Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * Tehuti Networks(R) Network Driver
   3 * ethtool interface implementation
   4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * RX HW/SW interaction overview
  14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  15 * There are 2 types of RX communication channels between driver and NIC.
  16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  18 * info about buffer's location, size and ID. An ID field is used to identify a
  19 * buffer when it's returned with data via RXD Fifo (see below)
  20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  25 *
  26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  29 * filled with data, HW builds new RXD descriptor for it and push it into single
  30 * RXD Fifo.
  31 *
  32 * RX SW Data Structures
  33 * ~~~~~~~~~~~~~~~~~~~~~
  34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  35 * For RX case, ownership lasts from allocating new empty skb for RXF until
  36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  37 * skb db. Implemented as array with bitmask.
  38 * fifo - keeps info about fifo's size and location, relevant HW registers,
  39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  40 * Implemented as simple struct.
  41 *
  42 * RX SW Execution Flow
  43 * ~~~~~~~~~~~~~~~~~~~~
  44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  45 * relevant registers. At the end of init phase, driver enables interrupts.
  46 * NIC sees that there is no RXF buffers and raises
  47 * RD_INTR interrupt, isr fills skbs and Rx begins.
  48 * Driver has two receive operation modes:
  49 *    NAPI - interrupt-driven mixed with polling
  50 *    interrupt-driven only
  51 *
  52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  53 * interrupt and isr is called. isr collects all available packets
  54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  55
  56 * Rx buffer allocation note
  57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  58 * Driver cares to feed such amount of RxF descriptors that respective amount of
  59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  60 * overflow check in Bordeaux for RxD fifo free/used size.
  61 * FIXME: this is NOT fully implemented, more work should be done
  62 *
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include "tehuti.h"
  68
  69static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  70	{ PCI_VDEVICE(TEHUTI, 0x3009), },
  71	{ PCI_VDEVICE(TEHUTI, 0x3010), },
  72	{ PCI_VDEVICE(TEHUTI, 0x3014), },
  73	{ 0 }
  74};
  75
  76MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  77
  78/* Definitions needed by ISR or NAPI functions */
  79static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  80static void bdx_tx_cleanup(struct bdx_priv *priv);
  81static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  82
  83/* Definitions needed by FW loading */
  84static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  85
  86/* Definitions needed by hw_start */
  87static int bdx_tx_init(struct bdx_priv *priv);
  88static int bdx_rx_init(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_close */
  91static void bdx_rx_free(struct bdx_priv *priv);
  92static void bdx_tx_free(struct bdx_priv *priv);
  93
  94/* Definitions needed by bdx_probe */
  95static void bdx_set_ethtool_ops(struct net_device *netdev);
  96
  97/*************************************************************************
  98 *    Print Info                                                         *
  99 *************************************************************************/
 100
 101static void print_hw_id(struct pci_dev *pdev)
 102{
 103	struct pci_nic *nic = pci_get_drvdata(pdev);
 104	u16 pci_link_status = 0;
 105	u16 pci_ctrl = 0;
 106
 107	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 108	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 109
 110	pr_info("%s%s\n", BDX_NIC_NAME,
 111		nic->port_num == 1 ? "" : ", 2-Port");
 112	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 113		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 114		readl(nic->regs + FPGA_SEED),
 115		GET_LINK_STATUS_LANES(pci_link_status),
 116		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 117}
 118
 119static void print_fw_id(struct pci_nic *nic)
 120{
 121	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 122}
 123
 124static void print_eth_id(struct net_device *ndev)
 125{
 126	netdev_info(ndev, "%s, Port %c\n",
 127		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 128
 129}
 130
 131/*************************************************************************
 132 *    Code                                                               *
 133 *************************************************************************/
 134
 135#define bdx_enable_interrupts(priv)	\
 136	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 137#define bdx_disable_interrupts(priv)	\
 138	do { WRITE_REG(priv, regIMR, 0); } while (0)
 139
 140/**
 141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 142 * @priv: NIC private structure
 143 * @f: fifo to initialize
 144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 145 * @reg_XXX: offsets of registers relative to base address
 146 *
 147 * 1K extra space is allocated at the end of the fifo to simplify
 148 * processing of descriptors that wraps around fifo's end
 149 *
 150 * Returns 0 on success, negative value on failure
 151 *
 152 */
 153static int
 154bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 155	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 156{
 157	u16 memsz = FIFO_SIZE * (1 << fsz_type);
 158
 159	memset(f, 0, sizeof(struct fifo));
 160	/* pci_alloc_consistent gives us 4k-aligned memory */
 161	f->va = pci_alloc_consistent(priv->pdev,
 162				     memsz + FIFO_EXTRA_SPACE, &f->da);
 163	if (!f->va) {
 164		pr_err("pci_alloc_consistent failed\n");
 165		RET(-ENOMEM);
 166	}
 167	f->reg_CFG0 = reg_CFG0;
 168	f->reg_CFG1 = reg_CFG1;
 169	f->reg_RPTR = reg_RPTR;
 170	f->reg_WPTR = reg_WPTR;
 171	f->rptr = 0;
 172	f->wptr = 0;
 173	f->memsz = memsz;
 174	f->size_mask = memsz - 1;
 175	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 176	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 177
 178	RET(0);
 179}
 180
 181/**
 182 * bdx_fifo_free - free all resources used by fifo
 183 * @priv: NIC private structure
 184 * @f: fifo to release
 185 */
 186static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 187{
 188	ENTER;
 189	if (f->va) {
 190		pci_free_consistent(priv->pdev,
 191				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 192		f->va = NULL;
 193	}
 194	RET();
 195}
 196
 197/**
 198 * bdx_link_changed - notifies OS about hw link state.
 199 * @priv: hw adapter structure
 200 */
 201static void bdx_link_changed(struct bdx_priv *priv)
 202{
 203	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 204
 205	if (!link) {
 206		if (netif_carrier_ok(priv->ndev)) {
 207			netif_stop_queue(priv->ndev);
 208			netif_carrier_off(priv->ndev);
 209			netdev_err(priv->ndev, "Link Down\n");
 210		}
 211	} else {
 212		if (!netif_carrier_ok(priv->ndev)) {
 213			netif_wake_queue(priv->ndev);
 214			netif_carrier_on(priv->ndev);
 215			netdev_err(priv->ndev, "Link Up\n");
 216		}
 217	}
 218}
 219
 220static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 221{
 222	if (isr & IR_RX_FREE_0) {
 223		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 224		DBG("RX_FREE_0\n");
 225	}
 226
 227	if (isr & IR_LNKCHG0)
 228		bdx_link_changed(priv);
 229
 230	if (isr & IR_PCIE_LINK)
 231		netdev_err(priv->ndev, "PCI-E Link Fault\n");
 232
 233	if (isr & IR_PCIE_TOUT)
 234		netdev_err(priv->ndev, "PCI-E Time Out\n");
 235
 236}
 237
 238/**
 239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 240 * @irq: interrupt number
 241 * @dev: network device
 242 *
 243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 244 *
 245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 246 * Reasons of interest are:
 247 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 248 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 249 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 250 */
 251
 252static irqreturn_t bdx_isr_napi(int irq, void *dev)
 253{
 254	struct net_device *ndev = dev;
 255	struct bdx_priv *priv = netdev_priv(ndev);
 256	u32 isr;
 257
 258	ENTER;
 259	isr = (READ_REG(priv, regISR) & IR_RUN);
 260	if (unlikely(!isr)) {
 261		bdx_enable_interrupts(priv);
 262		return IRQ_NONE;	/* Not our interrupt */
 263	}
 264
 265	if (isr & IR_EXTRA)
 266		bdx_isr_extra(priv, isr);
 267
 268	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 269		if (likely(napi_schedule_prep(&priv->napi))) {
 270			__napi_schedule(&priv->napi);
 271			RET(IRQ_HANDLED);
 272		} else {
 273			/* NOTE: we get here if intr has slipped into window
 274			 * between these lines in bdx_poll:
 275			 *    bdx_enable_interrupts(priv);
 276			 *    return 0;
 277			 * currently intrs are disabled (since we read ISR),
 278			 * and we have failed to register next poll.
 279			 * so we read the regs to trigger chip
 280			 * and allow further interupts. */
 281			READ_REG(priv, regTXF_WPTR_0);
 282			READ_REG(priv, regRXD_WPTR_0);
 283		}
 284	}
 285
 286	bdx_enable_interrupts(priv);
 287	RET(IRQ_HANDLED);
 288}
 289
 290static int bdx_poll(struct napi_struct *napi, int budget)
 291{
 292	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 293	int work_done;
 294
 295	ENTER;
 296	bdx_tx_cleanup(priv);
 297	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 298	if ((work_done < budget) ||
 299	    (priv->napi_stop++ >= 30)) {
 300		DBG("rx poll is done. backing to isr-driven\n");
 301
 302		/* from time to time we exit to let NAPI layer release
 303		 * device lock and allow waiting tasks (eg rmmod) to advance) */
 304		priv->napi_stop = 0;
 305
 306		napi_complete(napi);
 307		bdx_enable_interrupts(priv);
 308	}
 309	return work_done;
 310}
 311
 312/**
 313 * bdx_fw_load - loads firmware to NIC
 314 * @priv: NIC private structure
 315 *
 316 * Firmware is loaded via TXD fifo, so it must be initialized first.
 317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 318 * can have few of them). So all drivers use semaphore register to choose one
 319 * that will actually load FW to NIC.
 320 */
 321
 322static int bdx_fw_load(struct bdx_priv *priv)
 323{
 324	const struct firmware *fw = NULL;
 325	int master, i;
 326	int rc;
 327
 328	ENTER;
 329	master = READ_REG(priv, regINIT_SEMAPHORE);
 330	if (!READ_REG(priv, regINIT_STATUS) && master) {
 331		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 332		if (rc)
 333			goto out;
 334		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 335		mdelay(100);
 336	}
 337	for (i = 0; i < 200; i++) {
 338		if (READ_REG(priv, regINIT_STATUS)) {
 339			rc = 0;
 340			goto out;
 341		}
 342		mdelay(2);
 343	}
 344	rc = -EIO;
 345out:
 346	if (master)
 347		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 348
 349	release_firmware(fw);
 350
 351	if (rc) {
 352		netdev_err(priv->ndev, "firmware loading failed\n");
 353		if (rc == -EIO)
 354			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 355			    READ_REG(priv, regVPC),
 356			    READ_REG(priv, regVIC),
 357			    READ_REG(priv, regINIT_STATUS), i);
 358		RET(rc);
 359	} else {
 360		DBG("%s: firmware loading success\n", priv->ndev->name);
 361		RET(0);
 362	}
 363}
 364
 365static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 366{
 367	u32 val;
 368
 369	ENTER;
 370	DBG("mac0=%x mac1=%x mac2=%x\n",
 371	    READ_REG(priv, regUNC_MAC0_A),
 372	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 373
 374	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 375	WRITE_REG(priv, regUNC_MAC2_A, val);
 376	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 377	WRITE_REG(priv, regUNC_MAC1_A, val);
 378	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 379	WRITE_REG(priv, regUNC_MAC0_A, val);
 380
 381	DBG("mac0=%x mac1=%x mac2=%x\n",
 382	    READ_REG(priv, regUNC_MAC0_A),
 383	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 384	RET();
 385}
 386
 387/**
 388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 389 * @priv: NIC private structure
 390 */
 391static int bdx_hw_start(struct bdx_priv *priv)
 392{
 393	int rc = -EIO;
 394	struct net_device *ndev = priv->ndev;
 395
 396	ENTER;
 397	bdx_link_changed(priv);
 398
 399	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 400	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 401	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 402	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 403	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 404	WRITE_REG(priv, regRX_FULLNESS, 0);
 405	WRITE_REG(priv, regTX_FULLNESS, 0);
 406	WRITE_REG(priv, regCTRLST,
 407		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 408
 409	WRITE_REG(priv, regVGLB, 0);
 410	WRITE_REG(priv, regMAX_FRAME_A,
 411		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 412
 413	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
 414	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 415	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
 416
 417	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
 418	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
 419
 420	/* Enable timer interrupt once in 2 secs. */
 421	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 422	bdx_restore_mac(priv->ndev, priv);
 423
 424	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 425		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 426
 427#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 428
 429	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 430			 ndev->name, ndev);
 431	if (rc)
 432		goto err_irq;
 433	bdx_enable_interrupts(priv);
 434
 435	RET(0);
 436
 437err_irq:
 438	RET(rc);
 439}
 440
 441static void bdx_hw_stop(struct bdx_priv *priv)
 442{
 443	ENTER;
 444	bdx_disable_interrupts(priv);
 445	free_irq(priv->pdev->irq, priv->ndev);
 446
 447	netif_carrier_off(priv->ndev);
 448	netif_stop_queue(priv->ndev);
 449
 450	RET();
 451}
 452
 453static int bdx_hw_reset_direct(void __iomem *regs)
 454{
 455	u32 val, i;
 456	ENTER;
 457
 458	/* reset sequences: read, write 1, read, write 0 */
 459	val = readl(regs + regCLKPLL);
 460	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 461	udelay(50);
 462	val = readl(regs + regCLKPLL);
 463	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 464
 465	/* check that the PLLs are locked and reset ended */
 466	for (i = 0; i < 70; i++, mdelay(10))
 467		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 468			/* do any PCI-E read transaction */
 469			readl(regs + regRXD_CFG0_0);
 470			return 0;
 471		}
 472	pr_err("HW reset failed\n");
 473	return 1;		/* failure */
 474}
 475
 476static int bdx_hw_reset(struct bdx_priv *priv)
 477{
 478	u32 val, i;
 479	ENTER;
 480
 481	if (priv->port == 0) {
 482		/* reset sequences: read, write 1, read, write 0 */
 483		val = READ_REG(priv, regCLKPLL);
 484		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 485		udelay(50);
 486		val = READ_REG(priv, regCLKPLL);
 487		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 488	}
 489	/* check that the PLLs are locked and reset ended */
 490	for (i = 0; i < 70; i++, mdelay(10))
 491		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 492			/* do any PCI-E read transaction */
 493			READ_REG(priv, regRXD_CFG0_0);
 494			return 0;
 495		}
 496	pr_err("HW reset failed\n");
 497	return 1;		/* failure */
 498}
 499
 500static int bdx_sw_reset(struct bdx_priv *priv)
 501{
 502	int i;
 503
 504	ENTER;
 505	/* 1. load MAC (obsolete) */
 506	/* 2. disable Rx (and Tx) */
 507	WRITE_REG(priv, regGMAC_RXF_A, 0);
 508	mdelay(100);
 509	/* 3. disable port */
 510	WRITE_REG(priv, regDIS_PORT, 1);
 511	/* 4. disable queue */
 512	WRITE_REG(priv, regDIS_QU, 1);
 513	/* 5. wait until hw is disabled */
 514	for (i = 0; i < 50; i++) {
 515		if (READ_REG(priv, regRST_PORT) & 1)
 516			break;
 517		mdelay(10);
 518	}
 519	if (i == 50)
 520		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 521
 522	/* 6. disable intrs */
 523	WRITE_REG(priv, regRDINTCM0, 0);
 524	WRITE_REG(priv, regTDINTCM0, 0);
 525	WRITE_REG(priv, regIMR, 0);
 526	READ_REG(priv, regISR);
 527
 528	/* 7. reset queue */
 529	WRITE_REG(priv, regRST_QU, 1);
 530	/* 8. reset port */
 531	WRITE_REG(priv, regRST_PORT, 1);
 532	/* 9. zero all read and write pointers */
 533	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 534		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 535	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 536		WRITE_REG(priv, i, 0);
 537	/* 10. unseet port disable */
 538	WRITE_REG(priv, regDIS_PORT, 0);
 539	/* 11. unset queue disable */
 540	WRITE_REG(priv, regDIS_QU, 0);
 541	/* 12. unset queue reset */
 542	WRITE_REG(priv, regRST_QU, 0);
 543	/* 13. unset port reset */
 544	WRITE_REG(priv, regRST_PORT, 0);
 545	/* 14. enable Rx */
 546	/* skiped. will be done later */
 547	/* 15. save MAC (obsolete) */
 548	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 549		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 550
 551	RET(0);
 552}
 553
 554/* bdx_reset - performs right type of reset depending on hw type */
 555static int bdx_reset(struct bdx_priv *priv)
 556{
 557	ENTER;
 558	RET((priv->pdev->device == 0x3009)
 559	    ? bdx_hw_reset(priv)
 560	    : bdx_sw_reset(priv));
 561}
 562
 563/**
 564 * bdx_close - Disables a network interface
 565 * @netdev: network interface device structure
 566 *
 567 * Returns 0, this is not allowed to fail
 568 *
 569 * The close entry point is called when an interface is de-activated
 570 * by the OS.  The hardware is still under the drivers control, but
 571 * needs to be disabled.  A global MAC reset is issued to stop the
 572 * hardware, and all transmit and receive resources are freed.
 573 **/
 574static int bdx_close(struct net_device *ndev)
 575{
 576	struct bdx_priv *priv = NULL;
 577
 578	ENTER;
 579	priv = netdev_priv(ndev);
 580
 581	napi_disable(&priv->napi);
 582
 583	bdx_reset(priv);
 584	bdx_hw_stop(priv);
 585	bdx_rx_free(priv);
 586	bdx_tx_free(priv);
 587	RET(0);
 588}
 589
 590/**
 591 * bdx_open - Called when a network interface is made active
 592 * @netdev: network interface device structure
 593 *
 594 * Returns 0 on success, negative value on failure
 595 *
 596 * The open entry point is called when a network interface is made
 597 * active by the system (IFF_UP).  At this point all resources needed
 598 * for transmit and receive operations are allocated, the interrupt
 599 * handler is registered with the OS, the watchdog timer is started,
 600 * and the stack is notified that the interface is ready.
 601 **/
 602static int bdx_open(struct net_device *ndev)
 603{
 604	struct bdx_priv *priv;
 605	int rc;
 606
 607	ENTER;
 608	priv = netdev_priv(ndev);
 609	bdx_reset(priv);
 610	if (netif_running(ndev))
 611		netif_stop_queue(priv->ndev);
 612
 613	if ((rc = bdx_tx_init(priv)) ||
 614	    (rc = bdx_rx_init(priv)) ||
 615	    (rc = bdx_fw_load(priv)))
 616		goto err;
 617
 618	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 619
 620	rc = bdx_hw_start(priv);
 621	if (rc)
 622		goto err;
 623
 624	napi_enable(&priv->napi);
 625
 626	print_fw_id(priv->nic);
 627
 628	RET(0);
 629
 630err:
 631	bdx_close(ndev);
 632	RET(rc);
 633}
 634
 635static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 636{
 637	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 638		-EINVAL : 0;
 639}
 640
 641static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 642{
 643	struct bdx_priv *priv = netdev_priv(ndev);
 644	u32 data[3];
 645	int error;
 646
 647	ENTER;
 648
 649	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 650	if (cmd != SIOCDEVPRIVATE) {
 651		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 652		if (error) {
 653			pr_err("can't copy from user\n");
 654			RET(-EFAULT);
 655		}
 656		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 
 
