Loading...
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include "selftest.h"
18#include <linux/in.h>
19#include <linux/jhash.h>
20#include <linux/wait.h>
21#include <linux/workqueue.h>
22
23/* Hardware control for EF10 architecture including 'Huntington'. */
24
25#define EFX_EF10_DRVGEN_EV 7
26enum {
27 EFX_EF10_TEST = 1,
28 EFX_EF10_REFILL,
29};
30
31/* The reserved RSS context value */
32#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
33
34/* The filter table(s) are managed by firmware and we have write-only
35 * access. When removing filters we must identify them to the
36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
37 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
38 * be able to tell in advance whether a requested insertion will
39 * replace an existing filter. Therefore we maintain a software hash
40 * table, which should be at least as large as the hardware hash
41 * table.
42 *
43 * Huntington has a single 8K filter table shared between all filter
44 * types and both ports.
45 */
46#define HUNT_FILTER_TBL_ROWS 8192
47
48struct efx_ef10_filter_table {
49/* The RX match field masks supported by this fw & hw, in order of priority */
50 enum efx_filter_match_flags rx_match_flags[
51 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52 unsigned int rx_match_count;
53
54 struct {
55 unsigned long spec; /* pointer to spec plus flag bits */
56/* BUSY flag indicates that an update is in progress. AUTO_OLD is
57 * used to mark and sweep MAC filters for the device address lists.
58 */
59#define EFX_EF10_FILTER_FLAG_BUSY 1UL
60#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
61#define EFX_EF10_FILTER_FLAGS 3UL
62 u64 handle; /* firmware handle */
63 } *entry;
64 wait_queue_head_t waitq;
65/* Shadow of net_device address lists, guarded by mac_lock */
66#define EFX_EF10_FILTER_DEV_UC_MAX 32
67#define EFX_EF10_FILTER_DEV_MC_MAX 256
68 struct {
69 u8 addr[ETH_ALEN];
70 u16 id;
71 } dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72 dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73 int dev_uc_count; /* negative for PROMISC */
74 int dev_mc_count; /* negative for PROMISC/ALLMULTI */
75};
76
77/* An arbitrary search limit for the software hash table */
78#define EFX_EF10_FILTER_SEARCH_LIMIT 200
79
80static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83
84static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85{
86 efx_dword_t reg;
87
88 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
89 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91}
92
93static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94{
95 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96}
97
98static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99{
100 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
102 size_t outlen;
103 int rc;
104
105 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106
107 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108 outbuf, sizeof(outbuf), &outlen);
109 if (rc)
110 return rc;
111 if (outlen < sizeof(outbuf)) {
112 netif_err(efx, drv, efx->net_dev,
113 "unable to read datapath firmware capabilities\n");
114 return -EIO;
115 }
116
117 nic_data->datapath_caps =
118 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119
120 if (!(nic_data->datapath_caps &
121 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122 netif_err(efx, drv, efx->net_dev,
123 "current firmware does not support TSO\n");
124 return -ENODEV;
125 }
126
127 if (!(nic_data->datapath_caps &
128 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129 netif_err(efx, probe, efx->net_dev,
130 "current firmware does not support an RX prefix\n");
131 return -ENODEV;
132 }
133
134 return 0;
135}
136
137static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138{
139 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140 int rc;
141
142 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143 outbuf, sizeof(outbuf), NULL);
144 if (rc)
145 return rc;
146 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147 return rc > 0 ? rc : -ERANGE;
148}
149
150static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151{
152 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153 size_t outlen;
154 int rc;
155
156 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157
158 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159 outbuf, sizeof(outbuf), &outlen);
160 if (rc)
161 return rc;
162 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163 return -EIO;
164
165 ether_addr_copy(mac_address,
166 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167 return 0;
168}
169
170static int efx_ef10_probe(struct efx_nic *efx)
171{
172 struct efx_ef10_nic_data *nic_data;
173 int i, rc;
174
175 /* We can have one VI for each 8K region. However, until we
176 * use TX option descriptors we need two TX queues per channel.
177 */
178 efx->max_channels =
179 min_t(unsigned int,
180 EFX_MAX_CHANNELS,
181 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183 BUG_ON(efx->max_channels == 0);
184
185 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
186 if (!nic_data)
187 return -ENOMEM;
188 efx->nic_data = nic_data;
189
190 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
191 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
192 if (rc)
193 goto fail1;
194
195 /* Get the MC's warm boot count. In case it's rebooting right
196 * now, be prepared to retry.
197 */
198 i = 0;
199 for (;;) {
200 rc = efx_ef10_get_warm_boot_count(efx);
201 if (rc >= 0)
202 break;
203 if (++i == 5)
204 goto fail2;
205 ssleep(1);
206 }
207 nic_data->warm_boot_count = rc;
208
209 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
210
211 /* In case we're recovering from a crash (kexec), we want to
212 * cancel any outstanding request by the previous user of this
213 * function. We send a special message using the least
214 * significant bits of the 'high' (doorbell) register.
215 */
216 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
217
218 rc = efx_mcdi_init(efx);
219 if (rc)
220 goto fail2;
221
222 /* Reset (most) configuration for this function */
223 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
224 if (rc)
225 goto fail3;
226
227 /* Enable event logging */
228 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
229 if (rc)
230 goto fail3;
231
232 rc = efx_ef10_init_datapath_caps(efx);
233 if (rc < 0)
234 goto fail3;
235
236 efx->rx_packet_len_offset =
237 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
238
239 rc = efx_mcdi_port_get_number(efx);
240 if (rc < 0)
241 goto fail3;
242 efx->port_num = rc;
243
244 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
245 if (rc)
246 goto fail3;
247
248 rc = efx_ef10_get_sysclk_freq(efx);
249 if (rc < 0)
250 goto fail3;
251 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
252
253 /* Check whether firmware supports bug 35388 workaround */
254 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
255 if (rc == 0)
256 nic_data->workaround_35388 = true;
257 else if (rc != -ENOSYS && rc != -ENOENT)
258 goto fail3;
259 netif_dbg(efx, probe, efx->net_dev,
260 "workaround for bug 35388 is %sabled\n",
261 nic_data->workaround_35388 ? "en" : "dis");
262
263 rc = efx_mcdi_mon_probe(efx);
264 if (rc)
265 goto fail3;
266
267 efx_ptp_probe(efx, NULL);
268
269 return 0;
270
271fail3:
272 efx_mcdi_fini(efx);
273fail2:
274 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
275fail1:
276 kfree(nic_data);
277 efx->nic_data = NULL;
278 return rc;
279}
280
281static int efx_ef10_free_vis(struct efx_nic *efx)
282{
283 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
284 size_t outlen;
285 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
286 outbuf, sizeof(outbuf), &outlen);
287
288 /* -EALREADY means nothing to free, so ignore */
289 if (rc == -EALREADY)
290 rc = 0;
291 if (rc)
292 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
293 rc);
294 return rc;
295}
296
297#ifdef EFX_USE_PIO
298
299static void efx_ef10_free_piobufs(struct efx_nic *efx)
300{
301 struct efx_ef10_nic_data *nic_data = efx->nic_data;
302 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
303 unsigned int i;
304 int rc;
305
306 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
307
308 for (i = 0; i < nic_data->n_piobufs; i++) {
309 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
310 nic_data->piobuf_handle[i]);
311 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
312 NULL, 0, NULL);
313 WARN_ON(rc);
314 }
315
316 nic_data->n_piobufs = 0;
317}
318
319static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
320{
321 struct efx_ef10_nic_data *nic_data = efx->nic_data;
322 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
323 unsigned int i;
324 size_t outlen;
325 int rc = 0;
326
327 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
328
329 for (i = 0; i < n; i++) {
330 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
331 outbuf, sizeof(outbuf), &outlen);
332 if (rc)
333 break;
334 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
335 rc = -EIO;
336 break;
337 }
338 nic_data->piobuf_handle[i] =
339 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
340 netif_dbg(efx, probe, efx->net_dev,
341 "allocated PIO buffer %u handle %x\n", i,
342 nic_data->piobuf_handle[i]);
343 }
344
345 nic_data->n_piobufs = i;
346 if (rc)
347 efx_ef10_free_piobufs(efx);
348 return rc;
349}
350
351static int efx_ef10_link_piobufs(struct efx_nic *efx)
352{
353 struct efx_ef10_nic_data *nic_data = efx->nic_data;
354 MCDI_DECLARE_BUF(inbuf,
355 max(MC_CMD_LINK_PIOBUF_IN_LEN,
356 MC_CMD_UNLINK_PIOBUF_IN_LEN));
357 struct efx_channel *channel;
358 struct efx_tx_queue *tx_queue;
359 unsigned int offset, index;
360 int rc;
361
362 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
363 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
364
365 /* Link a buffer to each VI in the write-combining mapping */
366 for (index = 0; index < nic_data->n_piobufs; ++index) {
367 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
368 nic_data->piobuf_handle[index]);
369 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
370 nic_data->pio_write_vi_base + index);
371 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
372 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
373 NULL, 0, NULL);
374 if (rc) {
375 netif_err(efx, drv, efx->net_dev,
376 "failed to link VI %u to PIO buffer %u (%d)\n",
377 nic_data->pio_write_vi_base + index, index,
378 rc);
379 goto fail;
380 }
381 netif_dbg(efx, probe, efx->net_dev,
382 "linked VI %u to PIO buffer %u\n",
383 nic_data->pio_write_vi_base + index, index);
384 }
385
386 /* Link a buffer to each TX queue */
387 efx_for_each_channel(channel, efx) {
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 /* We assign the PIO buffers to queues in
390 * reverse order to allow for the following
391 * special case.
392 */
393 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
394 tx_queue->channel->channel - 1) *
395 efx_piobuf_size);
396 index = offset / ER_DZ_TX_PIOBUF_SIZE;
397 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
398
399 /* When the host page size is 4K, the first
400 * host page in the WC mapping may be within
401 * the same VI page as the last TX queue. We
402 * can only link one buffer to each VI.
403 */
404 if (tx_queue->queue == nic_data->pio_write_vi_base) {
405 BUG_ON(index != 0);
406 rc = 0;
407 } else {
408 MCDI_SET_DWORD(inbuf,
409 LINK_PIOBUF_IN_PIOBUF_HANDLE,
410 nic_data->piobuf_handle[index]);
411 MCDI_SET_DWORD(inbuf,
412 LINK_PIOBUF_IN_TXQ_INSTANCE,
413 tx_queue->queue);
414 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
415 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
416 NULL, 0, NULL);
417 }
418
419 if (rc) {
420 /* This is non-fatal; the TX path just
421 * won't use PIO for this queue
422 */
423 netif_err(efx, drv, efx->net_dev,
424 "failed to link VI %u to PIO buffer %u (%d)\n",
425 tx_queue->queue, index, rc);
426 tx_queue->piobuf = NULL;
427 } else {
428 tx_queue->piobuf =
429 nic_data->pio_write_base +
430 index * EFX_VI_PAGE_SIZE + offset;
431 tx_queue->piobuf_offset = offset;
432 netif_dbg(efx, probe, efx->net_dev,
433 "linked VI %u to PIO buffer %u offset %x addr %p\n",
434 tx_queue->queue, index,
435 tx_queue->piobuf_offset,
436 tx_queue->piobuf);
437 }
438 }
439 }
440
441 return 0;
442
443fail:
444 while (index--) {
445 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
446 nic_data->pio_write_vi_base + index);
447 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
448 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
449 NULL, 0, NULL);
450 }
451 return rc;
452}
453
454#else /* !EFX_USE_PIO */
455
456static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
457{
458 return n == 0 ? 0 : -ENOBUFS;
459}
460
461static int efx_ef10_link_piobufs(struct efx_nic *efx)
462{
463 return 0;
464}
465
466static void efx_ef10_free_piobufs(struct efx_nic *efx)
467{
468}
469
470#endif /* EFX_USE_PIO */
471
472static void efx_ef10_remove(struct efx_nic *efx)
473{
474 struct efx_ef10_nic_data *nic_data = efx->nic_data;
475 int rc;
476
477 efx_ptp_remove(efx);
478
479 efx_mcdi_mon_remove(efx);
480
481 efx_ef10_rx_free_indir_table(efx);
482
483 if (nic_data->wc_membase)
484 iounmap(nic_data->wc_membase);
485
486 rc = efx_ef10_free_vis(efx);
487 WARN_ON(rc != 0);
488
489 if (!nic_data->must_restore_piobufs)
490 efx_ef10_free_piobufs(efx);
491
492 efx_mcdi_fini(efx);
493 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
494 kfree(nic_data);
495}
496
497static int efx_ef10_alloc_vis(struct efx_nic *efx,
498 unsigned int min_vis, unsigned int max_vis)
499{
500 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
501 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
502 struct efx_ef10_nic_data *nic_data = efx->nic_data;
503 size_t outlen;
504 int rc;
505
506 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
507 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
508 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
509 outbuf, sizeof(outbuf), &outlen);
510 if (rc != 0)
511 return rc;
512
513 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
514 return -EIO;
515
516 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
517 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
518
519 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
520 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
521 return 0;
522}
523
524/* Note that the failure path of this function does not free
525 * resources, as this will be done by efx_ef10_remove().
526 */
527static int efx_ef10_dimension_resources(struct efx_nic *efx)
528{
529 struct efx_ef10_nic_data *nic_data = efx->nic_data;
530 unsigned int uc_mem_map_size, wc_mem_map_size;
531 unsigned int min_vis, pio_write_vi_base, max_vis;
532 void __iomem *membase;
533 int rc;
534
535 min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
536
537#ifdef EFX_USE_PIO
538 /* Try to allocate PIO buffers if wanted and if the full
539 * number of PIO buffers would be sufficient to allocate one
540 * copy-buffer per TX channel. Failure is non-fatal, as there
541 * are only a small number of PIO buffers shared between all
542 * functions of the controller.
543 */
544 if (efx_piobuf_size != 0 &&
545 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
546 efx->n_tx_channels) {
547 unsigned int n_piobufs =
548 DIV_ROUND_UP(efx->n_tx_channels,
549 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
550
551 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
552 if (rc)
553 netif_err(efx, probe, efx->net_dev,
554 "failed to allocate PIO buffers (%d)\n", rc);
555 else
556 netif_dbg(efx, probe, efx->net_dev,
557 "allocated %u PIO buffers\n", n_piobufs);
558 }
559#else
560 nic_data->n_piobufs = 0;
561#endif
562
563 /* PIO buffers should be mapped with write-combining enabled,
564 * and we want to make single UC and WC mappings rather than
565 * several of each (in fact that's the only option if host
566 * page size is >4K). So we may allocate some extra VIs just
567 * for writing PIO buffers through.
568 *
569 * The UC mapping contains (min_vis - 1) complete VIs and the
570 * first half of the next VI. Then the WC mapping begins with
571 * the second half of this last VI.
572 */
573 uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
574 ER_DZ_TX_PIOBUF);
575 if (nic_data->n_piobufs) {
576 /* pio_write_vi_base rounds down to give the number of complete
577 * VIs inside the UC mapping.
578 */
579 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
580 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
581 nic_data->n_piobufs) *
582 EFX_VI_PAGE_SIZE) -
583 uc_mem_map_size);
584 max_vis = pio_write_vi_base + nic_data->n_piobufs;
585 } else {
586 pio_write_vi_base = 0;
587 wc_mem_map_size = 0;
588 max_vis = min_vis;
589 }
590
591 /* In case the last attached driver failed to free VIs, do it now */
592 rc = efx_ef10_free_vis(efx);
593 if (rc != 0)
594 return rc;
595
596 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
597 if (rc != 0)
598 return rc;
599
600 /* If we didn't get enough VIs to map all the PIO buffers, free the
601 * PIO buffers
602 */
603 if (nic_data->n_piobufs &&
604 nic_data->n_allocated_vis <
605 pio_write_vi_base + nic_data->n_piobufs) {
606 netif_dbg(efx, probe, efx->net_dev,
607 "%u VIs are not sufficient to map %u PIO buffers\n",
608 nic_data->n_allocated_vis, nic_data->n_piobufs);
609 efx_ef10_free_piobufs(efx);
610 }
611
612 /* Shrink the original UC mapping of the memory BAR */
613 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
614 if (!membase) {
615 netif_err(efx, probe, efx->net_dev,
616 "could not shrink memory BAR to %x\n",
617 uc_mem_map_size);
618 return -ENOMEM;
619 }
620 iounmap(efx->membase);
621 efx->membase = membase;
622
623 /* Set up the WC mapping if needed */
624 if (wc_mem_map_size) {
625 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
626 uc_mem_map_size,
627 wc_mem_map_size);
628 if (!nic_data->wc_membase) {
629 netif_err(efx, probe, efx->net_dev,
630 "could not allocate WC mapping of size %x\n",
631 wc_mem_map_size);
632 return -ENOMEM;
633 }
634 nic_data->pio_write_vi_base = pio_write_vi_base;
635 nic_data->pio_write_base =
636 nic_data->wc_membase +
637 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
638 uc_mem_map_size);
639
640 rc = efx_ef10_link_piobufs(efx);
641 if (rc)
642 efx_ef10_free_piobufs(efx);
643 }
644
645 netif_dbg(efx, probe, efx->net_dev,
646 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
647 &efx->membase_phys, efx->membase, uc_mem_map_size,
648 nic_data->wc_membase, wc_mem_map_size);
649
650 return 0;
651}
652
653static int efx_ef10_init_nic(struct efx_nic *efx)
654{
655 struct efx_ef10_nic_data *nic_data = efx->nic_data;
656 int rc;
657
658 if (nic_data->must_check_datapath_caps) {
659 rc = efx_ef10_init_datapath_caps(efx);
660 if (rc)
661 return rc;
662 nic_data->must_check_datapath_caps = false;
663 }
664
665 if (nic_data->must_realloc_vis) {
666 /* We cannot let the number of VIs change now */
667 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
668 nic_data->n_allocated_vis);
669 if (rc)
670 return rc;
671 nic_data->must_realloc_vis = false;
672 }
673
674 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
675 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
676 if (rc == 0) {
677 rc = efx_ef10_link_piobufs(efx);
678 if (rc)
679 efx_ef10_free_piobufs(efx);
680 }
681
682 /* Log an error on failure, but this is non-fatal */
683 if (rc)
684 netif_err(efx, drv, efx->net_dev,
685 "failed to restore PIO buffers (%d)\n", rc);
686 nic_data->must_restore_piobufs = false;
687 }
688
689 efx_ef10_rx_push_rss_config(efx);
690 return 0;
691}
692
693static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
694{
695 struct efx_ef10_nic_data *nic_data = efx->nic_data;
696
697 /* All our allocations have been reset */
698 nic_data->must_realloc_vis = true;
699 nic_data->must_restore_filters = true;
700 nic_data->must_restore_piobufs = true;
701 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
702}
703
704static int efx_ef10_map_reset_flags(u32 *flags)
705{
706 enum {
707 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
708 ETH_RESET_SHARED_SHIFT),
709 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
710 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
711 ETH_RESET_PHY | ETH_RESET_MGMT) <<
712 ETH_RESET_SHARED_SHIFT)
713 };
714
715 /* We assume for now that our PCI function is permitted to
716 * reset everything.
717 */
718
719 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
720 *flags &= ~EF10_RESET_MC;
721 return RESET_TYPE_WORLD;
722 }
723
724 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
725 *flags &= ~EF10_RESET_PORT;
726 return RESET_TYPE_ALL;
727 }
728
729 /* no invisible reset implemented */
730
731 return -EINVAL;
732}
733
734static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
735{
736 int rc = efx_mcdi_reset(efx, reset_type);
737
738 /* If it was a port reset, trigger reallocation of MC resources.
739 * Note that on an MC reset nothing needs to be done now because we'll
740 * detect the MC reset later and handle it then.
741 * For an FLR, we never get an MC reset event, but the MC has reset all
742 * resources assigned to us, so we have to trigger reallocation now.
743 */
744 if ((reset_type == RESET_TYPE_ALL ||
745 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
746 efx_ef10_reset_mc_allocations(efx);
747 return rc;
748}
749
750#define EF10_DMA_STAT(ext_name, mcdi_name) \
751 [EF10_STAT_ ## ext_name] = \
752 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
753#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
754 [EF10_STAT_ ## int_name] = \
755 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
756#define EF10_OTHER_STAT(ext_name) \
757 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
758
759static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
760 EF10_DMA_STAT(tx_bytes, TX_BYTES),
761 EF10_DMA_STAT(tx_packets, TX_PKTS),
762 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
763 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
764 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
765 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
766 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
767 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
768 EF10_DMA_STAT(tx_64, TX_64_PKTS),
769 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
770 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
771 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
772 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
773 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
774 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
775 EF10_DMA_STAT(rx_bytes, RX_BYTES),
776 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
777 EF10_OTHER_STAT(rx_good_bytes),
778 EF10_OTHER_STAT(rx_bad_bytes),
779 EF10_DMA_STAT(rx_packets, RX_PKTS),
780 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
781 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
782 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
783 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
784 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
785 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
786 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
787 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
788 EF10_DMA_STAT(rx_64, RX_64_PKTS),
789 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
790 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
791 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
792 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
793 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
794 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
795 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
796 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
797 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
798 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
799 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
800 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
801 EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
802 EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
803 EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
804 EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
805 EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
806 EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
807 EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
808 EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
809 EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
810 EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
811 EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
812 EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
813};
814
815#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
816 (1ULL << EF10_STAT_tx_packets) | \
817 (1ULL << EF10_STAT_tx_pause) | \
818 (1ULL << EF10_STAT_tx_unicast) | \
819 (1ULL << EF10_STAT_tx_multicast) | \
820 (1ULL << EF10_STAT_tx_broadcast) | \
821 (1ULL << EF10_STAT_rx_bytes) | \
822 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
823 (1ULL << EF10_STAT_rx_good_bytes) | \
824 (1ULL << EF10_STAT_rx_bad_bytes) | \
825 (1ULL << EF10_STAT_rx_packets) | \
826 (1ULL << EF10_STAT_rx_good) | \
827 (1ULL << EF10_STAT_rx_bad) | \
828 (1ULL << EF10_STAT_rx_pause) | \
829 (1ULL << EF10_STAT_rx_control) | \
830 (1ULL << EF10_STAT_rx_unicast) | \
831 (1ULL << EF10_STAT_rx_multicast) | \
832 (1ULL << EF10_STAT_rx_broadcast) | \
833 (1ULL << EF10_STAT_rx_lt64) | \
834 (1ULL << EF10_STAT_rx_64) | \
835 (1ULL << EF10_STAT_rx_65_to_127) | \
836 (1ULL << EF10_STAT_rx_128_to_255) | \
837 (1ULL << EF10_STAT_rx_256_to_511) | \
838 (1ULL << EF10_STAT_rx_512_to_1023) | \
839 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
840 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
841 (1ULL << EF10_STAT_rx_gtjumbo) | \
842 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
843 (1ULL << EF10_STAT_rx_overflow) | \
844 (1ULL << EF10_STAT_rx_nodesc_drops))
845
846/* These statistics are only provided by the 10G MAC. For a 10G/40G
847 * switchable port we do not expose these because they might not
848 * include all the packets they should.
849 */
850#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
851 (1ULL << EF10_STAT_tx_lt64) | \
852 (1ULL << EF10_STAT_tx_64) | \
853 (1ULL << EF10_STAT_tx_65_to_127) | \
854 (1ULL << EF10_STAT_tx_128_to_255) | \
855 (1ULL << EF10_STAT_tx_256_to_511) | \
856 (1ULL << EF10_STAT_tx_512_to_1023) | \
857 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
858 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
859
860/* These statistics are only provided by the 40G MAC. For a 10G/40G
861 * switchable port we do expose these because the errors will otherwise
862 * be silent.
863 */
864#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
865 (1ULL << EF10_STAT_rx_length_error))
866
867/* These statistics are only provided if the firmware supports the
868 * capability PM_AND_RXDP_COUNTERS.
869 */
870#define HUNT_PM_AND_RXDP_STAT_MASK ( \
871 (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) | \
872 (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) | \
873 (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) | \
874 (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) | \
875 (1ULL << EF10_STAT_rx_pm_trunc_qbb) | \
876 (1ULL << EF10_STAT_rx_pm_discard_qbb) | \
877 (1ULL << EF10_STAT_rx_pm_discard_mapping) | \
878 (1ULL << EF10_STAT_rx_dp_q_disabled_packets) | \
879 (1ULL << EF10_STAT_rx_dp_di_dropped_packets) | \
880 (1ULL << EF10_STAT_rx_dp_streaming_packets) | \
881 (1ULL << EF10_STAT_rx_dp_hlb_fetch) | \
882 (1ULL << EF10_STAT_rx_dp_hlb_wait))
883
884static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
885{
886 u64 raw_mask = HUNT_COMMON_STAT_MASK;
887 u32 port_caps = efx_mcdi_phy_get_caps(efx);
888 struct efx_ef10_nic_data *nic_data = efx->nic_data;
889
890 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
891 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
892 else
893 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
894
895 if (nic_data->datapath_caps &
896 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
897 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
898
899 return raw_mask;
900}
901
902static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
903{
904 u64 raw_mask = efx_ef10_raw_stat_mask(efx);
905
906#if BITS_PER_LONG == 64
907 mask[0] = raw_mask;
908#else
909 mask[0] = raw_mask & 0xffffffff;
910 mask[1] = raw_mask >> 32;
911#endif
912}
913
914static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
915{
916 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
917
918 efx_ef10_get_stat_mask(efx, mask);
919 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
920 mask, names);
921}
922
923static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
924{
925 struct efx_ef10_nic_data *nic_data = efx->nic_data;
926 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
927 __le64 generation_start, generation_end;
928 u64 *stats = nic_data->stats;
929 __le64 *dma_stats;
930
931 efx_ef10_get_stat_mask(efx, mask);
932
933 dma_stats = efx->stats_buffer.addr;
934 nic_data = efx->nic_data;
935
936 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
937 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
938 return 0;
939 rmb();
940 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
941 stats, efx->stats_buffer.addr, false);
942 rmb();
943 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
944 if (generation_end != generation_start)
945 return -EAGAIN;
946
947 /* Update derived statistics */
948 efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
949 stats[EF10_STAT_rx_good_bytes] =
950 stats[EF10_STAT_rx_bytes] -
951 stats[EF10_STAT_rx_bytes_minus_good_bytes];
952 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
953 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
954
955 return 0;
956}
957
958
959static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
960 struct rtnl_link_stats64 *core_stats)
961{
962 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
963 struct efx_ef10_nic_data *nic_data = efx->nic_data;
964 u64 *stats = nic_data->stats;
965 size_t stats_count = 0, index;
966 int retry;
967
968 efx_ef10_get_stat_mask(efx, mask);
969
970 /* If we're unlucky enough to read statistics during the DMA, wait
971 * up to 10ms for it to finish (typically takes <500us)
972 */
973 for (retry = 0; retry < 100; ++retry) {
974 if (efx_ef10_try_update_nic_stats(efx) == 0)
975 break;
976 udelay(100);
977 }
978
979 if (full_stats) {
980 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
981 if (efx_ef10_stat_desc[index].name) {
982 *full_stats++ = stats[index];
983 ++stats_count;
984 }
985 }
986 }
987
988 if (core_stats) {
989 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
990 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
991 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
992 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
993 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
994 core_stats->multicast = stats[EF10_STAT_rx_multicast];
995 core_stats->rx_length_errors =
996 stats[EF10_STAT_rx_gtjumbo] +
997 stats[EF10_STAT_rx_length_error];
998 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
999 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1000 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1001 core_stats->rx_errors = (core_stats->rx_length_errors +
1002 core_stats->rx_crc_errors +
1003 core_stats->rx_frame_errors);
1004 }
1005
1006 return stats_count;
1007}
1008
1009static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1010{
1011 struct efx_nic *efx = channel->efx;
1012 unsigned int mode, value;
1013 efx_dword_t timer_cmd;
1014
1015 if (channel->irq_moderation) {
1016 mode = 3;
1017 value = channel->irq_moderation - 1;
1018 } else {
1019 mode = 0;
1020 value = 0;
1021 }
1022
1023 if (EFX_EF10_WORKAROUND_35388(efx)) {
1024 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1025 EFE_DD_EVQ_IND_TIMER_FLAGS,
1026 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1027 ERF_DD_EVQ_IND_TIMER_VAL, value);
1028 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1029 channel->channel);
1030 } else {
1031 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1032 ERF_DZ_TC_TIMER_VAL, value);
1033 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1034 channel->channel);
1035 }
1036}
1037
1038static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1039{
1040 wol->supported = 0;
1041 wol->wolopts = 0;
1042 memset(&wol->sopass, 0, sizeof(wol->sopass));
1043}
1044
1045static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1046{
1047 if (type != 0)
1048 return -EINVAL;
1049 return 0;
1050}
1051
1052static void efx_ef10_mcdi_request(struct efx_nic *efx,
1053 const efx_dword_t *hdr, size_t hdr_len,
1054 const efx_dword_t *sdu, size_t sdu_len)
1055{
1056 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057 u8 *pdu = nic_data->mcdi_buf.addr;
1058
1059 memcpy(pdu, hdr, hdr_len);
1060 memcpy(pdu + hdr_len, sdu, sdu_len);
1061 wmb();
1062
1063 /* The hardware provides 'low' and 'high' (doorbell) registers
1064 * for passing the 64-bit address of an MCDI request to
1065 * firmware. However the dwords are swapped by firmware. The
1066 * least significant bits of the doorbell are then 0 for all
1067 * MCDI requests due to alignment.
1068 */
1069 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1070 ER_DZ_MC_DB_LWRD);
1071 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1072 ER_DZ_MC_DB_HWRD);
1073}
1074
1075static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1076{
1077 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1078 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1079
1080 rmb();
1081 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1082}
1083
1084static void
1085efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1086 size_t offset, size_t outlen)
1087{
1088 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1089 const u8 *pdu = nic_data->mcdi_buf.addr;
1090
1091 memcpy(outbuf, pdu + offset, outlen);
1092}
1093
1094static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1095{
1096 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1097 int rc;
1098
1099 rc = efx_ef10_get_warm_boot_count(efx);
1100 if (rc < 0) {
1101 /* The firmware is presumably in the process of
1102 * rebooting. However, we are supposed to report each
1103 * reboot just once, so we must only do that once we
1104 * can read and store the updated warm boot count.
1105 */
1106 return 0;
1107 }
1108
1109 if (rc == nic_data->warm_boot_count)
1110 return 0;
1111
1112 nic_data->warm_boot_count = rc;
1113
1114 /* All our allocations have been reset */
1115 efx_ef10_reset_mc_allocations(efx);
1116
1117 /* The datapath firmware might have been changed */
1118 nic_data->must_check_datapath_caps = true;
1119
1120 /* MAC statistics have been cleared on the NIC; clear the local
1121 * statistic that we update with efx_update_diff_stat().
1122 */
1123 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1124
1125 return -EIO;
1126}
1127
1128/* Handle an MSI interrupt
1129 *
1130 * Handle an MSI hardware interrupt. This routine schedules event
1131 * queue processing. No interrupt acknowledgement cycle is necessary.
1132 * Also, we never need to check that the interrupt is for us, since
1133 * MSI interrupts cannot be shared.
1134 */
1135static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1136{
1137 struct efx_msi_context *context = dev_id;
1138 struct efx_nic *efx = context->efx;
1139
1140 netif_vdbg(efx, intr, efx->net_dev,
1141 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1142
1143 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1144 /* Note test interrupts */
1145 if (context->index == efx->irq_level)
1146 efx->last_irq_cpu = raw_smp_processor_id();
1147
1148 /* Schedule processing of the channel */
1149 efx_schedule_channel_irq(efx->channel[context->index]);
1150 }
1151
1152 return IRQ_HANDLED;
1153}
1154
1155static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1156{
1157 struct efx_nic *efx = dev_id;
1158 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1159 struct efx_channel *channel;
1160 efx_dword_t reg;
1161 u32 queues;
1162
1163 /* Read the ISR which also ACKs the interrupts */
1164 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
1165 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1166
1167 if (queues == 0)
1168 return IRQ_NONE;
1169
1170 if (likely(soft_enabled)) {
1171 /* Note test interrupts */
1172 if (queues & (1U << efx->irq_level))
1173 efx->last_irq_cpu = raw_smp_processor_id();
1174
1175 efx_for_each_channel(channel, efx) {
1176 if (queues & 1)
1177 efx_schedule_channel_irq(channel);
1178 queues >>= 1;
1179 }
1180 }
1181
1182 netif_vdbg(efx, intr, efx->net_dev,
1183 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1184 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1185
1186 return IRQ_HANDLED;
1187}
1188
1189static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1190{
1191 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1192
1193 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1194
1195 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1196 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1197 inbuf, sizeof(inbuf), NULL, 0, NULL);
1198}
1199
1200static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1201{
1202 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1203 (tx_queue->ptr_mask + 1) *
1204 sizeof(efx_qword_t),
1205 GFP_KERNEL);
1206}
1207
1208/* This writes to the TX_DESC_WPTR and also pushes data */
1209static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1210 const efx_qword_t *txd)
1211{
1212 unsigned int write_ptr;
1213 efx_oword_t reg;
1214
1215 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1216 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1217 reg.qword[0] = *txd;
1218 efx_writeo_page(tx_queue->efx, ®,
1219 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1220}
1221
1222static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1223{
1224 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1225 EFX_BUF_SIZE));
1226 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1227 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1228 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1229 struct efx_channel *channel = tx_queue->channel;
1230 struct efx_nic *efx = tx_queue->efx;
1231 size_t inlen, outlen;
1232 dma_addr_t dma_addr;
1233 efx_qword_t *txd;
1234 int rc;
1235 int i;
1236
1237 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1238 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1239 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1240 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1241 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1242 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1243 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1244 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1245 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1246
1247 dma_addr = tx_queue->txd.buf.dma_addr;
1248
1249 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1250 tx_queue->queue, entries, (u64)dma_addr);
1251
1252 for (i = 0; i < entries; ++i) {
1253 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1254 dma_addr += EFX_BUF_SIZE;
1255 }
1256
1257 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1258
1259 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1260 outbuf, sizeof(outbuf), &outlen);
1261 if (rc)
1262 goto fail;
1263
1264 /* A previous user of this TX queue might have set us up the
1265 * bomb by writing a descriptor to the TX push collector but
1266 * not the doorbell. (Each collector belongs to a port, not a
1267 * queue or function, so cannot easily be reset.) We must
1268 * attempt to push a no-op descriptor in its place.
