Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
   3 *
   4 * Based on skelton.c by Donald Becker.
   5 *
   6 * This driver is a replacement of older and less maintained version.
   7 * This is a header of the older version:
   8 *	-----<snip>-----
   9 *	Copyright 2001 MontaVista Software Inc.
  10 *	Author: MontaVista Software, Inc.
  11 *		ahennessy@mvista.com
  12 *	Copyright (C) 2000-2001 Toshiba Corporation
  13 *	static const char *version =
  14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15 *	-----<snip>-----
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 *
  21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22 * All Rights Reserved.
  23 */
  24
  25#define DRV_VERSION	"1.39"
  26static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  27#define MODNAME			"tc35815"
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/interrupt.h>
  34#include <linux/ioport.h>
  35#include <linux/in.h>
  36#include <linux/if_vlan.h>
  37#include <linux/slab.h>
  38#include <linux/string.h>
  39#include <linux/spinlock.h>
  40#include <linux/errno.h>
  41#include <linux/netdevice.h>
  42#include <linux/etherdevice.h>
  43#include <linux/skbuff.h>
  44#include <linux/delay.h>
  45#include <linux/pci.h>
  46#include <linux/phy.h>
  47#include <linux/workqueue.h>
  48#include <linux/platform_device.h>
  49#include <linux/prefetch.h>
  50#include <asm/io.h>
  51#include <asm/byteorder.h>
  52
  53enum tc35815_chiptype {
  54	TC35815CF = 0,
  55	TC35815_NWU,
  56	TC35815_TX4939,
  57};
  58
  59/* indexed by tc35815_chiptype, above */
  60static const struct {
  61	const char *name;
  62} chip_info[] = {
  63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
  64	{ "TOSHIBA TC35815 with Wake on LAN" },
  65	{ "TOSHIBA TC35815/TX4939" },
  66};
  67
  68static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
  69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  72	{0,}
  73};
  74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  75
  76/* see MODULE_PARM_DESC */
  77static struct tc35815_options {
  78	int speed;
  79	int duplex;
  80} options;
  81
  82/*
  83 * Registers
  84 */
  85struct tc35815_regs {
  86	__u32 DMA_Ctl;		/* 0x00 */
  87	__u32 TxFrmPtr;
  88	__u32 TxThrsh;
  89	__u32 TxPollCtr;
  90	__u32 BLFrmPtr;
  91	__u32 RxFragSize;
  92	__u32 Int_En;
  93	__u32 FDA_Bas;
  94	__u32 FDA_Lim;		/* 0x20 */
  95	__u32 Int_Src;
  96	__u32 unused0[2];
  97	__u32 PauseCnt;
  98	__u32 RemPauCnt;
  99	__u32 TxCtlFrmStat;
 100	__u32 unused1;
 101	__u32 MAC_Ctl;		/* 0x40 */
 102	__u32 CAM_Ctl;
 103	__u32 Tx_Ctl;
 104	__u32 Tx_Stat;
 105	__u32 Rx_Ctl;
 106	__u32 Rx_Stat;
 107	__u32 MD_Data;
 108	__u32 MD_CA;
 109	__u32 CAM_Adr;		/* 0x60 */
 110	__u32 CAM_Data;
 111	__u32 CAM_Ena;
 112	__u32 PROM_Ctl;
 113	__u32 PROM_Data;
 114	__u32 Algn_Cnt;
 115	__u32 CRC_Cnt;
 116	__u32 Miss_Cnt;
 117};
 118
 119/*
 120 * Bit assignments
 121 */
 122/* DMA_Ctl bit assign ------------------------------------------------------- */
 123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
 124#define DMA_RxAlign_1	       0x00400000
 125#define DMA_RxAlign_2	       0x00800000
 126#define DMA_RxAlign_3	       0x00c00000
 127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
 128#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
 129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
 130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
 131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
 132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
 133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
 134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
 135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
 136
 137/* RxFragSize bit assign ---------------------------------------------------- */
 138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
 139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
 140
 141/* MAC_Ctl bit assign ------------------------------------------------------- */
 142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
 143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
 144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
 145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
 146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
 147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
 148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
 149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
 150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
 151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
 152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
 153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
 154
 155/* PROM_Ctl bit assign ------------------------------------------------------ */
 156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
 157#define PROM_Read	       0x00004000 /*10:Read operation		     */
 158#define PROM_Write	       0x00002000 /*01:Write operation		     */
 159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
 160					  /*00:Enable or Disable Writting,   */
 161					  /*	  as specified in PROM_Addr. */
 162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
 163					  /*00xxxx:	      disable	     */
 164
 165/* CAM_Ctl bit assign ------------------------------------------------------- */
 166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
 167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
 168					  /*			accept other */
 169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
 170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
 171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
 172
 173/* CAM_Ena bit assign ------------------------------------------------------- */
 174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
 175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
 176#define CAM_Ena_Bit(index)	(1 << (index))
 177#define CAM_ENTRY_DESTINATION	0
 178#define CAM_ENTRY_SOURCE	1
 179#define CAM_ENTRY_MACCTL	20
 180
 181/* Tx_Ctl bit assign -------------------------------------------------------- */
 182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
 183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
 184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
 185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
 186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
 187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
 188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
 189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
 190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
 191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
 192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
 193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
 194
 195/* Tx_Stat bit assign ------------------------------------------------------- */
 196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
 197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
 198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
 199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
 200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
 201#define Tx_Under	       0x00000100 /* Underrun			     */
 202#define Tx_Defer	       0x00000200 /* Deferral			     */
 203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
 204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
 205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
 206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
 207#define Tx_Comp		       0x00004000 /* Completion			     */
 208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
 209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
 210
 211/* Rx_Ctl bit assign -------------------------------------------------------- */
 212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
 213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
 214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
 215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
 216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
 217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
 218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
 219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
 220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
 221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
 222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
 223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
 224
 225/* Rx_Stat bit assign ------------------------------------------------------- */
 226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
 227#define Rx_Good		       0x00004000 /* Rx Good			     */
 228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
 229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
 230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
 231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
 232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
 233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
 234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
 235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
 236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
 237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
 238
 239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
 240
 241/* Int_En bit assign -------------------------------------------------------- */
 242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
 243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
 244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
 245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
 246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
 247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
 248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
 249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
 250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
 251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
 252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
 253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
 254					  /*		   Exhausted Enable  */
 255
 256/* Int_Src bit assign ------------------------------------------------------- */
 257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
 258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
 259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
 260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
 261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
 262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
 263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
 264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
 265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
 266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
 267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
 268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
 269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
 270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
 271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
 272
 273/* MD_CA bit assign --------------------------------------------------------- */
 274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
 275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
 276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
 277
 278
 279/*
 280 * Descriptors
 281 */
 282
 283/* Frame descripter */
 284struct FDesc {
 285	volatile __u32 FDNext;
 286	volatile __u32 FDSystem;
 287	volatile __u32 FDStat;
 288	volatile __u32 FDCtl;
 289};
 290
 291/* Buffer descripter */
 292struct BDesc {
 293	volatile __u32 BuffData;
 294	volatile __u32 BDCtl;
 295};
 296
 297#define FD_ALIGN	16
 298
 299/* Frame Descripter bit assign ---------------------------------------------- */
 300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
 301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
 302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
 303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
 304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
 305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
 306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
 307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
 308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
 309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
 310#define FD_BDCnt_SHIFT	       16
 311
 312/* Buffer Descripter bit assign --------------------------------------------- */
 313#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
 314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
 315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
 316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
 317#define BD_RxBDID_SHIFT	       16
 318#define BD_RxBDSeqN_SHIFT      24
 319
 320
 321/* Some useful constants. */
 322
 323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
 324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
 325	Tx_En)	/* maybe  0x7b01 */
 326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
 327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
 328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
 329#define INT_EN_CMD  (Int_NRAbtEn | \
 330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
 331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
 332	Int_STargAbtEn | \
 333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
 334#define DMA_CTL_CMD	DMA_BURST_SIZE
 335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
 336
 337/* Tuning parameters */
 338#define DMA_BURST_SIZE	32
 339#define TX_THRESHOLD	1024
 340/* used threshold with packet max byte for low pci transfer ability.*/
 341#define TX_THRESHOLD_MAX 1536
 342/* setting threshold max value when overrun error occurred this count. */
 343#define TX_THRESHOLD_KEEP_LIMIT 10
 344
 345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
 346#define FD_PAGE_NUM 4
 347#define RX_BUF_NUM	128	/* < 256 */
 348#define RX_FD_NUM	256	/* >= 32 */
 349#define TX_FD_NUM	128
 350#if RX_CTL_CMD & Rx_LongEn
 351#define RX_BUF_SIZE	PAGE_SIZE
 352#elif RX_CTL_CMD & Rx_StripCRC
 353#define RX_BUF_SIZE	\
 354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
 355#else
 356#define RX_BUF_SIZE	\
 357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
 358#endif
 359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
 360#define NAPI_WEIGHT	16
 361
 362struct TxFD {
 363	struct FDesc fd;
 364	struct BDesc bd;
 365	struct BDesc unused;
 366};
 367
 368struct RxFD {
 369	struct FDesc fd;
 370	struct BDesc bd[0];	/* variable length */
 371};
 372
 373struct FrFD {
 374	struct FDesc fd;
 375	struct BDesc bd[RX_BUF_NUM];
 376};
 377
 378
 379#define tc_readl(addr)	ioread32(addr)
 380#define tc_writel(d, addr)	iowrite32(d, addr)
 381
 382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
 383
 384/* Information that need to be kept for each controller. */
 385struct tc35815_local {
 386	struct pci_dev *pci_dev;
 387
 388	struct net_device *dev;
 389	struct napi_struct napi;
 390
 391	/* statistics */
 392	struct {
 393		int max_tx_qlen;
 394		int tx_ints;
 395		int rx_ints;
 396		int tx_underrun;
 397	} lstats;
 398
 399	/* Tx control lock.  This protects the transmit buffer ring
 400	 * state along with the "tx full" state of the driver.  This
 401	 * means all netif_queue flow control actions are protected
 402	 * by this lock as well.
 403	 */
 404	spinlock_t lock;
 405	spinlock_t rx_lock;
 406
 407	struct mii_bus *mii_bus;
 408	struct phy_device *phy_dev;
 409	int duplex;
 410	int speed;
 411	int link;
 412	struct work_struct restart_work;
 413
 414	/*
 415	 * Transmitting: Batch Mode.
 416	 *	1 BD in 1 TxFD.
 417	 * Receiving: Non-Packing Mode.
 418	 *	1 circular FD for Free Buffer List.
 419	 *	RX_BUF_NUM BD in Free Buffer FD.
 420	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
 421	 */
 422	void *fd_buf;	/* for TxFD, RxFD, FrFD */
 423	dma_addr_t fd_buf_dma;
 424	struct TxFD *tfd_base;
 425	unsigned int tfd_start;
 426	unsigned int tfd_end;
 427	struct RxFD *rfd_base;
 428	struct RxFD *rfd_limit;
 429	struct RxFD *rfd_cur;
 430	struct FrFD *fbl_ptr;
 431	unsigned int fbl_count;
 432	struct {
 433		struct sk_buff *skb;
 434		dma_addr_t skb_dma;
 435	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
 436	u32 msg_enable;
 437	enum tc35815_chiptype chiptype;
 438};
 439
 440static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
 441{
 442	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
 443}
 444#ifdef DEBUG
 445static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
 446{
 447	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
 448}
 449#endif
 450static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
 451				       struct pci_dev *hwdev,
 452				       dma_addr_t *dma_handle)
 453{
 454	struct sk_buff *skb;
 455	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
 456	if (!skb)
 457		return NULL;
 458	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
 459				     PCI_DMA_FROMDEVICE);
 460	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
 461		dev_kfree_skb_any(skb);
 462		return NULL;
 463	}
 464	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
 465	return skb;
 466}
 467
 468static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
 469{
 470	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
 471			 PCI_DMA_FROMDEVICE);
 472	dev_kfree_skb_any(skb);
 473}
 474
 475/* Index to functions, as function prototypes. */
 476
 477static int	tc35815_open(struct net_device *dev);
 478static int	tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
 
 479static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
 480static int	tc35815_rx(struct net_device *dev, int limit);
 481static int	tc35815_poll(struct napi_struct *napi, int budget);
 482static void	tc35815_txdone(struct net_device *dev);
 483static int	tc35815_close(struct net_device *dev);
 484static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
 485static void	tc35815_set_multicast_list(struct net_device *dev);
 486static void	tc35815_tx_timeout(struct net_device *dev);
 487static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 488#ifdef CONFIG_NET_POLL_CONTROLLER
 489static void	tc35815_poll_controller(struct net_device *dev);
 490#endif
 491static const struct ethtool_ops tc35815_ethtool_ops;
 492
 493/* Example routines you must write ;->. */
 494static void	tc35815_chip_reset(struct net_device *dev);
 495static void	tc35815_chip_init(struct net_device *dev);
 496
 497#ifdef DEBUG
 498static void	panic_queues(struct net_device *dev);
 499#endif
 500
 501static void tc35815_restart_work(struct work_struct *work);
 502
 503static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 504{
 505	struct net_device *dev = bus->priv;
 506	struct tc35815_regs __iomem *tr =
 507		(struct tc35815_regs __iomem *)dev->base_addr;
 508	unsigned long timeout = jiffies + HZ;
 509
 510	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
 511	udelay(12); /* it takes 32 x 400ns at least */
 512	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 513		if (time_after(jiffies, timeout))
 514			return -EIO;
 515		cpu_relax();
 516	}
 517	return tc_readl(&tr->MD_Data) & 0xffff;
 518}
 519
 520static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
 521{
 522	struct net_device *dev = bus->priv;
 523	struct tc35815_regs __iomem *tr =
 524		(struct tc35815_regs __iomem *)dev->base_addr;
 525	unsigned long timeout = jiffies + HZ;
 526
 527	tc_writel(val, &tr->MD_Data);
 528	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
 529		  &tr->MD_CA);
 530	udelay(12); /* it takes 32 x 400ns at least */
 531	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 532		if (time_after(jiffies, timeout))
 533			return -EIO;
 534		cpu_relax();
 535	}
 536	return 0;
 537}
 538
 539static void tc_handle_link_change(struct net_device *dev)
 540{
 541	struct tc35815_local *lp = netdev_priv(dev);
 542	struct phy_device *phydev = lp->phy_dev;
 543	unsigned long flags;
 544	int status_change = 0;
 545
 546	spin_lock_irqsave(&lp->lock, flags);
 547	if (phydev->link &&
 548	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
 549		struct tc35815_regs __iomem *tr =
 550			(struct tc35815_regs __iomem *)dev->base_addr;
 551		u32 reg;
 552
 553		reg = tc_readl(&tr->MAC_Ctl);
 554		reg |= MAC_HaltReq;
 555		tc_writel(reg, &tr->MAC_Ctl);
 556		if (phydev->duplex == DUPLEX_FULL)
 557			reg |= MAC_FullDup;
 558		else
 559			reg &= ~MAC_FullDup;
 560		tc_writel(reg, &tr->MAC_Ctl);
 561		reg &= ~MAC_HaltReq;
 562		tc_writel(reg, &tr->MAC_Ctl);
 563
 564		/*
 565		 * TX4939 PCFG.SPEEDn bit will be changed on
 566		 * NETDEV_CHANGE event.
 567		 */
 568		/*
 569		 * WORKAROUND: enable LostCrS only if half duplex
 570		 * operation.
 571		 * (TX4939 does not have EnLCarr)
 572		 */
 573		if (phydev->duplex == DUPLEX_HALF &&
 574		    lp->chiptype != TC35815_TX4939)
 575			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
 576				  &tr->Tx_Ctl);
 577
 578		lp->speed = phydev->speed;
 579		lp->duplex = phydev->duplex;
 580		status_change = 1;
 581	}
 582
 583	if (phydev->link != lp->link) {
 584		if (phydev->link) {
 585			/* delayed promiscuous enabling */
 586			if (dev->flags & IFF_PROMISC)
 587				tc35815_set_multicast_list(dev);
 588		} else {
 589			lp->speed = 0;
 590			lp->duplex = -1;
 591		}
 592		lp->link = phydev->link;
 593
 594		status_change = 1;
 595	}
 596	spin_unlock_irqrestore(&lp->lock, flags);
 597
 598	if (status_change && netif_msg_link(lp)) {
 599		phy_print_status(phydev);
 600		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
 601			 dev->name,
 602			 phy_read(phydev, MII_BMCR),
 603			 phy_read(phydev, MII_BMSR),
 604			 phy_read(phydev, MII_LPA));
 605	}
 606}
 607
 608static int tc_mii_probe(struct net_device *dev)
 609{
 
 610	struct tc35815_local *lp = netdev_priv(dev);
 611	struct phy_device *phydev = NULL;
 612	int phy_addr;
 613	u32 dropmask;
 614
 615	/* find the first phy */
 616	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 617		if (lp->mii_bus->phy_map[phy_addr]) {
 618			if (phydev) {
 619				printk(KERN_ERR "%s: multiple PHYs found\n",
 620				       dev->name);
 621				return -EINVAL;
 622			}
 623			phydev = lp->mii_bus->phy_map[phy_addr];
 624			break;
 625		}
 626	}
 627
 
