860 * Side Effects:
2861 *   None
2862 */
2863
2864static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2865	{
2866	PI_UINT32 port_status;		/* Port Status register value */
2867
2868	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2869	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2870	}
2871
2872
2873/*
2874 * =====================
2875 * = dfx_hw_dma_uninit =
2876 * =====================
2877 *
2878 * Overview:
2879 *   Brings adapter to DMA_UNAVAILABLE state
2880 *
2881 * Returns:
2882 *   Condition code
2883 *
2884 * Arguments:
2885 *   bp   - pointer to board information
2886 *   type - type of reset to perform
2887 *
2888 * Functional Description:
2889 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2890 *		1. Set reset type bit in Port Data A Register then reset adapter.
2891 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2892 *
2893 * Return Codes:
2894 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2895 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2896 *
2897 * Assumptions:
2898 *   None
2899 *
2900 * Side Effects:
2901 *   Internal adapter registers are cleared.
2902 */
2903
2904static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2905	{
2906	int timeout_cnt;	/* used in for loops */
2907
2908	/* Set reset type bit and reset adapter */
2909
2910	dfx_hw_adap_reset(bp, type);
2911
2912	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2913
2914	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2915		{
2916		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2917			break;
2918		udelay(100);					/* wait for 100 microseconds */
2919		}
2920	if (timeout_cnt == 0)
2921		return DFX_K_HW_TIMEOUT;
2922	return DFX_K_SUCCESS;
2923	}
2924
2925/*
2926 *	Align an sk_buff to a boundary power of 2
2927 *
2928 */
2929#ifdef DYNAMIC_BUFFERS
2930static void my_skb_align(struct sk_buff *skb, int n)
2931{
2932	unsigned long x = (unsigned long)skb->data;
2933	unsigned long v;
2934
2935	v = ALIGN(x, n);	/* Where we want to be */
2936
2937	skb_reserve(skb, v - x);
2938}
2939#endif
2940
2941/*
2942 * ================
2943 * = dfx_rcv_init =
2944 * ================
2945 *
2946 * Overview:
2947 *   Produces buffers to adapter LLC Host receive descriptor block
2948 *
2949 * Returns:
2950 *   None
2951 *
2952 * Arguments:
2953 *   bp - pointer to board information
2954 *   get_buffers - non-zero if buffers to be allocated
2955 *
2956 * Functional Description:
2957 *   This routine can be called during dfx_adap_init() or during an adapter
2958 *	 reset.  It initializes the descriptor block and produces all allocated
2959 *   LLC Host queue receive buffers.
2960 *
2961 * Return Codes:
2962 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2963 *   dynamic buffer allocation). If the buffer allocation failed, the
2964 *   already allocated buffers will not be released and the caller should do
2965 *   this.
2966 *
2967 * Assumptions:
2968 *   The PDQ has been reset and the adapter and driver maintained Type 2
2969 *   register indices are cleared.
2970 *
2971 * Side Effects:
2972 *   Receive buffers are posted to the adapter LLC queue and the adapter
2973 *   is notified.
2974 */
2975
2976static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2977	{
2978	int	i, j;					/* used in for loop */
2979
2980	/*
2981	 *  Since each receive buffer is a single fragment of same length, initialize
2982	 *  first longword in each receive descriptor for entire LLC Host descriptor
2983	 *  block.  Also initialize second longword in each receive descriptor with
2984	 *  physical address of receive buffer.  We'll always allocate receive
2985	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2986	 *  block and produce new receive buffers by simply updating the receive
2987	 *  producer index.
2988	 *
2989	 * 	Assumptions:
2990	 *		To support all shipping versions of PDQ, the receive buffer size
2991	 *		must be mod 128 in length and the physical address must be 128 byte
2992	 *		aligned.  In other words, bits 0-6 of the length and address must
2993	 *		be zero for the following descriptor field entries to be correct on
2994	 *		all PDQ-based boards.  We guaranteed both requirements during
2995	 *		driver initialization when we allocated memory for the receive buffers.