1269 */
1270 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1271 tx_queue->insert_count = 1;
1272 txd = efx_tx_desc(tx_queue, 0);
1273 EFX_POPULATE_QWORD_4(*txd,
1274 ESF_DZ_TX_DESC_IS_OPT, true,
1275 ESF_DZ_TX_OPTION_TYPE,
1276 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1277 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1278 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1279 tx_queue->write_count = 1;
1280 wmb();
1281 efx_ef10_push_tx_desc(tx_queue, txd);
1282
1283 return;
1284
1285fail:
1286 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1287 tx_queue->queue);
1288}
1289
1290static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1291{
1292 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1293 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1294 struct efx_nic *efx = tx_queue->efx;
1295 size_t outlen;
1296 int rc;
1297
1298 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1299 tx_queue->queue);
1300
1301 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1302 outbuf, sizeof(outbuf), &outlen);
1303
1304 if (rc && rc != -EALREADY)
1305 goto fail;
1306
1307 return;
1308
1309fail:
1310 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1311 outbuf, outlen, rc);
1312}
1313
1314static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1315{
1316 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1317}
1318
1319/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1320static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1321{
1322 unsigned int write_ptr;
1323 efx_dword_t reg;
1324
1325 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1326 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1327 efx_writed_page(tx_queue->efx, ®,
1328 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1329}
1330
1331static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1332{
1333 unsigned int old_write_count = tx_queue->write_count;
1334 struct efx_tx_buffer *buffer;
1335 unsigned int write_ptr;
1336 efx_qword_t *txd;
1337
1338 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1339
1340 do {
1341 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1342 buffer = &tx_queue->buffer[write_ptr];
1343 txd = efx_tx_desc(tx_queue, write_ptr);
1344 ++tx_queue->write_count;
1345
1346 /* Create TX descriptor ring entry */
1347 if (buffer->flags & EFX_TX_BUF_OPTION) {
1348 *txd = buffer->option;
1349 } else {
1350 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1351 EFX_POPULATE_QWORD_3(
1352 *txd,
1353 ESF_DZ_TX_KER_CONT,
1354 buffer->flags & EFX_TX_BUF_CONT,
1355 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1356 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1357 }
1358 } while (tx_queue->write_count != tx_queue->insert_count);
1359
1360 wmb(); /* Ensure descriptors are written before they are fetched */
1361
1362 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1363 txd = efx_tx_desc(tx_queue,
1364 old_write_count & tx_queue->ptr_mask);
1365 efx_ef10_push_tx_desc(tx_queue, txd);
1366 ++tx_queue->pushes;
1367 } else {
1368 efx_ef10_notify_tx_desc(tx_queue);
1369 }
1370}
1371
1372static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1373{
1374 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1375 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1376 size_t outlen;
1377 int rc;
1378
1379 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1380 EVB_PORT_ID_ASSIGNED);
1381 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1382 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1383 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1384 EFX_MAX_CHANNELS);
1385
1386 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1387 outbuf, sizeof(outbuf), &outlen);
1388 if (rc != 0)
1389 return rc;
1390
1391 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1392 return -EIO;
1393
1394 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1395
1396 return 0;
1397}
1398
1399static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1400{
1401 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1402 int rc;
1403
1404 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1405 context);
1406
1407 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1408 NULL, 0, NULL);
1409 WARN_ON(rc != 0);
1410}
1411
1412static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1413{
1414 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1415 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1416 int i, rc;
1417
1418 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1419 context);
1420 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1421 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1422
1423 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1424 MCDI_PTR(tablebuf,
1425 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1426 (u8) efx->rx_indir_table[i];
1427
1428 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1429 sizeof(tablebuf), NULL, 0, NULL);
1430 if (rc != 0)
1431 return rc;
1432
1433 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1434 context);
1435 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1436 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1437 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1438 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1439 efx->rx_hash_key[i];
1440
1441 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1442 sizeof(keybuf), NULL, 0, NULL);
1443}
1444
1445static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1446{
1447 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1448
1449 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1450 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1451 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1452}
1453
1454static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1455{
1456 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1457 int rc;
1458
1459 netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1460
1461 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1462 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1463 if (rc != 0)
1464 goto fail;
1465 }
1466
1467 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1468 if (rc != 0)
1469 goto fail;
1470
1471 return;
1472
1473fail:
1474 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1475}
1476
1477static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1478{
1479 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1480 (rx_queue->ptr_mask + 1) *
1481 sizeof(efx_qword_t),
1482 GFP_KERNEL);
1483}
1484
1485static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1486{
1487 MCDI_DECLARE_BUF(inbuf,
1488 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1489 EFX_BUF_SIZE));
1490 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1491 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1492 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1493 struct efx_nic *efx = rx_queue->efx;
1494 size_t inlen, outlen;
1495 dma_addr_t dma_addr;
1496 int rc;
1497 int i;
1498
1499 rx_queue->scatter_n = 0;
1500 rx_queue->scatter_len = 0;
1501
1502 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1503 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1504 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1505 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1506 efx_rx_queue_index(rx_queue));
1507 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1508 INIT_RXQ_IN_FLAG_PREFIX, 1,
1509 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1510 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1511 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1512
1513 dma_addr = rx_queue->rxd.buf.dma_addr;
1514
1515 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1516 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1517
1518 for (i = 0; i < entries; ++i) {
1519 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1520 dma_addr += EFX_BUF_SIZE;
1521 }
1522
1523 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1524
1525 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1526 outbuf, sizeof(outbuf), &outlen);
1527 if (rc)
1528 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1529 efx_rx_queue_index(rx_queue));
1530}
1531
1532static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1533{
1534 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1535 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1536 struct efx_nic *efx = rx_queue->efx;
1537 size_t outlen;
1538 int rc;
1539
1540 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1541 efx_rx_queue_index(rx_queue));
1542
1543 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1544 outbuf, sizeof(outbuf), &outlen);
1545
1546 if (rc && rc != -EALREADY)
1547 goto fail;
1548
1549 return;
1550
1551fail:
1552 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1553 outbuf, outlen, rc);
1554}
1555
1556static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1557{
1558 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1559}
1560
1561/* This creates an entry in the RX descriptor queue */
1562static inline void
1563efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1564{
1565 struct efx_rx_buffer *rx_buf;
1566 efx_qword_t *rxd;
1567
1568 rxd = efx_rx_desc(rx_queue, index);
1569 rx_buf = efx_rx_buffer(rx_queue, index);
1570 EFX_POPULATE_QWORD_2(*rxd,
1571 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1572 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1573}
1574
1575static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1576{
1577 struct efx_nic *efx = rx_queue->efx;
1578 unsigned int write_count;
1579 efx_dword_t reg;
1580
1581 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1582 write_count = rx_queue->added_count & ~7;
1583 if (rx_queue->notified_count == write_count)
1584 return;
1585
1586 do
1587 efx_ef10_build_rx_desc(
1588 rx_queue,
1589 rx_queue->notified_count & rx_queue->ptr_mask);
1590 while (++rx_queue->notified_count != write_count);
1591
1592 wmb();
1593 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1594 write_count & rx_queue->ptr_mask);
1595 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
1596 efx_rx_queue_index(rx_queue));
1597}
1598
1599static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1600
1601static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1602{
1603 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1604 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1605 efx_qword_t event;
1606
1607 EFX_POPULATE_QWORD_2(event,
1608 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1609 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1610
1611 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1612
1613 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1614 * already swapped the data to little-endian order.
1615 */
1616 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1617 sizeof(efx_qword_t));
1618
1619 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1620 inbuf, sizeof(inbuf), 0,
1621 efx_ef10_rx_defer_refill_complete, 0);
1622}
1623
1624static void
1625efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1626 int rc, efx_dword_t *outbuf,
1627 size_t outlen_actual)
1628{
1629 /* nothing to do */
1630}
1631
1632static int efx_ef10_ev_probe(struct efx_channel *channel)
1633{
1634 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1635 (channel->eventq_mask + 1) *
1636 sizeof(efx_qword_t),
1637 GFP_KERNEL);
1638}
1639
1640static int efx_ef10_ev_init(struct efx_channel *channel)
1641{
1642 MCDI_DECLARE_BUF(inbuf,
1643 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1644 EFX_BUF_SIZE));
1645 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1646 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1647 struct efx_nic *efx = channel->efx;
1648 struct efx_ef10_nic_data *nic_data;
1649 bool supports_rx_merge;
1650 size_t inlen, outlen;
1651 dma_addr_t dma_addr;
1652 int rc;
1653 int i;
1654
1655 nic_data = efx->nic_data;
1656 supports_rx_merge =
1657 !!(nic_data->datapath_caps &
1658 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1659
1660 /* Fill event queue with all ones (i.e. empty events) */
1661 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1662
1663 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1664 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1665 /* INIT_EVQ expects index in vector table, not absolute */
1666 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1667 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1668 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1669 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1670 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1671 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1672 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1673 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1674 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1675 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1676 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1677 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1678 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1679
1680 dma_addr = channel->eventq.buf.dma_addr;
1681 for (i = 0; i < entries; ++i) {
1682 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1683 dma_addr += EFX_BUF_SIZE;
1684 }
1685
1686 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1687
1688 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1689 outbuf, sizeof(outbuf), &outlen);
1690 /* IRQ return is ignored */
1691 return rc;
1692}
1693
1694static void efx_ef10_ev_fini(struct efx_channel *channel)
1695{
1696 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1697 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1698 struct efx_nic *efx = channel->efx;
1699 size_t outlen;
1700 int rc;
1701
1702 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1703
1704 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1705 outbuf, sizeof(outbuf), &outlen);
1706
1707 if (rc && rc != -EALREADY)
1708 goto fail;
1709
1710 return;
1711
1712fail:
1713 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1714 outbuf, outlen, rc);
1715}
1716
1717static void efx_ef10_ev_remove(struct efx_channel *channel)
1718{
1719 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1720}
1721
1722static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1723 unsigned int rx_queue_label)
1724{
1725 struct efx_nic *efx = rx_queue->efx;
1726
1727 netif_info(efx, hw, efx->net_dev,
1728 "rx event arrived on queue %d labeled as queue %u\n",
1729 efx_rx_queue_index(rx_queue), rx_queue_label);
1730
1731 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1732}
1733
1734static void
1735efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1736 unsigned int actual, unsigned int expected)
1737{
1738 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1739 struct efx_nic *efx = rx_queue->efx;
1740
1741 netif_info(efx, hw, efx->net_dev,
1742 "dropped %d events (index=%d expected=%d)\n",
1743 dropped, actual, expected);
1744
1745 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1746}
1747
1748/* partially received RX was aborted. clean up. */
1749static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1750{
1751 unsigned int rx_desc_ptr;
1752
1753 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1754 "scattered RX aborted (dropping %u buffers)\n",
1755 rx_queue->scatter_n);
1756
1757 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1758
1759 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1760 0, EFX_RX_PKT_DISCARD);
1761
1762 rx_queue->removed_count += rx_queue->scatter_n;
1763 rx_queue->scatter_n = 0;
1764 rx_queue->scatter_len = 0;
1765 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1766}
1767
1768static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1769 const efx_qword_t *event)
1770{
1771 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1772 unsigned int n_descs, n_packets, i;
1773 struct efx_nic *efx = channel->efx;
1774 struct efx_rx_queue *rx_queue;
1775 bool rx_cont;
1776 u16 flags = 0;
1777
1778 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1779 return 0;
1780
1781 /* Basic packet information */
1782 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1783 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1784 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1785 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1786 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1787
1788 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1789 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1790 EFX_QWORD_FMT "\n",
1791 EFX_QWORD_VAL(*event));
1792
1793 rx_queue = efx_channel_get_rx_queue(channel);
1794
1795 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1796 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1797
1798 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1799 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1800
1801 if (n_descs != rx_queue->scatter_n + 1) {
1802 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803
1804 /* detect rx abort */
1805 if (unlikely(n_descs == rx_queue->scatter_n)) {
1806 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1807 netdev_WARN(efx->net_dev,
1808 "invalid RX abort: scatter_n=%u event="
1809 EFX_QWORD_FMT "\n",
1810 rx_queue->scatter_n,
1811 EFX_QWORD_VAL(*event));
1812 efx_ef10_handle_rx_abort(rx_queue);
1813 return 0;
1814 }
1815
1816 /* Check that RX completion merging is valid, i.e.
1817 * the current firmware supports it and this is a
1818 * non-scattered packet.
1819 */
1820 if (!(nic_data->datapath_caps &
1821 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1822 rx_queue->scatter_n != 0 || rx_cont) {
1823 efx_ef10_handle_rx_bad_lbits(
1824 rx_queue, next_ptr_lbits,
1825 (rx_queue->removed_count +
1826 rx_queue->scatter_n + 1) &
1827 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1828 return 0;
1829 }
1830
1831 /* Merged completion for multiple non-scattered packets */
1832 rx_queue->scatter_n = 1;
1833 rx_queue->scatter_len = 0;
1834 n_packets = n_descs;
1835 ++channel->n_rx_merge_events;
1836 channel->n_rx_merge_packets += n_packets;
1837 flags |= EFX_RX_PKT_PREFIX_LEN;
1838 } else {
1839 ++rx_queue->scatter_n;
1840 rx_queue->scatter_len += rx_bytes;
1841 if (rx_cont)
1842 return 0;
1843 n_packets = 1;
1844 }
1845
1846 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1847 flags |= EFX_RX_PKT_DISCARD;
1848
1849 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1850 channel->n_rx_ip_hdr_chksum_err += n_packets;
1851 } else if (unlikely(EFX_QWORD_FIELD(*event,
1852 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1853 channel->n_rx_tcp_udp_chksum_err += n_packets;
1854 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1855 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1856 flags |= EFX_RX_PKT_CSUMMED;
1857 }
1858
1859 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1860 flags |= EFX_RX_PKT_TCP;
1861
1862 channel->irq_mod_score += 2 * n_packets;
1863
1864 /* Handle received packet(s) */
1865 for (i = 0; i < n_packets; i++) {
1866 efx_rx_packet(rx_queue,
1867 rx_queue->removed_count & rx_queue->ptr_mask,
1868 rx_queue->scatter_n, rx_queue->scatter_len,
1869 flags);
1870 rx_queue->removed_count += rx_queue->scatter_n;
1871 }
1872
1873 rx_queue->scatter_n = 0;
1874 rx_queue->scatter_len = 0;
1875
1876 return n_packets;
1877}
1878
1879static int
1880efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1881{
1882 struct efx_nic *efx = channel->efx;
1883 struct efx_tx_queue *tx_queue;
1884 unsigned int tx_ev_desc_ptr;
1885 unsigned int tx_ev_q_label;
1886 int tx_descs = 0;
1887
1888 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1889 return 0;
1890
1891 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1892 return 0;
1893
1894 /* Transmit completion */
1895 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1896 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1897 tx_queue = efx_channel_get_tx_queue(channel,
1898 tx_ev_q_label % EFX_TXQ_TYPES);
1899 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1900 tx_queue->ptr_mask);
1901 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1902
1903 return tx_descs;
1904}
1905
1906static void
1907efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1908{
1909 struct efx_nic *efx = channel->efx;
1910 int subcode;
1911
1912 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1913
1914 switch (subcode) {
1915 case ESE_DZ_DRV_TIMER_EV:
1916 case ESE_DZ_DRV_WAKE_UP_EV:
1917 break;
1918 case ESE_DZ_DRV_START_UP_EV:
1919 /* event queue init complete. ok. */
1920 break;
1921 default:
1922 netif_err(efx, hw, efx->net_dev,
1923 "channel %d unknown driver event type %d"
1924 " (data " EFX_QWORD_FMT ")\n",
1925 channel->channel, subcode,
1926 EFX_QWORD_VAL(*event));
1927
1928 }
1929}
1930
1931static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1932 efx_qword_t *event)
1933{
1934 struct efx_nic *efx = channel->efx;
1935 u32 subcode;
1936
1937 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1938
1939 switch (subcode) {
1940 case EFX_EF10_TEST:
1941 channel->event_test_cpu = raw_smp_processor_id();
1942 break;
1943 case EFX_EF10_REFILL:
1944 /* The queue must be empty, so we won't receive any rx
1945 * events, so efx_process_channel() won't refill the
1946 * queue. Refill it here
1947 */
1948 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1949 break;
1950 default:
1951 netif_err(efx, hw, efx->net_dev,
1952 "channel %d unknown driver event type %u"
1953 " (data " EFX_QWORD_FMT ")\n",
1954 channel->channel, (unsigned) subcode,
1955 EFX_QWORD_VAL(*event));
1956 }
1957}
1958
1959static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1960{
1961 struct efx_nic *efx = channel->efx;
1962 efx_qword_t event, *p_event;
1963 unsigned int read_ptr;
1964 int ev_code;
1965 int tx_descs = 0;
1966 int spent = 0;
1967
1968 if (quota <= 0)
1969 return spent;
1970
1971 read_ptr = channel->eventq_read_ptr;
1972
1973 for (;;) {
1974 p_event = efx_event(channel, read_ptr);
1975 event = *p_event;
1976
1977 if (!efx_event_present(&event))
1978 break;
1979
1980 EFX_SET_QWORD(*p_event);
1981
1982 ++read_ptr;
1983
1984 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1985
1986 netif_vdbg(efx, drv, efx->net_dev,
1987 "processing event on %d " EFX_QWORD_FMT "\n",
1988 channel->channel, EFX_QWORD_VAL(event));
1989
1990 switch (ev_code) {
1991 case ESE_DZ_EV_CODE_MCDI_EV:
1992 efx_mcdi_process_event(channel, &event);
1993 break;
1994 case ESE_DZ_EV_CODE_RX_EV:
1995 spent += efx_ef10_handle_rx_event(channel, &event);
1996 if (spent >= quota) {
1997 /* XXX can we split a merged event to
1998 * avoid going over-quota?
1999 */
2000 spent = quota;
2001 goto out;
2002 }
2003 break;
2004 case ESE_DZ_EV_CODE_TX_EV:
2005 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2006 if (tx_descs > efx->txq_entries) {
2007 spent = quota;
2008 goto out;
2009 } else if (++spent == quota) {
2010 goto out;
2011 }
2012 break;
2013 case ESE_DZ_EV_CODE_DRIVER_EV:
2014 efx_ef10_handle_driver_event(channel, &event);
2015 if (++spent == quota)
2016 goto out;
2017 break;
2018 case EFX_EF10_DRVGEN_EV:
2019 efx_ef10_handle_driver_generated_event(channel, &event);
2020 break;
2021 default:
2022 netif_err(efx, hw, efx->net_dev,
2023 "channel %d unknown event type %d"
2024 " (data " EFX_QWORD_FMT ")\n",
2025 channel->channel, ev_code,
2026 EFX_QWORD_VAL(event));
2027 }
2028 }
2029
2030out:
2031 channel->eventq_read_ptr = read_ptr;
2032 return spent;
2033}
2034
2035static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2036{
2037 struct efx_nic *efx = channel->efx;
2038 efx_dword_t rptr;
2039
2040 if (EFX_EF10_WORKAROUND_35388(efx)) {
2041 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2042 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2043 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2044 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2045
2046 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2047 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2048 ERF_DD_EVQ_IND_RPTR,
2049 (channel->eventq_read_ptr &
2050 channel->eventq_mask) >>
2051 ERF_DD_EVQ_IND_RPTR_WIDTH);
2052 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2053 channel->channel);
2054 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2055 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2056 ERF_DD_EVQ_IND_RPTR,
2057 channel->eventq_read_ptr &
2058 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2059 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2060 channel->channel);
2061 } else {
2062 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2063 channel->eventq_read_ptr &
2064 channel->eventq_mask);
2065 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2066 }
2067}
2068
2069static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2070{
2071 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2072 struct efx_nic *efx = channel->efx;
2073 efx_qword_t event;
2074 int rc;
2075
2076 EFX_POPULATE_QWORD_2(event,
2077 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2078 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2079
2080 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2081
2082 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2083 * already swapped the data to little-endian order.
2084 */
2085 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2086 sizeof(efx_qword_t));
2087
2088 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2089 NULL, 0, NULL);
2090 if (rc != 0)
2091 goto fail;
2092
2093 return;
2094
2095fail:
2096 WARN_ON(true);
2097 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2098}
2099
2100void efx_ef10_handle_drain_event(struct efx_nic *efx)
2101{
2102 if (atomic_dec_and_test(&efx->active_queues))
2103 wake_up(&efx->flush_wq);
2104
2105 WARN_ON(atomic_read(&efx->active_queues) < 0);
2106}
2107
2108static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2109{
2110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2111 struct efx_channel *channel;
2112 struct efx_tx_queue *tx_queue;
2113 struct efx_rx_queue *rx_queue;
2114 int pending;
2115
2116 /* If the MC has just rebooted, the TX/RX queues will have already been
2117 * torn down, but efx->active_queues needs to be set to zero.
2118 */
2119 if (nic_data->must_realloc_vis) {
2120 atomic_set(&efx->active_queues, 0);
2121 return 0;
2122 }
2123
2124 /* Do not attempt to write to the NIC during EEH recovery */
2125 if (efx->state != STATE_RECOVERY) {
2126 efx_for_each_channel(channel, efx) {
2127 efx_for_each_channel_rx_queue(rx_queue, channel)
2128 efx_ef10_rx_fini(rx_queue);
2129 efx_for_each_channel_tx_queue(tx_queue, channel)
2130 efx_ef10_tx_fini(tx_queue);
2131 }
2132
2133 wait_event_timeout(efx->flush_wq,
2134 atomic_read(&efx->active_queues) == 0,
2135 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2136 pending = atomic_read(&efx->active_queues);
2137 if (pending) {
2138 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2139 pending);
2140 return -ETIMEDOUT;
2141 }
2142 }
2143
2144 return 0;
2145}
2146
2147static void efx_ef10_prepare_flr(struct efx_nic *efx)
2148{
2149 atomic_set(&efx->active_queues, 0);
2150}
2151
2152static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2153 const struct efx_filter_spec *right)
2154{
2155 if ((left->match_flags ^ right->match_flags) |
2156 ((left->flags ^ right->flags) &
2157 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2158 return false;
2159
2160 return memcmp(&left->outer_vid, &right->outer_vid,
2161 sizeof(struct efx_filter_spec) -
2162 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2163}
2164
2165static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2166{
2167 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2168 return jhash2((const u32 *)&spec->outer_vid,
2169 (sizeof(struct efx_filter_spec) -
2170 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2171 0);
2172 /* XXX should we randomise the initval? */
2173}
2174
2175/* Decide whether a filter should be exclusive or else should allow
2176 * delivery to additional recipients. Currently we decide that
2177 * filters for specific local unicast MAC and IP addresses are
2178 * exclusive.
2179 */
2180static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2181{
2182 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2183 !is_multicast_ether_addr(spec->loc_mac))
2184 return true;
2185
2186 if ((spec->match_flags &
2187 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2188 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2189 if (spec->ether_type == htons(ETH_P_IP) &&
2190 !ipv4_is_multicast(spec->loc_host[0]))
2191 return true;
2192 if (spec->ether_type == htons(ETH_P_IPV6) &&
2193 ((const u8 *)spec->loc_host)[0] != 0xff)
2194 return true;
2195 }
2196
2197 return false;
2198}
2199
2200static struct efx_filter_spec *
2201efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2202 unsigned int filter_idx)
2203{
2204 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2205 ~EFX_EF10_FILTER_FLAGS);
2206}
2207
2208static unsigned int
2209efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2210 unsigned int filter_idx)
2211{
2212 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2213}
2214
2215static void
2216efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2217 unsigned int filter_idx,
2218 const struct efx_filter_spec *spec,
2219 unsigned int flags)
2220{
2221 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2222}
2223
2224static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2225 const struct efx_filter_spec *spec,
2226 efx_dword_t *inbuf, u64 handle,
2227 bool replacing)
2228{
2229 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2230
2231 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2232
2233 if (replacing) {
2234 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2235 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2236 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2237 } else {
2238 u32 match_fields = 0;
2239
2240 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2241 efx_ef10_filter_is_exclusive(spec) ?
2242 MC_CMD_FILTER_OP_IN_OP_INSERT :
2243 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2244
2245 /* Convert match flags and values. Unlike almost
2246 * everything else in MCDI, these fields are in
2247 * network byte order.
2248 */
2249 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2250 match_fields |=
2251 is_multicast_ether_addr(spec->loc_mac) ?
2252 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2253 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2254#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2255 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2256 match_fields |= \
2257 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2258 mcdi_field ## _LBN; \
2259 BUILD_BUG_ON( \
2260 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2261 sizeof(spec->gen_field)); \
2262 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2263 &spec->gen_field, sizeof(spec->gen_field)); \
2264 }
2265 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2266 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2267 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2268 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2269 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2270 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2271 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2272 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2273 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2274 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2275#undef COPY_FIELD
2276 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2277 match_fields);
2278 }
2279
2280 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2281 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2282 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2283 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2284 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2285 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2286 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2287 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2288 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2289 0 : spec->dmaq_id);
2290 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2291 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2292 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2293 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2294 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2295 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2296 spec->rss_context !=
2297 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2298 spec->rss_context : nic_data->rx_rss_context);
2299}
2300
2301static int efx_ef10_filter_push(struct efx_nic *efx,
2302 const struct efx_filter_spec *spec,
2303 u64 *handle, bool replacing)
2304{
2305 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2306 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2307 int rc;
2308
2309 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2310 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2311 outbuf, sizeof(outbuf), NULL);
2312 if (rc == 0)
2313 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2314 if (rc == -ENOSPC)
2315 rc = -EBUSY; /* to match efx_farch_filter_insert() */
2316 return rc;
2317}
2318
2319static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2320 enum efx_filter_match_flags match_flags)
2321{
2322 unsigned int match_pri;
2323
2324 for (match_pri = 0;
2325 match_pri < table->rx_match_count;
2326 match_pri++)
2327 if (table->rx_match_flags[match_pri] == match_flags)
2328 return match_pri;
2329
2330 return -EPROTONOSUPPORT;
2331}
2332
2333static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2334 struct efx_filter_spec *spec,
2335 bool replace_equal)
2336{
2337 struct efx_ef10_filter_table *table = efx->filter_state;
2338 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2339 struct efx_filter_spec *saved_spec;
2340 unsigned int match_pri, hash;
2341 unsigned int priv_flags;
2342 bool replacing = false;
2343 int ins_index = -1;
2344 DEFINE_WAIT(wait);
2345 bool is_mc_recip;
2346 s32 rc;
2347
2348 /* For now, only support RX filters */
2349 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2350 EFX_FILTER_FLAG_RX)
2351 return -EINVAL;
2352
2353 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2354 if (rc < 0)
2355 return rc;
2356 match_pri = rc;
2357
2358 hash = efx_ef10_filter_hash(spec);
2359 is_mc_recip = efx_filter_is_mc_recipient(spec);
2360 if (is_mc_recip)
2361 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2362
2363 /* Find any existing filters with the same match tuple or
2364 * else a free slot to insert at. If any of them are busy,
2365 * we have to wait and retry.
2366 */
2367 for (;;) {
2368 unsigned int depth = 1;
2369 unsigned int i;
2370
2371 spin_lock_bh(&efx->filter_lock);
2372
2373 for (;;) {
2374 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2375 saved_spec = efx_ef10_filter_entry_spec(table, i);
2376
2377 if (!saved_spec) {
2378 if (ins_index < 0)
2379 ins_index = i;
2380 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2381 if (table->entry[i].spec &
2382 EFX_EF10_FILTER_FLAG_BUSY)
2383 break;
2384 if (spec->priority < saved_spec->priority &&
2385 spec->priority != EFX_FILTER_PRI_AUTO) {
2386 rc = -EPERM;
2387 goto out_unlock;
2388 }
2389 if (!is_mc_recip) {
2390 /* This is the only one */
2391 if (spec->priority ==
2392 saved_spec->priority &&
2393 !replace_equal) {
2394 rc = -EEXIST;
2395 goto out_unlock;
2396 }
2397 ins_index = i;
2398 goto found;
2399 } else if (spec->priority >
2400 saved_spec->priority ||
2401 (spec->priority ==
2402 saved_spec->priority &&
2403 replace_equal)) {
2404 if (ins_index < 0)
2405 ins_index = i;
2406 else
2407 __set_bit(depth, mc_rem_map);
2408 }
2409 }
2410
2411 /* Once we reach the maximum search depth, use
2412 * the first suitable slot or return -EBUSY if
2413 * there was none
2414 */
2415 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2416 if (ins_index < 0) {
2417 rc = -EBUSY;
2418 goto out_unlock;
2419 }
2420 goto found;
2421 }
2422
2423 ++depth;
2424 }
2425
2426 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2427 spin_unlock_bh(&efx->filter_lock);
2428 schedule();
2429 }
2430
2431found:
2432 /* Create a software table entry if necessary, and mark it
2433 * busy. We might yet fail to insert, but any attempt to
2434 * insert a conflicting filter while we're waiting for the
2435 * firmware must find the busy entry.
2436 */
2437 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2438 if (saved_spec) {
2439 if (spec->priority == EFX_FILTER_PRI_AUTO &&
2440 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2441 /* Just make sure it won't be removed */
2442 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2443 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2444 table->entry[ins_index].spec &=
2445 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2446 rc = ins_index;
2447 goto out_unlock;
2448 }
2449 replacing = true;
2450 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2451 } else {
2452 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2453 if (!saved_spec) {
2454 rc = -ENOMEM;
2455 goto out_unlock;
2456 }
2457 *saved_spec = *spec;
2458 priv_flags = 0;
2459 }
2460 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2461 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2462
2463 /* Mark lower-priority multicast recipients busy prior to removal */
2464 if (is_mc_recip) {
2465 unsigned int depth, i;
2466
2467 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2468 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2469 if (test_bit(depth, mc_rem_map))
2470 table->entry[i].spec |=
2471 EFX_EF10_FILTER_FLAG_BUSY;
2472 }
2473 }
2474
2475 spin_unlock_bh(&efx->filter_lock);
2476
2477 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2478 replacing);
2479
2480 /* Finalise the software table entry */
2481 spin_lock_bh(&efx->filter_lock);
2482 if (rc == 0) {
2483 if (replacing) {
2484 /* Update the fields that may differ */
2485 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2486 saved_spec->flags |=
2487 EFX_FILTER_FLAG_RX_OVER_AUTO;
2488 saved_spec->priority = spec->priority;
2489 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2490 saved_spec->flags |= spec->flags;
2491 saved_spec->rss_context = spec->rss_context;
2492 saved_spec->dmaq_id = spec->dmaq_id;
2493 }
2494 } else if (!replacing) {
2495 kfree(saved_spec);
2496 saved_spec = NULL;
2497 }
2498 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2499
2500 /* Remove and finalise entries for lower-priority multicast
2501 * recipients
2502 */
2503 if (is_mc_recip) {
2504 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2505 unsigned int depth, i;
2506
2507 memset(inbuf, 0, sizeof(inbuf));
2508
2509 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2510 if (!test_bit(depth, mc_rem_map))
2511 continue;
2512
2513 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2514 saved_spec = efx_ef10_filter_entry_spec(table, i);
2515 priv_flags = efx_ef10_filter_entry_flags(table, i);
2516
2517 if (rc == 0) {
2518 spin_unlock_bh(&efx->filter_lock);
2519 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2520 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2521 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2522 table->entry[i].handle);
2523 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2524 inbuf, sizeof(inbuf),
2525 NULL, 0, NULL);
2526 spin_lock_bh(&efx->filter_lock);
2527 }
2528
2529 if (rc == 0) {
2530 kfree(saved_spec);
2531 saved_spec = NULL;
2532 priv_flags = 0;
2533 } else {
2534 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2535 }
2536 efx_ef10_filter_set_entry(table, i, saved_spec,
2537 priv_flags);
2538 }
2539 }
2540
2541 /* If successful, return the inserted filter ID */
2542 if (rc == 0)
2543 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2544
2545 wake_up_all(&table->waitq);
2546out_unlock:
2547 spin_unlock_bh(&efx->filter_lock);
2548 finish_wait(&table->waitq, &wait);
2549 return rc;
2550}
2551
2552static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2553{
2554 /* no need to do anything here on EF10 */
2555}
2556
2557/* Remove a filter.
2558 * If !by_index, remove by ID
2559 * If by_index, remove by index
2560 * Filter ID may come from userland and must be range-checked.
2561 */
2562static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2563 unsigned int priority_mask,
2564 u32 filter_id, bool by_index)
2565{
2566 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2567 struct efx_ef10_filter_table *table = efx->filter_state;
2568 MCDI_DECLARE_BUF(inbuf,
2569 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2570 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2571 struct efx_filter_spec *spec;
2572 DEFINE_WAIT(wait);
2573 int rc;
2574
2575 /* Find the software table entry and mark it busy. Don't
2576 * remove it yet; any attempt to update while we're waiting
2577 * for the firmware must find the busy entry.
2578 */
2579 for (;;) {
2580 spin_lock_bh(&efx->filter_lock);
2581 if (!(table->entry[filter_idx].spec &
2582 EFX_EF10_FILTER_FLAG_BUSY))
2583 break;
2584 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2585 spin_unlock_bh(&efx->filter_lock);
2586 schedule();
2587 }
2588
2589 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2590 if (!spec ||
2591 (!by_index &&
2592 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2593 filter_id / HUNT_FILTER_TBL_ROWS)) {
2594 rc = -ENOENT;
2595 goto out_unlock;
2596 }
2597
2598 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2599 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2600 /* Just remove flags */
2601 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2602 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2603 rc = 0;
2604 goto out_unlock;
2605 }
2606
2607 if (!(priority_mask & (1U << spec->priority))) {
2608 rc = -ENOENT;
2609 goto out_unlock;
2610 }
2611
2612 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2613 spin_unlock_bh(&efx->filter_lock);
2614
2615 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2616 /* Reset to an automatic filter */
2617
2618 struct efx_filter_spec new_spec = *spec;
2619
2620 new_spec.priority = EFX_FILTER_PRI_AUTO;
2621 new_spec.flags = (EFX_FILTER_FLAG_RX |
2622 EFX_FILTER_FLAG_RX_RSS);
2623 new_spec.dmaq_id = 0;
2624 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2625 rc = efx_ef10_filter_push(efx, &new_spec,
2626 &table->entry[filter_idx].handle,
2627 true);
2628
2629 spin_lock_bh(&efx->filter_lock);
2630 if (rc == 0)
2631 *spec = new_spec;
2632 } else {
2633 /* Really remove the filter */
2634
2635 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2636 efx_ef10_filter_is_exclusive(spec) ?
2637 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2638 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2639 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2640 table->entry[filter_idx].handle);
2641 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2642 inbuf, sizeof(inbuf), NULL, 0, NULL);
2643
2644 spin_lock_bh(&efx->filter_lock);
2645 if (rc == 0) {
2646 kfree(spec);
2647 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2648 }
2649 }
2650
2651 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2652 wake_up_all(&table->waitq);
2653out_unlock:
2654 spin_unlock_bh(&efx->filter_lock);
2655 finish_wait(&table->waitq, &wait);
2656 return rc;
2657}
2658
2659static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2660 enum efx_filter_priority priority,
2661 u32 filter_id)
2662{
2663 return efx_ef10_filter_remove_internal(efx, 1U << priority,
2664 filter_id, false);
2665}
2666
2667static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2668 enum efx_filter_priority priority,
2669 u32 filter_id, struct efx_filter_spec *spec)
2670{
2671 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2672 struct efx_ef10_filter_table *table = efx->filter_state;
2673 const struct efx_filter_spec *saved_spec;
2674 int rc;
2675
2676 spin_lock_bh(&efx->filter_lock);
2677 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2678 if (saved_spec && saved_spec->priority == priority &&
2679 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2680 filter_id / HUNT_FILTER_TBL_ROWS) {
2681 *spec = *saved_spec;
2682 rc = 0;
2683 } else {
2684 rc = -ENOENT;
2685 }
2686 spin_unlock_bh(&efx->filter_lock);
2687 return rc;
2688}
2689
2690static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2691 enum efx_filter_priority priority)
2692{
2693 unsigned int priority_mask;
2694 unsigned int i;
2695 int rc;
2696
2697 priority_mask = (((1U << (priority + 1)) - 1) &
2698 ~(1U << EFX_FILTER_PRI_AUTO));
2699
2700 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2701 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2702 i, true);
2703 if (rc && rc != -ENOENT)
2704 return rc;
2705 }
2706
2707 return 0;
2708}
2709
2710static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2711 enum efx_filter_priority priority)
2712{
2713 struct efx_ef10_filter_table *table = efx->filter_state;
2714 unsigned int filter_idx;
2715 s32 count = 0;
2716
2717 spin_lock_bh(&efx->filter_lock);
2718 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2719 if (table->entry[filter_idx].spec &&
2720 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2721 priority)
2722 ++count;
2723 }
2724 spin_unlock_bh(&efx->filter_lock);
2725 return count;
2726}
2727
2728static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2729{
2730 struct efx_ef10_filter_table *table = efx->filter_state;
2731
2732 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2733}
2734
2735static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2736 enum efx_filter_priority priority,
2737 u32 *buf, u32 size)
2738{
2739 struct efx_ef10_filter_table *table = efx->filter_state;
2740 struct efx_filter_spec *spec;
2741 unsigned int filter_idx;
2742 s32 count = 0;
2743
2744 spin_lock_bh(&efx->filter_lock);
2745 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2746 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2747 if (spec && spec->priority == priority) {
2748 if (count == size) {
2749 count = -EMSGSIZE;
2750 break;
2751 }
2752 buf[count++] = (efx_ef10_filter_rx_match_pri(
2753 table, spec->match_flags) *
2754 HUNT_FILTER_TBL_ROWS +
2755 filter_idx);
2756 }
2757 }
2758 spin_unlock_bh(&efx->filter_lock);
2759 return count;
2760}
2761
2762#ifdef CONFIG_RFS_ACCEL
2763
2764static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2765
2766static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2767 struct efx_filter_spec *spec)
2768{
2769 struct efx_ef10_filter_table *table = efx->filter_state;
2770 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2771 struct efx_filter_spec *saved_spec;
2772 unsigned int hash, i, depth = 1;
2773 bool replacing = false;
2774 int ins_index = -1;
2775 u64 cookie;
2776 s32 rc;
2777
2778 /* Must be an RX filter without RSS and not for a multicast
2779 * destination address (RFS only works for connected sockets).
