Linux Audio

Check our new training course

Loading...
v3.15
 
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overrided MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overrided.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310}
2311
2312static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316}
2317
2318static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319{
2320	port_cfg(hw, p,
2321		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322}
2323
2324static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325{
2326	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327}
2328
2329static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330{
2331	if (!(hw->overrides & FAST_AGING)) {
2332		sw_cfg_fast_aging(hw, 1);
2333		mdelay(1);
2334		sw_cfg_fast_aging(hw, 0);
2335	}
2336}
2337
2338/* VLAN */
2339
2340static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344}
2345
2346static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347{
2348	port_cfg(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350}
2351
2352static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356}
2357
2358static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359{
2360	return port_chk(hw, p,
2361		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362}
2363
2364static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368}
2369
2370static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371{
2372	port_cfg(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374}
2375
2376static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380}
2381
2382static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383{
2384	return port_chk(hw, p,
2385		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386}
2387
2388/* Mirroring */
2389
2390static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394}
2395
2396static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400}
2401
2402static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403{
2404	port_cfg(hw, p,
2405		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406}
2407
2408static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409{
2410	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411}
2412
2413static void sw_init_mirror(struct ksz_hw *hw)
2414{
2415	int port;
2416
2417	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418		port_cfg_mirror_sniffer(hw, port, 0);
2419		port_cfg_mirror_rx(hw, port, 0);
2420		port_cfg_mirror_tx(hw, port, 0);
2421	}
2422	sw_cfg_mirror_rx_tx(hw, 0);
2423}
2424
2425static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426{
2427	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE, set);
2429}
2430
2431static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432{
2433	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434		SWITCH_UNK_DEF_PORT_ENABLE);
2435}
2436
2437static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438{
2439	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440}
2441
2442static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443{
2444	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445}
2446
2447/* Priority */
2448
2449static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453}
2454
2455static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459}
2460
2461static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465}
2466
2467static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468{
2469	port_cfg(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471}
2472
2473static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477}
2478
2479static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483}
2484
2485static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489}
2490
2491static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492{
2493	return port_chk(hw, p,
2494		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495}
2496
2497/**
2498 * sw_dis_diffserv - disable switch DiffServ priority
2499 * @hw: 	The hardware instance.
2500 * @port:	The port index.
2501 *
2502 * This routine disables the DiffServ priority function of the switch.
2503 */
2504static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505{
2506	port_cfg_diffserv(hw, port, 0);
2507}
2508
2509/**
2510 * sw_dis_802_1p - disable switch 802.1p priority
2511 * @hw: 	The hardware instance.
2512 * @port:	The port index.
2513 *
2514 * This routine disables the 802.1p priority function of the switch.
2515 */
2516static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517{
2518	port_cfg_802_1p(hw, port, 0);
2519}
2520
2521/**
2522 * sw_cfg_replace_null_vid -
2523 * @hw: 	The hardware instance.
2524 * @set:	The flag to disable or enable.
2525 *
2526 */
2527static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528{
2529	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530}
2531
2532/**
2533 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534 * @hw: 	The hardware instance.
2535 * @port:	The port index.
2536 * @set:	The flag to disable or enable.
2537 *
2538 * This routine enables the 802.1p priority re-mapping function of the switch.
2539 * That allows 802.1p priority field to be replaced with the port's default
2540 * tag's priority value if the ingress packet's 802.1p priority has a higher
2541 * priority than port's default tag's priority.
2542 */
2543static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544{
2545	port_cfg_replace_vid(hw, port, set);
2546}
2547
2548/**
2549 * sw_cfg_port_based - configure switch port based priority
2550 * @hw: 	The hardware instance.
2551 * @port:	The port index.
2552 * @prio:	The priority to set.
2553 *
2554 * This routine configures the port based priority of the switch.
2555 */
2556static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557{
2558	u16 data;
2559
2560	if (prio > PORT_BASED_PRIORITY_BASE)
2561		prio = PORT_BASED_PRIORITY_BASE;
2562
2563	hw->ksz_switch->port_cfg[port].port_prio = prio;
2564
2565	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566	data &= ~PORT_BASED_PRIORITY_MASK;
2567	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569}
2570
2571/**
2572 * sw_dis_multi_queue - disable transmit multiple queues
2573 * @hw: 	The hardware instance.
2574 * @port:	The port index.
2575 *
2576 * This routine disables the transmit multiple queues selection of the switch
2577 * port.  Only single transmit queue on the port.
2578 */
2579static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580{
2581	port_cfg_prio(hw, port, 0);
2582}
2583
2584/**
2585 * sw_init_prio - initialize switch priority
2586 * @hw: 	The hardware instance.
2587 *
2588 * This routine initializes the switch QoS priority functions.
2589 */
2590static void sw_init_prio(struct ksz_hw *hw)
2591{
2592	int port;
2593	int tos;
2594	struct ksz_switch *sw = hw->ksz_switch;
2595
2596	/*
2597	 * Init all the 802.1p tag priority value to be assigned to different
2598	 * priority queue.
2599	 */
2600	sw->p_802_1p[0] = 0;
2601	sw->p_802_1p[1] = 0;
2602	sw->p_802_1p[2] = 1;
2603	sw->p_802_1p[3] = 1;
2604	sw->p_802_1p[4] = 2;
2605	sw->p_802_1p[5] = 2;
2606	sw->p_802_1p[6] = 3;
2607	sw->p_802_1p[7] = 3;
2608
2609	/*
2610	 * Init all the DiffServ priority value to be assigned to priority
2611	 * queue 0.
2612	 */
2613	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614		sw->diffserv[tos] = 0;
2615
2616	/* All QoS functions disabled. */
2617	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618		sw_dis_multi_queue(hw, port);
2619		sw_dis_diffserv(hw, port);
2620		sw_dis_802_1p(hw, port);
2621		sw_cfg_replace_vid(hw, port, 0);
2622
2623		sw->port_cfg[port].port_prio = 0;
2624		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625	}
2626	sw_cfg_replace_null_vid(hw, 0);
2627}
2628
2629/**
2630 * port_get_def_vid - get port default VID.
2631 * @hw: 	The hardware instance.
2632 * @port:	The port index.
2633 * @vid:	Buffer to store the VID.
2634 *
2635 * This routine retrieves the default VID of the port.
2636 */
2637static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638{
2639	u32 addr;
2640
2641	PORT_CTRL_ADDR(port, addr);
2642	addr += KS8842_PORT_CTRL_VID_OFFSET;
2643	*vid = readw(hw->io + addr);
2644}
2645
2646/**
2647 * sw_init_vlan - initialize switch VLAN
2648 * @hw: 	The hardware instance.
2649 *
2650 * This routine initializes the VLAN function of the switch.
2651 */
2652static void sw_init_vlan(struct ksz_hw *hw)
2653{
2654	int port;
2655	int entry;
2656	struct ksz_switch *sw = hw->ksz_switch;
2657
2658	/* Read 16 VLAN entries from device's VLAN table. */
2659	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660		sw_r_vlan_table(hw, entry,
2661			&sw->vlan_table[entry].vid,
2662			&sw->vlan_table[entry].fid,
2663			&sw->vlan_table[entry].member);
2664	}
2665
2666	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668		sw->port_cfg[port].member = PORT_MASK;
2669	}
2670}
2671
2672/**
2673 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674 * @hw: 	The hardware instance.
2675 * @port:	The port index.
2676 * @member:	The port-based VLAN membership.
2677 *
2678 * This routine configures the port-based VLAN membership of the port.
2679 */
2680static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681{
2682	u32 addr;
2683	u8 data;
2684
2685	PORT_CTRL_ADDR(port, addr);
2686	addr += KS8842_PORT_CTRL_2_OFFSET;
2687
2688	data = readb(hw->io + addr);
2689	data &= ~PORT_VLAN_MEMBERSHIP;
2690	data |= (member & PORT_MASK);
2691	writeb(data, hw->io + addr);
2692
2693	hw->ksz_switch->port_cfg[port].member = member;
2694}
2695
2696/**
2697 * sw_get_addr - get the switch MAC address.
2698 * @hw: 	The hardware instance.
2699 * @mac_addr:	Buffer to store the MAC address.
2700 *
2701 * This function retrieves the MAC address of the switch.
2702 */
2703static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704{
2705	int i;
2706
2707	for (i = 0; i < 6; i += 2) {
2708		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710	}
2711}
2712
2713/**
2714 * sw_set_addr - configure switch MAC address
2715 * @hw: 	The hardware instance.
2716 * @mac_addr:	The MAC address.
2717 *
2718 * This function configures the MAC address of the switch.
2719 */
2720static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721{
2722	int i;
2723
2724	for (i = 0; i < 6; i += 2) {
2725		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727	}
2728}
2729
2730/**
2731 * sw_set_global_ctrl - set switch global control
2732 * @hw: 	The hardware instance.
2733 *
2734 * This routine sets the global control of the switch function.
2735 */
2736static void sw_set_global_ctrl(struct ksz_hw *hw)
2737{
2738	u16 data;
2739
2740	/* Enable switch MII flow control. */
2741	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742	data |= SWITCH_FLOW_CTRL;
2743	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744
2745	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746
2747	/* Enable aggressive back off algorithm in half duplex mode. */
2748	data |= SWITCH_AGGR_BACKOFF;
2749
2750	/* Enable automatic fast aging when link changed detected. */
2751	data |= SWITCH_AGING_ENABLE;
2752	data |= SWITCH_LINK_AUTO_AGING;
2753
2754	if (hw->overrides & FAST_AGING)
2755		data |= SWITCH_FAST_AGING;
2756	else
2757		data &= ~SWITCH_FAST_AGING;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759
2760	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761
2762	/* Enable no excessive collision drop. */
2763	data |= NO_EXC_COLLISION_DROP;
2764	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765}
2766
2767enum {
2768	STP_STATE_DISABLED = 0,
2769	STP_STATE_LISTENING,
2770	STP_STATE_LEARNING,
2771	STP_STATE_FORWARDING,
2772	STP_STATE_BLOCKED,
2773	STP_STATE_SIMPLE
2774};
2775
2776/**
2777 * port_set_stp_state - configure port spanning tree state
2778 * @hw: 	The hardware instance.
2779 * @port:	The port index.
2780 * @state:	The spanning tree state.
2781 *
2782 * This routine configures the spanning tree state of the port.
2783 */
2784static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785{
2786	u16 data;
2787
2788	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789	switch (state) {
2790	case STP_STATE_DISABLED:
2791		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792		data |= PORT_LEARN_DISABLE;
2793		break;
2794	case STP_STATE_LISTENING:
2795/*
2796 * No need to turn on transmit because of port direct mode.
2797 * Turning on receive is required if static MAC table is not setup.
2798 */
2799		data &= ~PORT_TX_ENABLE;
2800		data |= PORT_RX_ENABLE;
2801		data |= PORT_LEARN_DISABLE;
2802		break;
2803	case STP_STATE_LEARNING:
2804		data &= ~PORT_TX_ENABLE;
2805		data |= PORT_RX_ENABLE;
2806		data &= ~PORT_LEARN_DISABLE;
2807		break;
2808	case STP_STATE_FORWARDING:
2809		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810		data &= ~PORT_LEARN_DISABLE;
2811		break;
2812	case STP_STATE_BLOCKED:
2813/*
2814 * Need to setup static MAC table with override to keep receiving BPDU
2815 * messages.  See sw_init_stp routine.
2816 */
2817		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818		data |= PORT_LEARN_DISABLE;
2819		break;
2820	case STP_STATE_SIMPLE:
2821		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822		data |= PORT_LEARN_DISABLE;
2823		break;
2824	}
2825	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826	hw->ksz_switch->port_cfg[port].stp_state = state;
2827}
2828
2829#define STP_ENTRY			0
2830#define BROADCAST_ENTRY			1
2831#define BRIDGE_ADDR_ENTRY		2
2832#define IPV6_ADDR_ENTRY			3
2833
2834/**
2835 * sw_clr_sta_mac_table - clear static MAC table
2836 * @hw: 	The hardware instance.
2837 *
2838 * This routine clears the static MAC table.
2839 */
2840static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841{
2842	struct ksz_mac_table *entry;
2843	int i;
2844
2845	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846		entry = &hw->ksz_switch->mac_table[i];
2847		sw_w_sta_mac_table(hw, i,
2848			entry->mac_addr, entry->ports,
2849			entry->override, 0,
2850			entry->use_fid, entry->fid);
2851	}
2852}
2853
2854/**
2855 * sw_init_stp - initialize switch spanning tree support
2856 * @hw: 	The hardware instance.
2857 *
2858 * This routine initializes the spanning tree support of the switch.
2859 */
2860static void sw_init_stp(struct ksz_hw *hw)
2861{
2862	struct ksz_mac_table *entry;
2863
2864	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865	entry->mac_addr[0] = 0x01;
2866	entry->mac_addr[1] = 0x80;
2867	entry->mac_addr[2] = 0xC2;
2868	entry->mac_addr[3] = 0x00;
2869	entry->mac_addr[4] = 0x00;
2870	entry->mac_addr[5] = 0x00;
2871	entry->ports = HOST_MASK;
2872	entry->override = 1;
2873	entry->valid = 1;
2874	sw_w_sta_mac_table(hw, STP_ENTRY,
2875		entry->mac_addr, entry->ports,
2876		entry->override, entry->valid,
2877		entry->use_fid, entry->fid);
2878}
2879
2880/**
2881 * sw_block_addr - block certain packets from the host port
2882 * @hw: 	The hardware instance.
2883 *
2884 * This routine blocks certain packets from reaching to the host port.
2885 */
2886static void sw_block_addr(struct ksz_hw *hw)
2887{
2888	struct ksz_mac_table *entry;
2889	int i;
2890
2891	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892		entry = &hw->ksz_switch->mac_table[i];
2893		entry->valid = 0;
2894		sw_w_sta_mac_table(hw, i,
2895			entry->mac_addr, entry->ports,
2896			entry->override, entry->valid,
2897			entry->use_fid, entry->fid);
2898	}
2899}
2900
2901#define PHY_LINK_SUPPORT		\
2902	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2903	PHY_AUTO_NEG_SYM_PAUSE |	\
2904	PHY_AUTO_NEG_100BT4 |		\
2905	PHY_AUTO_NEG_100BTX_FD |	\
2906	PHY_AUTO_NEG_100BTX |		\
2907	PHY_AUTO_NEG_10BT_FD |		\
2908	PHY_AUTO_NEG_10BT)
2909
2910static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911{
2912	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913}
2914
2915static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916{
2917	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918}
2919
2920static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921{
2922	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923}
2924
2925static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926{
2927	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928}
2929
2930static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931{
2932	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933}
2934
2935static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936{
2937	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938}
2939
2940static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941{
2942	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943}
2944
2945static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946{
2947	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948}
2949
2950static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951{
2952	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953}
2954
2955static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956{
2957	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958}
2959
2960static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961{
2962	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963}
2964
2965static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966{
2967	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968}
2969
2970/**
2971 * hw_r_phy - read data from PHY register
2972 * @hw: 	The hardware instance.
2973 * @port:	Port to read.
2974 * @reg:	PHY register to read.
2975 * @val:	Buffer to store the read data.
2976 *
2977 * This routine reads data from the PHY register.
2978 */
2979static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980{
2981	int phy;
2982
2983	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984	*val = readw(hw->io + phy);
2985}
2986
2987/**
2988 * port_w_phy - write data to PHY register
2989 * @hw: 	The hardware instance.
2990 * @port:	Port to write.
2991 * @reg:	PHY register to write.
2992 * @val:	Word data to write.
2993 *
2994 * This routine writes data to the PHY register.
2995 */
2996static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997{
2998	int phy;
2999
3000	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001	writew(val, hw->io + phy);
3002}
3003
3004/*
3005 * EEPROM access functions
3006 */
3007
3008#define AT93C_CODE			0
3009#define AT93C_WR_OFF			0x00
3010#define AT93C_WR_ALL			0x10
3011#define AT93C_ER_ALL			0x20
3012#define AT93C_WR_ON			0x30
3013
3014#define AT93C_WRITE			1
3015#define AT93C_READ			2
3016#define AT93C_ERASE			3
3017
3018#define EEPROM_DELAY			4
3019
3020static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021{
3022	u16 data;
3023
3024	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025	data &= ~gpio;
3026	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027}
3028
3029static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030{
3031	u16 data;
3032
3033	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034	data |= gpio;
3035	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036}
3037
3038static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039{
3040	u16 data;
3041
3042	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043	return (u8)(data & gpio);
3044}
3045
3046static void eeprom_clk(struct ksz_hw *hw)
3047{
3048	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049	udelay(EEPROM_DELAY);
3050	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051	udelay(EEPROM_DELAY);
3052}
3053
3054static u16 spi_r(struct ksz_hw *hw)
3055{
3056	int i;
3057	u16 temp = 0;
3058
3059	for (i = 15; i >= 0; i--) {
3060		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061		udelay(EEPROM_DELAY);
3062
3063		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064
3065		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066		udelay(EEPROM_DELAY);
3067	}
3068	return temp;
3069}
3070
3071static void spi_w(struct ksz_hw *hw, u16 data)
3072{
3073	int i;
3074
3075	for (i = 15; i >= 0; i--) {
3076		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077			drop_gpio(hw, EEPROM_DATA_OUT);
3078		eeprom_clk(hw);
3079	}
3080}
3081
3082static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083{
3084	int i;
3085
3086	/* Initial start bit */
3087	raise_gpio(hw, EEPROM_DATA_OUT);
3088	eeprom_clk(hw);
3089
3090	/* AT93C operation */
3091	for (i = 1; i >= 0; i--) {
3092		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093			drop_gpio(hw, EEPROM_DATA_OUT);
3094		eeprom_clk(hw);
3095	}
3096
3097	/* Address location */
3098	for (i = 5; i >= 0; i--) {
3099		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100			drop_gpio(hw, EEPROM_DATA_OUT);
3101		eeprom_clk(hw);
3102	}
3103}
3104
3105#define EEPROM_DATA_RESERVED		0
3106#define EEPROM_DATA_MAC_ADDR_0		1
3107#define EEPROM_DATA_MAC_ADDR_1		2
3108#define EEPROM_DATA_MAC_ADDR_2		3
3109#define EEPROM_DATA_SUBSYS_ID		4
3110#define EEPROM_DATA_SUBSYS_VEN_ID	5
3111#define EEPROM_DATA_PM_CAP		6
3112
3113/* User defined EEPROM data */
3114#define EEPROM_DATA_OTHER_MAC_ADDR	9
3115
3116/**
3117 * eeprom_read - read from AT93C46 EEPROM
3118 * @hw: 	The hardware instance.
3119 * @reg:	The register offset.
3120 *
3121 * This function reads a word from the AT93C46 EEPROM.
3122 *
3123 * Return the data value.
3124 */
3125static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126{
3127	u16 data;
3128
3129	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130
3131	spi_reg(hw, AT93C_READ, reg);
3132	data = spi_r(hw);
3133
3134	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135
3136	return data;
3137}
3138
3139/**
3140 * eeprom_write - write to AT93C46 EEPROM
3141 * @hw: 	The hardware instance.
3142 * @reg:	The register offset.
3143 * @data:	The data value.
3144 *
3145 * This procedure writes a word to the AT93C46 EEPROM.
3146 */
3147static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148{
3149	int timeout;
3150
3151	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152
3153	/* Enable write. */
3154	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Erase the register. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	spi_reg(hw, AT93C_ERASE, reg);
3161	drop_gpio(hw, EEPROM_CHIP_SELECT);
3162	udelay(1);
3163
3164	/* Check operation complete. */
3165	raise_gpio(hw, EEPROM_CHIP_SELECT);
3166	timeout = 8;
3167	mdelay(2);
3168	do {
3169		mdelay(1);
3170	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171	drop_gpio(hw, EEPROM_CHIP_SELECT);
3172	udelay(1);
3173
3174	/* Write the register. */
3175	raise_gpio(hw, EEPROM_CHIP_SELECT);
3176	spi_reg(hw, AT93C_WRITE, reg);
3177	spi_w(hw, data);
3178	drop_gpio(hw, EEPROM_CHIP_SELECT);
3179	udelay(1);
3180
3181	/* Check operation complete. */
3182	raise_gpio(hw, EEPROM_CHIP_SELECT);
3183	timeout = 8;
3184	mdelay(2);
3185	do {
3186		mdelay(1);
3187	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188	drop_gpio(hw, EEPROM_CHIP_SELECT);
3189	udelay(1);
3190
3191	/* Disable write. */
3192	raise_gpio(hw, EEPROM_CHIP_SELECT);
3193	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194
3195	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196}
3197
3198/*
3199 * Link detection routines
3200 */
3201
3202static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203{
3204	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205	switch (port->flow_ctrl) {
3206	case PHY_FLOW_CTRL:
3207		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208		break;
3209	/* Not supported. */
3210	case PHY_TX_ONLY:
3211	case PHY_RX_ONLY:
3212	default:
3213		break;
3214	}
3215	return ctrl;
3216}
3217
3218static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219{
3220	u32 rx_cfg;
3221	u32 tx_cfg;
3222
3223	rx_cfg = hw->rx_cfg;
3224	tx_cfg = hw->tx_cfg;
3225	if (rx)
3226		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227	else
3228		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229	if (tx)
3230		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231	else
3232		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233	if (hw->enabled) {
3234		if (rx_cfg != hw->rx_cfg)
3235			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236		if (tx_cfg != hw->tx_cfg)
3237			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238	}
3239}
3240
3241static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242	u16 local, u16 remote)
3243{
3244	int rx;
3245	int tx;
3246
3247	if (hw->overrides & PAUSE_FLOW_CTRL)
3248		return;
3249
3250	rx = tx = 0;
3251	if (port->force_link)
3252		rx = tx = 1;
3253	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255			rx = tx = 1;
3256		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257				(local & PHY_AUTO_NEG_PAUSE) ==
3258				PHY_AUTO_NEG_ASYM_PAUSE) {
3259			tx = 1;
3260		}
3261	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3263			rx = 1;
3264	}
3265	if (!hw->ksz_switch)
3266		set_flow_ctrl(hw, rx, tx);
3267}
3268
3269static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270	struct ksz_port_info *info, u16 link_status)
3271{
3272	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3274		u32 cfg = hw->tx_cfg;
3275
3276		/* Disable flow control in the half duplex mode. */
3277		if (1 == info->duplex)
3278			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279		if (hw->enabled && cfg != hw->tx_cfg)
3280			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281	}
3282}
3283
3284/**
3285 * port_get_link_speed - get current link status
3286 * @port: 	The port instance.
3287 *
3288 * This routine reads PHY registers to determine the current link status of the
3289 * switch ports.
3290 */
3291static void port_get_link_speed(struct ksz_port *port)
3292{
3293	uint interrupt;
3294	struct ksz_port_info *info;
3295	struct ksz_port_info *linked = NULL;
3296	struct ksz_hw *hw = port->hw;
3297	u16 data;
3298	u16 status;
3299	u8 local;
3300	u8 remote;
3301	int i;
3302	int p;
3303	int change = 0;
3304
3305	interrupt = hw_block_intr(hw);
3306
3307	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308		info = &hw->port_info[p];
3309		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311
3312		/*
3313		 * Link status is changing all the time even when there is no
3314		 * cable connection!
3315		 */
3316		remote = status & (PORT_AUTO_NEG_COMPLETE |
3317			PORT_STATUS_LINK_GOOD);
3318		local = (u8) data;
3319
3320		/* No change to status. */
3321		if (local == info->advertised && remote == info->partner)
3322			continue;
3323
3324		info->advertised = local;
3325		info->partner = remote;
3326		if (status & PORT_STATUS_LINK_GOOD) {
3327
3328			/* Remember the first linked port. */
3329			if (!linked)
3330				linked = info;
3331
3332			info->tx_rate = 10 * TX_RATE_UNIT;
3333			if (status & PORT_STATUS_SPEED_100MBIT)
3334				info->tx_rate = 100 * TX_RATE_UNIT;
3335
3336			info->duplex = 1;
3337			if (status & PORT_STATUS_FULL_DUPLEX)
3338				info->duplex = 2;
3339
3340			if (media_connected != info->state) {
3341				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342					&data);
3343				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344					&status);
3345				determine_flow_ctrl(hw, port, data, status);
3346				if (hw->ksz_switch) {
3347					port_cfg_back_pressure(hw, p,
3348						(1 == info->duplex));
3349				}
3350				change |= 1 << i;
3351				port_cfg_change(hw, port, info, status);
3352			}
3353			info->state = media_connected;
3354		} else {
3355			if (media_disconnected != info->state) {
3356				change |= 1 << i;
3357
3358				/* Indicate the link just goes down. */
3359				hw->port_mib[p].link_down = 1;
3360			}
3361			info->state = media_disconnected;
3362		}
3363		hw->port_mib[p].state = (u8) info->state;
3364	}
3365
3366	if (linked && media_disconnected == port->linked->state)
3367		port->linked = linked;
3368
3369	hw_restore_intr(hw, interrupt);
3370}
3371
3372#define PHY_RESET_TIMEOUT		10
3373
3374/**
3375 * port_set_link_speed - set port speed
3376 * @port: 	The port instance.
3377 *
3378 * This routine sets the link speed of the switch ports.
3379 */
3380static void port_set_link_speed(struct ksz_port *port)
3381{
3382	struct ksz_port_info *info;
3383	struct ksz_hw *hw = port->hw;
3384	u16 data;
3385	u16 cfg;
3386	u8 status;
3387	int i;
3388	int p;
3389
3390	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391		info = &hw->port_info[p];
3392
3393		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395
3396		cfg = 0;
3397		if (status & PORT_STATUS_LINK_GOOD)
3398			cfg = data;
3399
3400		data |= PORT_AUTO_NEG_ENABLE;
3401		data = advertised_flow_ctrl(port, data);
3402
3403		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405
3406		/* Check if manual configuration is specified by the user. */
3407		if (port->speed || port->duplex) {
3408			if (10 == port->speed)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_100BTX);
3411			else if (100 == port->speed)
3412				data &= ~(PORT_AUTO_NEG_10BT_FD |
3413					PORT_AUTO_NEG_10BT);
3414			if (1 == port->duplex)
3415				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416					PORT_AUTO_NEG_10BT_FD);
3417			else if (2 == port->duplex)
3418				data &= ~(PORT_AUTO_NEG_100BTX |
3419					PORT_AUTO_NEG_10BT);
3420		}
3421		if (data != cfg) {
3422			data |= PORT_AUTO_NEG_RESTART;
3423			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424		}
3425	}
3426}
3427
3428/**
3429 * port_force_link_speed - force port speed
3430 * @port: 	The port instance.
3431 *
3432 * This routine forces the link speed of the switch ports.
3433 */
3434static void port_force_link_speed(struct ksz_port *port)
3435{
3436	struct ksz_hw *hw = port->hw;
3437	u16 data;
3438	int i;
3439	int phy;
3440	int p;
3441
3442	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444		hw_r_phy_ctrl(hw, phy, &data);
3445
3446		data &= ~PHY_AUTO_NEG_ENABLE;
3447
3448		if (10 == port->speed)
3449			data &= ~PHY_SPEED_100MBIT;
3450		else if (100 == port->speed)
3451			data |= PHY_SPEED_100MBIT;
3452		if (1 == port->duplex)
3453			data &= ~PHY_FULL_DUPLEX;
3454		else if (2 == port->duplex)
3455			data |= PHY_FULL_DUPLEX;
3456		hw_w_phy_ctrl(hw, phy, data);
3457	}
3458}
3459
3460static void port_set_power_saving(struct ksz_port *port, int enable)
3461{
3462	struct ksz_hw *hw = port->hw;
3463	int i;
3464	int p;
3465
3466	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467		port_cfg(hw, p,
3468			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469}
3470
3471/*
3472 * KSZ8841 power management functions
3473 */
3474
3475/**
3476 * hw_chk_wol_pme_status - check PMEN pin
3477 * @hw: 	The hardware instance.
3478 *
3479 * This function is used to check PMEN pin is asserted.
3480 *
3481 * Return 1 if PMEN pin is asserted; otherwise, 0.
3482 */
3483static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484{
3485	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486	struct pci_dev *pdev = hw_priv->pdev;
3487	u16 data;
3488
3489	if (!pdev->pm_cap)
3490		return 0;
3491	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493}
3494
3495/**
3496 * hw_clr_wol_pme_status - clear PMEN pin
3497 * @hw: 	The hardware instance.
3498 *
3499 * This routine is used to clear PME_Status to deassert PMEN pin.
3500 */
3501static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502{
3503	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504	struct pci_dev *pdev = hw_priv->pdev;
3505	u16 data;
3506
3507	if (!pdev->pm_cap)
3508		return;
3509
3510	/* Clear PME_Status to deassert PMEN pin. */
3511	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512	data |= PCI_PM_CTRL_PME_STATUS;
3513	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514}
3515
3516/**
3517 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518 * @hw: 	The hardware instance.
3519 * @set:	The flag indicating whether to enable or disable.
3520 *
3521 * This routine is used to enable or disable Wake-on-LAN.
3522 */
3523static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524{
3525	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526	struct pci_dev *pdev = hw_priv->pdev;
3527	u16 data;
3528
3529	if (!pdev->pm_cap)
3530		return;
3531	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532	data &= ~PCI_PM_CTRL_STATE_MASK;
3533	if (set)
3534		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535	else
3536		data &= ~PCI_PM_CTRL_PME_ENABLE;
3537	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538}
3539
3540/**