 657	}
 658
 659	if (!capable(CAP_SYS_RAWIO))
 660		return -EPERM;
 661
 662	switch (data[0]) {
 663
 664	case BDX_OP_READ:
 665		error = bdx_range_check(priv, data[1]);
 666		if (error < 0)
 667			return error;
 668		data[2] = READ_REG(priv, data[1]);
 669		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 670		    data[2]);
 671		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 672		if (error)
 673			RET(-EFAULT);
 674		break;
 675
 676	case BDX_OP_WRITE:
 677		error = bdx_range_check(priv, data[1]);
 678		if (error < 0)
 679			return error;
 680		WRITE_REG(priv, data[1], data[2]);
 681		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 682		break;
 683
 684	default:
 685		RET(-EOPNOTSUPP);
 686	}
 687	return 0;
 688}
 689
 690static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 691{
 692	ENTER;
 693	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 694		RET(bdx_ioctl_priv(ndev, ifr, cmd));
 695	else
 696		RET(-EOPNOTSUPP);
 697}
 698
 699/**
 700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 701 * @ndev: network device
 702 * @vid:  VLAN vid
 703 * @op:   add or kill operation
 704 *
 705 * Passes VLAN filter table to hardware
 706 */
 707static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 708{
 709	struct bdx_priv *priv = netdev_priv(ndev);
 710	u32 reg, bit, val;
 711
 712	ENTER;
 713	DBG2("vid=%d value=%d\n", (int)vid, enable);
 714	if (unlikely(vid >= 4096)) {
 715		pr_err("invalid VID: %u (> 4096)\n", vid);
 716		RET();
 717	}
 718	reg = regVLAN_0 + (vid / 32) * 4;
 719	bit = 1 << vid % 32;
 720	val = READ_REG(priv, reg);
 721	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 722	if (enable)
 723		val |= bit;
 724	else
 725		val &= ~bit;
 726	DBG2("new val %x\n", val);
 727	WRITE_REG(priv, reg, val);
 728	RET();
 729}
 730
 731/**
 732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 733 * @ndev: network device
 734 * @vid:  VLAN vid to add
 735 */
 736static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 737{
 738	__bdx_vlan_rx_vid(ndev, vid, 1);
 739	return 0;
 740}
 741
 742/**
 743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 744 * @ndev: network device
 745 * @vid:  VLAN vid to kill
 746 */
 747static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 748{
 749	__bdx_vlan_rx_vid(ndev, vid, 0);
 750	return 0;
 751}
 752
 753/**
 754 * bdx_change_mtu - Change the Maximum Transfer Unit
 755 * @netdev: network interface device structure
 756 * @new_mtu: new value for maximum frame size
 757 *
 758 * Returns 0 on success, negative on failure
 759 */
 760static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 761{
 762	ENTER;
 763
 764	if (new_mtu == ndev->mtu)
 765		RET(0);
 766
 767	/* enforce minimum frame size */
 768	if (new_mtu < ETH_ZLEN) {
 769		netdev_err(ndev, "mtu %d is less then minimal %d\n",
 770			   new_mtu, ETH_ZLEN);
 771		RET(-EINVAL);
 772	}
 773
 774	ndev->mtu = new_mtu;
 775	if (netif_running(ndev)) {
 776		bdx_close(ndev);
 777		bdx_open(ndev);
 778	}
 779	RET(0);
 780}
 781
 782static void bdx_setmulti(struct net_device *ndev)
 783{
 784	struct bdx_priv *priv = netdev_priv(ndev);
 785
 786	u32 rxf_val =
 787	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 788	int i;
 789
 790	ENTER;
 791	/* IMF - imperfect (hash) rx multicat filter */
 792	/* PMF - perfect rx multicat filter */
 793
 794	/* FIXME: RXE(OFF) */
 795	if (ndev->flags & IFF_PROMISC) {
 796		rxf_val |= GMAC_RX_FILTER_PRM;
 797	} else if (ndev->flags & IFF_ALLMULTI) {
 798		/* set IMF to accept all multicast frmaes */
 799		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 800			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 801	} else if (!netdev_mc_empty(ndev)) {
 802		u8 hash;
 803		struct netdev_hw_addr *ha;
 804		u32 reg, val;
 805
 806		/* set IMF to deny all multicast frames */
 807		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 808			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 809		/* set PMF to deny all multicast frames */
 810		for (i = 0; i < MAC_MCST_NUM; i++) {
 811			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 812			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 813		}
 814
 815		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
 816		/* TBD: sort addresses and write them in ascending order
 817		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 818		 * multicast frames throu IMF */
 819		/* accept the rest of addresses throu IMF */
 820		netdev_for_each_mc_addr(ha, ndev) {
 821			hash = 0;
 822			for (i = 0; i < ETH_ALEN; i++)
 823				hash ^= ha->addr[i];
 824			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 825			val = READ_REG(priv, reg);
 826			val |= (1 << (hash % 32));
 827			WRITE_REG(priv, reg, val);
 828		}
 829
 830	} else {
 831		DBG("only own mac %d\n", netdev_mc_count(ndev));
 832		rxf_val |= GMAC_RX_FILTER_AB;
 833	}
 834	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 835	/* enable RX */
 836	/* FIXME: RXE(ON) */
 837	RET();
 838}
 839
 840static int bdx_set_mac(struct net_device *ndev, void *p)
 841{
 842	struct bdx_priv *priv = netdev_priv(ndev);
 843	struct sockaddr *addr = p;
 844
 845	ENTER;
 846	/*
 847	   if (netif_running(dev))
 848	   return -EBUSY
 849	 */
 850	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 851	bdx_restore_mac(ndev, priv);
 852	RET(0);
 853}
 854
 855static int bdx_read_mac(struct bdx_priv *priv)
 856{
 857	u16 macAddress[3], i;
 858	ENTER;
 859
 860	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 861	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 862	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 863	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 864	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 865	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 866	for (i = 0; i < 3; i++) {
 867		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 868		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 869	}
 870	RET(0);
 871}
 872
 873static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 874{
 875	u64 val;
 876
 877	val = READ_REG(priv, reg);
 878	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 879	return val;
 880}
 881
 882/*Do the statistics-update work*/
 883static void bdx_update_stats(struct bdx_priv *priv)
 884{
 885	struct bdx_stats *stats = &priv->hw_stats;
 886	u64 *stats_vector = (u64 *) stats;
 887	int i;
 888	int addr;
 889
 890	/*Fill HW structure */
 891	addr = 0x7200;
 892	/*First 12 statistics - 0x7200 - 0x72B0 */
 893	for (i = 0; i < 12; i++) {
 894		stats_vector[i] = bdx_read_l2stat(priv, addr);
 895		addr += 0x10;
 896	}
 897	BDX_ASSERT(addr != 0x72C0);
 898	/* 0x72C0-0x72E0 RSRV */
 899	addr = 0x72F0;
 900	for (; i < 16; i++) {
 901		stats_vector[i] = bdx_read_l2stat(priv, addr);
 902		addr += 0x10;
 903	}
 904	BDX_ASSERT(addr != 0x7330);
 905	/* 0x7330-0x7360 RSRV */
 906	addr = 0x7370;
 907	for (; i < 19; i++) {
 908		stats_vector[i] = bdx_read_l2stat(priv, addr);
 909		addr += 0x10;
 910	}
 911	BDX_ASSERT(addr != 0x73A0);
 912	/* 0x73A0-0x73B0 RSRV */
 913	addr = 0x73C0;
 914	for (; i < 23; i++) {
 915		stats_vector[i] = bdx_read_l2stat(priv, addr);
 916		addr += 0x10;
 917	}
 918	BDX_ASSERT(addr != 0x7400);
 919	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 920}
 921
 922static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 923		       u16 rxd_vlan);
 924static void print_rxfd(struct rxf_desc *rxfd);
 925
 926/*************************************************************************
 927 *     Rx DB                                                             *
 928 *************************************************************************/
 929
 930static void bdx_rxdb_destroy(struct rxdb *db)
 931{
 932	vfree(db);
 933}
 934
 935static struct rxdb *bdx_rxdb_create(int nelem)
 936{
 937	struct rxdb *db;
 938	int i;
 939
 940	db = vmalloc(sizeof(struct rxdb)
 941		     + (nelem * sizeof(int))
 942		     + (nelem * sizeof(struct rx_map)));
 943	if (likely(db != NULL)) {
 944		db->stack = (int *)(db + 1);
 945		db->elems = (void *)(db->stack + nelem);
 946		db->nelem = nelem;
 947		db->top = nelem;
 948		for (i = 0; i < nelem; i++)
 949			db->stack[i] = nelem - i - 1;	/* to make first allocs
 950							   close to db struct*/
 951	}
 952
 953	return db;
 954}
 955
 956static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 957{
 958	BDX_ASSERT(db->top <= 0);
 959	return db->stack[--(db->top)];
 960}
 961
 962static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 963{
 964	BDX_ASSERT((n < 0) || (n >= db->nelem));
 965	return db->elems + n;
 966}
 967
 968static inline int bdx_rxdb_available(struct rxdb *db)
 969{
 970	return db->top;
 971}
 972
 973static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 974{
 975	BDX_ASSERT((n >= db->nelem) || (n < 0));
 976	db->stack[(db->top)++] = n;
 977}
 978
 979/*************************************************************************
 980 *     Rx Init                                                           *
 981 *************************************************************************/
 982
 983/**
 984 * bdx_rx_init - initialize RX all related HW and SW resources
 985 * @priv: NIC private structure
 986 *
 987 * Returns 0 on success, negative value on failure
 988 *
 989 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 990 * skb for rx. It assumes that Rx is desabled in HW
 991 * funcs are grouped for better cache usage
 992 *
 993 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 994 * filled and packets will be dropped by nic without getting into host or
 995 * cousing interrupt. Anyway, in that condition, host has no chance to process
 996 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 997 */
 998
 999/* TBD: ensure proper packet size */
1000
1001static int bdx_rx_init(struct bdx_priv *priv)
1002{
1003	ENTER;
1004
1005	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1006			  regRXD_CFG0_0, regRXD_CFG1_0,
1007			  regRXD_RPTR_0, regRXD_WPTR_0))
1008		goto err_mem;
1009	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1010			  regRXF_CFG0_0, regRXF_CFG1_0,
1011			  regRXF_RPTR_0, regRXF_WPTR_0))
1012		goto err_mem;
1013	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1014				     sizeof(struct rxf_desc));
1015	if (!priv->rxdb)
1016		goto err_mem;
1017
1018	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1019	return 0;
1020
1021err_mem:
1022	netdev_err(priv->ndev, "Rx init failed\n");
1023	return -ENOMEM;
1024}
1025
1026/**
1027 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1028 * @priv: NIC private structure
1029 * @f: RXF fifo
1030 */
1031static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1032{
1033	struct rx_map *dm;
1034	struct rxdb *db = priv->rxdb;
1035	u16 i;
1036
1037	ENTER;
1038	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1039	    db->nelem - bdx_rxdb_available(db));
1040	while (bdx_rxdb_available(db) > 0) {
1041		i = bdx_rxdb_alloc_elem(db);
1042		dm = bdx_rxdb_addr_elem(db, i);
1043		dm->dma = 0;
1044	}
1045	for (i = 0; i < db->nelem; i++) {
1046		dm = bdx_rxdb_addr_elem(db, i);
1047		if (dm->dma) {
1048			pci_unmap_single(priv->pdev,
1049					 dm->dma, f->m.pktsz,
1050					 PCI_DMA_FROMDEVICE);
1051			dev_kfree_skb(dm->skb);
1052		}
1053	}
1054}
1055
1056/**
1057 * bdx_rx_free - release all Rx resources
1058 * @priv: NIC private structure
1059 *
1060 * It assumes that Rx is desabled in HW
1061 */
1062static void bdx_rx_free(struct bdx_priv *priv)
1063{
1064	ENTER;
1065	if (priv->rxdb) {
1066		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1067		bdx_rxdb_destroy(priv->rxdb);
1068		priv->rxdb = NULL;
1069	}
1070	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1071	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1072
1073	RET();
1074}
1075
1076/*************************************************************************
1077 *     Rx Engine                                                         *
1078 *************************************************************************/
1079
1080/**
1081 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1082 * @priv: nic's private structure
1083 * @f: RXF fifo that needs skbs
1084 *
1085 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1086 * skb's virtual and physical addresses are stored in skb db.
1087 * To calculate free space, func uses cached values of RPTR and WPTR
1088 * When needed, it also updates RPTR and WPTR.
1089 */
1090
1091/* TBD: do not update WPTR if no desc were written */
1092
1093static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1094{
1095	struct sk_buff *skb;
1096	struct rxf_desc *rxfd;
1097	struct rx_map *dm;
1098	int dno, delta, idx;
1099	struct rxdb *db = priv->rxdb;
1100
1101	ENTER;
1102	dno = bdx_rxdb_available(db) - 1;
1103	while (dno > 0) {
1104		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1105		if (!skb)
1106			break;
1107
1108		skb_reserve(skb, NET_IP_ALIGN);
1109
1110		idx = bdx_rxdb_alloc_elem(db);
1111		dm = bdx_rxdb_addr_elem(db, idx);
1112		dm->dma = pci_map_single(priv->pdev,
1113					 skb->data, f->m.pktsz,
1114					 PCI_DMA_FROMDEVICE);
1115		dm->skb = skb;
1116		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1117		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1118		rxfd->va_lo = idx;
1119		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1120		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1121		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1122		print_rxfd(rxfd);
1123
1124		f->m.wptr += sizeof(struct rxf_desc);
1125		delta = f->m.wptr - f->m.memsz;
1126		if (unlikely(delta >= 0)) {
1127			f->m.wptr = delta;
1128			if (delta > 0) {
1129				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1130				DBG("wrapped descriptor\n");
1131			}
1132		}
1133		dno--;
1134	}
1135	/*TBD: to do - delayed rxf wptr like in txd */
1136	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1137	RET();
1138}
1139
1140static inline void
1141NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1142	     struct sk_buff *skb)
1143{
1144	ENTER;
1145	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1146	if (GET_RXD_VTAG(rxd_val1)) {
1147		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1148		    priv->ndev->name,
1149		    GET_RXD_VLAN_ID(rxd_vlan),
1150		    GET_RXD_VTAG(rxd_val1));
1151		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1152	}
1153	netif_receive_skb(skb);
1154}
1155
1156static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1157{
1158	struct rxf_desc *rxfd;
1159	struct rx_map *dm;
1160	struct rxf_fifo *f;
1161	struct rxdb *db;
1162	struct sk_buff *skb;
1163	int delta;
1164
1165	ENTER;
1166	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1167	f = &priv->rxf_fifo0;
1168	db = priv->rxdb;
1169	DBG("db=%p f=%p\n", db, f);
1170	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1171	DBG("dm=%p\n", dm);
1172	skb = dm->skb;
1173	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1174	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1175	rxfd->va_lo = rxdd->va_lo;
1176	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1177	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1178	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1179	print_rxfd(rxfd);
1180
1181	f->m.wptr += sizeof(struct rxf_desc);
1182	delta = f->m.wptr - f->m.memsz;
1183	if (unlikely(delta >= 0)) {
1184		f->m.wptr = delta;
1185		if (delta > 0) {
1186			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1187			DBG("wrapped descriptor\n");
1188		}
1189	}
1190	RET();
1191}
1192
1193/**
1194 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1195 * NOTE: a special treatment is given to non-continuous descriptors
1196 * that start near the end, wraps around and continue at the beginning. a second
1197 * part is copied right after the first, and then descriptor is interpreted as
1198 * normal. fifo has an extra space to allow such operations
1199 * @priv: nic's private structure
1200 * @f: RXF fifo that needs skbs
1201 * @budget: maximum number of packets to receive
1202 */
1203
1204/* TBD: replace memcpy func call by explicite inline asm */
1205
1206static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1207{
1208	struct net_device *ndev = priv->ndev;
1209	struct sk_buff *skb, *skb2;
1210	struct rxd_desc *rxdd;
1211	struct rx_map *dm;
1212	struct rxf_fifo *rxf_fifo;
1213	int tmp_len, size;
1214	int done = 0;
1215	int max_done = BDX_MAX_RX_DONE;
1216	struct rxdb *db = NULL;
1217	/* Unmarshalled descriptor - copy of descriptor in host order */
1218	u32 rxd_val1;
1219	u16 len;
1220	u16 rxd_vlan;
1221
1222	ENTER;
1223	max_done = budget;
1224
1225	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1226
1227	size = f->m.wptr - f->m.rptr;
1228	if (size < 0)
1229		size = f->m.memsz + size;	/* size is negative :-) */
1230
1231	while (size > 0) {
1232
1233		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1234		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1235
1236		len = CPU_CHIP_SWAP16(rxdd->len);
1237
1238		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1239
1240		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1241
1242		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1243		BDX_ASSERT(tmp_len <= 0);
1244		size -= tmp_len;
1245		if (size < 0)	/* test for partially arrived descriptor */
1246			break;
1247
1248		f->m.rptr += tmp_len;
1249
1250		tmp_len = f->m.rptr - f->m.memsz;
1251		if (unlikely(tmp_len >= 0)) {
1252			f->m.rptr = tmp_len;
1253			if (tmp_len > 0) {
1254				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1255				    f->m.rptr, tmp_len);
1256				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1257			}
1258		}
1259
1260		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1261			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1262			ndev->stats.rx_errors++;
1263			bdx_recycle_skb(priv, rxdd);
1264			continue;
1265		}
1266
1267		rxf_fifo = &priv->rxf_fifo0;
1268		db = priv->rxdb;
1269		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1270		skb = dm->skb;
1271
1272		if (len < BDX_COPYBREAK &&
1273		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1274			skb_reserve(skb2, NET_IP_ALIGN);
1275			/*skb_put(skb2, len); */
1276			pci_dma_sync_single_for_cpu(priv->pdev,
1277						    dm->dma, rxf_fifo->m.pktsz,
1278						    PCI_DMA_FROMDEVICE);
1279			memcpy(skb2->data, skb->data, len);
1280			bdx_recycle_skb(priv, rxdd);
1281			skb = skb2;
1282		} else {
1283			pci_unmap_single(priv->pdev,
1284					 dm->dma, rxf_fifo->m.pktsz,
1285					 PCI_DMA_FROMDEVICE);
1286			bdx_rxdb_free_elem(db, rxdd->va_lo);
1287		}
1288
1289		ndev->stats.rx_bytes += len;
1290
1291		skb_put(skb, len);
1292		skb->protocol = eth_type_trans(skb, ndev);
1293
1294		/* Non-IP packets aren't checksum-offloaded */
1295		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1296			skb_checksum_none_assert(skb);
1297		else
1298			skb->ip_summed = CHECKSUM_UNNECESSARY;
1299
1300		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1301
1302		if (++done >= max_done)
1303			break;
1304	}
1305
1306	ndev->stats.rx_packets += done;
1307
1308	/* FIXME: do smth to minimize pci accesses    */
1309	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1310
1311	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1312
1313	RET(done);
1314}
1315
1316/*************************************************************************
1317 * Debug / Temprorary Code                                               *
1318 *************************************************************************/
1319static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1320		       u16 rxd_vlan)
1321{
1322	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1323	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1324	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1325	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1326	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1327	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1328	    rxdd->va_hi);
1329}
1330
1331static void print_rxfd(struct rxf_desc *rxfd)
1332{
1333	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1334	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1335	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1336}
1337
1338/*
1339 * TX HW/SW interaction overview
1340 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1341 * There are 2 types of TX communication channels between driver and NIC.
1342 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1343 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1344 *
1345 * Currently NIC supports TSO, checksuming and gather DMA
1346 * UFO and IP fragmentation is on the way
1347 *
1348 * RX SW Data Structures
1349 * ~~~~~~~~~~~~~~~~~~~~~
1350 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1351 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1352 * acknowledges sent by TXF descriptors.
1353 * Implemented as cyclic buffer.
1354 * fifo - keeps info about fifo's size and location, relevant HW registers,
1355 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1356 * Implemented as simple struct.
1357 *
1358 * TX SW Execution Flow
1359 * ~~~~~~~~~~~~~~~~~~~~
1360 * OS calls driver's hard_xmit method with packet to sent.
1361 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1362 * by updating TXD WPTR.
1363 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1364 * To prevent TXD fifo overflow without reading HW registers every time,
1365 * SW deploys "tx level" technique.
1366 * Upon strart up, tx level is initialized to TXD fifo length.
1367 * For every sent packet, SW gets its TXD descriptor sizei
1368 * (from precalculated array) and substructs it from tx level.
1369 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1370 * original TXD descriptor from txdb and adds it to tx level.
1371 * When Tx level drops under some predefined treshhold, the driver
1372 * stops the TX queue. When TX level rises above that level,