2780 * These restrictions allow us to pass only a tiny amount of
2781 * data through to the completion function.
2782 */
2783 EFX_WARN_ON_PARANOID(spec->flags !=
2784 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2785 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2786 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2787
2788 hash = efx_ef10_filter_hash(spec);
2789
2790 spin_lock_bh(&efx->filter_lock);
2791
2792 /* Find any existing filter with the same match tuple or else
2793 * a free slot to insert at. If an existing filter is busy,
2794 * we have to give up.
2795 */
2796 for (;;) {
2797 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2798 saved_spec = efx_ef10_filter_entry_spec(table, i);
2799
2800 if (!saved_spec) {
2801 if (ins_index < 0)
2802 ins_index = i;
2803 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2804 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2805 rc = -EBUSY;
2806 goto fail_unlock;
2807 }
2808 if (spec->priority < saved_spec->priority) {
2809 rc = -EPERM;
2810 goto fail_unlock;
2811 }
2812 ins_index = i;
2813 break;
2814 }
2815
2816 /* Once we reach the maximum search depth, use the
2817 * first suitable slot or return -EBUSY if there was
2818 * none
2819 */
2820 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2821 if (ins_index < 0) {
2822 rc = -EBUSY;
2823 goto fail_unlock;
2824 }
2825 break;
2826 }
2827
2828 ++depth;
2829 }
2830
2831 /* Create a software table entry if necessary, and mark it
2832 * busy. We might yet fail to insert, but any attempt to
2833 * insert a conflicting filter while we're waiting for the
2834 * firmware must find the busy entry.
2835 */
2836 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2837 if (saved_spec) {
2838 replacing = true;
2839 } else {
2840 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2841 if (!saved_spec) {
2842 rc = -ENOMEM;
2843 goto fail_unlock;
2844 }
2845 *saved_spec = *spec;
2846 }
2847 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2848 EFX_EF10_FILTER_FLAG_BUSY);
2849
2850 spin_unlock_bh(&efx->filter_lock);
2851
2852 /* Pack up the variables needed on completion */
2853 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2854
2855 efx_ef10_filter_push_prep(efx, spec, inbuf,
2856 table->entry[ins_index].handle, replacing);
2857 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2858 MC_CMD_FILTER_OP_OUT_LEN,
2859 efx_ef10_filter_rfs_insert_complete, cookie);
2860
2861 return ins_index;
2862
2863fail_unlock:
2864 spin_unlock_bh(&efx->filter_lock);
2865 return rc;
2866}
2867
2868static void
2869efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2870 int rc, efx_dword_t *outbuf,
2871 size_t outlen_actual)
2872{
2873 struct efx_ef10_filter_table *table = efx->filter_state;
2874 unsigned int ins_index, dmaq_id;
2875 struct efx_filter_spec *spec;
2876 bool replacing;
2877
2878 /* Unpack the cookie */
2879 replacing = cookie >> 31;
2880 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2881 dmaq_id = cookie & 0xffff;
2882
2883 spin_lock_bh(&efx->filter_lock);
2884 spec = efx_ef10_filter_entry_spec(table, ins_index);
2885 if (rc == 0) {
2886 table->entry[ins_index].handle =
2887 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2888 if (replacing)
2889 spec->dmaq_id = dmaq_id;
2890 } else if (!replacing) {
2891 kfree(spec);
2892 spec = NULL;
2893 }
2894 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2895 spin_unlock_bh(&efx->filter_lock);
2896
2897 wake_up_all(&table->waitq);
2898}
2899
2900static void
2901efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2902 unsigned long filter_idx,
2903 int rc, efx_dword_t *outbuf,
2904 size_t outlen_actual);
2905
2906static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2907 unsigned int filter_idx)
2908{
2909 struct efx_ef10_filter_table *table = efx->filter_state;
2910 struct efx_filter_spec *spec =
2911 efx_ef10_filter_entry_spec(table, filter_idx);
2912 MCDI_DECLARE_BUF(inbuf,
2913 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2914 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2915
2916 if (!spec ||
2917 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2918 spec->priority != EFX_FILTER_PRI_HINT ||
2919 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2920 flow_id, filter_idx))
2921 return false;
2922
2923 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2924 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2925 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2926 table->entry[filter_idx].handle);
2927 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2928 efx_ef10_filter_rfs_expire_complete, filter_idx))
2929 return false;
2930
2931 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2932 return true;
2933}
2934
2935static void
2936efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2937 unsigned long filter_idx,
2938 int rc, efx_dword_t *outbuf,
2939 size_t outlen_actual)
2940{
2941 struct efx_ef10_filter_table *table = efx->filter_state;
2942 struct efx_filter_spec *spec =
2943 efx_ef10_filter_entry_spec(table, filter_idx);
2944
2945 spin_lock_bh(&efx->filter_lock);
2946 if (rc == 0) {
2947 kfree(spec);
2948 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2949 }
2950 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2951 wake_up_all(&table->waitq);
2952 spin_unlock_bh(&efx->filter_lock);
2953}
2954
2955#endif /* CONFIG_RFS_ACCEL */
2956
2957static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2958{
2959 int match_flags = 0;
2960
2961#define MAP_FLAG(gen_flag, mcdi_field) { \
2962 u32 old_mcdi_flags = mcdi_flags; \
2963 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2964 mcdi_field ## _LBN); \
2965 if (mcdi_flags != old_mcdi_flags) \
2966 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2967 }
2968 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2969 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2970 MAP_FLAG(REM_HOST, SRC_IP);
2971 MAP_FLAG(LOC_HOST, DST_IP);
2972 MAP_FLAG(REM_MAC, SRC_MAC);
2973 MAP_FLAG(REM_PORT, SRC_PORT);
2974 MAP_FLAG(LOC_MAC, DST_MAC);
2975 MAP_FLAG(LOC_PORT, DST_PORT);
2976 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2977 MAP_FLAG(INNER_VID, INNER_VLAN);
2978 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2979 MAP_FLAG(IP_PROTO, IP_PROTO);
2980#undef MAP_FLAG
2981
2982 /* Did we map them all? */
2983 if (mcdi_flags)
2984 return -EINVAL;
2985
2986 return match_flags;
2987}
2988
2989static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2990{
2991 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2992 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2993 unsigned int pd_match_pri, pd_match_count;
2994 struct efx_ef10_filter_table *table;
2995 size_t outlen;
2996 int rc;
2997
2998 table = kzalloc(sizeof(*table), GFP_KERNEL);
2999 if (!table)
3000 return -ENOMEM;
3001
3002 /* Find out which RX filter types are supported, and their priorities */
3003 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3004 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3005 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3006 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3007 &outlen);
3008 if (rc)
3009 goto fail;
3010 pd_match_count = MCDI_VAR_ARRAY_LEN(
3011 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3012 table->rx_match_count = 0;
3013
3014 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3015 u32 mcdi_flags =
3016 MCDI_ARRAY_DWORD(
3017 outbuf,
3018 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3019 pd_match_pri);
3020 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3021 if (rc < 0) {
3022 netif_dbg(efx, probe, efx->net_dev,
3023 "%s: fw flags %#x pri %u not supported in driver\n",
3024 __func__, mcdi_flags, pd_match_pri);
3025 } else {
3026 netif_dbg(efx, probe, efx->net_dev,
3027 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3028 __func__, mcdi_flags, pd_match_pri,
3029 rc, table->rx_match_count);
3030 table->rx_match_flags[table->rx_match_count++] = rc;
3031 }
3032 }
3033
3034 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3035 if (!table->entry) {
3036 rc = -ENOMEM;
3037 goto fail;
3038 }
3039
3040 efx->filter_state = table;
3041 init_waitqueue_head(&table->waitq);
3042 return 0;
3043
3044fail:
3045 kfree(table);
3046 return rc;
3047}
3048
3049static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3050{
3051 struct efx_ef10_filter_table *table = efx->filter_state;
3052 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3053 struct efx_filter_spec *spec;
3054 unsigned int filter_idx;
3055 bool failed = false;
3056 int rc;
3057
3058 if (!nic_data->must_restore_filters)
3059 return;
3060
3061 spin_lock_bh(&efx->filter_lock);
3062
3063 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3064 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3065 if (!spec)
3066 continue;
3067
3068 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3069 spin_unlock_bh(&efx->filter_lock);
3070
3071 rc = efx_ef10_filter_push(efx, spec,
3072 &table->entry[filter_idx].handle,
3073 false);
3074 if (rc)
3075 failed = true;
3076
3077 spin_lock_bh(&efx->filter_lock);
3078 if (rc) {
3079 kfree(spec);
3080 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3081 } else {
3082 table->entry[filter_idx].spec &=
3083 ~EFX_EF10_FILTER_FLAG_BUSY;
3084 }
3085 }
3086
3087 spin_unlock_bh(&efx->filter_lock);
3088
3089 if (failed)
3090 netif_err(efx, hw, efx->net_dev,
3091 "unable to restore all filters\n");
3092 else
3093 nic_data->must_restore_filters = false;
3094}
3095
3096static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3097{
3098 struct efx_ef10_filter_table *table = efx->filter_state;
3099 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3100 struct efx_filter_spec *spec;
3101 unsigned int filter_idx;
3102 int rc;
3103
3104 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3105 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3106 if (!spec)
3107 continue;
3108
3109 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3110 efx_ef10_filter_is_exclusive(spec) ?
3111 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3112 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3113 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3114 table->entry[filter_idx].handle);
3115 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3116 NULL, 0, NULL);
3117 if (rc)
3118 netdev_WARN(efx->net_dev,
3119 "filter_idx=%#x handle=%#llx\n",
3120 filter_idx,
3121 table->entry[filter_idx].handle);
3122 kfree(spec);
3123 }
3124
3125 vfree(table->entry);
3126 kfree(table);
3127}
3128
3129static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3130{
3131 struct efx_ef10_filter_table *table = efx->filter_state;
3132 struct net_device *net_dev = efx->net_dev;
3133 struct efx_filter_spec spec;
3134 bool remove_failed = false;
3135 struct netdev_hw_addr *uc;
3136 struct netdev_hw_addr *mc;
3137 unsigned int filter_idx;
3138 int i, n, rc;
3139
3140 if (!efx_dev_registered(efx))
3141 return;
3142
3143 /* Mark old filters that may need to be removed */
3144 spin_lock_bh(&efx->filter_lock);
3145 n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3146 for (i = 0; i < n; i++) {
3147 filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3148 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3149 }
3150 n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3151 for (i = 0; i < n; i++) {
3152 filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3153 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3154 }
3155 spin_unlock_bh(&efx->filter_lock);
3156
3157 /* Copy/convert the address lists; add the primary station
3158 * address and broadcast address
3159 */
3160 netif_addr_lock_bh(net_dev);
3161 if (net_dev->flags & IFF_PROMISC ||
3162 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3163 table->dev_uc_count = -1;
3164 } else {
3165 table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3166 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3167 i = 1;
3168 netdev_for_each_uc_addr(uc, net_dev) {
3169 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3170 i++;
3171 }
3172 }
3173 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3174 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3175 table->dev_mc_count = -1;
3176 } else {
3177 table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3178 eth_broadcast_addr(table->dev_mc_list[0].addr);
3179 i = 1;
3180 netdev_for_each_mc_addr(mc, net_dev) {
3181 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3182 i++;
3183 }
3184 }
3185 netif_addr_unlock_bh(net_dev);
3186
3187 /* Insert/renew unicast filters */
3188 if (table->dev_uc_count >= 0) {
3189 for (i = 0; i < table->dev_uc_count; i++) {
3190 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3191 EFX_FILTER_FLAG_RX_RSS,
3192 0);
3193 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3194 table->dev_uc_list[i].addr);
3195 rc = efx_ef10_filter_insert(efx, &spec, true);
3196 if (rc < 0) {
3197 /* Fall back to unicast-promisc */
3198 while (i--)
3199 efx_ef10_filter_remove_safe(
3200 efx, EFX_FILTER_PRI_AUTO,
3201 table->dev_uc_list[i].id);
3202 table->dev_uc_count = -1;
3203 break;
3204 }
3205 table->dev_uc_list[i].id = rc;
3206 }
3207 }
3208 if (table->dev_uc_count < 0) {
3209 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3210 EFX_FILTER_FLAG_RX_RSS,
3211 0);
3212 efx_filter_set_uc_def(&spec);
3213 rc = efx_ef10_filter_insert(efx, &spec, true);
3214 if (rc < 0) {
3215 WARN_ON(1);
3216 table->dev_uc_count = 0;
3217 } else {
3218 table->dev_uc_list[0].id = rc;
3219 }
3220 }
3221
3222 /* Insert/renew multicast filters */
3223 if (table->dev_mc_count >= 0) {
3224 for (i = 0; i < table->dev_mc_count; i++) {
3225 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3226 EFX_FILTER_FLAG_RX_RSS,
3227 0);
3228 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3229 table->dev_mc_list[i].addr);
3230 rc = efx_ef10_filter_insert(efx, &spec, true);
3231 if (rc < 0) {
3232 /* Fall back to multicast-promisc */
3233 while (i--)
3234 efx_ef10_filter_remove_safe(
3235 efx, EFX_FILTER_PRI_AUTO,
3236 table->dev_mc_list[i].id);
3237 table->dev_mc_count = -1;
3238 break;
3239 }
3240 table->dev_mc_list[i].id = rc;
3241 }
3242 }
3243 if (table->dev_mc_count < 0) {
3244 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3245 EFX_FILTER_FLAG_RX_RSS,
3246 0);
3247 efx_filter_set_mc_def(&spec);
3248 rc = efx_ef10_filter_insert(efx, &spec, true);
3249 if (rc < 0) {
3250 WARN_ON(1);
3251 table->dev_mc_count = 0;
3252 } else {
3253 table->dev_mc_list[0].id = rc;
3254 }
3255 }
3256
3257 /* Remove filters that weren't renewed. Since nothing else
3258 * changes the AUTO_OLD flag or removes these filters, we
3259 * don't need to hold the filter_lock while scanning for
3260 * these filters.
3261 */
3262 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3263 if (ACCESS_ONCE(table->entry[i].spec) &
3264 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3265 if (efx_ef10_filter_remove_internal(
3266 efx, 1U << EFX_FILTER_PRI_AUTO,
3267 i, true) < 0)
3268 remove_failed = true;
3269 }
3270 }
3271 WARN_ON(remove_failed);
3272}
3273
3274static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3275{
3276 efx_ef10_filter_sync_rx_mode(efx);
3277
3278 return efx_mcdi_set_mac(efx);
3279}
3280
3281static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3282{
3283 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3284
3285 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3286 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3287 NULL, 0, NULL);
3288}
3289
3290/* MC BISTs follow a different poll mechanism to phy BISTs.
3291 * The BIST is done in the poll handler on the MC, and the MCDI command
3292 * will block until the BIST is done.
3293 */
3294static int efx_ef10_poll_bist(struct efx_nic *efx)
3295{
3296 int rc;
3297 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3298 size_t outlen;
3299 u32 result;
3300
3301 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3302 outbuf, sizeof(outbuf), &outlen);
3303 if (rc != 0)
3304 return rc;
3305
3306 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3307 return -EIO;
3308
3309 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3310 switch (result) {
3311 case MC_CMD_POLL_BIST_PASSED:
3312 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3313 return 0;
3314 case MC_CMD_POLL_BIST_TIMEOUT:
3315 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3316 return -EIO;
3317 case MC_CMD_POLL_BIST_FAILED:
3318 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3319 return -EIO;
3320 default:
3321 netif_err(efx, hw, efx->net_dev,
3322 "BIST returned unknown result %u", result);
3323 return -EIO;
3324 }
3325}
3326
3327static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3328{
3329 int rc;
3330
3331 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3332
3333 rc = efx_ef10_start_bist(efx, bist_type);
3334 if (rc != 0)
3335 return rc;
3336
3337 return efx_ef10_poll_bist(efx);
3338}
3339
3340static int
3341efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3342{
3343 int rc, rc2;
3344
3345 efx_reset_down(efx, RESET_TYPE_WORLD);
3346
3347 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3348 NULL, 0, NULL, 0, NULL);
3349 if (rc != 0)
3350 goto out;
3351
3352 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3353 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3354
3355 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3356
3357out:
3358 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3359 return rc ? rc : rc2;
3360}
3361
3362#ifdef CONFIG_SFC_MTD
3363
3364struct efx_ef10_nvram_type_info {
3365 u16 type, type_mask;
3366 u8 port;
3367 const char *name;
3368};
3369
3370static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3371 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3372 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3373 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3374 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3375 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3376 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3377 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3378 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3379 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3380 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3381 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3382};
3383
3384static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3385 struct efx_mcdi_mtd_partition *part,
3386 unsigned int type)
3387{
3388 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3389 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3390 const struct efx_ef10_nvram_type_info *info;
3391 size_t size, erase_size, outlen;
3392 bool protected;
3393 int rc;
3394
3395 for (info = efx_ef10_nvram_types; ; info++) {
3396 if (info ==
3397 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3398 return -ENODEV;
3399 if ((type & ~info->type_mask) == info->type)
3400 break;
3401 }
3402 if (info->port != efx_port_num(efx))
3403 return -ENODEV;
3404
3405 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3406 if (rc)
3407 return rc;
3408 if (protected)
3409 return -ENODEV; /* hide it */
3410
3411 part->nvram_type = type;
3412
3413 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3414 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3415 outbuf, sizeof(outbuf), &outlen);
3416 if (rc)
3417 return rc;
3418 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3419 return -EIO;
3420 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3421 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3422 part->fw_subtype = MCDI_DWORD(outbuf,
3423 NVRAM_METADATA_OUT_SUBTYPE);
3424
3425 part->common.dev_type_name = "EF10 NVRAM manager";
3426 part->common.type_name = info->name;
3427
3428 part->common.mtd.type = MTD_NORFLASH;
3429 part->common.mtd.flags = MTD_CAP_NORFLASH;
3430 part->common.mtd.size = size;
3431 part->common.mtd.erasesize = erase_size;
3432
3433 return 0;
3434}
3435
3436static int efx_ef10_mtd_probe(struct efx_nic *efx)
3437{
3438 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3439 struct efx_mcdi_mtd_partition *parts;
3440 size_t outlen, n_parts_total, i, n_parts;
3441 unsigned int type;
3442 int rc;
3443
3444 ASSERT_RTNL();
3445
3446 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3447 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3448 outbuf, sizeof(outbuf), &outlen);
3449 if (rc)
3450 return rc;
3451 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3452 return -EIO;
3453
3454 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3455 if (n_parts_total >
3456 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3457 return -EIO;
3458
3459 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3460 if (!parts)
3461 return -ENOMEM;
3462
3463 n_parts = 0;
3464 for (i = 0; i < n_parts_total; i++) {
3465 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3466 i);
3467 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3468 if (rc == 0)
3469 n_parts++;
3470 else if (rc != -ENODEV)
3471 goto fail;
3472 }
3473
3474 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3475fail:
3476 if (rc)
3477 kfree(parts);
3478 return rc;
3479}
3480
3481#endif /* CONFIG_SFC_MTD */
3482
3483static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3484{
3485 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3486}
3487
3488static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3489 bool temp)
3490{
3491 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3492 int rc;
3493
3494 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3495 channel->sync_events_state == SYNC_EVENTS_VALID ||
3496 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3497 return 0;
3498 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3499
3500 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3501 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3502 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3503 channel->channel);
3504
3505 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3506 inbuf, sizeof(inbuf), NULL, 0, NULL);
3507
3508 if (rc != 0)
3509 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3510 SYNC_EVENTS_DISABLED;
3511
3512 return rc;
3513}
3514
3515static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3516 bool temp)
3517{
3518 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3519 int rc;
3520
3521 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3522 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3523 return 0;
3524 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3525 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3526 return 0;
3527 }
3528 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3529 SYNC_EVENTS_DISABLED;
3530
3531 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3532 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3533 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3534 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3535 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3536 channel->channel);
3537
3538 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3539 inbuf, sizeof(inbuf), NULL, 0, NULL);
3540
3541 return rc;
3542}
3543
3544static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3545 bool temp)
3546{
3547 int (*set)(struct efx_channel *channel, bool temp);
3548 struct efx_channel *channel;
3549
3550 set = en ?
3551 efx_ef10_rx_enable_timestamping :
3552 efx_ef10_rx_disable_timestamping;
3553
3554 efx_for_each_channel(channel, efx) {
3555 int rc = set(channel, temp);
3556 if (en && rc != 0) {
3557 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3558 return rc;
3559 }
3560 }
3561
3562 return 0;
3563}
3564
3565static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3566 struct hwtstamp_config *init)
3567{
3568 int rc;
3569
3570 switch (init->rx_filter) {
3571 case HWTSTAMP_FILTER_NONE:
3572 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3573 /* if TX timestamping is still requested then leave PTP on */
3574 return efx_ptp_change_mode(efx,
3575 init->tx_type != HWTSTAMP_TX_OFF, 0);
3576 case HWTSTAMP_FILTER_ALL:
3577 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3578 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3579 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3580 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3581 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3582 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3583 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3584 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3585 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3586 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3588 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3589 init->rx_filter = HWTSTAMP_FILTER_ALL;
3590 rc = efx_ptp_change_mode(efx, true, 0);
3591 if (!rc)
3592 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3593 if (rc)
3594 efx_ptp_change_mode(efx, false, 0);
3595 return rc;
3596 default:
3597 return -ERANGE;
3598 }
3599}
3600
3601const struct efx_nic_type efx_hunt_a0_nic_type = {
3602 .mem_map_size = efx_ef10_mem_map_size,
3603 .probe = efx_ef10_probe,
3604 .remove = efx_ef10_remove,
3605 .dimension_resources = efx_ef10_dimension_resources,
3606 .init = efx_ef10_init_nic,
3607 .fini = efx_port_dummy_op_void,
3608 .map_reset_reason = efx_mcdi_map_reset_reason,
3609 .map_reset_flags = efx_ef10_map_reset_flags,
3610 .reset = efx_ef10_reset,
3611 .probe_port = efx_mcdi_port_probe,
3612 .remove_port = efx_mcdi_port_remove,
3613 .fini_dmaq = efx_ef10_fini_dmaq,
3614 .prepare_flr = efx_ef10_prepare_flr,
3615 .finish_flr = efx_port_dummy_op_void,
3616 .describe_stats = efx_ef10_describe_stats,
3617 .update_stats = efx_ef10_update_stats,
3618 .start_stats = efx_mcdi_mac_start_stats,
3619 .pull_stats = efx_mcdi_mac_pull_stats,
3620 .stop_stats = efx_mcdi_mac_stop_stats,
3621 .set_id_led = efx_mcdi_set_id_led,
3622 .push_irq_moderation = efx_ef10_push_irq_moderation,
3623 .reconfigure_mac = efx_ef10_mac_reconfigure,
3624 .check_mac_fault = efx_mcdi_mac_check_fault,
3625 .reconfigure_port = efx_mcdi_port_reconfigure,
3626 .get_wol = efx_ef10_get_wol,
3627 .set_wol = efx_ef10_set_wol,
3628 .resume_wol = efx_port_dummy_op_void,
3629 .test_chip = efx_ef10_test_chip,
3630 .test_nvram = efx_mcdi_nvram_test_all,
3631 .mcdi_request = efx_ef10_mcdi_request,
3632 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3633 .mcdi_read_response = efx_ef10_mcdi_read_response,
3634 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3635 .irq_enable_master = efx_port_dummy_op_void,
3636 .irq_test_generate = efx_ef10_irq_test_generate,
3637 .irq_disable_non_ev = efx_port_dummy_op_void,
3638 .irq_handle_msi = efx_ef10_msi_interrupt,
3639 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3640 .tx_probe = efx_ef10_tx_probe,
3641 .tx_init = efx_ef10_tx_init,
3642 .tx_remove = efx_ef10_tx_remove,
3643 .tx_write = efx_ef10_tx_write,
3644 .rx_push_rss_config = efx_ef10_rx_push_rss_config,
3645 .rx_probe = efx_ef10_rx_probe,
3646 .rx_init = efx_ef10_rx_init,
3647 .rx_remove = efx_ef10_rx_remove,
3648 .rx_write = efx_ef10_rx_write,
3649 .rx_defer_refill = efx_ef10_rx_defer_refill,
3650 .ev_probe = efx_ef10_ev_probe,
3651 .ev_init = efx_ef10_ev_init,
3652 .ev_fini = efx_ef10_ev_fini,
3653 .ev_remove = efx_ef10_ev_remove,
3654 .ev_process = efx_ef10_ev_process,
3655 .ev_read_ack = efx_ef10_ev_read_ack,
3656 .ev_test_generate = efx_ef10_ev_test_generate,
3657 .filter_table_probe = efx_ef10_filter_table_probe,
3658 .filter_table_restore = efx_ef10_filter_table_restore,
3659 .filter_table_remove = efx_ef10_filter_table_remove,
3660 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3661 .filter_insert = efx_ef10_filter_insert,
3662 .filter_remove_safe = efx_ef10_filter_remove_safe,
3663 .filter_get_safe = efx_ef10_filter_get_safe,
3664 .filter_clear_rx = efx_ef10_filter_clear_rx,
3665 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3666 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3667 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3668#ifdef CONFIG_RFS_ACCEL
3669 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3670 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3671#endif
3672#ifdef CONFIG_SFC_MTD
3673 .mtd_probe = efx_ef10_mtd_probe,
3674 .mtd_rename = efx_mcdi_mtd_rename,
3675 .mtd_read = efx_mcdi_mtd_read,
3676 .mtd_erase = efx_mcdi_mtd_erase,
3677 .mtd_write = efx_mcdi_mtd_write,
3678 .mtd_sync = efx_mcdi_mtd_sync,
3679#endif
3680 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3681 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3682 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3683
3684 .revision = EFX_REV_HUNT_A0,
3685 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3686 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3687 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3688 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3689 .can_rx_scatter = true,
3690 .always_rx_scatter = true,
3691 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3692 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3693 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3694 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3695 .mcdi_max_ver = 2,
3696 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3697 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3698 1 << HWTSTAMP_FILTER_ALL,
3699};
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7#include "net_driver.h"
8#include "ef10_regs.h"
9#include "io.h"
10#include "mcdi.h"
11#include "mcdi_pcol.h"
12#include "nic.h"
13#include "workarounds.h"
14#include "selftest.h"
15#include "ef10_sriov.h"
16#include <linux/in.h>
17#include <linux/jhash.h>
18#include <linux/wait.h>
19#include <linux/workqueue.h>
20
21/* Hardware control for EF10 architecture including 'Huntington'. */
22
23#define EFX_EF10_DRVGEN_EV 7
24enum {
25 EFX_EF10_TEST = 1,
26 EFX_EF10_REFILL,
27};
28/* The maximum size of a shared RSS context */
29/* TODO: this should really be from the mcdi protocol export */
30#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
31
32/* The filter table(s) are managed by firmware and we have write-only
33 * access. When removing filters we must identify them to the
34 * firmware by a 64-bit handle, but this is too wide for Linux kernel
35 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
36 * be able to tell in advance whether a requested insertion will
37 * replace an existing filter. Therefore we maintain a software hash
38 * table, which should be at least as large as the hardware hash
39 * table.
40 *
41 * Huntington has a single 8K filter table shared between all filter
42 * types and both ports.
43 */
44#define HUNT_FILTER_TBL_ROWS 8192
45
46#define EFX_EF10_FILTER_ID_INVALID 0xffff
47
48#define EFX_EF10_FILTER_DEV_UC_MAX 32
49#define EFX_EF10_FILTER_DEV_MC_MAX 256
50
51/* VLAN list entry */
52struct efx_ef10_vlan {
53 struct list_head list;
54 u16 vid;
55};
56
57enum efx_ef10_default_filters {
58 EFX_EF10_BCAST,
59 EFX_EF10_UCDEF,
60 EFX_EF10_MCDEF,
61 EFX_EF10_VXLAN4_UCDEF,
62 EFX_EF10_VXLAN4_MCDEF,
63 EFX_EF10_VXLAN6_UCDEF,
64 EFX_EF10_VXLAN6_MCDEF,
65 EFX_EF10_NVGRE4_UCDEF,
66 EFX_EF10_NVGRE4_MCDEF,
67 EFX_EF10_NVGRE6_UCDEF,
68 EFX_EF10_NVGRE6_MCDEF,
69 EFX_EF10_GENEVE4_UCDEF,
70 EFX_EF10_GENEVE4_MCDEF,
71 EFX_EF10_GENEVE6_UCDEF,
72 EFX_EF10_GENEVE6_MCDEF,
73
74 EFX_EF10_NUM_DEFAULT_FILTERS
75};
76
77/* Per-VLAN filters information */
78struct efx_ef10_filter_vlan {
79 struct list_head list;
80 u16 vid;
81 u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
82 u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
83 u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
84};
85
86struct efx_ef10_dev_addr {
87 u8 addr[ETH_ALEN];
88};
89
90struct efx_ef10_filter_table {
91/* The MCDI match masks supported by this fw & hw, in order of priority */
92 u32 rx_match_mcdi_flags[
93 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
94 unsigned int rx_match_count;
95
96 struct rw_semaphore lock; /* Protects entries */
97 struct {
98 unsigned long spec; /* pointer to spec plus flag bits */
99/* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
100/* unused flag 1UL */
101#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
102#define EFX_EF10_FILTER_FLAGS 3UL
103 u64 handle; /* firmware handle */
104 } *entry;
105/* Shadow of net_device address lists, guarded by mac_lock */
106 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
107 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
108 int dev_uc_count;
109 int dev_mc_count;
110 bool uc_promisc;
111 bool mc_promisc;
112/* Whether in multicast promiscuous mode when last changed */
113 bool mc_promisc_last;
114 bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
115 bool vlan_filter;
116 struct list_head vlan_list;
117};
118
119/* An arbitrary search limit for the software hash table */
120#define EFX_EF10_FILTER_SEARCH_LIMIT 200
121
122static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
123static void efx_ef10_filter_table_remove(struct efx_nic *efx);
124static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
125static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
126 struct efx_ef10_filter_vlan *vlan);
127static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
128static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
129
130static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
131{
132 WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
133 return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
134}
135
136static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
137{
138 return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
139}
140
141static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
142{
143 return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
144}
145
146static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
147{
148 efx_dword_t reg;
149
150 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
151 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
152 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
153}
154
155/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
156 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
157 * bar; PFs use BAR 0/1 for memory.
158 */
159static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
160{
161 switch (efx->pci_dev->device) {
162 case 0x0b03: /* SFC9250 PF */
163 return 0;
164 default:
165 return 2;
166 }
167}
168
169/* All VFs use BAR 0/1 for memory */
170static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
171{
172 return 0;
173}
174
175static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
176{
177 int bar;
178
179 bar = efx->type->mem_bar(efx);
180 return resource_size(&efx->pci_dev->resource[bar]);
181}
182
183static bool efx_ef10_is_vf(struct efx_nic *efx)
184{
185 return efx->type->is_vf;
186}
187
188static int efx_ef10_get_pf_index(struct efx_nic *efx)
189{
190 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
191 struct efx_ef10_nic_data *nic_data = efx->nic_data;
192 size_t outlen;
193 int rc;
194
195 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
196 sizeof(outbuf), &outlen);
197 if (rc)
198 return rc;
199 if (outlen < sizeof(outbuf))
200 return -EIO;
201
202 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
203 return 0;
204}
205
206#ifdef CONFIG_SFC_SRIOV
207static int efx_ef10_get_vf_index(struct efx_nic *efx)
208{
209 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
210 struct efx_ef10_nic_data *nic_data = efx->nic_data;
211 size_t outlen;
212 int rc;
213
214 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
215 sizeof(outbuf), &outlen);
216 if (rc)
217 return rc;
218 if (outlen < sizeof(outbuf))
219 return -EIO;
220
221 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
222 return 0;
223}
224#endif
225
226static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
227{
228 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
229 struct efx_ef10_nic_data *nic_data = efx->nic_data;
230 size_t outlen;
231 int rc;
232
233 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
234
235 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
236 outbuf, sizeof(outbuf), &outlen);
237 if (rc)
238 return rc;
239 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
240 netif_err(efx, drv, efx->net_dev,
241 "unable to read datapath firmware capabilities\n");
242 return -EIO;
243 }
244
245 nic_data->datapath_caps =
246 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
247
248 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
249 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
250 GET_CAPABILITIES_V2_OUT_FLAGS2);
251 nic_data->piobuf_size = MCDI_WORD(outbuf,
252 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
253 } else {
254 nic_data->datapath_caps2 = 0;
255 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
256 }
257
258 /* record the DPCPU firmware IDs to determine VEB vswitching support.
259 */
260 nic_data->rx_dpcpu_fw_id =
261 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
262 nic_data->tx_dpcpu_fw_id =
263 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
264
265 if (!(nic_data->datapath_caps &
266 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
267 netif_err(efx, probe, efx->net_dev,
268 "current firmware does not support an RX prefix\n");
269 return -ENODEV;
270 }
271
272 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
273 u8 vi_window_mode = MCDI_BYTE(outbuf,
274 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
275
276 switch (vi_window_mode) {
277 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
278 efx->vi_stride = 8192;
279 break;
280 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
281 efx->vi_stride = 16384;
282 break;
283 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
284 efx->vi_stride = 65536;
285 break;
286 default:
287 netif_err(efx, probe, efx->net_dev,
288 "Unrecognised VI window mode %d\n",
289 vi_window_mode);
290 return -EIO;
291 }
292 netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
293 efx->vi_stride);
294 } else {
295 /* keep default VI stride */
296 netif_dbg(efx, probe, efx->net_dev,
297 "firmware did not report VI window mode, assuming vi_stride = %u\n",
298 efx->vi_stride);
299 }
300
301 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
302 efx->num_mac_stats = MCDI_WORD(outbuf,
303 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
304 netif_dbg(efx, probe, efx->net_dev,
305 "firmware reports num_mac_stats = %u\n",
306 efx->num_mac_stats);
307 } else {
308 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
309 netif_dbg(efx, probe, efx->net_dev,
310 "firmware did not report num_mac_stats, assuming %u\n",
311 efx->num_mac_stats);
312 }
313
314 return 0;
315}
316
317static void efx_ef10_read_licensed_features(struct efx_nic *efx)
318{
319 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
320 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
321 struct efx_ef10_nic_data *nic_data = efx->nic_data;
322 size_t outlen;
323 int rc;
324
325 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
326 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
327 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
328 outbuf, sizeof(outbuf), &outlen);
329 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
330 return;
331
332 nic_data->licensed_features = MCDI_QWORD(outbuf,
333 LICENSING_V3_OUT_LICENSED_FEATURES);
334}
335
336static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
337{
338 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
339 int rc;
340
341 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
342 outbuf, sizeof(outbuf), NULL);
343 if (rc)
344 return rc;
345 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
346 return rc > 0 ? rc : -ERANGE;
347}
348
349static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
350{
351 struct efx_ef10_nic_data *nic_data = efx->nic_data;
352 unsigned int implemented;
353 unsigned int enabled;
354 int rc;
355
356 nic_data->workaround_35388 = false;
357 nic_data->workaround_61265 = false;
358
359 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
360
361 if (rc == -ENOSYS) {
362 /* Firmware without GET_WORKAROUNDS - not a problem. */
363 rc = 0;
364 } else if (rc == 0) {
365 /* Bug61265 workaround is always enabled if implemented. */
366 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
367 nic_data->workaround_61265 = true;
368
369 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
370 nic_data->workaround_35388 = true;
371 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
372 /* Workaround is implemented but not enabled.