3541 * hw_cfg_wol - configure Wake-on-LAN features
3542 * @hw: 	The hardware instance.
3543 * @frame:	The pattern frame bit.
3544 * @set:	The flag indicating whether to enable or disable.
3545 *
3546 * This routine is used to enable or disable certain Wake-on-LAN features.
3547 */
3548static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549{
3550	u16 data;
3551
3552	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553	if (set)
3554		data |= frame;
3555	else
3556		data &= ~frame;
3557	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558}
3559
3560/**
3561 * hw_set_wol_frame - program Wake-on-LAN pattern
3562 * @hw: 	The hardware instance.
3563 * @i:		The frame index.
3564 * @mask_size:	The size of the mask.
3565 * @mask:	Mask to ignore certain bytes in the pattern.
3566 * @frame_size:	The size of the frame.
3567 * @pattern:	The frame data.
3568 *
3569 * This routine is used to program Wake-on-LAN pattern.
3570 */
3571static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572	const u8 *mask, uint frame_size, const u8 *pattern)
3573{
3574	int bits;
3575	int from;
3576	int len;
3577	int to;
3578	u32 crc;
3579	u8 data[64];
3580	u8 val = 0;
3581
3582	if (frame_size > mask_size * 8)
3583		frame_size = mask_size * 8;
3584	if (frame_size > 64)
3585		frame_size = 64;
3586
3587	i *= 0x10;
3588	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590
3591	bits = len = from = to = 0;
3592	do {
3593		if (bits) {
3594			if ((val & 1))
3595				data[to++] = pattern[from];
3596			val >>= 1;
3597			++from;
3598			--bits;
3599		} else {
3600			val = mask[len];
3601			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602				+ len);
3603			++len;
3604			if (val)
3605				bits = 8;
3606			else
3607				from += 8;
3608		}
3609	} while (from < (int) frame_size);
3610	if (val) {
3611		bits = mask[len - 1];
3612		val <<= (from % 8);
3613		bits &= ~val;
3614		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615			1);
3616	}
3617	crc = ether_crc(to, data);
3618	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619}
3620
3621/**
3622 * hw_add_wol_arp - add ARP pattern
3623 * @hw: 	The hardware instance.
3624 * @ip_addr:	The IPv4 address assigned to the device.
3625 *
3626 * This routine is used to add ARP pattern for waking up the host.
3627 */
3628static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629{
3630	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631	u8 pattern[42] = {
3632		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634		0x08, 0x06,
3635		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637		0x00, 0x00, 0x00, 0x00,
3638		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639		0x00, 0x00, 0x00, 0x00 };
3640
3641	memcpy(&pattern[38], ip_addr, 4);
3642	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643}
3644
3645/**
3646 * hw_add_wol_bcast - add broadcast pattern
3647 * @hw: 	The hardware instance.
3648 *
3649 * This routine is used to add broadcast pattern for waking up the host.
3650 */
3651static void hw_add_wol_bcast(struct ksz_hw *hw)
3652{
3653	static const u8 mask[] = { 0x3F };
3654	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655
3656	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657}
3658
3659/**
3660 * hw_add_wol_mcast - add multicast pattern
3661 * @hw: 	The hardware instance.
3662 *
3663 * This routine is used to add multicast pattern for waking up the host.
3664 *
3665 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666 * by IPv6 ping command.  Note that multicast packets are filtred through the
3667 * multicast hash table, so not all multicast packets can wake up the host.
3668 */
3669static void hw_add_wol_mcast(struct ksz_hw *hw)
3670{
3671	static const u8 mask[] = { 0x3F };
3672	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673
3674	memcpy(&pattern[3], &hw->override_addr[3], 3);
3675	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676}
3677
3678/**
3679 * hw_add_wol_ucast - add unicast pattern
3680 * @hw: 	The hardware instance.
3681 *
3682 * This routine is used to add unicast pattern to wakeup the host.
3683 *
3684 * It is assumed the unicast packet is directed to the device, as the hardware
3685 * can only receive them in normal case.
3686 */
3687static void hw_add_wol_ucast(struct ksz_hw *hw)
3688{
3689	static const u8 mask[] = { 0x3F };
3690
3691	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692}
3693
3694/**
3695 * hw_enable_wol - enable Wake-on-LAN
3696 * @hw: 	The hardware instance.
3697 * @wol_enable:	The Wake-on-LAN settings.
3698 * @net_addr:	The IPv4 address assigned to the device.
3699 *
3700 * This routine is used to enable Wake-on-LAN depending on driver settings.
3701 */
3702static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703{
3704	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706	hw_add_wol_ucast(hw);
3707	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708	hw_add_wol_mcast(hw);
3709	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711	hw_add_wol_arp(hw, net_addr);
3712}
3713
3714/**
3715 * hw_init - check driver is correct for the hardware
3716 * @hw: 	The hardware instance.
3717 *
3718 * This function checks the hardware is correct for this driver and sets the
3719 * hardware up for proper initialization.
3720 *
3721 * Return number of ports or 0 if not right.
3722 */
3723static int hw_init(struct ksz_hw *hw)
3724{
3725	int rc = 0;
3726	u16 data;
3727	u16 revision;
3728
3729	/* Set bus speed to 125MHz. */
3730	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731
3732	/* Check KSZ884x chip ID. */
3733	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734
3735	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736	data &= KS884X_CHIP_ID_MASK_41;
3737	if (REG_CHIP_ID_41 == data)
3738		rc = 1;
3739	else if (REG_CHIP_ID_42 == data)
3740		rc = 2;
3741	else
3742		return 0;
3743
3744	/* Setup hardware features or bug workarounds. */
3745	if (revision <= 1) {
3746		hw->features |= SMALL_PACKET_TX_BUG;
3747		if (1 == rc)
3748			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749	}
3750	return rc;
3751}
3752
3753/**
3754 * hw_reset - reset the hardware
3755 * @hw: 	The hardware instance.
3756 *
3757 * This routine resets the hardware.
3758 */
3759static void hw_reset(struct ksz_hw *hw)
3760{
3761	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762
3763	/* Wait for device to reset. */
3764	mdelay(10);
3765
3766	/* Write 0 to clear device reset. */
3767	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768}
3769
3770/**
3771 * hw_setup - setup the hardware
3772 * @hw: 	The hardware instance.
3773 *
3774 * This routine setup the hardware for proper operation.
3775 */
3776static void hw_setup(struct ksz_hw *hw)
3777{
3778#if SET_DEFAULT_LED
3779	u16 data;
3780
3781	/* Change default LED mode. */
3782	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783	data &= ~LED_MODE;
3784	data |= SET_DEFAULT_LED;
3785	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786#endif
3787
3788	/* Setup transmit control. */
3789	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791
3792	/* Setup receive control. */
3793	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796
3797	/* Hardware cannot handle UDP packet in IP fragments. */
3798	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799
3800	if (hw->all_multi)
3801		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802	if (hw->promiscuous)
3803		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804}
3805
3806/**
3807 * hw_setup_intr - setup interrupt mask
3808 * @hw: 	The hardware instance.
3809 *
3810 * This routine setup the interrupt mask for proper operation.
3811 */
3812static void hw_setup_intr(struct ksz_hw *hw)
3813{
3814	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815}
3816
3817static void ksz_check_desc_num(struct ksz_desc_info *info)
3818{
3819#define MIN_DESC_SHIFT  2
3820
3821	int alloc = info->alloc;
3822	int shift;
3823
3824	shift = 0;
3825	while (!(alloc & 1)) {
3826		shift++;
3827		alloc >>= 1;
3828	}
3829	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830		pr_alert("Hardware descriptor numbers not right!\n");
3831		while (alloc) {
3832			shift++;
3833			alloc >>= 1;
3834		}
3835		if (shift < MIN_DESC_SHIFT)
3836			shift = MIN_DESC_SHIFT;
3837		alloc = 1 << shift;
3838		info->alloc = alloc;
3839	}
3840	info->mask = info->alloc - 1;
3841}
3842
3843static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844{
3845	int i;
3846	u32 phys = desc_info->ring_phys;
3847	struct ksz_hw_desc *desc = desc_info->ring_virt;
3848	struct ksz_desc *cur = desc_info->ring;
3849	struct ksz_desc *previous = NULL;
3850
3851	for (i = 0; i < desc_info->alloc; i++) {
3852		cur->phw = desc++;
3853		phys += desc_info->size;
3854		previous = cur++;
3855		previous->phw->next = cpu_to_le32(phys);
3856	}
3857	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858	previous->sw.buf.rx.end_of_ring = 1;
3859	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860
3861	desc_info->avail = desc_info->alloc;
3862	desc_info->last = desc_info->next = 0;
3863
3864	desc_info->cur = desc_info->ring;
3865}
3866
3867/**
3868 * hw_set_desc_base - set descriptor base addresses
3869 * @hw: 	The hardware instance.
3870 * @tx_addr:	The transmit descriptor base.
3871 * @rx_addr:	The receive descriptor base.
3872 *
3873 * This routine programs the descriptor base addresses after reset.
3874 */
3875static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876{
3877	/* Set base address of Tx/Rx descriptors. */
3878	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880}
3881
3882static void hw_reset_pkts(struct ksz_desc_info *info)
3883{
3884	info->cur = info->ring;
3885	info->avail = info->alloc;
3886	info->last = info->next = 0;
3887}
3888
3889static inline void hw_resume_rx(struct ksz_hw *hw)
3890{
3891	writel(DMA_START, hw->io + KS_DMA_RX_START);
3892}
3893
3894/**
3895 * hw_start_rx - start receiving
3896 * @hw: 	The hardware instance.
3897 *
3898 * This routine starts the receive function of the hardware.
3899 */
3900static void hw_start_rx(struct ksz_hw *hw)
3901{
3902	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903
3904	/* Notify when the receive stops. */
3905	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906
3907	writel(DMA_START, hw->io + KS_DMA_RX_START);
3908	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909	hw->rx_stop++;
3910
3911	/* Variable overflows. */
3912	if (0 == hw->rx_stop)
3913		hw->rx_stop = 2;
3914}
3915
3916/**
3917 * hw_stop_rx - stop receiving
3918 * @hw: 	The hardware instance.
3919 *
3920 * This routine stops the receive function of the hardware.
3921 */
3922static void hw_stop_rx(struct ksz_hw *hw)
3923{
3924	hw->rx_stop = 0;
3925	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927}
3928
3929/**
3930 * hw_start_tx - start transmitting
3931 * @hw: 	The hardware instance.
3932 *
3933 * This routine starts the transmit function of the hardware.
3934 */
3935static void hw_start_tx(struct ksz_hw *hw)
3936{
3937	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938}
3939
3940/**
3941 * hw_stop_tx - stop transmitting
3942 * @hw: 	The hardware instance.
3943 *
3944 * This routine stops the transmit function of the hardware.
3945 */
3946static void hw_stop_tx(struct ksz_hw *hw)
3947{
3948	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949}
3950
3951/**
3952 * hw_disable - disable hardware
3953 * @hw: 	The hardware instance.
3954 *
3955 * This routine disables the hardware.
3956 */
3957static void hw_disable(struct ksz_hw *hw)
3958{
3959	hw_stop_rx(hw);
3960	hw_stop_tx(hw);
3961	hw->enabled = 0;
3962}
3963
3964/**
3965 * hw_enable - enable hardware
3966 * @hw: 	The hardware instance.
3967 *
3968 * This routine enables the hardware.
3969 */
3970static void hw_enable(struct ksz_hw *hw)
3971{
3972	hw_start_tx(hw);
3973	hw_start_rx(hw);
3974	hw->enabled = 1;
3975}
3976
3977/**
3978 * hw_alloc_pkt - allocate enough descriptors for transmission
3979 * @hw: 	The hardware instance.
3980 * @length:	The length of the packet.
3981 * @physical:	Number of descriptors required.
3982 *
3983 * This function allocates descriptors for transmission.
3984 *
3985 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986 */
3987static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988{
3989	/* Always leave one descriptor free. */
3990	if (hw->tx_desc_info.avail <= 1)
3991		return 0;
3992
3993	/* Allocate a descriptor for transmission and mark it current. */
3994	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996
3997	/* Keep track of number of transmit descriptors used so far. */
3998	++hw->tx_int_cnt;
3999	hw->tx_size += length;
4000
4001	/* Cannot hold on too much data. */
4002	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003		hw->tx_int_cnt = hw->tx_int_mask + 1;
4004
4005	if (physical > hw->tx_desc_info.avail)
4006		return 1;
4007
4008	return hw->tx_desc_info.avail;
4009}
4010
4011/**
4012 * hw_send_pkt - mark packet for transmission
4013 * @hw: 	The hardware instance.
4014 *
4015 * This routine marks the packet for transmission in PCI version.
4016 */
4017static void hw_send_pkt(struct ksz_hw *hw)
4018{
4019	struct ksz_desc *cur = hw->tx_desc_info.cur;
4020
4021	cur->sw.buf.tx.last_seg = 1;
4022
4023	/* Interrupt only after specified number of descriptors used. */
4024	if (hw->tx_int_cnt > hw->tx_int_mask) {
4025		cur->sw.buf.tx.intr = 1;
4026		hw->tx_int_cnt = 0;
4027		hw->tx_size = 0;
4028	}
4029
4030	/* KSZ8842 supports port directed transmission. */
4031	cur->sw.buf.tx.dest_port = hw->dst_ports;
4032
4033	release_desc(cur);
4034
4035	writel(0, hw->io + KS_DMA_TX_START);
4036}
4037
4038static int empty_addr(u8 *addr)
4039{
4040	u32 *addr1 = (u32 *) addr;
4041	u16 *addr2 = (u16 *) &addr[4];
4042
4043	return 0 == *addr1 && 0 == *addr2;
4044}
4045
4046/**
4047 * hw_set_addr - set MAC address
4048 * @hw: 	The hardware instance.
4049 *
4050 * This routine programs the MAC address of the hardware when the address is
4051 * overrided.
4052 */
4053static void hw_set_addr(struct ksz_hw *hw)
4054{
4055	int i;
4056
4057	for (i = 0; i < ETH_ALEN; i++)
4058		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059			hw->io + KS884X_ADDR_0_OFFSET + i);
4060
4061	sw_set_addr(hw, hw->override_addr);
4062}
4063
4064/**
4065 * hw_read_addr - read MAC address
4066 * @hw: 	The hardware instance.
4067 *
4068 * This routine retrieves the MAC address of the hardware.
4069 */
4070static void hw_read_addr(struct ksz_hw *hw)
4071{
4072	int i;
4073
4074	for (i = 0; i < ETH_ALEN; i++)
4075		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076			KS884X_ADDR_0_OFFSET + i);
4077
4078	if (!hw->mac_override) {
4079		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080		if (empty_addr(hw->override_addr)) {
4081			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083			       ETH_ALEN);
4084			hw->override_addr[5] += hw->id;
4085			hw_set_addr(hw);
4086		}
4087	}
4088}
4089
4090static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091{
4092	int i;
4093	u32 mac_addr_lo;
4094	u32 mac_addr_hi;
4095
4096	mac_addr_hi = 0;
4097	for (i = 0; i < 2; i++) {
4098		mac_addr_hi <<= 8;
4099		mac_addr_hi |= mac_addr[i];
4100	}
4101	mac_addr_hi |= ADD_ADDR_ENABLE;
4102	mac_addr_lo = 0;
4103	for (i = 2; i < 6; i++) {
4104		mac_addr_lo <<= 8;
4105		mac_addr_lo |= mac_addr[i];
4106	}
4107	index *= ADD_ADDR_INCR;
4108
4109	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111}
4112
4113static void hw_set_add_addr(struct ksz_hw *hw)
4114{
4115	int i;
4116
4117	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118		if (empty_addr(hw->address[i]))
4119			writel(0, hw->io + ADD_ADDR_INCR * i +
4120				KS_ADD_ADDR_0_HI);
4121		else
4122			hw_ena_add_addr(hw, i, hw->address[i]);
4123	}
4124}
4125
4126static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127{
4128	int i;
4129	int j = ADDITIONAL_ENTRIES;
4130
4131	if (ether_addr_equal(hw->override_addr, mac_addr))
4132		return 0;
4133	for (i = 0; i < hw->addr_list_size; i++) {
4134		if (ether_addr_equal(hw->address[i], mac_addr))
4135			return 0;
4136		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137			j = i;
4138	}
4139	if (j < ADDITIONAL_ENTRIES) {
4140		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141		hw_ena_add_addr(hw, j, hw->address[j]);
4142		return 0;
4143	}
4144	return -1;
4145}
4146
4147static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148{
4149	int i;
4150
4151	for (i = 0; i < hw->addr_list_size; i++) {
4152		if (ether_addr_equal(hw->address[i], mac_addr)) {
4153			memset(hw->address[i], 0, ETH_ALEN);
4154			writel(0, hw->io + ADD_ADDR_INCR * i +
4155				KS_ADD_ADDR_0_HI);
4156			return 0;
4157		}
4158	}
4159	return -1;
4160}
4161
4162/**
4163 * hw_clr_multicast - clear multicast addresses
4164 * @hw: 	The hardware instance.
4165 *
4166 * This routine removes all multicast addresses set in the hardware.
4167 */
4168static void hw_clr_multicast(struct ksz_hw *hw)
4169{
4170	int i;
4171
4172	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173		hw->multi_bits[i] = 0;
4174
4175		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176	}
4177}
4178
4179/**
4180 * hw_set_grp_addr - set multicast addresses
4181 * @hw: 	The hardware instance.
4182 *
4183 * This routine programs multicast addresses for the hardware to accept those
4184 * addresses.
4185 */
4186static void hw_set_grp_addr(struct ksz_hw *hw)
4187{
4188	int i;
4189	int index;
4190	int position;
4191	int value;
4192
4193	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194
4195	for (i = 0; i < hw->multi_list_size; i++) {
4196		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197		index = position >> 3;
4198		value = 1 << (position & 7);
4199		hw->multi_bits[index] |= (u8) value;
4200	}
4201
4202	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204			i);
4205}
4206
4207/**
4208 * hw_set_multicast - enable or disable all multicast receiving
4209 * @hw: 	The hardware instance.
4210 * @multicast:	To turn on or off the all multicast feature.
4211 *
4212 * This routine enables/disables the hardware to accept all multicast packets.
4213 */
4214static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215{
4216	/* Stop receiving for reconfiguration. */
4217	hw_stop_rx(hw);
4218
4219	if (multicast)
4220		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221	else
4222		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223
4224	if (hw->enabled)
4225		hw_start_rx(hw);
4226}
4227
4228/**
4229 * hw_set_promiscuous - enable or disable promiscuous receiving
4230 * @hw: 	The hardware instance.
4231 * @prom:	To turn on or off the promiscuous feature.
4232 *
4233 * This routine enables/disables the hardware to accept all packets.
4234 */
4235static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236{
4237	/* Stop receiving for reconfiguration. */
4238	hw_stop_rx(hw);
4239
4240	if (prom)
4241		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242	else
4243		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244
4245	if (hw->enabled)
4246		hw_start_rx(hw);
4247}
4248
4249/**
4250 * sw_enable - enable the switch
4251 * @hw: 	The hardware instance.
4252 * @enable:	The flag to enable or disable the switch
4253 *
4254 * This routine is used to enable/disable the switch in KSZ8842.
4255 */
4256static void sw_enable(struct ksz_hw *hw, int enable)
4257{
4258	int port;
4259
4260	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261		if (hw->dev_count > 1) {
4262			/* Set port-base vlan membership with host port. */
4263			sw_cfg_port_base_vlan(hw, port,
4264				HOST_MASK | (1 << port));
4265			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266		} else {
4267			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269		}
4270	}
4271	if (hw->dev_count > 1)
4272		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273	else
4274		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275
4276	if (enable)
4277		enable = KS8842_START;
4278	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279}
4280
4281/**
4282 * sw_setup - setup the switch
4283 * @hw: 	The hardware instance.
4284 *
4285 * This routine setup the hardware switch engine for default operation.
4286 */
4287static void sw_setup(struct ksz_hw *hw)
4288{
4289	int port;
4290
4291	sw_set_global_ctrl(hw);
4292
4293	/* Enable switch broadcast storm protection at 10% percent rate. */
4294	sw_init_broad_storm(hw);
4295	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296	for (port = 0; port < SWITCH_PORT_NUM; port++)
4297		sw_ena_broad_storm(hw, port);
4298
4299	sw_init_prio(hw);
4300
4301	sw_init_mirror(hw);
4302
4303	sw_init_prio_rate(hw);
4304
4305	sw_init_vlan(hw);
4306
4307	if (hw->features & STP_SUPPORT)
4308		sw_init_stp(hw);
4309	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311		hw->overrides |= PAUSE_FLOW_CTRL;
4312	sw_enable(hw, 1);
4313}
4314
4315/**
4316 * ksz_start_timer - start kernel timer
4317 * @info:	Kernel timer information.
4318 * @time:	The time tick.
4319 *
4320 * This routine starts the kernel timer after the specified time tick.
4321 */
4322static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323{
4324	info->cnt = 0;
4325	info->timer.expires = jiffies + time;
4326	add_timer(&info->timer);
4327
4328	/* infinity */
4329	info->max = -1;
4330}
4331
4332/**
4333 * ksz_stop_timer - stop kernel timer
4334 * @info:	Kernel timer information.
4335 *
4336 * This routine stops the kernel timer.
4337 */
4338static void ksz_stop_timer(struct ksz_timer_info *info)
4339{
4340	if (info->max) {
4341		info->max = 0;
4342		del_timer_sync(&info->timer);
4343	}
4344}
4345
4346static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347	void (*function)(unsigned long), void *data)
4348{
4349	info->max = 0;
4350	info->period = period;
4351	init_timer(&info->timer);
4352	info->timer.function = function;
4353	info->timer.data = (unsigned long) data;
4354}
4355
4356static void ksz_update_timer(struct ksz_timer_info *info)
4357{
4358	++info->cnt;
4359	if (info->max > 0) {
4360		if (info->cnt < info->max) {
4361			info->timer.expires = jiffies + info->period;
4362			add_timer(&info->timer);
4363		} else
4364			info->max = 0;
4365	} else if (info->max < 0) {
4366		info->timer.expires = jiffies + info->period;
4367		add_timer(&info->timer);
4368	}
4369}
4370
4371/**
4372 * ksz_alloc_soft_desc - allocate software descriptors
4373 * @desc_info:	Descriptor information structure.
4374 * @transmit:	Indication that descriptors are for transmit.
4375 *
4376 * This local function allocates software descriptors for manipulation in
4377 * memory.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382{
4383	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384				  GFP_KERNEL);
4385	if (!desc_info->ring)
4386		return 1;
4387	hw_init_desc(desc_info, transmit);
4388	return 0;
4389}
4390
4391/**
4392 * ksz_alloc_desc - allocate hardware descriptors
4393 * @adapter:	Adapter information structure.
4394 *
4395 * This local function allocates hardware descriptors for receiving and
4396 * transmitting.
4397 *
4398 * Return 0 if successful.
4399 */
4400static int ksz_alloc_desc(struct dev_info *adapter)
4401{
4402	struct ksz_hw *hw = &adapter->hw;
4403	int offset;
4404
4405	/* Allocate memory for RX & TX descriptors. */
4406	adapter->desc_pool.alloc_size =
4407		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409		DESC_ALIGNMENT;
4410
4411	adapter->desc_pool.alloc_virt =
4412		pci_alloc_consistent(
4413			adapter->pdev, adapter->desc_pool.alloc_size,
4414			&adapter->desc_pool.dma_addr);
4415	if (adapter->desc_pool.alloc_virt == NULL) {
4416		adapter->desc_pool.alloc_size = 0;
4417		return 1;
4418	}
4419	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4420
4421	/* Align to the next cache line boundary. */
4422	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4423		(DESC_ALIGNMENT -
4424		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4425	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4426	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4427
4428	/* Allocate receive/transmit descriptors. */
4429	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4430		adapter->desc_pool.virt;
4431	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4432	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4433	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434		(adapter->desc_pool.virt + offset);
4435	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4436
4437	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4438		return 1;
4439	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4440		return 1;
4441
4442	return 0;
4443}
4444
4445/**
4446 * free_dma_buf - release DMA buffer resources
4447 * @adapter:	Adapter information structure.
4448 *
4449 * This routine is just a helper function to release the DMA buffer resources.
4450 */
4451static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4452	int direction)
4453{
4454	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4455	dev_kfree_skb(dma_buf->skb);
4456	dma_buf->skb = NULL;
4457	dma_buf->dma = 0;
4458}
4459
4460/**
4461 * ksz_init_rx_buffers - initialize receive descriptors
4462 * @adapter:	Adapter information structure.
4463 *
4464 * This routine initializes DMA buffers for receiving.
4465 */
4466static void ksz_init_rx_buffers(struct dev_info *adapter)
4467{
4468	int i;
4469	struct ksz_desc *desc;
4470	struct ksz_dma_buf *dma_buf;
4471	struct ksz_hw *hw = &adapter->hw;
4472	struct ksz_desc_info *info = &hw->rx_desc_info;
4473
4474	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4475		get_rx_pkt(info, &desc);
4476
4477		dma_buf = DMA_BUFFER(desc);
4478		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4479			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4480		dma_buf->len = adapter->mtu;
4481		if (!dma_buf->skb)
4482			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4483		if (dma_buf->skb && !dma_buf->dma)
4484			dma_buf->dma = pci_map_single(
4485				adapter->pdev,
4486				skb_tail_pointer(dma_buf->skb),
4487				dma_buf->len,
4488				PCI_DMA_FROMDEVICE);
4489
4490		/* Set descriptor. */
4491		set_rx_buf(desc, dma_buf->dma);
4492		set_rx_len(desc, dma_buf->len);
4493		release_desc(desc);
4494	}
4495}
4496
4497/**
4498 * ksz_alloc_mem - allocate memory for hardware descriptors
4499 * @adapter:	Adapter information structure.
4500 *
4501 * This function allocates memory for use by hardware descriptors for receiving
4502 * and transmitting.
4503 *
4504 * Return 0 if successful.
4505 */
4506static int ksz_alloc_mem(struct dev_info *adapter)
4507{
4508	struct ksz_hw *hw = &adapter->hw;
4509
4510	/* Determine the number of receive and transmit descriptors. */
4511	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4512	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4513
4514	/* Determine how many descriptors to skip transmit interrupt. */
4515	hw->tx_int_cnt = 0;
4516	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4517	if (hw->tx_int_mask > 8)
4518		hw->tx_int_mask = 8;
4519	while (hw->tx_int_mask) {
4520		hw->tx_int_cnt++;
4521		hw->tx_int_mask >>= 1;
4522	}
4523	if (hw->tx_int_cnt) {
4524		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4525		hw->tx_int_cnt = 0;
4526	}
4527
4528	/* Determine the descriptor size. */
4529	hw->rx_desc_info.size =
4530		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4531		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4532	hw->tx_desc_info.size =
4533		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4534		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4535	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4536		pr_alert("Hardware descriptor size not right!\n");
4537	ksz_check_desc_num(&hw->rx_desc_info);
4538	ksz_check_desc_num(&hw->tx_desc_info);
4539
4540	/* Allocate descriptors. */
4541	if (ksz_alloc_desc(adapter))
4542		return 1;
4543
4544	return 0;
4545}
4546
4547/**
4548 * ksz_free_desc - free software and hardware descriptors
4549 * @adapter:	Adapter information structure.
4550 *
4551 * This local routine frees the software and hardware descriptors allocated by
4552 * ksz_alloc_desc().
4553 */
4554static void ksz_free_desc(struct dev_info *adapter)
4555{
4556	struct ksz_hw *hw = &adapter->hw;
4557
4558	/* Reset descriptor. */
4559	hw->rx_desc_info.ring_virt = NULL;
4560	hw->tx_desc_info.ring_virt = NULL;
4561	hw->rx_desc_info.ring_phys = 0;
4562	hw->tx_desc_info.ring_phys = 0;
4563
4564	/* Free memory. */
4565	if (adapter->desc_pool.alloc_virt)
4566		pci_free_consistent(
4567			adapter->pdev,
4568			adapter->desc_pool.alloc_size,
4569			adapter->desc_pool.alloc_virt,
4570			adapter->desc_pool.dma_addr);
4571
4572	/* Reset resource pool. */
4573	adapter->desc_pool.alloc_size = 0;
4574	adapter->desc_pool.alloc_virt = NULL;
4575
4576	kfree(hw->rx_desc_info.ring);
4577	hw->rx_desc_info.ring = NULL;
4578	kfree(hw->tx_desc_info.ring);
4579	hw->tx_desc_info.ring = NULL;
4580}
4581
4582/**
4583 * ksz_free_buffers - free buffers used in the descriptors
4584 * @adapter:	Adapter information structure.
4585 * @desc_info:	Descriptor information structure.
4586 *
4587 * This local routine frees buffers used in the DMA buffers.
4588 */
4589static void ksz_free_buffers(struct dev_info *adapter,
4590	struct ksz_desc_info *desc_info, int direction)
4591{
4592	int i;
4593	struct ksz_dma_buf *dma_buf;
4594	struct ksz_desc *desc = desc_info->ring;
4595
4596	for (i = 0; i < desc_info->alloc; i++) {
4597		dma_buf = DMA_BUFFER(desc);
4598		if (dma_buf->skb)
4599			free_dma_buf(adapter, dma_buf, direction);
4600		desc++;
4601	}
4602}
4603
4604/**
4605 * ksz_free_mem - free all resources used by descriptors
4606 * @adapter:	Adapter information structure.
4607 *
4608 * This local routine frees all the resources allocated by ksz_alloc_mem().
4609 */
4610static void ksz_free_mem(struct dev_info *adapter)
4611{
4612	/* Free transmit buffers. */
4613	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4614		PCI_DMA_TODEVICE);
4615
4616	/* Free receive buffers. */
4617	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4618		PCI_DMA_FROMDEVICE);
4619
4620	/* Free descriptors. */
4621	ksz_free_desc(adapter);
4622}
4623
4624static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4625	u64 *counter)
4626{
4627	int i;
4628	int mib;
4629	int port;
4630	struct ksz_port_mib *port_mib;
4631
4632	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4633	for (i = 0, port = first; i < cnt; i++, port++) {
4634		port_mib = &hw->port_mib[port];
4635		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4636			counter[mib] += port_mib->counter[mib];
4637	}
4638}
4639
4640/**
4641 * send_packet - send packet
4642 * @skb:	Socket buffer.
4643 * @dev:	Network device.
4644 *
4645 * This routine is used to send a packet out to the network.
4646 */
4647static void send_packet(struct sk_buff *skb, struct net_device *dev)
4648{
4649	struct ksz_desc *desc;
4650	struct ksz_desc *first;
4651	struct dev_priv *priv = netdev_priv(dev);
4652	struct dev_info *hw_priv = priv->adapter;
4653	struct ksz_hw *hw = &hw_priv->hw;
4654	struct ksz_desc_info *info = &hw->tx_desc_info;
4655	struct ksz_dma_buf *dma_buf;
4656	int len;
4657	int last_frag = skb_shinfo(skb)->nr_frags;
4658
4659	/*
4660	 * KSZ8842 with multiple device interfaces needs to be told which port
4661	 * to send.
4662	 */
4663	if (hw->dev_count > 1)
4664		hw->dst_ports = 1 << priv->port.first_port;
4665
4666	/* Hardware will pad the length to 60. */
4667	len = skb->len;
4668
4669	/* Remember the very first descriptor. */
4670	first = info->cur;
4671	desc = first;
4672
4673	dma_buf = DMA_BUFFER(desc);
4674	if (last_frag) {
4675		int frag;
4676		skb_frag_t *this_frag;
4677
4678		dma_buf->len = skb_headlen(skb);
4679
4680		dma_buf->dma = pci_map_single(
4681			hw_priv->pdev, skb->data, dma_buf->len,
4682			PCI_DMA_TODEVICE);
4683		set_tx_buf(desc, dma_buf->dma);
4684		set_tx_len(desc, dma_buf->len);
4685
4686		frag = 0;
4687		do {
4688			this_frag = &skb_shinfo(skb)->frags[frag];
4689
4690			/* Get a new descriptor. */
4691			get_tx_pkt(info, &desc);
4692
4693			/* Keep track of descriptors used so far. */
4694			++hw->tx_int_cnt;
4695
4696			dma_buf = DMA_BUFFER(desc);
4697			dma_buf->len = skb_frag_size(this_frag);
4698