2996	 */
2997
2998	if (get_buffers) {
2999#ifdef DYNAMIC_BUFFERS
3000	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3001		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3002		{
3003			struct sk_buff *newskb;
3004			dma_addr_t dma_addr;
3005
3006			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3007						    GFP_NOIO);
3008			if (!newskb)
3009				return -ENOMEM;
 
 
3010			/*
3011			 * align to 128 bytes for compatibility with
3012			 * the old EISA boards.
3013			 */
3014
3015			my_skb_align(newskb, 128);
3016			dma_addr = dma_map_single(bp->bus_dev,
3017						  newskb->data,
3018						  PI_RCV_DATA_K_SIZE_MAX,
3019						  DMA_FROM_DEVICE);
3020			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3021				dev_kfree_skb(newskb);
3022				return -ENOMEM;
3023			}
3024			bp->descr_block_virt->rcv_data[i + j].long_0 =
3025				(u32)(PI_RCV_DESCR_M_SOP |
3026				      ((PI_RCV_DATA_K_SIZE_MAX /
3027					PI_ALIGN_K_RCV_DATA_BUFF) <<
3028				       PI_RCV_DESCR_V_SEG_LEN));
3029			bp->descr_block_virt->rcv_data[i + j].long_1 =
3030				(u32)dma_addr;
3031
 
3032			/*
3033			 * p_rcv_buff_va is only used inside the
3034			 * kernel so we put the skb pointer here.
3035			 */
3036			bp->p_rcv_buff_va[i+j] = (char *) newskb;
3037		}
3038#else
3039	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3040		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3041			{
3042			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3043				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3044			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3045			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3046			}
3047#endif
3048	}
3049
3050	/* Update receive producer and Type 2 register */
3051
3052	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3053	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3054	return 0;
3055	}
3056
3057
3058/*
3059 * =========================
3060 * = dfx_rcv_queue_process =
3061 * =========================
3062 *
3063 * Overview:
3064 *   Process received LLC frames.
3065 *
3066 * Returns:
3067 *   None
3068 *
3069 * Arguments:
3070 *   bp - pointer to board information
3071 *
3072 * Functional Description:
3073 *   Received LLC frames are processed until there are no more consumed frames.
3074 *   Once all frames are processed, the receive buffers are returned to the
3075 *   adapter.  Note that this algorithm fixes the length of time that can be spent
3076 *   in this routine, because there are a fixed number of receive buffers to
3077 *   process and buffers are not produced until this routine exits and returns
3078 *   to the ISR.
3079 *
3080 * Return Codes:
3081 *   None
3082 *
3083 * Assumptions:
3084 *   None
3085 *
3086 * Side Effects:
3087 *   None
3088 */
3089
3090static void dfx_rcv_queue_process(
3091	DFX_board_t *bp
3092	)
3093
3094	{
3095	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3096	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3097	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3098	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3099
3100	/* Service all consumed LLC receive frames */
3101
3102	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3103	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3104		{
3105		/* Process any errors */
3106		dma_addr_t dma_addr;
3107		int entry;
3108
3109		entry = bp->rcv_xmt_reg.index.rcv_comp;
3110#ifdef DYNAMIC_BUFFERS
3111		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3112#else
3113		p_buff = bp->p_rcv_buff_va[entry];
3114#endif
3115		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3116		dma_sync_single_for_cpu(bp->bus_dev,
3117					dma_addr + RCV_BUFF_K_DESCR,
3118					sizeof(u32),
3119					DMA_FROM_DEVICE);
3120		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3121
3122		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3123			{