373 * Try to enable it.
374 */
375 rc = efx_mcdi_set_workaround(efx,
376 MC_CMD_WORKAROUND_BUG35388,
377 true, NULL);
378 if (rc == 0)
379 nic_data->workaround_35388 = true;
380 /* If we failed to set the workaround just carry on. */
381 rc = 0;
382 }
383 }
384
385 netif_dbg(efx, probe, efx->net_dev,
386 "workaround for bug 35388 is %sabled\n",
387 nic_data->workaround_35388 ? "en" : "dis");
388 netif_dbg(efx, probe, efx->net_dev,
389 "workaround for bug 61265 is %sabled\n",
390 nic_data->workaround_61265 ? "en" : "dis");
391
392 return rc;
393}
394
395static void efx_ef10_process_timer_config(struct efx_nic *efx,
396 const efx_dword_t *data)
397{
398 unsigned int max_count;
399
400 if (EFX_EF10_WORKAROUND_61265(efx)) {
401 efx->timer_quantum_ns = MCDI_DWORD(data,
402 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
403 efx->timer_max_ns = MCDI_DWORD(data,
404 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
405 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
406 efx->timer_quantum_ns = MCDI_DWORD(data,
407 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
408 max_count = MCDI_DWORD(data,
409 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
410 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
411 } else {
412 efx->timer_quantum_ns = MCDI_DWORD(data,
413 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
414 max_count = MCDI_DWORD(data,
415 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
416 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
417 }
418
419 netif_dbg(efx, probe, efx->net_dev,
420 "got timer properties from MC: quantum %u ns; max %u ns\n",
421 efx->timer_quantum_ns, efx->timer_max_ns);
422}
423
424static int efx_ef10_get_timer_config(struct efx_nic *efx)
425{
426 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
427 int rc;
428
429 rc = efx_ef10_get_timer_workarounds(efx);
430 if (rc)
431 return rc;
432
433 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
434 outbuf, sizeof(outbuf), NULL);
435
436 if (rc == 0) {
437 efx_ef10_process_timer_config(efx, outbuf);
438 } else if (rc == -ENOSYS || rc == -EPERM) {
439 /* Not available - fall back to Huntington defaults. */
440 unsigned int quantum;
441
442 rc = efx_ef10_get_sysclk_freq(efx);
443 if (rc < 0)
444 return rc;
445
446 quantum = 1536000 / rc; /* 1536 cycles */
447 efx->timer_quantum_ns = quantum;
448 efx->timer_max_ns = efx->type->timer_period_max * quantum;
449 rc = 0;
450 } else {
451 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
452 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
453 NULL, 0, rc);
454 }
455
456 return rc;
457}
458
459static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
460{
461 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
462 size_t outlen;
463 int rc;
464
465 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
466
467 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
468 outbuf, sizeof(outbuf), &outlen);
469 if (rc)
470 return rc;
471 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
472 return -EIO;
473
474 ether_addr_copy(mac_address,
475 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
476 return 0;
477}
478
479static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
480{
481 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
482 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
483 size_t outlen;
484 int num_addrs, rc;
485
486 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
487 EVB_PORT_ID_ASSIGNED);
488 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
489 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
490
491 if (rc)
492 return rc;
493 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
494 return -EIO;
495
496 num_addrs = MCDI_DWORD(outbuf,
497 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
498
499 WARN_ON(num_addrs != 1);
500
501 ether_addr_copy(mac_address,
502 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
503
504 return 0;
505}
506
507static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
508 struct device_attribute *attr,
509 char *buf)
510{
511 struct efx_nic *efx = dev_get_drvdata(dev);
512
513 return sprintf(buf, "%d\n",
514 ((efx->mcdi->fn_flags) &
515 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
516 ? 1 : 0);
517}
518
519static ssize_t efx_ef10_show_primary_flag(struct device *dev,
520 struct device_attribute *attr,
521 char *buf)
522{
523 struct efx_nic *efx = dev_get_drvdata(dev);
524
525 return sprintf(buf, "%d\n",
526 ((efx->mcdi->fn_flags) &
527 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
528 ? 1 : 0);
529}
530
531static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
532{
533 struct efx_ef10_nic_data *nic_data = efx->nic_data;
534 struct efx_ef10_vlan *vlan;
535
536 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
537
538 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
539 if (vlan->vid == vid)
540 return vlan;
541 }
542
543 return NULL;
544}
545
546static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
547{
548 struct efx_ef10_nic_data *nic_data = efx->nic_data;
549 struct efx_ef10_vlan *vlan;
550 int rc;
551
552 mutex_lock(&nic_data->vlan_lock);
553
554 vlan = efx_ef10_find_vlan(efx, vid);
555 if (vlan) {
556 /* We add VID 0 on init. 8021q adds it on module init
557 * for all interfaces with VLAN filtring feature.
558 */
559 if (vid == 0)
560 goto done_unlock;
561 netif_warn(efx, drv, efx->net_dev,
562 "VLAN %u already added\n", vid);
563 rc = -EALREADY;
564 goto fail_exist;
565 }
566
567 rc = -ENOMEM;
568 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
569 if (!vlan)
570 goto fail_alloc;
571
572 vlan->vid = vid;
573
574 list_add_tail(&vlan->list, &nic_data->vlan_list);
575
576 if (efx->filter_state) {
577 mutex_lock(&efx->mac_lock);
578 down_write(&efx->filter_sem);
579 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
580 up_write(&efx->filter_sem);
581 mutex_unlock(&efx->mac_lock);
582 if (rc)
583 goto fail_filter_add_vlan;
584 }
585
586done_unlock:
587 mutex_unlock(&nic_data->vlan_lock);
588 return 0;
589
590fail_filter_add_vlan:
591 list_del(&vlan->list);
592 kfree(vlan);
593fail_alloc:
594fail_exist:
595 mutex_unlock(&nic_data->vlan_lock);
596 return rc;
597}
598
599static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
600 struct efx_ef10_vlan *vlan)
601{
602 struct efx_ef10_nic_data *nic_data = efx->nic_data;
603
604 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
605
606 if (efx->filter_state) {
607 down_write(&efx->filter_sem);
608 efx_ef10_filter_del_vlan(efx, vlan->vid);
609 up_write(&efx->filter_sem);
610 }
611
612 list_del(&vlan->list);
613 kfree(vlan);
614}
615
616static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
617{
618 struct efx_ef10_nic_data *nic_data = efx->nic_data;
619 struct efx_ef10_vlan *vlan;
620 int rc = 0;
621
622 /* 8021q removes VID 0 on module unload for all interfaces
623 * with VLAN filtering feature. We need to keep it to receive
624 * untagged traffic.
625 */
626 if (vid == 0)
627 return 0;
628
629 mutex_lock(&nic_data->vlan_lock);
630
631 vlan = efx_ef10_find_vlan(efx, vid);
632 if (!vlan) {
633 netif_err(efx, drv, efx->net_dev,
634 "VLAN %u to be deleted not found\n", vid);
635 rc = -ENOENT;
636 } else {
637 efx_ef10_del_vlan_internal(efx, vlan);
638 }
639
640 mutex_unlock(&nic_data->vlan_lock);
641
642 return rc;
643}
644
645static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
646{
647 struct efx_ef10_nic_data *nic_data = efx->nic_data;
648 struct efx_ef10_vlan *vlan, *next_vlan;
649
650 mutex_lock(&nic_data->vlan_lock);
651 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
652 efx_ef10_del_vlan_internal(efx, vlan);
653 mutex_unlock(&nic_data->vlan_lock);
654}
655
656static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
657 NULL);
658static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
659
660static int efx_ef10_probe(struct efx_nic *efx)
661{
662 struct efx_ef10_nic_data *nic_data;
663 int i, rc;
664
665 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
666 if (!nic_data)
667 return -ENOMEM;
668 efx->nic_data = nic_data;
669
670 /* we assume later that we can copy from this buffer in dwords */
671 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
672
673 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
674 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
675 if (rc)
676 goto fail1;
677
678 /* Get the MC's warm boot count. In case it's rebooting right
679 * now, be prepared to retry.
680 */
681 i = 0;
682 for (;;) {
683 rc = efx_ef10_get_warm_boot_count(efx);
684 if (rc >= 0)
685 break;
686 if (++i == 5)
687 goto fail2;
688 ssleep(1);
689 }
690 nic_data->warm_boot_count = rc;
691
692 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
693
694 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
695
696 /* In case we're recovering from a crash (kexec), we want to
697 * cancel any outstanding request by the previous user of this
698 * function. We send a special message using the least
699 * significant bits of the 'high' (doorbell) register.
700 */
701 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
702
703 rc = efx_mcdi_init(efx);
704 if (rc)
705 goto fail2;
706
707 mutex_init(&nic_data->udp_tunnels_lock);
708
709 /* Reset (most) configuration for this function */
710 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
711 if (rc)
712 goto fail3;
713
714 /* Enable event logging */
715 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
716 if (rc)
717 goto fail3;
718
719 rc = device_create_file(&efx->pci_dev->dev,
720 &dev_attr_link_control_flag);
721 if (rc)
722 goto fail3;
723
724 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
725 if (rc)
726 goto fail4;
727
728 rc = efx_ef10_get_pf_index(efx);
729 if (rc)
730 goto fail5;
731
732 rc = efx_ef10_init_datapath_caps(efx);
733 if (rc < 0)
734 goto fail5;
735
736 efx_ef10_read_licensed_features(efx);
737
738 /* We can have one VI for each vi_stride-byte region.
739 * However, until we use TX option descriptors we need two TX queues
740 * per channel.
741 */
742 efx->max_channels = min_t(unsigned int,
743 EFX_MAX_CHANNELS,
744 efx_ef10_mem_map_size(efx) /
745 (efx->vi_stride * EFX_TXQ_TYPES));
746 efx->max_tx_channels = efx->max_channels;
747 if (WARN_ON(efx->max_channels == 0)) {
748 rc = -EIO;
749 goto fail5;
750 }
751
752 efx->rx_packet_len_offset =
753 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
754
755 if (nic_data->datapath_caps &
756 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
757 efx->net_dev->hw_features |= NETIF_F_RXFCS;
758
759 rc = efx_mcdi_port_get_number(efx);
760 if (rc < 0)
761 goto fail5;
762 efx->port_num = rc;
763
764 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
765 if (rc)
766 goto fail5;
767
768 rc = efx_ef10_get_timer_config(efx);
769 if (rc < 0)
770 goto fail5;
771
772 rc = efx_mcdi_mon_probe(efx);
773 if (rc && rc != -EPERM)
774 goto fail5;
775
776 efx_ptp_defer_probe_with_channel(efx);
777
778#ifdef CONFIG_SFC_SRIOV
779 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
780 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
781 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
782
783 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
784 } else
785#endif
786 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
787
788 INIT_LIST_HEAD(&nic_data->vlan_list);
789 mutex_init(&nic_data->vlan_lock);
790
791 /* Add unspecified VID to support VLAN filtering being disabled */
792 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
793 if (rc)
794 goto fail_add_vid_unspec;
795
796 /* If VLAN filtering is enabled, we need VID 0 to get untagged
797 * traffic. It is added automatically if 8021q module is loaded,
798 * but we can't rely on it since module may be not loaded.
799 */
800 rc = efx_ef10_add_vlan(efx, 0);
801 if (rc)
802 goto fail_add_vid_0;
803
804 return 0;
805
806fail_add_vid_0:
807 efx_ef10_cleanup_vlans(efx);
808fail_add_vid_unspec:
809 mutex_destroy(&nic_data->vlan_lock);
810 efx_ptp_remove(efx);
811 efx_mcdi_mon_remove(efx);
812fail5:
813 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
814fail4:
815 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
816fail3:
817 efx_mcdi_detach(efx);
818
819 mutex_lock(&nic_data->udp_tunnels_lock);
820 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
821 (void)efx_ef10_set_udp_tnl_ports(efx, true);
822 mutex_unlock(&nic_data->udp_tunnels_lock);
823 mutex_destroy(&nic_data->udp_tunnels_lock);
824
825 efx_mcdi_fini(efx);
826fail2:
827 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
828fail1:
829 kfree(nic_data);
830 efx->nic_data = NULL;
831 return rc;
832}
833
834static int efx_ef10_free_vis(struct efx_nic *efx)
835{
836 MCDI_DECLARE_BUF_ERR(outbuf);
837 size_t outlen;
838 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
839 outbuf, sizeof(outbuf), &outlen);
840
841 /* -EALREADY means nothing to free, so ignore */
842 if (rc == -EALREADY)
843 rc = 0;
844 if (rc)
845 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
846 rc);
847 return rc;
848}
849
850#ifdef EFX_USE_PIO
851
852static void efx_ef10_free_piobufs(struct efx_nic *efx)
853{
854 struct efx_ef10_nic_data *nic_data = efx->nic_data;
855 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
856 unsigned int i;
857 int rc;
858
859 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
860
861 for (i = 0; i < nic_data->n_piobufs; i++) {
862 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
863 nic_data->piobuf_handle[i]);
864 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
865 NULL, 0, NULL);
866 WARN_ON(rc);
867 }
868
869 nic_data->n_piobufs = 0;
870}
871
872static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
873{
874 struct efx_ef10_nic_data *nic_data = efx->nic_data;
875 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
876 unsigned int i;
877 size_t outlen;
878 int rc = 0;
879
880 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
881
882 for (i = 0; i < n; i++) {
883 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
884 outbuf, sizeof(outbuf), &outlen);
885 if (rc) {
886 /* Don't display the MC error if we didn't have space
887 * for a VF.
888 */
889 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
890 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
891 0, outbuf, outlen, rc);
892 break;
893 }
894 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
895 rc = -EIO;
896 break;
897 }
898 nic_data->piobuf_handle[i] =
899 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
900 netif_dbg(efx, probe, efx->net_dev,
901 "allocated PIO buffer %u handle %x\n", i,
902 nic_data->piobuf_handle[i]);
903 }
904
905 nic_data->n_piobufs = i;
906 if (rc)
907 efx_ef10_free_piobufs(efx);
908 return rc;
909}
910
911static int efx_ef10_link_piobufs(struct efx_nic *efx)
912{
913 struct efx_ef10_nic_data *nic_data = efx->nic_data;
914 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
915 struct efx_channel *channel;
916 struct efx_tx_queue *tx_queue;
917 unsigned int offset, index;
918 int rc;
919
920 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
921 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
922
923 /* Link a buffer to each VI in the write-combining mapping */
924 for (index = 0; index < nic_data->n_piobufs; ++index) {
925 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
926 nic_data->piobuf_handle[index]);
927 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
928 nic_data->pio_write_vi_base + index);
929 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
930 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
931 NULL, 0, NULL);
932 if (rc) {
933 netif_err(efx, drv, efx->net_dev,
934 "failed to link VI %u to PIO buffer %u (%d)\n",
935 nic_data->pio_write_vi_base + index, index,
936 rc);
937 goto fail;
938 }
939 netif_dbg(efx, probe, efx->net_dev,
940 "linked VI %u to PIO buffer %u\n",
941 nic_data->pio_write_vi_base + index, index);
942 }
943
944 /* Link a buffer to each TX queue */
945 efx_for_each_channel(channel, efx) {
946 /* Extra channels, even those with TXQs (PTP), do not require
947 * PIO resources.
948 */
949 if (!channel->type->want_pio)
950 continue;
951 efx_for_each_channel_tx_queue(tx_queue, channel) {
952 /* We assign the PIO buffers to queues in
953 * reverse order to allow for the following
954 * special case.
955 */
956 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
957 tx_queue->channel->channel - 1) *
958 efx_piobuf_size);
959 index = offset / nic_data->piobuf_size;
960 offset = offset % nic_data->piobuf_size;
961
962 /* When the host page size is 4K, the first
963 * host page in the WC mapping may be within
964 * the same VI page as the last TX queue. We
965 * can only link one buffer to each VI.
966 */
967 if (tx_queue->queue == nic_data->pio_write_vi_base) {
968 BUG_ON(index != 0);
969 rc = 0;
970 } else {
971 MCDI_SET_DWORD(inbuf,
972 LINK_PIOBUF_IN_PIOBUF_HANDLE,
973 nic_data->piobuf_handle[index]);
974 MCDI_SET_DWORD(inbuf,
975 LINK_PIOBUF_IN_TXQ_INSTANCE,
976 tx_queue->queue);
977 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
978 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
979 NULL, 0, NULL);
980 }
981
982 if (rc) {
983 /* This is non-fatal; the TX path just
984 * won't use PIO for this queue
985 */
986 netif_err(efx, drv, efx->net_dev,
987 "failed to link VI %u to PIO buffer %u (%d)\n",
988 tx_queue->queue, index, rc);
989 tx_queue->piobuf = NULL;
990 } else {
991 tx_queue->piobuf =
992 nic_data->pio_write_base +
993 index * efx->vi_stride + offset;
994 tx_queue->piobuf_offset = offset;
995 netif_dbg(efx, probe, efx->net_dev,
996 "linked VI %u to PIO buffer %u offset %x addr %p\n",
997 tx_queue->queue, index,
998 tx_queue->piobuf_offset,
999 tx_queue->piobuf);
1000 }
1001 }
1002 }
1003
1004 return 0;
1005
1006fail:
1007 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
1008 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1009 */
1010 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1011 while (index--) {
1012 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1013 nic_data->pio_write_vi_base + index);
1014 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1015 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1016 NULL, 0, NULL);
1017 }
1018 return rc;
1019}
1020
1021static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1022{
1023 struct efx_channel *channel;
1024 struct efx_tx_queue *tx_queue;
1025
1026 /* All our existing PIO buffers went away */
1027 efx_for_each_channel(channel, efx)
1028 efx_for_each_channel_tx_queue(tx_queue, channel)
1029 tx_queue->piobuf = NULL;
1030}
1031
1032#else /* !EFX_USE_PIO */
1033
1034static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1035{
1036 return n == 0 ? 0 : -ENOBUFS;
1037}
1038
1039static int efx_ef10_link_piobufs(struct efx_nic *efx)
1040{
1041 return 0;
1042}
1043
1044static void efx_ef10_free_piobufs(struct efx_nic *efx)
1045{
1046}
1047
1048static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1049{
1050}
1051
1052#endif /* EFX_USE_PIO */
1053
1054static void efx_ef10_remove(struct efx_nic *efx)
1055{
1056 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057 int rc;
1058
1059#ifdef CONFIG_SFC_SRIOV
1060 struct efx_ef10_nic_data *nic_data_pf;
1061 struct pci_dev *pci_dev_pf;
1062 struct efx_nic *efx_pf;
1063 struct ef10_vf *vf;
1064
1065 if (efx->pci_dev->is_virtfn) {
1066 pci_dev_pf = efx->pci_dev->physfn;
1067 if (pci_dev_pf) {
1068 efx_pf = pci_get_drvdata(pci_dev_pf);
1069 nic_data_pf = efx_pf->nic_data;
1070 vf = nic_data_pf->vf + nic_data->vf_index;
1071 vf->efx = NULL;
1072 } else
1073 netif_info(efx, drv, efx->net_dev,
1074 "Could not get the PF id from VF\n");
1075 }
1076#endif
1077
1078 efx_ef10_cleanup_vlans(efx);
1079 mutex_destroy(&nic_data->vlan_lock);
1080
1081 efx_ptp_remove(efx);
1082
1083 efx_mcdi_mon_remove(efx);
1084
1085 efx_ef10_rx_free_indir_table(efx);
1086
1087 if (nic_data->wc_membase)
1088 iounmap(nic_data->wc_membase);
1089
1090 rc = efx_ef10_free_vis(efx);
1091 WARN_ON(rc != 0);
1092
1093 if (!nic_data->must_restore_piobufs)
1094 efx_ef10_free_piobufs(efx);
1095
1096 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1097 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1098
1099 efx_mcdi_detach(efx);
1100
1101 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1102 mutex_lock(&nic_data->udp_tunnels_lock);
1103 (void)efx_ef10_set_udp_tnl_ports(efx, true);
1104 mutex_unlock(&nic_data->udp_tunnels_lock);
1105
1106 mutex_destroy(&nic_data->udp_tunnels_lock);
1107
1108 efx_mcdi_fini(efx);
1109 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1110 kfree(nic_data);
1111}
1112
1113static int efx_ef10_probe_pf(struct efx_nic *efx)
1114{
1115 return efx_ef10_probe(efx);
1116}
1117
1118int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1119 u32 *port_flags, u32 *vadaptor_flags,
1120 unsigned int *vlan_tags)
1121{
1122 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1123 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1124 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1125 size_t outlen;
1126 int rc;
1127
1128 if (nic_data->datapath_caps &
1129 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1130 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1131 port_id);
1132
1133 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1134 outbuf, sizeof(outbuf), &outlen);
1135 if (rc)
1136 return rc;
1137
1138 if (outlen < sizeof(outbuf)) {
1139 rc = -EIO;
1140 return rc;
1141 }
1142 }
1143
1144 if (port_flags)
1145 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1146 if (vadaptor_flags)
1147 *vadaptor_flags =
1148 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1149 if (vlan_tags)
1150 *vlan_tags =
1151 MCDI_DWORD(outbuf,
1152 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1153
1154 return 0;
1155}
1156
1157int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1158{
1159 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1160
1161 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1162 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1163 NULL, 0, NULL);
1164}
1165
1166int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1167{
1168 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1169
1170 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1171 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1172 NULL, 0, NULL);
1173}
1174
1175int efx_ef10_vport_add_mac(struct efx_nic *efx,
1176 unsigned int port_id, u8 *mac)
1177{
1178 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1179
1180 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1181 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1182
1183 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1184 sizeof(inbuf), NULL, 0, NULL);
1185}
1186
1187int efx_ef10_vport_del_mac(struct efx_nic *efx,
1188 unsigned int port_id, u8 *mac)
1189{
1190 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1191
1192 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1193 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1194
1195 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1196 sizeof(inbuf), NULL, 0, NULL);
1197}
1198
1199#ifdef CONFIG_SFC_SRIOV
1200static int efx_ef10_probe_vf(struct efx_nic *efx)
1201{
1202 int rc;
1203 struct pci_dev *pci_dev_pf;
1204
1205 /* If the parent PF has no VF data structure, it doesn't know about this
1206 * VF so fail probe. The VF needs to be re-created. This can happen
1207 * if the PF driver is unloaded while the VF is assigned to a guest.
1208 */
1209 pci_dev_pf = efx->pci_dev->physfn;
1210 if (pci_dev_pf) {
1211 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1212 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1213
1214 if (!nic_data_pf->vf) {
1215 netif_info(efx, drv, efx->net_dev,
1216 "The VF cannot link to its parent PF; "
1217 "please destroy and re-create the VF\n");
1218 return -EBUSY;
1219 }
1220 }
1221
1222 rc = efx_ef10_probe(efx);
1223 if (rc)
1224 return rc;
1225
1226 rc = efx_ef10_get_vf_index(efx);
1227 if (rc)
1228 goto fail;
1229
1230 if (efx->pci_dev->is_virtfn) {
1231 if (efx->pci_dev->physfn) {
1232 struct efx_nic *efx_pf =
1233 pci_get_drvdata(efx->pci_dev->physfn);
1234 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1235 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1236
1237 nic_data_p->vf[nic_data->vf_index].efx = efx;
1238 nic_data_p->vf[nic_data->vf_index].pci_dev =
1239 efx->pci_dev;
1240 } else
1241 netif_info(efx, drv, efx->net_dev,
1242 "Could not get the PF id from VF\n");
1243 }
1244
1245 return 0;
1246
1247fail:
1248 efx_ef10_remove(efx);
1249 return rc;
1250}
1251#else
1252static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1253{
1254 return 0;
1255}
1256#endif
1257
1258static int efx_ef10_alloc_vis(struct efx_nic *efx,
1259 unsigned int min_vis, unsigned int max_vis)
1260{
1261 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1262 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1263 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1264 size_t outlen;
1265 int rc;
1266
1267 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1268 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1269 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1270 outbuf, sizeof(outbuf), &outlen);
1271 if (rc != 0)
1272 return rc;
1273
1274 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1275 return -EIO;
1276
1277 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1278 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1279
1280 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1281 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1282 return 0;
1283}
1284
1285/* Note that the failure path of this function does not free
1286 * resources, as this will be done by efx_ef10_remove().
1287 */
1288static int efx_ef10_dimension_resources(struct efx_nic *efx)
1289{
1290 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1291 unsigned int uc_mem_map_size, wc_mem_map_size;
1292 unsigned int min_vis = max(EFX_TXQ_TYPES,
1293 efx_separate_tx_channels ? 2 : 1);
1294 unsigned int channel_vis, pio_write_vi_base, max_vis;
1295 void __iomem *membase;
1296 int rc;
1297
1298 channel_vis = max(efx->n_channels,
1299 (efx->n_tx_channels + efx->n_extra_tx_channels) *
1300 EFX_TXQ_TYPES);
1301
1302#ifdef EFX_USE_PIO
1303 /* Try to allocate PIO buffers if wanted and if the full
1304 * number of PIO buffers would be sufficient to allocate one
1305 * copy-buffer per TX channel. Failure is non-fatal, as there
1306 * are only a small number of PIO buffers shared between all
1307 * functions of the controller.
1308 */
1309 if (efx_piobuf_size != 0 &&
1310 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1311 efx->n_tx_channels) {
1312 unsigned int n_piobufs =
1313 DIV_ROUND_UP(efx->n_tx_channels,
1314 nic_data->piobuf_size / efx_piobuf_size);
1315
1316 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1317 if (rc == -ENOSPC)
1318 netif_dbg(efx, probe, efx->net_dev,
1319 "out of PIO buffers; cannot allocate more\n");
1320 else if (rc == -EPERM)
1321 netif_dbg(efx, probe, efx->net_dev,
1322 "not permitted to allocate PIO buffers\n");
1323 else if (rc)
1324 netif_err(efx, probe, efx->net_dev,
1325 "failed to allocate PIO buffers (%d)\n", rc);
1326 else
1327 netif_dbg(efx, probe, efx->net_dev,
1328 "allocated %u PIO buffers\n", n_piobufs);
1329 }
1330#else
1331 nic_data->n_piobufs = 0;
1332#endif
1333
1334 /* PIO buffers should be mapped with write-combining enabled,
1335 * and we want to make single UC and WC mappings rather than
1336 * several of each (in fact that's the only option if host
1337 * page size is >4K). So we may allocate some extra VIs just
1338 * for writing PIO buffers through.
1339 *
1340 * The UC mapping contains (channel_vis - 1) complete VIs and the
1341 * first 4K of the next VI. Then the WC mapping begins with
1342 * the remainder of this last VI.
1343 */
1344 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1345 ER_DZ_TX_PIOBUF);
1346 if (nic_data->n_piobufs) {
1347 /* pio_write_vi_base rounds down to give the number of complete
1348 * VIs inside the UC mapping.
1349 */
1350 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1351 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1352 nic_data->n_piobufs) *
1353 efx->vi_stride) -
1354 uc_mem_map_size);
1355 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1356 } else {
1357 pio_write_vi_base = 0;
1358 wc_mem_map_size = 0;
1359 max_vis = channel_vis;
1360 }
1361
1362 /* In case the last attached driver failed to free VIs, do it now */
1363 rc = efx_ef10_free_vis(efx);
1364 if (rc != 0)
1365 return rc;
1366
1367 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1368 if (rc != 0)
1369 return rc;
1370
1371 if (nic_data->n_allocated_vis < channel_vis) {
1372 netif_info(efx, drv, efx->net_dev,
1373 "Could not allocate enough VIs to satisfy RSS"
1374 " requirements. Performance may not be optimal.\n");
1375 /* We didn't get the VIs to populate our channels.
1376 * We could keep what we got but then we'd have more
1377 * interrupts than we need.
1378 * Instead calculate new max_channels and restart
1379 */
1380 efx->max_channels = nic_data->n_allocated_vis;
1381 efx->max_tx_channels =
1382 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1383
1384 efx_ef10_free_vis(efx);
1385 return -EAGAIN;
1386 }
1387
1388 /* If we didn't get enough VIs to map all the PIO buffers, free the
1389 * PIO buffers
1390 */
1391 if (nic_data->n_piobufs &&
1392 nic_data->n_allocated_vis <
1393 pio_write_vi_base + nic_data->n_piobufs) {
1394 netif_dbg(efx, probe, efx->net_dev,
1395 "%u VIs are not sufficient to map %u PIO buffers\n",
1396 nic_data->n_allocated_vis, nic_data->n_piobufs);
1397 efx_ef10_free_piobufs(efx);
1398 }
1399
1400 /* Shrink the original UC mapping of the memory BAR */
1401 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1402 if (!membase) {
1403 netif_err(efx, probe, efx->net_dev,
1404 "could not shrink memory BAR to %x\n",
1405 uc_mem_map_size);
1406 return -ENOMEM;
1407 }
1408 iounmap(efx->membase);
1409 efx->membase = membase;
1410
1411 /* Set up the WC mapping if needed */
1412 if (wc_mem_map_size) {
1413 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1414 uc_mem_map_size,
1415 wc_mem_map_size);
1416 if (!nic_data->wc_membase) {
1417 netif_err(efx, probe, efx->net_dev,
1418 "could not allocate WC mapping of size %x\n",
1419 wc_mem_map_size);
1420 return -ENOMEM;
1421 }
1422 nic_data->pio_write_vi_base = pio_write_vi_base;
1423 nic_data->pio_write_base =
1424 nic_data->wc_membase +
1425 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1426 uc_mem_map_size);
1427
1428 rc = efx_ef10_link_piobufs(efx);
1429 if (rc)
1430 efx_ef10_free_piobufs(efx);
1431 }
1432
1433 netif_dbg(efx, probe, efx->net_dev,
1434 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1435 &efx->membase_phys, efx->membase, uc_mem_map_size,
1436 nic_data->wc_membase, wc_mem_map_size);
1437
1438 return 0;
1439}
1440
1441static int efx_ef10_init_nic(struct efx_nic *efx)
1442{
1443 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1444 int rc;
1445
1446 if (nic_data->must_check_datapath_caps) {
1447 rc = efx_ef10_init_datapath_caps(efx);
1448 if (rc)
1449 return rc;
1450 nic_data->must_check_datapath_caps = false;
1451 }
1452
1453 if (nic_data->must_realloc_vis) {
1454 /* We cannot let the number of VIs change now */
1455 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1456 nic_data->n_allocated_vis);
1457 if (rc)
1458 return rc;
1459 nic_data->must_realloc_vis = false;
1460 }
1461
1462 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1463 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1464 if (rc == 0) {
1465 rc = efx_ef10_link_piobufs(efx);
1466 if (rc)
1467 efx_ef10_free_piobufs(efx);
1468 }
1469
1470 /* Log an error on failure, but this is non-fatal.
1471 * Permission errors are less important - we've presumably
1472 * had the PIO buffer licence removed.
1473 */
1474 if (rc == -EPERM)
1475 netif_dbg(efx, drv, efx->net_dev,
1476 "not permitted to restore PIO buffers\n");
1477 else if (rc)
1478 netif_err(efx, drv, efx->net_dev,
1479 "failed to restore PIO buffers (%d)\n", rc);
1480 nic_data->must_restore_piobufs = false;
1481 }
1482
1483 /* don't fail init if RSS setup doesn't work */
1484 rc = efx->type->rx_push_rss_config(efx, false,
1485 efx->rss_context.rx_indir_table, NULL);
1486
1487 return 0;
1488}
1489
1490static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1491{
1492 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1493#ifdef CONFIG_SFC_SRIOV
1494 unsigned int i;
1495#endif
1496
1497 /* All our allocations have been reset */
1498 nic_data->must_realloc_vis = true;
1499 nic_data->must_restore_rss_contexts = true;
1500 nic_data->must_restore_filters = true;
1501 nic_data->must_restore_piobufs = true;
1502 efx_ef10_forget_old_piobufs(efx);
1503 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1504
1505 /* Driver-created vswitches and vports must be re-created */
1506 nic_data->must_probe_vswitching = true;
1507 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1508#ifdef CONFIG_SFC_SRIOV
1509 if (nic_data->vf)
1510 for (i = 0; i < efx->vf_count; i++)
1511 nic_data->vf[i].vport_id = 0;
1512#endif
1513}
1514
1515static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1516{
1517 if (reason == RESET_TYPE_MC_FAILURE)
1518 return RESET_TYPE_DATAPATH;
1519
1520 return efx_mcdi_map_reset_reason(reason);
1521}
1522
1523static int efx_ef10_map_reset_flags(u32 *flags)
1524{
1525 enum {
1526 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1527 ETH_RESET_SHARED_SHIFT),
1528 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1529 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1530 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1531 ETH_RESET_SHARED_SHIFT)
1532 };
1533
1534 /* We assume for now that our PCI function is permitted to
1535 * reset everything.
1536 */
1537
1538 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1539 *flags &= ~EF10_RESET_MC;
1540 return RESET_TYPE_WORLD;
1541 }
1542
1543 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1544 *flags &= ~EF10_RESET_PORT;
1545 return RESET_TYPE_ALL;
1546 }
1547
1548 /* no invisible reset implemented */
1549
1550 return -EINVAL;
1551}
1552
1553static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1554{
1555 int rc = efx_mcdi_reset(efx, reset_type);
1556
1557 /* Unprivileged functions return -EPERM, but need to return success
1558 * here so that the datapath is brought back up.
1559 */
1560 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1561 rc = 0;
1562
1563 /* If it was a port reset, trigger reallocation of MC resources.
1564 * Note that on an MC reset nothing needs to be done now because we'll
1565 * detect the MC reset later and handle it then.
1566 * For an FLR, we never get an MC reset event, but the MC has reset all
1567 * resources assigned to us, so we have to trigger reallocation now.