1373 * the tx queue is enabled again.
1374 *
1375 * This technique avoids eccessive reading of RPTR and WPTR registers.
1376 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1377 */
1378
1379/*************************************************************************
1380 *     Tx DB                                                             *
1381 *************************************************************************/
1382static inline int bdx_tx_db_size(struct txdb *db)
1383{
1384	int taken = db->wptr - db->rptr;
1385	if (taken < 0)
1386		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1387
1388	return db->size - taken;
1389}
1390
1391/**
1392 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1393 * @db: tx data base
1394 * @pptr: read or write pointer
1395 */
1396static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1397{
1398	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1399
1400	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1401		   *pptr != db->wptr);	/* or write pointer */
1402
1403	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1404		   *pptr >= db->end);	/* in range */
1405
1406	++*pptr;
1407	if (unlikely(*pptr == db->end))
1408		*pptr = db->start;
1409}
1410
1411/**
1412 * bdx_tx_db_inc_rptr - increment read pointer
1413 * @db: tx data base
1414 */
1415static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1416{
1417	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1418	__bdx_tx_db_ptr_next(db, &db->rptr);
1419}
1420
1421/**
1422 * bdx_tx_db_inc_wptr - increment write pointer
1423 * @db: tx data base
1424 */
1425static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1426{
1427	__bdx_tx_db_ptr_next(db, &db->wptr);
1428	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1429						   a result of write */
1430}
1431
1432/**
1433 * bdx_tx_db_init - creates and initializes tx db
1434 * @d: tx data base
1435 * @sz_type: size of tx fifo
1436 *
1437 * Returns 0 on success, error code otherwise
1438 */
1439static int bdx_tx_db_init(struct txdb *d, int sz_type)
1440{
1441	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1442
1443	d->start = vmalloc(memsz);
1444	if (!d->start)
1445		return -ENOMEM;
1446
1447	/*
1448	 * In order to differentiate between db is empty and db is full
1449	 * states at least one element should always be empty in order to
1450	 * avoid rptr == wptr which means db is empty
1451	 */
1452	d->size = memsz / sizeof(struct tx_map) - 1;
1453	d->end = d->start + d->size + 1;	/* just after last element */
1454
1455	/* all dbs are created equally empty */
1456	d->rptr = d->start;
1457	d->wptr = d->start;
1458
1459	return 0;
1460}
1461
1462/**
1463 * bdx_tx_db_close - closes tx db and frees all memory
1464 * @d: tx data base
1465 */
1466static void bdx_tx_db_close(struct txdb *d)
1467{
1468	BDX_ASSERT(d == NULL);
1469
1470	vfree(d->start);
1471	d->start = NULL;
1472}
1473
1474/*************************************************************************
1475 *     Tx Engine                                                         *
1476 *************************************************************************/
1477
1478/* sizes of tx desc (including padding if needed) as function
1479 * of skb's frag number */
1480static struct {
1481	u16 bytes;
1482	u16 qwords;		/* qword = 64 bit */
1483} txd_sizes[MAX_SKB_FRAGS + 1];
1484
1485/**
1486 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1487 * @priv: NIC private structure
1488 * @skb: socket buffer to map
1489 * @txdd: TX descriptor to use
1490 *
1491 * It makes dma mappings for skb's data blocks and writes them to PBL of
1492 * new tx descriptor. It also stores them in the tx db, so they could be
1493 * unmaped after data was sent. It is reponsibility of a caller to make
1494 * sure that there is enough space in the tx db. Last element holds pointer
1495 * to skb itself and marked with zero length
1496 */
1497static inline void
1498bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1499	       struct txd_desc *txdd)
1500{
1501	struct txdb *db = &priv->txdb;
1502	struct pbl *pbl = &txdd->pbl[0];
1503	int nr_frags = skb_shinfo(skb)->nr_frags;
1504	int i;
1505
1506	db->wptr->len = skb_headlen(skb);
1507	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1508					    db->wptr->len, PCI_DMA_TODEVICE);
1509	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1510	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1511	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1512	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1513	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1514	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1515	bdx_tx_db_inc_wptr(db);
1516
1517	for (i = 0; i < nr_frags; i++) {
1518		const struct skb_frag_struct *frag;
1519
1520		frag = &skb_shinfo(skb)->frags[i];
1521		db->wptr->len = skb_frag_size(frag);
1522		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1523						      0, skb_frag_size(frag),
1524						      DMA_TO_DEVICE);
1525
1526		pbl++;
1527		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1528		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1529		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1530		bdx_tx_db_inc_wptr(db);
1531	}
1532
1533	/* add skb clean up info. */
1534	db->wptr->len = -txd_sizes[nr_frags].bytes;
1535	db->wptr->addr.skb = skb;
1536	bdx_tx_db_inc_wptr(db);
1537}
1538
1539/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1540 * number of frags is used as index to fetch correct descriptors size,
1541 * instead of calculating it each time */
1542static void __init init_txd_sizes(void)
1543{
1544	int i, lwords;
1545
1546	/* 7 - is number of lwords in txd with one phys buffer
1547	 * 3 - is number of lwords used for every additional phys buffer */
1548	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1549		lwords = 7 + (i * 3);
1550		if (lwords & 1)
1551			lwords++;	/* pad it with 1 lword */
1552		txd_sizes[i].qwords = lwords >> 1;
1553		txd_sizes[i].bytes = lwords << 2;
1554	}
1555}
1556
1557/* bdx_tx_init - initialize all Tx related stuff.
1558 * Namely, TXD and TXF fifos, database etc */
1559static int bdx_tx_init(struct bdx_priv *priv)
1560{
1561	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1562			  regTXD_CFG0_0,
1563			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1564		goto err_mem;
1565	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1566			  regTXF_CFG0_0,
1567			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1568		goto err_mem;
1569
1570	/* The TX db has to keep mappings for all packets sent (on TxD)
1571	 * and not yet reclaimed (on TxF) */
1572	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1573		goto err_mem;
1574
1575	priv->tx_level = BDX_MAX_TX_LEVEL;
1576#ifdef BDX_DELAY_WPTR
1577	priv->tx_update_mark = priv->tx_level - 1024;
1578#endif
1579	return 0;
1580
1581err_mem:
1582	netdev_err(priv->ndev, "Tx init failed\n");
1583	return -ENOMEM;
1584}
1585
1586/**
1587 * bdx_tx_space - calculates available space in TX fifo
1588 * @priv: NIC private structure
1589 *
1590 * Returns available space in TX fifo in bytes
1591 */
1592static inline int bdx_tx_space(struct bdx_priv *priv)
1593{
1594	struct txd_fifo *f = &priv->txd_fifo0;
1595	int fsize;
1596
1597	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1598	fsize = f->m.rptr - f->m.wptr;
1599	if (fsize <= 0)
1600		fsize = f->m.memsz + fsize;
1601	return fsize;
1602}
1603
1604/**
1605 * bdx_tx_transmit - send packet to NIC
1606 * @skb: packet to send
1607 * @ndev: network device assigned to NIC
1608 * Return codes:
1609 * o NETDEV_TX_OK everything ok.
1610 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1611 *   Usually a bug, means queue start/stop flow control is broken in
1612 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1613 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1614 */
1615static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1616				   struct net_device *ndev)
1617{
1618	struct bdx_priv *priv = netdev_priv(ndev);
1619	struct txd_fifo *f = &priv->txd_fifo0;
1620	int txd_checksum = 7;	/* full checksum */
1621	int txd_lgsnd = 0;
1622	int txd_vlan_id = 0;
1623	int txd_vtag = 0;
1624	int txd_mss = 0;
1625
1626	int nr_frags = skb_shinfo(skb)->nr_frags;
1627	struct txd_desc *txdd;
1628	int len;
1629	unsigned long flags;
1630
1631	ENTER;
1632	local_irq_save(flags);
1633	if (!spin_trylock(&priv->tx_lock)) {
1634		local_irq_restore(flags);
1635		DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1636		    BDX_DRV_NAME, ndev->name);
1637		return NETDEV_TX_LOCKED;
1638	}
1639
1640	/* build tx descriptor */
1641	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1642	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1643	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1644		txd_checksum = 0;
1645
1646	if (skb_shinfo(skb)->gso_size) {
1647		txd_mss = skb_shinfo(skb)->gso_size;
1648		txd_lgsnd = 1;
1649		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1650		    txd_mss);
1651	}
1652
1653	if (vlan_tx_tag_present(skb)) {
1654		/*Cut VLAN ID to 12 bits */
1655		txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1656		txd_vtag = 1;
1657	}
1658
1659	txdd->length = CPU_CHIP_SWAP16(skb->len);
1660	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1661	txdd->txd_val1 =
1662	    CPU_CHIP_SWAP32(TXD_W1_VAL
1663			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1664			     txd_lgsnd, txd_vlan_id));
1665	DBG("=== TxD desc =====================\n");
1666	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1667	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1668
1669	bdx_tx_map_skb(priv, skb, txdd);
1670
1671	/* increment TXD write pointer. In case of
1672	   fifo wrapping copy reminder of the descriptor
1673	   to the beginning */
1674	f->m.wptr += txd_sizes[nr_frags].bytes;
1675	len = f->m.wptr - f->m.memsz;
1676	if (unlikely(len >= 0)) {
1677		f->m.wptr = len;
1678		if (len > 0) {
1679			BDX_ASSERT(len > f->m.memsz);
1680			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1681		}
1682	}
1683	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1684
1685	priv->tx_level -= txd_sizes[nr_frags].bytes;
1686	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1687#ifdef BDX_DELAY_WPTR
1688	if (priv->tx_level > priv->tx_update_mark) {
1689		/* Force memory writes to complete before letting h/w
1690		   know there are new descriptors to fetch.
1691		   (might be needed on platforms like IA64)
1692		   wmb(); */
1693		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1694	} else {
1695		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1696			priv->tx_noupd = 0;
1697			WRITE_REG(priv, f->m.reg_WPTR,
1698				  f->m.wptr & TXF_WPTR_WR_PTR);
1699		}
1700	}
1701#else
1702	/* Force memory writes to complete before letting h/w
1703	   know there are new descriptors to fetch.
1704	   (might be needed on platforms like IA64)
1705	   wmb(); */
1706	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1707
1708#endif
1709#ifdef BDX_LLTX
1710	ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1711#endif
1712	ndev->stats.tx_packets++;
1713	ndev->stats.tx_bytes += skb->len;
1714
1715	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1716		DBG("%s: %s: TX Q STOP level %d\n",
1717		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1718		netif_stop_queue(ndev);
1719	}
1720
1721	spin_unlock_irqrestore(&priv->tx_lock, flags);
1722	return NETDEV_TX_OK;
1723}
1724
1725/**
1726 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1727 * @priv: bdx adapter
1728 *
1729 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1730 * that those packets were sent
1731 */
1732static void bdx_tx_cleanup(struct bdx_priv *priv)
1733{
1734	struct txf_fifo *f = &priv->txf_fifo0;
1735	struct txdb *db = &priv->txdb;
1736	int tx_level = 0;
1737
1738	ENTER;
1739	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1740	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1741
1742	while (f->m.wptr != f->m.rptr) {
1743		f->m.rptr += BDX_TXF_DESC_SZ;
1744		f->m.rptr &= f->m.size_mask;
1745
1746		/* unmap all the fragments */
1747		/* first has to come tx_maps containing dma */
1748		BDX_ASSERT(db->rptr->len == 0);
1749		do {
1750			BDX_ASSERT(db->rptr->addr.dma == 0);
1751			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1752				       db->rptr->len, PCI_DMA_TODEVICE);
1753			bdx_tx_db_inc_rptr(db);
1754		} while (db->rptr->len > 0);
1755		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1756
1757		/* now should come skb pointer - free it */
1758		dev_kfree_skb_irq(db->rptr->addr.skb);
1759		bdx_tx_db_inc_rptr(db);
1760	}
1761
1762	/* let h/w know which TXF descriptors were cleaned */
1763	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1764	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1765
1766	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1767	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1768	spin_lock(&priv->tx_lock);
1769	priv->tx_level += tx_level;
1770	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1771#ifdef BDX_DELAY_WPTR
1772	if (priv->tx_noupd) {
1773		priv->tx_noupd = 0;
1774		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1775			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1776	}
1777#endif
1778
1779	if (unlikely(netif_queue_stopped(priv->ndev) &&
1780		     netif_carrier_ok(priv->ndev) &&
1781		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1782		DBG("%s: %s: TX Q WAKE level %d\n",
1783		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1784		netif_wake_queue(priv->ndev);
1785	}
1786	spin_unlock(&priv->tx_lock);
1787}
1788
1789/**
1790 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1791 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1792 */
1793static void bdx_tx_free_skbs(struct bdx_priv *priv)
1794{
1795	struct txdb *db = &priv->txdb;
1796
1797	ENTER;
1798	while (db->rptr != db->wptr) {
1799		if (likely(db->rptr->len))
1800			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1801				       db->rptr->len, PCI_DMA_TODEVICE);
1802		else
1803			dev_kfree_skb(db->rptr->addr.skb);
1804		bdx_tx_db_inc_rptr(db);
1805	}
1806	RET();
1807}
1808
1809/* bdx_tx_free - frees all Tx resources */
1810static void bdx_tx_free(struct bdx_priv *priv)
1811{
1812	ENTER;
1813	bdx_tx_free_skbs(priv);
1814	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1815	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1816	bdx_tx_db_close(&priv->txdb);
1817}
1818
1819/**
1820 * bdx_tx_push_desc - push descriptor to TxD fifo
1821 * @priv: NIC private structure
1822 * @data: desc's data
1823 * @size: desc's size
1824 *
1825 * Pushes desc to TxD fifo and overlaps it if needed.
1826 * NOTE: this func does not check for available space. this is responsibility
1827 *    of the caller. Neither does it check that data size is smaller than
1828 *    fifo size.
1829 */
1830static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1831{
1832	struct txd_fifo *f = &priv->txd_fifo0;
1833	int i = f->m.memsz - f->m.wptr;
1834
1835	if (size == 0)
1836		return;
1837
1838	if (i > size) {
1839		memcpy(f->m.va + f->m.wptr, data, size);
1840		f->m.wptr += size;
1841	} else {
1842		memcpy(f->m.va + f->m.wptr, data, i);
1843		f->m.wptr = size - i;
1844		memcpy(f->m.va, data + i, f->m.wptr);
1845	}
1846	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1847}
1848
1849/**
1850 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1851 * @priv: NIC private structure
1852 * @data: desc's data
1853 * @size: desc's size
1854 *
1855 * NOTE: this func does check for available space and, if necessary, waits for
1856 *   NIC to read existing data before writing new one.
1857 */
1858static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1859{
1860	int timer = 0;
1861	ENTER;
1862
1863	while (size > 0) {
1864		/* we substruct 8 because when fifo is full rptr == wptr
1865		   which also means that fifo is empty, we can understand
1866		   the difference, but could hw do the same ??? :) */
1867		int avail = bdx_tx_space(priv) - 8;
1868		if (avail <= 0) {
1869			if (timer++ > 300) {	/* prevent endless loop */
1870				DBG("timeout while writing desc to TxD fifo\n");
1871				break;
1872			}
1873			udelay(50);	/* give hw a chance to clean fifo */
1874			continue;
1875		}
1876		avail = min(avail, size);
1877		DBG("about to push  %d bytes starting %p size %d\n", avail,
1878		    data, size);
1879		bdx_tx_push_desc(priv, data, avail);
1880		size -= avail;
1881		data += avail;
1882	}
1883	RET();
1884}
1885
1886static const struct net_device_ops bdx_netdev_ops = {
1887	.ndo_open		= bdx_open,
1888	.ndo_stop		= bdx_close,
1889	.ndo_start_xmit		= bdx_tx_transmit,
1890	.ndo_validate_addr	= eth_validate_addr,
1891	.ndo_do_ioctl		= bdx_ioctl,
1892	.ndo_set_rx_mode	= bdx_setmulti,
1893	.ndo_change_mtu		= bdx_change_mtu,
1894	.ndo_set_mac_address	= bdx_set_mac,
1895	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1896	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1897};
1898
1899/**
1900 * bdx_probe - Device Initialization Routine
1901 * @pdev: PCI device information struct
1902 * @ent: entry in bdx_pci_tbl
1903 *
1904 * Returns 0 on success, negative on failure
1905 *
1906 * bdx_probe initializes an adapter identified by a pci_dev structure.
1907 * The OS initialization, configuring of the adapter private structure,
1908 * and a hardware reset occur.
1909 *
1910 * functions and their order used as explained in
1911 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1912 *
1913 */
1914
1915/* TBD: netif_msg should be checked and implemented. I disable it for now */
1916static int
1917bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1918{
1919	struct net_device *ndev;
1920	struct bdx_priv *priv;
1921	int err, pci_using_dac, port;
1922	unsigned long pciaddr;
1923	u32 regionSize;
1924	struct pci_nic *nic;
1925
1926	ENTER;
1927
1928	nic = vmalloc(sizeof(*nic));
1929	if (!nic)
1930		RET(-ENOMEM);
1931
1932    /************** pci *****************/
1933	err = pci_enable_device(pdev);
1934	if (err)			/* it triggers interrupt, dunno why. */
1935		goto err_pci;		/* it's not a problem though */
1936
1937	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1938	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1939		pci_using_dac = 1;
1940	} else {
1941		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1942		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1943			pr_err("No usable DMA configuration, aborting\n");
1944			goto err_dma;
1945		}
1946		pci_using_dac = 0;
1947	}
1948
1949	err = pci_request_regions(pdev, BDX_DRV_NAME);
1950	if (err)
1951		goto err_dma;
1952
1953	pci_set_master(pdev);
1954
1955	pciaddr = pci_resource_start(pdev, 0);
1956	if (!pciaddr) {
1957		err = -EIO;
1958		pr_err("no MMIO resource\n");
1959		goto err_out_res;
1960	}
1961	regionSize = pci_resource_len(pdev, 0);
1962	if (regionSize < BDX_REGS_SIZE) {
1963		err = -EIO;
1964		pr_err("MMIO resource (%x) too small\n", regionSize);
1965		goto err_out_res;
1966	}
1967
1968	nic->regs = ioremap(pciaddr, regionSize);
1969	if (!nic->regs) {
1970		err = -EIO;
1971		pr_err("ioremap failed\n");
1972		goto err_out_res;
1973	}
1974
1975	if (pdev->irq < 2) {
1976		err = -EIO;
1977		pr_err("invalid irq (%d)\n", pdev->irq);
1978		goto err_out_iomap;
1979	}
1980	pci_set_drvdata(pdev, nic);
1981
1982	if (pdev->device == 0x3014)
1983		nic->port_num = 2;
1984	else
1985		nic->port_num = 1;
1986
1987	print_hw_id(pdev);
1988
1989	bdx_hw_reset_direct(nic->regs);
1990
1991	nic->irq_type = IRQ_INTX;
1992#ifdef BDX_MSI
1993	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1994		err = pci_enable_msi(pdev);
1995		if (err)
1996			pr_err("Can't eneble msi. error is %d\n", err);
1997		else
1998			nic->irq_type = IRQ_MSI;
1999	} else
2000		DBG("HW does not support MSI\n");
2001#endif
2002
2003    /************** netdev **************/
2004	for (port = 0; port < nic->port_num; port++) {
2005		ndev = alloc_etherdev(sizeof(struct bdx_priv));
2006		if (!ndev) {
2007			err = -ENOMEM;
2008			goto err_out_iomap;
2009		}
2010
2011		ndev->netdev_ops = &bdx_netdev_ops;
2012		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2013
2014		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
2015
2016		/* these fields are used for info purposes only
2017		 * so we can have them same for all ports of the board */
2018		ndev->if_port = port;
2019		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2020		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2021		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2022		    ;
2023		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2024			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2025
2026		if (pci_using_dac)
2027			ndev->features |= NETIF_F_HIGHDMA;
2028
2029	/************** priv ****************/
2030		priv = nic->priv[port] = netdev_priv(ndev);
2031
2032		priv->pBdxRegs = nic->regs + port * 0x8000;
2033		priv->port = port;
2034		priv->pdev = pdev;
2035		priv->ndev = ndev;
2036		priv->nic = nic;
2037		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2038
2039		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2040
2041		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2042			DBG("HW statistics not supported\n");
2043			priv->stats_flag = 0;
2044		} else {
2045			priv->stats_flag = 1;
2046		}
2047
2048		/* Initialize fifo sizes. */
2049		priv->txd_size = 2;
2050		priv->txf_size = 2;
2051		priv->rxd_size = 2;
2052		priv->rxf_size = 3;
2053
2054		/* Initialize the initial coalescing registers. */
2055		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2056		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2057
2058		/* ndev->xmit_lock spinlock is not used.
2059		 * Private priv->tx_lock is used for synchronization
2060		 * between transmit and TX irq cleanup.  In addition
2061		 * set multicast list callback has to use priv->tx_lock.
2062		 */
2063#ifdef BDX_LLTX
2064		ndev->features |= NETIF_F_LLTX;
2065#endif
 