3124			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3125				bp->rcv_crc_errors++;
3126			else
3127				bp->rcv_frame_status_errors++;
3128			}
3129		else
3130		{
3131			int rx_in_place = 0;
3132
3133			/* The frame was received without errors - verify packet length */
3134
3135			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3136			pkt_len -= 4;				/* subtract 4 byte CRC */
3137			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3138				bp->rcv_length_errors++;
3139			else{
3140#ifdef DYNAMIC_BUFFERS
3141				struct sk_buff *newskb = NULL;
3142
3143				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3144					dma_addr_t new_dma_addr;
3145
3146					newskb = netdev_alloc_skb(bp->dev,
3147								  NEW_SKB_SIZE);
3148					if (newskb){
3149						my_skb_align(newskb, 128);
3150						new_dma_addr = dma_map_single(
3151								bp->bus_dev,
3152								newskb->data,
3153								PI_RCV_DATA_K_SIZE_MAX,
3154								DMA_FROM_DEVICE);
3155						if (dma_mapping_error(
3156								bp->bus_dev,
3157								new_dma_addr)) {
3158							dev_kfree_skb(newskb);
3159							newskb = NULL;
3160						}
3161					}
3162					if (newskb) {
3163						rx_in_place = 1;
3164
 
3165						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3166						dma_unmap_single(bp->bus_dev,
3167							dma_addr,
3168							PI_RCV_DATA_K_SIZE_MAX,
3169							DMA_FROM_DEVICE);
3170						skb_reserve(skb, RCV_BUFF_K_PADDING);
3171						bp->p_rcv_buff_va[entry] = (char *)newskb;
3172						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3173					}
3174				}
3175				if (!newskb)
 
 
 
 
3176#endif
3177					/* Alloc new buffer to pass up,
3178					 * add room for PRH. */
3179					skb = netdev_alloc_skb(bp->dev,
3180							       pkt_len + 3);
3181				if (skb == NULL)
3182					{
3183					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3184					bp->rcv_discards++;
3185					break;
3186					}
3187				else {
3188					if (!rx_in_place) {
 
 
 
3189						/* Receive buffer allocated, pass receive packet up */
3190						dma_sync_single_for_cpu(
3191							bp->bus_dev,
3192							dma_addr +
3193							RCV_BUFF_K_PADDING,
3194							pkt_len + 3,
3195							DMA_FROM_DEVICE);
3196
3197						skb_copy_to_linear_data(skb,
3198							       p_buff + RCV_BUFF_K_PADDING,
3199							       pkt_len + 3);
3200					}
3201
3202					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3203					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3204					skb->protocol = fddi_type_trans(skb, bp->dev);
3205					bp->rcv_total_bytes += skb->len;
3206					netif_rx(skb);
3207
3208					/* Update the rcv counters */
3209					bp->rcv_total_frames++;
3210					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3211						bp->rcv_multicast_frames++;
3212				}
3213			}
3214			}
3215
3216		/*
3217		 * Advance the producer (for recycling) and advance the completion
3218		 * (for servicing received frames).  Note that it is okay to
3219		 * advance the producer without checking that it passes the
3220		 * completion index because they are both advanced at the same
3221		 * rate.
3222		 */
3223
3224		bp->rcv_xmt_reg.index.rcv_prod += 1;
3225		bp->rcv_xmt_reg.index.rcv_comp += 1;
3226		}
3227	}
3228
3229
3230/*
3231 * =====================
3232 * = dfx_xmt_queue_pkt =
3233 * =====================
3234 *
3235 * Overview:
3236 *   Queues packets for transmission
3237 *
3238 * Returns:
3239 *   Condition code
3240 *
3241 * Arguments:
3242 *   skb - pointer to sk_buff to queue for transmission
3243 *   dev - pointer to device information
3244 *
3245 * Functional Description:
3246 *   Here we assume that an incoming skb transmit request
3247 *   is contained in a single physically contiguous buffer
3248 *   in which the virtual address of the start of packet
3249 *   (skb->data) can be converted to a physical address
3250 *   by using pci_map_single().