1568 */
1569 if ((reset_type == RESET_TYPE_ALL ||
1570 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1571 efx_ef10_reset_mc_allocations(efx);
1572 return rc;
1573}
1574
1575#define EF10_DMA_STAT(ext_name, mcdi_name) \
1576 [EF10_STAT_ ## ext_name] = \
1577 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1578#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1579 [EF10_STAT_ ## int_name] = \
1580 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581#define EF10_OTHER_STAT(ext_name) \
1582 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1583#define GENERIC_SW_STAT(ext_name) \
1584 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1585
1586static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1587 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1588 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1589 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1590 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1591 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1592 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1593 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1594 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1595 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1596 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1597 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1598 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1599 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1600 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1601 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1602 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1603 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1604 EF10_OTHER_STAT(port_rx_good_bytes),
1605 EF10_OTHER_STAT(port_rx_bad_bytes),
1606 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1607 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1608 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1609 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1610 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1611 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1612 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1613 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1614 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1615 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1616 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1617 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1618 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1619 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1620 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1621 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1622 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1623 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1624 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1625 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1626 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1627 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1628 GENERIC_SW_STAT(rx_nodesc_trunc),
1629 GENERIC_SW_STAT(rx_noskb_drops),
1630 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1631 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1632 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1633 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1634 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1635 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1636 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1637 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1638 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1639 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1640 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1641 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1642 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1643 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1644 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1645 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1646 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1647 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1648 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1649 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1650 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1651 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1652 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1653 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1654 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1655 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1656 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1657 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1658 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1659 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1660 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1661 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1662 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1663 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1664 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1665 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1666 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1667 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1668 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1669 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1670 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1671 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1672 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1673 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1674 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1675 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1676 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1677 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1678 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1679 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1680 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1681 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1682};
1683
1684#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1685 (1ULL << EF10_STAT_port_tx_packets) | \
1686 (1ULL << EF10_STAT_port_tx_pause) | \
1687 (1ULL << EF10_STAT_port_tx_unicast) | \
1688 (1ULL << EF10_STAT_port_tx_multicast) | \
1689 (1ULL << EF10_STAT_port_tx_broadcast) | \
1690 (1ULL << EF10_STAT_port_rx_bytes) | \
1691 (1ULL << \
1692 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1693 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1694 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1695 (1ULL << EF10_STAT_port_rx_packets) | \
1696 (1ULL << EF10_STAT_port_rx_good) | \
1697 (1ULL << EF10_STAT_port_rx_bad) | \
1698 (1ULL << EF10_STAT_port_rx_pause) | \
1699 (1ULL << EF10_STAT_port_rx_control) | \
1700 (1ULL << EF10_STAT_port_rx_unicast) | \
1701 (1ULL << EF10_STAT_port_rx_multicast) | \
1702 (1ULL << EF10_STAT_port_rx_broadcast) | \
1703 (1ULL << EF10_STAT_port_rx_lt64) | \
1704 (1ULL << EF10_STAT_port_rx_64) | \
1705 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1706 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1707 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1708 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1709 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1710 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1711 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1712 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1713 (1ULL << EF10_STAT_port_rx_overflow) | \
1714 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1715 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1716 (1ULL << GENERIC_STAT_rx_noskb_drops))
1717
1718/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1719 * For a 10G/40G switchable port we do not expose these because they might
1720 * not include all the packets they should.
1721 * On 8000 series NICs these statistics are always provided.
1722 */
1723#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1724 (1ULL << EF10_STAT_port_tx_lt64) | \
1725 (1ULL << EF10_STAT_port_tx_64) | \
1726 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1727 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1728 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1729 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1730 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1731 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1732
1733/* These statistics are only provided by the 40G MAC. For a 10G/40G
1734 * switchable port we do expose these because the errors will otherwise
1735 * be silent.
1736 */
1737#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1738 (1ULL << EF10_STAT_port_rx_length_error))
1739
1740/* These statistics are only provided if the firmware supports the
1741 * capability PM_AND_RXDP_COUNTERS.
1742 */
1743#define HUNT_PM_AND_RXDP_STAT_MASK ( \
1744 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1745 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1746 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1747 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1748 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1749 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1750 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1751 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1752 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1753 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1754 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1755 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1756
1757/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1758 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1759 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1760 * These bits are in the second u64 of the raw mask.
1761 */
1762#define EF10_FEC_STAT_MASK ( \
1763 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1764 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1765 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1766 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1767 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1768 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1769
1770/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1771 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1772 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1773 * These bits are in the second u64 of the raw mask.
1774 */
1775#define EF10_CTPIO_STAT_MASK ( \
1776 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1777 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1778 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1779 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1780 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1781 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1782 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1783 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1784 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1785 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1786 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1787 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1788 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1789 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1790 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1791 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1792
1793static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1794{
1795 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1796 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1797 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1798
1799 if (!(efx->mcdi->fn_flags &
1800 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1801 return 0;
1802
1803 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1804 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1805 /* 8000 series have everything even at 40G */
1806 if (nic_data->datapath_caps2 &
1807 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1808 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1809 } else {
1810 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1811 }
1812
1813 if (nic_data->datapath_caps &
1814 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1815 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1816
1817 return raw_mask;
1818}
1819
1820static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1821{
1822 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1823 u64 raw_mask[2];
1824
1825 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1826
1827 /* Only show vadaptor stats when EVB capability is present */
1828 if (nic_data->datapath_caps &
1829 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1830 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1831 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1832 } else {
1833 raw_mask[1] = 0;
1834 }
1835 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1836 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1837 raw_mask[1] |= EF10_FEC_STAT_MASK;
1838
1839 /* CTPIO stats appear in V3. Only show them on devices that actually
1840 * support CTPIO. Although this driver doesn't use CTPIO others might,
1841 * and we may be reporting the stats for the underlying port.
1842 */
1843 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1844 (nic_data->datapath_caps2 &
1845 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1846 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1847
1848#if BITS_PER_LONG == 64
1849 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1850 mask[0] = raw_mask[0];
1851 mask[1] = raw_mask[1];
1852#else
1853 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1854 mask[0] = raw_mask[0] & 0xffffffff;
1855 mask[1] = raw_mask[0] >> 32;
1856 mask[2] = raw_mask[1] & 0xffffffff;
1857#endif
1858}
1859
1860static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1861{
1862 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1863
1864 efx_ef10_get_stat_mask(efx, mask);
1865 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1866 mask, names);
1867}
1868
1869static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1870 struct rtnl_link_stats64 *core_stats)
1871{
1872 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1873 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1874 u64 *stats = nic_data->stats;
1875 size_t stats_count = 0, index;
1876
1877 efx_ef10_get_stat_mask(efx, mask);
1878
1879 if (full_stats) {
1880 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1881 if (efx_ef10_stat_desc[index].name) {
1882 *full_stats++ = stats[index];
1883 ++stats_count;
1884 }
1885 }
1886 }
1887
1888 if (!core_stats)
1889 return stats_count;
1890
1891 if (nic_data->datapath_caps &
1892 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1893 /* Use vadaptor stats. */
1894 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1895 stats[EF10_STAT_rx_multicast] +
1896 stats[EF10_STAT_rx_broadcast];
1897 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1898 stats[EF10_STAT_tx_multicast] +
1899 stats[EF10_STAT_tx_broadcast];
1900 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1901 stats[EF10_STAT_rx_multicast_bytes] +
1902 stats[EF10_STAT_rx_broadcast_bytes];
1903 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1904 stats[EF10_STAT_tx_multicast_bytes] +
1905 stats[EF10_STAT_tx_broadcast_bytes];
1906 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1907 stats[GENERIC_STAT_rx_noskb_drops];
1908 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1909 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1910 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1911 core_stats->rx_errors = core_stats->rx_crc_errors;
1912 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1913 } else {
1914 /* Use port stats. */
1915 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1916 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1917 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1918 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1919 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1920 stats[GENERIC_STAT_rx_nodesc_trunc] +
1921 stats[GENERIC_STAT_rx_noskb_drops];
1922 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1923 core_stats->rx_length_errors =
1924 stats[EF10_STAT_port_rx_gtjumbo] +
1925 stats[EF10_STAT_port_rx_length_error];
1926 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1927 core_stats->rx_frame_errors =
1928 stats[EF10_STAT_port_rx_align_error];
1929 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1930 core_stats->rx_errors = (core_stats->rx_length_errors +
1931 core_stats->rx_crc_errors +
1932 core_stats->rx_frame_errors);
1933 }
1934
1935 return stats_count;
1936}
1937
1938static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1939{
1940 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1941 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1942 __le64 generation_start, generation_end;
1943 u64 *stats = nic_data->stats;
1944 __le64 *dma_stats;
1945
1946 efx_ef10_get_stat_mask(efx, mask);
1947
1948 dma_stats = efx->stats_buffer.addr;
1949
1950 generation_end = dma_stats[efx->num_mac_stats - 1];
1951 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1952 return 0;
1953 rmb();
1954 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1955 stats, efx->stats_buffer.addr, false);
1956 rmb();
1957 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1958 if (generation_end != generation_start)
1959 return -EAGAIN;
1960
1961 /* Update derived statistics */
1962 efx_nic_fix_nodesc_drop_stat(efx,
1963 &stats[EF10_STAT_port_rx_nodesc_drops]);
1964 stats[EF10_STAT_port_rx_good_bytes] =
1965 stats[EF10_STAT_port_rx_bytes] -
1966 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1967 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1968 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1969 efx_update_sw_stats(efx, stats);
1970 return 0;
1971}
1972
1973
1974static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1975 struct rtnl_link_stats64 *core_stats)
1976{
1977 int retry;
1978
1979 /* If we're unlucky enough to read statistics during the DMA, wait
1980 * up to 10ms for it to finish (typically takes <500us)
1981 */
1982 for (retry = 0; retry < 100; ++retry) {
1983 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1984 break;
1985 udelay(100);
1986 }
1987
1988 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1989}
1990
1991static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1992{
1993 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1994 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1995 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1996 __le64 generation_start, generation_end;
1997 u64 *stats = nic_data->stats;
1998 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1999 struct efx_buffer stats_buf;
2000 __le64 *dma_stats;
2001 int rc;
2002
2003 spin_unlock_bh(&efx->stats_lock);
2004
2005 if (in_interrupt()) {
2006 /* If in atomic context, cannot update stats. Just update the
2007 * software stats and return so the caller can continue.
2008 */
2009 spin_lock_bh(&efx->stats_lock);
2010 efx_update_sw_stats(efx, stats);
2011 return 0;
2012 }
2013
2014 efx_ef10_get_stat_mask(efx, mask);
2015
2016 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2017 if (rc) {
2018 spin_lock_bh(&efx->stats_lock);
2019 return rc;
2020 }
2021
2022 dma_stats = stats_buf.addr;
2023 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2024
2025 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2026 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2027 MAC_STATS_IN_DMA, 1);
2028 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2029 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2030
2031 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2032 NULL, 0, NULL);
2033 spin_lock_bh(&efx->stats_lock);
2034 if (rc) {
2035 /* Expect ENOENT if DMA queues have not been set up */
2036 if (rc != -ENOENT || atomic_read(&efx->active_queues))
2037 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2038 sizeof(inbuf), NULL, 0, rc);
2039 goto out;
2040 }
2041
2042 generation_end = dma_stats[efx->num_mac_stats - 1];
2043 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2044 WARN_ON_ONCE(1);
2045 goto out;
2046 }
2047 rmb();
2048 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2049 stats, stats_buf.addr, false);
2050 rmb();
2051 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2052 if (generation_end != generation_start) {
2053 rc = -EAGAIN;
2054 goto out;
2055 }
2056
2057 efx_update_sw_stats(efx, stats);
2058out:
2059 efx_nic_free_buffer(efx, &stats_buf);
2060 return rc;
2061}
2062
2063static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2064 struct rtnl_link_stats64 *core_stats)
2065{
2066 if (efx_ef10_try_update_nic_stats_vf(efx))
2067 return 0;
2068
2069 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2070}
2071
2072static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2073{
2074 struct efx_nic *efx = channel->efx;
2075 unsigned int mode, usecs;
2076 efx_dword_t timer_cmd;
2077
2078 if (channel->irq_moderation_us) {
2079 mode = 3;
2080 usecs = channel->irq_moderation_us;
2081 } else {
2082 mode = 0;
2083 usecs = 0;
2084 }
2085
2086 if (EFX_EF10_WORKAROUND_61265(efx)) {
2087 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2088 unsigned int ns = usecs * 1000;
2089
2090 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2091 channel->channel);
2092 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2093 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2094 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2095
2096 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2097 inbuf, sizeof(inbuf), 0, NULL, 0);
2098 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2099 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2100
2101 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2102 EFE_DD_EVQ_IND_TIMER_FLAGS,
2103 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2104 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2105 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2106 channel->channel);
2107 } else {
2108 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2109
2110 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2111 ERF_DZ_TC_TIMER_VAL, ticks,
2112 ERF_FZ_TC_TMR_REL_VAL, ticks);
2113 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2114 channel->channel);
2115 }
2116}
2117
2118static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2119 struct ethtool_wolinfo *wol) {}
2120
2121static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2122{
2123 return -EOPNOTSUPP;
2124}
2125
2126static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2127{
2128 wol->supported = 0;
2129 wol->wolopts = 0;
2130 memset(&wol->sopass, 0, sizeof(wol->sopass));
2131}
2132
2133static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2134{
2135 if (type != 0)
2136 return -EINVAL;
2137 return 0;
2138}
2139
2140static void efx_ef10_mcdi_request(struct efx_nic *efx,
2141 const efx_dword_t *hdr, size_t hdr_len,
2142 const efx_dword_t *sdu, size_t sdu_len)
2143{
2144 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2145 u8 *pdu = nic_data->mcdi_buf.addr;
2146
2147 memcpy(pdu, hdr, hdr_len);
2148 memcpy(pdu + hdr_len, sdu, sdu_len);
2149 wmb();
2150
2151 /* The hardware provides 'low' and 'high' (doorbell) registers
2152 * for passing the 64-bit address of an MCDI request to
2153 * firmware. However the dwords are swapped by firmware. The
2154 * least significant bits of the doorbell are then 0 for all
2155 * MCDI requests due to alignment.
2156 */
2157 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2158 ER_DZ_MC_DB_LWRD);
2159 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2160 ER_DZ_MC_DB_HWRD);
2161}
2162
2163static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2164{
2165 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2166 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2167
2168 rmb();
2169 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2170}
2171
2172static void
2173efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2174 size_t offset, size_t outlen)
2175{
2176 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2177 const u8 *pdu = nic_data->mcdi_buf.addr;
2178
2179 memcpy(outbuf, pdu + offset, outlen);
2180}
2181
2182static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2183{
2184 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2185
2186 /* All our allocations have been reset */
2187 efx_ef10_reset_mc_allocations(efx);
2188
2189 /* The datapath firmware might have been changed */
2190 nic_data->must_check_datapath_caps = true;
2191
2192 /* MAC statistics have been cleared on the NIC; clear the local
2193 * statistic that we update with efx_update_diff_stat().
2194 */
2195 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2196}
2197
2198static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2199{
2200 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2201 int rc;
2202
2203 rc = efx_ef10_get_warm_boot_count(efx);
2204 if (rc < 0) {
2205 /* The firmware is presumably in the process of
2206 * rebooting. However, we are supposed to report each
2207 * reboot just once, so we must only do that once we
2208 * can read and store the updated warm boot count.
2209 */
2210 return 0;
2211 }
2212
2213 if (rc == nic_data->warm_boot_count)
2214 return 0;
2215
2216 nic_data->warm_boot_count = rc;
2217 efx_ef10_mcdi_reboot_detected(efx);
2218
2219 return -EIO;
2220}
2221
2222/* Handle an MSI interrupt
2223 *
2224 * Handle an MSI hardware interrupt. This routine schedules event
2225 * queue processing. No interrupt acknowledgement cycle is necessary.
2226 * Also, we never need to check that the interrupt is for us, since
2227 * MSI interrupts cannot be shared.
2228 */
2229static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2230{
2231 struct efx_msi_context *context = dev_id;
2232 struct efx_nic *efx = context->efx;
2233
2234 netif_vdbg(efx, intr, efx->net_dev,
2235 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2236
2237 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2238 /* Note test interrupts */
2239 if (context->index == efx->irq_level)
2240 efx->last_irq_cpu = raw_smp_processor_id();
2241
2242 /* Schedule processing of the channel */
2243 efx_schedule_channel_irq(efx->channel[context->index]);
2244 }
2245
2246 return IRQ_HANDLED;
2247}
2248
2249static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2250{
2251 struct efx_nic *efx = dev_id;
2252 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2253 struct efx_channel *channel;
2254 efx_dword_t reg;
2255 u32 queues;
2256
2257 /* Read the ISR which also ACKs the interrupts */
2258 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2259 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2260
2261 if (queues == 0)
2262 return IRQ_NONE;
2263
2264 if (likely(soft_enabled)) {
2265 /* Note test interrupts */
2266 if (queues & (1U << efx->irq_level))
2267 efx->last_irq_cpu = raw_smp_processor_id();
2268
2269 efx_for_each_channel(channel, efx) {
2270 if (queues & 1)
2271 efx_schedule_channel_irq(channel);
2272 queues >>= 1;
2273 }
2274 }
2275
2276 netif_vdbg(efx, intr, efx->net_dev,
2277 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2278 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2279
2280 return IRQ_HANDLED;
2281}
2282
2283static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2284{
2285 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2286
2287 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2288 NULL) == 0)
2289 return -ENOTSUPP;
2290
2291 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2292
2293 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2294 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2295 inbuf, sizeof(inbuf), NULL, 0, NULL);
2296}
2297
2298static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2299{
2300 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2301 (tx_queue->ptr_mask + 1) *
2302 sizeof(efx_qword_t),
2303 GFP_KERNEL);
2304}
2305
2306/* This writes to the TX_DESC_WPTR and also pushes data */
2307static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2308 const efx_qword_t *txd)
2309{
2310 unsigned int write_ptr;
2311 efx_oword_t reg;
2312
2313 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2314 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2315 reg.qword[0] = *txd;
2316 efx_writeo_page(tx_queue->efx, ®,
2317 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2318}
2319
2320/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2321 */
2322static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2323 struct sk_buff *skb,
2324 bool *data_mapped)
2325{
2326 struct efx_tx_buffer *buffer;
2327 struct tcphdr *tcp;
2328 struct iphdr *ip;
2329
2330 u16 ipv4_id;
2331 u32 seqnum;
2332 u32 mss;
2333
2334 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2335
2336 mss = skb_shinfo(skb)->gso_size;
2337
2338 if (unlikely(mss < 4)) {
2339 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2340 return -EINVAL;
2341 }
2342
2343 ip = ip_hdr(skb);
2344 if (ip->version == 4) {
2345 /* Modify IPv4 header if needed. */
2346 ip->tot_len = 0;
2347 ip->check = 0;
2348 ipv4_id = ntohs(ip->id);
2349 } else {
2350 /* Modify IPv6 header if needed. */
2351 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2352
2353 ipv6->payload_len = 0;
2354 ipv4_id = 0;
2355 }
2356
2357 tcp = tcp_hdr(skb);
2358 seqnum = ntohl(tcp->seq);
2359
2360 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2361
2362 buffer->flags = EFX_TX_BUF_OPTION;
2363 buffer->len = 0;
2364 buffer->unmap_len = 0;
2365 EFX_POPULATE_QWORD_5(buffer->option,
2366 ESF_DZ_TX_DESC_IS_OPT, 1,
2367 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2368 ESF_DZ_TX_TSO_OPTION_TYPE,
2369 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2370 ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2371 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2372 );
2373 ++tx_queue->insert_count;
2374
2375 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2376
2377 buffer->flags = EFX_TX_BUF_OPTION;
2378 buffer->len = 0;
2379 buffer->unmap_len = 0;
2380 EFX_POPULATE_QWORD_4(buffer->option,
2381 ESF_DZ_TX_DESC_IS_OPT, 1,
2382 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2383 ESF_DZ_TX_TSO_OPTION_TYPE,
2384 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2385 ESF_DZ_TX_TSO_TCP_MSS, mss
2386 );
2387 ++tx_queue->insert_count;
2388
2389 return 0;
2390}
2391
2392static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2393{
2394 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2395 u32 tso_versions = 0;
2396
2397 if (nic_data->datapath_caps &
2398 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2399 tso_versions |= BIT(1);
2400 if (nic_data->datapath_caps2 &
2401 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2402 tso_versions |= BIT(2);
2403 return tso_versions;
2404}
2405
2406static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2407{
2408 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2409 EFX_BUF_SIZE));
2410 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2411 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2412 struct efx_channel *channel = tx_queue->channel;
2413 struct efx_nic *efx = tx_queue->efx;
2414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2415 bool tso_v2 = false;
2416 size_t inlen;
2417 dma_addr_t dma_addr;
2418 efx_qword_t *txd;
2419 int rc;
2420 int i;
2421 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2422
2423 /* Only attempt to enable TX timestamping if we have the license for it,
2424 * otherwise TXQ init will fail
2425 */
2426 if (!(nic_data->licensed_features &
2427 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2428 tx_queue->timestamping = false;
2429 /* Disable sync events on this channel. */
2430 if (efx->type->ptp_set_ts_sync_events)
2431 efx->type->ptp_set_ts_sync_events(efx, false, false);
2432 }
2433
2434 /* TSOv2 is a limited resource that can only be configured on a limited
2435 * number of queues. TSO without checksum offload is not really a thing,
2436 * so we only enable it for those queues.
2437 * TSOv2 cannot be used with Hardware timestamping.
2438 */
2439 if (csum_offload && (nic_data->datapath_caps2 &
2440 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2441 !tx_queue->timestamping) {
2442 tso_v2 = true;
2443 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2444 channel->channel);
2445 }
2446
2447 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2448 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2449 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2450 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2451 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2452 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2453
2454 dma_addr = tx_queue->txd.buf.dma_addr;
2455
2456 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2457 tx_queue->queue, entries, (u64)dma_addr);
2458
2459 for (i = 0; i < entries; ++i) {
2460 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2461 dma_addr += EFX_BUF_SIZE;
2462 }
2463
2464 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2465
2466 do {
2467 MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2468 /* This flag was removed from mcdi_pcol.h for
2469 * the non-_EXT version of INIT_TXQ. However,
2470 * firmware still honours it.
2471 */
2472 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2473 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2474 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2475 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2476 tx_queue->timestamping);
2477
2478 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2479 NULL, 0, NULL);
2480 if (rc == -ENOSPC && tso_v2) {
2481 /* Retry without TSOv2 if we're short on contexts. */
2482 tso_v2 = false;
2483 netif_warn(efx, probe, efx->net_dev,
2484 "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2485 } else if (rc) {
2486 efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2487 MC_CMD_INIT_TXQ_EXT_IN_LEN,
2488 NULL, 0, rc);
2489 goto fail;
2490 }
2491 } while (rc);
2492
2493 /* A previous user of this TX queue might have set us up the
2494 * bomb by writing a descriptor to the TX push collector but
2495 * not the doorbell. (Each collector belongs to a port, not a
2496 * queue or function, so cannot easily be reset.) We must
2497 * attempt to push a no-op descriptor in its place.
2498 */
2499 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2500 tx_queue->insert_count = 1;
2501 txd = efx_tx_desc(tx_queue, 0);
2502 EFX_POPULATE_QWORD_5(*txd,
2503 ESF_DZ_TX_DESC_IS_OPT, true,
2504 ESF_DZ_TX_OPTION_TYPE,
2505 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2506 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2507 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2508 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2509 tx_queue->write_count = 1;
2510
2511 if (tso_v2) {
2512 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2513 tx_queue->tso_version = 2;
2514 } else if (nic_data->datapath_caps &
2515 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2516 tx_queue->tso_version = 1;
2517 }
2518
2519 wmb();
2520 efx_ef10_push_tx_desc(tx_queue, txd);
2521
2522 return;
2523
2524fail:
2525 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2526 tx_queue->queue);
2527}
2528
2529static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2530{
2531 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2532 MCDI_DECLARE_BUF_ERR(outbuf);
2533 struct efx_nic *efx = tx_queue->efx;
2534 size_t outlen;
2535 int rc;
2536
2537 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2538 tx_queue->queue);
2539
2540 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2541 outbuf, sizeof(outbuf), &outlen);
2542
2543 if (rc && rc != -EALREADY)
2544 goto fail;
2545
2546 return;
2547
2548fail:
2549 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2550 outbuf, outlen, rc);
2551}
2552
2553static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2554{
2555 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2556}
2557
2558/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2559static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2560{
2561 unsigned int write_ptr;
2562 efx_dword_t reg;
2563
2564 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2565 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2566 efx_writed_page(tx_queue->efx, ®,
2567 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2568}
2569
2570#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2571
2572static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2573 dma_addr_t dma_addr, unsigned int len)
2574{
2575 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2576 /* If we need to break across multiple descriptors we should
2577 * stop at a page boundary. This assumes the length limit is
2578 * greater than the page size.
2579 */
2580 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2581
2582 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2583 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2584 }
2585
2586 return len;
2587}
2588
2589static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2590{
2591 unsigned int old_write_count = tx_queue->write_count;
2592 struct efx_tx_buffer *buffer;
2593 unsigned int write_ptr;
2594 efx_qword_t *txd;
2595
2596 tx_queue->xmit_more_available = false;
2597 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2598 return;
2599
2600 do {
2601 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2602 buffer = &tx_queue->buffer[write_ptr];
2603 txd = efx_tx_desc(tx_queue, write_ptr);
2604 ++tx_queue->write_count;
2605
2606 /* Create TX descriptor ring entry */
2607 if (buffer->flags & EFX_TX_BUF_OPTION) {
2608 *txd = buffer->option;
2609 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2610 /* PIO descriptor */
2611 tx_queue->packet_write_count = tx_queue->write_count;
2612 } else {
2613 tx_queue->packet_write_count = tx_queue->write_count;
2614 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2615 EFX_POPULATE_QWORD_3(
2616 *txd,
2617 ESF_DZ_TX_KER_CONT,
2618 buffer->flags & EFX_TX_BUF_CONT,
2619 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2620 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2621 }
2622 } while (tx_queue->write_count != tx_queue->insert_count);
2623
2624 wmb(); /* Ensure descriptors are written before they are fetched */
2625
2626 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2627 txd = efx_tx_desc(tx_queue,
2628 old_write_count & tx_queue->ptr_mask);
2629 efx_ef10_push_tx_desc(tx_queue, txd);
2630 ++tx_queue->pushes;
2631 } else {
2632 efx_ef10_notify_tx_desc(tx_queue);
2633 }
2634}
2635
2636#define RSS_MODE_HASH_ADDRS (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2637 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2638#define RSS_MODE_HASH_PORTS (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2639 1 << RSS_MODE_HASH_DST_PORT_LBN)
2640#define RSS_CONTEXT_FLAGS_DEFAULT (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2641 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2642 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2643 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2644 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2645 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2646 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2647 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2648 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2649 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2650
2651static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2652{
2653 /* Firmware had a bug (sfc bug 61952) where it would not actually
2654 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2655 * This meant that it would always contain whatever was previously
2656 * in the MCDI buffer. Fortunately, all firmware versions with
2657 * this bug have the same default flags value for a newly-allocated
2658 * RSS context, and the only time we want to get the flags is just
2659 * after allocating. Moreover, the response has a 32-bit hole
2660 * where the context ID would be in the request, so we can use an
2661 * overlength buffer in the request and pre-fill the flags field
2662 * with what we believe the default to be. Thus if the firmware
2663 * has the bug, it will leave our pre-filled value in the flags
2664 * field of the response, and we will get the right answer.
2665 *
2666 * However, this does mean that this function should NOT be used if
2667 * the RSS context flags might not be their defaults - it is ONLY
2668 * reliably correct for a newly-allocated RSS context.
2669 */
2670 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2671 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2672 size_t outlen;
2673 int rc;
2674
2675 /* Check we have a hole for the context ID */
2676 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2677 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2678 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2679 RSS_CONTEXT_FLAGS_DEFAULT);
2680 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2681 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2682 if (rc == 0) {
2683 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2684 rc = -EIO;
2685 else
2686 *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2687 }
2688 return rc;
2689}
2690
2691/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2692 * If we fail, we just leave the RSS context at its default hash settings,
2693 * which is safe but may slightly reduce performance.
2694 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2695 * just need to set the UDP ports flags (for both IP versions).
2696 */
2697static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2698 struct efx_rss_context *ctx)
2699{
2700 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2701 u32 flags;
2702
2703 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2704
2705 if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2706 return;
2707 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2708 ctx->context_id);
2709 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2710 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2711 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2712 if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2713 NULL, 0, NULL))
2714 /* Succeeded, so UDP 4-tuple is now enabled */
2715 ctx->rx_hash_udp_4tuple = true;
2716}
2717
2718static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2719 struct efx_rss_context *ctx,
2720 unsigned *context_size)
2721{
2722 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2723 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2724 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2725 size_t outlen;
2726 int rc;
2727 u32 alloc_type = exclusive ?
2728 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2729 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2730 unsigned rss_spread = exclusive ?
2731 efx->rss_spread :
2732 min(rounddown_pow_of_two(efx->rss_spread),
2733 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2734
2735 if (!exclusive && rss_spread == 1) {
2736 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2737 if (context_size)
2738 *context_size = 1;
2739 return 0;
2740 }
2741
2742 if (nic_data->datapath_caps &
2743 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2744 return -EOPNOTSUPP;
2745
2746 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2747 nic_data->vport_id);
2748 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2749 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2750
2751 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2752 outbuf, sizeof(outbuf), &outlen);
2753 if (rc != 0)
2754 return rc;
2755
2756 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2757 return -EIO;
2758
2759 ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2760
2761 if (context_size)
2762 *context_size = rss_spread;
2763
2764 if (nic_data->datapath_caps &
2765 1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2766 efx_ef10_set_rss_flags(efx, ctx);
2767
2768 return 0;
2769}
2770
2771static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2772{
2773 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2774
2775 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2776 context);
2777 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2778 NULL, 0, NULL);
2779}
2780
2781static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2782 const u32 *rx_indir_table, const u8 *key)
2783{
2784 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2785 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2786 int i, rc;
2787
2788 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2789 context);
2790 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2791 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2792
2793 /* This iterates over the length of efx->rss_context.rx_indir_table, but
2794 * copies bytes from rx_indir_table. That's because the latter is a
2795 * pointer rather than an array, but should have the same length.
2796 * The efx->rss_context.rx_hash_key loop below is similar.
2797 */
2798 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2799 MCDI_PTR(tablebuf,
2800 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2801 (u8) rx_indir_table[i];
2802
2803 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2804 sizeof(tablebuf), NULL, 0, NULL);
2805 if (rc != 0)
2806 return rc;
2807
2808 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2809 context);
2810 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2811 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2812 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2813 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2814
2815 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2816 sizeof(keybuf), NULL, 0, NULL);
2817}
2818
2819static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2820{
2821 int rc;
2822
2823 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2824 rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2825 WARN_ON(rc != 0);
2826 }
2827 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2828}
2829
2830static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2831 unsigned *context_size)
2832{
2833 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2834 int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2835 context_size);
2836
2837 if (rc != 0)
2838 return rc;
2839
2840 nic_data->rx_rss_context_exclusive = false;
2841 efx_set_default_rx_indir_table(efx, &efx->rss_context);
2842 return 0;
2843}
2844
2845static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2846 const u32 *rx_indir_table,
2847 const u8 *key)
2848{
2849 u32 old_rx_rss_context = efx->rss_context.context_id;
2850 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2851 int rc;
2852
2853 if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2854 !nic_data->rx_rss_context_exclusive) {
2855 rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2856 NULL);
2857 if (rc == -EOPNOTSUPP)
2858 return rc;
2859 else if (rc != 0)
2860 goto fail1;
2861 }
2862
2863 rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2864 rx_indir_table, key);
2865 if (rc != 0)
2866 goto fail2;
2867
2868 if (efx->rss_context.context_id != old_rx_rss_context &&
2869 old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2870 WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2871 nic_data->rx_rss_context_exclusive = true;
2872 if (rx_indir_table != efx->rss_context.rx_indir_table)
2873 memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2874 sizeof(efx->rss_context.rx_indir_table));
2875 if (key != efx->rss_context.rx_hash_key)
2876 memcpy(efx->rss_context.rx_hash_key, key,
2877 efx->type->rx_hash_key_size);
2878
2879 return 0;
2880
2881fail2:
2882 if (old_rx_rss_context != efx->rss_context.context_id) {
2883 WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2884 efx->rss_context.context_id = old_rx_rss_context;
2885 }
2886fail1:
2887 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2888 return rc;
2889}
2890
2891static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2892 struct efx_rss_context *ctx,
2893 const u32 *rx_indir_table,
2894 const u8 *key)
2895{
2896 int rc;
2897
2898 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2899
2900 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2901 rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2902 if (rc)
2903 return rc;
2904 }
2905
2906 if (!rx_indir_table) /* Delete this context */
2907 return efx_ef10_free_rss_context(efx, ctx->context_id);
2908
2909 rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2910 rx_indir_table, key);
2911 if (rc)
2912 return rc;
2913
2914 memcpy(ctx->rx_indir_table, rx_indir_table,
2915 sizeof(efx->rss_context.rx_indir_table));
2916 memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2917
2918 return 0;
2919}
2920
2921static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2922 struct efx_rss_context *ctx)
2923{
2924 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2925 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2926 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2927 size_t outlen;
2928 int rc, i;
2929
2930 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2931
2932 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2933 MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2934
2935 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2936 return -ENOENT;
2937
2938 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2939 ctx->context_id);
2940 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2941 MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2942 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2943 tablebuf, sizeof(tablebuf), &outlen);
2944 if (rc != 0)
2945 return rc;
2946
2947 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2948 return -EIO;
2949
2950 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2951 ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2952 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2953
2954 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2955 ctx->context_id);
2956 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2957 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2958 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2959 keybuf, sizeof(keybuf), &outlen);
2960 if (rc != 0)
2961 return rc;
2962
2963 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2964 return -EIO;
2965
2966 for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2967 ctx->rx_hash_key[i] = MCDI_PTR(
2968 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2969
2970 return 0;
2971}
2972
2973static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2974{
2975 int rc;
2976
2977 mutex_lock(&efx->rss_lock);
2978 rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2979 mutex_unlock(&efx->rss_lock);
2980 return rc;
2981}
2982
2983static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2984{
2985 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2986 struct efx_rss_context *ctx;
2987 int rc;
2988
2989 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2990
2991 if (!nic_data->must_restore_rss_contexts)
2992 return;
2993
2994 list_for_each_entry(ctx, &efx->rss_context.list, list) {
2995 /* previous NIC RSS context is gone */
2996 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2997 /* so try to allocate a new one */
2998 rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
2999 ctx->rx_indir_table,
3000 ctx->rx_hash_key);
3001 if (rc)
3002 netif_warn(efx, probe, efx->net_dev,
3003 "failed to restore RSS context %u, rc=%d"
3004 "; RSS filters may fail to be applied\n",
3005 ctx->user_id, rc);
3006 }
3007 nic_data->must_restore_rss_contexts = false;
3008}
3009
3010static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3011 const u32 *rx_indir_table,
3012 const u8 *key)
3013{
3014 int rc;
3015
3016 if (efx->rss_spread == 1)
3017 return 0;
3018
3019 if (!key)
3020 key = efx->rss_context.rx_hash_key;
3021
3022 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3023
3024 if (rc == -ENOBUFS && !user) {
3025 unsigned context_size;
3026 bool mismatch = false;
3027 size_t i;
3028
3029 for (i = 0;
3030 i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3031 i++)
3032 mismatch = rx_indir_table[i] !=
3033 ethtool_rxfh_indir_default(i, efx->rss_spread);
3034
3035 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3036 if (rc == 0) {
3037 if (context_size != efx->rss_spread)
3038 netif_warn(efx, probe, efx->net_dev,
3039 "Could not allocate an exclusive RSS"
3040 " context; allocated a shared one of"
3041 " different size."