 
 
 
2066		spin_lock_init(&priv->tx_lock);
2067
2068		/*bdx_hw_reset(priv); */
2069		if (bdx_read_mac(priv)) {
2070			pr_err("load MAC address failed\n");
2071			goto err_out_iomap;
2072		}
2073		SET_NETDEV_DEV(ndev, &pdev->dev);
2074		err = register_netdev(ndev);
2075		if (err) {
2076			pr_err("register_netdev failed\n");
2077			goto err_out_free;
2078		}
2079		netif_carrier_off(ndev);
2080		netif_stop_queue(ndev);
2081
2082		print_eth_id(ndev);
2083	}
2084	RET(0);
2085
2086err_out_free:
2087	free_netdev(ndev);
2088err_out_iomap:
2089	iounmap(nic->regs);
2090err_out_res:
2091	pci_release_regions(pdev);
2092err_dma:
2093	pci_disable_device(pdev);
2094err_pci:
2095	vfree(nic);
2096
2097	RET(err);
2098}
2099
2100/****************** Ethtool interface *********************/
2101/* get strings for statistics counters */
2102static const char
2103 bdx_stat_names[][ETH_GSTRING_LEN] = {
2104	"InUCast",		/* 0x7200 */
2105	"InMCast",		/* 0x7210 */
2106	"InBCast",		/* 0x7220 */
2107	"InPkts",		/* 0x7230 */
2108	"InErrors",		/* 0x7240 */
2109	"InDropped",		/* 0x7250 */
2110	"FrameTooLong",		/* 0x7260 */
2111	"FrameSequenceErrors",	/* 0x7270 */
2112	"InVLAN",		/* 0x7280 */
2113	"InDroppedDFE",		/* 0x7290 */
2114	"InDroppedIntFull",	/* 0x72A0 */
2115	"InFrameAlignErrors",	/* 0x72B0 */
2116
2117	/* 0x72C0-0x72E0 RSRV */
2118
2119	"OutUCast",		/* 0x72F0 */
2120	"OutMCast",		/* 0x7300 */
2121	"OutBCast",		/* 0x7310 */
2122	"OutPkts",		/* 0x7320 */
2123
2124	/* 0x7330-0x7360 RSRV */
2125
2126	"OutVLAN",		/* 0x7370 */
2127	"InUCastOctects",	/* 0x7380 */
2128	"OutUCastOctects",	/* 0x7390 */
2129
2130	/* 0x73A0-0x73B0 RSRV */
2131
2132	"InBCastOctects",	/* 0x73C0 */
2133	"OutBCastOctects",	/* 0x73D0 */
2134	"InOctects",		/* 0x73E0 */
2135	"OutOctects",		/* 0x73F0 */
2136};
2137
2138/*
2139 * bdx_get_settings - get device-specific settings
2140 * @netdev
2141 * @ecmd
2142 */
2143static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
2144{
2145	u32 rdintcm;
2146	u32 tdintcm;
2147	struct bdx_priv *priv = netdev_priv(netdev);
2148
2149	rdintcm = priv->rdintcm;
2150	tdintcm = priv->tdintcm;
2151
2152	ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2153	ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2154	ethtool_cmd_speed_set(ecmd, SPEED_10000);
2155	ecmd->duplex = DUPLEX_FULL;
2156	ecmd->port = PORT_FIBRE;
2157	ecmd->transceiver = XCVR_EXTERNAL;	/* what does it mean? */
2158	ecmd->autoneg = AUTONEG_DISABLE;
2159
2160	/* PCK_TH measures in multiples of FIFO bytes
2161	   We translate to packets */
2162	ecmd->maxtxpkt =
2163	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2164	ecmd->maxrxpkt =
2165	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2166
2167	return 0;
2168}
2169
2170/*
2171 * bdx_get_drvinfo - report driver information
2172 * @netdev
2173 * @drvinfo
2174 */
2175static void
2176bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2177{
2178	struct bdx_priv *priv = netdev_priv(netdev);
2179
2180	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2181	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2182	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2183	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2184		sizeof(drvinfo->bus_info));
2185
2186	drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2187	drvinfo->testinfo_len = 0;
2188	drvinfo->regdump_len = 0;
2189	drvinfo->eedump_len = 0;
2190}
2191
2192/*
2193 * bdx_get_coalesce - get interrupt coalescing parameters
2194 * @netdev
2195 * @ecoal
2196 */
2197static int
2198bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2199{
2200	u32 rdintcm;
2201	u32 tdintcm;
2202	struct bdx_priv *priv = netdev_priv(netdev);
2203
2204	rdintcm = priv->rdintcm;
2205	tdintcm = priv->tdintcm;
2206
2207	/* PCK_TH measures in multiples of FIFO bytes
2208	   We translate to packets */
2209	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2210	ecoal->rx_max_coalesced_frames =
2211	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2212
2213	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2214	ecoal->tx_max_coalesced_frames =
2215	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2216
2217	/* adaptive parameters ignored */
2218	return 0;
2219}
2220
2221/*
2222 * bdx_set_coalesce - set interrupt coalescing parameters
2223 * @netdev
2224 * @ecoal
2225 */
2226static int
2227bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2228{
2229	u32 rdintcm;
2230	u32 tdintcm;
2231	struct bdx_priv *priv = netdev_priv(netdev);
2232	int rx_coal;
2233	int tx_coal;
2234	int rx_max_coal;
2235	int tx_max_coal;
2236
2237	/* Check for valid input */
2238	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2239	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2240	rx_max_coal = ecoal->rx_max_coalesced_frames;
2241	tx_max_coal = ecoal->tx_max_coalesced_frames;
2242
2243	/* Translate from packets to multiples of FIFO bytes */
2244	rx_max_coal =
2245	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2246	     / PCK_TH_MULT);
2247	tx_max_coal =
2248	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2249	     / PCK_TH_MULT);
2250
2251	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2252	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2253		return -EINVAL;
2254
2255	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2256			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2257	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2258			      tx_max_coal);
2259
2260	priv->rdintcm = rdintcm;
2261	priv->tdintcm = tdintcm;
2262
2263	WRITE_REG(priv, regRDINTCM0, rdintcm);
2264	WRITE_REG(priv, regTDINTCM0, tdintcm);
2265
2266	return 0;
2267}
2268
2269/* Convert RX fifo size to number of pending packets */
2270static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2271{
2272	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2273}
2274
2275/* Convert TX fifo size to number of pending packets */
2276static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2277{
2278	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2279}
2280
2281/*
2282 * bdx_get_ringparam - report ring sizes
2283 * @netdev
2284 * @ring
2285 */
2286static void
2287bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2288{
2289	struct bdx_priv *priv = netdev_priv(netdev);
2290
2291	/*max_pending - the maximum-sized FIFO we allow */
2292	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2293	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2294	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2295	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2296}
2297
2298/*
2299 * bdx_set_ringparam - set ring sizes
2300 * @netdev
2301 * @ring
2302 */
2303static int
2304bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2305{
2306	struct bdx_priv *priv = netdev_priv(netdev);
2307	int rx_size = 0;
2308	int tx_size = 0;
2309
2310	for (; rx_size < 4; rx_size++) {
2311		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2312			break;
2313	}
2314	if (rx_size == 4)
2315		rx_size = 3;
2316
2317	for (; tx_size < 4; tx_size++) {
2318		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2319			break;
2320	}
2321	if (tx_size == 4)
2322		tx_size = 3;
2323
2324	/*Is there anything to do? */
2325	if ((rx_size == priv->rxf_size) &&
2326	    (tx_size == priv->txd_size))
2327		return 0;
2328
2329	priv->rxf_size = rx_size;
2330	if (rx_size > 1)
2331		priv->rxd_size = rx_size - 1;
2332	else
2333		priv->rxd_size = rx_size;
2334
2335	priv->txf_size = priv->txd_size = tx_size;
2336
2337	if (netif_running(netdev)) {
2338		bdx_close(netdev);
2339		bdx_open(netdev);
2340	}
2341	return 0;
2342}
2343
2344/*
2345 * bdx_get_strings - return a set of strings that describe the requested objects
2346 * @netdev
2347 * @data
2348 */
2349static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2350{
2351	switch (stringset) {
2352	case ETH_SS_STATS:
2353		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2354		break;
2355	}
2356}
2357
2358/*
2359 * bdx_get_sset_count - return number of statistics or tests
2360 * @netdev
2361 */
2362static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2363{
2364	struct bdx_priv *priv = netdev_priv(netdev);
2365
2366	switch (stringset) {
2367	case ETH_SS_STATS:
2368		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2369			   != sizeof(struct bdx_stats) / sizeof(u64));
2370		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2371	}
2372
2373	return -EINVAL;
2374}
2375
2376/*
2377 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2378 * @netdev
2379 * @stats
2380 * @data
2381 */
2382static void bdx_get_ethtool_stats(struct net_device *netdev,
2383				  struct ethtool_stats *stats, u64 *data)
2384{
2385	struct bdx_priv *priv = netdev_priv(netdev);
2386
2387	if (priv->stats_flag) {
2388
2389		/* Update stats from HW */
2390		bdx_update_stats(priv);
2391
2392		/* Copy data to user buffer */
2393		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2394	}
2395}
2396
2397/*
2398 * bdx_set_ethtool_ops - ethtool interface implementation
2399 * @netdev
2400 */
2401static void bdx_set_ethtool_ops(struct net_device *netdev)
2402{
2403	static const struct ethtool_ops bdx_ethtool_ops = {
2404		.get_settings = bdx_get_settings,
2405		.get_drvinfo = bdx_get_drvinfo,
2406		.get_link = ethtool_op_get_link,
2407		.get_coalesce = bdx_get_coalesce,
2408		.set_coalesce = bdx_set_coalesce,
2409		.get_ringparam = bdx_get_ringparam,
2410		.set_ringparam = bdx_set_ringparam,
2411		.get_strings = bdx_get_strings,
2412		.get_sset_count = bdx_get_sset_count,
2413		.get_ethtool_stats = bdx_get_ethtool_stats,
 
2414	};
2415
2416	SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2417}
2418
2419/**
2420 * bdx_remove - Device Removal Routine
2421 * @pdev: PCI device information struct
2422 *
2423 * bdx_remove is called by the PCI subsystem to alert the driver
2424 * that it should release a PCI device.  The could be caused by a
2425 * Hot-Plug event, or because the driver is going to be removed from
2426 * memory.
2427 **/
2428static void bdx_remove(struct pci_dev *pdev)
2429{
2430	struct pci_nic *nic = pci_get_drvdata(pdev);
2431	struct net_device *ndev;
2432	int port;
2433
2434	for (port = 0; port < nic->port_num; port++) {
2435		ndev = nic->priv[port]->ndev;
2436		unregister_netdev(ndev);
2437		free_netdev(ndev);
2438	}
2439
2440	/*bdx_hw_reset_direct(nic->regs); */
2441#ifdef BDX_MSI
2442	if (nic->irq_type == IRQ_MSI)
2443		pci_disable_msi(pdev);
2444#endif
2445
2446	iounmap(nic->regs);
2447	pci_release_regions(pdev);
2448	pci_disable_device(pdev);
2449	vfree(nic);
2450
2451	RET();
2452}
2453
2454static struct pci_driver bdx_pci_driver = {
2455	.name = BDX_DRV_NAME,
2456	.id_table = bdx_pci_tbl,
2457	.probe = bdx_probe,
2458	.remove = bdx_remove,
2459};
2460
2461/*
2462 * print_driver_id - print parameters of the driver build
2463 */
2464static void __init print_driver_id(void)
2465{
2466	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2467	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2468}
2469
2470static int __init bdx_module_init(void)
2471{
2472	ENTER;
2473	init_txd_sizes();
2474	print_driver_id();
2475	RET(pci_register_driver(&bdx_pci_driver));
2476}
2477
2478module_init(bdx_module_init);
2479
2480static void __exit bdx_module_exit(void)
2481{
2482	ENTER;
2483	pci_unregister_driver(&bdx_pci_driver);
2484	RET();
2485}
2486
2487module_exit(bdx_module_exit);
2488
2489MODULE_LICENSE("GPL");
2490MODULE_AUTHOR(DRIVER_AUTHOR);
2491MODULE_DESCRIPTION(BDX_DRV_DESC);
2492MODULE_FIRMWARE("tehuti/bdx.bin");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Tehuti Networks(R) Network Driver
   4 * ethtool interface implementation
   5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
 