3251 *
3252 *   Since the adapter architecture requires a three byte
3253 *   packet request header to prepend the start of packet,
3254 *   we'll write the three byte field immediately prior to
3255 *   the FC byte.  This assumption is valid because we've
3256 *   ensured that dev->hard_header_len includes three pad
3257 *   bytes.  By posting a single fragment to the adapter,
3258 *   we'll reduce the number of descriptor fetches and
3259 *   bus traffic needed to send the request.
3260 *
3261 *   Also, we can't free the skb until after it's been DMA'd
3262 *   out by the adapter, so we'll queue it in the driver and
3263 *   return it in dfx_xmt_done.
3264 *
3265 * Return Codes:
3266 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3267 *	 1 - caller should requeue the sk_buff for later transmission
3268 *
3269 * Assumptions:
3270 *	 First and foremost, we assume the incoming skb pointer
3271 *   is NOT NULL and is pointing to a valid sk_buff structure.
3272 *
3273 *   The outgoing packet is complete, starting with the
3274 *   frame control byte including the last byte of data,
3275 *   but NOT including the 4 byte CRC.  We'll let the
3276 *   adapter hardware generate and append the CRC.
3277 *
3278 *   The entire packet is stored in one physically
3279 *   contiguous buffer which is not cached and whose
3280 *   32-bit physical address can be determined.
3281 *
3282 *   It's vital that this routine is NOT reentered for the
3283 *   same board and that the OS is not in another section of
3284 *   code (eg. dfx_int_common) for the same board on a
3285 *   different thread.
3286 *
3287 * Side Effects:
3288 *   None
3289 */
3290
3291static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3292				     struct net_device *dev)
3293	{
3294	DFX_board_t		*bp = netdev_priv(dev);
3295	u8			prod;				/* local transmit producer index */
3296	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3297	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3298	dma_addr_t		dma_addr;
3299	unsigned long		flags;
3300
3301	netif_stop_queue(dev);
3302
3303	/*
3304	 * Verify that incoming transmit request is OK
3305	 *
3306	 * Note: The packet size check is consistent with other
3307	 *		 Linux device drivers, although the correct packet
3308	 *		 size should be verified before calling the
3309	 *		 transmit routine.
3310	 */
3311
3312	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3313	{
3314		printk("%s: Invalid packet length - %u bytes\n",
3315			dev->name, skb->len);
3316		bp->xmt_length_errors++;		/* bump error counter */
3317		netif_wake_queue(dev);
3318		dev_kfree_skb(skb);
3319		return NETDEV_TX_OK;			/* return "success" */
3320	}
3321	/*
3322	 * See if adapter link is available, if not, free buffer
3323	 *
3324	 * Note: If the link isn't available, free buffer and return 0
3325	 *		 rather than tell the upper layer to requeue the packet.
3326	 *		 The methodology here is that by the time the link
3327	 *		 becomes available, the packet to be sent will be
3328	 *		 fairly stale.  By simply dropping the packet, the
3329	 *		 higher layer protocols will eventually time out
3330	 *		 waiting for response packets which it won't receive.
3331	 */
3332
3333	if (bp->link_available == PI_K_FALSE)
3334		{
3335		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3336			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3337		else
3338			{
3339			bp->xmt_discards++;					/* bump error counter */
3340			dev_kfree_skb(skb);		/* free sk_buff now */
3341			netif_wake_queue(dev);
3342			return NETDEV_TX_OK;		/* return "success" */
3343			}
3344		}
3345
3346	/* Write the three PRH bytes immediately before the FC byte */
3347
3348	skb_push(skb, 3);
3349	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3350	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3351	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3352
3353	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3354				  DMA_TO_DEVICE);
3355	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3356		skb_pull(skb, 3);
3357		return NETDEV_TX_BUSY;
3358	}
3359
3360	spin_lock_irqsave(&bp->lock, flags);
3361
3362	/* Get the current producer and the next free xmt data descriptor */
3363
3364	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3365	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3366
3367	/*
3368	 * Get pointer to auxiliary queue entry to contain information
3369	 * for this packet.