3042 " Wanted %u, got %u.\n",
3043 efx->rss_spread, context_size);
3044 else if (mismatch)
3045 netif_warn(efx, probe, efx->net_dev,
3046 "Could not allocate an exclusive RSS"
3047 " context; allocated a shared one but"
3048 " could not apply custom"
3049 " indirection.\n");
3050 else
3051 netif_info(efx, probe, efx->net_dev,
3052 "Could not allocate an exclusive RSS"
3053 " context; allocated a shared one.\n");
3054 }
3055 }
3056 return rc;
3057}
3058
3059static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3060 const u32 *rx_indir_table
3061 __attribute__ ((unused)),
3062 const u8 *key
3063 __attribute__ ((unused)))
3064{
3065 if (user)
3066 return -EOPNOTSUPP;
3067 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3068 return 0;
3069 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3070}
3071
3072static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3073{
3074 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3075 (rx_queue->ptr_mask + 1) *
3076 sizeof(efx_qword_t),
3077 GFP_KERNEL);
3078}
3079
3080static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3081{
3082 MCDI_DECLARE_BUF(inbuf,
3083 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3084 EFX_BUF_SIZE));
3085 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3086 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3087 struct efx_nic *efx = rx_queue->efx;
3088 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3089 size_t inlen;
3090 dma_addr_t dma_addr;
3091 int rc;
3092 int i;
3093 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3094
3095 rx_queue->scatter_n = 0;
3096 rx_queue->scatter_len = 0;
3097
3098 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3099 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3100 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3101 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3102 efx_rx_queue_index(rx_queue));
3103 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3104 INIT_RXQ_IN_FLAG_PREFIX, 1,
3105 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3106 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3107 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3108
3109 dma_addr = rx_queue->rxd.buf.dma_addr;
3110
3111 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3112 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3113
3114 for (i = 0; i < entries; ++i) {
3115 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3116 dma_addr += EFX_BUF_SIZE;
3117 }
3118
3119 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3120
3121 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3122 NULL, 0, NULL);
3123 if (rc)
3124 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3125 efx_rx_queue_index(rx_queue));
3126}
3127
3128static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3129{
3130 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3131 MCDI_DECLARE_BUF_ERR(outbuf);
3132 struct efx_nic *efx = rx_queue->efx;
3133 size_t outlen;
3134 int rc;
3135
3136 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3137 efx_rx_queue_index(rx_queue));
3138
3139 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3140 outbuf, sizeof(outbuf), &outlen);
3141
3142 if (rc && rc != -EALREADY)
3143 goto fail;
3144
3145 return;
3146
3147fail:
3148 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3149 outbuf, outlen, rc);
3150}
3151
3152static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3153{
3154 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3155}
3156
3157/* This creates an entry in the RX descriptor queue */
3158static inline void
3159efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3160{
3161 struct efx_rx_buffer *rx_buf;
3162 efx_qword_t *rxd;
3163
3164 rxd = efx_rx_desc(rx_queue, index);
3165 rx_buf = efx_rx_buffer(rx_queue, index);
3166 EFX_POPULATE_QWORD_2(*rxd,
3167 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3168 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3169}
3170
3171static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3172{
3173 struct efx_nic *efx = rx_queue->efx;
3174 unsigned int write_count;
3175 efx_dword_t reg;
3176
3177 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3178 write_count = rx_queue->added_count & ~7;
3179 if (rx_queue->notified_count == write_count)
3180 return;
3181
3182 do
3183 efx_ef10_build_rx_desc(
3184 rx_queue,
3185 rx_queue->notified_count & rx_queue->ptr_mask);
3186 while (++rx_queue->notified_count != write_count);
3187
3188 wmb();
3189 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3190 write_count & rx_queue->ptr_mask);
3191 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
3192 efx_rx_queue_index(rx_queue));
3193}
3194
3195static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3196
3197static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3198{
3199 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3200 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3201 efx_qword_t event;
3202
3203 EFX_POPULATE_QWORD_2(event,
3204 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3205 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3206
3207 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3208
3209 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3210 * already swapped the data to little-endian order.
3211 */
3212 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3213 sizeof(efx_qword_t));
3214
3215 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3216 inbuf, sizeof(inbuf), 0,
3217 efx_ef10_rx_defer_refill_complete, 0);
3218}
3219
3220static void
3221efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3222 int rc, efx_dword_t *outbuf,
3223 size_t outlen_actual)
3224{
3225 /* nothing to do */
3226}
3227
3228static int efx_ef10_ev_probe(struct efx_channel *channel)
3229{
3230 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3231 (channel->eventq_mask + 1) *
3232 sizeof(efx_qword_t),
3233 GFP_KERNEL);
3234}
3235
3236static void efx_ef10_ev_fini(struct efx_channel *channel)
3237{
3238 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3239 MCDI_DECLARE_BUF_ERR(outbuf);
3240 struct efx_nic *efx = channel->efx;
3241 size_t outlen;
3242 int rc;
3243
3244 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3245
3246 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3247 outbuf, sizeof(outbuf), &outlen);
3248
3249 if (rc && rc != -EALREADY)
3250 goto fail;
3251
3252 return;
3253
3254fail:
3255 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3256 outbuf, outlen, rc);
3257}
3258
3259static int efx_ef10_ev_init(struct efx_channel *channel)
3260{
3261 MCDI_DECLARE_BUF(inbuf,
3262 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3263 EFX_BUF_SIZE));
3264 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3265 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3266 struct efx_nic *efx = channel->efx;
3267 struct efx_ef10_nic_data *nic_data;
3268 size_t inlen, outlen;
3269 unsigned int enabled, implemented;
3270 dma_addr_t dma_addr;
3271 int rc;
3272 int i;
3273
3274 nic_data = efx->nic_data;
3275
3276 /* Fill event queue with all ones (i.e. empty events) */
3277 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3278
3279 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3280 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3281 /* INIT_EVQ expects index in vector table, not absolute */
3282 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3283 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3284 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3285 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3286 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3287 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3288 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3289 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3290
3291 if (nic_data->datapath_caps2 &
3292 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3293 /* Use the new generic approach to specifying event queue
3294 * configuration, requesting lower latency or higher throughput.
3295 * The options that actually get used appear in the output.
3296 */
3297 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3298 INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3299 INIT_EVQ_V2_IN_FLAG_TYPE,
3300 MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3301 } else {
3302 bool cut_thru = !(nic_data->datapath_caps &
3303 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3304
3305 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3306 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3307 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3308 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3309 INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3310 }
3311
3312 dma_addr = channel->eventq.buf.dma_addr;
3313 for (i = 0; i < entries; ++i) {
3314 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3315 dma_addr += EFX_BUF_SIZE;
3316 }
3317
3318 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3319
3320 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3321 outbuf, sizeof(outbuf), &outlen);
3322
3323 if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3324 netif_dbg(efx, drv, efx->net_dev,
3325 "Channel %d using event queue flags %08x\n",
3326 channel->channel,
3327 MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3328
3329 /* IRQ return is ignored */
3330 if (channel->channel || rc)
3331 return rc;
3332
3333 /* Successfully created event queue on channel 0 */
3334 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3335 if (rc == -ENOSYS) {
3336 /* GET_WORKAROUNDS was implemented before this workaround,
3337 * thus it must be unavailable in this firmware.
3338 */
3339 nic_data->workaround_26807 = false;
3340 rc = 0;
3341 } else if (rc) {
3342 goto fail;
3343 } else {
3344 nic_data->workaround_26807 =
3345 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3346
3347 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3348 !nic_data->workaround_26807) {
3349 unsigned int flags;
3350
3351 rc = efx_mcdi_set_workaround(efx,
3352 MC_CMD_WORKAROUND_BUG26807,
3353 true, &flags);
3354
3355 if (!rc) {
3356 if (flags &
3357 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3358 netif_info(efx, drv, efx->net_dev,
3359 "other functions on NIC have been reset\n");
3360
3361 /* With MCFW v4.6.x and earlier, the
3362 * boot count will have incremented,
3363 * so re-read the warm_boot_count
3364 * value now to ensure this function
3365 * doesn't think it has changed next
3366 * time it checks.
3367 */
3368 rc = efx_ef10_get_warm_boot_count(efx);
3369 if (rc >= 0) {
3370 nic_data->warm_boot_count = rc;
3371 rc = 0;
3372 }
3373 }
3374 nic_data->workaround_26807 = true;
3375 } else if (rc == -EPERM) {
3376 rc = 0;
3377 }
3378 }
3379 }
3380
3381 if (!rc)
3382 return 0;
3383
3384fail:
3385 efx_ef10_ev_fini(channel);
3386 return rc;
3387}
3388
3389static void efx_ef10_ev_remove(struct efx_channel *channel)
3390{
3391 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3392}
3393
3394static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3395 unsigned int rx_queue_label)
3396{
3397 struct efx_nic *efx = rx_queue->efx;
3398
3399 netif_info(efx, hw, efx->net_dev,
3400 "rx event arrived on queue %d labeled as queue %u\n",
3401 efx_rx_queue_index(rx_queue), rx_queue_label);
3402
3403 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3404}
3405
3406static void
3407efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3408 unsigned int actual, unsigned int expected)
3409{
3410 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3411 struct efx_nic *efx = rx_queue->efx;
3412
3413 netif_info(efx, hw, efx->net_dev,
3414 "dropped %d events (index=%d expected=%d)\n",
3415 dropped, actual, expected);
3416
3417 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3418}
3419
3420/* partially received RX was aborted. clean up. */
3421static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3422{
3423 unsigned int rx_desc_ptr;
3424
3425 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3426 "scattered RX aborted (dropping %u buffers)\n",
3427 rx_queue->scatter_n);
3428
3429 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3430
3431 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3432 0, EFX_RX_PKT_DISCARD);
3433
3434 rx_queue->removed_count += rx_queue->scatter_n;
3435 rx_queue->scatter_n = 0;
3436 rx_queue->scatter_len = 0;
3437 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3438}
3439
3440static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3441 unsigned int n_packets,
3442 unsigned int rx_encap_hdr,
3443 unsigned int rx_l3_class,
3444 unsigned int rx_l4_class,
3445 const efx_qword_t *event)
3446{
3447 struct efx_nic *efx = channel->efx;
3448 bool handled = false;
3449
3450 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3451 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3452 if (!efx->loopback_selftest)
3453 channel->n_rx_eth_crc_err += n_packets;
3454 return EFX_RX_PKT_DISCARD;
3455 }
3456 handled = true;
3457 }
3458 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3459 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3460 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3461 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3462 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3463 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3464 netdev_WARN(efx->net_dev,
3465 "invalid class for RX_IPCKSUM_ERR: event="
3466 EFX_QWORD_FMT "\n",
3467 EFX_QWORD_VAL(*event));
3468 if (!efx->loopback_selftest)
3469 *(rx_encap_hdr ?
3470 &channel->n_rx_outer_ip_hdr_chksum_err :
3471 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3472 return 0;
3473 }
3474 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3475 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3476 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3477 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3478 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3479 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3480 netdev_WARN(efx->net_dev,
3481 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3482 EFX_QWORD_FMT "\n",
3483 EFX_QWORD_VAL(*event));
3484 if (!efx->loopback_selftest)
3485 *(rx_encap_hdr ?
3486 &channel->n_rx_outer_tcp_udp_chksum_err :
3487 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3488 return 0;
3489 }
3490 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3491 if (unlikely(!rx_encap_hdr))
3492 netdev_WARN(efx->net_dev,
3493 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3494 EFX_QWORD_FMT "\n",
3495 EFX_QWORD_VAL(*event));
3496 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3497 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3498 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3499 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3500 netdev_WARN(efx->net_dev,
3501 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3502 EFX_QWORD_FMT "\n",
3503 EFX_QWORD_VAL(*event));
3504 if (!efx->loopback_selftest)
3505 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3506 return 0;
3507 }
3508 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3509 if (unlikely(!rx_encap_hdr))
3510 netdev_WARN(efx->net_dev,
3511 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3512 EFX_QWORD_FMT "\n",
3513 EFX_QWORD_VAL(*event));
3514 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3515 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3516 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3517 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3518 netdev_WARN(efx->net_dev,
3519 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3520 EFX_QWORD_FMT "\n",
3521 EFX_QWORD_VAL(*event));
3522 if (!efx->loopback_selftest)
3523 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3524 return 0;
3525 }
3526
3527 WARN_ON(!handled); /* No error bits were recognised */
3528 return 0;
3529}
3530
3531static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3532 const efx_qword_t *event)
3533{
3534 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3535 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3536 unsigned int n_descs, n_packets, i;
3537 struct efx_nic *efx = channel->efx;
3538 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3539 struct efx_rx_queue *rx_queue;
3540 efx_qword_t errors;
3541 bool rx_cont;
3542 u16 flags = 0;
3543
3544 if (unlikely(READ_ONCE(efx->reset_pending)))
3545 return 0;
3546
3547 /* Basic packet information */
3548 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3549 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3550 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3551 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3552 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3553 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3554 rx_encap_hdr =
3555 nic_data->datapath_caps &
3556 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3557 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3558 ESE_EZ_ENCAP_HDR_NONE;
3559
3560 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3561 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3562 EFX_QWORD_FMT "\n",
3563 EFX_QWORD_VAL(*event));
3564
3565 rx_queue = efx_channel_get_rx_queue(channel);
3566
3567 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3568 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3569
3570 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3571 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3572
3573 if (n_descs != rx_queue->scatter_n + 1) {
3574 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3575
3576 /* detect rx abort */
3577 if (unlikely(n_descs == rx_queue->scatter_n)) {
3578 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3579 netdev_WARN(efx->net_dev,
3580 "invalid RX abort: scatter_n=%u event="
3581 EFX_QWORD_FMT "\n",
3582 rx_queue->scatter_n,
3583 EFX_QWORD_VAL(*event));
3584 efx_ef10_handle_rx_abort(rx_queue);
3585 return 0;
3586 }
3587
3588 /* Check that RX completion merging is valid, i.e.
3589 * the current firmware supports it and this is a
3590 * non-scattered packet.
3591 */
3592 if (!(nic_data->datapath_caps &
3593 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3594 rx_queue->scatter_n != 0 || rx_cont) {
3595 efx_ef10_handle_rx_bad_lbits(
3596 rx_queue, next_ptr_lbits,
3597 (rx_queue->removed_count +
3598 rx_queue->scatter_n + 1) &
3599 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3600 return 0;
3601 }
3602
3603 /* Merged completion for multiple non-scattered packets */
3604 rx_queue->scatter_n = 1;
3605 rx_queue->scatter_len = 0;
3606 n_packets = n_descs;
3607 ++channel->n_rx_merge_events;
3608 channel->n_rx_merge_packets += n_packets;
3609 flags |= EFX_RX_PKT_PREFIX_LEN;
3610 } else {
3611 ++rx_queue->scatter_n;
3612 rx_queue->scatter_len += rx_bytes;
3613 if (rx_cont)
3614 return 0;
3615 n_packets = 1;
3616 }
3617
3618 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3619 ESF_DZ_RX_IPCKSUM_ERR, 1,
3620 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3621 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3622 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3623 EFX_AND_QWORD(errors, *event, errors);
3624 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3625 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3626 rx_encap_hdr,
3627 rx_l3_class, rx_l4_class,
3628 event);
3629 } else {
3630 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3631 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3632
3633 switch (rx_encap_hdr) {
3634 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3635 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3636 if (tcpudp)
3637 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3638 break;
3639 case ESE_EZ_ENCAP_HDR_GRE:
3640 case ESE_EZ_ENCAP_HDR_NONE:
3641 if (tcpudp)
3642 flags |= EFX_RX_PKT_CSUMMED;
3643 break;
3644 default:
3645 netdev_WARN(efx->net_dev,
3646 "unknown encapsulation type: event="
3647 EFX_QWORD_FMT "\n",
3648 EFX_QWORD_VAL(*event));
3649 }
3650 }
3651
3652 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3653 flags |= EFX_RX_PKT_TCP;
3654
3655 channel->irq_mod_score += 2 * n_packets;
3656
3657 /* Handle received packet(s) */
3658 for (i = 0; i < n_packets; i++) {
3659 efx_rx_packet(rx_queue,
3660 rx_queue->removed_count & rx_queue->ptr_mask,
3661 rx_queue->scatter_n, rx_queue->scatter_len,
3662 flags);
3663 rx_queue->removed_count += rx_queue->scatter_n;
3664 }
3665
3666 rx_queue->scatter_n = 0;
3667 rx_queue->scatter_len = 0;
3668
3669 return n_packets;
3670}
3671
3672static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3673{
3674 u32 tstamp;
3675
3676 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3677 tstamp <<= 16;
3678 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3679
3680 return tstamp;
3681}
3682
3683static void
3684efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3685{
3686 struct efx_nic *efx = channel->efx;
3687 struct efx_tx_queue *tx_queue;
3688 unsigned int tx_ev_desc_ptr;
3689 unsigned int tx_ev_q_label;
3690 unsigned int tx_ev_type;
3691 u64 ts_part;
3692
3693 if (unlikely(READ_ONCE(efx->reset_pending)))
3694 return;
3695
3696 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3697 return;
3698
3699 /* Get the transmit queue */
3700 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3701 tx_queue = efx_channel_get_tx_queue(channel,
3702 tx_ev_q_label % EFX_TXQ_TYPES);
3703
3704 if (!tx_queue->timestamping) {
3705 /* Transmit completion */
3706 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3707 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3708 return;
3709 }
3710
3711 /* Transmit timestamps are only available for 8XXX series. They result
3712 * in three events per packet. These occur in order, and are:
3713 * - the normal completion event
3714 * - the low part of the timestamp
3715 * - the high part of the timestamp
3716 *
3717 * Each part of the timestamp is itself split across two 16 bit
3718 * fields in the event.
3719 */
3720 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3721
3722 switch (tx_ev_type) {
3723 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3724 /* In case of Queue flush or FLR, we might have received
3725 * the previous TX completion event but not the Timestamp
3726 * events.
3727 */
3728 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3729 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3730
3731 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3732 ESF_DZ_TX_DESCR_INDX);
3733 tx_queue->completed_desc_ptr =
3734 tx_ev_desc_ptr & tx_queue->ptr_mask;
3735 break;
3736
3737 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3738 ts_part = efx_ef10_extract_event_ts(event);
3739 tx_queue->completed_timestamp_minor = ts_part;
3740 break;
3741
3742 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3743 ts_part = efx_ef10_extract_event_ts(event);
3744 tx_queue->completed_timestamp_major = ts_part;
3745
3746 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3747 tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3748 break;
3749
3750 default:
3751 netif_err(efx, hw, efx->net_dev,
3752 "channel %d unknown tx event type %d (data "
3753 EFX_QWORD_FMT ")\n",
3754 channel->channel, tx_ev_type,
3755 EFX_QWORD_VAL(*event));
3756 break;
3757 }
3758}
3759
3760static void
3761efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3762{
3763 struct efx_nic *efx = channel->efx;
3764 int subcode;
3765
3766 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3767
3768 switch (subcode) {
3769 case ESE_DZ_DRV_TIMER_EV:
3770 case ESE_DZ_DRV_WAKE_UP_EV:
3771 break;
3772 case ESE_DZ_DRV_START_UP_EV:
3773 /* event queue init complete. ok. */
3774 break;
3775 default:
3776 netif_err(efx, hw, efx->net_dev,
3777 "channel %d unknown driver event type %d"
3778 " (data " EFX_QWORD_FMT ")\n",
3779 channel->channel, subcode,
3780 EFX_QWORD_VAL(*event));
3781
3782 }
3783}
3784
3785static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3786 efx_qword_t *event)
3787{
3788 struct efx_nic *efx = channel->efx;
3789 u32 subcode;
3790
3791 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3792
3793 switch (subcode) {
3794 case EFX_EF10_TEST:
3795 channel->event_test_cpu = raw_smp_processor_id();
3796 break;
3797 case EFX_EF10_REFILL:
3798 /* The queue must be empty, so we won't receive any rx
3799 * events, so efx_process_channel() won't refill the
3800 * queue. Refill it here
3801 */
3802 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3803 break;
3804 default:
3805 netif_err(efx, hw, efx->net_dev,
3806 "channel %d unknown driver event type %u"
3807 " (data " EFX_QWORD_FMT ")\n",
3808 channel->channel, (unsigned) subcode,
3809 EFX_QWORD_VAL(*event));
3810 }
3811}
3812
3813static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3814{
3815 struct efx_nic *efx = channel->efx;
3816 efx_qword_t event, *p_event;
3817 unsigned int read_ptr;
3818 int ev_code;
3819 int spent = 0;
3820
3821 if (quota <= 0)
3822 return spent;
3823
3824 read_ptr = channel->eventq_read_ptr;
3825
3826 for (;;) {
3827 p_event = efx_event(channel, read_ptr);
3828 event = *p_event;
3829
3830 if (!efx_event_present(&event))
3831 break;
3832
3833 EFX_SET_QWORD(*p_event);
3834
3835 ++read_ptr;
3836
3837 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3838
3839 netif_vdbg(efx, drv, efx->net_dev,
3840 "processing event on %d " EFX_QWORD_FMT "\n",
3841 channel->channel, EFX_QWORD_VAL(event));
3842
3843 switch (ev_code) {
3844 case ESE_DZ_EV_CODE_MCDI_EV:
3845 efx_mcdi_process_event(channel, &event);
3846 break;
3847 case ESE_DZ_EV_CODE_RX_EV:
3848 spent += efx_ef10_handle_rx_event(channel, &event);
3849 if (spent >= quota) {
3850 /* XXX can we split a merged event to
3851 * avoid going over-quota?
3852 */
3853 spent = quota;
3854 goto out;
3855 }
3856 break;
3857 case ESE_DZ_EV_CODE_TX_EV:
3858 efx_ef10_handle_tx_event(channel, &event);
3859 break;
3860 case ESE_DZ_EV_CODE_DRIVER_EV:
3861 efx_ef10_handle_driver_event(channel, &event);
3862 if (++spent == quota)
3863 goto out;
3864 break;
3865 case EFX_EF10_DRVGEN_EV:
3866 efx_ef10_handle_driver_generated_event(channel, &event);
3867 break;
3868 default:
3869 netif_err(efx, hw, efx->net_dev,
3870 "channel %d unknown event type %d"
3871 " (data " EFX_QWORD_FMT ")\n",
3872 channel->channel, ev_code,
3873 EFX_QWORD_VAL(event));
3874 }
3875 }
3876
3877out:
3878 channel->eventq_read_ptr = read_ptr;
3879 return spent;
3880}
3881
3882static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3883{
3884 struct efx_nic *efx = channel->efx;
3885 efx_dword_t rptr;
3886
3887 if (EFX_EF10_WORKAROUND_35388(efx)) {
3888 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3889 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3890 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3891 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3892
3893 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3894 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3895 ERF_DD_EVQ_IND_RPTR,
3896 (channel->eventq_read_ptr &
3897 channel->eventq_mask) >>
3898 ERF_DD_EVQ_IND_RPTR_WIDTH);
3899 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3900 channel->channel);
3901 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3902 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3903 ERF_DD_EVQ_IND_RPTR,
3904 channel->eventq_read_ptr &
3905 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3906 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3907 channel->channel);
3908 } else {
3909 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3910 channel->eventq_read_ptr &
3911 channel->eventq_mask);
3912 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3913 }
3914}
3915
3916static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3917{
3918 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3919 struct efx_nic *efx = channel->efx;
3920 efx_qword_t event;
3921 int rc;
3922
3923 EFX_POPULATE_QWORD_2(event,
3924 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3925 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3926
3927 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3928
3929 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3930 * already swapped the data to little-endian order.
3931 */
3932 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3933 sizeof(efx_qword_t));
3934
3935 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3936 NULL, 0, NULL);
3937 if (rc != 0)
3938 goto fail;
3939
3940 return;
3941
3942fail:
3943 WARN_ON(true);
3944 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3945}
3946
3947void efx_ef10_handle_drain_event(struct efx_nic *efx)
3948{
3949 if (atomic_dec_and_test(&efx->active_queues))
3950 wake_up(&efx->flush_wq);
3951
3952 WARN_ON(atomic_read(&efx->active_queues) < 0);
3953}
3954
3955static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3956{
3957 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3958 struct efx_channel *channel;
3959 struct efx_tx_queue *tx_queue;
3960 struct efx_rx_queue *rx_queue;
3961 int pending;
3962
3963 /* If the MC has just rebooted, the TX/RX queues will have already been
3964 * torn down, but efx->active_queues needs to be set to zero.
3965 */
3966 if (nic_data->must_realloc_vis) {
3967 atomic_set(&efx->active_queues, 0);
3968 return 0;
3969 }
3970
3971 /* Do not attempt to write to the NIC during EEH recovery */
3972 if (efx->state != STATE_RECOVERY) {
3973 efx_for_each_channel(channel, efx) {
3974 efx_for_each_channel_rx_queue(rx_queue, channel)
3975 efx_ef10_rx_fini(rx_queue);
3976 efx_for_each_channel_tx_queue(tx_queue, channel)
3977 efx_ef10_tx_fini(tx_queue);
3978 }
3979
3980 wait_event_timeout(efx->flush_wq,
3981 atomic_read(&efx->active_queues) == 0,
3982 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3983 pending = atomic_read(&efx->active_queues);
3984 if (pending) {
3985 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3986 pending);
3987 return -ETIMEDOUT;
3988 }
3989 }
3990
3991 return 0;
3992}
3993
3994static void efx_ef10_prepare_flr(struct efx_nic *efx)
3995{
3996 atomic_set(&efx->active_queues, 0);
3997}
3998
3999/* Decide whether a filter should be exclusive or else should allow
4000 * delivery to additional recipients. Currently we decide that
4001 * filters for specific local unicast MAC and IP addresses are
4002 * exclusive.
4003 */
4004static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4005{
4006 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4007 !is_multicast_ether_addr(spec->loc_mac))
4008 return true;
4009
4010 if ((spec->match_flags &
4011 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4012 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4013 if (spec->ether_type == htons(ETH_P_IP) &&
4014 !ipv4_is_multicast(spec->loc_host[0]))
4015 return true;
4016 if (spec->ether_type == htons(ETH_P_IPV6) &&
4017 ((const u8 *)spec->loc_host)[0] != 0xff)
4018 return true;
4019 }
4020
4021 return false;
4022}
4023
4024static struct efx_filter_spec *
4025efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4026 unsigned int filter_idx)
4027{
4028 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4029 ~EFX_EF10_FILTER_FLAGS);
4030}
4031
4032static unsigned int
4033efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4034 unsigned int filter_idx)
4035{
4036 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4037}
4038
4039static void
4040efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4041 unsigned int filter_idx,
4042 const struct efx_filter_spec *spec,
4043 unsigned int flags)
4044{
4045 table->entry[filter_idx].spec = (unsigned long)spec | flags;
4046}
4047
4048static void
4049efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4050 const struct efx_filter_spec *spec,
4051 efx_dword_t *inbuf)
4052{
4053 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4054 u32 match_fields = 0, uc_match, mc_match;
4055
4056 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4057 efx_ef10_filter_is_exclusive(spec) ?
4058 MC_CMD_FILTER_OP_IN_OP_INSERT :
4059 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4060
4061 /* Convert match flags and values. Unlike almost
4062 * everything else in MCDI, these fields are in
4063 * network byte order.
4064 */
4065#define COPY_VALUE(value, mcdi_field) \
4066 do { \
4067 match_fields |= \
4068 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
4069 mcdi_field ## _LBN; \
4070 BUILD_BUG_ON( \
4071 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4072 sizeof(value)); \
4073 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
4074 &value, sizeof(value)); \
4075 } while (0)
4076#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
4077 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
4078 COPY_VALUE(spec->gen_field, mcdi_field); \
4079 }
4080 /* Handle encap filters first. They will always be mismatch
4081 * (unknown UC or MC) filters
4082 */
4083 if (encap_type) {
4084 /* ether_type and outer_ip_proto need to be variables
4085 * because COPY_VALUE wants to memcpy them
4086 */
4087 __be16 ether_type =
4088 htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4089 ETH_P_IPV6 : ETH_P_IP);
4090 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4091 u8 outer_ip_proto;
4092
4093 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4094 case EFX_ENCAP_TYPE_VXLAN:
4095 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4096 /* fallthrough */
4097 case EFX_ENCAP_TYPE_GENEVE:
4098 COPY_VALUE(ether_type, ETHER_TYPE);
4099 outer_ip_proto = IPPROTO_UDP;
4100 COPY_VALUE(outer_ip_proto, IP_PROTO);
4101 /* We always need to set the type field, even
4102 * though we're not matching on the TNI.
4103 */
4104 MCDI_POPULATE_DWORD_1(inbuf,
4105 FILTER_OP_EXT_IN_VNI_OR_VSID,
4106 FILTER_OP_EXT_IN_VNI_TYPE,
4107 vni_type);
4108 break;
4109 case EFX_ENCAP_TYPE_NVGRE:
4110 COPY_VALUE(ether_type, ETHER_TYPE);
4111 outer_ip_proto = IPPROTO_GRE;
4112 COPY_VALUE(outer_ip_proto, IP_PROTO);
4113 break;
4114 default:
4115 WARN_ON(1);
4116 }
4117
4118 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4119 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4120 } else {
4121 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4122 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4123 }
4124
4125 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4126 match_fields |=
4127 is_multicast_ether_addr(spec->loc_mac) ?
4128 1 << mc_match :
4129 1 << uc_match;
4130 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4131 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4132 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4133 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4134 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4135 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4136 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4137 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4138 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4139 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4140#undef COPY_FIELD
4141#undef COPY_VALUE
4142 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4143 match_fields);
4144}
4145
4146static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4147 const struct efx_filter_spec *spec,
4148 efx_dword_t *inbuf, u64 handle,
4149 struct efx_rss_context *ctx,
4150 bool replacing)
4151{
4152 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4153 u32 flags = spec->flags;
4154
4155 memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4156
4157 /* If RSS filter, caller better have given us an RSS context */
4158 if (flags & EFX_FILTER_FLAG_RX_RSS) {
4159 /* We don't have the ability to return an error, so we'll just
4160 * log a warning and disable RSS for the filter.
4161 */
4162 if (WARN_ON_ONCE(!ctx))
4163 flags &= ~EFX_FILTER_FLAG_RX_RSS;
4164 else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4165 flags &= ~EFX_FILTER_FLAG_RX_RSS;
4166 }
4167
4168 if (replacing) {
4169 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4170 MC_CMD_FILTER_OP_IN_OP_REPLACE);
4171 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4172 } else {
4173 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4174 }
4175
4176 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4177 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4178 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4179 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4180 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4181 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4182 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4183 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4184 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4185 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4186 0 : spec->dmaq_id);
4187 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4188 (flags & EFX_FILTER_FLAG_RX_RSS) ?
4189 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4190 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4191 if (flags & EFX_FILTER_FLAG_RX_RSS)
4192 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4193}
4194
4195static int efx_ef10_filter_push(struct efx_nic *efx,
4196 const struct efx_filter_spec *spec, u64 *handle,
4197 struct efx_rss_context *ctx, bool replacing)
4198{
4199 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4200 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4201 int rc;
4202
4203 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4204 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4205 outbuf, sizeof(outbuf), NULL);
4206 if (rc == 0)
4207 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4208 if (rc == -ENOSPC)
4209 rc = -EBUSY; /* to match efx_farch_filter_insert() */
4210 return rc;
4211}
4212
4213static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4214{
4215 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4216 unsigned int match_flags = spec->match_flags;
4217 unsigned int uc_match, mc_match;
4218 u32 mcdi_flags = 0;
4219
4220#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) { \
4221 unsigned int old_match_flags = match_flags; \
4222 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \
4223 if (match_flags != old_match_flags) \
4224 mcdi_flags |= \
4225 (1 << ((encap) ? \
4226 MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4227 mcdi_field ## _LBN : \
4228 MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4229 mcdi_field ## _LBN)); \
4230 }
4231 /* inner or outer based on encap type */
4232 MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4233 MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4234 MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4235 MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4236 MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4237 MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4238 MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4239 MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4240 /* always outer */
4241 MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4242 MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4243#undef MAP_FILTER_TO_MCDI_FLAG
4244
4245 /* special handling for encap type, and mismatch */
4246 if (encap_type) {
4247 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4248 mcdi_flags |=
4249 (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4250 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4251
4252 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4253 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4254 } else {
4255 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4256 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4257 }
4258
4259 if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4260 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4261 mcdi_flags |=
4262 is_multicast_ether_addr(spec->loc_mac) ?
4263 1 << mc_match :
4264 1 << uc_match;
4265 }
4266
4267 /* Did we map them all? */
4268 WARN_ON_ONCE(match_flags);
4269
4270 return mcdi_flags;
4271}
4272
4273static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4274 const struct efx_filter_spec *spec)
4275{
4276 u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4277 unsigned int match_pri;
4278
4279 for (match_pri = 0;
4280 match_pri < table->rx_match_count;
4281 match_pri++)
4282 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4283 return match_pri;
4284
4285 return -EPROTONOSUPPORT;
4286}
4287
4288static s32 efx_ef10_filter_insert_locked(struct efx_nic *efx,
4289 struct efx_filter_spec *spec,
4290 bool replace_equal)
4291{
4292 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4293 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4294 struct efx_ef10_filter_table *table;
4295 struct efx_filter_spec *saved_spec;
4296 struct efx_rss_context *ctx = NULL;
4297 unsigned int match_pri, hash;
4298 unsigned int priv_flags;
4299 bool rss_locked = false;
4300 bool replacing = false;
4301 unsigned int depth, i;
4302 int ins_index = -1;
4303 DEFINE_WAIT(wait);
4304 bool is_mc_recip;
4305 s32 rc;
4306
4307 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4308 table = efx->filter_state;
4309 down_write(&table->lock);
4310
4311 /* For now, only support RX filters */
4312 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4313 EFX_FILTER_FLAG_RX) {
4314 rc = -EINVAL;
4315 goto out_unlock;
4316 }
4317
4318 rc = efx_ef10_filter_pri(table, spec);
4319 if (rc < 0)
4320 goto out_unlock;
4321 match_pri = rc;
4322
4323 hash = efx_filter_spec_hash(spec);
4324 is_mc_recip = efx_filter_is_mc_recipient(spec);
4325 if (is_mc_recip)
4326 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4327
4328 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4329 mutex_lock(&efx->rss_lock);
4330 rss_locked = true;
4331 if (spec->rss_context)
4332 ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4333 else
4334 ctx = &efx->rss_context;
4335 if (!ctx) {
4336 rc = -ENOENT;
4337 goto out_unlock;
4338 }
4339 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4340 rc = -EOPNOTSUPP;
4341 goto out_unlock;
4342 }
4343 }
4344
4345 /* Find any existing filters with the same match tuple or
4346 * else a free slot to insert at.
4347 */
4348 for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4349 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4350 saved_spec = efx_ef10_filter_entry_spec(table, i);
4351
4352 if (!saved_spec) {
4353 if (ins_index < 0)
4354 ins_index = i;
4355 } else if (efx_filter_spec_equal(spec, saved_spec)) {
4356 if (spec->priority < saved_spec->priority &&
4357 spec->priority != EFX_FILTER_PRI_AUTO) {
4358 rc = -EPERM;
4359 goto out_unlock;
4360 }
4361 if (!is_mc_recip) {
4362 /* This is the only one */
4363 if (spec->priority ==
4364 saved_spec->priority &&
4365 !replace_equal) {
4366 rc = -EEXIST;
4367 goto out_unlock;
4368 }
4369 ins_index = i;
4370 break;
4371 } else if (spec->priority >
4372 saved_spec->priority ||
4373 (spec->priority ==
4374 saved_spec->priority &&
4375 replace_equal)) {
4376 if (ins_index < 0)
4377 ins_index = i;
4378 else
4379 __set_bit(depth, mc_rem_map);
4380 }
4381 }
4382 }
4383
4384 /* Once we reach the maximum search depth, use the first suitable
4385 * slot, or return -EBUSY if there was none
4386 */
4387 if (ins_index < 0) {
4388 rc = -EBUSY;
4389 goto out_unlock;
4390 }
4391
4392 /* Create a software table entry if necessary. */
4393 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4394 if (saved_spec) {
4395 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4396 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4397 /* Just make sure it won't be removed */
4398 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4399 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4400 table->entry[ins_index].spec &=
4401 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4402 rc = ins_index;
4403 goto out_unlock;
4404 }
4405 replacing = true;
4406 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4407 } else {
4408 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4409 if (!saved_spec) {
4410 rc = -ENOMEM;
4411 goto out_unlock;
4412 }
4413 *saved_spec = *spec;
4414 priv_flags = 0;
4415 }
4416 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4417
4418 /* Actually insert the filter on the HW */
4419 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4420 ctx, replacing);
4421
4422 if (rc == -EINVAL && nic_data->must_realloc_vis)
4423 /* The MC rebooted under us, causing it to reject our filter
4424 * insertion as pointing to an invalid VI (spec->dmaq_id).