4699			dma_buf->dma = pci_map_single(
4700				hw_priv->pdev,
4701				skb_frag_address(this_frag),
4702				dma_buf->len,
4703				PCI_DMA_TODEVICE);
4704			set_tx_buf(desc, dma_buf->dma);
4705			set_tx_len(desc, dma_buf->len);
4706
4707			frag++;
4708			if (frag == last_frag)
4709				break;
4710
4711			/* Do not release the last descriptor here. */
4712			release_desc(desc);
4713		} while (1);
4714
4715		/* current points to the last descriptor. */
4716		info->cur = desc;
4717
4718		/* Release the first descriptor. */
4719		release_desc(first);
4720	} else {
4721		dma_buf->len = len;
4722
4723		dma_buf->dma = pci_map_single(
4724			hw_priv->pdev, skb->data, dma_buf->len,
4725			PCI_DMA_TODEVICE);
4726		set_tx_buf(desc, dma_buf->dma);
4727		set_tx_len(desc, dma_buf->len);
4728	}
4729
4730	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4731		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4732		(desc)->sw.buf.tx.csum_gen_udp = 1;
4733	}
4734
4735	/*
4736	 * The last descriptor holds the packet so that it can be returned to
4737	 * network subsystem after all descriptors are transmitted.
4738	 */
4739	dma_buf->skb = skb;
4740
4741	hw_send_pkt(hw);
4742
4743	/* Update transmit statistics. */
4744	dev->stats.tx_packets++;
4745	dev->stats.tx_bytes += len;
4746}
4747
4748/**
4749 * transmit_cleanup - clean up transmit descriptors
4750 * @dev:	Network device.
4751 *
4752 * This routine is called to clean up the transmitted buffers.
4753 */
4754static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4755{
4756	int last;
4757	union desc_stat status;
4758	struct ksz_hw *hw = &hw_priv->hw;
4759	struct ksz_desc_info *info = &hw->tx_desc_info;
4760	struct ksz_desc *desc;
4761	struct ksz_dma_buf *dma_buf;
4762	struct net_device *dev = NULL;
4763
4764	spin_lock_irq(&hw_priv->hwlock);
4765	last = info->last;
4766
4767	while (info->avail < info->alloc) {
4768		/* Get next descriptor which is not hardware owned. */
4769		desc = &info->ring[last];
4770		status.data = le32_to_cpu(desc->phw->ctrl.data);
4771		if (status.tx.hw_owned) {
4772			if (normal)
4773				break;
4774			else
4775				reset_desc(desc, status);
4776		}
4777
4778		dma_buf = DMA_BUFFER(desc);
4779		pci_unmap_single(
4780			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4781			PCI_DMA_TODEVICE);
4782
4783		/* This descriptor contains the last buffer in the packet. */
4784		if (dma_buf->skb) {
4785			dev = dma_buf->skb->dev;
4786
4787			/* Release the packet back to network subsystem. */
4788			dev_kfree_skb_irq(dma_buf->skb);
4789			dma_buf->skb = NULL;
4790		}
4791
4792		/* Free the transmitted descriptor. */
4793		last++;
4794		last &= info->mask;
4795		info->avail++;
4796	}
4797	info->last = last;
4798	spin_unlock_irq(&hw_priv->hwlock);
4799
4800	/* Notify the network subsystem that the packet has been sent. */
4801	if (dev)
4802		dev->trans_start = jiffies;
4803}
4804
4805/**
4806 * transmit_done - transmit done processing
4807 * @dev:	Network device.
4808 *
4809 * This routine is called when the transmit interrupt is triggered, indicating
4810 * either a packet is sent successfully or there are transmit errors.
4811 */
4812static void tx_done(struct dev_info *hw_priv)
4813{
4814	struct ksz_hw *hw = &hw_priv->hw;
4815	int port;
4816
4817	transmit_cleanup(hw_priv, 1);
4818
4819	for (port = 0; port < hw->dev_count; port++) {
4820		struct net_device *dev = hw->port_info[port].pdev;
4821
4822		if (netif_running(dev) && netif_queue_stopped(dev))
4823			netif_wake_queue(dev);
4824	}
4825}
4826
4827static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4828{
4829	skb->dev = old->dev;
4830	skb->protocol = old->protocol;
4831	skb->ip_summed = old->ip_summed;
4832	skb->csum = old->csum;
4833	skb_set_network_header(skb, ETH_HLEN);
4834
4835	dev_consume_skb_any(old);
4836}
4837
4838/**
4839 * netdev_tx - send out packet
4840 * @skb:	Socket buffer.
4841 * @dev:	Network device.
4842 *
4843 * This function is used by the upper network layer to send out a packet.
4844 *
4845 * Return 0 if successful; otherwise an error code indicating failure.
4846 */
4847static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4848{
4849	struct dev_priv *priv = netdev_priv(dev);
4850	struct dev_info *hw_priv = priv->adapter;
4851	struct ksz_hw *hw = &hw_priv->hw;
4852	int left;
4853	int num = 1;
4854	int rc = 0;
4855
4856	if (hw->features & SMALL_PACKET_TX_BUG) {
4857		struct sk_buff *org_skb = skb;
4858
4859		if (skb->len <= 48) {
4860			if (skb_end_pointer(skb) - skb->data >= 50) {
4861				memset(&skb->data[skb->len], 0, 50 - skb->len);
4862				skb->len = 50;
4863			} else {
4864				skb = netdev_alloc_skb(dev, 50);
4865				if (!skb)
4866					return NETDEV_TX_BUSY;
4867				memcpy(skb->data, org_skb->data, org_skb->len);
4868				memset(&skb->data[org_skb->len], 0,
4869					50 - org_skb->len);
4870				skb->len = 50;
4871				copy_old_skb(org_skb, skb);
4872			}
4873		}
4874	}
4875
4876	spin_lock_irq(&hw_priv->hwlock);
4877
4878	num = skb_shinfo(skb)->nr_frags + 1;
4879	left = hw_alloc_pkt(hw, skb->len, num);
4880	if (left) {
4881		if (left < num ||
4882		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4883		     skb->protocol == htons(ETH_P_IPV6))) {
4884			struct sk_buff *org_skb = skb;
4885
4886			skb = netdev_alloc_skb(dev, org_skb->len);
4887			if (!skb) {
4888				rc = NETDEV_TX_BUSY;
4889				goto unlock;
4890			}
4891			skb_copy_and_csum_dev(org_skb, skb->data);
4892			org_skb->ip_summed = CHECKSUM_NONE;
4893			skb->len = org_skb->len;
4894			copy_old_skb(org_skb, skb);
4895		}
4896		send_packet(skb, dev);
4897		if (left <= num)
4898			netif_stop_queue(dev);
4899	} else {
4900		/* Stop the transmit queue until packet is allocated. */
4901		netif_stop_queue(dev);
4902		rc = NETDEV_TX_BUSY;
4903	}
4904unlock:
4905	spin_unlock_irq(&hw_priv->hwlock);
4906
4907	return rc;
4908}
4909
4910/**
4911 * netdev_tx_timeout - transmit timeout processing
4912 * @dev:	Network device.
4913 *
4914 * This routine is called when the transmit timer expires.  That indicates the
4915 * hardware is not running correctly because transmit interrupts are not
4916 * triggered to free up resources so that the transmit routine can continue
4917 * sending out packets.  The hardware is reset to correct the problem.
4918 */
4919static void netdev_tx_timeout(struct net_device *dev)
4920{
4921	static unsigned long last_reset;
4922
4923	struct dev_priv *priv = netdev_priv(dev);
4924	struct dev_info *hw_priv = priv->adapter;
4925	struct ksz_hw *hw = &hw_priv->hw;
4926	int port;
4927
4928	if (hw->dev_count > 1) {
4929		/*
4930		 * Only reset the hardware if time between calls is long
4931		 * enough.
4932		 */
4933		if (jiffies - last_reset <= dev->watchdog_timeo)
4934			hw_priv = NULL;
4935	}
4936
4937	last_reset = jiffies;
4938	if (hw_priv) {
4939		hw_dis_intr(hw);
4940		hw_disable(hw);
4941
4942		transmit_cleanup(hw_priv, 0);
4943		hw_reset_pkts(&hw->rx_desc_info);
4944		hw_reset_pkts(&hw->tx_desc_info);
4945		ksz_init_rx_buffers(hw_priv);
4946
4947		hw_reset(hw);
4948
4949		hw_set_desc_base(hw,
4950			hw->tx_desc_info.ring_phys,
4951			hw->rx_desc_info.ring_phys);
4952		hw_set_addr(hw);
4953		if (hw->all_multi)
4954			hw_set_multicast(hw, hw->all_multi);
4955		else if (hw->multi_list_size)
4956			hw_set_grp_addr(hw);
4957
4958		if (hw->dev_count > 1) {
4959			hw_set_add_addr(hw);
4960			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4961				struct net_device *port_dev;
4962
4963				port_set_stp_state(hw, port,
4964					STP_STATE_DISABLED);
4965
4966				port_dev = hw->port_info[port].pdev;
4967				if (netif_running(port_dev))
4968					port_set_stp_state(hw, port,
4969						STP_STATE_SIMPLE);
4970			}
4971		}
4972
4973		hw_enable(hw);
4974		hw_ena_intr(hw);
4975	}
4976
4977	dev->trans_start = jiffies;
4978	netif_wake_queue(dev);
4979}
4980
4981static inline void csum_verified(struct sk_buff *skb)
4982{
4983	unsigned short protocol;
4984	struct iphdr *iph;
4985
4986	protocol = skb->protocol;
4987	skb_reset_network_header(skb);
4988	iph = (struct iphdr *) skb_network_header(skb);
4989	if (protocol == htons(ETH_P_8021Q)) {
4990		protocol = iph->tot_len;
4991		skb_set_network_header(skb, VLAN_HLEN);
4992		iph = (struct iphdr *) skb_network_header(skb);
4993	}
4994	if (protocol == htons(ETH_P_IP)) {
4995		if (iph->protocol == IPPROTO_TCP)
4996			skb->ip_summed = CHECKSUM_UNNECESSARY;
4997	}
4998}
4999
5000static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5001	struct ksz_desc *desc, union desc_stat status)
5002{
5003	int packet_len;
5004	struct dev_priv *priv = netdev_priv(dev);
5005	struct dev_info *hw_priv = priv->adapter;
5006	struct ksz_dma_buf *dma_buf;
5007	struct sk_buff *skb;
5008	int rx_status;
5009
5010	/* Received length includes 4-byte CRC. */
5011	packet_len = status.rx.frame_len - 4;
5012
5013	dma_buf = DMA_BUFFER(desc);
5014	pci_dma_sync_single_for_cpu(
5015		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5016		PCI_DMA_FROMDEVICE);
5017
5018	do {
5019		/* skb->data != skb->head */
5020		skb = netdev_alloc_skb(dev, packet_len + 2);
5021		if (!skb) {
5022			dev->stats.rx_dropped++;
5023			return -ENOMEM;
5024		}
5025
5026		/*
5027		 * Align socket buffer in 4-byte boundary for better
5028		 * performance.
5029		 */
5030		skb_reserve(skb, 2);
5031
5032		memcpy(skb_put(skb, packet_len),
5033			dma_buf->skb->data, packet_len);
5034	} while (0);
5035
5036	skb->protocol = eth_type_trans(skb, dev);
5037
5038	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5039		csum_verified(skb);
5040
5041	/* Update receive statistics. */
5042	dev->stats.rx_packets++;
5043	dev->stats.rx_bytes += packet_len;
5044
5045	/* Notify upper layer for received packet. */
5046	rx_status = netif_rx(skb);
5047
5048	return 0;
5049}
5050
5051static int dev_rcv_packets(struct dev_info *hw_priv)
5052{
5053	int next;
5054	union desc_stat status;
5055	struct ksz_hw *hw = &hw_priv->hw;
5056	struct net_device *dev = hw->port_info[0].pdev;
5057	struct ksz_desc_info *info = &hw->rx_desc_info;
5058	int left = info->alloc;
5059	struct ksz_desc *desc;
5060	int received = 0;
5061
5062	next = info->next;
5063	while (left--) {
5064		/* Get next descriptor which is not hardware owned. */
5065		desc = &info->ring[next];
5066		status.data = le32_to_cpu(desc->phw->ctrl.data);
5067		if (status.rx.hw_owned)
5068			break;
5069
5070		/* Status valid only when last descriptor bit is set. */
5071		if (status.rx.last_desc && status.rx.first_desc) {
5072			if (rx_proc(dev, hw, desc, status))
5073				goto release_packet;
5074			received++;
5075		}
5076
5077release_packet:
5078		release_desc(desc);
5079		next++;
5080		next &= info->mask;
5081	}
5082	info->next = next;
5083
5084	return received;
5085}
5086
5087static int port_rcv_packets(struct dev_info *hw_priv)
5088{
5089	int next;
5090	union desc_stat status;
5091	struct ksz_hw *hw = &hw_priv->hw;
5092	struct net_device *dev = hw->port_info[0].pdev;
5093	struct ksz_desc_info *info = &hw->rx_desc_info;
5094	int left = info->alloc;
5095	struct ksz_desc *desc;
5096	int received = 0;
5097
5098	next = info->next;
5099	while (left--) {
5100		/* Get next descriptor which is not hardware owned. */
5101		desc = &info->ring[next];
5102		status.data = le32_to_cpu(desc->phw->ctrl.data);
5103		if (status.rx.hw_owned)
5104			break;
5105
5106		if (hw->dev_count > 1) {
5107			/* Get received port number. */
5108			int p = HW_TO_DEV_PORT(status.rx.src_port);
5109
5110			dev = hw->port_info[p].pdev;
5111			if (!netif_running(dev))
5112				goto release_packet;
5113		}
5114
5115		/* Status valid only when last descriptor bit is set. */
5116		if (status.rx.last_desc && status.rx.first_desc) {
5117			if (rx_proc(dev, hw, desc, status))
5118				goto release_packet;
5119			received++;
5120		}
5121
5122release_packet:
5123		release_desc(desc);
5124		next++;
5125		next &= info->mask;
5126	}
5127	info->next = next;
5128
5129	return received;
5130}
5131
5132static int dev_rcv_special(struct dev_info *hw_priv)
5133{
5134	int next;
5135	union desc_stat status;
5136	struct ksz_hw *hw = &hw_priv->hw;
5137	struct net_device *dev = hw->port_info[0].pdev;
5138	struct ksz_desc_info *info = &hw->rx_desc_info;
5139	int left = info->alloc;
5140	struct ksz_desc *desc;
5141	int received = 0;
5142
5143	next = info->next;
5144	while (left--) {
5145		/* Get next descriptor which is not hardware owned. */
5146		desc = &info->ring[next];
5147		status.data = le32_to_cpu(desc->phw->ctrl.data);
5148		if (status.rx.hw_owned)
5149			break;
5150
5151		if (hw->dev_count > 1) {
5152			/* Get received port number. */
5153			int p = HW_TO_DEV_PORT(status.rx.src_port);
5154
5155			dev = hw->port_info[p].pdev;
5156			if (!netif_running(dev))
5157				goto release_packet;
5158		}
5159
5160		/* Status valid only when last descriptor bit is set. */
5161		if (status.rx.last_desc && status.rx.first_desc) {
5162			/*
5163			 * Receive without error.  With receive errors
5164			 * disabled, packets with receive errors will be
5165			 * dropped, so no need to check the error bit.
5166			 */
5167			if (!status.rx.error || (status.data &
5168					KS_DESC_RX_ERROR_COND) ==
5169					KS_DESC_RX_ERROR_TOO_LONG) {
5170				if (rx_proc(dev, hw, desc, status))
5171					goto release_packet;
5172				received++;
5173			} else {
5174				struct dev_priv *priv = netdev_priv(dev);
5175
5176				/* Update receive error statistics. */
5177				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5178			}
5179		}
5180
5181release_packet:
5182		release_desc(desc);
5183		next++;
5184		next &= info->mask;
5185	}
5186	info->next = next;
5187
5188	return received;
5189}
5190
5191static void rx_proc_task(unsigned long data)
5192{
5193	struct dev_info *hw_priv = (struct dev_info *) data;
5194	struct ksz_hw *hw = &hw_priv->hw;
5195
5196	if (!hw->enabled)
5197		return;
5198	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5199
5200		/* In case receive process is suspended because of overrun. */
5201		hw_resume_rx(hw);
5202
5203		/* tasklets are interruptible. */
5204		spin_lock_irq(&hw_priv->hwlock);
5205		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5206		spin_unlock_irq(&hw_priv->hwlock);
5207	} else {
5208		hw_ack_intr(hw, KS884X_INT_RX);
5209		tasklet_schedule(&hw_priv->rx_tasklet);
5210	}
5211}
5212
5213static void tx_proc_task(unsigned long data)
5214{
5215	struct dev_info *hw_priv = (struct dev_info *) data;
5216	struct ksz_hw *hw = &hw_priv->hw;
5217
5218	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5219
5220	tx_done(hw_priv);
5221
5222	/* tasklets are interruptible. */
5223	spin_lock_irq(&hw_priv->hwlock);
5224	hw_turn_on_intr(hw, KS884X_INT_TX);
5225	spin_unlock_irq(&hw_priv->hwlock);
5226}
5227
5228static inline void handle_rx_stop(struct ksz_hw *hw)
5229{
5230	/* Receive just has been stopped. */
5231	if (0 == hw->rx_stop)
5232		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5233	else if (hw->rx_stop > 1) {
5234		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5235			hw_start_rx(hw);
5236		} else {
5237			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5238			hw->rx_stop = 0;
5239		}
5240	} else
5241		/* Receive just has been started. */
5242		hw->rx_stop++;
5243}
5244
5245/**
5246 * netdev_intr - interrupt handling
5247 * @irq:	Interrupt number.
5248 * @dev_id:	Network device.
5249 *
5250 * This function is called by upper network layer to signal interrupt.
5251 *
5252 * Return IRQ_HANDLED if interrupt is handled.
5253 */
5254static irqreturn_t netdev_intr(int irq, void *dev_id)
5255{
5256	uint int_enable = 0;
5257	struct net_device *dev = (struct net_device *) dev_id;
5258	struct dev_priv *priv = netdev_priv(dev);
5259	struct dev_info *hw_priv = priv->adapter;
5260	struct ksz_hw *hw = &hw_priv->hw;
5261
5262	spin_lock(&hw_priv->hwlock);
5263
5264	hw_read_intr(hw, &int_enable);
5265
5266	/* Not our interrupt! */
5267	if (!int_enable) {
5268		spin_unlock(&hw_priv->hwlock);
5269		return IRQ_NONE;
5270	}
5271
5272	do {
5273		hw_ack_intr(hw, int_enable);
5274		int_enable &= hw->intr_mask;
5275
5276		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5277			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5278			tasklet_schedule(&hw_priv->tx_tasklet);
5279		}
5280
5281		if (likely(int_enable & KS884X_INT_RX)) {
5282			hw_dis_intr_bit(hw, KS884X_INT_RX);
5283			tasklet_schedule(&hw_priv->rx_tasklet);
5284		}
5285
5286		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5287			dev->stats.rx_fifo_errors++;
5288			hw_resume_rx(hw);
5289		}
5290
5291		if (unlikely(int_enable & KS884X_INT_PHY)) {
5292			struct ksz_port *port = &priv->port;
5293
5294			hw->features |= LINK_INT_WORKING;
5295			port_get_link_speed(port);
5296		}
5297
5298		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5299			handle_rx_stop(hw);
5300			break;
5301		}
5302
5303		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5304			u32 data;
5305
5306			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5307			pr_info("Tx stopped\n");
5308			data = readl(hw->io + KS_DMA_TX_CTRL);
5309			if (!(data & DMA_TX_ENABLE))
5310				pr_info("Tx disabled\n");
5311			break;
5312		}
5313	} while (0);
5314
5315	hw_ena_intr(hw);
5316
5317	spin_unlock(&hw_priv->hwlock);
5318
5319	return IRQ_HANDLED;
5320}
5321
5322/*
5323 * Linux network device functions
5324 */
5325
5326static unsigned long next_jiffies;
5327
5328#ifdef CONFIG_NET_POLL_CONTROLLER
5329static void netdev_netpoll(struct net_device *dev)
5330{
5331	struct dev_priv *priv = netdev_priv(dev);
5332	struct dev_info *hw_priv = priv->adapter;
5333
5334	hw_dis_intr(&hw_priv->hw);
5335	netdev_intr(dev->irq, dev);
5336}
5337#endif
5338
5339static void bridge_change(struct ksz_hw *hw)
5340{
5341	int port;
5342	u8  member;
5343	struct ksz_switch *sw = hw->ksz_switch;
5344
5345	/* No ports in forwarding state. */
5346	if (!sw->member) {
5347		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348		sw_block_addr(hw);
5349	}
5350	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352			member = HOST_MASK | sw->member;
5353		else
5354			member = HOST_MASK | (1 << port);
5355		if (member != sw->port_cfg[port].member)
5356			sw_cfg_port_base_vlan(hw, port, member);
5357	}
5358}
5359
5360/**
5361 * netdev_close - close network device
5362 * @dev:	Network device.
5363 *
5364 * This function process the close operation of network device.  This is caused
5365 * by the user command "ifconfig ethX down."
5366 *
5367 * Return 0 if successful; otherwise an error code indicating failure.
5368 */
5369static int netdev_close(struct net_device *dev)
5370{
5371	struct dev_priv *priv = netdev_priv(dev);
5372	struct dev_info *hw_priv = priv->adapter;
5373	struct ksz_port *port = &priv->port;
5374	struct ksz_hw *hw = &hw_priv->hw;
5375	int pi;
5376
5377	netif_stop_queue(dev);
5378
5379	ksz_stop_timer(&priv->monitor_timer_info);
5380
5381	/* Need to shut the port manually in multiple device interfaces mode. */
5382	if (hw->dev_count > 1) {
5383		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384
5385		/* Port is closed.  Need to change bridge setting. */
5386		if (hw->features & STP_SUPPORT) {
5387			pi = 1 << port->first_port;
5388			if (hw->ksz_switch->member & pi) {
5389				hw->ksz_switch->member &= ~pi;
5390				bridge_change(hw);
5391			}
5392		}
5393	}
5394	if (port->first_port > 0)
5395		hw_del_addr(hw, dev->dev_addr);
5396	if (!hw_priv->wol_enable)
5397		port_set_power_saving(port, true);
5398
5399	if (priv->multicast)
5400		--hw->all_multi;
5401	if (priv->promiscuous)
5402		--hw->promiscuous;
5403
5404	hw_priv->opened--;
5405	if (!(hw_priv->opened)) {
5406		ksz_stop_timer(&hw_priv->mib_timer_info);
5407		flush_work(&hw_priv->mib_read);
5408
5409		hw_dis_intr(hw);
5410		hw_disable(hw);
5411		hw_clr_multicast(hw);
5412
5413		/* Delay for receive task to stop scheduling itself. */
5414		msleep(2000 / HZ);
5415
5416		tasklet_kill(&hw_priv->rx_tasklet);
5417		tasklet_kill(&hw_priv->tx_tasklet);
5418		free_irq(dev->irq, hw_priv->dev);
5419
5420		transmit_cleanup(hw_priv, 0);
5421		hw_reset_pkts(&hw->rx_desc_info);
5422		hw_reset_pkts(&hw->tx_desc_info);
5423
5424		/* Clean out static MAC table when the switch is shutdown. */
5425		if (hw->features & STP_SUPPORT)
5426			sw_clr_sta_mac_table(hw);
5427	}
5428
5429	return 0;
5430}
5431
5432static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433{
5434	if (hw->ksz_switch) {
5435		u32 data;
5436
5437		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438		if (hw->features & RX_HUGE_FRAME)
5439			data |= SWITCH_HUGE_PACKET;
5440		else
5441			data &= ~SWITCH_HUGE_PACKET;
5442		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443	}
5444	if (hw->features & RX_HUGE_FRAME) {
5445		hw->rx_cfg |= DMA_RX_ERROR;
5446		hw_priv->dev_rcv = dev_rcv_special;
5447	} else {
5448		hw->rx_cfg &= ~DMA_RX_ERROR;
5449		if (hw->dev_count > 1)
5450			hw_priv->dev_rcv = port_rcv_packets;
5451		else
5452			hw_priv->dev_rcv = dev_rcv_packets;
5453	}
5454}
5455
5456static int prepare_hardware(struct net_device *dev)
5457{
5458	struct dev_priv *priv = netdev_priv(dev);
5459	struct dev_info *hw_priv = priv->adapter;
5460	struct ksz_hw *hw = &hw_priv->hw;
5461	int rc = 0;
5462
5463	/* Remember the network device that requests interrupts. */
5464	hw_priv->dev = dev;
5465	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466	if (rc)
5467		return rc;
5468	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5469		     (unsigned long) hw_priv);
5470	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5471		     (unsigned long) hw_priv);
5472
5473	hw->promiscuous = 0;
5474	hw->all_multi = 0;
5475	hw->multi_list_size = 0;
5476
5477	hw_reset(hw);
5478
5479	hw_set_desc_base(hw,
5480		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5481	hw_set_addr(hw);
5482	hw_cfg_huge_frame(hw_priv, hw);
5483	ksz_init_rx_buffers(hw_priv);
5484	return 0;
5485}
5486
5487static void set_media_state(struct net_device *dev, int media_state)
5488{
5489	struct dev_priv *priv = netdev_priv(dev);
5490
5491	if (media_state == priv->media_state)
5492		netif_carrier_on(dev);
5493	else
5494		netif_carrier_off(dev);
5495	netif_info(priv, link, dev, "link %s\n",
5496		   media_state == priv->media_state ? "on" : "off");
5497}
5498
5499/**
5500 * netdev_open - open network device
5501 * @dev:	Network device.
5502 *
5503 * This function process the open operation of network device.  This is caused
5504 * by the user command "ifconfig ethX up."
5505 *
5506 * Return 0 if successful; otherwise an error code indicating failure.
5507 */
5508static int netdev_open(struct net_device *dev)
5509{
5510	struct dev_priv *priv = netdev_priv(dev);
5511	struct dev_info *hw_priv = priv->adapter;
5512	struct ksz_hw *hw = &hw_priv->hw;
5513	struct ksz_port *port = &priv->port;
5514	int i;
5515	int p;
5516	int rc = 0;
5517
5518	priv->multicast = 0;
5519	priv->promiscuous = 0;
5520
5521	/* Reset device statistics. */
5522	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5523	memset((void *) port->counter, 0,
5524		(sizeof(u64) * OID_COUNTER_LAST));
5525
5526	if (!(hw_priv->opened)) {
5527		rc = prepare_hardware(dev);
5528		if (rc)
5529			return rc;
5530		for (i = 0; i < hw->mib_port_cnt; i++) {
5531			if (next_jiffies < jiffies)
5532				next_jiffies = jiffies + HZ * 2;
5533			else
5534				next_jiffies += HZ * 1;
5535			hw_priv->counter[i].time = next_jiffies;
5536			hw->port_mib[i].state = media_disconnected;
5537			port_init_cnt(hw, i);
5538		}
5539		if (hw->ksz_switch)
5540			hw->port_mib[HOST_PORT].state = media_connected;
5541		else {
5542			hw_add_wol_bcast(hw);
5543			hw_cfg_wol_pme(hw, 0);
5544			hw_clr_wol_pme_status(&hw_priv->hw);
5545		}
5546	}
5547	port_set_power_saving(port, false);
5548
5549	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550		/*
5551		 * Initialize to invalid value so that link detection
5552		 * is done.
5553		 */
5554		hw->port_info[p].partner = 0xFF;
5555		hw->port_info[p].state = media_disconnected;
5556	}
5557
5558	/* Need to open the port in multiple device interfaces mode. */
5559	if (hw->dev_count > 1) {
5560		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5561		if (port->first_port > 0)
5562			hw_add_addr(hw, dev->dev_addr);
5563	}
5564
5565	port_get_link_speed(port);
5566	if (port->force_link)
5567		port_force_link_speed(port);
5568	else
5569		port_set_link_speed(port);
5570
5571	if (!(hw_priv->opened)) {
5572		hw_setup_intr(hw);
5573		hw_enable(hw);
5574		hw_ena_intr(hw);
5575
5576		if (hw->mib_port_cnt)
5577			ksz_start_timer(&hw_priv->mib_timer_info,
5578				hw_priv->mib_timer_info.period);
5579	}
5580
5581	hw_priv->opened++;
5582
5583	ksz_start_timer(&priv->monitor_timer_info,
5584		priv->monitor_timer_info.period);
5585
5586	priv->media_state = port->linked->state;
5587
5588	set_media_state(dev, media_connected);
5589	netif_start_queue(dev);
5590
5591	return 0;
5592}
5593
5594/* RX errors = rx_errors */
5595/* RX dropped = rx_dropped */
5596/* RX overruns = rx_fifo_errors */
5597/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5598/* TX errors = tx_errors */
5599/* TX dropped = tx_dropped */
5600/* TX overruns = tx_fifo_errors */
5601/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5602/* collisions = collisions */
5603
5604/**
5605 * netdev_query_statistics - query network device statistics
5606 * @dev:	Network device.
5607 *
5608 * This function returns the statistics of the network device.  The device
5609 * needs not be opened.
5610 *
5611 * Return network device statistics.
5612 */
5613static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5614{
5615	struct dev_priv *priv = netdev_priv(dev);
5616	struct ksz_port *port = &priv->port;
5617	struct ksz_hw *hw = &priv->adapter->hw;
5618	struct ksz_port_mib *mib;
5619	int i;
5620	int p;
5621
5622	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5623	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5624
5625	/* Reset to zero to add count later. */
5626	dev->stats.multicast = 0;
5627	dev->stats.collisions = 0;
5628	dev->stats.rx_length_errors = 0;
5629	dev->stats.rx_crc_errors = 0;
5630	dev->stats.rx_frame_errors = 0;
5631	dev->stats.tx_window_errors = 0;
5632
5633	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5634		mib = &hw->port_mib[p];
5635
5636		dev->stats.multicast += (unsigned long)
5637			mib->counter[MIB_COUNTER_RX_MULTICAST];
5638
5639		dev->stats.collisions += (unsigned long)
5640			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5641
5642		dev->stats.rx_length_errors += (unsigned long)(
5643			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5644			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5645			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5646			mib->counter[MIB_COUNTER_RX_JABBER]);
5647		dev->stats.rx_crc_errors += (unsigned long)
5648			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5649		dev->stats.rx_frame_errors += (unsigned long)(
5650			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5651			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5652
5653		dev->stats.tx_window_errors += (unsigned long)
5654			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5655	}
5656
5657	return &dev->stats;
5658}
5659
5660/**
5661 * netdev_set_mac_address - set network device MAC address
5662 * @dev:	Network device.
5663 * @addr:	Buffer of MAC address.
5664 *
5665 * This function is used to set the MAC address of the network device.
5666 *
5667 * Return 0 to indicate success.
5668 */
5669static int netdev_set_mac_address(struct net_device *dev, void *addr)
5670{
5671	struct dev_priv *priv = netdev_priv(dev);
5672	struct dev_info *hw_priv = priv->adapter;
5673	struct ksz_hw *hw = &hw_priv->hw;
5674	struct sockaddr *mac = addr;
5675	uint interrupt;
5676
5677	if (priv->port.first_port > 0)
5678		hw_del_addr(hw, dev->dev_addr);
5679	else {
5680		hw->mac_override = 1;
5681		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5682	}
5683
5684	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5685
5686	interrupt = hw_block_intr(hw);
5687
5688	if (priv->port.first_port > 0)
5689		hw_add_addr(hw, dev->dev_addr);
5690	else
5691		hw_set_addr(hw);
5692	hw_restore_intr(hw, interrupt);
5693
5694	return 0;
5695}
5696
5697static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5698	struct ksz_hw *hw, int promiscuous)
5699{
5700	if (promiscuous != priv->promiscuous) {
5701		u8 prev_state = hw->promiscuous;
5702
5703		if (promiscuous)
5704			++hw->promiscuous;
5705		else
5706			--hw->promiscuous;
5707		priv->promiscuous = promiscuous;
5708
5709		/* Turn on/off promiscuous mode. */
5710		if (hw->promiscuous <= 1 && prev_state <= 1)
5711			hw_set_promiscuous(hw, hw->promiscuous);
5712
5713		/*
5714		 * Port is not in promiscuous mode, meaning it is released
5715		 * from the bridge.
5716		 */
5717		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5718		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5719			struct ksz_switch *sw = hw->ksz_switch;
5720			int port = priv->port.first_port;
5721
5722			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5723			port = 1 << port;
5724			if (sw->member & port) {
5725				sw->member &= ~port;
5726				bridge_change(hw);
5727			}
5728		}
5729	}
5730}
5731
5732static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5733	int multicast)
5734{
5735	if (multicast != priv->multicast) {
5736		u8 all_multi = hw->all_multi;
5737
5738		if (multicast)
5739			++hw->all_multi;
5740		else
5741			--hw->all_multi;
5742		priv->multicast = multicast;
5743
5744		/* Turn on/off all multicast mode. */
5745		if (hw->all_multi <= 1 && all_multi <= 1)
5746			hw_set_multicast(hw, hw->all_multi);
5747	}
5748}
5749
5750/**
5751 * netdev_set_rx_mode
5752 * @dev:	Network device.
5753 *
5754 * This routine is used to set multicast addresses or put the network device
5755 * into promiscuous mode.
5756 */
5757static void netdev_set_rx_mode(struct net_device *dev)
5758{
5759	struct dev_priv *priv = netdev_priv(dev);
5760	struct dev_info *hw_priv = priv->adapter;
5761	struct ksz_hw *hw = &hw_priv->hw;
5762	struct netdev_hw_addr *ha;
5763	int multicast = (dev->flags & IFF_ALLMULTI);
5764
5765	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5766
5767	if (hw_priv->hw.dev_count > 1)
5768		multicast |= (dev->flags & IFF_MULTICAST);
5769	dev_set_multicast(priv, hw, multicast);
5770
5771	/* Cannot use different hashes in multiple device interfaces mode. */
5772	if (hw_priv->hw.dev_count > 1)
5773		return;
5774
5775	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5776		int i = 0;
5777
5778		/* List too big to support so turn on all multicast mode. */
5779		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5780			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5781				hw->multi_list_size = MAX_MULTICAST_LIST;
5782				++hw->all_multi;
5783				hw_set_multicast(hw, hw->all_multi);
5784			}
5785			return;
5786		}
5787
5788		netdev_for_each_mc_addr(ha, dev) {
5789			if (i >= MAX_MULTICAST_LIST)
5790				break;
5791			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5792		}
5793		hw->multi_list_size = (u8) i;
5794		hw_set_grp_addr(hw);
5795	} else {
5796		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5797			--hw->all_multi;
5798			hw_set_multicast(hw, hw->all_multi);
5799		}
5800		hw->multi_list_size = 0;
5801		hw_clr_multicast(hw);
5802	}
5803}
5804
5805static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5806{
5807	struct dev_priv *priv = netdev_priv(dev);
5808	struct dev_info *hw_priv = priv->adapter;
5809	struct ksz_hw *hw = &hw_priv->hw;
5810	int hw_mtu;
5811
5812	if (netif_running(dev))
5813		return -EBUSY;
5814
5815	/* Cannot use different MTU in multiple device interfaces mode. */
5816	if (hw->dev_count > 1)
5817		if (dev != hw_priv->dev)
5818			return 0;
5819	if (new_mtu < 60)
5820		return -EINVAL;
5821
5822	if (dev->mtu != new_mtu) {
5823		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5824		if (hw_mtu > MAX_RX_BUF_SIZE)
5825			return -EINVAL;
5826		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5827			hw->features |= RX_HUGE_FRAME;
5828			hw_mtu = MAX_RX_BUF_SIZE;
5829		} else {
5830			hw->features &= ~RX_HUGE_FRAME;
5831			hw_mtu = REGULAR_RX_BUF_SIZE;
5832		}
5833		hw_mtu = (hw_mtu + 3) & ~3;
5834		hw_priv->mtu = hw_mtu;
5835		dev->mtu = new_mtu;
5836	}
 