 
 
 
 
   6 */
   7
   8/*
   9 * RX HW/SW interaction overview
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 * There are 2 types of RX communication channels between driver and NIC.
  12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  14 * info about buffer's location, size and ID. An ID field is used to identify a
  15 * buffer when it's returned with data via RXD Fifo (see below)
  16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  21 *
  22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  25 * filled with data, HW builds new RXD descriptor for it and push it into single
  26 * RXD Fifo.
  27 *
  28 * RX SW Data Structures
  29 * ~~~~~~~~~~~~~~~~~~~~~
  30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  31 * For RX case, ownership lasts from allocating new empty skb for RXF until
  32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  33 * skb db. Implemented as array with bitmask.
  34 * fifo - keeps info about fifo's size and location, relevant HW registers,
  35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  36 * Implemented as simple struct.
  37 *
  38 * RX SW Execution Flow
  39 * ~~~~~~~~~~~~~~~~~~~~
  40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  41 * relevant registers. At the end of init phase, driver enables interrupts.
  42 * NIC sees that there is no RXF buffers and raises
  43 * RD_INTR interrupt, isr fills skbs and Rx begins.
  44 * Driver has two receive operation modes:
  45 *    NAPI - interrupt-driven mixed with polling
  46 *    interrupt-driven only
  47 *
  48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  49 * interrupt and isr is called. isr collects all available packets
  50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  51
  52 * Rx buffer allocation note
  53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  54 * Driver cares to feed such amount of RxF descriptors that respective amount of
  55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  56 * overflow check in Bordeaux for RxD fifo free/used size.
  57 * FIXME: this is NOT fully implemented, more work should be done
  58 *
  59 */
  60
  61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  62
  63#include "tehuti.h"
  64
  65static const struct pci_device_id bdx_pci_tbl[] = {
  66	{ PCI_VDEVICE(TEHUTI, 0x3009), },
  67	{ PCI_VDEVICE(TEHUTI, 0x3010), },
  68	{ PCI_VDEVICE(TEHUTI, 0x3014), },
  69	{ 0 }
  70};
  71
  72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  73
  74/* Definitions needed by ISR or NAPI functions */
  75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  76static void bdx_tx_cleanup(struct bdx_priv *priv);
  77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  78
  79/* Definitions needed by FW loading */
  80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  81
  82/* Definitions needed by hw_start */
  83static int bdx_tx_init(struct bdx_priv *priv);
  84static int bdx_rx_init(struct bdx_priv *priv);
  85
  86/* Definitions needed by bdx_close */
  87static void bdx_rx_free(struct bdx_priv *priv);
  88static void bdx_tx_free(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_probe */
  91static void bdx_set_ethtool_ops(struct net_device *netdev);
  92
  93/*************************************************************************
  94 *    Print Info                                                         *
  95 *************************************************************************/
  96
  97static void print_hw_id(struct pci_dev *pdev)
  98{
  99	struct pci_nic *nic = pci_get_drvdata(pdev);
 100	u16 pci_link_status = 0;
 101	u16 pci_ctrl = 0;
 102
 103	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 104	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 105
 106	pr_info("%s%s\n", BDX_NIC_NAME,
 107		nic->port_num == 1 ? "" : ", 2-Port");
 108	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 109		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 110		readl(nic->regs + FPGA_SEED),
 111		GET_LINK_STATUS_LANES(pci_link_status),
 112		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 113}
 114
 115static void print_fw_id(struct pci_nic *nic)
 116{
 117	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 118}
 119
 120static void print_eth_id(struct net_device *ndev)
 121{
 122	netdev_info(ndev, "%s, Port %c\n",
 123		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 124
 125}
 126
 127/*************************************************************************
 128 *    Code                                                               *
 129 *************************************************************************/
 130
 131#define bdx_enable_interrupts(priv)	\
 132	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 133#define bdx_disable_interrupts(priv)	\
 134	do { WRITE_REG(priv, regIMR, 0); } while (0)
 135
 136/**
 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 138 * @priv: NIC private structure
 139 * @f: fifo to initialize
 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 141 * @reg_XXX: offsets of registers relative to base address
 142 *
 143 * 1K extra space is allocated at the end of the fifo to simplify
 144 * processing of descriptors that wraps around fifo's end
 145 *
 146 * Returns 0 on success, negative value on failure
 147 *
 148 */
 149static int
 150bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 151	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 152{
 153	u16 memsz = FIFO_SIZE * (1 << fsz_type);
 154
 155	memset(f, 0, sizeof(struct fifo));
 156	/* pci_alloc_consistent gives us 4k-aligned memory */
 157	f->va = pci_alloc_consistent(priv->pdev,
 158				     memsz + FIFO_EXTRA_SPACE, &f->da);
 159	if (!f->va) {
 160		pr_err("pci_alloc_consistent failed\n");
 161		RET(-ENOMEM);
 162	}
 163	f->reg_CFG0 = reg_CFG0;
 164	f->reg_CFG1 = reg_CFG1;
 165	f->reg_RPTR = reg_RPTR;
 166	f->reg_WPTR = reg_WPTR;
 167	f->rptr = 0;
 168	f->wptr = 0;
 169	f->memsz = memsz;
 170	f->size_mask = memsz - 1;
 171	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 172	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 173
 174	RET(0);
 175}
 176
 177/**
 178 * bdx_fifo_free - free all resources used by fifo
 179 * @priv: NIC private structure
 180 * @f: fifo to release
 181 */
 182static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 183{
 184	ENTER;
 185	if (f->va) {
 186		pci_free_consistent(priv->pdev,
 187				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 188		f->va = NULL;
 189	}
 190	RET();
 191}
 192
 193/**
 194 * bdx_link_changed - notifies OS about hw link state.
 195 * @priv: hw adapter structure
 196 */
 197static void bdx_link_changed(struct bdx_priv *priv)
 198{
 199	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 200
 201	if (!link) {
 202		if (netif_carrier_ok(priv->ndev)) {
 203			netif_stop_queue(priv->ndev);
 204			netif_carrier_off(priv->ndev);
 205			netdev_err(priv->ndev, "Link Down\n");
 206		}
 207	} else {
 208		if (!netif_carrier_ok(priv->ndev)) {
 209			netif_wake_queue(priv->ndev);
 210			netif_carrier_on(priv->ndev);
 211			netdev_err(priv->ndev, "Link Up\n");
 212		}
 213	}
 214}
 215
 216static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 217{
 218	if (isr & IR_RX_FREE_0) {
 219		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 220		DBG("RX_FREE_0\n");
 221	}
 222
 223	if (isr & IR_LNKCHG0)
 224		bdx_link_changed(priv);
 225
 226	if (isr & IR_PCIE_LINK)
 227		netdev_err(priv->ndev, "PCI-E Link Fault\n");
 228
 229	if (isr & IR_PCIE_TOUT)
 230		netdev_err(priv->ndev, "PCI-E Time Out\n");
 231
 232}
 233
 234/**
 235 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 236 * @irq: interrupt number
 237 * @dev: network device
 238 *
 239 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 240 *
 241 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 242 * Reasons of interest are:
 243 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 244 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 245 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 246 */
 247
 248static irqreturn_t bdx_isr_napi(int irq, void *dev)
 249{
 250	struct net_device *ndev = dev;
 251	struct bdx_priv *priv = netdev_priv(ndev);
 252	u32 isr;
 253
 254	ENTER;
 255	isr = (READ_REG(priv, regISR) & IR_RUN);
 256	if (unlikely(!isr)) {
 257		bdx_enable_interrupts(priv);
 258		return IRQ_NONE;	/* Not our interrupt */
 259	}
 260
 261	if (isr & IR_EXTRA)
 262		bdx_isr_extra(priv, isr);
 263
 264	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 265		if (likely(napi_schedule_prep(&priv->napi))) {
 266			__napi_schedule(&priv->napi);
 267			RET(IRQ_HANDLED);
 268		} else {
 269			/* NOTE: we get here if intr has slipped into window
 270			 * between these lines in bdx_poll:
 271			 *    bdx_enable_interrupts(priv);
 272			 *    return 0;
 273			 * currently intrs are disabled (since we read ISR),
 274			 * and we have failed to register next poll.
 275			 * so we read the regs to trigger chip
 276			 * and allow further interupts. */
 277			READ_REG(priv, regTXF_WPTR_0);
 278			READ_REG(priv, regRXD_WPTR_0);
 279		}
 280	}
 281
 282	bdx_enable_interrupts(priv);
 283	RET(IRQ_HANDLED);
 284}
 285
 286static int bdx_poll(struct napi_struct *napi, int budget)
 287{
 288	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 289	int work_done;
 290
 291	ENTER;
 292	bdx_tx_cleanup(priv);
 293	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 294	if ((work_done < budget) ||
 295	    (priv->napi_stop++ >= 30)) {
 296		DBG("rx poll is done. backing to isr-driven\n");
 297
 298		/* from time to time we exit to let NAPI layer release
 299		 * device lock and allow waiting tasks (eg rmmod) to advance) */
 300		priv->napi_stop = 0;
 301
 302		napi_complete_done(napi, work_done);
 303		bdx_enable_interrupts(priv);
 304	}
 305	return work_done;
 306}
 307
 308/**
 309 * bdx_fw_load - loads firmware to NIC
 310 * @priv: NIC private structure
 311 *
 312 * Firmware is loaded via TXD fifo, so it must be initialized first.
 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314 * can have few of them). So all drivers use semaphore register to choose one
 315 * that will actually load FW to NIC.
 316 */
 317
 318static int bdx_fw_load(struct bdx_priv *priv)
 319{
 320	const struct firmware *fw = NULL;
 321	int master, i;
 322	int rc;
 323
 324	ENTER;
 325	master = READ_REG(priv, regINIT_SEMAPHORE);
 326	if (!READ_REG(priv, regINIT_STATUS) && master) {
 327		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 328		if (rc)
 329			goto out;
 330		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331		mdelay(100);
 332	}
 333	for (i = 0; i < 200; i++) {
 334		if (READ_REG(priv, regINIT_STATUS)) {
 335			rc = 0;
 336			goto out;
 337		}
 338		mdelay(2);
 339	}
 340	rc = -EIO;
 341out:
 342	if (master)
 343		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344
 345	release_firmware(fw);
 346
 347	if (rc) {
 348		netdev_err(priv->ndev, "firmware loading failed\n");
 349		if (rc == -EIO)
 350			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351			    READ_REG(priv, regVPC),
 352			    READ_REG(priv, regVIC),
 353			    READ_REG(priv, regINIT_STATUS), i);
 354		RET(rc);
 355	} else {
 356		DBG("%s: firmware loading success\n", priv->ndev->name);
 357		RET(0);
 358	}
 359}
 360
 361static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362{
 363	u32 val;
 364
 365	ENTER;
 366	DBG("mac0=%x mac1=%x mac2=%x\n",
 367	    READ_REG(priv, regUNC_MAC0_A),
 368	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369
 370	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371	WRITE_REG(priv, regUNC_MAC2_A, val);
 372	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373	WRITE_REG(priv, regUNC_MAC1_A, val);
 374	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375	WRITE_REG(priv, regUNC_MAC0_A, val);
 376
 377	DBG("mac0=%x mac1=%x mac2=%x\n",
 378	    READ_REG(priv, regUNC_MAC0_A),
 379	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380	RET();
 381}
 382
 383/**
 384 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 385 * @priv: NIC private structure
 386 */
 387static int bdx_hw_start(struct bdx_priv *priv)
 388{
 389	int rc = -EIO;
 390	struct net_device *ndev = priv->ndev;
 391
 392	ENTER;
 393	bdx_link_changed(priv);
 394
 395	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 396	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 397	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 398	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 399	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 400	WRITE_REG(priv, regRX_FULLNESS, 0);
 401	WRITE_REG(priv, regTX_FULLNESS, 0);
 402	WRITE_REG(priv, regCTRLST,
 403		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 404
 405	WRITE_REG(priv, regVGLB, 0);
 406	WRITE_REG(priv, regMAX_FRAME_A,
 407		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 408
 409	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
 410	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 411	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
 412
 413	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
 414	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
 415
 416	/* Enable timer interrupt once in 2 secs. */
 417	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 418	bdx_restore_mac(priv->ndev, priv);
 419
 420	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 421		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 422
 423#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 424
 425	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 426			 ndev->name, ndev);
 427	if (rc)
 428		goto err_irq;
 429	bdx_enable_interrupts(priv);
 430
 431	RET(0);
 432
 433err_irq:
 434	RET(rc);
 435}
 436
 437static void bdx_hw_stop(struct bdx_priv *priv)
 438{
 439	ENTER;
 440	bdx_disable_interrupts(priv);
 441	free_irq(priv->pdev->irq, priv->ndev);
 442
 443	netif_carrier_off(priv->ndev);
 444	netif_stop_queue(priv->ndev);
 445
 446	RET();
 447}
 448
 449static int bdx_hw_reset_direct(void __iomem *regs)
 450{
 451	u32 val, i;
 452	ENTER;
 453
 454	/* reset sequences: read, write 1, read, write 0 */
 455	val = readl(regs + regCLKPLL);
 456	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 457	udelay(50);
 458	val = readl(regs + regCLKPLL);
 459	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 460
 461	/* check that the PLLs are locked and reset ended */
 462	for (i = 0; i < 70; i++, mdelay(10))
 463		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 464			/* do any PCI-E read transaction */
 465			readl(regs + regRXD_CFG0_0);
 466			return 0;
 467		}
 468	pr_err("HW reset failed\n");
 469	return 1;		/* failure */
 470}
 471
 472static int bdx_hw_reset(struct bdx_priv *priv)
 473{
 474	u32 val, i;
 475	ENTER;
 476
 477	if (priv->port == 0) {
 478		/* reset sequences: read, write 1, read, write 0 */
 479		val = READ_REG(priv, regCLKPLL);
 480		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 481		udelay(50);
 482		val = READ_REG(priv, regCLKPLL);
 483		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 484	}
 485	/* check that the PLLs are locked and reset ended */
 486	for (i = 0; i < 70; i++, mdelay(10))
 487		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 488			/* do any PCI-E read transaction */
 489			READ_REG(priv, regRXD_CFG0_0);
 490			return 0;
 491		}
 492	pr_err("HW reset failed\n");
 493	return 1;		/* failure */
 494}
 495
 496static int bdx_sw_reset(struct bdx_priv *priv)
 497{
 498	int i;
 499
 500	ENTER;
 501	/* 1. load MAC (obsolete) */
 502	/* 2. disable Rx (and Tx) */
 503	WRITE_REG(priv, regGMAC_RXF_A, 0);
 504	mdelay(100);
 505	/* 3. disable port */
 506	WRITE_REG(priv, regDIS_PORT, 1);
 507	/* 4. disable queue */
 508	WRITE_REG(priv, regDIS_QU, 1);
 509	/* 5. wait until hw is disabled */
 510	for (i = 0; i < 50; i++) {
 511		if (READ_REG(priv, regRST_PORT) & 1)
 512			break;
 513		mdelay(10);
 514	}
 515	if (i == 50)
 516		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 517
 518	/* 6. disable intrs */
 519	WRITE_REG(priv, regRDINTCM0, 0);
 520	WRITE_REG(priv, regTDINTCM0, 0);
 521	WRITE_REG(priv, regIMR, 0);
 522	READ_REG(priv, regISR);
 523
 524	/* 7. reset queue */
 525	WRITE_REG(priv, regRST_QU, 1);
 526	/* 8. reset port */
 527	WRITE_REG(priv, regRST_PORT, 1);
 528	/* 9. zero all read and write pointers */
 529	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 530		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 531	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 532		WRITE_REG(priv, i, 0);
 533	/* 10. unseet port disable */
 534	WRITE_REG(priv, regDIS_PORT, 0);
 535	/* 11. unset queue disable */
 536	WRITE_REG(priv, regDIS_QU, 0);
 537	/* 12. unset queue reset */
 538	WRITE_REG(priv, regRST_QU, 0);
 539	/* 13. unset port reset */
 540	WRITE_REG(priv, regRST_PORT, 0);
 541	/* 14. enable Rx */
 542	/* skiped. will be done later */
 543	/* 15. save MAC (obsolete) */
 544	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 545		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 546
 547	RET(0);
 548}
 549
 550/* bdx_reset - performs right type of reset depending on hw type */
 551static int bdx_reset(struct bdx_priv *priv)
 552{
 553	ENTER;
 554	RET((priv->pdev->device == 0x3009)
 555	    ? bdx_hw_reset(priv)
 556	    : bdx_sw_reset(priv));
 557}
 558
 559/**
 560 * bdx_close - Disables a network interface
 561 * @netdev: network interface device structure
 562 *
 563 * Returns 0, this is not allowed to fail
 564 *
 565 * The close entry point is called when an interface is de-activated
 566 * by the OS.  The hardware is still under the drivers control, but
 567 * needs to be disabled.  A global MAC reset is issued to stop the
 568 * hardware, and all transmit and receive resources are freed.
 569 **/
 570static int bdx_close(struct net_device *ndev)
 571{
 572	struct bdx_priv *priv = NULL;
 573
 574	ENTER;
 575	priv = netdev_priv(ndev);
 576
 577	napi_disable(&priv->napi);
 578
 579	bdx_reset(priv);
 580	bdx_hw_stop(priv);
 581	bdx_rx_free(priv);
 582	bdx_tx_free(priv);
 583	RET(0);
 584}
 585
 586/**
 587 * bdx_open - Called when a network interface is made active
 588 * @netdev: network interface device structure
 589 *
 590 * Returns 0 on success, negative value on failure
 591 *
 592 * The open entry point is called when a network interface is made
 593 * active by the system (IFF_UP).  At this point all resources needed
 594 * for transmit and receive operations are allocated, the interrupt
 595 * handler is registered with the OS, the watchdog timer is started,
 596 * and the stack is notified that the interface is ready.
 597 **/
 598static int bdx_open(struct net_device *ndev)
 599{
 600	struct bdx_priv *priv;
 601	int rc;
 602
 603	ENTER;
 604	priv = netdev_priv(ndev);
 605	bdx_reset(priv);
 606	if (netif_running(ndev))
 607		netif_stop_queue(priv->ndev);
 608
 609	if ((rc = bdx_tx_init(priv)) ||
 610	    (rc = bdx_rx_init(priv)) ||
 611	    (rc = bdx_fw_load(priv)))
 612		goto err;
 613
 614	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 615
 616	rc = bdx_hw_start(priv);
 617	if (rc)
 618		goto err;
 619
 620	napi_enable(&priv->napi);
 621
 622	print_fw_id(priv->nic);
 623
 624	RET(0);
 625
 626err:
 627	bdx_close(ndev);
 628	RET(rc);
 629}
 630
 631static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 632{
 633	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 634		-EINVAL : 0;
 635}
 636
 637static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 638{
 639	struct bdx_priv *priv = netdev_priv(ndev);
 640	u32 data[3];
 641	int error;
 642
 643	ENTER;
 644
 645	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 646	if (cmd != SIOCDEVPRIVATE) {
 647		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 648		if (error) {
 649			pr_err("can't copy from user\n");
 650			RET(-EFAULT);
 651		}
 652		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 653	} else {
 654		return -EOPNOTSUPP;
 655	}
 656
 657	if (!capable(CAP_SYS_RAWIO))
 658		return -EPERM;
 659
 660	switch (data[0]) {
 661
 662	case BDX_OP_READ:
 663		error = bdx_range_check(priv, data[1]);
 664		if (error < 0)
 665			return error;
 666		data[2] = READ_REG(priv, data[1]);
 667		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 668		    data[2]);
 669		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 670		if (error)
 671			RET(-EFAULT);
 672		break;
 673
 674	case BDX_OP_WRITE:
 675		error = bdx_range_check(priv, data[1]);
 676		if (error < 0)
 677			return error;
 678		WRITE_REG(priv, data[1], data[2]);
 679		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 680		break;
 681
 682	default:
 683		RET(-EOPNOTSUPP);
 684	}
 685	return 0;
 686}
 687
 688static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 689{
 690	ENTER;
 691	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 692		RET(bdx_ioctl_priv(ndev, ifr, cmd));
 693	else
 694		RET(-EOPNOTSUPP);
 695}
 696
 697/**
 698 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 699 * @ndev: network device
 700 * @vid:  VLAN vid
 701 * @op:   add or kill operation
 702 *
 703 * Passes VLAN filter table to hardware
 704 */
 705static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 706{
 707	struct bdx_priv *priv = netdev_priv(ndev);
 708	u32 reg, bit, val;
 709
 710	ENTER;
 711	DBG2("vid=%d value=%d\n", (int)vid, enable);
 712	if (unlikely(vid >= 4096)) {
 713		pr_err("invalid VID: %u (> 4096)\n", vid);
 714		RET();
 715	}
 716	reg = regVLAN_0 + (vid / 32) * 4;
 717	bit = 1 << vid % 32;
 718	val = READ_REG(priv, reg);
 719	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 720	if (enable)
 721		val |= bit;
 722	else
 723		val &= ~bit;
 724	DBG2("new val %x\n", val);
 725	WRITE_REG(priv, reg, val);
 726	RET();
 727}
 728
 729/**
 730 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 731 * @ndev: network device
 732 * @vid:  VLAN vid to add
 733 */
 734static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 735{
 736	__bdx_vlan_rx_vid(ndev, vid, 1);
 737	return 0;
 738}
 739
 740/**
 741 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 742 * @ndev: network device
 743 * @vid:  VLAN vid to kill
 744 */
 745static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 746{
 747	__bdx_vlan_rx_vid(ndev, vid, 0);
 748	return 0;
 749}
 750
 751/**
 752 * bdx_change_mtu - Change the Maximum Transfer Unit
 753 * @netdev: network interface device structure
 754 * @new_mtu: new value for maximum frame size
 755 *
 756 * Returns 0 on success, negative on failure
 757 */
 758static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 759{
 760	ENTER;
 761
 