 628	if (!phydev) {
 629		printk(KERN_ERR "%s: no PHY found\n", dev->name);
 630		return -ENODEV;
 631	}
 632
 633	/* attach the mac to the phy */
 634	phydev = phy_connect(dev, dev_name(&phydev->dev),
 635			     &tc_handle_link_change,
 636			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
 637	if (IS_ERR(phydev)) {
 638		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
 639		return PTR_ERR(phydev);
 640	}
 641	printk(KERN_INFO "%s: attached PHY driver [%s] "
 642		"(mii_bus:phy_addr=%s, id=%x)\n",
 643		dev->name, phydev->drv->name, dev_name(&phydev->dev),
 644		phydev->phy_id);
 645
 646	/* mask with MAC supported features */
 647	phydev->supported &= PHY_BASIC_FEATURES;
 648	dropmask = 0;
 649	if (options.speed == 10)
 650		dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
 651	else if (options.speed == 100)
 652		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
 653	if (options.duplex == 1)
 654		dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
 655	else if (options.duplex == 2)
 656		dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
 657	phydev->supported &= ~dropmask;
 658	phydev->advertising = phydev->supported;
 
 
 
 
 
 659
 660	lp->link = 0;
 661	lp->speed = 0;
 662	lp->duplex = -1;
 663	lp->phy_dev = phydev;
 664
 665	return 0;
 666}
 667
 668static int tc_mii_init(struct net_device *dev)
 669{
 670	struct tc35815_local *lp = netdev_priv(dev);
 671	int err;
 672	int i;
 673
 674	lp->mii_bus = mdiobus_alloc();
 675	if (lp->mii_bus == NULL) {
 676		err = -ENOMEM;
 677		goto err_out;
 678	}
 679
 680	lp->mii_bus->name = "tc35815_mii_bus";
 681	lp->mii_bus->read = tc_mdio_read;
 682	lp->mii_bus->write = tc_mdio_write;
 683	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
 684		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
 685	lp->mii_bus->priv = dev;
 686	lp->mii_bus->parent = &lp->pci_dev->dev;
 687	lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
 688	if (!lp->mii_bus->irq) {
 689		err = -ENOMEM;
 690		goto err_out_free_mii_bus;
 691	}
 692
 693	for (i = 0; i < PHY_MAX_ADDR; i++)
 694		lp->mii_bus->irq[i] = PHY_POLL;
 695
 696	err = mdiobus_register(lp->mii_bus);
 697	if (err)
 698		goto err_out_free_mdio_irq;
 699	err = tc_mii_probe(dev);
 700	if (err)
 701		goto err_out_unregister_bus;
 702	return 0;
 703
 704err_out_unregister_bus:
 705	mdiobus_unregister(lp->mii_bus);
 706err_out_free_mdio_irq:
 707	kfree(lp->mii_bus->irq);
 708err_out_free_mii_bus:
 709	mdiobus_free(lp->mii_bus);
 710err_out:
 711	return err;
 712}
 713
 714#ifdef CONFIG_CPU_TX49XX
 715/*
 716 * Find a platform_device providing a MAC address.  The platform code
 717 * should provide a "tc35815-mac" device with a MAC address in its
 718 * platform_data.
 719 */
 720static int tc35815_mac_match(struct device *dev, void *data)
 721{
 722	struct platform_device *plat_dev = to_platform_device(dev);
 723	struct pci_dev *pci_dev = data;
 724	unsigned int id = pci_dev->irq;
 725	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
 726}
 727
 728static int tc35815_read_plat_dev_addr(struct net_device *dev)
 729{
 730	struct tc35815_local *lp = netdev_priv(dev);
 731	struct device *pd = bus_find_device(&platform_bus_type, NULL,
 732					    lp->pci_dev, tc35815_mac_match);
 733	if (pd) {
 734		if (pd->platform_data)
 735			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
 736		put_device(pd);
 737		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
 738	}
 739	return -ENODEV;
 740}
 741#else
 742static int tc35815_read_plat_dev_addr(struct net_device *dev)
 743{
 744	return -ENODEV;
 745}
 746#endif
 747
 748static int tc35815_init_dev_addr(struct net_device *dev)
 749{
 750	struct tc35815_regs __iomem *tr =
 751		(struct tc35815_regs __iomem *)dev->base_addr;
 752	int i;
 753
 754	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 755		;
 756	for (i = 0; i < 6; i += 2) {
 757		unsigned short data;
 758		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
 759		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 760			;
 761		data = tc_readl(&tr->PROM_Data);
 762		dev->dev_addr[i] = data & 0xff;
 763		dev->dev_addr[i+1] = data >> 8;
 764	}
 765	if (!is_valid_ether_addr(dev->dev_addr))
 766		return tc35815_read_plat_dev_addr(dev);
 767	return 0;
 768}
 769
 770static const struct net_device_ops tc35815_netdev_ops = {
 771	.ndo_open		= tc35815_open,
 772	.ndo_stop		= tc35815_close,
 773	.ndo_start_xmit		= tc35815_send_packet,
 774	.ndo_get_stats		= tc35815_get_stats,
 775	.ndo_set_rx_mode	= tc35815_set_multicast_list,
 776	.ndo_tx_timeout		= tc35815_tx_timeout,
 777	.ndo_do_ioctl		= tc35815_ioctl,
 778	.ndo_validate_addr	= eth_validate_addr,
 779	.ndo_change_mtu		= eth_change_mtu,
 780	.ndo_set_mac_address	= eth_mac_addr,
 781#ifdef CONFIG_NET_POLL_CONTROLLER
 782	.ndo_poll_controller	= tc35815_poll_controller,
 783#endif
 784};
 785
 786static int tc35815_init_one(struct pci_dev *pdev,
 787			    const struct pci_device_id *ent)
 788{
 789	void __iomem *ioaddr = NULL;
 790	struct net_device *dev;
 791	struct tc35815_local *lp;
 792	int rc;
 793
 794	static int printed_version;
 795	if (!printed_version++) {
 796		printk(version);
 797		dev_printk(KERN_DEBUG, &pdev->dev,
 798			   "speed:%d duplex:%d\n",
 799			   options.speed, options.duplex);
 800	}
 801
 802	if (!pdev->irq) {
 803		dev_warn(&pdev->dev, "no IRQ assigned.\n");
 804		return -ENODEV;
 805	}
 806
 807	/* dev zeroed in alloc_etherdev */
 808	dev = alloc_etherdev(sizeof(*lp));
 809	if (dev == NULL)
 810		return -ENOMEM;
 811
 812	SET_NETDEV_DEV(dev, &pdev->dev);
 813	lp = netdev_priv(dev);
 814	lp->dev = dev;
 815
 816	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 817	rc = pcim_enable_device(pdev);
 818	if (rc)
 819		goto err_out;
 820	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
 821	if (rc)
 822		goto err_out;
 823	pci_set_master(pdev);
 824	ioaddr = pcim_iomap_table(pdev)[1];
 825
 826	/* Initialize the device structure. */
 827	dev->netdev_ops = &tc35815_netdev_ops;
 828	dev->ethtool_ops = &tc35815_ethtool_ops;
 829	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
 830	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
 831
 832	dev->irq = pdev->irq;
 833	dev->base_addr = (unsigned long)ioaddr;
 834
 835	INIT_WORK(&lp->restart_work, tc35815_restart_work);
 836	spin_lock_init(&lp->lock);
 837	spin_lock_init(&lp->rx_lock);
 838	lp->pci_dev = pdev;
 839	lp->chiptype = ent->driver_data;
 840
 841	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
 842	pci_set_drvdata(pdev, dev);
 843
 844	/* Soft reset the chip. */
 845	tc35815_chip_reset(dev);
 846
 847	/* Retrieve the ethernet address. */
 848	if (tc35815_init_dev_addr(dev)) {
 849		dev_warn(&pdev->dev, "not valid ether addr\n");
 850		eth_hw_addr_random(dev);
 851	}
 852
 853	rc = register_netdev(dev);
 854	if (rc)
 855		goto err_out;
 856
 857	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
 858		dev->name,
 859		chip_info[ent->driver_data].name,
 860		dev->base_addr,
 861		dev->dev_addr,
 862		dev->irq);
 863
 864	rc = tc_mii_init(dev);
 865	if (rc)
 866		goto err_out_unregister;
 867
 868	return 0;
 869
 870err_out_unregister:
 871	unregister_netdev(dev);
 872err_out:
 873	free_netdev(dev);
 874	return rc;
 875}
 876
 877
 878static void tc35815_remove_one(struct pci_dev *pdev)
 879{
 880	struct net_device *dev = pci_get_drvdata(pdev);
 881	struct tc35815_local *lp = netdev_priv(dev);
 882
 883	phy_disconnect(lp->phy_dev);
 884	mdiobus_unregister(lp->mii_bus);
 885	kfree(lp->mii_bus->irq);
 886	mdiobus_free(lp->mii_bus);
 887	unregister_netdev(dev);
 888	free_netdev(dev);
 889}
 890
 891static int
 892tc35815_init_queues(struct net_device *dev)
 893{
 894	struct tc35815_local *lp = netdev_priv(dev);
 895	int i;
 896	unsigned long fd_addr;
 897
 898	if (!lp->fd_buf) {
 899		BUG_ON(sizeof(struct FDesc) +
 900		       sizeof(struct BDesc) * RX_BUF_NUM +
 901		       sizeof(struct FDesc) * RX_FD_NUM +
 902		       sizeof(struct TxFD) * TX_FD_NUM >
 903		       PAGE_SIZE * FD_PAGE_NUM);
 904
 905		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
 906						  PAGE_SIZE * FD_PAGE_NUM,
 907						  &lp->fd_buf_dma);
 908		if (!lp->fd_buf)
 909			return -ENOMEM;
 910		for (i = 0; i < RX_BUF_NUM; i++) {
 911			lp->rx_skbs[i].skb =
 912				alloc_rxbuf_skb(dev, lp->pci_dev,
 913						&lp->rx_skbs[i].skb_dma);
 914			if (!lp->rx_skbs[i].skb) {
 915				while (--i >= 0) {
 916					free_rxbuf_skb(lp->pci_dev,
 917						       lp->rx_skbs[i].skb,
 918						       lp->rx_skbs[i].skb_dma);
 919					lp->rx_skbs[i].skb = NULL;
 920				}
 921				pci_free_consistent(lp->pci_dev,
 922						    PAGE_SIZE * FD_PAGE_NUM,
 923						    lp->fd_buf,
 924						    lp->fd_buf_dma);
 925				lp->fd_buf = NULL;
 926				return -ENOMEM;
 927			}
 928		}
 929		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
 930		       dev->name, lp->fd_buf);
 931		printk("\n");
 932	} else {
 933		for (i = 0; i < FD_PAGE_NUM; i++)
 934			clear_page((void *)((unsigned long)lp->fd_buf +
 935					    i * PAGE_SIZE));
 936	}
 937	fd_addr = (unsigned long)lp->fd_buf;
 938
 939	/* Free Descriptors (for Receive) */
 940	lp->rfd_base = (struct RxFD *)fd_addr;
 941	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
 942	for (i = 0; i < RX_FD_NUM; i++)
 943		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
 944	lp->rfd_cur = lp->rfd_base;
 945	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
 946
 947	/* Transmit Descriptors */
 948	lp->tfd_base = (struct TxFD *)fd_addr;
 949	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
 950	for (i = 0; i < TX_FD_NUM; i++) {
 951		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
 952		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 953		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
 954	}
 955	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
 956	lp->tfd_start = 0;
 957	lp->tfd_end = 0;
 958
 959	/* Buffer List (for Receive) */
 960	lp->fbl_ptr = (struct FrFD *)fd_addr;
 961	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
 962	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
 963	/*
 964	 * move all allocated skbs to head of rx_skbs[] array.
 965	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
 966	 * tc35815_rx() had failed.
 967	 */
 968	lp->fbl_count = 0;
 969	for (i = 0; i < RX_BUF_NUM; i++) {
 970		if (lp->rx_skbs[i].skb) {
 971			if (i != lp->fbl_count) {
 972				lp->rx_skbs[lp->fbl_count].skb =
 973					lp->rx_skbs[i].skb;
 974				lp->rx_skbs[lp->fbl_count].skb_dma =
 975					lp->rx_skbs[i].skb_dma;
 976			}
 977			lp->fbl_count++;
 978		}
 979	}
 980	for (i = 0; i < RX_BUF_NUM; i++) {
 981		if (i >= lp->fbl_count) {
 982			lp->fbl_ptr->bd[i].BuffData = 0;
 983			lp->fbl_ptr->bd[i].BDCtl = 0;
 984			continue;
 985		}
 986		lp->fbl_ptr->bd[i].BuffData =
 987			cpu_to_le32(lp->rx_skbs[i].skb_dma);
 988		/* BDID is index of FrFD.bd[] */
 989		lp->fbl_ptr->bd[i].BDCtl =
 990			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
 991				    RX_BUF_SIZE);
 992	}
 993
 994	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
 995	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
 996	return 0;
 997}
 998
 999static void
1000tc35815_clear_queues(struct net_device *dev)
1001{
1002	struct tc35815_local *lp = netdev_priv(dev);
1003	int i;
1004
1005	for (i = 0; i < TX_FD_NUM; i++) {
1006		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1007		struct sk_buff *skb =
1008			fdsystem != 0xffffffff ?
1009			lp->tx_skbs[fdsystem].skb : NULL;
1010#ifdef DEBUG
1011		if (lp->tx_skbs[i].skb != skb) {
1012			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1013			panic_queues(dev);
1014		}
1015#else
1016		BUG_ON(lp->tx_skbs[i].skb != skb);
1017#endif
1018		if (skb) {
1019			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1020			lp->tx_skbs[i].skb = NULL;
1021			lp->tx_skbs[i].skb_dma = 0;
1022			dev_kfree_skb_any(skb);
1023		}
1024		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1025	}
1026
1027	tc35815_init_queues(dev);
1028}
1029
1030static void
1031tc35815_free_queues(struct net_device *dev)
1032{
1033	struct tc35815_local *lp = netdev_priv(dev);
1034	int i;
1035
1036	if (lp->tfd_base) {
1037		for (i = 0; i < TX_FD_NUM; i++) {
1038			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1039			struct sk_buff *skb =
1040				fdsystem != 0xffffffff ?
1041				lp->tx_skbs[fdsystem].skb : NULL;
1042#ifdef DEBUG
1043			if (lp->tx_skbs[i].skb != skb) {
1044				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1045				panic_queues(dev);
1046			}
1047#else
1048			BUG_ON(lp->tx_skbs[i].skb != skb);
1049#endif
1050			if (skb) {
1051				dev_kfree_skb(skb);
1052				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
 