 
 
 
5837	return 0;
5838}
5839
5840/**
5841 * netdev_ioctl - I/O control processing
5842 * @dev:	Network device.
5843 * @ifr:	Interface request structure.
5844 * @cmd:	I/O control code.
5845 *
5846 * This function is used to process I/O control calls.
5847 *
5848 * Return 0 to indicate success.
5849 */
5850static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5851{
5852	struct dev_priv *priv = netdev_priv(dev);
5853	struct dev_info *hw_priv = priv->adapter;
5854	struct ksz_hw *hw = &hw_priv->hw;
5855	struct ksz_port *port = &priv->port;
5856	int result = 0;
5857	struct mii_ioctl_data *data = if_mii(ifr);
5858
5859	if (down_interruptible(&priv->proc_sem))
5860		return -ERESTARTSYS;
5861
5862	switch (cmd) {
5863	/* Get address of MII PHY in use. */
5864	case SIOCGMIIPHY:
5865		data->phy_id = priv->id;
5866
5867		/* Fallthrough... */
5868
5869	/* Read MII PHY register. */
5870	case SIOCGMIIREG:
5871		if (data->phy_id != priv->id || data->reg_num >= 6)
5872			result = -EIO;
5873		else
5874			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5875				&data->val_out);
5876		break;
5877
5878	/* Write MII PHY register. */
5879	case SIOCSMIIREG:
5880		if (!capable(CAP_NET_ADMIN))
5881			result = -EPERM;
5882		else if (data->phy_id != priv->id || data->reg_num >= 6)
5883			result = -EIO;
5884		else
5885			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5886				data->val_in);
5887		break;
5888
5889	default:
5890		result = -EOPNOTSUPP;
5891	}
5892
5893	up(&priv->proc_sem);
5894
5895	return result;
5896}
5897
5898/*
5899 * MII support
5900 */
5901
5902/**
5903 * mdio_read - read PHY register
5904 * @dev:	Network device.
5905 * @phy_id:	The PHY id.
5906 * @reg_num:	The register number.
5907 *
5908 * This function returns the PHY register value.
5909 *
5910 * Return the register value.
5911 */
5912static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct ksz_port *port = &priv->port;
5916	struct ksz_hw *hw = port->hw;
5917	u16 val_out;
5918
5919	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5920	return val_out;
5921}
5922
5923/**
5924 * mdio_write - set PHY register
5925 * @dev:	Network device.
5926 * @phy_id:	The PHY id.
5927 * @reg_num:	The register number.
5928 * @val:	The register value.
5929 *
5930 * This procedure sets the PHY register value.
5931 */
5932static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5933{
5934	struct dev_priv *priv = netdev_priv(dev);
5935	struct ksz_port *port = &priv->port;
5936	struct ksz_hw *hw = port->hw;
5937	int i;
5938	int pi;
5939
5940	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5941		hw_w_phy(hw, pi, reg_num << 1, val);
5942}
5943
5944/*
5945 * ethtool support
5946 */
5947
5948#define EEPROM_SIZE			0x40
5949
5950static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5951
5952#define ADVERTISED_ALL			\
5953	(ADVERTISED_10baseT_Half |	\
5954	ADVERTISED_10baseT_Full |	\
5955	ADVERTISED_100baseT_Half |	\
5956	ADVERTISED_100baseT_Full)
5957
5958/* These functions use the MII functions in mii.c. */
5959
5960/**
5961 * netdev_get_settings - get network device settings
5962 * @dev:	Network device.
5963 * @cmd:	Ethtool command.
5964 *
5965 * This function queries the PHY and returns its state in the ethtool command.
5966 *
5967 * Return 0 if successful; otherwise an error code.
5968 */
5969static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5970{
5971	struct dev_priv *priv = netdev_priv(dev);
5972	struct dev_info *hw_priv = priv->adapter;
5973
5974	mutex_lock(&hw_priv->lock);
5975	mii_ethtool_gset(&priv->mii_if, cmd);
5976	cmd->advertising |= SUPPORTED_TP;
5977	mutex_unlock(&hw_priv->lock);
5978
5979	/* Save advertised settings for workaround in next function. */
5980	priv->advertising = cmd->advertising;
 
 
5981	return 0;
5982}
5983
5984/**
5985 * netdev_set_settings - set network device settings
5986 * @dev:	Network device.
5987 * @cmd:	Ethtool command.
5988 *
5989 * This function sets the PHY according to the ethtool command.
5990 *
5991 * Return 0 if successful; otherwise an error code.
5992 */
5993static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5994{
5995	struct dev_priv *priv = netdev_priv(dev);
5996	struct dev_info *hw_priv = priv->adapter;
5997	struct ksz_port *port = &priv->port;
5998	u32 speed = ethtool_cmd_speed(cmd);
 
 
5999	int rc;
6000
 
 
 
6001	/*
6002	 * ethtool utility does not change advertised setting if auto
6003	 * negotiation is not specified explicitly.
6004	 */
6005	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6006		cmd->advertising |= ADVERTISED_ALL;
6007		if (10 == speed)
6008			cmd->advertising &=
6009				~(ADVERTISED_100baseT_Full |
6010				ADVERTISED_100baseT_Half);
6011		else if (100 == speed)
6012			cmd->advertising &=
6013				~(ADVERTISED_10baseT_Full |
6014				ADVERTISED_10baseT_Half);
6015		if (0 == cmd->duplex)
6016			cmd->advertising &=
6017				~(ADVERTISED_100baseT_Full |
6018				ADVERTISED_10baseT_Full);
6019		else if (1 == cmd->duplex)
6020			cmd->advertising &=
6021				~(ADVERTISED_100baseT_Half |
6022				ADVERTISED_10baseT_Half);
6023	}
6024	mutex_lock(&hw_priv->lock);
6025	if (cmd->autoneg &&
6026			(cmd->advertising & ADVERTISED_ALL) ==
6027			ADVERTISED_ALL) {
6028		port->duplex = 0;
6029		port->speed = 0;
6030		port->force_link = 0;
6031	} else {
6032		port->duplex = cmd->duplex + 1;
6033		if (1000 != speed)
6034			port->speed = speed;
6035		if (cmd->autoneg)
6036			port->force_link = 0;
6037		else
6038			port->force_link = 1;
6039	}
6040	rc = mii_ethtool_sset(&priv->mii_if, cmd);
 
 
 
 
 