 
 
 
 
 
 
 
 
 
 762	ndev->mtu = new_mtu;
 763	if (netif_running(ndev)) {
 764		bdx_close(ndev);
 765		bdx_open(ndev);
 766	}
 767	RET(0);
 768}
 769
 770static void bdx_setmulti(struct net_device *ndev)
 771{
 772	struct bdx_priv *priv = netdev_priv(ndev);
 773
 774	u32 rxf_val =
 775	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 776	int i;
 777
 778	ENTER;
 779	/* IMF - imperfect (hash) rx multicat filter */
 780	/* PMF - perfect rx multicat filter */
 781
 782	/* FIXME: RXE(OFF) */
 783	if (ndev->flags & IFF_PROMISC) {
 784		rxf_val |= GMAC_RX_FILTER_PRM;
 785	} else if (ndev->flags & IFF_ALLMULTI) {
 786		/* set IMF to accept all multicast frmaes */
 787		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 788			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 789	} else if (!netdev_mc_empty(ndev)) {
 790		u8 hash;
 791		struct netdev_hw_addr *ha;
 792		u32 reg, val;
 793
 794		/* set IMF to deny all multicast frames */
 795		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 796			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 797		/* set PMF to deny all multicast frames */
 798		for (i = 0; i < MAC_MCST_NUM; i++) {
 799			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 800			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 801		}
 802
 803		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
 804		/* TBD: sort addresses and write them in ascending order
 805		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 806		 * multicast frames throu IMF */
 807		/* accept the rest of addresses throu IMF */
 808		netdev_for_each_mc_addr(ha, ndev) {
 809			hash = 0;
 810			for (i = 0; i < ETH_ALEN; i++)
 811				hash ^= ha->addr[i];
 812			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 813			val = READ_REG(priv, reg);
 814			val |= (1 << (hash % 32));
 815			WRITE_REG(priv, reg, val);
 816		}
 817
 818	} else {
 819		DBG("only own mac %d\n", netdev_mc_count(ndev));
 820		rxf_val |= GMAC_RX_FILTER_AB;
 821	}
 822	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 823	/* enable RX */
 824	/* FIXME: RXE(ON) */
 825	RET();
 826}
 827
 828static int bdx_set_mac(struct net_device *ndev, void *p)
 829{
 830	struct bdx_priv *priv = netdev_priv(ndev);
 831	struct sockaddr *addr = p;
 832
 833	ENTER;
 834	/*
 835	   if (netif_running(dev))
 836	   return -EBUSY
 837	 */
 838	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 839	bdx_restore_mac(ndev, priv);
 840	RET(0);
 841}
 842
 843static int bdx_read_mac(struct bdx_priv *priv)
 844{
 845	u16 macAddress[3], i;
 846	ENTER;
 847
 848	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 849	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 850	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 851	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 852	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 853	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 854	for (i = 0; i < 3; i++) {
 855		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 856		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 857	}
 858	RET(0);
 859}
 860
 861static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 862{
 863	u64 val;
 864
 865	val = READ_REG(priv, reg);
 866	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 867	return val;
 868}
 869
 870/*Do the statistics-update work*/
 871static void bdx_update_stats(struct bdx_priv *priv)
 872{
 873	struct bdx_stats *stats = &priv->hw_stats;
 874	u64 *stats_vector = (u64 *) stats;
 875	int i;
 876	int addr;
 877
 878	/*Fill HW structure */
 879	addr = 0x7200;
 880	/*First 12 statistics - 0x7200 - 0x72B0 */
 881	for (i = 0; i < 12; i++) {
 882		stats_vector[i] = bdx_read_l2stat(priv, addr);
 883		addr += 0x10;
 884	}
 885	BDX_ASSERT(addr != 0x72C0);
 886	/* 0x72C0-0x72E0 RSRV */
 887	addr = 0x72F0;
 888	for (; i < 16; i++) {
 889		stats_vector[i] = bdx_read_l2stat(priv, addr);
 890		addr += 0x10;
 891	}
 892	BDX_ASSERT(addr != 0x7330);
 893	/* 0x7330-0x7360 RSRV */
 894	addr = 0x7370;
 895	for (; i < 19; i++) {
 896		stats_vector[i] = bdx_read_l2stat(priv, addr);
 897		addr += 0x10;
 898	}
 899	BDX_ASSERT(addr != 0x73A0);
 900	/* 0x73A0-0x73B0 RSRV */
 901	addr = 0x73C0;
 902	for (; i < 23; i++) {
 903		stats_vector[i] = bdx_read_l2stat(priv, addr);
 904		addr += 0x10;
 905	}
 906	BDX_ASSERT(addr != 0x7400);
 907	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 908}
 909
 910static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 911		       u16 rxd_vlan);
 912static void print_rxfd(struct rxf_desc *rxfd);
 913
 914/*************************************************************************
 915 *     Rx DB                                                             *
 916 *************************************************************************/
 917
 918static void bdx_rxdb_destroy(struct rxdb *db)
 919{
 920	vfree(db);
 921}
 922
 923static struct rxdb *bdx_rxdb_create(int nelem)
 924{
 925	struct rxdb *db;
 926	int i;
 927
 928	db = vmalloc(sizeof(struct rxdb)
 929		     + (nelem * sizeof(int))
 930		     + (nelem * sizeof(struct rx_map)));
 931	if (likely(db != NULL)) {
 932		db->stack = (int *)(db + 1);
 933		db->elems = (void *)(db->stack + nelem);
 934		db->nelem = nelem;
 935		db->top = nelem;
 936		for (i = 0; i < nelem; i++)
 937			db->stack[i] = nelem - i - 1;	/* to make first allocs
 938							   close to db struct*/
 939	}
 940
 941	return db;
 942}
 943
 944static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 945{
 946	BDX_ASSERT(db->top <= 0);
 947	return db->stack[--(db->top)];
 948}
 949
 950static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 951{
 952	BDX_ASSERT((n < 0) || (n >= db->nelem));
 953	return db->elems + n;
 954}
 955
 956static inline int bdx_rxdb_available(struct rxdb *db)
 957{
 958	return db->top;
 959}
 960
 961static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 962{
 963	BDX_ASSERT((n >= db->nelem) || (n < 0));
 964	db->stack[(db->top)++] = n;
 965}
 966
 967/*************************************************************************
 968 *     Rx Init                                                           *
 969 *************************************************************************/
 970
 971/**
 972 * bdx_rx_init - initialize RX all related HW and SW resources
 973 * @priv: NIC private structure
 974 *
 975 * Returns 0 on success, negative value on failure
 976 *
 977 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 978 * skb for rx. It assumes that Rx is desabled in HW
 979 * funcs are grouped for better cache usage
 980 *
 981 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 982 * filled and packets will be dropped by nic without getting into host or
 983 * cousing interrupt. Anyway, in that condition, host has no chance to process
 984 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 985 */
 986
 987/* TBD: ensure proper packet size */
 988
 989static int bdx_rx_init(struct bdx_priv *priv)
 990{
 991	ENTER;
 992
 993	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 994			  regRXD_CFG0_0, regRXD_CFG1_0,
 995			  regRXD_RPTR_0, regRXD_WPTR_0))
 996		goto err_mem;
 997	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
 998			  regRXF_CFG0_0, regRXF_CFG1_0,
 999			  regRXF_RPTR_0, regRXF_WPTR_0))
1000		goto err_mem;
1001	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1002				     sizeof(struct rxf_desc));
1003	if (!priv->rxdb)
1004		goto err_mem;
1005
1006	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1007	return 0;
1008
1009err_mem:
1010	netdev_err(priv->ndev, "Rx init failed\n");
1011	return -ENOMEM;
1012}
1013
1014/**
1015 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1016 * @priv: NIC private structure
1017 * @f: RXF fifo
1018 */
1019static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1020{
1021	struct rx_map *dm;
1022	struct rxdb *db = priv->rxdb;
1023	u16 i;
1024
1025	ENTER;
1026	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1027	    db->nelem - bdx_rxdb_available(db));
1028	while (bdx_rxdb_available(db) > 0) {
1029		i = bdx_rxdb_alloc_elem(db);
1030		dm = bdx_rxdb_addr_elem(db, i);
1031		dm->dma = 0;
1032	}
1033	for (i = 0; i < db->nelem; i++) {
1034		dm = bdx_rxdb_addr_elem(db, i);
1035		if (dm->dma) {
1036			pci_unmap_single(priv->pdev,
1037					 dm->dma, f->m.pktsz,
1038					 PCI_DMA_FROMDEVICE);
1039			dev_kfree_skb(dm->skb);
1040		}
1041	}
1042}
1043
1044/**
1045 * bdx_rx_free - release all Rx resources
1046 * @priv: NIC private structure
1047 *
1048 * It assumes that Rx is desabled in HW
1049 */
1050static void bdx_rx_free(struct bdx_priv *priv)
1051{
1052	ENTER;
1053	if (priv->rxdb) {
1054		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1055		bdx_rxdb_destroy(priv->rxdb);
1056		priv->rxdb = NULL;
1057	}
1058	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1059	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1060
1061	RET();
1062}
1063
1064/*************************************************************************
1065 *     Rx Engine                                                         *
1066 *************************************************************************/
1067
1068/**
1069 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1070 * @priv: nic's private structure
1071 * @f: RXF fifo that needs skbs
1072 *
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1077 */
1078
1079/* TBD: do not update WPTR if no desc were written */
1080
1081static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1082{
1083	struct sk_buff *skb;
1084	struct rxf_desc *rxfd;
1085	struct rx_map *dm;
1086	int dno, delta, idx;
1087	struct rxdb *db = priv->rxdb;
1088
1089	ENTER;
1090	dno = bdx_rxdb_available(db) - 1;
1091	while (dno > 0) {
1092		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1093		if (!skb)
1094			break;
1095
1096		skb_reserve(skb, NET_IP_ALIGN);
1097
1098		idx = bdx_rxdb_alloc_elem(db);
1099		dm = bdx_rxdb_addr_elem(db, idx);
1100		dm->dma = pci_map_single(priv->pdev,
1101					 skb->data, f->m.pktsz,
1102					 PCI_DMA_FROMDEVICE);
1103		dm->skb = skb;
1104		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1105		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1106		rxfd->va_lo = idx;
1107		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1108		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1109		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1110		print_rxfd(rxfd);
1111
1112		f->m.wptr += sizeof(struct rxf_desc);
1113		delta = f->m.wptr - f->m.memsz;
1114		if (unlikely(delta >= 0)) {
1115			f->m.wptr = delta;
1116			if (delta > 0) {
1117				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1118				DBG("wrapped descriptor\n");
1119			}
1120		}
1121		dno--;
1122	}
1123	/*TBD: to do - delayed rxf wptr like in txd */
1124	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1125	RET();
1126}
1127
1128static inline void
1129NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1130	     struct sk_buff *skb)
1131{
1132	ENTER;
1133	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1134	if (GET_RXD_VTAG(rxd_val1)) {
1135		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1136		    priv->ndev->name,
1137		    GET_RXD_VLAN_ID(rxd_vlan),
1138		    GET_RXD_VTAG(rxd_val1));
1139		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1140	}
1141	netif_receive_skb(skb);
1142}
1143
1144static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1145{
1146	struct rxf_desc *rxfd;
1147	struct rx_map *dm;
1148	struct rxf_fifo *f;
1149	struct rxdb *db;
 
1150	int delta;
1151
1152	ENTER;
1153	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1154	f = &priv->rxf_fifo0;
1155	db = priv->rxdb;
1156	DBG("db=%p f=%p\n", db, f);
1157	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1158	DBG("dm=%p\n", dm);
 