3370	 *
3371	 * Note: The current xmt producer index will become the
3372	 *	 current xmt completion index when we complete this
3373	 *	 packet later on.  So, we'll get the pointer to the
3374	 *	 next auxiliary queue entry now before we bump the
3375	 *	 producer index.
3376	 */
3377
3378	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3379
 
 
 
 
 
 
 
3380	/*
3381	 * Write the descriptor with buffer info and bump producer
3382	 *
3383	 * Note: Since we need to start DMA from the packet request
3384	 *		 header, we'll add 3 bytes to the DMA buffer length,
3385	 *		 and we'll determine the physical address of the
3386	 *		 buffer from the PRH, not skb->data.
3387	 *
3388	 * Assumptions:
3389	 *		 1. Packet starts with the frame control (FC) byte
3390	 *		    at skb->data.
3391	 *		 2. The 4-byte CRC is not appended to the buffer or
3392	 *			included in the length.
3393	 *		 3. Packet length (skb->len) is from FC to end of
3394	 *			data, inclusive.
3395	 *		 4. The packet length does not exceed the maximum
3396	 *			FDDI LLC frame length of 4491 bytes.
3397	 *		 5. The entire packet is contained in a physically
3398	 *			contiguous, non-cached, locked memory space
3399	 *			comprised of a single buffer pointed to by
3400	 *			skb->data.
3401	 *		 6. The physical address of the start of packet
3402	 *			can be determined from the virtual address
3403	 *			by using pci_map_single() and is only 32-bits
3404	 *			wide.
3405	 */
3406
3407	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3408	p_xmt_descr->long_1 = (u32)dma_addr;
 
3409
3410	/*
3411	 * Verify that descriptor is actually available
3412	 *
3413	 * Note: If descriptor isn't available, return 1 which tells
3414	 *	 the upper layer to requeue the packet for later
3415	 *	 transmission.
3416	 *
3417	 *       We need to ensure that the producer never reaches the
3418	 *	 completion, except to indicate that the queue is empty.
3419	 */
3420
3421	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3422	{
3423		skb_pull(skb,3);
3424		spin_unlock_irqrestore(&bp->lock, flags);
3425		return NETDEV_TX_BUSY;	/* requeue packet for later */
3426	}
3427
3428	/*
3429	 * Save info for this packet for xmt done indication routine
3430	 *
3431	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3432	 * structure so that we'd have it handy when we complete this
3433	 * packet later (in dfx_xmt_done).  However, since the current
3434	 * transmit architecture guarantees a single fragment for the
3435	 * entire packet, we can simply bump the completion index by
3436	 * one (1) for each completed packet.
3437	 *
3438	 * Note: If this assumption changes and we're presented with
3439	 *	 an inconsistent number of transmit fragments for packet
3440	 *	 data, we'll need to modify this code to save the current
3441	 *	 transmit producer index.
3442	 */
3443
3444	p_xmt_drv_descr->p_skb = skb;
3445
3446	/* Update Type 2 register */
3447
3448	bp->rcv_xmt_reg.index.xmt_prod = prod;
3449	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3450	spin_unlock_irqrestore(&bp->lock, flags);
3451	netif_wake_queue(dev);
3452	return NETDEV_TX_OK;	/* packet queued to adapter */
3453	}
3454
3455
3456/*
3457 * ================
3458 * = dfx_xmt_done =
3459 * ================
3460 *
3461 * Overview:
3462 *   Processes all frames that have been transmitted.
3463 *
3464 * Returns:
3465 *   None
3466 *
3467 * Arguments:
3468 *   bp - pointer to board information
3469 *
3470 * Functional Description:
3471 *   For all consumed transmit descriptors that have not
3472 *   yet been completed, we'll free the skb we were holding
3473 *   onto using dev_kfree_skb and bump the appropriate
3474 *   counters.