 
6041	mutex_unlock(&hw_priv->lock);
6042	return rc;
6043}
6044
6045/**
6046 * netdev_nway_reset - restart auto-negotiation
6047 * @dev:	Network device.
6048 *
6049 * This function restarts the PHY for auto-negotiation.
6050 *
6051 * Return 0 if successful; otherwise an error code.
6052 */
6053static int netdev_nway_reset(struct net_device *dev)
6054{
6055	struct dev_priv *priv = netdev_priv(dev);
6056	struct dev_info *hw_priv = priv->adapter;
6057	int rc;
6058
6059	mutex_lock(&hw_priv->lock);
6060	rc = mii_nway_restart(&priv->mii_if);
6061	mutex_unlock(&hw_priv->lock);
6062	return rc;
6063}
6064
6065/**
6066 * netdev_get_link - get network device link status
6067 * @dev:	Network device.
6068 *
6069 * This function gets the link status from the PHY.
6070 *
6071 * Return true if PHY is linked and false otherwise.
6072 */
6073static u32 netdev_get_link(struct net_device *dev)
6074{
6075	struct dev_priv *priv = netdev_priv(dev);
6076	int rc;
6077
6078	rc = mii_link_ok(&priv->mii_if);
6079	return rc;
6080}
6081
6082/**
6083 * netdev_get_drvinfo - get network driver information
6084 * @dev:	Network device.
6085 * @info:	Ethtool driver info data structure.
6086 *
6087 * This procedure returns the driver information.
6088 */
6089static void netdev_get_drvinfo(struct net_device *dev,
6090	struct ethtool_drvinfo *info)
6091{
6092	struct dev_priv *priv = netdev_priv(dev);
6093	struct dev_info *hw_priv = priv->adapter;
6094
6095	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6096	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6097	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6098		sizeof(info->bus_info));
6099}
6100
6101/**
6102 * netdev_get_regs_len - get length of register dump
6103 * @dev:	Network device.
6104 *
6105 * This function returns the length of the register dump.
6106 *
6107 * Return length of the register dump.
6108 */
6109static struct hw_regs {
6110	int start;
6111	int end;
6112} hw_regs_range[] = {
6113	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6114	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6115	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6116	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6117	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6118	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6119	{ 0, 0 }
6120};
6121
6122static int netdev_get_regs_len(struct net_device *dev)
6123{
6124	struct hw_regs *range = hw_regs_range;
6125	int regs_len = 0x10 * sizeof(u32);
6126
6127	while (range->end > range->start) {
6128		regs_len += (range->end - range->start + 3) / 4 * 4;
6129		range++;
6130	}
6131	return regs_len;
6132}
6133
6134/**
6135 * netdev_get_regs - get register dump
6136 * @dev:	Network device.
6137 * @regs:	Ethtool registers data structure.
6138 * @ptr:	Buffer to store the register values.
6139 *
6140 * This procedure dumps the register values in the provided buffer.
6141 */
6142static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6143	void *ptr)
6144{
6145	struct dev_priv *priv = netdev_priv(dev);
6146	struct dev_info *hw_priv = priv->adapter;
6147	struct ksz_hw *hw = &hw_priv->hw;
6148	int *buf = (int *) ptr;
6149	struct hw_regs *range = hw_regs_range;
6150	int len;
6151
6152	mutex_lock(&hw_priv->lock);
6153	regs->version = 0;
6154	for (len = 0; len < 0x40; len += 4) {
6155		pci_read_config_dword(hw_priv->pdev, len, buf);
6156		buf++;
6157	}
6158	while (range->end > range->start) {
6159		for (len = range->start; len < range->end; len += 4) {
6160			*buf = readl(hw->io + len);
6161			buf++;
6162		}
6163		range++;
6164	}
6165	mutex_unlock(&hw_priv->lock);
6166}
6167
6168#define WOL_SUPPORT			\
6169	(WAKE_PHY | WAKE_MAGIC |	\
6170	WAKE_UCAST | WAKE_MCAST |	\
6171	WAKE_BCAST | WAKE_ARP)
6172
6173/**
6174 * netdev_get_wol - get Wake-on-LAN support
6175 * @dev:	Network device.
6176 * @wol:	Ethtool Wake-on-LAN data structure.
6177 *
6178 * This procedure returns Wake-on-LAN support.
6179 */
6180static void netdev_get_wol(struct net_device *dev,
6181	struct ethtool_wolinfo *wol)
6182{
6183	struct dev_priv *priv = netdev_priv(dev);
6184	struct dev_info *hw_priv = priv->adapter;
6185
6186	wol->supported = hw_priv->wol_support;
6187	wol->wolopts = hw_priv->wol_enable;
6188	memset(&wol->sopass, 0, sizeof(wol->sopass));
6189}
6190
6191/**
6192 * netdev_set_wol - set Wake-on-LAN support
6193 * @dev:	Network device.
6194 * @wol:	Ethtool Wake-on-LAN data structure.
6195 *
6196 * This function sets Wake-on-LAN support.
6197 *
6198 * Return 0 if successful; otherwise an error code.
6199 */
6200static int netdev_set_wol(struct net_device *dev,
6201	struct ethtool_wolinfo *wol)
6202{
6203	struct dev_priv *priv = netdev_priv(dev);
6204	struct dev_info *hw_priv = priv->adapter;
6205
6206	/* Need to find a way to retrieve the device IP address. */
6207	static const u8 net_addr[] = { 192, 168, 1, 1 };
6208
6209	if (wol->wolopts & ~hw_priv->wol_support)
6210		return -EINVAL;
6211
6212	hw_priv->wol_enable = wol->wolopts;
6213
6214	/* Link wakeup cannot really be disabled. */
6215	if (wol->wolopts)
6216		hw_priv->wol_enable |= WAKE_PHY;
6217	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6218	return 0;
6219}
6220
6221/**
6222 * netdev_get_msglevel - get debug message level
6223 * @dev:	Network device.
6224 *
6225 * This function returns current debug message level.
6226 *
6227 * Return current debug message flags.
6228 */
6229static u32 netdev_get_msglevel(struct net_device *dev)
6230{
6231	struct dev_priv *priv = netdev_priv(dev);
6232
6233	return priv->msg_enable;
6234}
6235
6236/**
6237 * netdev_set_msglevel - set debug message level
6238 * @dev:	Network device.
6239 * @value:	Debug message flags.
6240 *
6241 * This procedure sets debug message level.
6242 */
6243static void netdev_set_msglevel(struct net_device *dev, u32 value)
6244{
6245	struct dev_priv *priv = netdev_priv(dev);
6246
6247	priv->msg_enable = value;
6248}
6249
6250/**
6251 * netdev_get_eeprom_len - get EEPROM length
6252 * @dev:	Network device.
6253 *
6254 * This function returns the length of the EEPROM.
6255 *
6256 * Return length of the EEPROM.
6257 */
6258static int netdev_get_eeprom_len(struct net_device *dev)
6259{
6260	return EEPROM_SIZE * 2;
6261}
6262
6263/**
6264 * netdev_get_eeprom - get EEPROM data
6265 * @dev:	Network device.
6266 * @eeprom:	Ethtool EEPROM data structure.
6267 * @data:	Buffer to store the EEPROM data.
6268 *
6269 * This function dumps the EEPROM data in the provided buffer.
6270 *
6271 * Return 0 if successful; otherwise an error code.
6272 */
6273#define EEPROM_MAGIC			0x10A18842
6274
6275static int netdev_get_eeprom(struct net_device *dev,
6276	struct ethtool_eeprom *eeprom, u8 *data)
6277{
6278	struct dev_priv *priv = netdev_priv(dev);
6279	struct dev_info *hw_priv = priv->adapter;
6280	u8 *eeprom_byte = (u8 *) eeprom_data;
6281	int i;
6282	int len;
6283
6284	len = (eeprom->offset + eeprom->len + 1) / 2;
6285	for (i = eeprom->offset / 2; i < len; i++)
6286		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6287	eeprom->magic = EEPROM_MAGIC;
6288	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6289
6290	return 0;
6291}
6292
6293/**
6294 * netdev_set_eeprom - write EEPROM data
6295 * @dev:	Network device.
6296 * @eeprom:	Ethtool EEPROM data structure.
6297 * @data:	Data buffer.
6298 *
6299 * This function modifies the EEPROM data one byte at a time.
6300 *
6301 * Return 0 if successful; otherwise an error code.
6302 */
6303static int netdev_set_eeprom(struct net_device *dev,
6304	struct ethtool_eeprom *eeprom, u8 *data)
6305{
6306	struct dev_priv *priv = netdev_priv(dev);
6307	struct dev_info *hw_priv = priv->adapter;
6308	u16 eeprom_word[EEPROM_SIZE];
6309	u8 *eeprom_byte = (u8 *) eeprom_word;
6310	int i;
6311	int len;
6312
6313	if (eeprom->magic != EEPROM_MAGIC)
6314		return -EINVAL;
6315
6316	len = (eeprom->offset + eeprom->len + 1) / 2;
6317	for (i = eeprom->offset / 2; i < len; i++)
6318		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6319	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6320	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6321	for (i = 0; i < EEPROM_SIZE; i++)
6322		if (eeprom_word[i] != eeprom_data[i]) {
6323			eeprom_data[i] = eeprom_word[i];
6324			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6325	}
6326
6327	return 0;
6328}
6329
6330/**
6331 * netdev_get_pauseparam - get flow control parameters
6332 * @dev:	Network device.
6333 * @pause:	Ethtool PAUSE settings data structure.
6334 *
6335 * This procedure returns the PAUSE control flow settings.
6336 */
6337static void netdev_get_pauseparam(struct net_device *dev,
6338	struct ethtool_pauseparam *pause)
6339{
6340	struct dev_priv *priv = netdev_priv(dev);
6341	struct dev_info *hw_priv = priv->adapter;
6342	struct ksz_hw *hw = &hw_priv->hw;
6343
6344	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6345	if (!hw->ksz_switch) {
6346		pause->rx_pause =
6347			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6348		pause->tx_pause =
6349			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6350	} else {
6351		pause->rx_pause =
6352			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6354		pause->tx_pause =
6355			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6357	}
6358}
6359
6360/**
6361 * netdev_set_pauseparam - set flow control parameters
6362 * @dev:	Network device.
6363 * @pause:	Ethtool PAUSE settings data structure.
6364 *
6365 * This function sets the PAUSE control flow settings.
6366 * Not implemented yet.
6367 *
6368 * Return 0 if successful; otherwise an error code.
6369 */
6370static int netdev_set_pauseparam(struct net_device *dev,
6371	struct ethtool_pauseparam *pause)
6372{
6373	struct dev_priv *priv = netdev_priv(dev);
6374	struct dev_info *hw_priv = priv->adapter;
6375	struct ksz_hw *hw = &hw_priv->hw;
6376	struct ksz_port *port = &priv->port;
6377
6378	mutex_lock(&hw_priv->lock);
6379	if (pause->autoneg) {
6380		if (!pause->rx_pause && !pause->tx_pause)
6381			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6382		else
6383			port->flow_ctrl = PHY_FLOW_CTRL;
6384		hw->overrides &= ~PAUSE_FLOW_CTRL;
6385		port->force_link = 0;
6386		if (hw->ksz_switch) {
6387			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388				SWITCH_RX_FLOW_CTRL, 1);
6389			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390				SWITCH_TX_FLOW_CTRL, 1);
6391		}
6392		port_set_link_speed(port);
6393	} else {
6394		hw->overrides |= PAUSE_FLOW_CTRL;
6395		if (hw->ksz_switch) {
6396			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6397				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6398			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6399				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6400		} else
6401			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6402	}
6403	mutex_unlock(&hw_priv->lock);
6404
6405	return 0;
6406}
6407
6408/**
6409 * netdev_get_ringparam - get tx/rx ring parameters
6410 * @dev:	Network device.
6411 * @pause:	Ethtool RING settings data structure.
6412 *
6413 * This procedure returns the TX/RX ring settings.
6414 */
6415static void netdev_get_ringparam(struct net_device *dev,
6416	struct ethtool_ringparam *ring)
6417{
6418	struct dev_priv *priv = netdev_priv(dev);
6419	struct dev_info *hw_priv = priv->adapter;
6420	struct ksz_hw *hw = &hw_priv->hw;
6421
6422	ring->tx_max_pending = (1 << 9);
6423	ring->tx_pending = hw->tx_desc_info.alloc;
6424	ring->rx_max_pending = (1 << 9);
6425	ring->rx_pending = hw->rx_desc_info.alloc;
6426}
6427
6428#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6429
6430static struct {
6431	char string[ETH_GSTRING_LEN];
6432} ethtool_stats_keys[STATS_LEN] = {
6433	{ "rx_lo_priority_octets" },
6434	{ "rx_hi_priority_octets" },
6435	{ "rx_undersize_packets" },
6436	{ "rx_fragments" },
6437	{ "rx_oversize_packets" },
6438	{ "rx_jabbers" },
6439	{ "rx_symbol_errors" },
6440	{ "rx_crc_errors" },
6441	{ "rx_align_errors" },
6442	{ "rx_mac_ctrl_packets" },
6443	{ "rx_pause_packets" },
6444	{ "rx_bcast_packets" },
6445	{ "rx_mcast_packets" },
6446	{ "rx_ucast_packets" },
6447	{ "rx_64_or_less_octet_packets" },
6448	{ "rx_65_to_127_octet_packets" },
6449	{ "rx_128_to_255_octet_packets" },
6450	{ "rx_256_to_511_octet_packets" },
6451	{ "rx_512_to_1023_octet_packets" },
6452	{ "rx_1024_to_1522_octet_packets" },
6453
6454	{ "tx_lo_priority_octets" },
6455	{ "tx_hi_priority_octets" },
6456	{ "tx_late_collisions" },
6457	{ "tx_pause_packets" },
6458	{ "tx_bcast_packets" },
6459	{ "tx_mcast_packets" },
6460	{ "tx_ucast_packets" },
6461	{ "tx_deferred" },
6462	{ "tx_total_collisions" },
6463	{ "tx_excessive_collisions" },
6464	{ "tx_single_collisions" },
6465	{ "tx_mult_collisions" },
6466
6467	{ "rx_discards" },
6468	{ "tx_discards" },
6469};
6470
6471/**
6472 * netdev_get_strings - get statistics identity strings
6473 * @dev:	Network device.
6474 * @stringset:	String set identifier.
6475 * @buf:	Buffer to store the strings.
6476 *
6477 * This procedure returns the strings used to identify the statistics.
6478 */
6479static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6480{
6481	struct dev_priv *priv = netdev_priv(dev);
6482	struct dev_info *hw_priv = priv->adapter;
6483	struct ksz_hw *hw = &hw_priv->hw;
6484
6485	if (ETH_SS_STATS == stringset)
6486		memcpy(buf, &ethtool_stats_keys,
6487			ETH_GSTRING_LEN * hw->mib_cnt);
6488}
6489
6490/**
6491 * netdev_get_sset_count - get statistics size
6492 * @dev:	Network device.
6493 * @sset:	The statistics set number.
6494 *
6495 * This function returns the size of the statistics to be reported.
6496 *
6497 * Return size of the statistics to be reported.
6498 */
6499static int netdev_get_sset_count(struct net_device *dev, int sset)
6500{
6501	struct dev_priv *priv = netdev_priv(dev);
6502	struct dev_info *hw_priv = priv->adapter;
6503	struct ksz_hw *hw = &hw_priv->hw;
6504
6505	switch (sset) {
6506	case ETH_SS_STATS:
6507		return hw->mib_cnt;
6508	default:
6509		return -EOPNOTSUPP;
6510	}
6511}
6512
6513/**
6514 * netdev_get_ethtool_stats - get network device statistics
6515 * @dev:	Network device.
6516 * @stats:	Ethtool statistics data structure.
6517 * @data:	Buffer to store the statistics.
6518 *
6519 * This procedure returns the statistics.
6520 */
6521static void netdev_get_ethtool_stats(struct net_device *dev,
6522	struct ethtool_stats *stats, u64 *data)
6523{
6524	struct dev_priv *priv = netdev_priv(dev);
6525	struct dev_info *hw_priv = priv->adapter;
6526	struct ksz_hw *hw = &hw_priv->hw;
6527	struct ksz_port *port = &priv->port;
6528	int n_stats = stats->n_stats;
6529	int i;
6530	int n;
6531	int p;
6532	int rc;
6533	u64 counter[TOTAL_PORT_COUNTER_NUM];
6534
6535	mutex_lock(&hw_priv->lock);
6536	n = SWITCH_PORT_NUM;
6537	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6538		if (media_connected == hw->port_mib[p].state) {
6539			hw_priv->counter[p].read = 1;
6540
6541			/* Remember first port that requests read. */
6542			if (n == SWITCH_PORT_NUM)
6543				n = p;
6544		}
6545	}
6546	mutex_unlock(&hw_priv->lock);
6547
6548	if (n < SWITCH_PORT_NUM)
6549		schedule_work(&hw_priv->mib_read);
6550
6551	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6552		p = n;
6553		rc = wait_event_interruptible_timeout(
6554			hw_priv->counter[p].counter,
6555			2 == hw_priv->counter[p].read,
6556			HZ * 1);
6557	} else
6558		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6559			if (0 == i) {
6560				rc = wait_event_interruptible_timeout(
6561					hw_priv->counter[p].counter,
6562					2 == hw_priv->counter[p].read,
6563					HZ * 2);
6564			} else if (hw->port_mib[p].cnt_ptr) {
6565				rc = wait_event_interruptible_timeout(
6566					hw_priv->counter[p].counter,
6567					2 == hw_priv->counter[p].read,
6568					HZ * 1);
6569			}
6570		}
6571
6572	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6573	n = hw->mib_cnt;
6574	if (n > n_stats)
6575		n = n_stats;
6576	n_stats -= n;
6577	for (i = 0; i < n; i++)
6578		*data++ = counter[i];
6579}
6580
6581/**
6582 * netdev_set_features - set receive checksum support
6583 * @dev:	Network device.
6584 * @features:	New device features (offloads).
6585 *
6586 * This function sets receive checksum support setting.
6587 *
6588 * Return 0 if successful; otherwise an error code.
6589 */
6590static int netdev_set_features(struct net_device *dev,
6591	netdev_features_t features)
6592{
6593	struct dev_priv *priv = netdev_priv(dev);
6594	struct dev_info *hw_priv = priv->adapter;
6595	struct ksz_hw *hw = &hw_priv->hw;
6596
6597	mutex_lock(&hw_priv->lock);
6598
6599	/* see note in hw_setup() */
6600	if (features & NETIF_F_RXCSUM)
6601		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6602	else
6603		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6604
6605	if (hw->enabled)
6606		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6607
6608	mutex_unlock(&hw_priv->lock);
6609
6610	return 0;
6611}
6612
6613static const struct ethtool_ops netdev_ethtool_ops = {
6614	.get_settings		= netdev_get_settings,
6615	.set_settings		= netdev_set_settings,
6616	.nway_reset		= netdev_nway_reset,
6617	.get_link		= netdev_get_link,
6618	.get_drvinfo		= netdev_get_drvinfo,
6619	.get_regs_len		= netdev_get_regs_len,
6620	.get_regs		= netdev_get_regs,
6621	.get_wol		= netdev_get_wol,
6622	.set_wol		= netdev_set_wol,
6623	.get_msglevel		= netdev_get_msglevel,
6624	.set_msglevel		= netdev_set_msglevel,
6625	.get_eeprom_len		= netdev_get_eeprom_len,
6626	.get_eeprom		= netdev_get_eeprom,
6627	.set_eeprom		= netdev_set_eeprom,
6628	.get_pauseparam		= netdev_get_pauseparam,
6629	.set_pauseparam		= netdev_set_pauseparam,
6630	.get_ringparam		= netdev_get_ringparam,
6631	.get_strings		= netdev_get_strings,
6632	.get_sset_count		= netdev_get_sset_count,
6633	.get_ethtool_stats	= netdev_get_ethtool_stats,
 
 
6634};
6635
6636/*
6637 * Hardware monitoring
6638 */
6639
6640static void update_link(struct net_device *dev, struct dev_priv *priv,
6641	struct ksz_port *port)
6642{
6643	if (priv->media_state != port->linked->state) {
6644		priv->media_state = port->linked->state;
6645		if (netif_running(dev))
6646			set_media_state(dev, media_connected);
6647	}
6648}
6649
6650static void mib_read_work(struct work_struct *work)
6651{
6652	struct dev_info *hw_priv =
6653		container_of(work, struct dev_info, mib_read);
6654	struct ksz_hw *hw = &hw_priv->hw;
6655	struct ksz_port_mib *mib;
6656	int i;
6657
6658	next_jiffies = jiffies;
6659	for (i = 0; i < hw->mib_port_cnt; i++) {
6660		mib = &hw->port_mib[i];
6661
6662		/* Reading MIB counters or requested to read. */
6663		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6664
6665			/* Need to process receive interrupt. */
6666			if (port_r_cnt(hw, i))
6667				break;
6668			hw_priv->counter[i].read = 0;
6669
6670			/* Finish reading counters. */
6671			if (0 == mib->cnt_ptr) {
6672				hw_priv->counter[i].read = 2;
6673				wake_up_interruptible(
6674					&hw_priv->counter[i].counter);
6675			}
6676		} else if (jiffies >= hw_priv->counter[i].time) {
6677			/* Only read MIB counters when the port is connected. */
6678			if (media_connected == mib->state)
6679				hw_priv->counter[i].read = 1;
6680			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6681			hw_priv->counter[i].time = next_jiffies;
6682
6683		/* Port is just disconnected. */
6684		} else if (mib->link_down) {
6685			mib->link_down = 0;
6686
6687			/* Read counters one last time after link is lost. */
6688			hw_priv->counter[i].read = 1;
6689		}
6690	}
6691}
6692
6693static void mib_monitor(unsigned long ptr)
6694{
6695	struct dev_info *hw_priv = (struct dev_info *) ptr;
6696
6697	mib_read_work(&hw_priv->mib_read);
6698
6699	/* This is used to verify Wake-on-LAN is working. */
6700	if (hw_priv->pme_wait) {
6701		if (hw_priv->pme_wait <= jiffies) {
6702			hw_clr_wol_pme_status(&hw_priv->hw);
6703			hw_priv->pme_wait = 0;
6704		}
6705	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6706
6707		/* PME is asserted.  Wait 2 seconds to clear it. */
6708		hw_priv->pme_wait = jiffies + HZ * 2;
6709	}
6710
6711	ksz_update_timer(&hw_priv->mib_timer_info);
6712}
6713
6714/**
6715 * dev_monitor - periodic monitoring
6716 * @ptr:	Network device pointer.
6717 *
6718 * This routine is run in a kernel timer to monitor the network device.
6719 */
6720static void dev_monitor(unsigned long ptr)
6721{
6722	struct net_device *dev = (struct net_device *) ptr;
6723	struct dev_priv *priv = netdev_priv(dev);
6724	struct dev_info *hw_priv = priv->adapter;
6725	struct ksz_hw *hw = &hw_priv->hw;
6726	struct ksz_port *port = &priv->port;
6727
6728	if (!(hw->features & LINK_INT_WORKING))
6729		port_get_link_speed(port);
6730	update_link(dev, priv, port);
6731
6732	ksz_update_timer(&priv->monitor_timer_info);
6733}
6734
6735/*
6736 * Linux network device interface functions
6737 */
6738
6739/* Driver exported variables */
6740
6741static int msg_enable;
6742
6743static char *macaddr = ":";
6744static char *mac1addr = ":";
6745
6746/*
6747 * This enables multiple network device mode for KSZ8842, which contains a
6748 * switch with two physical ports.  Some users like to take control of the
6749 * ports for running Spanning Tree Protocol.  The driver will create an
6750 * additional eth? device for the other port.
6751 *
6752 * Some limitations are the network devices cannot have different MTU and
6753 * multicast hash tables.
6754 */
6755static int multi_dev;
6756
6757/*
6758 * As most users select multiple network device mode to use Spanning Tree
6759 * Protocol, this enables a feature in which most unicast and multicast packets
6760 * are forwarded inside the switch and not passed to the host.  Only packets
6761 * that need the host's attention are passed to it.  This prevents the host
6762 * wasting CPU time to examine each and every incoming packets and do the
6763 * forwarding itself.
6764 *
6765 * As the hack requires the private bridge header, the driver cannot compile
6766 * with just the kernel headers.
6767 *
6768 * Enabling STP support also turns on multiple network device mode.
6769 */
6770static int stp;
6771
6772/*
6773 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6774 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6775 * STP support is enabled.
6776 */
6777static int fast_aging;
6778
6779/**
6780 * netdev_init - initialize network device.
6781 * @dev:	Network device.
6782 *
6783 * This function initializes the network device.
6784 *
6785 * Return 0 if successful; otherwise an error code indicating failure.
6786 */
6787static int __init netdev_init(struct net_device *dev)
6788{
6789	struct dev_priv *priv = netdev_priv(dev);
6790
6791	/* 500 ms timeout */
6792	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6793		dev_monitor, dev);
6794
6795	/* 500 ms timeout */
6796	dev->watchdog_timeo = HZ / 2;
6797
6798	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6799
6800	/*
6801	 * Hardware does not really support IPv6 checksum generation, but
6802	 * driver actually runs faster with this on.
6803	 */
6804	dev->hw_features |= NETIF_F_IPV6_CSUM;
6805
6806	dev->features |= dev->hw_features;
6807
6808	sema_init(&priv->proc_sem, 1);
6809
6810	priv->mii_if.phy_id_mask = 0x1;
6811	priv->mii_if.reg_num_mask = 0x7;
6812	priv->mii_if.dev = dev;
6813	priv->mii_if.mdio_read = mdio_read;
6814	priv->mii_if.mdio_write = mdio_write;
6815	priv->mii_if.phy_id = priv->port.first_port + 1;
6816
6817	priv->msg_enable = netif_msg_init(msg_enable,
6818		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6819
6820	return 0;
6821}
6822
6823static const struct net_device_ops netdev_ops = {
6824	.ndo_init		= netdev_init,
6825	.ndo_open		= netdev_open,
6826	.ndo_stop		= netdev_close,
6827	.ndo_get_stats		= netdev_query_statistics,
6828	.ndo_start_xmit		= netdev_tx,
6829	.ndo_tx_timeout		= netdev_tx_timeout,
6830	.ndo_change_mtu		= netdev_change_mtu,
6831	.ndo_set_features	= netdev_set_features,
6832	.ndo_set_mac_address	= netdev_set_mac_address,
6833	.ndo_validate_addr	= eth_validate_addr,
6834	.ndo_do_ioctl		= netdev_ioctl,
6835	.ndo_set_rx_mode	= netdev_set_rx_mode,
6836#ifdef CONFIG_NET_POLL_CONTROLLER
6837	.ndo_poll_controller	= netdev_netpoll,
6838#endif
6839};
6840
6841static void netdev_free(struct net_device *dev)
6842{
6843	if (dev->watchdog_timeo)
6844		unregister_netdev(dev);
6845
6846	free_netdev(dev);
6847}
6848
6849struct platform_info {
6850	struct dev_info dev_info;
6851	struct net_device *netdev[SWITCH_PORT_NUM];
6852};
6853
6854static int net_device_present;
6855
6856static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6857{
6858	int i;
6859	int j;
6860	int got_num;
6861	int num;
6862
6863	i = j = num = got_num = 0;
6864	while (j < ETH_ALEN) {
6865		if (macaddr[i]) {
6866			int digit;
6867
6868			got_num = 1;
6869			digit = hex_to_bin(macaddr[i]);
6870			if (digit >= 0)
6871				num = num * 16 + digit;
6872			else if (':' == macaddr[i])
6873				got_num = 2;
6874			else
6875				break;
6876		} else if (got_num)
6877			got_num = 2;
6878		else
6879			break;
6880		if (2 == got_num) {
6881			if (MAIN_PORT == port) {
6882				hw_priv->hw.override_addr[j++] = (u8) num;
6883				hw_priv->hw.override_addr[5] +=
6884					hw_priv->hw.id;
6885			} else {
6886				hw_priv->hw.ksz_switch->other_addr[j++] =
6887					(u8) num;
6888				hw_priv->hw.ksz_switch->other_addr[5] +=
6889					hw_priv->hw.id;
6890			}
6891			num = got_num = 0;
6892		}
6893		i++;
6894	}
6895	if (ETH_ALEN == j) {
6896		if (MAIN_PORT == port)
6897			hw_priv->hw.mac_override = 1;
6898	}
6899}
6900
6901#define KS884X_DMA_MASK			(~0x0UL)
6902
6903static void read_other_addr(struct ksz_hw *hw)
6904{
6905	int i;
6906	u16 data[3];
6907	struct ksz_switch *sw = hw->ksz_switch;
6908
6909	for (i = 0; i < 3; i++)
6910		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6911	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6912		sw->other_addr[5] = (u8) data[0];
6913		sw->other_addr[4] = (u8)(data[0] >> 8);
6914		sw->other_addr[3] = (u8) data[1];
6915		sw->other_addr[2] = (u8)(data[1] >> 8);
6916		sw->other_addr[1] = (u8) data[2];
6917		sw->other_addr[0] = (u8)(data[2] >> 8);
6918	}
6919}
6920
6921#ifndef PCI_VENDOR_ID_MICREL_KS
6922#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6923#endif
6924
6925static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6926{
6927	struct net_device *dev;
6928	struct dev_priv *priv;
6929	struct dev_info *hw_priv;
6930	struct ksz_hw *hw;
6931	struct platform_info *info;
6932	struct ksz_port *port;
6933	unsigned long reg_base;
6934	unsigned long reg_len;
6935	int cnt;
6936	int i;
6937	int mib_port_count;
6938	int pi;
6939	int port_count;
6940	int result;
6941	char banner[sizeof(version)];
6942	struct ksz_switch *sw = NULL;
6943
6944	result = pci_enable_device(pdev);
6945	if (result)
6946		return result;
6947
6948	result = -ENODEV;
6949
6950	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6951			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6952		return result;
6953
6954	reg_base = pci_resource_start(pdev, 0);
6955	reg_len = pci_resource_len(pdev, 0);
6956	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6957		return result;
6958
6959	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6960		return result;
6961	pci_set_master(pdev);
6962
6963	result = -ENOMEM;
6964
6965	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6966	if (!info)
6967		goto pcidev_init_dev_err;
6968
6969	hw_priv = &info->dev_info;
6970	hw_priv->pdev = pdev;
6971
6972	hw = &hw_priv->hw;
6973
6974	hw->io = ioremap(reg_base, reg_len);
6975	if (!hw->io)
6976		goto pcidev_init_io_err;
6977
6978	cnt = hw_init(hw);
6979	if (!cnt) {
6980		if (msg_enable & NETIF_MSG_PROBE)
6981			pr_alert("chip not detected\n");
6982		result = -ENODEV;
6983		goto pcidev_init_alloc_err;
6984	}
6985
6986	snprintf(banner, sizeof(banner), "%s", version);
6987	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6988	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6989	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6990
6991	/* Assume device is KSZ8841. */
6992	hw->dev_count = 1;
6993	port_count = 1;
6994	mib_port_count = 1;
6995	hw->addr_list_size = 0;
6996	hw->mib_cnt = PORT_COUNTER_NUM;
6997	hw->mib_port_cnt = 1;
6998
6999	/* KSZ8842 has a switch with multiple ports. */
7000	if (2 == cnt) {
7001		if (fast_aging)
7002			hw->overrides |= FAST_AGING;
7003
7004		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7005
7006		/* Multiple network device interfaces are required. */
7007		if (multi_dev) {
7008			hw->dev_count = SWITCH_PORT_NUM;
7009			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7010		}
7011
7012		/* Single network device has multiple ports. */
7013		if (1 == hw->dev_count) {
7014			port_count = SWITCH_PORT_NUM;
7015			mib_port_count = SWITCH_PORT_NUM;
7016		}
7017		hw->mib_port_cnt = TOTAL_PORT_NUM;
7018		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7019		if (!hw->ksz_switch)
7020			goto pcidev_init_alloc_err;
7021
7022		sw = hw->ksz_switch;
7023	}
7024	for (i = 0; i < hw->mib_port_cnt; i++)
7025		hw->port_mib[i].mib_start = 0;
7026
7027	hw->parent = hw_priv;
7028
7029	/* Default MTU is 1500. */
7030	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7031
7032	if (ksz_alloc_mem(hw_priv))
7033		goto pcidev_init_mem_err;
7034
7035	hw_priv->hw.id = net_device_present;
7036
7037	spin_lock_init(&hw_priv->hwlock);
7038	mutex_init(&hw_priv->lock);
7039
7040	for (i = 0; i < TOTAL_PORT_NUM; i++)
7041		init_waitqueue_head(&hw_priv->counter[i].counter);
7042
7043	if (macaddr[0] != ':')
7044		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7045
7046	/* Read MAC address and initialize override address if not overrided. */
7047	hw_read_addr(hw);
7048
7049	/* Multiple device interfaces mode requires a second MAC address. */
7050	if (hw->dev_count > 1) {
7051		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7052		read_other_addr(hw);
7053		if (mac1addr[0] != ':')
7054			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7055	}
7056
7057	hw_setup(hw);
7058	if (hw->ksz_switch)
7059		sw_setup(hw);
7060	else {
7061		hw_priv->wol_support = WOL_SUPPORT;
7062		hw_priv->wol_enable = 0;
7063	}
7064
7065	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7066
7067	/* 500 ms timeout */
7068	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7069		mib_monitor, hw_priv);
7070
7071	for (i = 0; i < hw->dev_count; i++) {
7072		dev = alloc_etherdev(sizeof(struct dev_priv));
7073		if (!dev)
7074			goto pcidev_init_reg_err;
 