1053				lp->tx_skbs[i].skb = NULL;
1054				lp->tx_skbs[i].skb_dma = 0;
1055			}
1056			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1057		}
1058	}
1059
1060	lp->rfd_base = NULL;
1061	lp->rfd_limit = NULL;
1062	lp->rfd_cur = NULL;
1063	lp->fbl_ptr = NULL;
1064
1065	for (i = 0; i < RX_BUF_NUM; i++) {
1066		if (lp->rx_skbs[i].skb) {
1067			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1068				       lp->rx_skbs[i].skb_dma);
1069			lp->rx_skbs[i].skb = NULL;
1070		}
1071	}
1072	if (lp->fd_buf) {
1073		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1074				    lp->fd_buf, lp->fd_buf_dma);
1075		lp->fd_buf = NULL;
1076	}
1077}
1078
1079static void
1080dump_txfd(struct TxFD *fd)
1081{
1082	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1083	       le32_to_cpu(fd->fd.FDNext),
1084	       le32_to_cpu(fd->fd.FDSystem),
1085	       le32_to_cpu(fd->fd.FDStat),
1086	       le32_to_cpu(fd->fd.FDCtl));
1087	printk("BD: ");
1088	printk(" %08x %08x",
1089	       le32_to_cpu(fd->bd.BuffData),
1090	       le32_to_cpu(fd->bd.BDCtl));
1091	printk("\n");
1092}
1093
1094static int
1095dump_rxfd(struct RxFD *fd)
1096{
1097	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1098	if (bd_count > 8)
1099		bd_count = 8;
1100	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1101	       le32_to_cpu(fd->fd.FDNext),
1102	       le32_to_cpu(fd->fd.FDSystem),
1103	       le32_to_cpu(fd->fd.FDStat),
1104	       le32_to_cpu(fd->fd.FDCtl));
1105	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1106		return 0;
1107	printk("BD: ");
1108	for (i = 0; i < bd_count; i++)
1109		printk(" %08x %08x",
1110		       le32_to_cpu(fd->bd[i].BuffData),
1111		       le32_to_cpu(fd->bd[i].BDCtl));
1112	printk("\n");
1113	return bd_count;
1114}
1115
1116#ifdef DEBUG
1117static void
1118dump_frfd(struct FrFD *fd)
1119{
1120	int i;
1121	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1122	       le32_to_cpu(fd->fd.FDNext),
1123	       le32_to_cpu(fd->fd.FDSystem),
1124	       le32_to_cpu(fd->fd.FDStat),
1125	       le32_to_cpu(fd->fd.FDCtl));
1126	printk("BD: ");
1127	for (i = 0; i < RX_BUF_NUM; i++)
1128		printk(" %08x %08x",
1129		       le32_to_cpu(fd->bd[i].BuffData),
1130		       le32_to_cpu(fd->bd[i].BDCtl));
1131	printk("\n");
1132}
1133
1134static void
1135panic_queues(struct net_device *dev)
1136{
1137	struct tc35815_local *lp = netdev_priv(dev);
1138	int i;
1139
1140	printk("TxFD base %p, start %u, end %u\n",
1141	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1142	printk("RxFD base %p limit %p cur %p\n",
1143	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1144	printk("FrFD %p\n", lp->fbl_ptr);
1145	for (i = 0; i < TX_FD_NUM; i++)
1146		dump_txfd(&lp->tfd_base[i]);
1147	for (i = 0; i < RX_FD_NUM; i++) {
1148		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1149		i += (bd_count + 1) / 2;	/* skip BDs */
1150	}
1151	dump_frfd(lp->fbl_ptr);
1152	panic("%s: Illegal queue state.", dev->name);
1153}
1154#endif
1155
1156static void print_eth(const u8 *add)
1157{
1158	printk(KERN_DEBUG "print_eth(%p)\n", add);
1159	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1160		add + 6, add, add[12], add[13]);
1161}
1162
1163static int tc35815_tx_full(struct net_device *dev)
1164{
1165	struct tc35815_local *lp = netdev_priv(dev);
1166	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1167}
1168
1169static void tc35815_restart(struct net_device *dev)
1170{
1171	struct tc35815_local *lp = netdev_priv(dev);
1172	int ret;
1173
1174	if (lp->phy_dev) {
1175		ret = phy_init_hw(lp->phy_dev);
1176		if (ret)
1177			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1178	}
1179
1180	spin_lock_bh(&lp->rx_lock);
1181	spin_lock_irq(&lp->lock);
1182	tc35815_chip_reset(dev);
1183	tc35815_clear_queues(dev);
1184	tc35815_chip_init(dev);
1185	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1186	tc35815_set_multicast_list(dev);
1187	spin_unlock_irq(&lp->lock);
1188	spin_unlock_bh(&lp->rx_lock);
1189
1190	netif_wake_queue(dev);
1191}
1192
1193static void tc35815_restart_work(struct work_struct *work)
1194{
1195	struct tc35815_local *lp =
1196		container_of(work, struct tc35815_local, restart_work);
1197	struct net_device *dev = lp->dev;
1198
1199	tc35815_restart(dev);
1200}
1201
1202static void tc35815_schedule_restart(struct net_device *dev)
1203{
1204	struct tc35815_local *lp = netdev_priv(dev);
1205	struct tc35815_regs __iomem *tr =
1206		(struct tc35815_regs __iomem *)dev->base_addr;
1207	unsigned long flags;
1208
1209	/* disable interrupts */
1210	spin_lock_irqsave(&lp->lock, flags);
1211	tc_writel(0, &tr->Int_En);
1212	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1213	schedule_work(&lp->restart_work);
1214	spin_unlock_irqrestore(&lp->lock, flags);
1215}
1216
1217static void tc35815_tx_timeout(struct net_device *dev)
1218{
1219	struct tc35815_regs __iomem *tr =
1220		(struct tc35815_regs __iomem *)dev->base_addr;
1221
1222	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1223	       dev->name, tc_readl(&tr->Tx_Stat));
1224
1225	/* Try to restart the adaptor. */
1226	tc35815_schedule_restart(dev);
1227	dev->stats.tx_errors++;
1228}
1229
1230/*
1231 * Open/initialize the controller. This is called (in the current kernel)
1232 * sometime after booting when the 'ifconfig' program is run.
1233 *
1234 * This routine should set everything up anew at each open, even
1235 * registers that "should" only need to be set once at boot, so that
1236 * there is non-reboot way to recover if something goes wrong.
1237 */
1238static int
1239tc35815_open(struct net_device *dev)
1240{
1241	struct tc35815_local *lp = netdev_priv(dev);
1242
1243	/*
1244	 * This is used if the interrupt line can turned off (shared).
1245	 * See 3c503.c for an example of selecting the IRQ at config-time.
1246	 */
1247	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1248			dev->name, dev))
1249		return -EAGAIN;
1250
1251	tc35815_chip_reset(dev);
1252
1253	if (tc35815_init_queues(dev) != 0) {
1254		free_irq(dev->irq, dev);
1255		return -EAGAIN;
1256	}
1257
1258	napi_enable(&lp->napi);
1259
1260	/* Reset the hardware here. Don't forget to set the station address. */
1261	spin_lock_irq(&lp->lock);
1262	tc35815_chip_init(dev);
1263	spin_unlock_irq(&lp->lock);
1264
1265	netif_carrier_off(dev);
1266	/* schedule a link state check */
1267	phy_start(lp->phy_dev);
1268
1269	/* We are now ready to accept transmit requeusts from
1270	 * the queueing layer of the networking.
1271	 */
1272	netif_start_queue(dev);
1273
1274	return 0;
1275}
1276
1277/* This will only be invoked if your driver is _not_ in XOFF state.
1278 * What this means is that you need not check it, and that this
1279 * invariant will hold if you make sure that the netif_*_queue()
1280 * calls are done at the proper times.
1281 */
1282static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
 
1283{
1284	struct tc35815_local *lp = netdev_priv(dev);
1285	struct TxFD *txfd;
1286	unsigned long flags;
1287
1288	/* If some error occurs while trying to transmit this
1289	 * packet, you should return '1' from this function.
1290	 * In such a case you _may not_ do anything to the
1291	 * SKB, it is still owned by the network queueing
1292	 * layer when an error is returned.  This means you
1293	 * may not modify any SKB fields, you may not free
1294	 * the SKB, etc.
1295	 */
1296
1297	/* This is the most common case for modern hardware.
1298	 * The spinlock protects this code from the TX complete
1299	 * hardware interrupt handler.  Queue flow control is
1300	 * thus managed under this lock as well.
1301	 */
1302	spin_lock_irqsave(&lp->lock, flags);
1303
1304	/* failsafe... (handle txdone now if half of FDs are used) */
1305	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1306	    TX_FD_NUM / 2)
1307		tc35815_txdone(dev);
1308
1309	if (netif_msg_pktdata(lp))
1310		print_eth(skb->data);
1311#ifdef DEBUG
1312	if (lp->tx_skbs[lp->tfd_start].skb) {
1313		printk("%s: tx_skbs conflict.\n", dev->name);
1314		panic_queues(dev);
1315	}
1316#else
1317	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1318#endif
1319	lp->tx_skbs[lp->tfd_start].skb = skb;
1320	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1321
1322	/*add to ring */
1323	txfd = &lp->tfd_base[lp->tfd_start];
1324	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1325	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1326	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1327	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1328
1329	if (lp->tfd_start == lp->tfd_end) {
1330		struct tc35815_regs __iomem *tr =
1331			(struct tc35815_regs __iomem *)dev->base_addr;
1332		/* Start DMA Transmitter. */
1333		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1334		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1335		if (netif_msg_tx_queued(lp)) {
1336			printk("%s: starting TxFD.\n", dev->name);
1337			dump_txfd(txfd);
1338		}
1339		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1340	} else {
1341		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1342		if (netif_msg_tx_queued(lp)) {
1343			printk("%s: queueing TxFD.\n", dev->name);
1344			dump_txfd(txfd);
1345		}
1346	}
1347	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1348
1349	/* If we just used up the very last entry in the
1350	 * TX ring on this device, tell the queueing
1351	 * layer to send no more.
1352	 */
1353	if (tc35815_tx_full(dev)) {
1354		if (netif_msg_tx_queued(lp))
1355			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1356		netif_stop_queue(dev);
1357	}
1358
1359	/* When the TX completion hw interrupt arrives, this
1360	 * is when the transmit statistics are updated.
1361	 */
1362
1363	spin_unlock_irqrestore(&lp->lock, flags);
1364	return NETDEV_TX_OK;
1365}
1366
1367#define FATAL_ERROR_INT \
1368	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1369static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1370{
1371	static int count;
1372	printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1373	       dev->name, status);
1374	if (status & Int_IntPCI)
1375		printk(" IntPCI");
1376	if (status & Int_DmParErr)
1377		printk(" DmParErr");
1378	if (status & Int_IntNRAbt)
1379		printk(" IntNRAbt");
1380	printk("\n");
1381	if (count++ > 100)
1382		panic("%s: Too many fatal errors.", dev->name);
1383	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1384	/* Try to restart the adaptor. */
1385	tc35815_schedule_restart(dev);
1386}
1387
1388static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1389{
1390	struct tc35815_local *lp = netdev_priv(dev);
1391	int ret = -1;
1392
1393	/* Fatal errors... */
1394	if (status & FATAL_ERROR_INT) {
1395		tc35815_fatal_error_interrupt(dev, status);
1396		return 0;
1397	}
1398	/* recoverable errors */
1399	if (status & Int_IntFDAEx) {
1400		if (netif_msg_rx_err(lp))
1401			dev_warn(&dev->dev,
1402				 "Free Descriptor Area Exhausted (%#x).\n",
1403				 status);
1404		dev->stats.rx_dropped++;
1405		ret = 0;
1406	}
1407	if (status & Int_IntBLEx) {
1408		if (netif_msg_rx_err(lp))
1409			dev_warn(&dev->dev,
1410				 "Buffer List Exhausted (%#x).\n",
1411				 status);
1412		dev->stats.rx_dropped++;
1413		ret = 0;
1414	}
1415	if (status & Int_IntExBD) {
1416		if (netif_msg_rx_err(lp))
1417			dev_warn(&dev->dev,
1418				 "Excessive Buffer Descriptiors (%#x).\n",
1419				 status);
1420		dev->stats.rx_length_errors++;
1421		ret = 0;
1422	}
1423
1424	/* normal notification */
1425	if (status & Int_IntMacRx) {
1426		/* Got a packet(s). */
1427		ret = tc35815_rx(dev, limit);
1428		lp->lstats.rx_ints++;
1429	}
1430	if (status & Int_IntMacTx) {
1431		/* Transmit complete. */
1432		lp->lstats.tx_ints++;
1433		spin_lock_irq(&lp->lock);
1434		tc35815_txdone(dev);
1435		spin_unlock_irq(&lp->lock);
1436		if (ret < 0)
1437			ret = 0;
1438	}
1439	return ret;
1440}
1441
1442/*
1443 * The typical workload of the driver:
1444 * Handle the network interface interrupts.
1445 */
1446static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1447{
1448	struct net_device *dev = dev_id;
1449	struct tc35815_local *lp = netdev_priv(dev);
1450	struct tc35815_regs __iomem *tr =
1451		(struct tc35815_regs __iomem *)dev->base_addr;
1452	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1453
1454	if (!(dmactl & DMA_IntMask)) {
1455		/* disable interrupts */
1456		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1457		if (napi_schedule_prep(&lp->napi))
1458			__napi_schedule(&lp->napi);
1459		else {
1460			printk(KERN_ERR "%s: interrupt taken in poll\n",
1461			       dev->name);
1462			BUG();
1463		}
1464		(void)tc_readl(&tr->Int_Src);	/* flush */
1465		return IRQ_HANDLED;
1466	}
1467	return IRQ_NONE;
1468}
1469
1470#ifdef CONFIG_NET_POLL_CONTROLLER
1471static void tc35815_poll_controller(struct net_device *dev)
1472{
1473	disable_irq(dev->irq);
1474	tc35815_interrupt(dev->irq, dev);
1475	enable_irq(dev->irq);
1476}
1477#endif
1478
1479/* We have a good packet(s), get it/them out of the buffers. */
1480static int
1481tc35815_rx(struct net_device *dev, int limit)
1482{
1483	struct tc35815_local *lp = netdev_priv(dev);
1484	unsigned int fdctl;
1485	int i;
1486	int received = 0;
1487
1488	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1489		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1490		int pkt_len = fdctl & FD_FDLength_MASK;
1491		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1492#ifdef DEBUG
1493		struct RxFD *next_rfd;
1494#endif
1495#if (RX_CTL_CMD & Rx_StripCRC) == 0
1496		pkt_len -= ETH_FCS_LEN;
1497#endif
1498
1499		if (netif_msg_rx_status(lp))
1500			dump_rxfd(lp->rfd_cur);
1501		if (status & Rx_Good) {
1502			struct sk_buff *skb;
1503			unsigned char *data;
1504			int cur_bd;
1505
1506			if (--limit < 0)
1507				break;
1508			BUG_ON(bd_count > 1);
1509			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1510				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1511#ifdef DEBUG
1512			if (cur_bd >= RX_BUF_NUM) {
1513				printk("%s: invalid BDID.\n", dev->name);
1514				panic_queues(dev);
1515			}
1516			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1517			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1518			if (!lp->rx_skbs[cur_bd].skb) {
1519				printk("%s: NULL skb.\n", dev->name);
1520				panic_queues(dev);
1521			}
1522#else
1523			BUG_ON(cur_bd >= RX_BUF_NUM);
1524#endif
1525			skb = lp->rx_skbs[cur_bd].skb;
1526			prefetch(skb->data);
1527			lp->rx_skbs[cur_bd].skb = NULL;
1528			pci_unmap_single(lp->pci_dev,
1529					 lp->rx_skbs[cur_bd].skb_dma,
1530					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1531			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1532				memmove(skb->data, skb->data - NET_IP_ALIGN,
1533					pkt_len);
1534			data = skb_put(skb, pkt_len);
1535			if (netif_msg_pktdata(lp))
1536				print_eth(data);
1537			skb->protocol = eth_type_trans(skb, dev);
1538			netif_receive_skb(skb);
1539			received++;
1540			dev->stats.rx_packets++;
1541			dev->stats.rx_bytes += pkt_len;
1542		} else {
1543			dev->stats.rx_errors++;
1544			if (netif_msg_rx_err(lp))
1545				dev_info(&dev->dev, "Rx error (status %x)\n",
1546					 status & Rx_Stat_Mask);
1547			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1548			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1549				status &= ~(Rx_LongErr|Rx_CRCErr);
1550				status |= Rx_Over;
1551			}
1552			if (status & Rx_LongErr)
1553				dev->stats.rx_length_errors++;
1554			if (status & Rx_Over)
1555				dev->stats.rx_fifo_errors++;
1556			if (status & Rx_CRCErr)
1557				dev->stats.rx_crc_errors++;
1558			if (status & Rx_Align)
1559				dev->stats.rx_frame_errors++;
1560		}
1561
1562		if (bd_count > 0) {
1563			/* put Free Buffer back to controller */
1564			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1565			unsigned char id =
1566				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1567#ifdef DEBUG
1568			if (id >= RX_BUF_NUM) {
1569				printk("%s: invalid BDID.\n", dev->name);
1570				panic_queues(dev);
1571			}
1572#else
1573			BUG_ON(id >= RX_BUF_NUM);
1574#endif
1575			/* free old buffers */
1576			lp->fbl_count--;
1577			while (lp->fbl_count < RX_BUF_NUM)
1578			{
1579				unsigned char curid =
1580					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1581				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1582#ifdef DEBUG
1583				bdctl = le32_to_cpu(bd->BDCtl);
1584				if (bdctl & BD_CownsBD) {
1585					printk("%s: Freeing invalid BD.\n",
1586					       dev->name);
1587					panic_queues(dev);
1588				}
1589#endif
1590				/* pass BD to controller */
1591				if (!lp->rx_skbs[curid].skb) {
1592					lp->rx_skbs[curid].skb =
1593						alloc_rxbuf_skb(dev,
1594								lp->pci_dev,
1595								&lp->rx_skbs[curid].skb_dma);
1596					if (!lp->rx_skbs[curid].skb)
1597						break; /* try on next reception */
1598					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1599				}
1600				/* Note: BDLength was modified by chip. */
1601				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1602							(curid << BD_RxBDID_SHIFT) |
1603							RX_BUF_SIZE);
1604				lp->fbl_count++;
1605			}
1606		}
1607
1608		/* put RxFD back to controller */
1609#ifdef DEBUG
1610		next_rfd = fd_bus_to_virt(lp,
1611					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1612		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1613			printk("%s: RxFD FDNext invalid.\n", dev->name);
1614			panic_queues(dev);
1615		}
1616#endif
1617		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1618			/* pass FD to controller */
1619#ifdef DEBUG
1620			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1621#else
1622			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1623#endif
1624			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1625			lp->rfd_cur++;
1626		}
1627		if (lp->rfd_cur > lp->rfd_limit)
1628			lp->rfd_cur = lp->rfd_base;
1629#ifdef DEBUG
1630		if (lp->rfd_cur != next_rfd)
1631			printk("rfd_cur = %p, next_rfd %p\n",
1632			       lp->rfd_cur, next_rfd);
1633#endif
1634	}
1635
1636	return received;
1637}
1638
1639static int tc35815_poll(struct napi_struct *napi, int budget)
1640{
1641	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1642	struct net_device *dev = lp->dev;
1643	struct tc35815_regs __iomem *tr =
1644		(struct tc35815_regs __iomem *)dev->base_addr;
1645	int received = 0, handled;
1646	u32 status;
1647
1648	if (budget <= 0)
1649		return received;
1650
1651	spin_lock(&lp->rx_lock);
1652	status = tc_readl(&tr->Int_Src);
1653	do {
1654		/* BLEx, FDAEx will be cleared later */
1655		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1656			  &tr->Int_Src);	/* write to clear */
1657
1658		handled = tc35815_do_interrupt(dev, status, budget - received);
1659		if (status & (Int_BLEx | Int_FDAEx))
1660			tc_writel(status & (Int_BLEx | Int_FDAEx),
1661				  &tr->Int_Src);
1662		if (handled >= 0) {
1663			received += handled;
1664			if (received >= budget)
1665				break;
1666		}
1667		status = tc_readl(&tr->Int_Src);
1668	} while (status);
1669	spin_unlock(&lp->rx_lock);
1670
1671	if (received < budget) {
1672		napi_complete(napi);
1673		/* enable interrupts */
1674		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1675	}
1676	return received;
1677}
1678
1679#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1680
1681static void
1682tc35815_check_tx_stat(struct net_device *dev, int status)
1683{
1684	struct tc35815_local *lp = netdev_priv(dev);
1685	const char *msg = NULL;
1686
1687	/* count collisions */
1688	if (status & Tx_ExColl)
1689		dev->stats.collisions += 16;
1690	if (status & Tx_TxColl_MASK)
1691		dev->stats.collisions += status & Tx_TxColl_MASK;
1692
1693	/* TX4939 does not have NCarr */
1694	if (lp->chiptype == TC35815_TX4939)
1695		status &= ~Tx_NCarr;
1696	/* WORKAROUND: ignore LostCrS in full duplex operation */
1697	if (!lp->link || lp->duplex == DUPLEX_FULL)
1698		status &= ~Tx_NCarr;
1699
1700	if (!(status & TX_STA_ERR)) {
1701		/* no error. */
1702		dev->stats.tx_packets++;
1703		return;
1704	}
1705
1706	dev->stats.tx_errors++;
1707	if (status & Tx_ExColl) {
1708		dev->stats.tx_aborted_errors++;
1709		msg = "Excessive Collision.";
1710	}
1711	if (status & Tx_Under) {
1712		dev->stats.tx_fifo_errors++;
1713		msg = "Tx FIFO Underrun.";
1714		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1715			lp->lstats.tx_underrun++;
1716			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1717				struct tc35815_regs __iomem *tr =
1718					(struct tc35815_regs __iomem *)dev->base_addr;
1719				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1720				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1721			}
1722		}
1723	}
1724	if (status & Tx_Defer) {
1725		dev->stats.tx_fifo_errors++;
1726		msg = "Excessive Deferral.";
1727	}
1728	if (status & Tx_NCarr) {
1729		dev->stats.tx_carrier_errors++;
1730		msg = "Lost Carrier Sense.";
1731	}
1732	if (status & Tx_LateColl) {
1733		dev->stats.tx_aborted_errors++;
1734		msg = "Late Collision.";
1735	}
1736	if (status & Tx_TxPar) {
1737		dev->stats.tx_fifo_errors++;
1738		msg = "Transmit Parity Error.";
1739	}
1740	if (status & Tx_SQErr) {
1741		dev->stats.tx_heartbeat_errors++;
1742		msg = "Signal Quality Error.";
1743	}
1744	if (msg && netif_msg_tx_err(lp))
1745		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1746}
1747
1748/* This handles TX complete events posted by the device
1749 * via interrupts.
1750 */
1751static void
1752tc35815_txdone(struct net_device *dev)
1753{
1754	struct tc35815_local *lp = netdev_priv(dev);
1755	struct TxFD *txfd;
1756	unsigned int fdctl;
1757
1758	txfd = &lp->tfd_base[lp->tfd_end];
1759	while (lp->tfd_start != lp->tfd_end &&
1760	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1761		int status = le32_to_cpu(txfd->fd.FDStat);
1762		struct sk_buff *skb;
1763		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1764		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1765
1766		if (netif_msg_tx_done(lp)) {
1767			printk("%s: complete TxFD.\n", dev->name);
1768			dump_txfd(txfd);
1769		}
1770		tc35815_check_tx_stat(dev, status);
1771
1772		skb = fdsystem != 0xffffffff ?
1773			lp->tx_skbs[fdsystem].skb : NULL;
1774#ifdef DEBUG
1775		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1776			printk("%s: tx_skbs mismatch.\n", dev->name);
1777			panic_queues(dev);
1778		}
1779#else
1780		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1781#endif
1782		if (skb) {
1783			dev->stats.tx_bytes += skb->len;
1784			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1785			lp->tx_skbs[lp->tfd_end].skb = NULL;
1786			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1787			dev_kfree_skb_any(skb);
1788		}
1789		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1790
1791		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1792		txfd = &lp->tfd_base[lp->tfd_end];
1793#ifdef DEBUG
1794		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1795			printk("%s: TxFD FDNext invalid.\n", dev->name);
1796			panic_queues(dev);
1797		}
1798#endif
1799		if (fdnext & FD_Next_EOL) {
1800			/* DMA Transmitter has been stopping... */
1801			if (lp->tfd_end != lp->tfd_start) {
1802				struct tc35815_regs __iomem *tr =
1803					(struct tc35815_regs __iomem *)dev->base_addr;
1804				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1805				struct TxFD *txhead = &lp->tfd_base[head];
1806				int qlen = (lp->tfd_start + TX_FD_NUM
1807					    - lp->tfd_end) % TX_FD_NUM;
1808
1809#ifdef DEBUG
1810				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1811					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1812					panic_queues(dev);
1813				}
1814#endif
1815				/* log max queue length */
1816				if (lp->lstats.max_tx_qlen < qlen)
1817					lp->lstats.max_tx_qlen = qlen;
1818
1819
1820				/* start DMA Transmitter again */
1821				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1822				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1823				if (netif_msg_tx_queued(lp)) {
1824					printk("%s: start TxFD on queue.\n",
1825					       dev->name);
1826					dump_txfd(txfd);
1827				}
1828				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1829			}
1830			break;
1831		}
1832	}
1833
1834	/* If we had stopped the queue due to a "tx full"
1835	 * condition, and space has now been made available,
1836	 * wake up the queue.
1837	 */
1838	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1839		netif_wake_queue(dev);
1840}
1841
1842/* The inverse routine to tc35815_open(). */
1843static int
1844tc35815_close(struct net_device *dev)
1845{
1846	struct tc35815_local *lp = netdev_priv(dev);
1847
1848	netif_stop_queue(dev);
1849	napi_disable(&lp->napi);
1850	if (lp->phy_dev)
1851		phy_stop(lp->phy_dev);
1852	cancel_work_sync(&lp->restart_work);
1853
1854	/* Flush the Tx and disable Rx here. */
1855	tc35815_chip_reset(dev);
1856	free_irq(dev->irq, dev);
1857
1858	tc35815_free_queues(dev);
1859
1860	return 0;
1861
1862}
1863
1864/*
1865 * Get the current statistics.
1866 * This may be called with the card open or closed.
1867 */
1868static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1869{
1870	struct tc35815_regs __iomem *tr =
1871		(struct tc35815_regs __iomem *)dev->base_addr;
1872	if (netif_running(dev))
1873		/* Update the statistics from the device registers. */
1874		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1875
1876	return &dev->stats;
1877}
1878
1879static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1880{
1881	struct tc35815_local *lp = netdev_priv(dev);
1882	struct tc35815_regs __iomem *tr =
1883		(struct tc35815_regs __iomem *)dev->base_addr;
1884	int cam_index = index * 6;
1885	u32 cam_data;
1886	u32 saved_addr;
1887
1888	saved_addr = tc_readl(&tr->CAM_Adr);
1889
1890	if (netif_msg_hw(lp))
1891		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1892			dev->name, index, addr);
1893	if (index & 1) {
1894		/* read modify write */
1895		tc_writel(cam_index - 2, &tr->CAM_Adr);
1896		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1897		cam_data |= addr[0] << 8 | addr[1];
1898		tc_writel(cam_data, &tr->CAM_Data);
1899		/* write whole word */
1900		tc_writel(cam_index + 2, &tr->CAM_Adr);
1901		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1902		tc_writel(cam_data, &tr->CAM_Data);
1903	} else {
1904		/* write whole word */
1905		tc_writel(cam_index, &tr->CAM_Adr);
1906		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1907		tc_writel(cam_data, &tr->CAM_Data);
1908		/* read modify write */
1909		tc_writel(cam_index + 4, &tr->CAM_Adr);
1910		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1911		cam_data |= addr[4] << 24 | (addr[5] << 16);
1912		tc_writel(cam_data, &tr->CAM_Data);
1913	}
1914
1915	tc_writel(saved_addr, &tr->CAM_Adr);
1916}
1917
1918
1919/*
1920 * Set or clear the multicast filter for this adaptor.
1921 * num_addrs == -1	Promiscuous mode, receive all packets
1922 * num_addrs == 0	Normal mode, clear multicast list
1923 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1924 *			and do best-effort filtering.
1925 */
1926static void
1927tc35815_set_multicast_list(struct net_device *dev)
1928{
1929	struct tc35815_regs __iomem *tr =
1930		(struct tc35815_regs __iomem *)dev->base_addr;
1931
1932	if (dev->flags & IFF_PROMISC) {
1933		/* With some (all?) 100MHalf HUB, controller will hang
1934		 * if we enabled promiscuous mode before linkup... */
1935		struct tc35815_local *lp = netdev_priv(dev);
1936
1937		if (!lp->link)
1938			return;
1939		/* Enable promiscuous mode */
1940		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1941	} else if ((dev->flags & IFF_ALLMULTI) ||
1942		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1943		/* CAM 0, 1, 20 are reserved. */
1944		/* Disable promiscuous mode, use normal mode. */
1945		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1946	} else if (!netdev_mc_empty(dev)) {
1947		struct netdev_hw_addr *ha;
1948		int i;
1949		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1950
1951		tc_writel(0, &tr->CAM_Ctl);
1952		/* Walk the address list, and load the filter */
1953		i = 0;
1954		netdev_for_each_mc_addr(ha, dev) {
1955			/* entry 0,1 is reserved. */
1956			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1957			ena_bits |= CAM_Ena_Bit(i + 2);
1958			i++;
1959		}
1960		tc_writel(ena_bits, &tr->CAM_Ena);
1961		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1962	} else {
1963		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1964		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1965	}
1966}
1967
1968static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1969{
1970	struct tc35815_local *lp = netdev_priv(dev);
1971
1972	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1973	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1974	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1975}
1976
1977static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1978{
1979	struct tc35815_local *lp = netdev_priv(dev);
1980
1981	if (!lp->phy_dev)
1982		return -ENODEV;
1983	return phy_ethtool_gset(lp->phy_dev, cmd);
1984}
1985
1986static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1987{
1988	struct tc35815_local *lp = netdev_priv(dev);
1989
1990	if (!lp->phy_dev)
1991		return -ENODEV;
1992	return phy_ethtool_sset(lp->phy_dev, cmd);
1993}
1994
1995static u32 tc35815_get_msglevel(struct net_device *dev)
1996{
1997	struct tc35815_local *lp = netdev_priv(dev);
1998	return lp->msg_enable;
1999}
2000
2001static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2002{
2003	struct tc35815_local *lp = netdev_priv(dev);
2004	lp->msg_enable = datum;
2005}
2006
2007static int tc35815_get_sset_count(struct net_device *dev, int sset)
2008{
2009	struct tc35815_local *lp = netdev_priv(dev);
2010
2011	switch (sset) {
2012	case ETH_SS_STATS:
2013		return sizeof(lp->lstats) / sizeof(int);
2014	default:
2015		return -EOPNOTSUPP;
2016	}
2017}
2018
2019static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2020{
2021	struct tc35815_local *lp = netdev_priv(dev);
2022	data[0] = lp->lstats.max_tx_qlen;
2023	data[1] = lp->lstats.tx_ints;
2024	data[2] = lp->lstats.rx_ints;
2025	data[3] = lp->lstats.tx_underrun;
2026}
2027
2028static struct {
2029	const char str[ETH_GSTRING_LEN];
2030} ethtool_stats_keys[] = {
2031	{ "max_tx_qlen" },
2032	{ "tx_ints" },
2033	{ "rx_ints" },
2034	{ "tx_underrun" },
2035};
2036
2037static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2038{
2039	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2040}
2041
2042static const struct ethtool_ops tc35815_ethtool_ops = {
2043	.get_drvinfo		= tc35815_get_drvinfo,
2044	.get_settings		= tc35815_get_settings,
2045	.set_settings		= tc35815_set_settings,
2046	.get_link		= ethtool_op_get_link,
2047	.get_msglevel		= tc35815_get_msglevel,
2048	.set_msglevel		= tc35815_set_msglevel,
2049	.get_strings		= tc35815_get_strings,
2050	.get_sset_count		= tc35815_get_sset_count,
2051	.get_ethtool_stats	= tc35815_get_ethtool_stats,
 