4425 */
4426 rc = -EAGAIN;
4427
4428 /* Finalise the software table entry */
4429 if (rc == 0) {
4430 if (replacing) {
4431 /* Update the fields that may differ */
4432 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4433 saved_spec->flags |=
4434 EFX_FILTER_FLAG_RX_OVER_AUTO;
4435 saved_spec->priority = spec->priority;
4436 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4437 saved_spec->flags |= spec->flags;
4438 saved_spec->rss_context = spec->rss_context;
4439 saved_spec->dmaq_id = spec->dmaq_id;
4440 }
4441 } else if (!replacing) {
4442 kfree(saved_spec);
4443 saved_spec = NULL;
4444 } else {
4445 /* We failed to replace, so the old filter is still present.
4446 * Roll back the software table to reflect this. In fact the
4447 * efx_ef10_filter_set_entry() call below will do the right
4448 * thing, so nothing extra is needed here.
4449 */
4450 }
4451 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4452
4453 /* Remove and finalise entries for lower-priority multicast
4454 * recipients
4455 */
4456 if (is_mc_recip) {
4457 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4458 unsigned int depth, i;
4459
4460 memset(inbuf, 0, sizeof(inbuf));
4461
4462 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4463 if (!test_bit(depth, mc_rem_map))
4464 continue;
4465
4466 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4467 saved_spec = efx_ef10_filter_entry_spec(table, i);
4468 priv_flags = efx_ef10_filter_entry_flags(table, i);
4469
4470 if (rc == 0) {
4471 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4472 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4473 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4474 table->entry[i].handle);
4475 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4476 inbuf, sizeof(inbuf),
4477 NULL, 0, NULL);
4478 }
4479
4480 if (rc == 0) {
4481 kfree(saved_spec);
4482 saved_spec = NULL;
4483 priv_flags = 0;
4484 }
4485 efx_ef10_filter_set_entry(table, i, saved_spec,
4486 priv_flags);
4487 }
4488 }
4489
4490 /* If successful, return the inserted filter ID */
4491 if (rc == 0)
4492 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4493
4494out_unlock:
4495 if (rss_locked)
4496 mutex_unlock(&efx->rss_lock);
4497 up_write(&table->lock);
4498 return rc;
4499}
4500
4501static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4502 struct efx_filter_spec *spec,
4503 bool replace_equal)
4504{
4505 s32 ret;
4506
4507 down_read(&efx->filter_sem);
4508 ret = efx_ef10_filter_insert_locked(efx, spec, replace_equal);
4509 up_read(&efx->filter_sem);
4510
4511 return ret;
4512}
4513
4514static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4515{
4516 /* no need to do anything here on EF10 */
4517}
4518
4519/* Remove a filter.
4520 * If !by_index, remove by ID
4521 * If by_index, remove by index
4522 * Filter ID may come from userland and must be range-checked.
4523 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4524 * for write.
4525 */
4526static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4527 unsigned int priority_mask,
4528 u32 filter_id, bool by_index)
4529{
4530 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4531 struct efx_ef10_filter_table *table = efx->filter_state;
4532 MCDI_DECLARE_BUF(inbuf,
4533 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4534 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4535 struct efx_filter_spec *spec;
4536 DEFINE_WAIT(wait);
4537 int rc;
4538
4539 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4540 if (!spec ||
4541 (!by_index &&
4542 efx_ef10_filter_pri(table, spec) !=
4543 efx_ef10_filter_get_unsafe_pri(filter_id)))
4544 return -ENOENT;
4545
4546 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4547 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4548 /* Just remove flags */
4549 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4550 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4551 return 0;
4552 }
4553
4554 if (!(priority_mask & (1U << spec->priority)))
4555 return -ENOENT;
4556
4557 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4558 /* Reset to an automatic filter */
4559
4560 struct efx_filter_spec new_spec = *spec;
4561
4562 new_spec.priority = EFX_FILTER_PRI_AUTO;
4563 new_spec.flags = (EFX_FILTER_FLAG_RX |
4564 (efx_rss_active(&efx->rss_context) ?
4565 EFX_FILTER_FLAG_RX_RSS : 0));
4566 new_spec.dmaq_id = 0;
4567 new_spec.rss_context = 0;
4568 rc = efx_ef10_filter_push(efx, &new_spec,
4569 &table->entry[filter_idx].handle,
4570 &efx->rss_context,
4571 true);
4572
4573 if (rc == 0)
4574 *spec = new_spec;
4575 } else {
4576 /* Really remove the filter */
4577
4578 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4579 efx_ef10_filter_is_exclusive(spec) ?
4580 MC_CMD_FILTER_OP_IN_OP_REMOVE :
4581 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4582 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4583 table->entry[filter_idx].handle);
4584 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4585 inbuf, sizeof(inbuf), NULL, 0, NULL);
4586
4587 if ((rc == 0) || (rc == -ENOENT)) {
4588 /* Filter removed OK or didn't actually exist */
4589 kfree(spec);
4590 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4591 } else {
4592 efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4593 MC_CMD_FILTER_OP_EXT_IN_LEN,
4594 NULL, 0, rc);
4595 }
4596 }
4597
4598 return rc;
4599}
4600
4601static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4602 enum efx_filter_priority priority,
4603 u32 filter_id)
4604{
4605 struct efx_ef10_filter_table *table;
4606 int rc;
4607
4608 down_read(&efx->filter_sem);
4609 table = efx->filter_state;
4610 down_write(&table->lock);
4611 rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4612 false);
4613 up_write(&table->lock);
4614 up_read(&efx->filter_sem);
4615 return rc;
4616}
4617
4618/* Caller must hold efx->filter_sem for read */
4619static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4620 enum efx_filter_priority priority,
4621 u32 filter_id)
4622{
4623 struct efx_ef10_filter_table *table = efx->filter_state;
4624
4625 if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4626 return;
4627
4628 down_write(&table->lock);
4629 efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4630 true);
4631 up_write(&table->lock);
4632}
4633
4634static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4635 enum efx_filter_priority priority,
4636 u32 filter_id, struct efx_filter_spec *spec)
4637{
4638 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4639 const struct efx_filter_spec *saved_spec;
4640 struct efx_ef10_filter_table *table;
4641 int rc;
4642
4643 down_read(&efx->filter_sem);
4644 table = efx->filter_state;
4645 down_read(&table->lock);
4646 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4647 if (saved_spec && saved_spec->priority == priority &&
4648 efx_ef10_filter_pri(table, saved_spec) ==
4649 efx_ef10_filter_get_unsafe_pri(filter_id)) {
4650 *spec = *saved_spec;
4651 rc = 0;
4652 } else {
4653 rc = -ENOENT;
4654 }
4655 up_read(&table->lock);
4656 up_read(&efx->filter_sem);
4657 return rc;
4658}
4659
4660static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4661 enum efx_filter_priority priority)
4662{
4663 struct efx_ef10_filter_table *table;
4664 unsigned int priority_mask;
4665 unsigned int i;
4666 int rc;
4667
4668 priority_mask = (((1U << (priority + 1)) - 1) &
4669 ~(1U << EFX_FILTER_PRI_AUTO));
4670
4671 down_read(&efx->filter_sem);
4672 table = efx->filter_state;
4673 down_write(&table->lock);
4674 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4675 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4676 i, true);
4677 if (rc && rc != -ENOENT)
4678 break;
4679 rc = 0;
4680 }
4681
4682 up_write(&table->lock);
4683 up_read(&efx->filter_sem);
4684 return rc;
4685}
4686
4687static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4688 enum efx_filter_priority priority)
4689{
4690 struct efx_ef10_filter_table *table;
4691 unsigned int filter_idx;
4692 s32 count = 0;
4693
4694 down_read(&efx->filter_sem);
4695 table = efx->filter_state;
4696 down_read(&table->lock);
4697 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4698 if (table->entry[filter_idx].spec &&
4699 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4700 priority)
4701 ++count;
4702 }
4703 up_read(&table->lock);
4704 up_read(&efx->filter_sem);
4705 return count;
4706}
4707
4708static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4709{
4710 struct efx_ef10_filter_table *table = efx->filter_state;
4711
4712 return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4713}
4714
4715static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4716 enum efx_filter_priority priority,
4717 u32 *buf, u32 size)
4718{
4719 struct efx_ef10_filter_table *table;
4720 struct efx_filter_spec *spec;
4721 unsigned int filter_idx;
4722 s32 count = 0;
4723
4724 down_read(&efx->filter_sem);
4725 table = efx->filter_state;
4726 down_read(&table->lock);
4727
4728 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4729 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4730 if (spec && spec->priority == priority) {
4731 if (count == size) {
4732 count = -EMSGSIZE;
4733 break;
4734 }
4735 buf[count++] =
4736 efx_ef10_make_filter_id(
4737 efx_ef10_filter_pri(table, spec),
4738 filter_idx);
4739 }
4740 }
4741 up_read(&table->lock);
4742 up_read(&efx->filter_sem);
4743 return count;
4744}
4745
4746#ifdef CONFIG_RFS_ACCEL
4747
4748static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4749 unsigned int filter_idx)
4750{
4751 struct efx_filter_spec *spec, saved_spec;
4752 struct efx_ef10_filter_table *table;
4753 struct efx_arfs_rule *rule = NULL;
4754 bool ret = true, force = false;
4755 u16 arfs_id;
4756
4757 down_read(&efx->filter_sem);
4758 table = efx->filter_state;
4759 down_write(&table->lock);
4760 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4761
4762 if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4763 goto out_unlock;
4764
4765 spin_lock_bh(&efx->rps_hash_lock);
4766 if (!efx->rps_hash_table) {
4767 /* In the absence of the table, we always return 0 to ARFS. */
4768 arfs_id = 0;
4769 } else {
4770 rule = efx_rps_hash_find(efx, spec);
4771 if (!rule)
4772 /* ARFS table doesn't know of this filter, so remove it */
4773 goto expire;
4774 arfs_id = rule->arfs_id;
4775 ret = efx_rps_check_rule(rule, filter_idx, &force);
4776 if (force)
4777 goto expire;
4778 if (!ret) {
4779 spin_unlock_bh(&efx->rps_hash_lock);
4780 goto out_unlock;
4781 }
4782 }
4783 if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4784 ret = false;
4785 else if (rule)
4786 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4787expire:
4788 saved_spec = *spec; /* remove operation will kfree spec */
4789 spin_unlock_bh(&efx->rps_hash_lock);
4790 /* At this point (since we dropped the lock), another thread might queue
4791 * up a fresh insertion request (but the actual insertion will be held
4792 * up by our possession of the filter table lock). In that case, it
4793 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4794 * the rule is not removed by efx_rps_hash_del() below.
4795 */
4796 if (ret)
4797 ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4798 filter_idx, true) == 0;
4799 /* While we can't safely dereference rule (we dropped the lock), we can
4800 * still test it for NULL.
4801 */
4802 if (ret && rule) {
4803 /* Expiring, so remove entry from ARFS table */
4804 spin_lock_bh(&efx->rps_hash_lock);
4805 efx_rps_hash_del(efx, &saved_spec);
4806 spin_unlock_bh(&efx->rps_hash_lock);
4807 }
4808out_unlock:
4809 up_write(&table->lock);
4810 up_read(&efx->filter_sem);
4811 return ret;
4812}
4813
4814#endif /* CONFIG_RFS_ACCEL */
4815
4816static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4817{
4818 int match_flags = 0;
4819
4820#define MAP_FLAG(gen_flag, mcdi_field) do { \
4821 u32 old_mcdi_flags = mcdi_flags; \
4822 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ## \
4823 mcdi_field ## _LBN); \
4824 if (mcdi_flags != old_mcdi_flags) \
4825 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
4826 } while (0)
4827
4828 if (encap) {
4829 /* encap filters must specify encap type */
4830 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4831 /* and imply ethertype and ip proto */
4832 mcdi_flags &=
4833 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4834 mcdi_flags &=
4835 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4836 /* VLAN tags refer to the outer packet */
4837 MAP_FLAG(INNER_VID, INNER_VLAN);
4838 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4839 /* everything else refers to the inner packet */
4840 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4841 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4842 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4843 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4844 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4845 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4846 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4847 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4848 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4849 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4850 } else {
4851 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4852 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4853 MAP_FLAG(REM_HOST, SRC_IP);
4854 MAP_FLAG(LOC_HOST, DST_IP);
4855 MAP_FLAG(REM_MAC, SRC_MAC);
4856 MAP_FLAG(REM_PORT, SRC_PORT);
4857 MAP_FLAG(LOC_MAC, DST_MAC);
4858 MAP_FLAG(LOC_PORT, DST_PORT);
4859 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4860 MAP_FLAG(INNER_VID, INNER_VLAN);
4861 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4862 MAP_FLAG(IP_PROTO, IP_PROTO);
4863 }
4864#undef MAP_FLAG
4865
4866 /* Did we map them all? */
4867 if (mcdi_flags)
4868 return -EINVAL;
4869
4870 return match_flags;
4871}
4872
4873static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4874{
4875 struct efx_ef10_filter_table *table = efx->filter_state;
4876 struct efx_ef10_filter_vlan *vlan, *next_vlan;
4877
4878 /* See comment in efx_ef10_filter_table_remove() */
4879 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4880 return;
4881
4882 if (!table)
4883 return;
4884
4885 list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4886 efx_ef10_filter_del_vlan_internal(efx, vlan);
4887}
4888
4889static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4890 bool encap,
4891 enum efx_filter_match_flags match_flags)
4892{
4893 unsigned int match_pri;
4894 int mf;
4895
4896 for (match_pri = 0;
4897 match_pri < table->rx_match_count;
4898 match_pri++) {
4899 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4900 table->rx_match_mcdi_flags[match_pri]);
4901 if (mf == match_flags)
4902 return true;
4903 }
4904
4905 return false;
4906}
4907
4908static int
4909efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4910 struct efx_ef10_filter_table *table,
4911 bool encap)
4912{
4913 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4914 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4915 unsigned int pd_match_pri, pd_match_count;
4916 size_t outlen;
4917 int rc;
4918
4919 /* Find out which RX filter types are supported, and their priorities */
4920 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4921 encap ?
4922 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4923 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4924 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4925 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4926 &outlen);
4927 if (rc)
4928 return rc;
4929
4930 pd_match_count = MCDI_VAR_ARRAY_LEN(
4931 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4932
4933 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4934 u32 mcdi_flags =
4935 MCDI_ARRAY_DWORD(
4936 outbuf,
4937 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4938 pd_match_pri);
4939 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4940 if (rc < 0) {
4941 netif_dbg(efx, probe, efx->net_dev,
4942 "%s: fw flags %#x pri %u not supported in driver\n",
4943 __func__, mcdi_flags, pd_match_pri);
4944 } else {
4945 netif_dbg(efx, probe, efx->net_dev,
4946 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4947 __func__, mcdi_flags, pd_match_pri,
4948 rc, table->rx_match_count);
4949 table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4950 table->rx_match_count++;
4951 }
4952 }
4953
4954 return 0;
4955}
4956
4957static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4958{
4959 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4960 struct net_device *net_dev = efx->net_dev;
4961 struct efx_ef10_filter_table *table;
4962 struct efx_ef10_vlan *vlan;
4963 int rc;
4964
4965 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4966 return -EINVAL;
4967
4968 if (efx->filter_state) /* already probed */
4969 return 0;
4970
4971 table = kzalloc(sizeof(*table), GFP_KERNEL);
4972 if (!table)
4973 return -ENOMEM;
4974
4975 table->rx_match_count = 0;
4976 rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4977 if (rc)
4978 goto fail;
4979 if (nic_data->datapath_caps &
4980 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4981 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4982 if (rc)
4983 goto fail;
4984 if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4985 !(efx_ef10_filter_match_supported(table, false,
4986 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4987 efx_ef10_filter_match_supported(table, false,
4988 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4989 netif_info(efx, probe, net_dev,
4990 "VLAN filters are not supported in this firmware variant\n");
4991 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4992 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4993 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4994 }
4995
4996 table->entry = vzalloc(array_size(HUNT_FILTER_TBL_ROWS,
4997 sizeof(*table->entry)));
4998 if (!table->entry) {
4999 rc = -ENOMEM;
5000 goto fail;
5001 }
5002
5003 table->mc_promisc_last = false;
5004 table->vlan_filter =
5005 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5006 INIT_LIST_HEAD(&table->vlan_list);
5007 init_rwsem(&table->lock);
5008
5009 efx->filter_state = table;
5010
5011 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5012 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5013 if (rc)
5014 goto fail_add_vlan;
5015 }
5016
5017 return 0;
5018
5019fail_add_vlan:
5020 efx_ef10_filter_cleanup_vlans(efx);
5021 efx->filter_state = NULL;
5022fail:
5023 kfree(table);
5024 return rc;
5025}
5026
5027/* Caller must hold efx->filter_sem for read if race against
5028 * efx_ef10_filter_table_remove() is possible
5029 */
5030static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5031{
5032 struct efx_ef10_filter_table *table = efx->filter_state;
5033 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5034 unsigned int invalid_filters = 0, failed = 0;
5035 struct efx_ef10_filter_vlan *vlan;
5036 struct efx_filter_spec *spec;
5037 struct efx_rss_context *ctx;
5038 unsigned int filter_idx;
5039 u32 mcdi_flags;
5040 int match_pri;
5041 int rc, i;
5042
5043 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5044
5045 if (!nic_data->must_restore_filters)
5046 return;
5047
5048 if (!table)
5049 return;
5050
5051 down_write(&table->lock);
5052 mutex_lock(&efx->rss_lock);
5053
5054 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5055 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5056 if (!spec)
5057 continue;
5058
5059 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5060 match_pri = 0;
5061 while (match_pri < table->rx_match_count &&
5062 table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5063 ++match_pri;
5064 if (match_pri >= table->rx_match_count) {
5065 invalid_filters++;
5066 goto not_restored;
5067 }
5068 if (spec->rss_context)
5069 ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5070 else
5071 ctx = &efx->rss_context;
5072 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5073 if (!ctx) {
5074 netif_warn(efx, drv, efx->net_dev,
5075 "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5076 spec->rss_context);
5077 invalid_filters++;
5078 goto not_restored;
5079 }
5080 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5081 netif_warn(efx, drv, efx->net_dev,
5082 "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5083 spec->rss_context);
5084 invalid_filters++;
5085 goto not_restored;
5086 }
5087 }
5088
5089 rc = efx_ef10_filter_push(efx, spec,
5090 &table->entry[filter_idx].handle,
5091 ctx, false);
5092 if (rc)
5093 failed++;
5094
5095 if (rc) {
5096not_restored:
5097 list_for_each_entry(vlan, &table->vlan_list, list)
5098 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5099 if (vlan->default_filters[i] == filter_idx)
5100 vlan->default_filters[i] =
5101 EFX_EF10_FILTER_ID_INVALID;
5102
5103 kfree(spec);
5104 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5105 }
5106 }
5107
5108 mutex_unlock(&efx->rss_lock);
5109 up_write(&table->lock);
5110
5111 /* This can happen validly if the MC's capabilities have changed, so
5112 * is not an error.
5113 */
5114 if (invalid_filters)
5115 netif_dbg(efx, drv, efx->net_dev,
5116 "Did not restore %u filters that are now unsupported.\n",
5117 invalid_filters);
5118
5119 if (failed)
5120 netif_err(efx, hw, efx->net_dev,
5121 "unable to restore %u filters\n", failed);
5122 else
5123 nic_data->must_restore_filters = false;
5124}
5125
5126static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5127{
5128 struct efx_ef10_filter_table *table = efx->filter_state;
5129 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5130 struct efx_filter_spec *spec;
5131 unsigned int filter_idx;
5132 int rc;
5133
5134 efx_ef10_filter_cleanup_vlans(efx);
5135 efx->filter_state = NULL;
5136 /* If we were called without locking, then it's not safe to free
5137 * the table as others might be using it. So we just WARN, leak
5138 * the memory, and potentially get an inconsistent filter table
5139 * state.
5140 * This should never actually happen.
5141 */
5142 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5143 return;
5144
5145 if (!table)
5146 return;
5147
5148 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5149 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5150 if (!spec)
5151 continue;
5152
5153 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5154 efx_ef10_filter_is_exclusive(spec) ?
5155 MC_CMD_FILTER_OP_IN_OP_REMOVE :
5156 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5157 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5158 table->entry[filter_idx].handle);
5159 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5160 sizeof(inbuf), NULL, 0, NULL);
5161 if (rc)
5162 netif_info(efx, drv, efx->net_dev,
5163 "%s: filter %04x remove failed\n",
5164 __func__, filter_idx);
5165 kfree(spec);
5166 }
5167
5168 vfree(table->entry);
5169 kfree(table);
5170}
5171
5172static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5173{
5174 struct efx_ef10_filter_table *table = efx->filter_state;
5175 unsigned int filter_idx;
5176
5177 efx_rwsem_assert_write_locked(&table->lock);
5178
5179 if (*id != EFX_EF10_FILTER_ID_INVALID) {
5180 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5181 if (!table->entry[filter_idx].spec)
5182 netif_dbg(efx, drv, efx->net_dev,
5183 "marked null spec old %04x:%04x\n", *id,
5184 filter_idx);
5185 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5186 *id = EFX_EF10_FILTER_ID_INVALID;
5187 }
5188}
5189
5190/* Mark old per-VLAN filters that may need to be removed */
5191static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5192 struct efx_ef10_filter_vlan *vlan)
5193{
5194 struct efx_ef10_filter_table *table = efx->filter_state;
5195 unsigned int i;
5196
5197 for (i = 0; i < table->dev_uc_count; i++)
5198 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5199 for (i = 0; i < table->dev_mc_count; i++)
5200 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5201 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5202 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5203}
5204
5205/* Mark old filters that may need to be removed.
5206 * Caller must hold efx->filter_sem for read if race against
5207 * efx_ef10_filter_table_remove() is possible
5208 */
5209static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5210{
5211 struct efx_ef10_filter_table *table = efx->filter_state;
5212 struct efx_ef10_filter_vlan *vlan;
5213
5214 down_write(&table->lock);
5215 list_for_each_entry(vlan, &table->vlan_list, list)
5216 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5217 up_write(&table->lock);
5218}
5219
5220static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5221{
5222 struct efx_ef10_filter_table *table = efx->filter_state;
5223 struct net_device *net_dev = efx->net_dev;
5224 struct netdev_hw_addr *uc;
5225 unsigned int i;
5226
5227 table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5228 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5229 i = 1;
5230 netdev_for_each_uc_addr(uc, net_dev) {
5231 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5232 table->uc_promisc = true;
5233 break;
5234 }
5235 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5236 i++;
5237 }
5238
5239 table->dev_uc_count = i;
5240}
5241
5242static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5243{
5244 struct efx_ef10_filter_table *table = efx->filter_state;
5245 struct net_device *net_dev = efx->net_dev;
5246 struct netdev_hw_addr *mc;
5247 unsigned int i;
5248
5249 table->mc_overflow = false;
5250 table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5251
5252 i = 0;
5253 netdev_for_each_mc_addr(mc, net_dev) {
5254 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5255 table->mc_promisc = true;
5256 table->mc_overflow = true;
5257 break;
5258 }
5259 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5260 i++;
5261 }
5262
5263 table->dev_mc_count = i;
5264}
5265
5266static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5267 struct efx_ef10_filter_vlan *vlan,
5268 bool multicast, bool rollback)
5269{
5270 struct efx_ef10_filter_table *table = efx->filter_state;
5271 struct efx_ef10_dev_addr *addr_list;
5272 enum efx_filter_flags filter_flags;
5273 struct efx_filter_spec spec;
5274 u8 baddr[ETH_ALEN];
5275 unsigned int i, j;
5276 int addr_count;
5277 u16 *ids;
5278 int rc;
5279
5280 if (multicast) {
5281 addr_list = table->dev_mc_list;
5282 addr_count = table->dev_mc_count;
5283 ids = vlan->mc;
5284 } else {
5285 addr_list = table->dev_uc_list;
5286 addr_count = table->dev_uc_count;
5287 ids = vlan->uc;
5288 }
5289
5290 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5291
5292 /* Insert/renew filters */
5293 for (i = 0; i < addr_count; i++) {
5294 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5295 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5296 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5297 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5298 if (rc < 0) {
5299 if (rollback) {
5300 netif_info(efx, drv, efx->net_dev,
5301 "efx_ef10_filter_insert failed rc=%d\n",
5302 rc);
5303 /* Fall back to promiscuous */
5304 for (j = 0; j < i; j++) {
5305 efx_ef10_filter_remove_unsafe(
5306 efx, EFX_FILTER_PRI_AUTO,
5307 ids[j]);
5308 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5309 }
5310 return rc;
5311 } else {
5312 /* keep invalid ID, and carry on */
5313 }
5314 } else {
5315 ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5316 }
5317 }
5318
5319 if (multicast && rollback) {
5320 /* Also need an Ethernet broadcast filter */
5321 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5322 EFX_EF10_FILTER_ID_INVALID);
5323 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5324 eth_broadcast_addr(baddr);
5325 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5326 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5327 if (rc < 0) {
5328 netif_warn(efx, drv, efx->net_dev,
5329 "Broadcast filter insert failed rc=%d\n", rc);
5330 /* Fall back to promiscuous */
5331 for (j = 0; j < i; j++) {
5332 efx_ef10_filter_remove_unsafe(
5333 efx, EFX_FILTER_PRI_AUTO,
5334 ids[j]);
5335 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5336 }
5337 return rc;
5338 } else {
5339 vlan->default_filters[EFX_EF10_BCAST] =
5340 efx_ef10_filter_get_unsafe_id(rc);
5341 }
5342 }
5343
5344 return 0;
5345}
5346
5347static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5348 struct efx_ef10_filter_vlan *vlan,
5349 enum efx_encap_type encap_type,
5350 bool multicast, bool rollback)
5351{
5352 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5353 enum efx_filter_flags filter_flags;
5354 struct efx_filter_spec spec;
5355 u8 baddr[ETH_ALEN];
5356 int rc;
5357 u16 *id;
5358
5359 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5360
5361 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5362
5363 if (multicast)
5364 efx_filter_set_mc_def(&spec);
5365 else
5366 efx_filter_set_uc_def(&spec);
5367
5368 if (encap_type) {
5369 if (nic_data->datapath_caps &
5370 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5371 efx_filter_set_encap_type(&spec, encap_type);
5372 else
5373 /* don't insert encap filters on non-supporting
5374 * platforms. ID will be left as INVALID.
5375 */
5376 return 0;
5377 }
5378
5379 if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5380 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5381
5382 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5383 if (rc < 0) {
5384 const char *um = multicast ? "Multicast" : "Unicast";
5385 const char *encap_name = "";
5386 const char *encap_ipv = "";
5387
5388 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5389 EFX_ENCAP_TYPE_VXLAN)
5390 encap_name = "VXLAN ";
5391 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5392 EFX_ENCAP_TYPE_NVGRE)
5393 encap_name = "NVGRE ";
5394 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5395 EFX_ENCAP_TYPE_GENEVE)
5396 encap_name = "GENEVE ";
5397 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5398 encap_ipv = "IPv6 ";
5399 else if (encap_type)
5400 encap_ipv = "IPv4 ";
5401
5402 /* unprivileged functions can't insert mismatch filters
5403 * for encapsulated or unicast traffic, so downgrade
5404 * those warnings to debug.
5405 */
5406 netif_cond_dbg(efx, drv, efx->net_dev,
5407 rc == -EPERM && (encap_type || !multicast), warn,
5408 "%s%s%s mismatch filter insert failed rc=%d\n",
5409 encap_name, encap_ipv, um, rc);
5410 } else if (multicast) {
5411 /* mapping from encap types to default filter IDs (multicast) */
5412 static enum efx_ef10_default_filters map[] = {
5413 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5414 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5415 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5416 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5417 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5418 EFX_EF10_VXLAN6_MCDEF,
5419 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5420 EFX_EF10_NVGRE6_MCDEF,
5421 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5422 EFX_EF10_GENEVE6_MCDEF,
5423 };
5424
5425 /* quick bounds check (BCAST result impossible) */
5426 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5427 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5428 WARN_ON(1);
5429 return -EINVAL;
5430 }
5431 /* then follow map */
5432 id = &vlan->default_filters[map[encap_type]];
5433
5434 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5435 *id = efx_ef10_filter_get_unsafe_id(rc);
5436 if (!nic_data->workaround_26807 && !encap_type) {
5437 /* Also need an Ethernet broadcast filter */
5438 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5439 filter_flags, 0);
5440 eth_broadcast_addr(baddr);
5441 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5442 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5443 if (rc < 0) {
5444 netif_warn(efx, drv, efx->net_dev,
5445 "Broadcast filter insert failed rc=%d\n",
5446 rc);
5447 if (rollback) {
5448 /* Roll back the mc_def filter */
5449 efx_ef10_filter_remove_unsafe(
5450 efx, EFX_FILTER_PRI_AUTO,
5451 *id);
5452 *id = EFX_EF10_FILTER_ID_INVALID;
5453 return rc;
5454 }
5455 } else {
5456 EFX_WARN_ON_PARANOID(
5457 vlan->default_filters[EFX_EF10_BCAST] !=
5458 EFX_EF10_FILTER_ID_INVALID);
5459 vlan->default_filters[EFX_EF10_BCAST] =
5460 efx_ef10_filter_get_unsafe_id(rc);
5461 }
5462 }
5463 rc = 0;
5464 } else {
5465 /* mapping from encap types to default filter IDs (unicast) */
5466 static enum efx_ef10_default_filters map[] = {
5467 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5468 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5469 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5470 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5471 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5472 EFX_EF10_VXLAN6_UCDEF,
5473 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5474 EFX_EF10_NVGRE6_UCDEF,
5475 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5476 EFX_EF10_GENEVE6_UCDEF,
5477 };
5478
5479 /* quick bounds check (BCAST result impossible) */
5480 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5481 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5482 WARN_ON(1);
5483 return -EINVAL;
5484 }
5485 /* then follow map */
5486 id = &vlan->default_filters[map[encap_type]];
5487 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5488 *id = rc;
5489 rc = 0;
5490 }
5491 return rc;
5492}
5493
5494/* Remove filters that weren't renewed. */
5495static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5496{
5497 struct efx_ef10_filter_table *table = efx->filter_state;
5498 int remove_failed = 0;
5499 int remove_noent = 0;
5500 int rc;
5501 int i;
5502
5503 down_write(&table->lock);
5504 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5505 if (READ_ONCE(table->entry[i].spec) &
5506 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5507 rc = efx_ef10_filter_remove_internal(efx,
5508 1U << EFX_FILTER_PRI_AUTO, i, true);
5509 if (rc == -ENOENT)
5510 remove_noent++;
5511 else if (rc)
5512 remove_failed++;
5513 }
5514 }
5515 up_write(&table->lock);
5516
5517 if (remove_failed)
5518 netif_info(efx, drv, efx->net_dev,
5519 "%s: failed to remove %d filters\n",
5520 __func__, remove_failed);
5521 if (remove_noent)
5522 netif_info(efx, drv, efx->net_dev,
5523 "%s: failed to remove %d non-existent filters\n",
5524 __func__, remove_noent);
5525}
5526
5527static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5528{
5529 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5530 u8 mac_old[ETH_ALEN];
5531 int rc, rc2;
5532
5533 /* Only reconfigure a PF-created vport */
5534 if (is_zero_ether_addr(nic_data->vport_mac))
5535 return 0;
5536
5537 efx_device_detach_sync(efx);
5538 efx_net_stop(efx->net_dev);
5539 down_write(&efx->filter_sem);
5540 efx_ef10_filter_table_remove(efx);
5541 up_write(&efx->filter_sem);
5542
5543 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5544 if (rc)
5545 goto restore_filters;
5546
5547 ether_addr_copy(mac_old, nic_data->vport_mac);
5548 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5549 nic_data->vport_mac);
5550 if (rc)
5551 goto restore_vadaptor;
5552
5553 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5554 efx->net_dev->dev_addr);
5555 if (!rc) {
5556 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5557 } else {
5558 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5559 if (rc2) {
5560 /* Failed to add original MAC, so clear vport_mac */
5561 eth_zero_addr(nic_data->vport_mac);
5562 goto reset_nic;
5563 }
5564 }
5565
5566restore_vadaptor:
5567 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5568 if (rc2)
5569 goto reset_nic;
5570restore_filters:
5571 down_write(&efx->filter_sem);
5572 rc2 = efx_ef10_filter_table_probe(efx);
5573 up_write(&efx->filter_sem);
5574 if (rc2)
5575 goto reset_nic;
5576
5577 rc2 = efx_net_open(efx->net_dev);
5578 if (rc2)
5579 goto reset_nic;
5580
5581 efx_device_attach_if_not_resetting(efx);
5582
5583 return rc;
5584
5585reset_nic:
5586 netif_err(efx, drv, efx->net_dev,
5587 "Failed to restore when changing MAC address - scheduling reset\n");
5588 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5589
5590 return rc ? rc : rc2;
5591}
5592
5593/* Caller must hold efx->filter_sem for read if race against
5594 * efx_ef10_filter_table_remove() is possible
5595 */
5596static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5597 struct efx_ef10_filter_vlan *vlan)
5598{
5599 struct efx_ef10_filter_table *table = efx->filter_state;
5600 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5601
5602 /* Do not install unspecified VID if VLAN filtering is enabled.
5603 * Do not install all specified VIDs if VLAN filtering is disabled.
5604 */
5605 if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5606 return;
5607
5608 /* Insert/renew unicast filters */
5609 if (table->uc_promisc) {
5610 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5611 false, false);
5612 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5613 } else {
5614 /* If any of the filters failed to insert, fall back to
5615 * promiscuous mode - add in the uc_def filter. But keep
5616 * our individual unicast filters.
5617 */
5618 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5619 efx_ef10_filter_insert_def(efx, vlan,
5620 EFX_ENCAP_TYPE_NONE,
5621 false, false);
5622 }
5623 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5624 false, false);
5625 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5626 EFX_ENCAP_FLAG_IPV6,
5627 false, false);
5628 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5629 false, false);
5630 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5631 EFX_ENCAP_FLAG_IPV6,
5632 false, false);
5633 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5634 false, false);
5635 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5636 EFX_ENCAP_FLAG_IPV6,
5637 false, false);
5638
5639 /* Insert/renew multicast filters */
5640 /* If changing promiscuous state with cascaded multicast filters, remove
5641 * old filters first, so that packets are dropped rather than duplicated
5642 */
5643 if (nic_data->workaround_26807 &&
5644 table->mc_promisc_last != table->mc_promisc)
5645 efx_ef10_filter_remove_old(efx);
5646 if (table->mc_promisc) {
5647 if (nic_data->workaround_26807) {
5648 /* If we failed to insert promiscuous filters, rollback
5649 * and fall back to individual multicast filters
5650 */
5651 if (efx_ef10_filter_insert_def(efx, vlan,
5652 EFX_ENCAP_TYPE_NONE,
5653 true, true)) {
5654 /* Changing promisc state, so remove old filters */
5655 efx_ef10_filter_remove_old(efx);
5656 efx_ef10_filter_insert_addr_list(efx, vlan,
5657 true, false);
5658 }
5659 } else {
5660 /* If we failed to insert promiscuous filters, don't
5661 * rollback. Regardless, also insert the mc_list,
5662 * unless it's incomplete due to overflow
5663 */
5664 efx_ef10_filter_insert_def(efx, vlan,
5665 EFX_ENCAP_TYPE_NONE,
5666 true, false);
5667 if (!table->mc_overflow)
5668 efx_ef10_filter_insert_addr_list(efx, vlan,
5669 true, false);
5670 }
5671 } else {
5672 /* If any filters failed to insert, rollback and fall back to
5673 * promiscuous mode - mc_def filter and maybe broadcast. If
5674 * that fails, roll back again and insert as many of our
5675 * individual multicast filters as we can.