7075		info->netdev[i] = dev;
7076
7077		priv = netdev_priv(dev);
7078		priv->adapter = hw_priv;
7079		priv->id = net_device_present++;
7080
7081		port = &priv->port;
7082		port->port_cnt = port_count;
7083		port->mib_port_cnt = mib_port_count;
7084		port->first_port = i;
7085		port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087		port->hw = hw;
7088		port->linked = &hw->port_info[port->first_port];
7089
7090		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091			hw->port_info[pi].port_id = pi;
7092			hw->port_info[pi].pdev = dev;
7093			hw->port_info[pi].state = media_disconnected;
7094		}
7095
7096		dev->mem_start = (unsigned long) hw->io;
7097		dev->mem_end = dev->mem_start + reg_len - 1;
7098		dev->irq = pdev->irq;
7099		if (MAIN_PORT == i)
7100			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101			       ETH_ALEN);
7102		else {
7103			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7104			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7105				dev->dev_addr[5] += port->first_port;
7106		}
7107
7108		dev->netdev_ops = &netdev_ops;
7109		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
 
 
 
 
 
 
7110		if (register_netdev(dev))
7111			goto pcidev_init_reg_err;
7112		port_set_power_saving(port, true);
7113	}
7114
7115	pci_dev_get(hw_priv->pdev);
7116	pci_set_drvdata(pdev, info);
7117	return 0;
7118
7119pcidev_init_reg_err:
7120	for (i = 0; i < hw->dev_count; i++) {
7121		if (info->netdev[i]) {
7122			netdev_free(info->netdev[i]);
7123			info->netdev[i] = NULL;
7124		}
7125	}
7126
7127pcidev_init_mem_err:
7128	ksz_free_mem(hw_priv);
7129	kfree(hw->ksz_switch);
7130
7131pcidev_init_alloc_err:
7132	iounmap(hw->io);
7133
7134pcidev_init_io_err:
7135	kfree(info);
7136
7137pcidev_init_dev_err:
7138	release_mem_region(reg_base, reg_len);
7139
7140	return result;
7141}
7142
7143static void pcidev_exit(struct pci_dev *pdev)
7144{
7145	int i;
7146	struct platform_info *info = pci_get_drvdata(pdev);
7147	struct dev_info *hw_priv = &info->dev_info;
7148
7149	release_mem_region(pci_resource_start(pdev, 0),
7150		pci_resource_len(pdev, 0));
7151	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7152		if (info->netdev[i])
7153			netdev_free(info->netdev[i]);
7154	}
7155	if (hw_priv->hw.io)
7156		iounmap(hw_priv->hw.io);
7157	ksz_free_mem(hw_priv);
7158	kfree(hw_priv->hw.ksz_switch);
7159	pci_dev_put(hw_priv->pdev);
7160	kfree(info);
7161}
7162
7163#ifdef CONFIG_PM
7164static int pcidev_resume(struct pci_dev *pdev)
7165{
7166	int i;
7167	struct platform_info *info = pci_get_drvdata(pdev);
7168	struct dev_info *hw_priv = &info->dev_info;
7169	struct ksz_hw *hw = &hw_priv->hw;
7170
7171	pci_set_power_state(pdev, PCI_D0);
7172	pci_restore_state(pdev);
7173	pci_enable_wake(pdev, PCI_D0, 0);
7174
7175	if (hw_priv->wol_enable)
7176		hw_cfg_wol_pme(hw, 0);
7177	for (i = 0; i < hw->dev_count; i++) {
7178		if (info->netdev[i]) {
7179			struct net_device *dev = info->netdev[i];
7180
7181			if (netif_running(dev)) {
7182				netdev_open(dev);
7183				netif_device_attach(dev);
7184			}
7185		}
7186	}
7187	return 0;
7188}
7189
7190static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7191{
7192	int i;
7193	struct platform_info *info = pci_get_drvdata(pdev);
7194	struct dev_info *hw_priv = &info->dev_info;
7195	struct ksz_hw *hw = &hw_priv->hw;
7196
7197	/* Need to find a way to retrieve the device IP address. */
7198	static const u8 net_addr[] = { 192, 168, 1, 1 };
7199
7200	for (i = 0; i < hw->dev_count; i++) {
7201		if (info->netdev[i]) {
7202			struct net_device *dev = info->netdev[i];
7203
7204			if (netif_running(dev)) {
7205				netif_device_detach(dev);
7206				netdev_close(dev);
7207			}
7208		}
7209	}
7210	if (hw_priv->wol_enable) {
7211		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7212		hw_cfg_wol_pme(hw, 1);
7213	}
7214
7215	pci_save_state(pdev);
7216	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7217	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7218	return 0;
7219}
7220#endif
7221
7222static char pcidev_name[] = "ksz884xp";
7223
7224static DEFINE_PCI_DEVICE_TABLE(pcidev_table) = {
7225	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7226		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7227	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7228		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7229	{ 0 }
7230};
7231
7232MODULE_DEVICE_TABLE(pci, pcidev_table);
7233
7234static struct pci_driver pci_device_driver = {
7235#ifdef CONFIG_PM
7236	.suspend	= pcidev_suspend,
7237	.resume		= pcidev_resume,
7238#endif
7239	.name		= pcidev_name,
7240	.id_table	= pcidev_table,
7241	.probe		= pcidev_init,
7242	.remove		= pcidev_exit
7243};
7244
7245module_pci_driver(pci_device_driver);
7246
7247MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7248MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7249MODULE_LICENSE("GPL");
7250
7251module_param_named(message, msg_enable, int, 0);
7252MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7253
7254module_param(macaddr, charp, 0);
7255module_param(mac1addr, charp, 0);
7256module_param(fast_aging, int, 0);
7257module_param(multi_dev, int, 0);
7258module_param(stp, int, 0);
7259MODULE_PARM_DESC(macaddr, "MAC address");
7260MODULE_PARM_DESC(mac1addr, "Second MAC address");
7261MODULE_PARM_DESC(fast_aging, "Fast aging");
7262MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7263MODULE_PARM_DESC(stp, "STP support");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28
  29
  30/* DMA Registers */
  31
  32#define KS_DMA_TX_CTRL			0x0000
  33#define DMA_TX_ENABLE			0x00000001
  34#define DMA_TX_CRC_ENABLE		0x00000002
  35#define DMA_TX_PAD_ENABLE		0x00000004
  36#define DMA_TX_LOOPBACK			0x00000100
  37#define DMA_TX_FLOW_ENABLE		0x00000200
  38#define DMA_TX_CSUM_IP			0x00010000
  39#define DMA_TX_CSUM_TCP			0x00020000
  40#define DMA_TX_CSUM_UDP			0x00040000
  41#define DMA_TX_BURST_SIZE		0x3F000000
  42
  43#define KS_DMA_RX_CTRL			0x0004
  44#define DMA_RX_ENABLE			0x00000001
  45#define KS884X_DMA_RX_MULTICAST		0x00000002
  46#define DMA_RX_PROMISCUOUS		0x00000004
  47#define DMA_RX_ERROR			0x00000008
  48#define DMA_RX_UNICAST			0x00000010
  49#define DMA_RX_ALL_MULTICAST		0x00000020
  50#define DMA_RX_BROADCAST		0x00000040
  51#define DMA_RX_FLOW_ENABLE		0x00000200
  52#define DMA_RX_CSUM_IP			0x00010000
  53#define DMA_RX_CSUM_TCP			0x00020000
  54#define DMA_RX_CSUM_UDP			0x00040000
  55#define DMA_RX_BURST_SIZE		0x3F000000
  56
  57#define DMA_BURST_SHIFT			24
  58#define DMA_BURST_DEFAULT		8
  59
  60#define KS_DMA_TX_START			0x0008
  61#define KS_DMA_RX_START			0x000C
  62#define DMA_START			0x00000001
  63
  64#define KS_DMA_TX_ADDR			0x0010
  65#define KS_DMA_RX_ADDR			0x0014
  66
  67#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  68#define DMA_ADDR_LIST_SHIFT		2
  69
  70/* MTR0 */
  71#define KS884X_MULTICAST_0_OFFSET	0x0020
  72#define KS884X_MULTICAST_1_OFFSET	0x0021
  73#define KS884X_MULTICAST_2_OFFSET	0x0022
  74#define KS884x_MULTICAST_3_OFFSET	0x0023
  75/* MTR1 */
  76#define KS884X_MULTICAST_4_OFFSET	0x0024
  77#define KS884X_MULTICAST_5_OFFSET	0x0025
  78#define KS884X_MULTICAST_6_OFFSET	0x0026
  79#define KS884X_MULTICAST_7_OFFSET	0x0027
  80
  81/* Interrupt Registers */
  82
  83/* INTEN */
  84#define KS884X_INTERRUPTS_ENABLE	0x0028
  85/* INTST */
  86#define KS884X_INTERRUPTS_STATUS	0x002C
  87
  88#define KS884X_INT_RX_STOPPED		0x02000000
  89#define KS884X_INT_TX_STOPPED		0x04000000
  90#define KS884X_INT_RX_OVERRUN		0x08000000
  91#define KS884X_INT_TX_EMPTY		0x10000000
  92#define KS884X_INT_RX			0x20000000
  93#define KS884X_INT_TX			0x40000000
  94#define KS884X_INT_PHY			0x80000000
  95
  96#define KS884X_INT_RX_MASK		\
  97	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  98#define KS884X_INT_TX_MASK		\
  99	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 100#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 101
 102/* MAC Additional Station Address */
 103
 104/* MAAL0 */
 105#define KS_ADD_ADDR_0_LO		0x0080
 106/* MAAH0 */
 107#define KS_ADD_ADDR_0_HI		0x0084
 108/* MAAL1 */
 109#define KS_ADD_ADDR_1_LO		0x0088
 110/* MAAH1 */
 111#define KS_ADD_ADDR_1_HI		0x008C
 112/* MAAL2 */
 113#define KS_ADD_ADDR_2_LO		0x0090
 114/* MAAH2 */
 115#define KS_ADD_ADDR_2_HI		0x0094
 116/* MAAL3 */
 117#define KS_ADD_ADDR_3_LO		0x0098
 118/* MAAH3 */
 119#define KS_ADD_ADDR_3_HI		0x009C
 120/* MAAL4 */
 121#define KS_ADD_ADDR_4_LO		0x00A0
 122/* MAAH4 */
 123#define KS_ADD_ADDR_4_HI		0x00A4
 124/* MAAL5 */
 125#define KS_ADD_ADDR_5_LO		0x00A8
 126/* MAAH5 */
 127#define KS_ADD_ADDR_5_HI		0x00AC
 128/* MAAL6 */
 129#define KS_ADD_ADDR_6_LO		0x00B0
 130/* MAAH6 */
 131#define KS_ADD_ADDR_6_HI		0x00B4
 132/* MAAL7 */
 133#define KS_ADD_ADDR_7_LO		0x00B8
 134/* MAAH7 */
 135#define KS_ADD_ADDR_7_HI		0x00BC
 136/* MAAL8 */
 137#define KS_ADD_ADDR_8_LO		0x00C0
 138/* MAAH8 */
 139#define KS_ADD_ADDR_8_HI		0x00C4
 140/* MAAL9 */
 141#define KS_ADD_ADDR_9_LO		0x00C8
 142/* MAAH9 */
 143#define KS_ADD_ADDR_9_HI		0x00CC
 144/* MAAL10 */
 145#define KS_ADD_ADDR_A_LO		0x00D0
 146/* MAAH10 */
 147#define KS_ADD_ADDR_A_HI		0x00D4
 148/* MAAL11 */
 149#define KS_ADD_ADDR_B_LO		0x00D8
 150/* MAAH11 */
 151#define KS_ADD_ADDR_B_HI		0x00DC
 152/* MAAL12 */
 153#define KS_ADD_ADDR_C_LO		0x00E0
 154/* MAAH12 */
 155#define KS_ADD_ADDR_C_HI		0x00E4
 156/* MAAL13 */
 157#define KS_ADD_ADDR_D_LO		0x00E8
 158/* MAAH13 */
 159#define KS_ADD_ADDR_D_HI		0x00EC
 160/* MAAL14 */
 161#define KS_ADD_ADDR_E_LO		0x00F0
 162/* MAAH14 */
 163#define KS_ADD_ADDR_E_HI		0x00F4
 164/* MAAL15 */
 165#define KS_ADD_ADDR_F_LO		0x00F8
 166/* MAAH15 */
 167#define KS_ADD_ADDR_F_HI		0x00FC
 168
 169#define ADD_ADDR_HI_MASK		0x0000FFFF
 170#define ADD_ADDR_ENABLE			0x80000000
 171#define ADD_ADDR_INCR			8
 172
 173/* Miscellaneous Registers */
 174
 175/* MARL */
 176#define KS884X_ADDR_0_OFFSET		0x0200
 177#define KS884X_ADDR_1_OFFSET		0x0201
 178/* MARM */
 179#define KS884X_ADDR_2_OFFSET		0x0202
 180#define KS884X_ADDR_3_OFFSET		0x0203
 181/* MARH */
 182#define KS884X_ADDR_4_OFFSET		0x0204
 183#define KS884X_ADDR_5_OFFSET		0x0205
 184
 185/* OBCR */
 186#define KS884X_BUS_CTRL_OFFSET		0x0210
 187
 188#define BUS_SPEED_125_MHZ		0x0000
 189#define BUS_SPEED_62_5_MHZ		0x0001
 190#define BUS_SPEED_41_66_MHZ		0x0002
 191#define BUS_SPEED_25_MHZ		0x0003
 192
 193/* EEPCR */
 194#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 195
 196#define EEPROM_CHIP_SELECT		0x0001
 197#define EEPROM_SERIAL_CLOCK		0x0002
 198#define EEPROM_DATA_OUT			0x0004
 199#define EEPROM_DATA_IN			0x0008
 200#define EEPROM_ACCESS_ENABLE		0x0010
 201
 202/* MBIR */
 203#define KS884X_MEM_INFO_OFFSET		0x0214
 204
 205#define RX_MEM_TEST_FAILED		0x0008
 206#define RX_MEM_TEST_FINISHED		0x0010
 207#define TX_MEM_TEST_FAILED		0x0800
 208#define TX_MEM_TEST_FINISHED		0x1000
 209
 210/* GCR */
 211#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 212#define GLOBAL_SOFTWARE_RESET		0x0001
 213
 214#define KS8841_POWER_MANAGE_OFFSET	0x0218
 215
 216/* WFCR */
 217#define KS8841_WOL_CTRL_OFFSET		0x021A
 218#define KS8841_WOL_MAGIC_ENABLE		0x0080
 219#define KS8841_WOL_FRAME3_ENABLE	0x0008
 220#define KS8841_WOL_FRAME2_ENABLE	0x0004
 221#define KS8841_WOL_FRAME1_ENABLE	0x0002
 222#define KS8841_WOL_FRAME0_ENABLE	0x0001
 223
 224/* WF0 */
 225#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 226#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 227#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 228
 229/* IACR */
 230#define KS884X_IACR_P			0x04A0
 231#define KS884X_IACR_OFFSET		KS884X_IACR_P
 232
 233/* IADR1 */
 234#define KS884X_IADR1_P			0x04A2
 235#define KS884X_IADR2_P			0x04A4
 236#define KS884X_IADR3_P			0x04A6
 237#define KS884X_IADR4_P			0x04A8
 238#define KS884X_IADR5_P			0x04AA
 239
 240#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 241#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 242
 243#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 244#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 245#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 246#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 247#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 248#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 249#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 250#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 251#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 252
 253/* P1MBCR */
 254#define KS884X_P1MBCR_P			0x04D0
 255#define KS884X_P1MBSR_P			0x04D2
 256#define KS884X_PHY1ILR_P		0x04D4
 257#define KS884X_PHY1IHR_P		0x04D6
 258#define KS884X_P1ANAR_P			0x04D8
 259#define KS884X_P1ANLPR_P		0x04DA
 260
 261/* P2MBCR */
 262#define KS884X_P2MBCR_P			0x04E0
 263#define KS884X_P2MBSR_P			0x04E2
 264#define KS884X_PHY2ILR_P		0x04E4
 265#define KS884X_PHY2IHR_P		0x04E6
 266#define KS884X_P2ANAR_P			0x04E8
 267#define KS884X_P2ANLPR_P		0x04EA
 268
 269#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 270#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 271
 272#define KS884X_PHY_CTRL_OFFSET		0x00
 273
 274/* Mode Control Register */
 275#define PHY_REG_CTRL			0
 276
 277#define PHY_RESET			0x8000
 278#define PHY_LOOPBACK			0x4000
 279#define PHY_SPEED_100MBIT		0x2000
 280#define PHY_AUTO_NEG_ENABLE		0x1000
 281#define PHY_POWER_DOWN			0x0800
 282#define PHY_MII_DISABLE			0x0400
 283#define PHY_AUTO_NEG_RESTART		0x0200
 284#define PHY_FULL_DUPLEX			0x0100
 285#define PHY_COLLISION_TEST		0x0080
 286#define PHY_HP_MDIX			0x0020
 287#define PHY_FORCE_MDIX			0x0010
 288#define PHY_AUTO_MDIX_DISABLE		0x0008
 289#define PHY_REMOTE_FAULT_DISABLE	0x0004
 290#define PHY_TRANSMIT_DISABLE		0x0002
 291#define PHY_LED_DISABLE			0x0001
 292
 293#define KS884X_PHY_STATUS_OFFSET	0x02
 294
 295/* Mode Status Register */
 296#define PHY_REG_STATUS			1
 297
 298#define PHY_100BT4_CAPABLE		0x8000
 299#define PHY_100BTX_FD_CAPABLE		0x4000
 300#define PHY_100BTX_CAPABLE		0x2000
 301#define PHY_10BT_FD_CAPABLE		0x1000
 302#define PHY_10BT_CAPABLE		0x0800
 303#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 304#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 305#define PHY_REMOTE_FAULT		0x0010
 306#define PHY_AUTO_NEG_CAPABLE		0x0008
 307#define PHY_LINK_STATUS			0x0004
 308#define PHY_JABBER_DETECT		0x0002
 309#define PHY_EXTENDED_CAPABILITY		0x0001
 310
 311#define KS884X_PHY_ID_1_OFFSET		0x04
 312#define KS884X_PHY_ID_2_OFFSET		0x06
 313
 314/* PHY Identifier Registers */
 315#define PHY_REG_ID_1			2
 316#define PHY_REG_ID_2			3
 317
 318#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 319
 320/* Auto-Negotiation Advertisement Register */
 321#define PHY_REG_AUTO_NEGOTIATION	4
 322
 323#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 324#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 325/* Not supported. */
 326#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 327#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 328#define PHY_AUTO_NEG_100BT4		0x0200
 329#define PHY_AUTO_NEG_100BTX_FD		0x0100
 330#define PHY_AUTO_NEG_100BTX		0x0080
 331#define PHY_AUTO_NEG_10BT_FD		0x0040
 332#define PHY_AUTO_NEG_10BT		0x0020
 333#define PHY_AUTO_NEG_SELECTOR		0x001F
 334#define PHY_AUTO_NEG_802_3		0x0001
 335
 336#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 337
 338#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 339
 340/* Auto-Negotiation Link Partner Ability Register */
 341#define PHY_REG_REMOTE_CAPABILITY	5
 342
 343#define PHY_REMOTE_NEXT_PAGE		0x8000
 344#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 345#define PHY_REMOTE_REMOTE_FAULT		0x2000
 346#define PHY_REMOTE_SYM_PAUSE		0x0400
 347#define PHY_REMOTE_100BTX_FD		0x0100
 348#define PHY_REMOTE_100BTX		0x0080
 349#define PHY_REMOTE_10BT_FD		0x0040
 350#define PHY_REMOTE_10BT			0x0020
 351
 352/* P1VCT */
 353#define KS884X_P1VCT_P			0x04F0
 354#define KS884X_P1PHYCTRL_P		0x04F2
 355
 356/* P2VCT */
 357#define KS884X_P2VCT_P			0x04F4
 358#define KS884X_P2PHYCTRL_P		0x04F6
 359
 360#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 361#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 362
 363#define KS884X_PHY_LINK_MD_OFFSET	0x00
 364
 365#define PHY_START_CABLE_DIAG		0x8000
 366#define PHY_CABLE_DIAG_RESULT		0x6000
 367#define PHY_CABLE_STAT_NORMAL		0x0000
 368#define PHY_CABLE_STAT_OPEN		0x2000
 369#define PHY_CABLE_STAT_SHORT		0x4000
 370#define PHY_CABLE_STAT_FAILED		0x6000
 371#define PHY_CABLE_10M_SHORT		0x1000
 372#define PHY_CABLE_FAULT_COUNTER		0x01FF
 373
 374#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 375
 376#define PHY_STAT_REVERSED_POLARITY	0x0020
 377#define PHY_STAT_MDIX			0x0010
 378#define PHY_FORCE_LINK			0x0008
 379#define PHY_POWER_SAVING_DISABLE	0x0004
 380#define PHY_REMOTE_LOOPBACK		0x0002
 381
 382/* SIDER */
 383#define KS884X_SIDER_P			0x0400
 384#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 385#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 386
 387#define REG_FAMILY_ID			0x88
 388
 389#define REG_CHIP_ID_41			0x8810
 390#define REG_CHIP_ID_42			0x8800
 391
 392#define KS884X_CHIP_ID_MASK_41		0xFF10
 393#define KS884X_CHIP_ID_MASK		0xFFF0
 394#define KS884X_CHIP_ID_SHIFT		4
 395#define KS884X_REVISION_MASK		0x000E
 396#define KS884X_REVISION_SHIFT		1
 397#define KS8842_START			0x0001
 398
 399#define CHIP_IP_41_M			0x8810
 400#define CHIP_IP_42_M			0x8800
 401#define CHIP_IP_61_M			0x8890
 402#define CHIP_IP_62_M			0x8880
 403
 404#define CHIP_IP_41_P			0x8850
 405#define CHIP_IP_42_P			0x8840
 406#define CHIP_IP_61_P			0x88D0
 407#define CHIP_IP_62_P			0x88C0
 408
 409/* SGCR1 */
 410#define KS8842_SGCR1_P			0x0402
 411#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 412
 413#define SWITCH_PASS_ALL			0x8000
 414#define SWITCH_TX_FLOW_CTRL		0x2000
 415#define SWITCH_RX_FLOW_CTRL		0x1000
 416#define SWITCH_CHECK_LENGTH		0x0800
 417#define SWITCH_AGING_ENABLE		0x0400
 418#define SWITCH_FAST_AGING		0x0200
 419#define SWITCH_AGGR_BACKOFF		0x0100
 420#define SWITCH_PASS_PAUSE		0x0008
 421#define SWITCH_LINK_AUTO_AGING		0x0001
 422
 423/* SGCR2 */
 424#define KS8842_SGCR2_P			0x0404
 425#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 426
 427#define SWITCH_VLAN_ENABLE		0x8000
 428#define SWITCH_IGMP_SNOOP		0x4000
 429#define IPV6_MLD_SNOOP_ENABLE		0x2000
 430#define IPV6_MLD_SNOOP_OPTION		0x1000
 431#define PRIORITY_SCHEME_SELECT		0x0800
 432#define SWITCH_MIRROR_RX_TX		0x0100
 433#define UNICAST_VLAN_BOUNDARY		0x0080
 434#define MULTICAST_STORM_DISABLE		0x0040
 435#define SWITCH_BACK_PRESSURE		0x0020
 436#define FAIR_FLOW_CTRL			0x0010
 437#define NO_EXC_COLLISION_DROP		0x0008
 438#define SWITCH_HUGE_PACKET		0x0004
 439#define SWITCH_LEGAL_PACKET		0x0002
 440#define SWITCH_BUF_RESERVE		0x0001
 441
 442/* SGCR3 */
 443#define KS8842_SGCR3_P			0x0406
 444#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 445
 446#define BROADCAST_STORM_RATE_LO		0xFF00
 447#define SWITCH_REPEATER			0x0080
 448#define SWITCH_HALF_DUPLEX		0x0040
 449#define SWITCH_FLOW_CTRL		0x0020
 450#define SWITCH_10_MBIT			0x0010
 451#define SWITCH_REPLACE_NULL_VID		0x0008
 452#define BROADCAST_STORM_RATE_HI		0x0007
 453
 454#define BROADCAST_STORM_RATE		0x07FF
 455
 456/* SGCR4 */
 457#define KS8842_SGCR4_P			0x0408
 458
 459/* SGCR5 */
 460#define KS8842_SGCR5_P			0x040A
 461#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 462
 463#define LED_MODE			0x8200
 464#define LED_SPEED_DUPLEX_ACT		0x0000
 465#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 466#define LED_DUPLEX_10_100		0x0200
 467
 468/* SGCR6 */
 469#define KS8842_SGCR6_P			0x0410
 470#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 471
 472#define KS8842_PRIORITY_MASK		3
 473#define KS8842_PRIORITY_SHIFT		2
 474
 475/* SGCR7 */
 476#define KS8842_SGCR7_P			0x0412
 477#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 478
 479#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 480#define SWITCH_UNK_DEF_PORT_3		0x0004
 481#define SWITCH_UNK_DEF_PORT_2		0x0002
 482#define SWITCH_UNK_DEF_PORT_1		0x0001
 483
 484/* MACAR1 */
 485#define KS8842_MACAR1_P			0x0470
 486#define KS8842_MACAR2_P			0x0472
 487#define KS8842_MACAR3_P			0x0474
 488#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 489#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 490#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 491#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 492#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 493#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 494
 495/* TOSR1 */
 496#define KS8842_TOSR1_P			0x0480
 497#define KS8842_TOSR2_P			0x0482
 498#define KS8842_TOSR3_P			0x0484
 499#define KS8842_TOSR4_P			0x0486
 500#define KS8842_TOSR5_P			0x0488
 501#define KS8842_TOSR6_P			0x048A
 502#define KS8842_TOSR7_P			0x0490
 503#define KS8842_TOSR8_P			0x0492
 504#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 505#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 506#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 507#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 508#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 509#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 510
 511#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 512#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 513
 514/* P1CR1 */
 515#define KS8842_P1CR1_P			0x0500
 516#define KS8842_P1CR2_P			0x0502
 517#define KS8842_P1VIDR_P			0x0504
 518#define KS8842_P1CR3_P			0x0506
 519#define KS8842_P1IRCR_P			0x0508
 520#define KS8842_P1ERCR_P			0x050A
 521#define KS884X_P1SCSLMD_P		0x0510
 522#define KS884X_P1CR4_P			0x0512
 523#define KS884X_P1SR_P			0x0514
 524
 525/* P2CR1 */
 526#define KS8842_P2CR1_P			0x0520
 527#define KS8842_P2CR2_P			0x0522
 528#define KS8842_P2VIDR_P			0x0524
 529#define KS8842_P2CR3_P			0x0526
 530#define KS8842_P2IRCR_P			0x0528
 531#define KS8842_P2ERCR_P			0x052A
 532#define KS884X_P2SCSLMD_P		0x0530
 533#define KS884X_P2CR4_P			0x0532
 534#define KS884X_P2SR_P			0x0534
 535
 536/* P3CR1 */
 537#define KS8842_P3CR1_P			0x0540
 538#define KS8842_P3CR2_P			0x0542
 539#define KS8842_P3VIDR_P			0x0544
 540#define KS8842_P3CR3_P			0x0546
 541#define KS8842_P3IRCR_P			0x0548
 542#define KS8842_P3ERCR_P			0x054A
 543
 544#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 545#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 546#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 547
 548#define PORT_CTRL_ADDR(port, addr)		\
 549	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 550		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 551
 552#define KS8842_PORT_CTRL_1_OFFSET	0x00
 553
 554#define PORT_BROADCAST_STORM		0x0080