 
2052};
2053
2054static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2055{
2056	struct tc35815_local *lp = netdev_priv(dev);
2057
2058	if (!netif_running(dev))
2059		return -EINVAL;
2060	if (!lp->phy_dev)
2061		return -ENODEV;
2062	return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2063}
2064
2065static void tc35815_chip_reset(struct net_device *dev)
2066{
2067	struct tc35815_regs __iomem *tr =
2068		(struct tc35815_regs __iomem *)dev->base_addr;
2069	int i;
2070	/* reset the controller */
2071	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2072	udelay(4); /* 3200ns */
2073	i = 0;
2074	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2075		if (i++ > 100) {
2076			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2077			break;
2078		}
2079		mdelay(1);
2080	}
2081	tc_writel(0, &tr->MAC_Ctl);
2082
2083	/* initialize registers to default value */
2084	tc_writel(0, &tr->DMA_Ctl);
2085	tc_writel(0, &tr->TxThrsh);
2086	tc_writel(0, &tr->TxPollCtr);
2087	tc_writel(0, &tr->RxFragSize);
2088	tc_writel(0, &tr->Int_En);
2089	tc_writel(0, &tr->FDA_Bas);
2090	tc_writel(0, &tr->FDA_Lim);
2091	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2092	tc_writel(0, &tr->CAM_Ctl);
2093	tc_writel(0, &tr->Tx_Ctl);
2094	tc_writel(0, &tr->Rx_Ctl);
2095	tc_writel(0, &tr->CAM_Ena);
2096	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2097
2098	/* initialize internal SRAM */
2099	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2100	for (i = 0; i < 0x1000; i += 4) {
2101		tc_writel(i, &tr->CAM_Adr);
2102		tc_writel(0, &tr->CAM_Data);
2103	}
2104	tc_writel(0, &tr->DMA_Ctl);
2105}
2106
2107static void tc35815_chip_init(struct net_device *dev)
2108{
2109	struct tc35815_local *lp = netdev_priv(dev);
2110	struct tc35815_regs __iomem *tr =
2111		(struct tc35815_regs __iomem *)dev->base_addr;
2112	unsigned long txctl = TX_CTL_CMD;
2113
2114	/* load station address to CAM */
2115	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2116
2117	/* Enable CAM (broadcast and unicast) */
2118	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2119	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2120
2121	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2122	if (HAVE_DMA_RXALIGN(lp))
2123		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2124	else
2125		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2126	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2127	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2128	tc_writel(INT_EN_CMD, &tr->Int_En);
2129
2130	/* set queues */
2131	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2132	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2133		  &tr->FDA_Lim);
2134	/*
2135	 * Activation method:
2136	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2137	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2138	 */
2139	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2140	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2141
2142	/* start MAC transmitter */
2143	/* TX4939 does not have EnLCarr */
2144	if (lp->chiptype == TC35815_TX4939)
2145		txctl &= ~Tx_EnLCarr;
2146	/* WORKAROUND: ignore LostCrS in full duplex operation */
2147	if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2148		txctl &= ~Tx_EnLCarr;
2149	tc_writel(txctl, &tr->Tx_Ctl);
2150}
2151
2152#ifdef CONFIG_PM
2153static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2154{
2155	struct net_device *dev = pci_get_drvdata(pdev);
2156	struct tc35815_local *lp = netdev_priv(dev);
2157	unsigned long flags;
2158
2159	pci_save_state(pdev);
2160	if (!netif_running(dev))
2161		return 0;
2162	netif_device_detach(dev);
2163	if (lp->phy_dev)
2164		phy_stop(lp->phy_dev);
2165	spin_lock_irqsave(&lp->lock, flags);
2166	tc35815_chip_reset(dev);
2167	spin_unlock_irqrestore(&lp->lock, flags);
2168	pci_set_power_state(pdev, PCI_D3hot);
2169	return 0;
2170}
2171
2172static int tc35815_resume(struct pci_dev *pdev)
2173{
2174	struct net_device *dev = pci_get_drvdata(pdev);
2175	struct tc35815_local *lp = netdev_priv(dev);
2176
2177	pci_restore_state(pdev);
2178	if (!netif_running(dev))
2179		return 0;
2180	pci_set_power_state(pdev, PCI_D0);
2181	tc35815_restart(dev);
2182	netif_carrier_off(dev);
2183	if (lp->phy_dev)
2184		phy_start(lp->phy_dev);
2185	netif_device_attach(dev);
2186	return 0;
2187}
2188#endif /* CONFIG_PM */
2189
2190static struct pci_driver tc35815_pci_driver = {
2191	.name		= MODNAME,
2192	.id_table	= tc35815_pci_tbl,
2193	.probe		= tc35815_init_one,
2194	.remove		= tc35815_remove_one,
2195#ifdef CONFIG_PM
2196	.suspend	= tc35815_suspend,
2197	.resume		= tc35815_resume,
2198#endif
2199};
2200
2201module_param_named(speed, options.speed, int, 0);
2202MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2203module_param_named(duplex, options.duplex, int, 0);
2204MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2205
2206module_pci_driver(tc35815_pci_driver);
2207MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2208MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
   3 *
   4 * Based on skelton.c by Donald Becker.
   5 *
   6 * This driver is a replacement of older and less maintained version.
   7 * This is a header of the older version:
   8 *	-----<snip>-----
   9 *	Copyright 2001 MontaVista Software Inc.
  10 *	Author: MontaVista Software, Inc.
  11 *		ahennessy@mvista.com
  12 *	Copyright (C) 2000-2001 Toshiba Corporation
  13 *	static const char *version =
  14 *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15 *	-----<snip>-----
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 *
  21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22 * All Rights Reserved.
  23 */
  24
  25#define DRV_VERSION	"1.39"
  26static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
  27#define MODNAME			"tc35815"
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/fcntl.h>
  33#include <linux/interrupt.h>
  34#include <linux/ioport.h>
  35#include <linux/in.h>
  36#include <linux/if_vlan.h>
  37#include <linux/slab.h>
  38#include <linux/string.h>
  39#include <linux/spinlock.h>
  40#include <linux/errno.h>
  41#include <linux/netdevice.h>
  42#include <linux/etherdevice.h>
  43#include <linux/skbuff.h>
  44#include <linux/delay.h>
  45#include <linux/pci.h>
  46#include <linux/phy.h>
  47#include <linux/workqueue.h>
  48#include <linux/platform_device.h>
  49#include <linux/prefetch.h>
  50#include <asm/io.h>
  51#include <asm/byteorder.h>
  52
  53enum tc35815_chiptype {
  54	TC35815CF = 0,
  55	TC35815_NWU,
  56	TC35815_TX4939,
  57};
  58
  59/* indexed by tc35815_chiptype, above */
  60static const struct {
  61	const char *name;
  62} chip_info[] = {
  63	{ "TOSHIBA TC35815CF 10/100BaseTX" },
  64	{ "TOSHIBA TC35815 with Wake on LAN" },
  65	{ "TOSHIBA TC35815/TX4939" },
  66};
  67
  68static const struct pci_device_id tc35815_pci_tbl[] = {
  69	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  70	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  71	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  72	{0,}
  73};
  74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  75
  76/* see MODULE_PARM_DESC */
  77static struct tc35815_options {
  78	int speed;
  79	int duplex;
  80} options;
  81
  82/*
  83 * Registers
  84 */
  85struct tc35815_regs {
  86	__u32 DMA_Ctl;		/* 0x00 */
  87	__u32 TxFrmPtr;
  88	__u32 TxThrsh;
  89	__u32 TxPollCtr;
  90	__u32 BLFrmPtr;
  91	__u32 RxFragSize;
  92	__u32 Int_En;
  93	__u32 FDA_Bas;
  94	__u32 FDA_Lim;		/* 0x20 */
  95	__u32 Int_Src;
  96	__u32 unused0[2];
  97	__u32 PauseCnt;
  98	__u32 RemPauCnt;
  99	__u32 TxCtlFrmStat;
 100	__u32 unused1;
 101	__u32 MAC_Ctl;		/* 0x40 */
 102	__u32 CAM_Ctl;
 103	__u32 Tx_Ctl;
 104	__u32 Tx_Stat;
 105	__u32 Rx_Ctl;
 106	__u32 Rx_Stat;
 107	__u32 MD_Data;
 108	__u32 MD_CA;
 109	__u32 CAM_Adr;		/* 0x60 */
 110	__u32 CAM_Data;
 111	__u32 CAM_Ena;
 112	__u32 PROM_Ctl;
 113	__u32 PROM_Data;
 114	__u32 Algn_Cnt;
 115	__u32 CRC_Cnt;
 116	__u32 Miss_Cnt;
 117};
 118
 119/*
 120 * Bit assignments
 121 */
 122/* DMA_Ctl bit assign ------------------------------------------------------- */
 123#define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
 124#define DMA_RxAlign_1	       0x00400000
 125#define DMA_RxAlign_2	       0x00800000
 126#define DMA_RxAlign_3	       0x00c00000
 127#define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
 128#define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
 129#define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
 130#define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
 131#define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
 132#define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
 133#define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
 134#define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
 135#define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
 136
 137/* RxFragSize bit assign ---------------------------------------------------- */
 138#define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
 139#define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
 140
 141/* MAC_Ctl bit assign ------------------------------------------------------- */
 142#define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
 143#define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
 144#define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
 145#define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
 146#define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
 147#define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
 148#define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
 149#define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
 150#define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
 151#define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
 152#define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
 153#define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
 154
 155/* PROM_Ctl bit assign ------------------------------------------------------ */
 156#define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
 157#define PROM_Read	       0x00004000 /*10:Read operation		     */
 158#define PROM_Write	       0x00002000 /*01:Write operation		     */
 159#define PROM_Erase	       0x00006000 /*11:Erase operation		     */
 160					  /*00:Enable or Disable Writting,   */
 161					  /*	  as specified in PROM_Addr. */
 162#define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
 163					  /*00xxxx:	      disable	     */
 164
 165/* CAM_Ctl bit assign ------------------------------------------------------- */
 166#define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
 167#define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
 168					  /*			accept other */
 169#define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
 170#define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
 171#define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
 172
 173/* CAM_Ena bit assign ------------------------------------------------------- */
 174#define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
 175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
 176#define CAM_Ena_Bit(index)	(1 << (index))
 177#define CAM_ENTRY_DESTINATION	0
 178#define CAM_ENTRY_SOURCE	1
 179#define CAM_ENTRY_MACCTL	20
 180
 181/* Tx_Ctl bit assign -------------------------------------------------------- */
 182#define Tx_En		       0x00000001 /* 1:Transmit enable		     */
 183#define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
 184#define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
 185#define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
 186#define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
 187#define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
 188#define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
 189#define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
 190#define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
 191#define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
 192#define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
 193#define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
 194
 195/* Tx_Stat bit assign ------------------------------------------------------- */
 196#define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
 197#define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
 198#define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
 199#define Tx_Paused	       0x00000040 /* Transmit Paused		     */
 200#define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
 201#define Tx_Under	       0x00000100 /* Underrun			     */
 202#define Tx_Defer	       0x00000200 /* Deferral			     */
 203#define Tx_NCarr	       0x00000400 /* No Carrier			     */
 204#define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
 205#define Tx_LateColl	       0x00001000 /* Late Collision		     */
 206#define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
 207#define Tx_Comp		       0x00004000 /* Completion			     */
 208#define Tx_Halted	       0x00008000 /* Tx Halted			     */
 209#define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
 210
 211/* Rx_Ctl bit assign -------------------------------------------------------- */
 212#define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
 213#define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
 214#define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
 215#define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
 216#define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
 217#define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
 218#define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
 219#define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
 220#define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
 221#define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
 222#define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
 223#define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
 224
 225/* Rx_Stat bit assign ------------------------------------------------------- */
 226#define Rx_Halted	       0x00008000 /* Rx Halted			     */
 227#define Rx_Good		       0x00004000 /* Rx Good			     */
 228#define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
 229#define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
 230#define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
 231#define Rx_Over		       0x00000400 /* Rx Overflow		     */
 232#define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
 233#define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
 234#define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
 235#define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
 236#define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
 237#define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
 238
 239#define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
 240
 241/* Int_En bit assign -------------------------------------------------------- */
 242#define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
 243#define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
 244#define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
 245#define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
 246#define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
 247#define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
 248#define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
 249#define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
 250#define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
 251#define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
 252#define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
 253#define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
 254					  /*		   Exhausted Enable  */
 255
 256/* Int_Src bit assign ------------------------------------------------------- */
 257#define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
 258#define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
 259#define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
 260#define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
 261#define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
 262#define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
 263#define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
 264#define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
 265#define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
 266#define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
 267#define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
 268#define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
 269#define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
 270#define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
 271#define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
 272
 273/* MD_CA bit assign --------------------------------------------------------- */
 274#define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
 275#define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
 276#define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
 277
 278
 279/*
 280 * Descriptors
 281 */
 282
 283/* Frame descriptor */
 284struct FDesc {
 285	volatile __u32 FDNext;
 286	volatile __u32 FDSystem;
 287	volatile __u32 FDStat;
 288	volatile __u32 FDCtl;
 289};
 290
 291/* Buffer descriptor */
 292struct BDesc {
 293	volatile __u32 BuffData;
 294	volatile __u32 BDCtl;
 295};
 296
 297#define FD_ALIGN	16
 298
 299/* Frame Descriptor bit assign ---------------------------------------------- */
 300#define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
 301#define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
 302#define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
 303#define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
 304#define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
 305#define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
 306#define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
 307#define FD_FrmOpt_Packing      0x04000000 /* Rx only */
 308#define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
 309#define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
 310#define FD_BDCnt_SHIFT	       16
 311
 312/* Buffer Descriptor bit assign --------------------------------------------- */
 313#define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
 314#define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
 315#define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
 316#define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
 317#define BD_RxBDID_SHIFT	       16
 318#define BD_RxBDSeqN_SHIFT      24
 319
 320
 321/* Some useful constants. */
 322
 323#define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
 324	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
 325	Tx_En)	/* maybe  0x7b01 */
 326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
 327#define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
 328	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
 329#define INT_EN_CMD  (Int_NRAbtEn | \
 330	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
 331	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
 332	Int_STargAbtEn | \
 333	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
 334#define DMA_CTL_CMD	DMA_BURST_SIZE
 335#define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
 336
 337/* Tuning parameters */
 338#define DMA_BURST_SIZE	32
 339#define TX_THRESHOLD	1024
 340/* used threshold with packet max byte for low pci transfer ability.*/
 341#define TX_THRESHOLD_MAX 1536
 342/* setting threshold max value when overrun error occurred this count. */
 343#define TX_THRESHOLD_KEEP_LIMIT 10
 344
 345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
 346#define FD_PAGE_NUM 4
 347#define RX_BUF_NUM	128	/* < 256 */
 348#define RX_FD_NUM	256	/* >= 32 */
 349#define TX_FD_NUM	128
 350#if RX_CTL_CMD & Rx_LongEn
 351#define RX_BUF_SIZE	PAGE_SIZE
 352#elif RX_CTL_CMD & Rx_StripCRC
 353#define RX_BUF_SIZE	\
 354	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
 355#else
 356#define RX_BUF_SIZE	\
 357	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
 358#endif
 359#define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
 360#define NAPI_WEIGHT	16
 361
 362struct TxFD {
 363	struct FDesc fd;
 364	struct BDesc bd;
 365	struct BDesc unused;
 366};
 367
 368struct RxFD {
 369	struct FDesc fd;
 370	struct BDesc bd[0];	/* variable length */
 371};
 372
 373struct FrFD {
 374	struct FDesc fd;
 375	struct BDesc bd[RX_BUF_NUM];
 376};
 377
 378
 379#define tc_readl(addr)	ioread32(addr)
 380#define tc_writel(d, addr)	iowrite32(d, addr)
 381
 382#define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
 383
 384/* Information that need to be kept for each controller. */
 385struct tc35815_local {
 386	struct pci_dev *pci_dev;
 387
 388	struct net_device *dev;
 389	struct napi_struct napi;
 390
 391	/* statistics */
 392	struct {
 393		int max_tx_qlen;
 394		int tx_ints;
 395		int rx_ints;
 396		int tx_underrun;
 397	} lstats;
 398
 399	/* Tx control lock.  This protects the transmit buffer ring
 400	 * state along with the "tx full" state of the driver.  This
 401	 * means all netif_queue flow control actions are protected
 402	 * by this lock as well.
 403	 */
 404	spinlock_t lock;
 405	spinlock_t rx_lock;
 406
 407	struct mii_bus *mii_bus;
 