5676 */
5677 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5678 /* Changing promisc state, so remove old filters */
5679 if (nic_data->workaround_26807)
5680 efx_ef10_filter_remove_old(efx);
5681 if (efx_ef10_filter_insert_def(efx, vlan,
5682 EFX_ENCAP_TYPE_NONE,
5683 true, true))
5684 efx_ef10_filter_insert_addr_list(efx, vlan,
5685 true, false);
5686 }
5687 }
5688 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5689 true, false);
5690 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5691 EFX_ENCAP_FLAG_IPV6,
5692 true, false);
5693 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5694 true, false);
5695 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5696 EFX_ENCAP_FLAG_IPV6,
5697 true, false);
5698 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5699 true, false);
5700 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5701 EFX_ENCAP_FLAG_IPV6,
5702 true, false);
5703}
5704
5705/* Caller must hold efx->filter_sem for read if race against
5706 * efx_ef10_filter_table_remove() is possible
5707 */
5708static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5709{
5710 struct efx_ef10_filter_table *table = efx->filter_state;
5711 struct net_device *net_dev = efx->net_dev;
5712 struct efx_ef10_filter_vlan *vlan;
5713 bool vlan_filter;
5714
5715 if (!efx_dev_registered(efx))
5716 return;
5717
5718 if (!table)
5719 return;
5720
5721 efx_ef10_filter_mark_old(efx);
5722
5723 /* Copy/convert the address lists; add the primary station
5724 * address and broadcast address
5725 */
5726 netif_addr_lock_bh(net_dev);
5727 efx_ef10_filter_uc_addr_list(efx);
5728 efx_ef10_filter_mc_addr_list(efx);
5729 netif_addr_unlock_bh(net_dev);
5730
5731 /* If VLAN filtering changes, all old filters are finally removed.
5732 * Do it in advance to avoid conflicts for unicast untagged and
5733 * VLAN 0 tagged filters.
5734 */
5735 vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5736 if (table->vlan_filter != vlan_filter) {
5737 table->vlan_filter = vlan_filter;
5738 efx_ef10_filter_remove_old(efx);
5739 }
5740
5741 list_for_each_entry(vlan, &table->vlan_list, list)
5742 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5743
5744 efx_ef10_filter_remove_old(efx);
5745 table->mc_promisc_last = table->mc_promisc;
5746}
5747
5748static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5749{
5750 struct efx_ef10_filter_table *table = efx->filter_state;
5751 struct efx_ef10_filter_vlan *vlan;
5752
5753 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5754
5755 list_for_each_entry(vlan, &table->vlan_list, list) {
5756 if (vlan->vid == vid)
5757 return vlan;
5758 }
5759
5760 return NULL;
5761}
5762
5763static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5764{
5765 struct efx_ef10_filter_table *table = efx->filter_state;
5766 struct efx_ef10_filter_vlan *vlan;
5767 unsigned int i;
5768
5769 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5770 return -EINVAL;
5771
5772 vlan = efx_ef10_filter_find_vlan(efx, vid);
5773 if (WARN_ON(vlan)) {
5774 netif_err(efx, drv, efx->net_dev,
5775 "VLAN %u already added\n", vid);
5776 return -EALREADY;
5777 }
5778
5779 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5780 if (!vlan)
5781 return -ENOMEM;
5782
5783 vlan->vid = vid;
5784
5785 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5786 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5787 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5788 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5789 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5790 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5791
5792 list_add_tail(&vlan->list, &table->vlan_list);
5793
5794 if (efx_dev_registered(efx))
5795 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5796
5797 return 0;
5798}
5799
5800static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5801 struct efx_ef10_filter_vlan *vlan)
5802{
5803 unsigned int i;
5804
5805 /* See comment in efx_ef10_filter_table_remove() */
5806 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5807 return;
5808
5809 list_del(&vlan->list);
5810
5811 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5812 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5813 vlan->uc[i]);
5814 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5815 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5816 vlan->mc[i]);
5817 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5818 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5819 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5820 vlan->default_filters[i]);
5821
5822 kfree(vlan);
5823}
5824
5825static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5826{
5827 struct efx_ef10_filter_vlan *vlan;
5828
5829 /* See comment in efx_ef10_filter_table_remove() */
5830 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5831 return;
5832
5833 vlan = efx_ef10_filter_find_vlan(efx, vid);
5834 if (!vlan) {
5835 netif_err(efx, drv, efx->net_dev,
5836 "VLAN %u not found in filter state\n", vid);
5837 return;
5838 }
5839
5840 efx_ef10_filter_del_vlan_internal(efx, vlan);
5841}
5842
5843static int efx_ef10_set_mac_address(struct efx_nic *efx)
5844{
5845 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5846 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5847 bool was_enabled = efx->port_enabled;
5848 int rc;
5849
5850 efx_device_detach_sync(efx);
5851 efx_net_stop(efx->net_dev);
5852
5853 mutex_lock(&efx->mac_lock);
5854 down_write(&efx->filter_sem);
5855 efx_ef10_filter_table_remove(efx);
5856
5857 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5858 efx->net_dev->dev_addr);
5859 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5860 nic_data->vport_id);
5861 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5862 sizeof(inbuf), NULL, 0, NULL);
5863
5864 efx_ef10_filter_table_probe(efx);
5865 up_write(&efx->filter_sem);
5866 mutex_unlock(&efx->mac_lock);
5867
5868 if (was_enabled)
5869 efx_net_open(efx->net_dev);
5870 efx_device_attach_if_not_resetting(efx);
5871
5872#ifdef CONFIG_SFC_SRIOV
5873 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5874 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5875
5876 if (rc == -EPERM) {
5877 struct efx_nic *efx_pf;
5878
5879 /* Switch to PF and change MAC address on vport */
5880 efx_pf = pci_get_drvdata(pci_dev_pf);
5881
5882 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5883 nic_data->vf_index,
5884 efx->net_dev->dev_addr);
5885 } else if (!rc) {
5886 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5887 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5888 unsigned int i;
5889
5890 /* MAC address successfully changed by VF (with MAC
5891 * spoofing) so update the parent PF if possible.
5892 */
5893 for (i = 0; i < efx_pf->vf_count; ++i) {
5894 struct ef10_vf *vf = nic_data->vf + i;
5895
5896 if (vf->efx == efx) {
5897 ether_addr_copy(vf->mac,
5898 efx->net_dev->dev_addr);
5899 return 0;
5900 }
5901 }
5902 }
5903 } else
5904#endif
5905 if (rc == -EPERM) {
5906 netif_err(efx, drv, efx->net_dev,
5907 "Cannot change MAC address; use sfboot to enable"
5908 " mac-spoofing on this interface\n");
5909 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5910 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5911 * fall-back to the method of changing the MAC address on the
5912 * vport. This only applies to PFs because such versions of
5913 * MCFW do not support VFs.
5914 */
5915 rc = efx_ef10_vport_set_mac_address(efx);
5916 } else if (rc) {
5917 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5918 sizeof(inbuf), NULL, 0, rc);
5919 }
5920
5921 return rc;
5922}
5923
5924static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5925{
5926 efx_ef10_filter_sync_rx_mode(efx);
5927
5928 return efx_mcdi_set_mac(efx);
5929}
5930
5931static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5932{
5933 efx_ef10_filter_sync_rx_mode(efx);
5934
5935 return 0;
5936}
5937
5938static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5939{
5940 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5941
5942 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5943 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5944 NULL, 0, NULL);
5945}
5946
5947/* MC BISTs follow a different poll mechanism to phy BISTs.
5948 * The BIST is done in the poll handler on the MC, and the MCDI command
5949 * will block until the BIST is done.
5950 */
5951static int efx_ef10_poll_bist(struct efx_nic *efx)
5952{
5953 int rc;
5954 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5955 size_t outlen;
5956 u32 result;
5957
5958 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5959 outbuf, sizeof(outbuf), &outlen);
5960 if (rc != 0)
5961 return rc;
5962
5963 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5964 return -EIO;
5965
5966 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5967 switch (result) {
5968 case MC_CMD_POLL_BIST_PASSED:
5969 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5970 return 0;
5971 case MC_CMD_POLL_BIST_TIMEOUT:
5972 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5973 return -EIO;
5974 case MC_CMD_POLL_BIST_FAILED:
5975 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5976 return -EIO;
5977 default:
5978 netif_err(efx, hw, efx->net_dev,
5979 "BIST returned unknown result %u", result);
5980 return -EIO;
5981 }
5982}
5983
5984static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5985{
5986 int rc;
5987
5988 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5989
5990 rc = efx_ef10_start_bist(efx, bist_type);
5991 if (rc != 0)
5992 return rc;
5993
5994 return efx_ef10_poll_bist(efx);
5995}
5996
5997static int
5998efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5999{
6000 int rc, rc2;
6001
6002 efx_reset_down(efx, RESET_TYPE_WORLD);
6003
6004 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
6005 NULL, 0, NULL, 0, NULL);
6006 if (rc != 0)
6007 goto out;
6008
6009 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6010 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6011
6012 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6013
6014out:
6015 if (rc == -EPERM)
6016 rc = 0;
6017 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6018 return rc ? rc : rc2;
6019}
6020
6021#ifdef CONFIG_SFC_MTD
6022
6023struct efx_ef10_nvram_type_info {
6024 u16 type, type_mask;
6025 u8 port;
6026 const char *name;
6027};
6028
6029static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6030 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
6031 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
6032 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
6033 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
6034 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
6035 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
6036 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
6037 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
6038 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
6039 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
6040 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
6041 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
6042 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
6043 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
6044 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
6045 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
6046 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
6047 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
6048};
6049#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
6050
6051static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6052 struct efx_mcdi_mtd_partition *part,
6053 unsigned int type,
6054 unsigned long *found)
6055{
6056 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6057 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6058 const struct efx_ef10_nvram_type_info *info;
6059 size_t size, erase_size, outlen;
6060 int type_idx = 0;
6061 bool protected;
6062 int rc;
6063
6064 for (type_idx = 0; ; type_idx++) {
6065 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
6066 return -ENODEV;
6067 info = efx_ef10_nvram_types + type_idx;
6068 if ((type & ~info->type_mask) == info->type)
6069 break;
6070 }
6071 if (info->port != efx_port_num(efx))
6072 return -ENODEV;
6073
6074 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6075 if (rc)
6076 return rc;
6077 if (protected &&
6078 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
6079 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
6080 /* Hide protected partitions that don't provide defaults. */
6081 return -ENODEV;
6082
6083 if (protected)
6084 /* Protected partitions are read only. */
6085 erase_size = 0;
6086
6087 /* If we've already exposed a partition of this type, hide this
6088 * duplicate. All operations on MTDs are keyed by the type anyway,
6089 * so we can't act on the duplicate.
6090 */
6091 if (__test_and_set_bit(type_idx, found))
6092 return -EEXIST;
6093
6094 part->nvram_type = type;
6095
6096 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6097 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6098 outbuf, sizeof(outbuf), &outlen);
6099 if (rc)
6100 return rc;
6101 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6102 return -EIO;
6103 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6104 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6105 part->fw_subtype = MCDI_DWORD(outbuf,
6106 NVRAM_METADATA_OUT_SUBTYPE);
6107
6108 part->common.dev_type_name = "EF10 NVRAM manager";
6109 part->common.type_name = info->name;
6110
6111 part->common.mtd.type = MTD_NORFLASH;
6112 part->common.mtd.flags = MTD_CAP_NORFLASH;
6113 part->common.mtd.size = size;
6114 part->common.mtd.erasesize = erase_size;
6115 /* sfc_status is read-only */
6116 if (!erase_size)
6117 part->common.mtd.flags |= MTD_NO_ERASE;
6118
6119 return 0;
6120}
6121
6122static int efx_ef10_mtd_probe(struct efx_nic *efx)
6123{
6124 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6125 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
6126 struct efx_mcdi_mtd_partition *parts;
6127 size_t outlen, n_parts_total, i, n_parts;
6128 unsigned int type;
6129 int rc;
6130
6131 ASSERT_RTNL();
6132
6133 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6134 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6135 outbuf, sizeof(outbuf), &outlen);
6136 if (rc)
6137 return rc;
6138 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6139 return -EIO;
6140
6141 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6142 if (n_parts_total >
6143 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6144 return -EIO;
6145
6146 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6147 if (!parts)
6148 return -ENOMEM;
6149
6150 n_parts = 0;
6151 for (i = 0; i < n_parts_total; i++) {
6152 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6153 i);
6154 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
6155 found);
6156 if (rc == -EEXIST || rc == -ENODEV)
6157 continue;
6158 if (rc)
6159 goto fail;
6160 n_parts++;
6161 }
6162
6163 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6164fail:
6165 if (rc)
6166 kfree(parts);
6167 return rc;
6168}
6169
6170#endif /* CONFIG_SFC_MTD */
6171
6172static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6173{
6174 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6175}
6176
6177static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6178 u32 host_time) {}
6179
6180static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6181 bool temp)
6182{
6183 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6184 int rc;
6185
6186 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6187 channel->sync_events_state == SYNC_EVENTS_VALID ||
6188 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6189 return 0;
6190 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6191
6192 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6193 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6194 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6195 channel->channel);
6196
6197 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6198 inbuf, sizeof(inbuf), NULL, 0, NULL);
6199
6200 if (rc != 0)
6201 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6202 SYNC_EVENTS_DISABLED;
6203
6204 return rc;
6205}
6206
6207static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6208 bool temp)
6209{
6210 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6211 int rc;
6212
6213 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6214 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6215 return 0;
6216 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6217 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6218 return 0;
6219 }
6220 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6221 SYNC_EVENTS_DISABLED;
6222
6223 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6224 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6225 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6226 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6227 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6228 channel->channel);
6229
6230 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6231 inbuf, sizeof(inbuf), NULL, 0, NULL);
6232
6233 return rc;
6234}
6235
6236static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6237 bool temp)
6238{
6239 int (*set)(struct efx_channel *channel, bool temp);
6240 struct efx_channel *channel;
6241
6242 set = en ?
6243 efx_ef10_rx_enable_timestamping :
6244 efx_ef10_rx_disable_timestamping;
6245
6246 channel = efx_ptp_channel(efx);
6247 if (channel) {
6248 int rc = set(channel, temp);
6249 if (en && rc != 0) {
6250 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6251 return rc;
6252 }
6253 }
6254
6255 return 0;
6256}
6257
6258static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6259 struct hwtstamp_config *init)
6260{
6261 return -EOPNOTSUPP;
6262}
6263
6264static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6265 struct hwtstamp_config *init)
6266{
6267 int rc;
6268
6269 switch (init->rx_filter) {
6270 case HWTSTAMP_FILTER_NONE:
6271 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6272 /* if TX timestamping is still requested then leave PTP on */
6273 return efx_ptp_change_mode(efx,
6274 init->tx_type != HWTSTAMP_TX_OFF, 0);
6275 case HWTSTAMP_FILTER_ALL:
6276 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6277 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6278 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6279 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6280 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6281 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6282 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6283 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6284 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6285 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6286 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6287 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6288 case HWTSTAMP_FILTER_NTP_ALL:
6289 init->rx_filter = HWTSTAMP_FILTER_ALL;
6290 rc = efx_ptp_change_mode(efx, true, 0);
6291 if (!rc)
6292 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6293 if (rc)
6294 efx_ptp_change_mode(efx, false, 0);
6295 return rc;
6296 default:
6297 return -ERANGE;
6298 }
6299}
6300
6301static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6302 struct netdev_phys_item_id *ppid)
6303{
6304 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6305
6306 if (!is_valid_ether_addr(nic_data->port_id))
6307 return -EOPNOTSUPP;
6308
6309 ppid->id_len = ETH_ALEN;
6310 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6311
6312 return 0;
6313}
6314
6315static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6316{
6317 if (proto != htons(ETH_P_8021Q))
6318 return -EINVAL;
6319
6320 return efx_ef10_add_vlan(efx, vid);
6321}
6322
6323static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6324{
6325 if (proto != htons(ETH_P_8021Q))
6326 return -EINVAL;
6327
6328 return efx_ef10_del_vlan(efx, vid);
6329}
6330
6331/* We rely on the MCDI wiping out our TX rings if it made any changes to the
6332 * ports table, ensuring that any TSO descriptors that were made on a now-
6333 * removed tunnel port will be blown away and won't break things when we try
6334 * to transmit them using the new ports table.
6335 */
6336static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6337{
6338 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6339 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6340 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6341 bool will_reset = false;
6342 size_t num_entries = 0;
6343 size_t inlen, outlen;
6344 size_t i;
6345 int rc;
6346 efx_dword_t flags_and_num_entries;
6347
6348 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6349
6350 nic_data->udp_tunnels_dirty = false;
6351
6352 if (!(nic_data->datapath_caps &
6353 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6354 efx_device_attach_if_not_resetting(efx);
6355 return 0;
6356 }
6357
6358 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6359 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6360
6361 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6362 if (nic_data->udp_tunnels[i].count &&
6363 nic_data->udp_tunnels[i].port) {
6364 efx_dword_t entry;
6365
6366 EFX_POPULATE_DWORD_2(entry,
6367 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6368 ntohs(nic_data->udp_tunnels[i].port),
6369 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6370 nic_data->udp_tunnels[i].type);
6371 *_MCDI_ARRAY_DWORD(inbuf,
6372 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6373 num_entries++) = entry;
6374 }
6375 }
6376
6377 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6378 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6379 EFX_WORD_1_LBN);
6380 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6381 EFX_WORD_1_WIDTH);
6382 EFX_POPULATE_DWORD_2(flags_and_num_entries,
6383 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6384 !!unloading,
6385 EFX_WORD_1, num_entries);
6386 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6387 flags_and_num_entries;
6388
6389 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6390
6391 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6392 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6393 if (rc == -EIO) {
6394 /* Most likely the MC rebooted due to another function also
6395 * setting its tunnel port list. Mark the tunnel port list as
6396 * dirty, so it will be pushed upon coming up from the reboot.
6397 */
6398 nic_data->udp_tunnels_dirty = true;
6399 return 0;
6400 }
6401
6402 if (rc) {
6403 /* expected not available on unprivileged functions */
6404 if (rc != -EPERM)
6405 netif_warn(efx, drv, efx->net_dev,
6406 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6407 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6408 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6409 netif_info(efx, drv, efx->net_dev,
6410 "Rebooting MC due to UDP tunnel port list change\n");
6411 will_reset = true;
6412 if (unloading)
6413 /* Delay for the MC reset to complete. This will make
6414 * unloading other functions a bit smoother. This is a
6415 * race, but the other unload will work whichever way
6416 * it goes, this just avoids an unnecessary error
6417 * message.
6418 */
6419 msleep(100);
6420 }
6421 if (!will_reset && !unloading) {
6422 /* The caller will have detached, relying on the MC reset to
6423 * trigger a re-attach. Since there won't be an MC reset, we
6424 * have to do the attach ourselves.
6425 */
6426 efx_device_attach_if_not_resetting(efx);
6427 }
6428
6429 return rc;
6430}
6431
6432static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6433{
6434 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6435 int rc = 0;
6436
6437 mutex_lock(&nic_data->udp_tunnels_lock);
6438 if (nic_data->udp_tunnels_dirty) {
6439 /* Make sure all TX are stopped while we modify the table, else
6440 * we might race against an efx_features_check().
6441 */
6442 efx_device_detach_sync(efx);
6443 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6444 }
6445 mutex_unlock(&nic_data->udp_tunnels_lock);
6446 return rc;
6447}
6448
6449static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6450 __be16 port)
6451{
6452 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6453 size_t i;
6454
6455 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6456 if (!nic_data->udp_tunnels[i].count)
6457 continue;
6458 if (nic_data->udp_tunnels[i].port == port)
6459 return &nic_data->udp_tunnels[i];
6460 }
6461 return NULL;
6462}
6463
6464static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6465 struct efx_udp_tunnel tnl)
6466{
6467 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6468 struct efx_udp_tunnel *match;
6469 char typebuf[8];
6470 size_t i;
6471 int rc;
6472
6473 if (!(nic_data->datapath_caps &
6474 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6475 return 0;
6476
6477 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6478 netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6479 typebuf, ntohs(tnl.port));
6480
6481 mutex_lock(&nic_data->udp_tunnels_lock);
6482 /* Make sure all TX are stopped while we add to the table, else we
6483 * might race against an efx_features_check().
6484 */
6485 efx_device_detach_sync(efx);
6486
6487 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6488 if (match != NULL) {
6489 if (match->type == tnl.type) {
6490 netif_dbg(efx, drv, efx->net_dev,
6491 "Referencing existing tunnel entry\n");
6492 match->count++;
6493 /* No need to cause an MCDI update */
6494 rc = 0;
6495 goto unlock_out;
6496 }
6497 efx_get_udp_tunnel_type_name(match->type,
6498 typebuf, sizeof(typebuf));
6499 netif_dbg(efx, drv, efx->net_dev,
6500 "UDP port %d is already in use by %s\n",
6501 ntohs(tnl.port), typebuf);
6502 rc = -EEXIST;
6503 goto unlock_out;
6504 }
6505
6506 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6507 if (!nic_data->udp_tunnels[i].count) {
6508 nic_data->udp_tunnels[i] = tnl;
6509 nic_data->udp_tunnels[i].count = 1;
6510 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6511 goto unlock_out;
6512 }
6513
6514 netif_dbg(efx, drv, efx->net_dev,
6515 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6516 typebuf, ntohs(tnl.port));
6517
6518 rc = -ENOMEM;
6519
6520unlock_out:
6521 mutex_unlock(&nic_data->udp_tunnels_lock);
6522 return rc;
6523}
6524
6525/* Called under the TX lock with the TX queue running, hence no-one can be
6526 * in the middle of updating the UDP tunnels table. However, they could
6527 * have tried and failed the MCDI, in which case they'll have set the dirty
6528 * flag before dropping their locks.
6529 */
6530static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6531{
6532 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6533
6534 if (!(nic_data->datapath_caps &
6535 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6536 return false;
6537
6538 if (nic_data->udp_tunnels_dirty)
6539 /* SW table may not match HW state, so just assume we can't
6540 * use any UDP tunnel offloads.
6541 */
6542 return false;
6543
6544 return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6545}
6546
6547static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6548 struct efx_udp_tunnel tnl)
6549{
6550 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6551 struct efx_udp_tunnel *match;
6552 char typebuf[8];
6553 int rc;
6554
6555 if (!(nic_data->datapath_caps &
6556 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6557 return 0;
6558
6559 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6560 netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6561 typebuf, ntohs(tnl.port));
6562
6563 mutex_lock(&nic_data->udp_tunnels_lock);
6564 /* Make sure all TX are stopped while we remove from the table, else we
6565 * might race against an efx_features_check().
6566 */
6567 efx_device_detach_sync(efx);
6568
6569 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6570 if (match != NULL) {
6571 if (match->type == tnl.type) {
6572 if (--match->count) {
6573 /* Port is still in use, so nothing to do */
6574 netif_dbg(efx, drv, efx->net_dev,
6575 "UDP tunnel port %d remains active\n",
6576 ntohs(tnl.port));
6577 rc = 0;
6578 goto out_unlock;
6579 }
6580 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6581 goto out_unlock;
6582 }
6583 efx_get_udp_tunnel_type_name(match->type,
6584 typebuf, sizeof(typebuf));
6585 netif_warn(efx, drv, efx->net_dev,
6586 "UDP port %d is actually in use by %s, not removing\n",
6587 ntohs(tnl.port), typebuf);
6588 }
6589 rc = -ENOENT;
6590
6591out_unlock:
6592 mutex_unlock(&nic_data->udp_tunnels_lock);
6593 return rc;
6594}
6595
6596#define EF10_OFFLOAD_FEATURES \
6597 (NETIF_F_IP_CSUM | \
6598 NETIF_F_HW_VLAN_CTAG_FILTER | \
6599 NETIF_F_IPV6_CSUM | \
6600 NETIF_F_RXHASH | \
6601 NETIF_F_NTUPLE)
6602
6603const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6604 .is_vf = true,
6605 .mem_bar = efx_ef10_vf_mem_bar,
6606 .mem_map_size = efx_ef10_mem_map_size,
6607 .probe = efx_ef10_probe_vf,
6608 .remove = efx_ef10_remove,
6609 .dimension_resources = efx_ef10_dimension_resources,
6610 .init = efx_ef10_init_nic,
6611 .fini = efx_port_dummy_op_void,
6612 .map_reset_reason = efx_ef10_map_reset_reason,
6613 .map_reset_flags = efx_ef10_map_reset_flags,
6614 .reset = efx_ef10_reset,
6615 .probe_port = efx_mcdi_port_probe,
6616 .remove_port = efx_mcdi_port_remove,
6617 .fini_dmaq = efx_ef10_fini_dmaq,
6618 .prepare_flr = efx_ef10_prepare_flr,
6619 .finish_flr = efx_port_dummy_op_void,
6620 .describe_stats = efx_ef10_describe_stats,
6621 .update_stats = efx_ef10_update_stats_vf,
6622 .start_stats = efx_port_dummy_op_void,
6623 .pull_stats = efx_port_dummy_op_void,
6624 .stop_stats = efx_port_dummy_op_void,
6625 .set_id_led = efx_mcdi_set_id_led,
6626 .push_irq_moderation = efx_ef10_push_irq_moderation,
6627 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6628 .check_mac_fault = efx_mcdi_mac_check_fault,
6629 .reconfigure_port = efx_mcdi_port_reconfigure,
6630 .get_wol = efx_ef10_get_wol_vf,
6631 .set_wol = efx_ef10_set_wol_vf,
6632 .resume_wol = efx_port_dummy_op_void,
6633 .mcdi_request = efx_ef10_mcdi_request,
6634 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6635 .mcdi_read_response = efx_ef10_mcdi_read_response,
6636 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6637 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6638 .irq_enable_master = efx_port_dummy_op_void,
6639 .irq_test_generate = efx_ef10_irq_test_generate,
6640 .irq_disable_non_ev = efx_port_dummy_op_void,
6641 .irq_handle_msi = efx_ef10_msi_interrupt,
6642 .irq_handle_legacy = efx_ef10_legacy_interrupt,
6643 .tx_probe = efx_ef10_tx_probe,
6644 .tx_init = efx_ef10_tx_init,
6645 .tx_remove = efx_ef10_tx_remove,
6646 .tx_write = efx_ef10_tx_write,
6647 .tx_limit_len = efx_ef10_tx_limit_len,
6648 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6649 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6650 .rx_probe = efx_ef10_rx_probe,
6651 .rx_init = efx_ef10_rx_init,
6652 .rx_remove = efx_ef10_rx_remove,
6653 .rx_write = efx_ef10_rx_write,
6654 .rx_defer_refill = efx_ef10_rx_defer_refill,
6655 .ev_probe = efx_ef10_ev_probe,
6656 .ev_init = efx_ef10_ev_init,
6657 .ev_fini = efx_ef10_ev_fini,
6658 .ev_remove = efx_ef10_ev_remove,
6659 .ev_process = efx_ef10_ev_process,
6660 .ev_read_ack = efx_ef10_ev_read_ack,
6661 .ev_test_generate = efx_ef10_ev_test_generate,
6662 .filter_table_probe = efx_ef10_filter_table_probe,
6663 .filter_table_restore = efx_ef10_filter_table_restore,
6664 .filter_table_remove = efx_ef10_filter_table_remove,
6665 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6666 .filter_insert = efx_ef10_filter_insert,
6667 .filter_remove_safe = efx_ef10_filter_remove_safe,
6668 .filter_get_safe = efx_ef10_filter_get_safe,
6669 .filter_clear_rx = efx_ef10_filter_clear_rx,
6670 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6671 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6672 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6673#ifdef CONFIG_RFS_ACCEL
6674 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6675#endif
6676#ifdef CONFIG_SFC_MTD
6677 .mtd_probe = efx_port_dummy_op_int,
6678#endif
6679 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6680 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6681 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6682 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6683#ifdef CONFIG_SFC_SRIOV
6684 .vswitching_probe = efx_ef10_vswitching_probe_vf,
6685 .vswitching_restore = efx_ef10_vswitching_restore_vf,
6686 .vswitching_remove = efx_ef10_vswitching_remove_vf,
6687#endif
6688 .get_mac_address = efx_ef10_get_mac_address_vf,
6689 .set_mac_address = efx_ef10_set_mac_address,
6690
6691 .get_phys_port_id = efx_ef10_get_phys_port_id,
6692 .revision = EFX_REV_HUNT_A0,
6693 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6694 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6695 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6696 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6697 .can_rx_scatter = true,
6698 .always_rx_scatter = true,
6699 .min_interrupt_mode = EFX_INT_MODE_MSIX,
6700 .max_interrupt_mode = EFX_INT_MODE_MSIX,
6701 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6702 .offload_features = EF10_OFFLOAD_FEATURES,
6703 .mcdi_max_ver = 2,
6704 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6705 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6706 1 << HWTSTAMP_FILTER_ALL,
6707 .rx_hash_key_size = 40,
6708};
6709
6710const struct efx_nic_type efx_hunt_a0_nic_type = {
6711 .is_vf = false,
6712 .mem_bar = efx_ef10_pf_mem_bar,
6713 .mem_map_size = efx_ef10_mem_map_size,
6714 .probe = efx_ef10_probe_pf,
6715 .remove = efx_ef10_remove,
6716 .dimension_resources = efx_ef10_dimension_resources,
6717 .init = efx_ef10_init_nic,
6718 .fini = efx_port_dummy_op_void,
6719 .map_reset_reason = efx_ef10_map_reset_reason,
6720 .map_reset_flags = efx_ef10_map_reset_flags,
6721 .reset = efx_ef10_reset,
6722 .probe_port = efx_mcdi_port_probe,
6723 .remove_port = efx_mcdi_port_remove,
6724 .fini_dmaq = efx_ef10_fini_dmaq,
6725 .prepare_flr = efx_ef10_prepare_flr,
6726 .finish_flr = efx_port_dummy_op_void,
6727 .describe_stats = efx_ef10_describe_stats,
6728 .update_stats = efx_ef10_update_stats_pf,
6729 .start_stats = efx_mcdi_mac_start_stats,
6730 .pull_stats = efx_mcdi_mac_pull_stats,
6731 .stop_stats = efx_mcdi_mac_stop_stats,
6732 .set_id_led = efx_mcdi_set_id_led,
6733 .push_irq_moderation = efx_ef10_push_irq_moderation,
6734 .reconfigure_mac = efx_ef10_mac_reconfigure,
6735 .check_mac_fault = efx_mcdi_mac_check_fault,
6736 .reconfigure_port = efx_mcdi_port_reconfigure,
6737 .get_wol = efx_ef10_get_wol,
6738 .set_wol = efx_ef10_set_wol,
6739 .resume_wol = efx_port_dummy_op_void,
6740 .test_chip = efx_ef10_test_chip,
6741 .test_nvram = efx_mcdi_nvram_test_all,
6742 .mcdi_request = efx_ef10_mcdi_request,
6743 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6744 .mcdi_read_response = efx_ef10_mcdi_read_response,
6745 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6746 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6747 .irq_enable_master = efx_port_dummy_op_void,
6748 .irq_test_generate = efx_ef10_irq_test_generate,
6749 .irq_disable_non_ev = efx_port_dummy_op_void,
6750 .irq_handle_msi = efx_ef10_msi_interrupt,
6751 .irq_handle_legacy = efx_ef10_legacy_interrupt,
6752 .tx_probe = efx_ef10_tx_probe,
6753 .tx_init = efx_ef10_tx_init,
6754 .tx_remove = efx_ef10_tx_remove,
6755 .tx_write = efx_ef10_tx_write,
6756 .tx_limit_len = efx_ef10_tx_limit_len,
6757 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6758 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6759 .rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6760 .rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6761 .rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6762 .rx_probe = efx_ef10_rx_probe,
6763 .rx_init = efx_ef10_rx_init,
6764 .rx_remove = efx_ef10_rx_remove,
6765 .rx_write = efx_ef10_rx_write,
6766 .rx_defer_refill = efx_ef10_rx_defer_refill,
6767 .ev_probe = efx_ef10_ev_probe,
6768 .ev_init = efx_ef10_ev_init,
6769 .ev_fini = efx_ef10_ev_fini,
6770 .ev_remove = efx_ef10_ev_remove,
6771 .ev_process = efx_ef10_ev_process,
6772 .ev_read_ack = efx_ef10_ev_read_ack,
6773 .ev_test_generate = efx_ef10_ev_test_generate,
6774 .filter_table_probe = efx_ef10_filter_table_probe,
6775 .filter_table_restore = efx_ef10_filter_table_restore,
6776 .filter_table_remove = efx_ef10_filter_table_remove,
6777 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6778 .filter_insert = efx_ef10_filter_insert,
6779 .filter_remove_safe = efx_ef10_filter_remove_safe,
6780 .filter_get_safe = efx_ef10_filter_get_safe,
6781 .filter_clear_rx = efx_ef10_filter_clear_rx,
6782 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6783 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6784 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6785#ifdef CONFIG_RFS_ACCEL
6786 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6787#endif
6788#ifdef CONFIG_SFC_MTD
6789 .mtd_probe = efx_ef10_mtd_probe,
6790 .mtd_rename = efx_mcdi_mtd_rename,
6791 .mtd_read = efx_mcdi_mtd_read,
6792 .mtd_erase = efx_mcdi_mtd_erase,
6793 .mtd_write = efx_mcdi_mtd_write,
6794 .mtd_sync = efx_mcdi_mtd_sync,
6795#endif
6796 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6797 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6798 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6799 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6800 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6801 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6802 .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6803 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6804 .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6805#ifdef CONFIG_SFC_SRIOV
6806 .sriov_configure = efx_ef10_sriov_configure,
6807 .sriov_init = efx_ef10_sriov_init,
6808 .sriov_fini = efx_ef10_sriov_fini,
6809 .sriov_wanted = efx_ef10_sriov_wanted,
6810 .sriov_reset = efx_ef10_sriov_reset,
6811 .sriov_flr = efx_ef10_sriov_flr,
6812 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6813 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6814 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6815 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6816 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6817 .vswitching_probe = efx_ef10_vswitching_probe_pf,
6818 .vswitching_restore = efx_ef10_vswitching_restore_pf,
6819 .vswitching_remove = efx_ef10_vswitching_remove_pf,
6820#endif
6821 .get_mac_address = efx_ef10_get_mac_address_pf,
6822 .set_mac_address = efx_ef10_set_mac_address,
6823 .tso_versions = efx_ef10_tso_versions,
6824
6825 .get_phys_port_id = efx_ef10_get_phys_port_id,
6826 .revision = EFX_REV_HUNT_A0,
6827 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6828 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6829 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6830 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6831 .can_rx_scatter = true,
6832 .always_rx_scatter = true,
6833 .option_descriptors = true,
6834 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6835 .max_interrupt_mode = EFX_INT_MODE_MSIX,
6836 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6837 .offload_features = EF10_OFFLOAD_FEATURES,
6838 .mcdi_max_ver = 2,
6839 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6840 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6841 1 << HWTSTAMP_FILTER_ALL,
6842 .rx_hash_key_size = 40,
6843};