 555#define PORT_DIFFSERV_ENABLE		0x0040
 556#define PORT_802_1P_ENABLE		0x0020
 557#define PORT_BASED_PRIORITY_MASK	0x0018
 558#define PORT_BASED_PRIORITY_BASE	0x0003
 559#define PORT_BASED_PRIORITY_SHIFT	3
 560#define PORT_BASED_PRIORITY_0		0x0000
 561#define PORT_BASED_PRIORITY_1		0x0008
 562#define PORT_BASED_PRIORITY_2		0x0010
 563#define PORT_BASED_PRIORITY_3		0x0018
 564#define PORT_INSERT_TAG			0x0004
 565#define PORT_REMOVE_TAG			0x0002
 566#define PORT_PRIO_QUEUE_ENABLE		0x0001
 567
 568#define KS8842_PORT_CTRL_2_OFFSET	0x02
 569
 570#define PORT_INGRESS_VLAN_FILTER	0x4000
 571#define PORT_DISCARD_NON_VID		0x2000
 572#define PORT_FORCE_FLOW_CTRL		0x1000
 573#define PORT_BACK_PRESSURE		0x0800
 574#define PORT_TX_ENABLE			0x0400
 575#define PORT_RX_ENABLE			0x0200
 576#define PORT_LEARN_DISABLE		0x0100
 577#define PORT_MIRROR_SNIFFER		0x0080
 578#define PORT_MIRROR_RX			0x0040
 579#define PORT_MIRROR_TX			0x0020
 580#define PORT_USER_PRIORITY_CEILING	0x0008
 581#define PORT_VLAN_MEMBERSHIP		0x0007
 582
 583#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 584
 585#define PORT_DEFAULT_VID		0x0001
 586
 587#define KS8842_PORT_CTRL_3_OFFSET	0x06
 588
 589#define PORT_INGRESS_LIMIT_MODE		0x000C
 590#define PORT_INGRESS_ALL		0x0000
 591#define PORT_INGRESS_UNICAST		0x0004
 592#define PORT_INGRESS_MULTICAST		0x0008
 593#define PORT_INGRESS_BROADCAST		0x000C
 594#define PORT_COUNT_IFG			0x0002
 595#define PORT_COUNT_PREAMBLE		0x0001
 596
 597#define KS8842_PORT_IN_RATE_OFFSET	0x08
 598#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 599
 600#define PORT_PRIORITY_RATE		0x0F
 601#define PORT_PRIORITY_RATE_SHIFT	4
 602
 603#define KS884X_PORT_LINK_MD		0x10
 604
 605#define PORT_CABLE_10M_SHORT		0x8000
 606#define PORT_CABLE_DIAG_RESULT		0x6000
 607#define PORT_CABLE_STAT_NORMAL		0x0000
 608#define PORT_CABLE_STAT_OPEN		0x2000
 609#define PORT_CABLE_STAT_SHORT		0x4000
 610#define PORT_CABLE_STAT_FAILED		0x6000
 611#define PORT_START_CABLE_DIAG		0x1000
 612#define PORT_FORCE_LINK			0x0800
 613#define PORT_POWER_SAVING_DISABLE	0x0400
 614#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 615#define PORT_CABLE_FAULT_COUNTER	0x01FF
 616
 617#define KS884X_PORT_CTRL_4_OFFSET	0x12
 618
 619#define PORT_LED_OFF			0x8000
 620#define PORT_TX_DISABLE			0x4000
 621#define PORT_AUTO_NEG_RESTART		0x2000
 622#define PORT_REMOTE_FAULT_DISABLE	0x1000
 623#define PORT_POWER_DOWN			0x0800
 624#define PORT_AUTO_MDIX_DISABLE		0x0400
 625#define PORT_FORCE_MDIX			0x0200
 626#define PORT_LOOPBACK			0x0100
 627#define PORT_AUTO_NEG_ENABLE		0x0080
 628#define PORT_FORCE_100_MBIT		0x0040
 629#define PORT_FORCE_FULL_DUPLEX		0x0020
 630#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 631#define PORT_AUTO_NEG_100BTX_FD		0x0008
 632#define PORT_AUTO_NEG_100BTX		0x0004
 633#define PORT_AUTO_NEG_10BT_FD		0x0002
 634#define PORT_AUTO_NEG_10BT		0x0001
 635
 636#define KS884X_PORT_STATUS_OFFSET	0x14
 637
 638#define PORT_HP_MDIX			0x8000
 639#define PORT_REVERSED_POLARITY		0x2000
 640#define PORT_RX_FLOW_CTRL		0x0800
 641#define PORT_TX_FLOW_CTRL		0x1000
 642#define PORT_STATUS_SPEED_100MBIT	0x0400
 643#define PORT_STATUS_FULL_DUPLEX		0x0200
 644#define PORT_REMOTE_FAULT		0x0100
 645#define PORT_MDIX_STATUS		0x0080
 646#define PORT_AUTO_NEG_COMPLETE		0x0040
 647#define PORT_STATUS_LINK_GOOD		0x0020
 648#define PORT_REMOTE_SYM_PAUSE		0x0010
 649#define PORT_REMOTE_100BTX_FD		0x0008
 650#define PORT_REMOTE_100BTX		0x0004
 651#define PORT_REMOTE_10BT_FD		0x0002
 652#define PORT_REMOTE_10BT		0x0001
 653
 654/*
 655#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 656#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 657#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 658#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 659#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 660#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 661*/
 662
 663#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 665#define STATIC_MAC_TABLE_VALID		0x00080000
 666#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 667#define STATIC_MAC_TABLE_USE_FID	0x00200000
 668#define STATIC_MAC_TABLE_FID		0x03C00000
 669
 670#define STATIC_MAC_FWD_PORTS_SHIFT	16
 671#define STATIC_MAC_FID_SHIFT		22
 672
 673/*
 674#define VLAN_TABLE_VID			00-00000000-00000FFF
 675#define VLAN_TABLE_FID			00-00000000-0000F000
 676#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 677#define VLAN_TABLE_VALID		00-00000000-00080000
 678*/
 679
 680#define VLAN_TABLE_VID			0x00000FFF
 681#define VLAN_TABLE_FID			0x0000F000
 682#define VLAN_TABLE_MEMBERSHIP		0x00070000
 683#define VLAN_TABLE_VALID		0x00080000
 684
 685#define VLAN_TABLE_FID_SHIFT		12
 686#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 687
 688/*
 689#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 690#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 691#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 692#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 693#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 694#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 695#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 696#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 697*/
 698
 699#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 700#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 701#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 702#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 703#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 704
 705#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 706#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 707#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 708#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 709
 710#define DYNAMIC_MAC_FID_SHIFT		16
 711#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 712#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 713#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 714#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 715
 716/*
 717#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 718#define MIB_COUNTER_VALID		00-00000000-40000000
 719#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 720*/
 721
 722#define MIB_COUNTER_VALUE		0x3FFFFFFF
 723#define MIB_COUNTER_VALID		0x40000000
 724#define MIB_COUNTER_OVERFLOW		0x80000000
 725
 726#define MIB_PACKET_DROPPED		0x0000FFFF
 727
 728#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 729#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 730#define KS_MIB_PACKET_DROPPED_TX	0x102
 731#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 732#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 733#define KS_MIB_PACKET_DROPPED_RX	0x105
 734
 735/* Change default LED mode. */
 736#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 737
 738#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 739
 740#define MAX_ETHERNET_BODY_SIZE		1500
 741#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 742
 743#define MAX_ETHERNET_PACKET_SIZE	\
 744	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 745
 746#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 747#define MAX_RX_BUF_SIZE			(1912 + 4)
 748
 749#define ADDITIONAL_ENTRIES		16
 750#define MAX_MULTICAST_LIST		32
 751
 752#define HW_MULTICAST_SIZE		8
 753
 754#define HW_TO_DEV_PORT(port)		(port - 1)
 755
 756enum {
 757	media_connected,
 758	media_disconnected
 759};
 760
 761enum {
 762	OID_COUNTER_UNKOWN,
 763
 764	OID_COUNTER_FIRST,
 765
 766	/* total transmit errors */
 767	OID_COUNTER_XMIT_ERROR,
 768
 769	/* total receive errors */
 770	OID_COUNTER_RCV_ERROR,
 771
 772	OID_COUNTER_LAST
 773};
 774
 775/*
 776 * Hardware descriptor definitions
 777 */
 778
 779#define DESC_ALIGNMENT			16
 780#define BUFFER_ALIGNMENT		8
 781
 782#define NUM_OF_RX_DESC			64
 783#define NUM_OF_TX_DESC			64
 784
 785#define KS_DESC_RX_FRAME_LEN		0x000007FF
 786#define KS_DESC_RX_FRAME_TYPE		0x00008000
 787#define KS_DESC_RX_ERROR_CRC		0x00010000
 788#define KS_DESC_RX_ERROR_RUNT		0x00020000
 789#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 790#define KS_DESC_RX_ERROR_PHY		0x00080000
 791#define KS884X_DESC_RX_PORT_MASK	0x00300000
 792#define KS_DESC_RX_MULTICAST		0x01000000
 793#define KS_DESC_RX_ERROR		0x02000000
 794#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 795#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 796#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 797#define KS_DESC_RX_LAST			0x20000000
 798#define KS_DESC_RX_FIRST		0x40000000
 799#define KS_DESC_RX_ERROR_COND		\
 800	(KS_DESC_RX_ERROR_CRC |		\
 801	KS_DESC_RX_ERROR_RUNT |		\
 802	KS_DESC_RX_ERROR_PHY |		\
 803	KS_DESC_RX_ERROR_TOO_LONG)
 804
 805#define KS_DESC_HW_OWNED		0x80000000
 806
 807#define KS_DESC_BUF_SIZE		0x000007FF
 808#define KS884X_DESC_TX_PORT_MASK	0x00300000
 809#define KS_DESC_END_OF_RING		0x02000000
 810#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 811#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 812#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 813#define KS_DESC_TX_LAST			0x20000000
 814#define KS_DESC_TX_FIRST		0x40000000
 815#define KS_DESC_TX_INTERRUPT		0x80000000
 816
 817#define KS_DESC_PORT_SHIFT		20
 818
 819#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 820
 821#define KS_DESC_TX_MASK			\
 822	(KS_DESC_TX_INTERRUPT |		\
 823	KS_DESC_TX_FIRST |		\
 824	KS_DESC_TX_LAST |		\
 825	KS_DESC_TX_CSUM_GEN_IP |	\
 826	KS_DESC_TX_CSUM_GEN_TCP |	\
 827	KS_DESC_TX_CSUM_GEN_UDP |	\
 828	KS_DESC_BUF_SIZE)
 829
 830struct ksz_desc_rx_stat {
 831#ifdef __BIG_ENDIAN_BITFIELD
 832	u32 hw_owned:1;
 833	u32 first_desc:1;
 834	u32 last_desc:1;
 835	u32 csum_err_ip:1;
 836	u32 csum_err_tcp:1;
 837	u32 csum_err_udp:1;
 838	u32 error:1;
 839	u32 multicast:1;
 840	u32 src_port:4;
 841	u32 err_phy:1;
 842	u32 err_too_long:1;
 843	u32 err_runt:1;
 844	u32 err_crc:1;
 845	u32 frame_type:1;
 846	u32 reserved1:4;
 847	u32 frame_len:11;
 848#else
 849	u32 frame_len:11;
 850	u32 reserved1:4;
 851	u32 frame_type:1;
 852	u32 err_crc:1;
 853	u32 err_runt:1;
 854	u32 err_too_long:1;
 855	u32 err_phy:1;
 856	u32 src_port:4;
 857	u32 multicast:1;
 858	u32 error:1;
 859	u32 csum_err_udp:1;
 860	u32 csum_err_tcp:1;
 861	u32 csum_err_ip:1;
 862	u32 last_desc:1;
 863	u32 first_desc:1;
 864	u32 hw_owned:1;
 865#endif
 866};
 867
 868struct ksz_desc_tx_stat {
 869#ifdef __BIG_ENDIAN_BITFIELD
 870	u32 hw_owned:1;
 871	u32 reserved1:31;
 872#else
 873	u32 reserved1:31;
 874	u32 hw_owned:1;
 875#endif
 876};
 877
 878struct ksz_desc_rx_buf {
 879#ifdef __BIG_ENDIAN_BITFIELD
 880	u32 reserved4:6;
 881	u32 end_of_ring:1;
 882	u32 reserved3:14;
 883	u32 buf_size:11;
 884#else
 885	u32 buf_size:11;
 886	u32 reserved3:14;
 887	u32 end_of_ring:1;
 888	u32 reserved4:6;
 889#endif
 890};
 891
 892struct ksz_desc_tx_buf {
 893#ifdef __BIG_ENDIAN_BITFIELD
 894	u32 intr:1;
 895	u32 first_seg:1;
 896	u32 last_seg:1;
 897	u32 csum_gen_ip:1;
 898	u32 csum_gen_tcp:1;
 899	u32 csum_gen_udp:1;
 900	u32 end_of_ring:1;
 901	u32 reserved4:1;
 902	u32 dest_port:4;
 903	u32 reserved3:9;
 904	u32 buf_size:11;
 905#else
 906	u32 buf_size:11;
 907	u32 reserved3:9;
 908	u32 dest_port:4;
 909	u32 reserved4:1;
 910	u32 end_of_ring:1;
 911	u32 csum_gen_udp:1;
 912	u32 csum_gen_tcp:1;
 913	u32 csum_gen_ip:1;
 914	u32 last_seg:1;
 915	u32 first_seg:1;
 916	u32 intr:1;
 917#endif
 918};
 919
 920union desc_stat {
 921	struct ksz_desc_rx_stat rx;
 922	struct ksz_desc_tx_stat tx;
 923	u32 data;
 924};
 925
 926union desc_buf {
 927	struct ksz_desc_rx_buf rx;
 928	struct ksz_desc_tx_buf tx;
 929	u32 data;
 930};
 931
 932/**
 933 * struct ksz_hw_desc - Hardware descriptor data structure
 934 * @ctrl:	Descriptor control value.
 935 * @buf:	Descriptor buffer value.
 936 * @addr:	Physical address of memory buffer.
 937 * @next:	Pointer to next hardware descriptor.
 938 */
 939struct ksz_hw_desc {
 940	union desc_stat ctrl;
 941	union desc_buf buf;
 942	u32 addr;
 943	u32 next;
 944};
 945
 946/**
 947 * struct ksz_sw_desc - Software descriptor data structure
 948 * @ctrl:	Descriptor control value.
 949 * @buf:	Descriptor buffer value.
 950 * @buf_size:	Current buffers size value in hardware descriptor.
 951 */
 952struct ksz_sw_desc {
 953	union desc_stat ctrl;
 954	union desc_buf buf;
 955	u32 buf_size;
 956};
 957
 958/**
 959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 960 * @skb:	Associated socket buffer.
 961 * @dma:	Associated physical DMA address.
 962 * len:		Actual len used.
 963 */
 964struct ksz_dma_buf {
 965	struct sk_buff *skb;
 966	dma_addr_t dma;
 967	int len;
 968};
 969
 970/**
 971 * struct ksz_desc - Descriptor structure
 972 * @phw:	Hardware descriptor pointer to uncached physical memory.
 973 * @sw:		Cached memory to hold hardware descriptor values for
 974 * 		manipulation.
 975 * @dma_buf:	Operating system dependent data structure to hold physical
 976 * 		memory buffer allocation information.
 977 */
 978struct ksz_desc {
 979	struct ksz_hw_desc *phw;
 980	struct ksz_sw_desc sw;
 981	struct ksz_dma_buf dma_buf;
 982};
 983
 984#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 985
 986/**
 987 * struct ksz_desc_info - Descriptor information data structure
 988 * @ring:	First descriptor in the ring.
 989 * @cur:	Current descriptor being manipulated.
 990 * @ring_virt:	First hardware descriptor in the ring.
 991 * @ring_phys:	The physical address of the first descriptor of the ring.
 992 * @size:	Size of hardware descriptor.
 993 * @alloc:	Number of descriptors allocated.
 994 * @avail:	Number of descriptors available for use.
 995 * @last:	Index for last descriptor released to hardware.
 996 * @next:	Index for next descriptor available for use.
 997 * @mask:	Mask for index wrapping.
 998 */
 999struct ksz_desc_info {
1000	struct ksz_desc *ring;
1001	struct ksz_desc *cur;
1002	struct ksz_hw_desc *ring_virt;
1003	u32 ring_phys;
1004	int size;
1005	int alloc;
1006	int avail;
1007	int last;
1008	int next;
1009	int mask;
1010};
1011
1012/*
1013 * KSZ8842 switch definitions
1014 */
1015
1016enum {
1017	TABLE_STATIC_MAC = 0,
1018	TABLE_VLAN,
1019	TABLE_DYNAMIC_MAC,
1020	TABLE_MIB
1021};
1022
1023#define LEARNED_MAC_TABLE_ENTRIES	1024
1024#define STATIC_MAC_TABLE_ENTRIES	8
1025
1026/**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr:	MAC address to filter.
1029 * @vid:	VID value.
1030 * @fid:	FID value.
1031 * @ports:	Port membership.
1032 * @override:	Override setting.
1033 * @use_fid:	FID use setting.
1034 * @valid:	Valid setting indicating the entry is being used.
1035 */
1036struct ksz_mac_table {
1037	u8 mac_addr[ETH_ALEN];
1038	u16 vid;
1039	u8 fid;
1040	u8 ports;
1041	u8 override:1;
1042	u8 use_fid:1;
1043	u8 valid:1;
1044};
1045
1046#define VLAN_TABLE_ENTRIES		16
1047
1048/**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid:	VID value.
1051 * @fid:	FID value.
1052 * @member:	Port membership.
1053 */
1054struct ksz_vlan_table {
1055	u16 vid;
1056	u8 fid;
1057	u8 member;
1058};
1059
1060#define DIFFSERV_ENTRIES		64
1061#define PRIO_802_1P_ENTRIES		8
1062#define PRIO_QUEUES			4
1063
1064#define SWITCH_PORT_NUM			2
1065#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1066#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1067#define PORT_MASK			7
1068
1069#define MAIN_PORT			0
1070#define OTHER_PORT			1
1071#define HOST_PORT			SWITCH_PORT_NUM
1072
1073#define PORT_COUNTER_NUM		0x20
1074#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1075
1076#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1077#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1078#define MIB_COUNTER_RX_UNDERSIZE	0x02
1079#define MIB_COUNTER_RX_FRAGMENT		0x03
1080#define MIB_COUNTER_RX_OVERSIZE		0x04
1081#define MIB_COUNTER_RX_JABBER		0x05
1082#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1083#define MIB_COUNTER_RX_CRC_ERR		0x07
1084#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1085#define MIB_COUNTER_RX_CTRL_8808	0x09
1086#define MIB_COUNTER_RX_PAUSE		0x0A
1087#define MIB_COUNTER_RX_BROADCAST	0x0B
1088#define MIB_COUNTER_RX_MULTICAST	0x0C
1089#define MIB_COUNTER_RX_UNICAST		0x0D
1090#define MIB_COUNTER_RX_OCTET_64		0x0E
1091#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1092#define MIB_COUNTER_RX_OCTET_128_255	0x10
1093#define MIB_COUNTER_RX_OCTET_256_511	0x11
1094#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1095#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1096#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1097#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1098#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1099#define MIB_COUNTER_TX_PAUSE		0x17
1100#define MIB_COUNTER_TX_BROADCAST	0x18
1101#define MIB_COUNTER_TX_MULTICAST	0x19
1102#define MIB_COUNTER_TX_UNICAST		0x1A
1103#define MIB_COUNTER_TX_DEFERRED		0x1B
1104#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1105#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1106#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1107#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1108
1109#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1110#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1111
1112/**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr:	Current pointer to MIB counter index.
1115 * @link_down:	Indication the link has just gone down.
1116 * @state:	Connection status of the port.
1117 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1118 * @counter:	64-bit MIB counter value.
1119 * @dropped:	Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values.  A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected.  The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected.  The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131struct ksz_port_mib {
1132	u8 cnt_ptr;
1133	u8 link_down;
1134	u8 state;
1135	u8 mib_start;
1136
1137	u64 counter[TOTAL_PORT_COUNTER_NUM];
1138	u32 dropped[2];
1139};
1140
1141/**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid:	VID value.
1144 * @member:	Port membership.
1145 * @port_prio:	Port priority.
1146 * @rx_rate:	Receive priority rate.
1147 * @tx_rate:	Transmit priority rate.
1148 * @stp_state:	Current Spanning Tree Protocol state.
1149 */
1150struct ksz_port_cfg {
1151	u16 vid;
1152	u8 member;
1153	u8 port_prio;
1154	u32 rx_rate[PRIO_QUEUES];
1155	u32 tx_rate[PRIO_QUEUES];
1156	int stp_state;
1157};
1158
1159/**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table:	MAC table entries information.
1162 * @vlan_table:	VLAN table entries information.
1163 * @port_cfg:	Port configuration information.
1164 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1165 * 		(bit7 ~ bit2) field.
1166 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1167 * 		Tag priority field.
1168 * @br_addr:	Bridge address.  Used for STP.
1169 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1170 * @broad_per:	Broadcast storm percentage.
1171 * @member:	Current port membership.  Used for STP.
1172 */
1173struct ksz_switch {
1174	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178	u8 diffserv[DIFFSERV_ENTRIES];
1179	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181	u8 br_addr[ETH_ALEN];
1182	u8 other_addr[ETH_ALEN];
1183
1184	u8 broad_per;
1185	u8 member;
1186};
1187
1188#define TX_RATE_UNIT			10000
1189
1190/**
1191 * struct ksz_port_info - Port information data structure
1192 * @state:	Connection status of the port.
1193 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1194 * @duplex:	Duplex mode.
1195 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1196 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1197 * @port_id:	Port index to access actual hardware register.
1198 * @pdev:	Pointer to OS dependent network device.
1199 */
1200struct ksz_port_info {
1201	uint state;
1202	uint tx_rate;
1203	u8 duplex;
1204	u8 advertised;
1205	u8 partner;
1206	u8 port_id;
1207	void *pdev;
1208};
1209
1210#define MAX_TX_HELD_SIZE		52000
1211
1212/* Hardware features and bug fixes. */
1213#define LINK_INT_WORKING		(1 << 0)
1214#define SMALL_PACKET_TX_BUG		(1 << 1)
1215#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1216#define RX_HUGE_FRAME			(1 << 4)
1217#define STP_SUPPORT			(1 << 8)
1218
1219/* Software overrides. */
1220#define PAUSE_FLOW_CTRL			(1 << 0)
1221#define FAST_AGING			(1 << 1)
1222
1223/**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io:			Virtual address assigned.
1226 * @ksz_switch:		Pointer to KSZ8842 switch.
1227 * @port_info:		Port information.
1228 * @port_mib:		Port MIB information.
1229 * @dev_count:		Number of network devices this hardware supports.
1230 * @dst_ports:		Destination ports in switch for transmission.
1231 * @id:			Hardware ID.  Used for display only.
1232 * @mib_cnt:		Number of MIB counters this hardware has.
1233 * @mib_port_cnt:	Number of ports with MIB counters.
1234 * @tx_cfg:		Cached transmit control settings.
1235 * @rx_cfg:		Cached receive control settings.
1236 * @intr_mask:		Current interrupt mask.
1237 * @intr_set:		Current interrup set.
1238 * @intr_blocked:	Interrupt blocked.
1239 * @rx_desc_info:	Receive descriptor information.
1240 * @tx_desc_info:	Transmit descriptor information.
1241 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1242 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1243 * @tx_size:		Transmit data size.  Used for TX optimization.
1244 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr:		Permanent MAC address.
1246 * @override_addr:	Overridden MAC address.
1247 * @address:		Additional MAC address entries.
1248 * @addr_list_size:	Additional MAC address list size.
1249 * @mac_override:	Indication of MAC address overridden.
1250 * @promiscuous:	Counter to keep track of promiscuous mode set.
1251 * @all_multi:		Counter to keep track of all multicast mode set.
1252 * @multi_list:		Multicast address entries.
1253 * @multi_bits:		Cached multicast hash table settings.
1254 * @multi_list_size:	Multicast address list size.
1255 * @enabled:		Indication of hardware enabled.
1256 * @rx_stop:		Indication of receive process stop.
1257 * @features:		Hardware features to enable.
1258 * @overrides:		Hardware features to override.
1259 * @parent:		Pointer to parent, network device private structure.
1260 */
1261struct ksz_hw {
1262	void __iomem *io;
1263
1264	struct ksz_switch *ksz_switch;
1265	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1266	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1267	int dev_count;
1268	int dst_ports;
1269	int id;
1270	int mib_cnt;
1271	int mib_port_cnt;
1272
1273	u32 tx_cfg;
1274	u32 rx_cfg;
1275	u32 intr_mask;
1276	u32 intr_set;
1277	uint intr_blocked;
1278
1279	struct ksz_desc_info rx_desc_info;
1280	struct ksz_desc_info tx_desc_info;