 408	int duplex;
 409	int speed;
 410	int link;
 411	struct work_struct restart_work;
 412
 413	/*
 414	 * Transmitting: Batch Mode.
 415	 *	1 BD in 1 TxFD.
 416	 * Receiving: Non-Packing Mode.
 417	 *	1 circular FD for Free Buffer List.
 418	 *	RX_BUF_NUM BD in Free Buffer FD.
 419	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
 420	 */
 421	void *fd_buf;	/* for TxFD, RxFD, FrFD */
 422	dma_addr_t fd_buf_dma;
 423	struct TxFD *tfd_base;
 424	unsigned int tfd_start;
 425	unsigned int tfd_end;
 426	struct RxFD *rfd_base;
 427	struct RxFD *rfd_limit;
 428	struct RxFD *rfd_cur;
 429	struct FrFD *fbl_ptr;
 430	unsigned int fbl_count;
 431	struct {
 432		struct sk_buff *skb;
 433		dma_addr_t skb_dma;
 434	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
 435	u32 msg_enable;
 436	enum tc35815_chiptype chiptype;
 437};
 438
 439static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
 440{
 441	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
 442}
 443#ifdef DEBUG
 444static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
 445{
 446	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
 447}
 448#endif
 449static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
 450				       struct pci_dev *hwdev,
 451				       dma_addr_t *dma_handle)
 452{
 453	struct sk_buff *skb;
 454	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
 455	if (!skb)
 456		return NULL;
 457	*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
 458				     PCI_DMA_FROMDEVICE);
 459	if (pci_dma_mapping_error(hwdev, *dma_handle)) {
 460		dev_kfree_skb_any(skb);
 461		return NULL;
 462	}
 463	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
 464	return skb;
 465}
 466
 467static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
 468{
 469	pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
 470			 PCI_DMA_FROMDEVICE);
 471	dev_kfree_skb_any(skb);
 472}
 473
 474/* Index to functions, as function prototypes. */
 475
 476static int	tc35815_open(struct net_device *dev);
 477static netdev_tx_t	tc35815_send_packet(struct sk_buff *skb,
 478					    struct net_device *dev);
 479static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
 480static int	tc35815_rx(struct net_device *dev, int limit);
 481static int	tc35815_poll(struct napi_struct *napi, int budget);
 482static void	tc35815_txdone(struct net_device *dev);
 483static int	tc35815_close(struct net_device *dev);
 484static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
 485static void	tc35815_set_multicast_list(struct net_device *dev);
 486static void	tc35815_tx_timeout(struct net_device *dev);
 487static int	tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 488#ifdef CONFIG_NET_POLL_CONTROLLER
 489static void	tc35815_poll_controller(struct net_device *dev);
 490#endif
 491static const struct ethtool_ops tc35815_ethtool_ops;
 492
 493/* Example routines you must write ;->. */
 494static void	tc35815_chip_reset(struct net_device *dev);
 495static void	tc35815_chip_init(struct net_device *dev);
 496
 497#ifdef DEBUG
 498static void	panic_queues(struct net_device *dev);
 499#endif
 500
 501static void tc35815_restart_work(struct work_struct *work);
 502
 503static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 504{
 505	struct net_device *dev = bus->priv;
 506	struct tc35815_regs __iomem *tr =
 507		(struct tc35815_regs __iomem *)dev->base_addr;
 508	unsigned long timeout = jiffies + HZ;
 509
 510	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
 511	udelay(12); /* it takes 32 x 400ns at least */
 512	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 513		if (time_after(jiffies, timeout))
 514			return -EIO;
 515		cpu_relax();
 516	}
 517	return tc_readl(&tr->MD_Data) & 0xffff;
 518}
 519
 520static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
 521{
 522	struct net_device *dev = bus->priv;
 523	struct tc35815_regs __iomem *tr =
 524		(struct tc35815_regs __iomem *)dev->base_addr;
 525	unsigned long timeout = jiffies + HZ;
 526
 527	tc_writel(val, &tr->MD_Data);
 528	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
 529		  &tr->MD_CA);
 530	udelay(12); /* it takes 32 x 400ns at least */
 531	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
 532		if (time_after(jiffies, timeout))
 533			return -EIO;
 534		cpu_relax();
 535	}
 536	return 0;
 537}
 538
 539static void tc_handle_link_change(struct net_device *dev)
 540{
 541	struct tc35815_local *lp = netdev_priv(dev);
 542	struct phy_device *phydev = dev->phydev;
 543	unsigned long flags;
 544	int status_change = 0;
 545
 546	spin_lock_irqsave(&lp->lock, flags);
 547	if (phydev->link &&
 548	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
 549		struct tc35815_regs __iomem *tr =
 550			(struct tc35815_regs __iomem *)dev->base_addr;
 551		u32 reg;
 552
 553		reg = tc_readl(&tr->MAC_Ctl);
 554		reg |= MAC_HaltReq;
 555		tc_writel(reg, &tr->MAC_Ctl);
 556		if (phydev->duplex == DUPLEX_FULL)
 557			reg |= MAC_FullDup;
 558		else
 559			reg &= ~MAC_FullDup;
 560		tc_writel(reg, &tr->MAC_Ctl);
 561		reg &= ~MAC_HaltReq;
 562		tc_writel(reg, &tr->MAC_Ctl);
 563
 564		/*
 565		 * TX4939 PCFG.SPEEDn bit will be changed on
 566		 * NETDEV_CHANGE event.
 567		 */
 568		/*
 569		 * WORKAROUND: enable LostCrS only if half duplex
 570		 * operation.
 571		 * (TX4939 does not have EnLCarr)
 572		 */
 573		if (phydev->duplex == DUPLEX_HALF &&
 574		    lp->chiptype != TC35815_TX4939)
 575			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
 576				  &tr->Tx_Ctl);
 577
 578		lp->speed = phydev->speed;
 579		lp->duplex = phydev->duplex;
 580		status_change = 1;
 581	}
 582
 583	if (phydev->link != lp->link) {
 584		if (phydev->link) {
 585			/* delayed promiscuous enabling */
 586			if (dev->flags & IFF_PROMISC)
 587				tc35815_set_multicast_list(dev);
 588		} else {
 589			lp->speed = 0;
 590			lp->duplex = -1;
 591		}
 592		lp->link = phydev->link;
 593
 594		status_change = 1;
 595	}
 596	spin_unlock_irqrestore(&lp->lock, flags);
 597
 598	if (status_change && netif_msg_link(lp)) {
 599		phy_print_status(phydev);
 600		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
 601			 dev->name,
 602			 phy_read(phydev, MII_BMCR),
 603			 phy_read(phydev, MII_BMSR),
 604			 phy_read(phydev, MII_LPA));
 605	}
 606}
 607
 608static int tc_mii_probe(struct net_device *dev)
 609{
 610	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
 611	struct tc35815_local *lp = netdev_priv(dev);
 612	struct phy_device *phydev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613
 614	phydev = phy_find_first(lp->mii_bus);
 615	if (!phydev) {
 616		printk(KERN_ERR "%s: no PHY found\n", dev->name);
 617		return -ENODEV;
 618	}
 619
 620	/* attach the mac to the phy */
 621	phydev = phy_connect(dev, phydev_name(phydev),
 622			     &tc_handle_link_change,
 623			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
 624	if (IS_ERR(phydev)) {
 625		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
 626		return PTR_ERR(phydev);
 627	}
 628
 629	phy_attached_info(phydev);
 