3475 *
3476 * Return Codes:
3477 *   None
3478 *
3479 * Assumptions:
3480 *   The Type 2 register is not updated in this routine.  It is
3481 *   assumed that it will be updated in the ISR when dfx_xmt_done
3482 *   returns.
3483 *
3484 * Side Effects:
3485 *   None
3486 */
3487
3488static int dfx_xmt_done(DFX_board_t *bp)
3489	{
3490	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3491	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3492	u8			comp;			/* local transmit completion index */
3493	int 			freed = 0;		/* buffers freed */
3494
3495	/* Service all consumed transmit frames */
3496
3497	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3498	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3499		{
3500		/* Get pointer to the transmit driver descriptor block information */
3501
3502		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3503
3504		/* Increment transmit counters */
3505
3506		bp->xmt_total_frames++;
3507		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3508
3509		/* Return skb to operating system */
3510		comp = bp->rcv_xmt_reg.index.xmt_comp;
3511		dma_unmap_single(bp->bus_dev,
3512				 bp->descr_block_virt->xmt_data[comp].long_1,
3513				 p_xmt_drv_descr->p_skb->len,
3514				 DMA_TO_DEVICE);
3515		dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
3516
3517		/*
3518		 * Move to start of next packet by updating completion index
3519		 *
3520		 * Here we assume that a transmit packet request is always
3521		 * serviced by posting one fragment.  We can therefore
3522		 * simplify the completion code by incrementing the
3523		 * completion index by one.  This code will need to be
3524		 * modified if this assumption changes.  See comments
3525		 * in dfx_xmt_queue_pkt for more details.
3526		 */
3527
3528		bp->rcv_xmt_reg.index.xmt_comp += 1;
3529		freed++;
3530		}
3531	return freed;
3532	}
3533
3534
3535/*
3536 * =================
3537 * = dfx_rcv_flush =
3538 * =================
3539 *
3540 * Overview:
3541 *   Remove all skb's in the receive ring.
3542 *
3543 * Returns:
3544 *   None
3545 *
3546 * Arguments:
3547 *   bp - pointer to board information
3548 *
3549 * Functional Description:
3550 *   Free's all the dynamically allocated skb's that are
3551 *   currently attached to the device receive ring. This
3552 *   function is typically only used when the device is
3553 *   initialized or reinitialized.
3554 *
3555 * Return Codes:
3556 *   None
3557 *
3558 * Side Effects:
3559 *   None
3560 */
3561#ifdef DYNAMIC_BUFFERS
3562static void dfx_rcv_flush( DFX_board_t *bp )
3563	{
3564	int i, j;
3565
3566	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3567		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3568		{
3569			struct sk_buff *skb;
3570			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3571			if (skb) {
3572				dma_unmap_single(bp->bus_dev,
3573						 bp->descr_block_virt->rcv_data[i+j].long_1,
3574						 PI_RCV_DATA_K_SIZE_MAX,
3575						 DMA_FROM_DEVICE);
3576				dev_kfree_skb(skb);
3577			}
3578			bp->p_rcv_buff_va[i+j] = NULL;
3579		}
3580
3581	}
 
 
 
 
3582#endif /* DYNAMIC_BUFFERS */
3583
3584/*
3585 * =================
3586 * = dfx_xmt_flush =
3587 * =================
3588 *
3589 * Overview:
3590 *   Processes all frames whether they've been transmitted
3591 *   or not.
3592 *
3593 * Returns:
3594 *   None
3595 *
3596 * Arguments:
3597 *   bp - pointer to board information
3598 *
3599 * Functional Description:
3600 *   For all produced transmit descriptors that have not
3601 *   yet been completed, we'll free the skb we were holding
3602 *   onto using dev_kfree_skb and bump the appropriate
3603 *   counters.  Of course, it's possible that some of
3604 *   these transmit requests actually did go out, but we
3605 *   won't make that distinction here.  Finally, we'll
3606 *   update the consumer index to match the producer.