1159	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1160	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1161	rxfd->va_lo = rxdd->va_lo;
1162	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1163	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1164	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1165	print_rxfd(rxfd);
1166
1167	f->m.wptr += sizeof(struct rxf_desc);
1168	delta = f->m.wptr - f->m.memsz;
1169	if (unlikely(delta >= 0)) {
1170		f->m.wptr = delta;
1171		if (delta > 0) {
1172			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1173			DBG("wrapped descriptor\n");
1174		}
1175	}
1176	RET();
1177}
1178
1179/**
1180 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1181 * NOTE: a special treatment is given to non-continuous descriptors
1182 * that start near the end, wraps around and continue at the beginning. a second
1183 * part is copied right after the first, and then descriptor is interpreted as
1184 * normal. fifo has an extra space to allow such operations
1185 * @priv: nic's private structure
1186 * @f: RXF fifo that needs skbs
1187 * @budget: maximum number of packets to receive
1188 */
1189
1190/* TBD: replace memcpy func call by explicite inline asm */
1191
1192static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1193{
1194	struct net_device *ndev = priv->ndev;
1195	struct sk_buff *skb, *skb2;
1196	struct rxd_desc *rxdd;
1197	struct rx_map *dm;
1198	struct rxf_fifo *rxf_fifo;
1199	int tmp_len, size;
1200	int done = 0;
1201	int max_done = BDX_MAX_RX_DONE;
1202	struct rxdb *db = NULL;
1203	/* Unmarshalled descriptor - copy of descriptor in host order */
1204	u32 rxd_val1;
1205	u16 len;
1206	u16 rxd_vlan;
1207
1208	ENTER;
1209	max_done = budget;
1210
1211	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1212
1213	size = f->m.wptr - f->m.rptr;
1214	if (size < 0)
1215		size = f->m.memsz + size;	/* size is negative :-) */
1216
1217	while (size > 0) {
1218
1219		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1220		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1221
1222		len = CPU_CHIP_SWAP16(rxdd->len);
1223
1224		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1225
1226		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1227
1228		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1229		BDX_ASSERT(tmp_len <= 0);
1230		size -= tmp_len;
1231		if (size < 0)	/* test for partially arrived descriptor */
1232			break;
1233
1234		f->m.rptr += tmp_len;
1235
1236		tmp_len = f->m.rptr - f->m.memsz;
1237		if (unlikely(tmp_len >= 0)) {
1238			f->m.rptr = tmp_len;
1239			if (tmp_len > 0) {
1240				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241				    f->m.rptr, tmp_len);
1242				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1243			}
1244		}
1245
1246		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1247			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1248			ndev->stats.rx_errors++;
1249			bdx_recycle_skb(priv, rxdd);
1250			continue;
1251		}
1252
1253		rxf_fifo = &priv->rxf_fifo0;
1254		db = priv->rxdb;
1255		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1256		skb = dm->skb;
1257
1258		if (len < BDX_COPYBREAK &&
1259		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1260			skb_reserve(skb2, NET_IP_ALIGN);
1261			/*skb_put(skb2, len); */
1262			pci_dma_sync_single_for_cpu(priv->pdev,
1263						    dm->dma, rxf_fifo->m.pktsz,
1264						    PCI_DMA_FROMDEVICE);
1265			memcpy(skb2->data, skb->data, len);
1266			bdx_recycle_skb(priv, rxdd);
1267			skb = skb2;
1268		} else {
1269			pci_unmap_single(priv->pdev,
1270					 dm->dma, rxf_fifo->m.pktsz,
1271					 PCI_DMA_FROMDEVICE);
1272			bdx_rxdb_free_elem(db, rxdd->va_lo);
1273		}
1274
1275		ndev->stats.rx_bytes += len;
1276
1277		skb_put(skb, len);
1278		skb->protocol = eth_type_trans(skb, ndev);
1279
1280		/* Non-IP packets aren't checksum-offloaded */
1281		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1282			skb_checksum_none_assert(skb);
1283		else
1284			skb->ip_summed = CHECKSUM_UNNECESSARY;
1285
1286		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1287
1288		if (++done >= max_done)
1289			break;
1290	}
1291
1292	ndev->stats.rx_packets += done;
1293
1294	/* FIXME: do smth to minimize pci accesses    */
1295	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1296
1297	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1298
1299	RET(done);
1300}
1301
1302/*************************************************************************
1303 * Debug / Temprorary Code                                               *
1304 *************************************************************************/
1305static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1306		       u16 rxd_vlan)
1307{
1308	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1310	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1311	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1312	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1313	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1314	    rxdd->va_hi);
1315}
1316
1317static void print_rxfd(struct rxf_desc *rxfd)
1318{
1319	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1320	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1322}
1323
1324/*
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1330 *
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1333 *
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1343 *
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1360 *
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1363 */
1364
1365/*************************************************************************
1366 *     Tx DB                                                             *
1367 *************************************************************************/
1368static inline int bdx_tx_db_size(struct txdb *db)
1369{
1370	int taken = db->wptr - db->rptr;
1371	if (taken < 0)
1372		taken = db->size + 1 + taken;	/* (size + 1) equals memsz */
1373
1374	return db->size - taken;
1375}
1376
1377/**
1378 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1379 * @db: tx data base
1380 * @pptr: read or write pointer
1381 */
1382static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1383{
1384	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1385
1386	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1387		   *pptr != db->wptr);	/* or write pointer */
1388
1389	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1390		   *pptr >= db->end);	/* in range */
1391
1392	++*pptr;
1393	if (unlikely(*pptr == db->end))
1394		*pptr = db->start;
1395}
1396
1397/**
1398 * bdx_tx_db_inc_rptr - increment read pointer
1399 * @db: tx data base
1400 */
1401static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1402{
1403	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1404	__bdx_tx_db_ptr_next(db, &db->rptr);
1405}
1406
1407/**
1408 * bdx_tx_db_inc_wptr - increment write pointer
1409 * @db: tx data base
1410 */
1411static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1412{
1413	__bdx_tx_db_ptr_next(db, &db->wptr);
1414	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1415						   a result of write */
1416}
1417
1418/**
1419 * bdx_tx_db_init - creates and initializes tx db
1420 * @d: tx data base
1421 * @sz_type: size of tx fifo
1422 *
1423 * Returns 0 on success, error code otherwise
1424 */
1425static int bdx_tx_db_init(struct txdb *d, int sz_type)
1426{
1427	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1428
1429	d->start = vmalloc(memsz);
1430	if (!d->start)
1431		return -ENOMEM;
1432
1433	/*
1434	 * In order to differentiate between db is empty and db is full
1435	 * states at least one element should always be empty in order to
1436	 * avoid rptr == wptr which means db is empty
1437	 */
1438	d->size = memsz / sizeof(struct tx_map) - 1;
1439	d->end = d->start + d->size + 1;	/* just after last element */
1440
1441	/* all dbs are created equally empty */
1442	d->rptr = d->start;
1443	d->wptr = d->start;
1444
1445	return 0;
1446}
1447
1448/**
1449 * bdx_tx_db_close - closes tx db and frees all memory
1450 * @d: tx data base
1451 */
1452static void bdx_tx_db_close(struct txdb *d)
1453{
1454	BDX_ASSERT(d == NULL);
1455
1456	vfree(d->start);
1457	d->start = NULL;
1458}
1459
1460/*************************************************************************
1461 *     Tx Engine                                                         *
1462 *************************************************************************/
1463
1464/* sizes of tx desc (including padding if needed) as function
1465 * of skb's frag number */
1466static struct {
1467	u16 bytes;
1468	u16 qwords;		/* qword = 64 bit */
1469} txd_sizes[MAX_SKB_FRAGS + 1];
1470
1471/**
1472 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1473 * @priv: NIC private structure
1474 * @skb: socket buffer to map
1475 * @txdd: TX descriptor to use
1476 *
1477 * It makes dma mappings for skb's data blocks and writes them to PBL of
1478 * new tx descriptor. It also stores them in the tx db, so they could be
1479 * unmaped after data was sent. It is reponsibility of a caller to make
1480 * sure that there is enough space in the tx db. Last element holds pointer
1481 * to skb itself and marked with zero length
1482 */
1483static inline void
1484bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1485	       struct txd_desc *txdd)
1486{
1487	struct txdb *db = &priv->txdb;
1488	struct pbl *pbl = &txdd->pbl[0];
1489	int nr_frags = skb_shinfo(skb)->nr_frags;
1490	int i;
1491
1492	db->wptr->len = skb_headlen(skb);
1493	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1494					    db->wptr->len, PCI_DMA_TODEVICE);
1495	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1496	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1497	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1498	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1499	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1500	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1501	bdx_tx_db_inc_wptr(db);
1502
1503	for (i = 0; i < nr_frags; i++) {
1504		const skb_frag_t *frag;
1505
1506		frag = &skb_shinfo(skb)->frags[i];
1507		db->wptr->len = skb_frag_size(frag);
1508		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1509						      0, skb_frag_size(frag),
1510						      DMA_TO_DEVICE);
1511
1512		pbl++;
1513		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1514		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1515		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1516		bdx_tx_db_inc_wptr(db);
1517	}
1518
1519	/* add skb clean up info. */
1520	db->wptr->len = -txd_sizes[nr_frags].bytes;
1521	db->wptr->addr.skb = skb;
1522	bdx_tx_db_inc_wptr(db);
1523}
1524
1525/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1526 * number of frags is used as index to fetch correct descriptors size,
1527 * instead of calculating it each time */
1528static void __init init_txd_sizes(void)
1529{
1530	int i, lwords;
1531
1532	/* 7 - is number of lwords in txd with one phys buffer
1533	 * 3 - is number of lwords used for every additional phys buffer */
1534	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1535		lwords = 7 + (i * 3);
1536		if (lwords & 1)
1537			lwords++;	/* pad it with 1 lword */
1538		txd_sizes[i].qwords = lwords >> 1;
1539		txd_sizes[i].bytes = lwords << 2;
1540	}
1541}
1542
1543/* bdx_tx_init - initialize all Tx related stuff.
1544 * Namely, TXD and TXF fifos, database etc */
1545static int bdx_tx_init(struct bdx_priv *priv)
1546{
1547	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1548			  regTXD_CFG0_0,
1549			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1550		goto err_mem;
1551	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1552			  regTXF_CFG0_0,
1553			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1554		goto err_mem;
1555
1556	/* The TX db has to keep mappings for all packets sent (on TxD)
1557	 * and not yet reclaimed (on TxF) */
1558	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1559		goto err_mem;
1560
1561	priv->tx_level = BDX_MAX_TX_LEVEL;
1562#ifdef BDX_DELAY_WPTR
1563	priv->tx_update_mark = priv->tx_level - 1024;
1564#endif
1565	return 0;
1566
1567err_mem:
1568	netdev_err(priv->ndev, "Tx init failed\n");
1569	return -ENOMEM;
1570}
1571
1572/**
1573 * bdx_tx_space - calculates available space in TX fifo
1574 * @priv: NIC private structure
1575 *
1576 * Returns available space in TX fifo in bytes
1577 */
1578static inline int bdx_tx_space(struct bdx_priv *priv)
1579{
1580	struct txd_fifo *f = &priv->txd_fifo0;
1581	int fsize;
1582
1583	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1584	fsize = f->m.rptr - f->m.wptr;
1585	if (fsize <= 0)
1586		fsize = f->m.memsz + fsize;
1587	return fsize;
1588}
1589
1590/**
1591 * bdx_tx_transmit - send packet to NIC
1592 * @skb: packet to send
1593 * @ndev: network device assigned to NIC
1594 * Return codes:
1595 * o NETDEV_TX_OK everything ok.
1596 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1597 *   Usually a bug, means queue start/stop flow control is broken in
1598 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
 
1599 */
1600static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1601				   struct net_device *ndev)
1602{
1603	struct bdx_priv *priv = netdev_priv(ndev);
1604	struct txd_fifo *f = &priv->txd_fifo0;
1605	int txd_checksum = 7;	/* full checksum */
1606	int txd_lgsnd = 0;
1607	int txd_vlan_id = 0;
1608	int txd_vtag = 0;
1609	int txd_mss = 0;
1610
1611	int nr_frags = skb_shinfo(skb)->nr_frags;
1612	struct txd_desc *txdd;
1613	int len;
1614	unsigned long flags;
1615
1616	ENTER;
1617	local_irq_save(flags);
1618	spin_lock(&priv->tx_lock);
 
 
 
 
 