 
 630
 631	/* mask with MAC supported features */
 632	phy_set_max_speed(phydev, SPEED_100);
 633	if (options.speed == 10) {
 634		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 635		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 636	} else if (options.speed == 100) {
 637		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
 638		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
 639	}
 640	if (options.duplex == 1) {
 641		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
 642		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 643	} else if (options.duplex == 2) {
 644		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
 645		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 646	}
 647	linkmode_and(phydev->supported, phydev->supported, mask);
 648	linkmode_copy(phydev->advertising, phydev->supported);
 649
 650	lp->link = 0;
 651	lp->speed = 0;
 652	lp->duplex = -1;
 
 653
 654	return 0;
 655}
 656
 657static int tc_mii_init(struct net_device *dev)
 658{
 659	struct tc35815_local *lp = netdev_priv(dev);
 660	int err;
 
 661
 662	lp->mii_bus = mdiobus_alloc();
 663	if (lp->mii_bus == NULL) {
 664		err = -ENOMEM;
 665		goto err_out;
 666	}
 667
 668	lp->mii_bus->name = "tc35815_mii_bus";
 669	lp->mii_bus->read = tc_mdio_read;
 670	lp->mii_bus->write = tc_mdio_write;
 671	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
 672		 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
 673	lp->mii_bus->priv = dev;
 674	lp->mii_bus->parent = &lp->pci_dev->dev;
 
 
 
 
 
 
 
 
 
 675	err = mdiobus_register(lp->mii_bus);
 676	if (err)
 677		goto err_out_free_mii_bus;
 678	err = tc_mii_probe(dev);
 679	if (err)
 680		goto err_out_unregister_bus;
 681	return 0;
 682
 683err_out_unregister_bus:
 684	mdiobus_unregister(lp->mii_bus);
 
 
 685err_out_free_mii_bus:
 686	mdiobus_free(lp->mii_bus);
 687err_out:
 688	return err;
 689}
 690
 691#ifdef CONFIG_CPU_TX49XX
 692/*
 693 * Find a platform_device providing a MAC address.  The platform code
 694 * should provide a "tc35815-mac" device with a MAC address in its
 695 * platform_data.
 696 */
 697static int tc35815_mac_match(struct device *dev, const void *data)
 698{
 699	struct platform_device *plat_dev = to_platform_device(dev);
 700	const struct pci_dev *pci_dev = data;
 701	unsigned int id = pci_dev->irq;
 702	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
 703}
 704
 705static int tc35815_read_plat_dev_addr(struct net_device *dev)
 706{
 707	struct tc35815_local *lp = netdev_priv(dev);
 708	struct device *pd = bus_find_device(&platform_bus_type, NULL,
 709					    lp->pci_dev, tc35815_mac_match);
 710	if (pd) {
 711		if (pd->platform_data)
 712			memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
 713		put_device(pd);
 714		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
 715	}
 716	return -ENODEV;
 717}
 718#else
 719static int tc35815_read_plat_dev_addr(struct net_device *dev)
 720{
 721	return -ENODEV;
 722}
 723#endif
 724
 725static int tc35815_init_dev_addr(struct net_device *dev)
 726{
 727	struct tc35815_regs __iomem *tr =
 728		(struct tc35815_regs __iomem *)dev->base_addr;
 729	int i;
 730
 731	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 732		;
 733	for (i = 0; i < 6; i += 2) {
 734		unsigned short data;
 735		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
 736		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
 737			;
 738		data = tc_readl(&tr->PROM_Data);
 739		dev->dev_addr[i] = data & 0xff;
 740		dev->dev_addr[i+1] = data >> 8;
 741	}
 742	if (!is_valid_ether_addr(dev->dev_addr))
 743		return tc35815_read_plat_dev_addr(dev);
 744	return 0;
 745}
 746
 747static const struct net_device_ops tc35815_netdev_ops = {
 748	.ndo_open		= tc35815_open,
 749	.ndo_stop		= tc35815_close,
 750	.ndo_start_xmit		= tc35815_send_packet,
 751	.ndo_get_stats		= tc35815_get_stats,
 752	.ndo_set_rx_mode	= tc35815_set_multicast_list,
 753	.ndo_tx_timeout		= tc35815_tx_timeout,
 754	.ndo_do_ioctl		= tc35815_ioctl,
 755	.ndo_validate_addr	= eth_validate_addr,
 
 756	.ndo_set_mac_address	= eth_mac_addr,
 757#ifdef CONFIG_NET_POLL_CONTROLLER
 758	.ndo_poll_controller	= tc35815_poll_controller,
 759#endif
 760};
 761
 762static int tc35815_init_one(struct pci_dev *pdev,
 763			    const struct pci_device_id *ent)
 764{
 765	void __iomem *ioaddr = NULL;
 766	struct net_device *dev;
 767	struct tc35815_local *lp;
 768	int rc;
 769
 770	static int printed_version;
 771	if (!printed_version++) {
 772		printk(version);
 773		dev_printk(KERN_DEBUG, &pdev->dev,
 774			   "speed:%d duplex:%d\n",
 775			   options.speed, options.duplex);
 776	}
 777
 778	if (!pdev->irq) {
 779		dev_warn(&pdev->dev, "no IRQ assigned.\n");
 780		return -ENODEV;
 781	}
 782
 783	/* dev zeroed in alloc_etherdev */
 784	dev = alloc_etherdev(sizeof(*lp));
 785	if (dev == NULL)
 786		return -ENOMEM;
 787
 788	SET_NETDEV_DEV(dev, &pdev->dev);
 789	lp = netdev_priv(dev);
 790	lp->dev = dev;
 791
 792	/* enable device (incl. PCI PM wakeup), and bus-mastering */
 793	rc = pcim_enable_device(pdev);
 794	if (rc)
 795		goto err_out;
 796	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
 797	if (rc)
 798		goto err_out;
 799	pci_set_master(pdev);
 800	ioaddr = pcim_iomap_table(pdev)[1];
 801
 802	/* Initialize the device structure. */
 803	dev->netdev_ops = &tc35815_netdev_ops;
 804	dev->ethtool_ops = &tc35815_ethtool_ops;
 805	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
 806	netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
 807
 808	dev->irq = pdev->irq;
 809	dev->base_addr = (unsigned long)ioaddr;
 810
 811	INIT_WORK(&lp->restart_work, tc35815_restart_work);
 812	spin_lock_init(&lp->lock);
 813	spin_lock_init(&lp->rx_lock);
 814	lp->pci_dev = pdev;
 815	lp->chiptype = ent->driver_data;
 816
 817	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
 818	pci_set_drvdata(pdev, dev);
 819
 820	/* Soft reset the chip. */
 821	tc35815_chip_reset(dev);
 822
 823	/* Retrieve the ethernet address. */
 824	if (tc35815_init_dev_addr(dev)) {
 825		dev_warn(&pdev->dev, "not valid ether addr\n");
 826		eth_hw_addr_random(dev);
 827	}
 828
 829	rc = register_netdev(dev);
 830	if (rc)
 831		goto err_out;
 832
 833	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
 834		dev->name,
 835		chip_info[ent->driver_data].name,
 836		dev->base_addr,
 837		dev->dev_addr,
 838		dev->irq);
 839
 840	rc = tc_mii_init(dev);
 841	if (rc)
 842		goto err_out_unregister;
 843
 844	return 0;
 845
 846err_out_unregister:
 847	unregister_netdev(dev);
 848err_out:
 849	free_netdev(dev);
 850	return rc;
 851}
 852
 853
 854static void tc35815_remove_one(struct pci_dev *pdev)
 855{
 856	struct net_device *dev = pci_get_drvdata(pdev);
 857	struct tc35815_local *lp = netdev_priv(dev);
 858
 859	phy_disconnect(dev->phydev);
 860	mdiobus_unregister(lp->mii_bus);
 
 861	mdiobus_free(lp->mii_bus);
 862	unregister_netdev(dev);
 863	free_netdev(dev);
 864}
 865
 866static int
 867tc35815_init_queues(struct net_device *dev)
 868{
 869	struct tc35815_local *lp = netdev_priv(dev);
 870	int i;
 871	unsigned long fd_addr;
 872
 873	if (!lp->fd_buf) {
 874		BUG_ON(sizeof(struct FDesc) +
 875		       sizeof(struct BDesc) * RX_BUF_NUM +
 876		       sizeof(struct FDesc) * RX_FD_NUM +
 877		       sizeof(struct TxFD) * TX_FD_NUM >
 878		       PAGE_SIZE * FD_PAGE_NUM);
 879
 880		lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
 881						  PAGE_SIZE * FD_PAGE_NUM,
 882						  &lp->fd_buf_dma);
 883		if (!lp->fd_buf)
 884			return -ENOMEM;
 885		for (i = 0; i < RX_BUF_NUM; i++) {
 886			lp->rx_skbs[i].skb =
 887				alloc_rxbuf_skb(dev, lp->pci_dev,
 888						&lp->rx_skbs[i].skb_dma);
 889			if (!lp->rx_skbs[i].skb) {
 890				while (--i >= 0) {
 891					free_rxbuf_skb(lp->pci_dev,
 892						       lp->rx_skbs[i].skb,
 893						       lp->rx_skbs[i].skb_dma);
 894					lp->rx_skbs[i].skb = NULL;
 895				}
 896				pci_free_consistent(lp->pci_dev,
 897						    PAGE_SIZE * FD_PAGE_NUM,
 898						    lp->fd_buf,
 899						    lp->fd_buf_dma);
 900				lp->fd_buf = NULL;
 901				return -ENOMEM;
 902			}
 903		}
 904		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
 905		       dev->name, lp->fd_buf);
 906		printk("\n");
 907	} else {
 908		for (i = 0; i < FD_PAGE_NUM; i++)
 909			clear_page((void *)((unsigned long)lp->fd_buf +
 910					    i * PAGE_SIZE));
 911	}
 912	fd_addr = (unsigned long)lp->fd_buf;
 913
 914	/* Free Descriptors (for Receive) */
 915	lp->rfd_base = (struct RxFD *)fd_addr;
 916	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
 917	for (i = 0; i < RX_FD_NUM; i++)
 918		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
 919	lp->rfd_cur = lp->rfd_base;
 920	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
 921
 922	/* Transmit Descriptors */
 923	lp->tfd_base = (struct TxFD *)fd_addr;
 924	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
 925	for (i = 0; i < TX_FD_NUM; i++) {
 926		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
 927		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
 928		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
 929	}
 930	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
 931	lp->tfd_start = 0;
 932	lp->tfd_end = 0;
 933
 934	/* Buffer List (for Receive) */
 935	lp->fbl_ptr = (struct FrFD *)fd_addr;
 936	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
 937	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
 938	/*
 939	 * move all allocated skbs to head of rx_skbs[] array.
 940	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
 941	 * tc35815_rx() had failed.
 942	 */
 943	lp->fbl_count = 0;
 944	for (i = 0; i < RX_BUF_NUM; i++) {
 945		if (lp->rx_skbs[i].skb) {
 946			if (i != lp->fbl_count) {
 947				lp->rx_skbs[lp->fbl_count].skb =
 948					lp->rx_skbs[i].skb;
 949				lp->rx_skbs[lp->fbl_count].skb_dma =
 950					lp->rx_skbs[i].skb_dma;
 951			}
 952			lp->fbl_count++;
 953		}
 954	}
 955	for (i = 0; i < RX_BUF_NUM; i++) {
 956		if (i >= lp->fbl_count) {
 957			lp->fbl_ptr->bd[i].BuffData = 0;
 958			lp->fbl_ptr->bd[i].BDCtl = 0;
 959			continue;
 960		}
 961		lp->fbl_ptr->bd[i].BuffData =
 962			cpu_to_le32(lp->rx_skbs[i].skb_dma);
 963		/* BDID is index of FrFD.bd[] */
 964		lp->fbl_ptr->bd[i].BDCtl =
 965			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
 966				    RX_BUF_SIZE);
 967	}
 968
 969	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
 970	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
 971	return 0;
 972}
 973
 974static void
 975tc35815_clear_queues(struct net_device *dev)
 976{
 977	struct tc35815_local *lp = netdev_priv(dev);
 978	int i;
 979
 980	for (i = 0; i < TX_FD_NUM; i++) {
 981		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
 982		struct sk_buff *skb =
 983			fdsystem != 0xffffffff ?
 984			lp->tx_skbs[fdsystem].skb : NULL;
 985#ifdef DEBUG
 986		if (lp->tx_skbs[i].skb != skb) {
 987			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
 988			panic_queues(dev);
 989		}
 990#else
 991		BUG_ON(lp->tx_skbs[i].skb != skb);
 992#endif
 993		if (skb) {
 994			pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
 995			lp->tx_skbs[i].skb = NULL;
 996			lp->tx_skbs[i].skb_dma = 0;
 997			dev_kfree_skb_any(skb);
 998		}
 999		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1000	}
1001
1002	tc35815_init_queues(dev);
1003}
1004
1005static void
1006tc35815_free_queues(struct net_device *dev)
1007{
1008	struct tc35815_local *lp = netdev_priv(dev);
1009	int i;
1010
1011	if (lp->tfd_base) {
1012		for (i = 0; i < TX_FD_NUM; i++) {
1013			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1014			struct sk_buff *skb =
1015				fdsystem != 0xffffffff ?
1016				lp->tx_skbs[fdsystem].skb : NULL;
1017#ifdef DEBUG
1018			if (lp->tx_skbs[i].skb != skb) {
1019				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1020				panic_queues(dev);
1021			}
1022#else
1023			BUG_ON(lp->tx_skbs[i].skb != skb);
1024#endif
1025			if (skb) {
 