3607 *
3608 * Return Codes:
3609 *   None
3610 *
3611 * Assumptions:
3612 *   This routine does NOT update the Type 2 register.  It
3613 *   is assumed that this routine is being called during a
3614 *   transmit flush interrupt, or a shutdown or close routine.
3615 *
3616 * Side Effects:
3617 *   None
3618 */
3619
3620static void dfx_xmt_flush( DFX_board_t *bp )
3621	{
3622	u32			prod_cons;		/* rcv/xmt consumer block longword */
3623	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3624	u8			comp;			/* local transmit completion index */
3625
3626	/* Flush all outstanding transmit frames */
3627
3628	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3629		{
3630		/* Get pointer to the transmit driver descriptor block information */
3631
3632		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3633
3634		/* Return skb to operating system */
3635		comp = bp->rcv_xmt_reg.index.xmt_comp;
3636		dma_unmap_single(bp->bus_dev,
3637				 bp->descr_block_virt->xmt_data[comp].long_1,
3638				 p_xmt_drv_descr->p_skb->len,
3639				 DMA_TO_DEVICE);
3640		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3641
3642		/* Increment transmit error counter */
3643
3644		bp->xmt_discards++;
3645
3646		/*
3647		 * Move to start of next packet by updating completion index
3648		 *
3649		 * Here we assume that a transmit packet request is always
3650		 * serviced by posting one fragment.  We can therefore
3651		 * simplify the completion code by incrementing the
3652		 * completion index by one.  This code will need to be
3653		 * modified if this assumption changes.  See comments
3654		 * in dfx_xmt_queue_pkt for more details.
3655		 */
3656
3657		bp->rcv_xmt_reg.index.xmt_comp += 1;
3658		}
3659
3660	/* Update the transmit consumer index in the consumer block */
3661
3662	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3663	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3664	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3665	}
3666
3667/*
3668 * ==================
3669 * = dfx_unregister =
3670 * ==================
3671 *
3672 * Overview:
3673 *   Shuts down an FDDI controller
3674 *
3675 * Returns:
3676 *   Condition code
3677 *
3678 * Arguments:
3679 *   bdev - pointer to device information
3680 *
3681 * Functional Description:
3682 *
3683 * Return Codes:
3684 *   None
3685 *
3686 * Assumptions:
3687 *   It compiles so it should work :-( (PCI cards do :-)
3688 *
3689 * Side Effects:
3690 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3691 *   freed.
3692 */
3693static void dfx_unregister(struct device *bdev)
3694{
3695	struct net_device *dev = dev_get_drvdata(bdev);
3696	DFX_board_t *bp = netdev_priv(dev);
3697	int dfx_bus_pci = dev_is_pci(bdev);
3698	int dfx_bus_tc = DFX_BUS_TC(bdev);
3699	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3700	resource_size_t bar_start[3] = {0};	/* pointers to ports */
3701	resource_size_t bar_len[3] = {0};	/* resource lengths */
3702	int		alloc_size;		/* total buffer size used */
3703
3704	unregister_netdev(dev);
3705
3706	alloc_size = sizeof(PI_DESCR_BLOCK) +
3707		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708#ifndef DYNAMIC_BUFFERS
3709		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710#endif
3711		     sizeof(PI_CONSUMER_BLOCK) +
3712		     (PI_ALIGN_K_DESC_BLK - 1);
3713	if (bp->kmalloced)
3714		dma_free_coherent(bdev, alloc_size,
3715				  bp->kmalloced, bp->kmalloced_dma);
3716
3717	dfx_bus_uninit(dev);
3718
3719	dfx_get_bars(bdev, bar_start, bar_len);
3720	if (bar_start[2] != 0)