1619
1620	/* build tx descriptor */
1621	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1622	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1623	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1624		txd_checksum = 0;
1625
1626	if (skb_shinfo(skb)->gso_size) {
1627		txd_mss = skb_shinfo(skb)->gso_size;
1628		txd_lgsnd = 1;
1629		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1630		    txd_mss);
1631	}
1632
1633	if (skb_vlan_tag_present(skb)) {
1634		/*Cut VLAN ID to 12 bits */
1635		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1636		txd_vtag = 1;
1637	}
1638
1639	txdd->length = CPU_CHIP_SWAP16(skb->len);
1640	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1641	txdd->txd_val1 =
1642	    CPU_CHIP_SWAP32(TXD_W1_VAL
1643			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1644			     txd_lgsnd, txd_vlan_id));
1645	DBG("=== TxD desc =====================\n");
1646	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1647	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1648
1649	bdx_tx_map_skb(priv, skb, txdd);
1650
1651	/* increment TXD write pointer. In case of
1652	   fifo wrapping copy reminder of the descriptor
1653	   to the beginning */
1654	f->m.wptr += txd_sizes[nr_frags].bytes;
1655	len = f->m.wptr - f->m.memsz;
1656	if (unlikely(len >= 0)) {
1657		f->m.wptr = len;
1658		if (len > 0) {
1659			BDX_ASSERT(len > f->m.memsz);
1660			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1661		}
1662	}
1663	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1664
1665	priv->tx_level -= txd_sizes[nr_frags].bytes;
1666	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1667#ifdef BDX_DELAY_WPTR
1668	if (priv->tx_level > priv->tx_update_mark) {
1669		/* Force memory writes to complete before letting h/w
1670		   know there are new descriptors to fetch.
1671		   (might be needed on platforms like IA64)
1672		   wmb(); */
1673		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1674	} else {
1675		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1676			priv->tx_noupd = 0;
1677			WRITE_REG(priv, f->m.reg_WPTR,
1678				  f->m.wptr & TXF_WPTR_WR_PTR);
1679		}
1680	}
1681#else
1682	/* Force memory writes to complete before letting h/w
1683	   know there are new descriptors to fetch.
1684	   (might be needed on platforms like IA64)
1685	   wmb(); */
1686	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1687
1688#endif
1689#ifdef BDX_LLTX
1690	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1691#endif
1692	ndev->stats.tx_packets++;
1693	ndev->stats.tx_bytes += skb->len;
1694
1695	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1696		DBG("%s: %s: TX Q STOP level %d\n",
1697		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1698		netif_stop_queue(ndev);
1699	}
1700
1701	spin_unlock_irqrestore(&priv->tx_lock, flags);
1702	return NETDEV_TX_OK;
1703}
1704
1705/**
1706 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1707 * @priv: bdx adapter
1708 *
1709 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1710 * that those packets were sent
1711 */
1712static void bdx_tx_cleanup(struct bdx_priv *priv)
1713{
1714	struct txf_fifo *f = &priv->txf_fifo0;
1715	struct txdb *db = &priv->txdb;
1716	int tx_level = 0;
1717
1718	ENTER;
1719	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1720	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1721
1722	while (f->m.wptr != f->m.rptr) {
1723		f->m.rptr += BDX_TXF_DESC_SZ;
1724		f->m.rptr &= f->m.size_mask;
1725
1726		/* unmap all the fragments */
1727		/* first has to come tx_maps containing dma */
1728		BDX_ASSERT(db->rptr->len == 0);
1729		do {
1730			BDX_ASSERT(db->rptr->addr.dma == 0);
1731			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1732				       db->rptr->len, PCI_DMA_TODEVICE);
1733			bdx_tx_db_inc_rptr(db);
1734		} while (db->rptr->len > 0);
1735		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1736
1737		/* now should come skb pointer - free it */
1738		dev_consume_skb_irq(db->rptr->addr.skb);
1739		bdx_tx_db_inc_rptr(db);
1740	}
1741
1742	/* let h/w know which TXF descriptors were cleaned */
1743	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1744	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1745
1746	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1747	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1748	spin_lock(&priv->tx_lock);
1749	priv->tx_level += tx_level;
1750	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1751#ifdef BDX_DELAY_WPTR
1752	if (priv->tx_noupd) {
1753		priv->tx_noupd = 0;
1754		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1755			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1756	}
1757#endif
1758
1759	if (unlikely(netif_queue_stopped(priv->ndev) &&
1760		     netif_carrier_ok(priv->ndev) &&
1761		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1762		DBG("%s: %s: TX Q WAKE level %d\n",
1763		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1764		netif_wake_queue(priv->ndev);
1765	}
1766	spin_unlock(&priv->tx_lock);
1767}
1768
1769/**
1770 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1771 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1772 */
1773static void bdx_tx_free_skbs(struct bdx_priv *priv)
1774{
1775	struct txdb *db = &priv->txdb;
1776
1777	ENTER;
1778	while (db->rptr != db->wptr) {
1779		if (likely(db->rptr->len))
1780			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1781				       db->rptr->len, PCI_DMA_TODEVICE);
1782		else
1783			dev_kfree_skb(db->rptr->addr.skb);
1784		bdx_tx_db_inc_rptr(db);
1785	}
1786	RET();
1787}
1788
1789/* bdx_tx_free - frees all Tx resources */
1790static void bdx_tx_free(struct bdx_priv *priv)
1791{
1792	ENTER;
1793	bdx_tx_free_skbs(priv);
1794	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1795	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1796	bdx_tx_db_close(&priv->txdb);
1797}
1798
1799/**
1800 * bdx_tx_push_desc - push descriptor to TxD fifo
1801 * @priv: NIC private structure
1802 * @data: desc's data
1803 * @size: desc's size
1804 *
1805 * Pushes desc to TxD fifo and overlaps it if needed.
1806 * NOTE: this func does not check for available space. this is responsibility
1807 *    of the caller. Neither does it check that data size is smaller than
1808 *    fifo size.
1809 */
1810static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1811{
1812	struct txd_fifo *f = &priv->txd_fifo0;
1813	int i = f->m.memsz - f->m.wptr;
1814
1815	if (size == 0)
1816		return;
1817
1818	if (i > size) {
1819		memcpy(f->m.va + f->m.wptr, data, size);
1820		f->m.wptr += size;
1821	} else {
1822		memcpy(f->m.va + f->m.wptr, data, i);
1823		f->m.wptr = size - i;
1824		memcpy(f->m.va, data + i, f->m.wptr);
1825	}
1826	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1827}
1828
1829/**
1830 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1831 * @priv: NIC private structure
1832 * @data: desc's data
1833 * @size: desc's size
1834 *
1835 * NOTE: this func does check for available space and, if necessary, waits for
1836 *   NIC to read existing data before writing new one.
1837 */
1838static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1839{
1840	int timer = 0;
1841	ENTER;
1842
1843	while (size > 0) {
1844		/* we substruct 8 because when fifo is full rptr == wptr
1845		   which also means that fifo is empty, we can understand
1846		   the difference, but could hw do the same ??? :) */
1847		int avail = bdx_tx_space(priv) - 8;
1848		if (avail <= 0) {
1849			if (timer++ > 300) {	/* prevent endless loop */
1850				DBG("timeout while writing desc to TxD fifo\n");
1851				break;
1852			}
1853			udelay(50);	/* give hw a chance to clean fifo */
1854			continue;
1855		}
1856		avail = min(avail, size);
1857		DBG("about to push  %d bytes starting %p size %d\n", avail,
1858		    data, size);
1859		bdx_tx_push_desc(priv, data, avail);
1860		size -= avail;
1861		data += avail;
1862	}
1863	RET();
1864}
1865
1866static const struct net_device_ops bdx_netdev_ops = {
1867	.ndo_open		= bdx_open,
1868	.ndo_stop		= bdx_close,
1869	.ndo_start_xmit		= bdx_tx_transmit,
1870	.ndo_validate_addr	= eth_validate_addr,
1871	.ndo_do_ioctl		= bdx_ioctl,
1872	.ndo_set_rx_mode	= bdx_setmulti,
1873	.ndo_change_mtu		= bdx_change_mtu,
1874	.ndo_set_mac_address	= bdx_set_mac,
1875	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1876	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1877};
1878
1879/**
1880 * bdx_probe - Device Initialization Routine
1881 * @pdev: PCI device information struct
1882 * @ent: entry in bdx_pci_tbl
1883 *
1884 * Returns 0 on success, negative on failure
1885 *
1886 * bdx_probe initializes an adapter identified by a pci_dev structure.
1887 * The OS initialization, configuring of the adapter private structure,
1888 * and a hardware reset occur.
1889 *
1890 * functions and their order used as explained in
1891 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1892 *
1893 */
1894
1895/* TBD: netif_msg should be checked and implemented. I disable it for now */
1896static int
1897bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1898{
1899	struct net_device *ndev;
1900	struct bdx_priv *priv;
1901	int err, pci_using_dac, port;
1902	unsigned long pciaddr;
1903	u32 regionSize;
1904	struct pci_nic *nic;
1905
1906	ENTER;
1907
1908	nic = vmalloc(sizeof(*nic));
1909	if (!nic)
1910		RET(-ENOMEM);
1911
1912    /************** pci *****************/
1913	err = pci_enable_device(pdev);
1914	if (err)			/* it triggers interrupt, dunno why. */
1915		goto err_pci;		/* it's not a problem though */
1916
1917	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1918	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1919		pci_using_dac = 1;
1920	} else {
1921		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1922		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1923			pr_err("No usable DMA configuration, aborting\n");
1924			goto err_dma;
1925		}
1926		pci_using_dac = 0;
1927	}
1928
1929	err = pci_request_regions(pdev, BDX_DRV_NAME);
1930	if (err)
1931		goto err_dma;
1932
1933	pci_set_master(pdev);
1934
1935	pciaddr = pci_resource_start(pdev, 0);
1936	if (!pciaddr) {
1937		err = -EIO;
1938		pr_err("no MMIO resource\n");
1939		goto err_out_res;
1940	}
1941	regionSize = pci_resource_len(pdev, 0);
1942	if (regionSize < BDX_REGS_SIZE) {
1943		err = -EIO;
1944		pr_err("MMIO resource (%x) too small\n", regionSize);
1945		goto err_out_res;
1946	}
1947
1948	nic->regs = ioremap(pciaddr, regionSize);
1949	if (!nic->regs) {
1950		err = -EIO;
1951		pr_err("ioremap failed\n");
1952		goto err_out_res;
1953	}
1954
1955	if (pdev->irq < 2) {
1956		err = -EIO;
1957		pr_err("invalid irq (%d)\n", pdev->irq);
1958		goto err_out_iomap;
1959	}
1960	pci_set_drvdata(pdev, nic);
1961
1962	if (pdev->device == 0x3014)
1963		nic->port_num = 2;
1964	else
1965		nic->port_num = 1;
1966
1967	print_hw_id(pdev);
1968
1969	bdx_hw_reset_direct(nic->regs);
1970
1971	nic->irq_type = IRQ_INTX;
1972#ifdef BDX_MSI
1973	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1974		err = pci_enable_msi(pdev);
1975		if (err)
1976			pr_err("Can't enable msi. error is %d\n", err);
1977		else
1978			nic->irq_type = IRQ_MSI;
1979	} else
1980		DBG("HW does not support MSI\n");
1981#endif
1982
1983    /************** netdev **************/
1984	for (port = 0; port < nic->port_num; port++) {
1985		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1986		if (!ndev) {
1987			err = -ENOMEM;
1988			goto err_out_iomap;
1989		}
1990
1991		ndev->netdev_ops = &bdx_netdev_ops;
1992		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1993
1994		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
1995
1996		/* these fields are used for info purposes only
1997		 * so we can have them same for all ports of the board */
1998		ndev->if_port = port;
1999		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2000		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2001		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2002		    ;
2003		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2004			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2005
2006		if (pci_using_dac)
2007			ndev->features |= NETIF_F_HIGHDMA;
2008
2009	/************** priv ****************/
2010		priv = nic->priv[port] = netdev_priv(ndev);
2011
2012		priv->pBdxRegs = nic->regs + port * 0x8000;
2013		priv->port = port;
2014		priv->pdev = pdev;
2015		priv->ndev = ndev;
2016		priv->nic = nic;
2017		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2018
2019		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2020
2021		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2022			DBG("HW statistics not supported\n");
2023			priv->stats_flag = 0;
2024		} else {
2025			priv->stats_flag = 1;
2026		}
2027
2028		/* Initialize fifo sizes. */
2029		priv->txd_size = 2;
2030		priv->txf_size = 2;
2031		priv->rxd_size = 2;
2032		priv->rxf_size = 3;
2033
2034		/* Initialize the initial coalescing registers. */
2035		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2036		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2037
2038		/* ndev->xmit_lock spinlock is not used.
2039		 * Private priv->tx_lock is used for synchronization
2040		 * between transmit and TX irq cleanup.  In addition
2041		 * set multicast list callback has to use priv->tx_lock.
2042		 */
2043#ifdef BDX_LLTX
2044		ndev->features |= NETIF_F_LLTX;
2045#endif
2046		/* MTU range: 60 - 16384 */
2047		ndev->min_mtu = ETH_ZLEN;
2048		ndev->max_mtu = BDX_MAX_MTU;
2049
2050		spin_lock_init(&priv->tx_lock);
2051
2052		/*bdx_hw_reset(priv); */
2053		if (bdx_read_mac(priv)) {
2054			pr_err("load MAC address failed\n");
2055			goto err_out_iomap;
2056		}
2057		SET_NETDEV_DEV(ndev, &pdev->dev);
2058		err = register_netdev(ndev);
2059		if (err) {
2060			pr_err("register_netdev failed\n");
2061			goto err_out_free;
2062		}
2063		netif_carrier_off(ndev);
2064		netif_stop_queue(ndev);
2065
2066		print_eth_id(ndev);
2067	}
2068	RET(0);
2069
2070err_out_free:
2071	free_netdev(ndev);
2072err_out_iomap:
2073	iounmap(nic->regs);
2074err_out_res:
2075	pci_release_regions(pdev);
2076err_dma:
2077	pci_disable_device(pdev);
2078err_pci:
2079	vfree(nic);
2080
2081	RET(err);
2082}
2083
2084/****************** Ethtool interface *********************/
2085/* get strings for statistics counters */
2086static const char
2087 bdx_stat_names[][ETH_GSTRING_LEN] = {
2088	"InUCast",		/* 0x7200 */
2089	"InMCast",		/* 0x7210 */
2090	"InBCast",		/* 0x7220 */
2091	"InPkts",		/* 0x7230 */
2092	"InErrors",		/* 0x7240 */
2093	"InDropped",		/* 0x7250 */
2094	"FrameTooLong",		/* 0x7260 */
2095	"FrameSequenceErrors",	/* 0x7270 */
2096	"InVLAN",		/* 0x7280 */
2097	"InDroppedDFE",		/* 0x7290 */
2098	"InDroppedIntFull",	/* 0x72A0 */
2099	"InFrameAlignErrors",	/* 0x72B0 */
2100
2101	/* 0x72C0-0x72E0 RSRV */
2102
2103	"OutUCast",		/* 0x72F0 */
2104	"OutMCast",		/* 0x7300 */
2105	"OutBCast",		/* 0x7310 */
2106	"OutPkts",		/* 0x7320 */
2107
2108	/* 0x7330-0x7360 RSRV */
2109
2110	"OutVLAN",		/* 0x7370 */
2111	"InUCastOctects",	/* 0x7380 */
2112	"OutUCastOctects",	/* 0x7390 */
2113
2114	/* 0x73A0-0x73B0 RSRV */
2115
2116	"InBCastOctects",	/* 0x73C0 */
2117	"OutBCastOctects",	/* 0x73D0 */
2118	"InOctects",		/* 0x73E0 */
2119	"OutOctects",		/* 0x73F0 */
2120};
2121
2122/*
2123 * bdx_get_link_ksettings - get device-specific settings
2124 * @netdev
2125 * @ecmd
2126 */
2127static int bdx_get_link_ksettings(struct net_device *netdev,
2128				  struct ethtool_link_ksettings *ecmd)
2129{
2130	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2131	ethtool_link_ksettings_add_link_mode(ecmd, supported,
2132					     10000baseT_Full);
2133	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2134	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2135	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2136					     10000baseT_Full);
2137	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2138
2139	ecmd->base.speed = SPEED_10000;
2140	ecmd->base.duplex = DUPLEX_FULL;
2141	ecmd->base.port = PORT_FIBRE;
2142	ecmd->base.autoneg = AUTONEG_DISABLE;
 
 
 
 
 
 
 
 
2143
2144	return 0;
2145}
2146
2147/*
2148 * bdx_get_drvinfo - report driver information
2149 * @netdev
2150 * @drvinfo
2151 */
2152static void
2153bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2154{
2155	struct bdx_priv *priv = netdev_priv(netdev);
2156
2157	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2158	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2159	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2160	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2161		sizeof(drvinfo->bus_info));
 
 
 
 
 
2162}
2163
2164/*
2165 * bdx_get_coalesce - get interrupt coalescing parameters
2166 * @netdev
2167 * @ecoal
2168 */
2169static int
2170bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2171{
2172	u32 rdintcm;
2173	u32 tdintcm;
2174	struct bdx_priv *priv = netdev_priv(netdev);
2175
2176	rdintcm = priv->rdintcm;
2177	tdintcm = priv->tdintcm;
2178
2179	/* PCK_TH measures in multiples of FIFO bytes
2180	   We translate to packets */
2181	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2182	ecoal->rx_max_coalesced_frames =
2183	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2184
2185	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2186	ecoal->tx_max_coalesced_frames =
2187	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2188
2189	/* adaptive parameters ignored */
2190	return 0;
2191}
2192
2193/*
2194 * bdx_set_coalesce - set interrupt coalescing parameters
2195 * @netdev
2196 * @ecoal
2197 */
2198static int
2199bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2200{
2201	u32 rdintcm;
2202	u32 tdintcm;
2203	struct bdx_priv *priv = netdev_priv(netdev);
2204	int rx_coal;
2205	int tx_coal;
2206	int rx_max_coal;
2207	int tx_max_coal;
2208
2209	/* Check for valid input */
2210	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2211	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2212	rx_max_coal = ecoal->rx_max_coalesced_frames;
2213	tx_max_coal = ecoal->tx_max_coalesced_frames;
2214
2215	/* Translate from packets to multiples of FIFO bytes */
2216	rx_max_coal =
2217	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2218	     / PCK_TH_MULT);
2219	tx_max_coal =
2220	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2221	     / PCK_TH_MULT);
2222
2223	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2224	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2225		return -EINVAL;
2226
2227	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2228			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2229	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2230			      tx_max_coal);
2231
2232	priv->rdintcm = rdintcm;
2233	priv->tdintcm = tdintcm;
2234
2235	WRITE_REG(priv, regRDINTCM0, rdintcm);
2236	WRITE_REG(priv, regTDINTCM0, tdintcm);
2237
2238	return 0;
2239}
2240
2241/* Convert RX fifo size to number of pending packets */
2242static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2243{
2244	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2245}
2246
2247/* Convert TX fifo size to number of pending packets */
2248static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2249{
2250	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2251}
2252
2253/*
2254 * bdx_get_ringparam - report ring sizes
2255 * @netdev
2256 * @ring
2257 */
2258static void
2259bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2260{
2261	struct bdx_priv *priv = netdev_priv(netdev);
2262
2263	/*max_pending - the maximum-sized FIFO we allow */
2264	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2265	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2266	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2267	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2268}
2269
2270/*
2271 * bdx_set_ringparam - set ring sizes
2272 * @netdev
2273 * @ring
2274 */
2275static int
2276bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2277{
2278	struct bdx_priv *priv = netdev_priv(netdev);
2279	int rx_size = 0;
2280	int tx_size = 0;
2281
2282	for (; rx_size < 4; rx_size++) {
2283		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2284			break;
2285	}
2286	if (rx_size == 4)
2287		rx_size = 3;
2288
2289	for (; tx_size < 4; tx_size++) {
2290		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2291			break;
2292	}
2293	if (tx_size == 4)
2294		tx_size = 3;
2295
2296	/*Is there anything to do? */
2297	if ((rx_size == priv->rxf_size) &&
2298	    (tx_size == priv->txd_size))
2299		return 0;
2300
2301	priv->rxf_size = rx_size;
2302	if (rx_size > 1)
2303		priv->rxd_size = rx_size - 1;
2304	else
2305		priv->rxd_size = rx_size;
2306
2307	priv->txf_size = priv->txd_size = tx_size;
2308
2309	if (netif_running(netdev)) {
2310		bdx_close(netdev);
2311		bdx_open(netdev);
2312	}
2313	return 0;
2314}
2315
2316/*
2317 * bdx_get_strings - return a set of strings that describe the requested objects
2318 * @netdev
2319 * @data
2320 */
2321static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2322{
2323	switch (stringset) {
2324	case ETH_SS_STATS:
2325		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2326		break;
2327	}
2328}
2329
2330/*
2331 * bdx_get_sset_count - return number of statistics or tests
2332 * @netdev
2333 */
2334static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2335{
2336	struct bdx_priv *priv = netdev_priv(netdev);
2337
2338	switch (stringset) {
2339	case ETH_SS_STATS:
2340		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2341			   != sizeof(struct bdx_stats) / sizeof(u64));
2342		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2343	}
2344
2345	return -EINVAL;
2346}
2347
2348/*
2349 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2350 * @netdev
2351 * @stats
2352 * @data
2353 */
2354static void bdx_get_ethtool_stats(struct net_device *netdev,
2355				  struct ethtool_stats *stats, u64 *data)
2356{
2357	struct bdx_priv *priv = netdev_priv(netdev);
2358
2359	if (priv->stats_flag) {
2360
2361		/* Update stats from HW */
2362		bdx_update_stats(priv);
2363
2364		/* Copy data to user buffer */
2365		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2366	}
2367}
2368
2369/*
2370 * bdx_set_ethtool_ops - ethtool interface implementation
2371 * @netdev
2372 */
2373static void bdx_set_ethtool_ops(struct net_device *netdev)
2374{
2375	static const struct ethtool_ops bdx_ethtool_ops = {
 
2376		.get_drvinfo = bdx_get_drvinfo,
2377		.get_link = ethtool_op_get_link,
2378		.get_coalesce = bdx_get_coalesce,
2379		.set_coalesce = bdx_set_coalesce,
2380		.get_ringparam = bdx_get_ringparam,
2381		.set_ringparam = bdx_set_ringparam,
2382		.get_strings = bdx_get_strings,
2383		.get_sset_count = bdx_get_sset_count,
2384		.get_ethtool_stats = bdx_get_ethtool_stats,
2385		.get_link_ksettings = bdx_get_link_ksettings,
2386	};
2387
2388	netdev->ethtool_ops = &bdx_ethtool_ops;
2389}
2390
2391/**
2392 * bdx_remove - Device Removal Routine
2393 * @pdev: PCI device information struct
2394 *
2395 * bdx_remove is called by the PCI subsystem to alert the driver
2396 * that it should release a PCI device.  The could be caused by a
2397 * Hot-Plug event, or because the driver is going to be removed from
2398 * memory.
2399 **/
2400static void bdx_remove(struct pci_dev *pdev)
2401{
2402	struct pci_nic *nic = pci_get_drvdata(pdev);
2403	struct net_device *ndev;
2404	int port;
2405
2406	for (port = 0; port < nic->port_num; port++) {
2407		ndev = nic->priv[port]->ndev;
2408		unregister_netdev(ndev);
2409		free_netdev(ndev);
2410	}
2411
2412	/*bdx_hw_reset_direct(nic->regs); */
2413#ifdef BDX_MSI
2414	if (nic->irq_type == IRQ_MSI)
2415		pci_disable_msi(pdev);
2416#endif
2417
2418	iounmap(nic->regs);
2419	pci_release_regions(pdev);
2420	pci_disable_device(pdev);
2421	vfree(nic);
2422
2423	RET();
2424}
2425
2426static struct pci_driver bdx_pci_driver = {
2427	.name = BDX_DRV_NAME,
2428	.id_table = bdx_pci_tbl,
2429	.probe = bdx_probe,
2430	.remove = bdx_remove,
2431};
2432
2433/*
2434 * print_driver_id - print parameters of the driver build
2435 */
2436static void __init print_driver_id(void)
2437{
2438	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2439	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2440}
2441
2442static int __init bdx_module_init(void)
2443{
2444	ENTER;
2445	init_txd_sizes();
2446	print_driver_id();
2447	RET(pci_register_driver(&bdx_pci_driver));
2448}
2449
2450module_init(bdx_module_init);
2451
2452static void __exit bdx_module_exit(void)
2453{
2454	ENTER;
2455	pci_unregister_driver(&bdx_pci_driver);
2456	RET();
2457}
2458
2459module_exit(bdx_module_exit);
2460
2461MODULE_LICENSE("GPL");
2462MODULE_AUTHOR(DRIVER_AUTHOR);
2463MODULE_DESCRIPTION(BDX_DRV_DESC);
2464MODULE_FIRMWARE("tehuti/bdx.bin");