1026				pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1027				dev_kfree_skb(skb);
1028				lp->tx_skbs[i].skb = NULL;
1029				lp->tx_skbs[i].skb_dma = 0;
1030			}
1031			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1032		}
1033	}
1034
1035	lp->rfd_base = NULL;
1036	lp->rfd_limit = NULL;
1037	lp->rfd_cur = NULL;
1038	lp->fbl_ptr = NULL;
1039
1040	for (i = 0; i < RX_BUF_NUM; i++) {
1041		if (lp->rx_skbs[i].skb) {
1042			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1043				       lp->rx_skbs[i].skb_dma);
1044			lp->rx_skbs[i].skb = NULL;
1045		}
1046	}
1047	if (lp->fd_buf) {
1048		pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1049				    lp->fd_buf, lp->fd_buf_dma);
1050		lp->fd_buf = NULL;
1051	}
1052}
1053
1054static void
1055dump_txfd(struct TxFD *fd)
1056{
1057	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1058	       le32_to_cpu(fd->fd.FDNext),
1059	       le32_to_cpu(fd->fd.FDSystem),
1060	       le32_to_cpu(fd->fd.FDStat),
1061	       le32_to_cpu(fd->fd.FDCtl));
1062	printk("BD: ");
1063	printk(" %08x %08x",
1064	       le32_to_cpu(fd->bd.BuffData),
1065	       le32_to_cpu(fd->bd.BDCtl));
1066	printk("\n");
1067}
1068
1069static int
1070dump_rxfd(struct RxFD *fd)
1071{
1072	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1073	if (bd_count > 8)
1074		bd_count = 8;
1075	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1076	       le32_to_cpu(fd->fd.FDNext),
1077	       le32_to_cpu(fd->fd.FDSystem),
1078	       le32_to_cpu(fd->fd.FDStat),
1079	       le32_to_cpu(fd->fd.FDCtl));
1080	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1081		return 0;
1082	printk("BD: ");
1083	for (i = 0; i < bd_count; i++)
1084		printk(" %08x %08x",
1085		       le32_to_cpu(fd->bd[i].BuffData),
1086		       le32_to_cpu(fd->bd[i].BDCtl));
1087	printk("\n");
1088	return bd_count;
1089}
1090
1091#ifdef DEBUG
1092static void
1093dump_frfd(struct FrFD *fd)
1094{
1095	int i;
1096	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1097	       le32_to_cpu(fd->fd.FDNext),
1098	       le32_to_cpu(fd->fd.FDSystem),
1099	       le32_to_cpu(fd->fd.FDStat),
1100	       le32_to_cpu(fd->fd.FDCtl));
1101	printk("BD: ");
1102	for (i = 0; i < RX_BUF_NUM; i++)
1103		printk(" %08x %08x",
1104		       le32_to_cpu(fd->bd[i].BuffData),
1105		       le32_to_cpu(fd->bd[i].BDCtl));
1106	printk("\n");
1107}
1108
1109static void
1110panic_queues(struct net_device *dev)
1111{
1112	struct tc35815_local *lp = netdev_priv(dev);
1113	int i;
1114
1115	printk("TxFD base %p, start %u, end %u\n",
1116	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1117	printk("RxFD base %p limit %p cur %p\n",
1118	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1119	printk("FrFD %p\n", lp->fbl_ptr);
1120	for (i = 0; i < TX_FD_NUM; i++)
1121		dump_txfd(&lp->tfd_base[i]);
1122	for (i = 0; i < RX_FD_NUM; i++) {
1123		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1124		i += (bd_count + 1) / 2;	/* skip BDs */
1125	}
1126	dump_frfd(lp->fbl_ptr);
1127	panic("%s: Illegal queue state.", dev->name);
1128}
1129#endif
1130
1131static void print_eth(const u8 *add)
1132{
1133	printk(KERN_DEBUG "print_eth(%p)\n", add);
1134	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1135		add + 6, add, add[12], add[13]);
1136}
1137
1138static int tc35815_tx_full(struct net_device *dev)
1139{
1140	struct tc35815_local *lp = netdev_priv(dev);
1141	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1142}
1143
1144static void tc35815_restart(struct net_device *dev)
1145{
1146	struct tc35815_local *lp = netdev_priv(dev);
1147	int ret;
1148
1149	if (dev->phydev) {
1150		ret = phy_init_hw(dev->phydev);
1151		if (ret)
1152			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1153	}
1154
1155	spin_lock_bh(&lp->rx_lock);
1156	spin_lock_irq(&lp->lock);
1157	tc35815_chip_reset(dev);
1158	tc35815_clear_queues(dev);
1159	tc35815_chip_init(dev);
1160	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1161	tc35815_set_multicast_list(dev);
1162	spin_unlock_irq(&lp->lock);
1163	spin_unlock_bh(&lp->rx_lock);
1164
1165	netif_wake_queue(dev);
1166}
1167
1168static void tc35815_restart_work(struct work_struct *work)
1169{
1170	struct tc35815_local *lp =
1171		container_of(work, struct tc35815_local, restart_work);
1172	struct net_device *dev = lp->dev;
1173
1174	tc35815_restart(dev);
1175}
1176
1177static void tc35815_schedule_restart(struct net_device *dev)
1178{
1179	struct tc35815_local *lp = netdev_priv(dev);
1180	struct tc35815_regs __iomem *tr =
1181		(struct tc35815_regs __iomem *)dev->base_addr;
1182	unsigned long flags;
1183
1184	/* disable interrupts */
1185	spin_lock_irqsave(&lp->lock, flags);
1186	tc_writel(0, &tr->Int_En);
1187	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1188	schedule_work(&lp->restart_work);
1189	spin_unlock_irqrestore(&lp->lock, flags);
1190}
1191
1192static void tc35815_tx_timeout(struct net_device *dev)
1193{
1194	struct tc35815_regs __iomem *tr =
1195		(struct tc35815_regs __iomem *)dev->base_addr;
1196
1197	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1198	       dev->name, tc_readl(&tr->Tx_Stat));
1199
1200	/* Try to restart the adaptor. */
1201	tc35815_schedule_restart(dev);
1202	dev->stats.tx_errors++;
1203}
1204
1205/*
1206 * Open/initialize the controller. This is called (in the current kernel)
1207 * sometime after booting when the 'ifconfig' program is run.
1208 *
1209 * This routine should set everything up anew at each open, even
1210 * registers that "should" only need to be set once at boot, so that
1211 * there is non-reboot way to recover if something goes wrong.
1212 */
1213static int
1214tc35815_open(struct net_device *dev)
1215{
1216	struct tc35815_local *lp = netdev_priv(dev);
1217
1218	/*
1219	 * This is used if the interrupt line can turned off (shared).
1220	 * See 3c503.c for an example of selecting the IRQ at config-time.
1221	 */
1222	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1223			dev->name, dev))
1224		return -EAGAIN;
1225
1226	tc35815_chip_reset(dev);
1227
1228	if (tc35815_init_queues(dev) != 0) {
1229		free_irq(dev->irq, dev);
1230		return -EAGAIN;
1231	}
1232
1233	napi_enable(&lp->napi);
1234
1235	/* Reset the hardware here. Don't forget to set the station address. */
1236	spin_lock_irq(&lp->lock);
1237	tc35815_chip_init(dev);
1238	spin_unlock_irq(&lp->lock);
1239
1240	netif_carrier_off(dev);
1241	/* schedule a link state check */
1242	phy_start(dev->phydev);
1243
1244	/* We are now ready to accept transmit requeusts from
1245	 * the queueing layer of the networking.
1246	 */
1247	netif_start_queue(dev);
1248
1249	return 0;
1250}
1251
1252/* This will only be invoked if your driver is _not_ in XOFF state.
1253 * What this means is that you need not check it, and that this
1254 * invariant will hold if you make sure that the netif_*_queue()
1255 * calls are done at the proper times.
1256 */
1257static netdev_tx_t
1258tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1259{
1260	struct tc35815_local *lp = netdev_priv(dev);
1261	struct TxFD *txfd;
1262	unsigned long flags;
1263
1264	/* If some error occurs while trying to transmit this
1265	 * packet, you should return '1' from this function.
1266	 * In such a case you _may not_ do anything to the
1267	 * SKB, it is still owned by the network queueing
1268	 * layer when an error is returned.  This means you
1269	 * may not modify any SKB fields, you may not free
1270	 * the SKB, etc.
1271	 */
1272
1273	/* This is the most common case for modern hardware.
1274	 * The spinlock protects this code from the TX complete
1275	 * hardware interrupt handler.  Queue flow control is
1276	 * thus managed under this lock as well.
1277	 */
1278	spin_lock_irqsave(&lp->lock, flags);
1279
1280	/* failsafe... (handle txdone now if half of FDs are used) */
1281	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1282	    TX_FD_NUM / 2)
1283		tc35815_txdone(dev);
1284
1285	if (netif_msg_pktdata(lp))
1286		print_eth(skb->data);
1287#ifdef DEBUG
1288	if (lp->tx_skbs[lp->tfd_start].skb) {
1289		printk("%s: tx_skbs conflict.\n", dev->name);
1290		panic_queues(dev);
1291	}
1292#else
1293	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1294#endif
1295	lp->tx_skbs[lp->tfd_start].skb = skb;
1296	lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1297
1298	/*add to ring */
1299	txfd = &lp->tfd_base[lp->tfd_start];
1300	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1301	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1302	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1303	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1304
1305	if (lp->tfd_start == lp->tfd_end) {
1306		struct tc35815_regs __iomem *tr =
1307			(struct tc35815_regs __iomem *)dev->base_addr;
1308		/* Start DMA Transmitter. */
1309		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1310		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1311		if (netif_msg_tx_queued(lp)) {
1312			printk("%s: starting TxFD.\n", dev->name);
1313			dump_txfd(txfd);
1314		}
1315		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1316	} else {
1317		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1318		if (netif_msg_tx_queued(lp)) {
1319			printk("%s: queueing TxFD.\n", dev->name);
1320			dump_txfd(txfd);
1321		}
1322	}
1323	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1324
1325	/* If we just used up the very last entry in the
1326	 * TX ring on this device, tell the queueing
1327	 * layer to send no more.
1328	 */
1329	if (tc35815_tx_full(dev)) {
1330		if (netif_msg_tx_queued(lp))
1331			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1332		netif_stop_queue(dev);
1333	}
1334
1335	/* When the TX completion hw interrupt arrives, this
1336	 * is when the transmit statistics are updated.
1337	 */
1338
1339	spin_unlock_irqrestore(&lp->lock, flags);
1340	return NETDEV_TX_OK;
1341}
1342
1343#define FATAL_ERROR_INT \
1344	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1345static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1346{
1347	static int count;
1348	printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1349	       dev->name, status);
1350	if (status & Int_IntPCI)
1351		printk(" IntPCI");
1352	if (status & Int_DmParErr)
1353		printk(" DmParErr");
1354	if (status & Int_IntNRAbt)
1355		printk(" IntNRAbt");
1356	printk("\n");
1357	if (count++ > 100)
1358		panic("%s: Too many fatal errors.", dev->name);
1359	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1360	/* Try to restart the adaptor. */
1361	tc35815_schedule_restart(dev);
1362}
1363
1364static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1365{
1366	struct tc35815_local *lp = netdev_priv(dev);
1367	int ret = -1;
1368
1369	/* Fatal errors... */
1370	if (status & FATAL_ERROR_INT) {
1371		tc35815_fatal_error_interrupt(dev, status);
1372		return 0;
1373	}
1374	/* recoverable errors */
1375	if (status & Int_IntFDAEx) {
1376		if (netif_msg_rx_err(lp))
1377			dev_warn(&dev->dev,
1378				 "Free Descriptor Area Exhausted (%#x).\n",
1379				 status);
1380		dev->stats.rx_dropped++;
1381		ret = 0;
1382	}
1383	if (status & Int_IntBLEx) {
1384		if (netif_msg_rx_err(lp))
1385			dev_warn(&dev->dev,
1386				 "Buffer List Exhausted (%#x).\n",
1387				 status);
1388		dev->stats.rx_dropped++;
1389		ret = 0;
1390	}
1391	if (status & Int_IntExBD) {
1392		if (netif_msg_rx_err(lp))
1393			dev_warn(&dev->dev,
1394				 "Excessive Buffer Descriptors (%#x).\n",
1395				 status);
1396		dev->stats.rx_length_errors++;
1397		ret = 0;
1398	}
1399
1400	/* normal notification */
1401	if (status & Int_IntMacRx) {
1402		/* Got a packet(s). */
1403		ret = tc35815_rx(dev, limit);
1404		lp->lstats.rx_ints++;
1405	}
1406	if (status & Int_IntMacTx) {
1407		/* Transmit complete. */
1408		lp->lstats.tx_ints++;
1409		spin_lock_irq(&lp->lock);
1410		tc35815_txdone(dev);
1411		spin_unlock_irq(&lp->lock);
1412		if (ret < 0)
1413			ret = 0;
1414	}
1415	return ret;
1416}
1417
1418/*
1419 * The typical workload of the driver:
1420 * Handle the network interface interrupts.
1421 */
1422static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1423{
1424	struct net_device *dev = dev_id;
1425	struct tc35815_local *lp = netdev_priv(dev);
1426	struct tc35815_regs __iomem *tr =
1427		(struct tc35815_regs __iomem *)dev->base_addr;
1428	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1429
1430	if (!(dmactl & DMA_IntMask)) {
1431		/* disable interrupts */
1432		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1433		if (napi_schedule_prep(&lp->napi))
1434			__napi_schedule(&lp->napi);
1435		else {
1436			printk(KERN_ERR "%s: interrupt taken in poll\n",
1437			       dev->name);
1438			BUG();
1439		}
1440		(void)tc_readl(&tr->Int_Src);	/* flush */
1441		return IRQ_HANDLED;
1442	}
1443	return IRQ_NONE;
1444}
1445
1446#ifdef CONFIG_NET_POLL_CONTROLLER
1447static void tc35815_poll_controller(struct net_device *dev)
1448{
1449	disable_irq(dev->irq);
1450	tc35815_interrupt(dev->irq, dev);
1451	enable_irq(dev->irq);
1452}
1453#endif
1454
1455/* We have a good packet(s), get it/them out of the buffers. */
1456static int
1457tc35815_rx(struct net_device *dev, int limit)
1458{
1459	struct tc35815_local *lp = netdev_priv(dev);
1460	unsigned int fdctl;
1461	int i;
1462	int received = 0;
1463
1464	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1465		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1466		int pkt_len = fdctl & FD_FDLength_MASK;
1467		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1468#ifdef DEBUG
1469		struct RxFD *next_rfd;
1470#endif
1471#if (RX_CTL_CMD & Rx_StripCRC) == 0
1472		pkt_len -= ETH_FCS_LEN;
1473#endif
1474
1475		if (netif_msg_rx_status(lp))
1476			dump_rxfd(lp->rfd_cur);
1477		if (status & Rx_Good) {
1478			struct sk_buff *skb;
1479			unsigned char *data;
1480			int cur_bd;
1481
1482			if (--limit < 0)
1483				break;
1484			BUG_ON(bd_count > 1);
1485			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1486				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1487#ifdef DEBUG
1488			if (cur_bd >= RX_BUF_NUM) {
1489				printk("%s: invalid BDID.\n", dev->name);
1490				panic_queues(dev);
1491			}
1492			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1493			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1494			if (!lp->rx_skbs[cur_bd].skb) {
1495				printk("%s: NULL skb.\n", dev->name);
1496				panic_queues(dev);
1497			}
1498#else
1499			BUG_ON(cur_bd >= RX_BUF_NUM);
1500#endif
1501			skb = lp->rx_skbs[cur_bd].skb;
1502			prefetch(skb->data);
1503			lp->rx_skbs[cur_bd].skb = NULL;
1504			pci_unmap_single(lp->pci_dev,
1505					 lp->rx_skbs[cur_bd].skb_dma,
1506					 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1507			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1508				memmove(skb->data, skb->data - NET_IP_ALIGN,
1509					pkt_len);
1510			data = skb_put(skb, pkt_len);
1511			if (netif_msg_pktdata(lp))
1512				print_eth(data);
1513			skb->protocol = eth_type_trans(skb, dev);
1514			netif_receive_skb(skb);
1515			received++;
1516			dev->stats.rx_packets++;
1517			dev->stats.rx_bytes += pkt_len;
1518		} else {
1519			dev->stats.rx_errors++;
1520			if (netif_msg_rx_err(lp))
1521				dev_info(&dev->dev, "Rx error (status %x)\n",
1522					 status & Rx_Stat_Mask);
1523			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1524			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1525				status &= ~(Rx_LongErr|Rx_CRCErr);
1526				status |= Rx_Over;
1527			}
1528			if (status & Rx_LongErr)
1529				dev->stats.rx_length_errors++;
1530			if (status & Rx_Over)
1531				dev->stats.rx_fifo_errors++;
1532			if (status & Rx_CRCErr)
1533				dev->stats.rx_crc_errors++;
1534			if (status & Rx_Align)
1535				dev->stats.rx_frame_errors++;
1536		}
1537
1538		if (bd_count > 0) {
1539			/* put Free Buffer back to controller */
1540			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1541			unsigned char id =
1542				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1543#ifdef DEBUG
1544			if (id >= RX_BUF_NUM) {
1545				printk("%s: invalid BDID.\n", dev->name);
1546				panic_queues(dev);
1547			}
1548#else
1549			BUG_ON(id >= RX_BUF_NUM);
1550#endif
1551			/* free old buffers */
1552			lp->fbl_count--;
1553			while (lp->fbl_count < RX_BUF_NUM)
1554			{
1555				unsigned char curid =
1556					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1557				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1558#ifdef DEBUG
1559				bdctl = le32_to_cpu(bd->BDCtl);
1560				if (bdctl & BD_CownsBD) {
1561					printk("%s: Freeing invalid BD.\n",
1562					       dev->name);
1563					panic_queues(dev);
1564				}
1565#endif
1566				/* pass BD to controller */
1567				if (!lp->rx_skbs[curid].skb) {
1568					lp->rx_skbs[curid].skb =
1569						alloc_rxbuf_skb(dev,
1570								lp->pci_dev,
1571								&lp->rx_skbs[curid].skb_dma);
1572					if (!lp->rx_skbs[curid].skb)
1573						break; /* try on next reception */
1574					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1575				}
1576				/* Note: BDLength was modified by chip. */
1577				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1578							(curid << BD_RxBDID_SHIFT) |
1579							RX_BUF_SIZE);
1580				lp->fbl_count++;
1581			}
1582		}
1583
1584		/* put RxFD back to controller */
1585#ifdef DEBUG
1586		next_rfd = fd_bus_to_virt(lp,
1587					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1588		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1589			printk("%s: RxFD FDNext invalid.\n", dev->name);
1590			panic_queues(dev);
1591		}
1592#endif
1593		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1594			/* pass FD to controller */
1595#ifdef DEBUG
1596			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1597#else
1598			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1599#endif
1600			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1601			lp->rfd_cur++;
1602		}
1603		if (lp->rfd_cur > lp->rfd_limit)
1604			lp->rfd_cur = lp->rfd_base;
1605#ifdef DEBUG
1606		if (lp->rfd_cur != next_rfd)
1607			printk("rfd_cur = %p, next_rfd %p\n",
1608			       lp->rfd_cur, next_rfd);
1609#endif
1610	}
1611
1612	return received;
1613}
1614
1615static int tc35815_poll(struct napi_struct *napi, int budget)
1616{
1617	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1618	struct net_device *dev = lp->dev;
1619	struct tc35815_regs __iomem *tr =
1620		(struct tc35815_regs __iomem *)dev->base_addr;
1621	int received = 0, handled;
1622	u32 status;
1623
1624	if (budget <= 0)
1625		return received;
1626
1627	spin_lock(&lp->rx_lock);
1628	status = tc_readl(&tr->Int_Src);
1629	do {
1630		/* BLEx, FDAEx will be cleared later */
1631		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1632			  &tr->Int_Src);	/* write to clear */
1633
1634		handled = tc35815_do_interrupt(dev, status, budget - received);
1635		if (status & (Int_BLEx | Int_FDAEx))
1636			tc_writel(status & (Int_BLEx | Int_FDAEx),
1637				  &tr->Int_Src);
1638		if (handled >= 0) {
1639			received += handled;
1640			if (received >= budget)
1641				break;
1642		}
1643		status = tc_readl(&tr->Int_Src);
1644	} while (status);
1645	spin_unlock(&lp->rx_lock);
1646
1647	if (received < budget) {
1648		napi_complete_done(napi, received);
1649		/* enable interrupts */
1650		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1651	}
1652	return received;
1653}
1654
1655#define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1656
1657static void
1658tc35815_check_tx_stat(struct net_device *dev, int status)
1659{
1660	struct tc35815_local *lp = netdev_priv(dev);
1661	const char *msg = NULL;
1662
1663	/* count collisions */
1664	if (status & Tx_ExColl)
1665		dev->stats.collisions += 16;
1666	if (status & Tx_TxColl_MASK)
1667		dev->stats.collisions += status & Tx_TxColl_MASK;
1668
1669	/* TX4939 does not have NCarr */
1670	if (lp->chiptype == TC35815_TX4939)
1671		status &= ~Tx_NCarr;
1672	/* WORKAROUND: ignore LostCrS in full duplex operation */
1673	if (!lp->link || lp->duplex == DUPLEX_FULL)
1674		status &= ~Tx_NCarr;
1675
1676	if (!(status & TX_STA_ERR)) {
1677		/* no error. */
1678		dev->stats.tx_packets++;
1679		return;
1680	}
1681
1682	dev->stats.tx_errors++;
1683	if (status & Tx_ExColl) {
1684		dev->stats.tx_aborted_errors++;
1685		msg = "Excessive Collision.";
1686	}
1687	if (status & Tx_Under) {
1688		dev->stats.tx_fifo_errors++;
1689		msg = "Tx FIFO Underrun.";
1690		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1691			lp->lstats.tx_underrun++;
1692			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1693				struct tc35815_regs __iomem *tr =
1694					(struct tc35815_regs __iomem *)dev->base_addr;
1695				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1696				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1697			}
1698		}
1699	}
1700	if (status & Tx_Defer) {
1701		dev->stats.tx_fifo_errors++;
1702		msg = "Excessive Deferral.";
1703	}
1704	if (status & Tx_NCarr) {
1705		dev->stats.tx_carrier_errors++;
1706		msg = "Lost Carrier Sense.";
1707	}
1708	if (status & Tx_LateColl) {
1709		dev->stats.tx_aborted_errors++;
1710		msg = "Late Collision.";
1711	}
1712	if (status & Tx_TxPar) {
1713		dev->stats.tx_fifo_errors++;
1714		msg = "Transmit Parity Error.";
1715	}
1716	if (status & Tx_SQErr) {
1717		dev->stats.tx_heartbeat_errors++;
1718		msg = "Signal Quality Error.";
1719	}
1720	if (msg && netif_msg_tx_err(lp))
1721		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1722}
1723
1724/* This handles TX complete events posted by the device
1725 * via interrupts.
1726 */
1727static void
1728tc35815_txdone(struct net_device *dev)
1729{
1730	struct tc35815_local *lp = netdev_priv(dev);
1731	struct TxFD *txfd;
1732	unsigned int fdctl;
1733
1734	txfd = &lp->tfd_base[lp->tfd_end];
1735	while (lp->tfd_start != lp->tfd_end &&
1736	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1737		int status = le32_to_cpu(txfd->fd.FDStat);
1738		struct sk_buff *skb;
1739		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1740		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1741
1742		if (netif_msg_tx_done(lp)) {
1743			printk("%s: complete TxFD.\n", dev->name);
1744			dump_txfd(txfd);
1745		}
1746		tc35815_check_tx_stat(dev, status);
1747
1748		skb = fdsystem != 0xffffffff ?
1749			lp->tx_skbs[fdsystem].skb : NULL;
1750#ifdef DEBUG
1751		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1752			printk("%s: tx_skbs mismatch.\n", dev->name);
1753			panic_queues(dev);
1754		}
1755#else
1756		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1757#endif
1758		if (skb) {
1759			dev->stats.tx_bytes += skb->len;
1760			pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1761			lp->tx_skbs[lp->tfd_end].skb = NULL;
1762			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1763			dev_kfree_skb_any(skb);
1764		}
1765		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1766
1767		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1768		txfd = &lp->tfd_base[lp->tfd_end];
1769#ifdef DEBUG
1770		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1771			printk("%s: TxFD FDNext invalid.\n", dev->name);
1772			panic_queues(dev);
1773		}
1774#endif
1775		if (fdnext & FD_Next_EOL) {
1776			/* DMA Transmitter has been stopping... */
1777			if (lp->tfd_end != lp->tfd_start) {
1778				struct tc35815_regs __iomem *tr =
1779					(struct tc35815_regs __iomem *)dev->base_addr;
1780				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1781				struct TxFD *txhead = &lp->tfd_base[head];
1782				int qlen = (lp->tfd_start + TX_FD_NUM
1783					    - lp->tfd_end) % TX_FD_NUM;
1784
1785#ifdef DEBUG
1786				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1787					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1788					panic_queues(dev);
1789				}
1790#endif
1791				/* log max queue length */
1792				if (lp->lstats.max_tx_qlen < qlen)
1793					lp->lstats.max_tx_qlen = qlen;
1794
1795
1796				/* start DMA Transmitter again */
1797				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1798				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1799				if (netif_msg_tx_queued(lp)) {
1800					printk("%s: start TxFD on queue.\n",
1801					       dev->name);
1802					dump_txfd(txfd);
1803				}
1804				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1805			}
1806			break;
1807		}
1808	}
1809
1810	/* If we had stopped the queue due to a "tx full"
1811	 * condition, and space has now been made available,
1812	 * wake up the queue.
1813	 */
1814	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1815		netif_wake_queue(dev);
1816}
1817
1818/* The inverse routine to tc35815_open(). */
1819static int
1820tc35815_close(struct net_device *dev)
1821{
1822	struct tc35815_local *lp = netdev_priv(dev);
1823
1824	netif_stop_queue(dev);
1825	napi_disable(&lp->napi);
1826	if (dev->phydev)
1827		phy_stop(dev->phydev);
1828	cancel_work_sync(&lp->restart_work);
1829
1830	/* Flush the Tx and disable Rx here. */
1831	tc35815_chip_reset(dev);
1832	free_irq(dev->irq, dev);
1833
1834	tc35815_free_queues(dev);
1835
1836	return 0;
1837
1838}
1839
1840/*
1841 * Get the current statistics.
1842 * This may be called with the card open or closed.
1843 */
1844static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1845{
1846	struct tc35815_regs __iomem *tr =
1847		(struct tc35815_regs __iomem *)dev->base_addr;
1848	if (netif_running(dev))
1849		/* Update the statistics from the device registers. */
1850		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1851
1852	return &dev->stats;
1853}
1854
1855static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1856{
1857	struct tc35815_local *lp = netdev_priv(dev);
1858	struct tc35815_regs __iomem *tr =
1859		(struct tc35815_regs __iomem *)dev->base_addr;
1860	int cam_index = index * 6;
1861	u32 cam_data;
1862	u32 saved_addr;
1863
1864	saved_addr = tc_readl(&tr->CAM_Adr);
1865
1866	if (netif_msg_hw(lp))
1867		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1868			dev->name, index, addr);
1869	if (index & 1) {
1870		/* read modify write */
1871		tc_writel(cam_index - 2, &tr->CAM_Adr);
1872		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1873		cam_data |= addr[0] << 8 | addr[1];
1874		tc_writel(cam_data, &tr->CAM_Data);
1875		/* write whole word */
1876		tc_writel(cam_index + 2, &tr->CAM_Adr);
1877		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1878		tc_writel(cam_data, &tr->CAM_Data);
1879	} else {
1880		/* write whole word */
1881		tc_writel(cam_index, &tr->CAM_Adr);
1882		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1883		tc_writel(cam_data, &tr->CAM_Data);
1884		/* read modify write */
1885		tc_writel(cam_index + 4, &tr->CAM_Adr);
1886		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1887		cam_data |= addr[4] << 24 | (addr[5] << 16);
1888		tc_writel(cam_data, &tr->CAM_Data);
1889	}
1890
1891	tc_writel(saved_addr, &tr->CAM_Adr);
1892}
1893
1894
1895/*
1896 * Set or clear the multicast filter for this adaptor.
1897 * num_addrs == -1	Promiscuous mode, receive all packets
1898 * num_addrs == 0	Normal mode, clear multicast list
1899 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1900 *			and do best-effort filtering.
1901 */
1902static void
1903tc35815_set_multicast_list(struct net_device *dev)
1904{
1905	struct tc35815_regs __iomem *tr =
1906		(struct tc35815_regs __iomem *)dev->base_addr;
1907
1908	if (dev->flags & IFF_PROMISC) {
1909		/* With some (all?) 100MHalf HUB, controller will hang
1910		 * if we enabled promiscuous mode before linkup... */
1911		struct tc35815_local *lp = netdev_priv(dev);
1912
1913		if (!lp->link)
1914			return;
1915		/* Enable promiscuous mode */
1916		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1917	} else if ((dev->flags & IFF_ALLMULTI) ||
1918		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1919		/* CAM 0, 1, 20 are reserved. */
1920		/* Disable promiscuous mode, use normal mode. */
1921		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1922	} else if (!netdev_mc_empty(dev)) {
1923		struct netdev_hw_addr *ha;
1924		int i;
1925		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1926
1927		tc_writel(0, &tr->CAM_Ctl);
1928		/* Walk the address list, and load the filter */
1929		i = 0;
1930		netdev_for_each_mc_addr(ha, dev) {
1931			/* entry 0,1 is reserved. */
1932			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1933			ena_bits |= CAM_Ena_Bit(i + 2);
1934			i++;
1935		}
1936		tc_writel(ena_bits, &tr->CAM_Ena);
1937		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1938	} else {
1939		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1940		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1941	}
1942}
1943
1944static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1945{
1946	struct tc35815_local *lp = netdev_priv(dev);
1947
1948	strlcpy(info->driver, MODNAME, sizeof(info->driver));
1949	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1950	strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1951}
1952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953static u32 tc35815_get_msglevel(struct net_device *dev)
1954{
1955	struct tc35815_local *lp = netdev_priv(dev);
1956	return lp->msg_enable;
1957}
1958
1959static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1960{
1961	struct tc35815_local *lp = netdev_priv(dev);
1962	lp->msg_enable = datum;
1963}
1964
1965static int tc35815_get_sset_count(struct net_device *dev, int sset)
1966{
1967	struct tc35815_local *lp = netdev_priv(dev);
1968
1969	switch (sset) {
1970	case ETH_SS_STATS:
1971		return sizeof(lp->lstats) / sizeof(int);
1972	default:
1973		return -EOPNOTSUPP;
1974	}
1975}
1976
1977static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1978{
1979	struct tc35815_local *lp = netdev_priv(dev);
1980	data[0] = lp->lstats.max_tx_qlen;
1981	data[1] = lp->lstats.tx_ints;
1982	data[2] = lp->lstats.rx_ints;
1983	data[3] = lp->lstats.tx_underrun;
1984}
1985
1986static struct {
1987	const char str[ETH_GSTRING_LEN];
1988} ethtool_stats_keys[] = {
1989	{ "max_tx_qlen" },
1990	{ "tx_ints" },
1991	{ "rx_ints" },
1992	{ "tx_underrun" },
1993};
1994
1995static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1996{
1997	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1998}
1999
2000static const struct ethtool_ops tc35815_ethtool_ops = {
2001	.get_drvinfo		= tc35815_get_drvinfo,
 