3721		release_region(bar_start[2], bar_len[2]);
3722	if (bar_start[1] != 0)
3723		release_region(bar_start[1], bar_len[1]);
3724	if (dfx_use_mmio) {
3725		iounmap(bp->base.mem);
3726		release_mem_region(bar_start[0], bar_len[0]);
3727	} else
3728		release_region(bar_start[0], bar_len[0]);
3729
3730	if (dfx_bus_pci)
3731		pci_disable_device(to_pci_dev(bdev));
3732
3733	free_netdev(dev);
3734}
3735
3736
3737static int __maybe_unused dfx_dev_register(struct device *);
3738static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740#ifdef CONFIG_PCI
3741static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742static void dfx_pci_unregister(struct pci_dev *);
3743
3744static const struct pci_device_id dfx_pci_table[] = {
3745	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746	{ }
3747};
3748MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750static struct pci_driver dfx_pci_driver = {
3751	.name		= "defxx",
3752	.id_table	= dfx_pci_table,
3753	.probe		= dfx_pci_register,
3754	.remove		= dfx_pci_unregister,
3755};
3756
3757static int dfx_pci_register(struct pci_dev *pdev,
3758			    const struct pci_device_id *ent)
3759{
3760	return dfx_register(&pdev->dev);
3761}
3762
3763static void dfx_pci_unregister(struct pci_dev *pdev)
3764{
3765	dfx_unregister(&pdev->dev);
3766}
3767#endif /* CONFIG_PCI */
3768
3769#ifdef CONFIG_EISA
3770static const struct eisa_device_id dfx_eisa_table[] = {
3771        { "DEC3001", DEFEA_PROD_ID_1 },
3772        { "DEC3002", DEFEA_PROD_ID_2 },
3773        { "DEC3003", DEFEA_PROD_ID_3 },
3774        { "DEC3004", DEFEA_PROD_ID_4 },
3775        { }
3776};
3777MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779static struct eisa_driver dfx_eisa_driver = {
3780	.id_table	= dfx_eisa_table,
3781	.driver		= {
3782		.name	= "defxx",
3783		.bus	= &eisa_bus_type,
3784		.probe	= dfx_dev_register,
3785		.remove	= dfx_dev_unregister,
3786	},
3787};
3788#endif /* CONFIG_EISA */
3789
3790#ifdef CONFIG_TC
3791static struct tc_device_id const dfx_tc_table[] = {
3792	{ "DEC     ", "PMAF-FA " },
3793	{ "DEC     ", "PMAF-FD " },
3794	{ "DEC     ", "PMAF-FS " },
3795	{ "DEC     ", "PMAF-FU " },
3796	{ }
3797};
3798MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800static struct tc_driver dfx_tc_driver = {
3801	.id_table	= dfx_tc_table,
3802	.driver		= {
3803		.name	= "defxx",
3804		.bus	= &tc_bus_type,
3805		.probe	= dfx_dev_register,
3806		.remove	= dfx_dev_unregister,
3807	},
3808};
3809#endif /* CONFIG_TC */
3810
3811static int __maybe_unused dfx_dev_register(struct device *dev)
3812{
3813	int status;
3814
3815	status = dfx_register(dev);
3816	if (!status)
3817		get_device(dev);
3818	return status;
3819}
3820
3821static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822{
3823	put_device(dev);
3824	dfx_unregister(dev);
3825	return 0;
3826}
3827
3828
3829static int dfx_init(void)
3830{
3831	int status;
3832
3833	status = pci_register_driver(&dfx_pci_driver);
3834	if (!status)
3835		status = eisa_driver_register(&dfx_eisa_driver);
3836	if (!status)
3837		status = tc_register_driver(&dfx_tc_driver);
3838	return status;
3839}
3840
3841static void dfx_cleanup(void)
3842{
3843	tc_unregister_driver(&dfx_tc_driver);
3844	eisa_driver_unregister(&dfx_eisa_driver);
3845	pci_unregister_driver(&dfx_pci_driver);
3846}
3847
3848module_init(dfx_init);
3849module_exit(dfx_cleanup);
3850MODULE_AUTHOR("Lawrence V. Stefani");
3851MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852		   DRV_VERSION " " DRV_RELDATE);
3853MODULE_LICENSE("GPL");