 
2002	.get_link		= ethtool_op_get_link,
2003	.get_msglevel		= tc35815_get_msglevel,
2004	.set_msglevel		= tc35815_set_msglevel,
2005	.get_strings		= tc35815_get_strings,
2006	.get_sset_count		= tc35815_get_sset_count,
2007	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2008	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2009	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2010};
2011
2012static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2013{
 
 
2014	if (!netif_running(dev))
2015		return -EINVAL;
2016	if (!dev->phydev)
2017		return -ENODEV;
2018	return phy_mii_ioctl(dev->phydev, rq, cmd);
2019}
2020
2021static void tc35815_chip_reset(struct net_device *dev)
2022{
2023	struct tc35815_regs __iomem *tr =
2024		(struct tc35815_regs __iomem *)dev->base_addr;
2025	int i;
2026	/* reset the controller */
2027	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2028	udelay(4); /* 3200ns */
2029	i = 0;
2030	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2031		if (i++ > 100) {
2032			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2033			break;
2034		}
2035		mdelay(1);
2036	}
2037	tc_writel(0, &tr->MAC_Ctl);
2038
2039	/* initialize registers to default value */
2040	tc_writel(0, &tr->DMA_Ctl);
2041	tc_writel(0, &tr->TxThrsh);
2042	tc_writel(0, &tr->TxPollCtr);
2043	tc_writel(0, &tr->RxFragSize);
2044	tc_writel(0, &tr->Int_En);
2045	tc_writel(0, &tr->FDA_Bas);
2046	tc_writel(0, &tr->FDA_Lim);
2047	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2048	tc_writel(0, &tr->CAM_Ctl);
2049	tc_writel(0, &tr->Tx_Ctl);
2050	tc_writel(0, &tr->Rx_Ctl);
2051	tc_writel(0, &tr->CAM_Ena);
2052	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2053
2054	/* initialize internal SRAM */
2055	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2056	for (i = 0; i < 0x1000; i += 4) {
2057		tc_writel(i, &tr->CAM_Adr);
2058		tc_writel(0, &tr->CAM_Data);
2059	}
2060	tc_writel(0, &tr->DMA_Ctl);
2061}
2062
2063static void tc35815_chip_init(struct net_device *dev)
2064{
2065	struct tc35815_local *lp = netdev_priv(dev);
2066	struct tc35815_regs __iomem *tr =
2067		(struct tc35815_regs __iomem *)dev->base_addr;
2068	unsigned long txctl = TX_CTL_CMD;
2069
2070	/* load station address to CAM */
2071	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2072
2073	/* Enable CAM (broadcast and unicast) */
2074	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2075	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2076
2077	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2078	if (HAVE_DMA_RXALIGN(lp))
2079		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2080	else
2081		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2082	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2083	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2084	tc_writel(INT_EN_CMD, &tr->Int_En);
2085
2086	/* set queues */
2087	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2088	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2089		  &tr->FDA_Lim);
2090	/*
2091	 * Activation method:
2092	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2093	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2094	 */
2095	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2096	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2097
2098	/* start MAC transmitter */
2099	/* TX4939 does not have EnLCarr */
2100	if (lp->chiptype == TC35815_TX4939)
2101		txctl &= ~Tx_EnLCarr;
2102	/* WORKAROUND: ignore LostCrS in full duplex operation */
2103	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2104		txctl &= ~Tx_EnLCarr;
2105	tc_writel(txctl, &tr->Tx_Ctl);
2106}
2107
2108#ifdef CONFIG_PM
2109static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2110{
2111	struct net_device *dev = pci_get_drvdata(pdev);
2112	struct tc35815_local *lp = netdev_priv(dev);
2113	unsigned long flags;
2114
2115	pci_save_state(pdev);
2116	if (!netif_running(dev))
2117		return 0;
2118	netif_device_detach(dev);
2119	if (dev->phydev)
2120		phy_stop(dev->phydev);
2121	spin_lock_irqsave(&lp->lock, flags);
2122	tc35815_chip_reset(dev);
2123	spin_unlock_irqrestore(&lp->lock, flags);
2124	pci_set_power_state(pdev, PCI_D3hot);
2125	return 0;
2126}
2127
2128static int tc35815_resume(struct pci_dev *pdev)
2129{
2130	struct net_device *dev = pci_get_drvdata(pdev);
 
2131
2132	pci_restore_state(pdev);
2133	if (!netif_running(dev))
2134		return 0;
2135	pci_set_power_state(pdev, PCI_D0);
2136	tc35815_restart(dev);
2137	netif_carrier_off(dev);
2138	if (dev->phydev)
2139		phy_start(dev->phydev);
2140	netif_device_attach(dev);
2141	return 0;
2142}
2143#endif /* CONFIG_PM */
2144
2145static struct pci_driver tc35815_pci_driver = {
2146	.name		= MODNAME,
2147	.id_table	= tc35815_pci_tbl,
2148	.probe		= tc35815_init_one,
2149	.remove		= tc35815_remove_one,
2150#ifdef CONFIG_PM
2151	.suspend	= tc35815_suspend,
2152	.resume		= tc35815_resume,
2153#endif
2154};
2155
2156module_param_named(speed, options.speed, int, 0);
2157MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2158module_param_named(duplex, options.duplex, int, 0);
2159MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2160
2161module_pci_driver(tc35815_pci_driver);
2162MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2163MODULE_LICENSE("GPL");