1281
1282	int tx_int_cnt;
1283	int tx_int_mask;
1284	int tx_size;
1285
1286	u8 perm_addr[ETH_ALEN];
1287	u8 override_addr[ETH_ALEN];
1288	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1289	u8 addr_list_size;
1290	u8 mac_override;
1291	u8 promiscuous;
1292	u8 all_multi;
1293	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1294	u8 multi_bits[HW_MULTICAST_SIZE];
1295	u8 multi_list_size;
1296
1297	u8 enabled;
1298	u8 rx_stop;
1299	u8 reserved2[1];
1300
1301	uint features;
1302	uint overrides;
1303
1304	void *parent;
1305};
1306
1307enum {
1308	PHY_NO_FLOW_CTRL,
1309	PHY_FLOW_CTRL,
1310	PHY_TX_ONLY,
1311	PHY_RX_ONLY
1312};
1313
1314/**
1315 * struct ksz_port - Virtual port data structure
1316 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1317 * 			duplex, and 0 for auto, which normally results in full
1318 * 			duplex.
1319 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1320 * 			0 for auto, which normally results in 100 Mbit.
1321 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1322 * 			force.
1323 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1324 * 			control, and PHY_FLOW_CTRL for flow control.
1325 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1326 * 			Mbit PHY.
1327 * @first_port:		Index of first port this port supports.
1328 * @mib_port_cnt:	Number of ports with MIB counters.
1329 * @port_cnt:		Number of ports this port supports.
1330 * @counter:		Port statistics counter.
1331 * @hw:			Pointer to hardware structure.
1332 * @linked:		Pointer to port information linked to this port.
1333 */
1334struct ksz_port {
1335	u8 duplex;
1336	u8 speed;
1337	u8 force_link;
1338	u8 flow_ctrl;
1339
1340	int first_port;
1341	int mib_port_cnt;
1342	int port_cnt;
1343	u64 counter[OID_COUNTER_LAST];
1344
1345	struct ksz_hw *hw;
1346	struct ksz_port_info *linked;
1347};
1348
1349/**
1350 * struct ksz_timer_info - Timer information data structure
1351 * @timer:	Kernel timer.
1352 * @cnt:	Running timer counter.
1353 * @max:	Number of times to run timer; -1 for infinity.
1354 * @period:	Timer period in jiffies.
1355 */
1356struct ksz_timer_info {
1357	struct timer_list timer;
1358	int cnt;
1359	int max;
1360	int period;
1361};
1362
1363/**
1364 * struct ksz_shared_mem - OS dependent shared memory data structure
1365 * @dma_addr:	Physical DMA address allocated.
1366 * @alloc_size:	Allocation size.
1367 * @phys:	Actual physical address used.
1368 * @alloc_virt:	Virtual address allocated.
1369 * @virt:	Actual virtual address used.
1370 */
1371struct ksz_shared_mem {
1372	dma_addr_t dma_addr;
1373	uint alloc_size;
1374	uint phys;
1375	u8 *alloc_virt;
1376	u8 *virt;
1377};
1378
1379/**
1380 * struct ksz_counter_info - OS dependent counter information data structure
1381 * @counter:	Wait queue to wakeup after counters are read.
1382 * @time:	Next time in jiffies to read counter.
1383 * @read:	Indication of counters read in full or not.
1384 */
1385struct ksz_counter_info {
1386	wait_queue_head_t counter;
1387	unsigned long time;
1388	int read;
1389};
1390
1391/**
1392 * struct dev_info - Network device information data structure
1393 * @dev:		Pointer to network device.
1394 * @pdev:		Pointer to PCI device.
1395 * @hw:			Hardware structure.
1396 * @desc_pool:		Physical memory used for descriptor pool.
1397 * @hwlock:		Spinlock to prevent hardware from accessing.
1398 * @lock:		Mutex lock to prevent device from accessing.
1399 * @dev_rcv:		Receive process function used.
1400 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1401 * @skb_index:		Buffer index for receiving fragments.
1402 * @skb_len:		Buffer length for receiving fragments.
1403 * @mib_read:		Workqueue to read MIB counters.
1404 * @mib_timer_info:	Timer to read MIB counters.
1405 * @counter:		Used for MIB reading.
1406 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1407 * 			the maximum is MAX_RX_BUF_SIZE.
1408 * @opened:		Counter to keep track of device open.
1409 * @rx_tasklet:		Receive processing tasklet.
1410 * @tx_tasklet:		Transmit processing tasklet.
1411 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1412 * @wol_support:	Wake-on-LAN support used by ethtool.
1413 * @pme_wait:		Used for KSZ8841 power management.
1414 */
1415struct dev_info {
1416	struct net_device *dev;
1417	struct pci_dev *pdev;
1418
1419	struct ksz_hw hw;
1420	struct ksz_shared_mem desc_pool;
1421
1422	spinlock_t hwlock;
1423	struct mutex lock;
1424
1425	int (*dev_rcv)(struct dev_info *);
1426
1427	struct sk_buff *last_skb;
1428	int skb_index;
1429	int skb_len;
1430
1431	struct work_struct mib_read;
1432	struct ksz_timer_info mib_timer_info;
1433	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1434
1435	int mtu;
1436	int opened;
1437
1438	struct tasklet_struct rx_tasklet;
1439	struct tasklet_struct tx_tasklet;
1440
1441	int wol_enable;
1442	int wol_support;
1443	unsigned long pme_wait;
1444};
1445
1446/**
1447 * struct dev_priv - Network device private data structure
1448 * @adapter:		Adapter device information.
1449 * @port:		Port information.
1450 * @monitor_time_info:	Timer to monitor ports.
1451 * @proc_sem:		Semaphore for proc accessing.
1452 * @id:			Device ID.
1453 * @mii_if:		MII interface information.
1454 * @advertising:	Temporary variable to store advertised settings.
1455 * @msg_enable:		The message flags controlling driver output.
1456 * @media_state:	The connection status of the device.
1457 * @multicast:		The all multicast state of the device.
1458 * @promiscuous:	The promiscuous state of the device.
1459 */
1460struct dev_priv {
1461	struct dev_info *adapter;
1462	struct ksz_port port;
1463	struct ksz_timer_info monitor_timer_info;
1464
1465	struct semaphore proc_sem;
1466	int id;
1467
1468	struct mii_if_info mii_if;
1469	u32 advertising;
1470
1471	u32 msg_enable;
1472	int media_state;
1473	int multicast;
1474	int promiscuous;
1475};
1476
1477#define DRV_NAME		"KSZ884X PCI"
1478#define DEVICE_NAME		"KSZ884x PCI"
1479#define DRV_VERSION		"1.0.0"
1480#define DRV_RELDATE		"Feb 8, 2010"
1481
1482static char version[] =
1483	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1484
1485static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1486
1487/*
1488 * Interrupt processing primary routines
1489 */
1490
1491static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1492{
1493	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1494}
1495
1496static inline void hw_dis_intr(struct ksz_hw *hw)
1497{
1498	hw->intr_blocked = hw->intr_mask;
1499	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1500	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1501}
1502
1503static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1504{
1505	hw->intr_set = interrupt;
1506	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1507}
1508
1509static inline void hw_ena_intr(struct ksz_hw *hw)
1510{
1511	hw->intr_blocked = 0;
1512	hw_set_intr(hw, hw->intr_mask);
1513}
1514
1515static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1516{
1517	hw->intr_mask &= ~(bit);
1518}
1519
1520static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1521{
1522	u32 read_intr;
1523
1524	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1525	hw->intr_set = read_intr & ~interrupt;
1526	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1527	hw_dis_intr_bit(hw, interrupt);
1528}
1529
1530/**
1531 * hw_turn_on_intr - turn on specified interrupts
1532 * @hw: 	The hardware instance.
1533 * @bit:	The interrupt bits to be on.
1534 *
1535 * This routine turns on the specified interrupts in the interrupt mask so that
1536 * those interrupts will be enabled.
1537 */
1538static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1539{
1540	hw->intr_mask |= bit;
1541
1542	if (!hw->intr_blocked)
1543		hw_set_intr(hw, hw->intr_mask);
1544}
1545
1546static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1547{
1548	u32 read_intr;
1549
1550	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1551	hw->intr_set = read_intr | interrupt;
1552	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1553}
1554
1555static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1556{
1557	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1558	*status = *status & hw->intr_set;
1559}
1560
1561static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1562{
1563	if (interrupt)
1564		hw_ena_intr(hw);
1565}
1566
1567/**
1568 * hw_block_intr - block hardware interrupts
1569 *
1570 * This function blocks all interrupts of the hardware and returns the current
1571 * interrupt enable mask so that interrupts can be restored later.
1572 *
1573 * Return the current interrupt enable mask.
1574 */
1575static uint hw_block_intr(struct ksz_hw *hw)
1576{
1577	uint interrupt = 0;
1578
1579	if (!hw->intr_blocked) {
1580		hw_dis_intr(hw);
1581		interrupt = hw->intr_blocked;
1582	}
1583	return interrupt;
1584}
1585
1586/*
1587 * Hardware descriptor routines
1588 */
1589
1590static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1591{
1592	status.rx.hw_owned = 0;
1593	desc->phw->ctrl.data = cpu_to_le32(status.data);
1594}
1595
1596static inline void release_desc(struct ksz_desc *desc)
1597{
1598	desc->sw.ctrl.tx.hw_owned = 1;
1599	if (desc->sw.buf_size != desc->sw.buf.data) {
1600		desc->sw.buf_size = desc->sw.buf.data;
1601		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1602	}
1603	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1604}
1605
1606static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1607{
1608	*desc = &info->ring[info->last];
1609	info->last++;
1610	info->last &= info->mask;
1611	info->avail--;
1612	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1613}
1614
1615static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1616{
1617	desc->phw->addr = cpu_to_le32(addr);
1618}
1619
1620static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1621{
1622	desc->sw.buf.rx.buf_size = len;
1623}
1624
1625static inline void get_tx_pkt(struct ksz_desc_info *info,
1626	struct ksz_desc **desc)
1627{
1628	*desc = &info->ring[info->next];
1629	info->next++;
1630	info->next &= info->mask;
1631	info->avail--;
1632	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1633}
1634
1635static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1636{
1637	desc->phw->addr = cpu_to_le32(addr);
1638}
1639
1640static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1641{
1642	desc->sw.buf.tx.buf_size = len;
1643}
1644
1645/* Switch functions */
1646
1647#define TABLE_READ			0x10
1648#define TABLE_SEL_SHIFT			2
1649
1650#define HW_DELAY(hw, reg)			\
1651	do {					\
1652		u16 dummy;			\
1653		dummy = readw(hw->io + reg);	\
1654	} while (0)
1655
1656/**
1657 * sw_r_table - read 4 bytes of data from switch table
1658 * @hw:		The hardware instance.
1659 * @table:	The table selector.
1660 * @addr:	The address of the table entry.
1661 * @data:	Buffer to store the read data.
1662 *
1663 * This routine reads 4 bytes of data from the table of the switch.
1664 * Hardware interrupts are disabled to minimize corruption of read data.
1665 */
1666static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1667{
1668	u16 ctrl_addr;
1669	uint interrupt;
1670
1671	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1672
1673	interrupt = hw_block_intr(hw);
1674
1675	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1676	HW_DELAY(hw, KS884X_IACR_OFFSET);
1677	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1678
1679	hw_restore_intr(hw, interrupt);
1680}
1681
1682/**
1683 * sw_w_table_64 - write 8 bytes of data to the switch table
1684 * @hw:		The hardware instance.
1685 * @table:	The table selector.
1686 * @addr:	The address of the table entry.
1687 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1688 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1689 *
1690 * This routine writes 8 bytes of data to the table of the switch.
1691 * Hardware interrupts are disabled to minimize corruption of written data.
1692 */
1693static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1694	u32 data_lo)
1695{
1696	u16 ctrl_addr;
1697	uint interrupt;
1698
1699	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1700
1701	interrupt = hw_block_intr(hw);
1702
1703	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1704	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1705
1706	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1707	HW_DELAY(hw, KS884X_IACR_OFFSET);
1708
1709	hw_restore_intr(hw, interrupt);
1710}
1711
1712/**
1713 * sw_w_sta_mac_table - write to the static MAC table
1714 * @hw: 	The hardware instance.
1715 * @addr:	The address of the table entry.
1716 * @mac_addr:	The MAC address.
1717 * @ports:	The port members.
1718 * @override:	The flag to override the port receive/transmit settings.
1719 * @valid:	The flag to indicate entry is valid.
1720 * @use_fid:	The flag to indicate the FID is valid.
1721 * @fid:	The FID value.
1722 *
1723 * This routine writes an entry of the static MAC table of the switch.  It
1724 * calls sw_w_table_64() to write the data.
1725 */
1726static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1727	u8 ports, int override, int valid, int use_fid, u8 fid)
1728{
1729	u32 data_hi;
1730	u32 data_lo;
1731
1732	data_lo = ((u32) mac_addr[2] << 24) |
1733		((u32) mac_addr[3] << 16) |
1734		((u32) mac_addr[4] << 8) | mac_addr[5];
1735	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1736	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1737
1738	if (override)
1739		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1740	if (use_fid) {
1741		data_hi |= STATIC_MAC_TABLE_USE_FID;
1742		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1743	}
1744	if (valid)
1745		data_hi |= STATIC_MAC_TABLE_VALID;
1746
1747	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1748}
1749
1750/**
1751 * sw_r_vlan_table - read from the VLAN table
1752 * @hw: 	The hardware instance.
1753 * @addr:	The address of the table entry.
1754 * @vid:	Buffer to store the VID.
1755 * @fid:	Buffer to store the VID.
1756 * @member:	Buffer to store the port membership.
1757 *
1758 * This function reads an entry of the VLAN table of the switch.  It calls
1759 * sw_r_table() to get the data.
1760 *
1761 * Return 0 if the entry is valid; otherwise -1.
1762 */
1763static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1764	u8 *member)
1765{
1766	u32 data;
1767
1768	sw_r_table(hw, TABLE_VLAN, addr, &data);
1769	if (data & VLAN_TABLE_VALID) {
1770		*vid = (u16)(data & VLAN_TABLE_VID);
1771		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1772		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1773			VLAN_TABLE_MEMBERSHIP_SHIFT);
1774		return 0;
1775	}
1776	return -1;
1777}
1778
1779/**
1780 * port_r_mib_cnt - read MIB counter
1781 * @hw: 	The hardware instance.
1782 * @port:	The port index.
1783 * @addr:	The address of the counter.
1784 * @cnt:	Buffer to store the counter.
1785 *
1786 * This routine reads a MIB counter of the port.
1787 * Hardware interrupts are disabled to minimize corruption of read data.
1788 */
1789static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1790{
1791	u32 data;
1792	u16 ctrl_addr;
1793	uint interrupt;
1794	int timeout;
1795
1796	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1797
1798	interrupt = hw_block_intr(hw);
1799
1800	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1801	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1802	HW_DELAY(hw, KS884X_IACR_OFFSET);
1803
1804	for (timeout = 100; timeout > 0; timeout--) {
1805		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1806
1807		if (data & MIB_COUNTER_VALID) {
1808			if (data & MIB_COUNTER_OVERFLOW)
1809				*cnt += MIB_COUNTER_VALUE + 1;
1810			*cnt += data & MIB_COUNTER_VALUE;
1811			break;
1812		}
1813	}
1814
1815	hw_restore_intr(hw, interrupt);
1816}
1817
1818/**
1819 * port_r_mib_pkt - read dropped packet counts
1820 * @hw: 	The hardware instance.
1821 * @port:	The port index.
1822 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1823 *
1824 * This routine reads the dropped packet counts of the port.
1825 * Hardware interrupts are disabled to minimize corruption of read data.
1826 */
1827static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1828{
1829	u32 cur;
1830	u32 data;
1831	u16 ctrl_addr;
1832	uint interrupt;
1833	int index;
1834
1835	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1836	do {
1837		interrupt = hw_block_intr(hw);
1838
1839		ctrl_addr = (u16) index;
1840		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1841			<< 8);
1842		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1843		HW_DELAY(hw, KS884X_IACR_OFFSET);
1844		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1845
1846		hw_restore_intr(hw, interrupt);
1847
1848		data &= MIB_PACKET_DROPPED;
1849		cur = *last;
1850		if (data != cur) {
1851			*last = data;
1852			if (data < cur)
1853				data += MIB_PACKET_DROPPED + 1;
1854			data -= cur;
1855			*cnt += data;
1856		}
1857		++last;
1858		++cnt;
1859		index -= KS_MIB_PACKET_DROPPED_TX -
1860			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1861	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1862}
1863
1864/**
1865 * port_r_cnt - read MIB counters periodically
1866 * @hw: 	The hardware instance.
1867 * @port:	The port index.
1868 *
1869 * This routine is used to read the counters of the port periodically to avoid
1870 * counter overflow.  The hardware should be acquired first before calling this
1871 * routine.
1872 *
1873 * Return non-zero when not all counters not read.
1874 */
1875static int port_r_cnt(struct ksz_hw *hw, int port)
1876{
1877	struct ksz_port_mib *mib = &hw->port_mib[port];
1878
1879	if (mib->mib_start < PORT_COUNTER_NUM)
1880		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1881			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1882				&mib->counter[mib->cnt_ptr]);
1883			++mib->cnt_ptr;
1884		}
1885	if (hw->mib_cnt > PORT_COUNTER_NUM)
1886		port_r_mib_pkt(hw, port, mib->dropped,
1887			&mib->counter[PORT_COUNTER_NUM]);
1888	mib->cnt_ptr = 0;
1889	return 0;
1890}
1891
1892/**
1893 * port_init_cnt - initialize MIB counter values
1894 * @hw: 	The hardware instance.
1895 * @port:	The port index.
1896 *
1897 * This routine is used to initialize all counters to zero if the hardware
1898 * cannot do it after reset.
1899 */
1900static void port_init_cnt(struct ksz_hw *hw, int port)
1901{
1902	struct ksz_port_mib *mib = &hw->port_mib[port];
1903
1904	mib->cnt_ptr = 0;
1905	if (mib->mib_start < PORT_COUNTER_NUM)
1906		do {
1907			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1908				&mib->counter[mib->cnt_ptr]);
1909			++mib->cnt_ptr;
1910		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1911	if (hw->mib_cnt > PORT_COUNTER_NUM)
1912		port_r_mib_pkt(hw, port, mib->dropped,
1913			&mib->counter[PORT_COUNTER_NUM]);
1914	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1915	mib->cnt_ptr = 0;
1916}
1917
1918/*
1919 * Port functions
1920 */
1921
1922/**
1923 * port_chk - check port register bits
1924 * @hw: 	The hardware instance.
1925 * @port:	The port index.
1926 * @offset:	The offset of the port register.
1927 * @bits:	The data bits to check.
1928 *
1929 * This function checks whether the specified bits of the port register are set
1930 * or not.
1931 *
1932 * Return 0 if the bits are not set.
1933 */
1934static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1935{
1936	u32 addr;
1937	u16 data;
1938
1939	PORT_CTRL_ADDR(port, addr);
1940	addr += offset;
1941	data = readw(hw->io + addr);
1942	return (data & bits) == bits;
1943}
1944
1945/**
1946 * port_cfg - set port register bits
1947 * @hw: 	The hardware instance.
1948 * @port:	The port index.
1949 * @offset:	The offset of the port register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This routine sets or resets the specified bits of the port register.
1954 */
1955static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1956	int set)
1957{
1958	u32 addr;
1959	u16 data;
1960
1961	PORT_CTRL_ADDR(port, addr);
1962	addr += offset;
1963	data = readw(hw->io + addr);
1964	if (set)
1965		data |= bits;
1966	else
1967		data &= ~bits;
1968	writew(data, hw->io + addr);
1969}
1970
1971/**
1972 * port_chk_shift - check port bit
1973 * @hw: 	The hardware instance.
1974 * @port:	The port index.
1975 * @offset:	The offset of the register.
1976 * @shift:	Number of bits to shift.
1977 *
1978 * This function checks whether the specified port is set in the register or
1979 * not.
1980 *
1981 * Return 0 if the port is not set.
1982 */
1983static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1984{
1985	u16 data;
1986	u16 bit = 1 << port;
1987
1988	data = readw(hw->io + addr);
1989	data >>= shift;
1990	return (data & bit) == bit;
1991}
1992
1993/**
1994 * port_cfg_shift - set port bit
1995 * @hw: 	The hardware instance.
1996 * @port:	The port index.
1997 * @offset:	The offset of the register.
1998 * @shift:	Number of bits to shift.
1999 * @set:	The flag indicating whether the port is to be set or not.
2000 *
2001 * This routine sets or resets the specified port in the register.
2002 */
2003static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2004	int set)
2005{
2006	u16 data;
2007	u16 bits = 1 << port;
2008
2009	data = readw(hw->io + addr);
2010	bits <<= shift;
2011	if (set)
2012		data |= bits;
2013	else
2014		data &= ~bits;
2015	writew(data, hw->io + addr);
2016}
2017
2018/**
2019 * port_r8 - read byte from port register
2020 * @hw: 	The hardware instance.
2021 * @port:	The port index.
2022 * @offset:	The offset of the port register.
2023 * @data:	Buffer to store the data.
2024 *
2025 * This routine reads a byte from the port register.
2026 */
2027static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2028{
2029	u32 addr;
2030
2031	PORT_CTRL_ADDR(port, addr);
2032	addr += offset;
2033	*data = readb(hw->io + addr);
2034}
2035
2036/**
2037 * port_r16 - read word from port register.
2038 * @hw: 	The hardware instance.
2039 * @port:	The port index.
2040 * @offset:	The offset of the port register.
2041 * @data:	Buffer to store the data.
2042 *
2043 * This routine reads a word from the port register.
2044 */
2045static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2046{
2047	u32 addr;
2048
2049	PORT_CTRL_ADDR(port, addr);
2050	addr += offset;
2051	*data = readw(hw->io + addr);
2052}
2053
2054/**
2055 * port_w16 - write word to port register.
2056 * @hw: 	The hardware instance.
2057 * @port:	The port index.
2058 * @offset:	The offset of the port register.
2059 * @data:	Data to write.
2060 *
2061 * This routine writes a word to the port register.
2062 */
2063static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2064{
2065	u32 addr;
2066
2067	PORT_CTRL_ADDR(port, addr);
2068	addr += offset;
2069	writew(data, hw->io + addr);
2070}
2071
2072/**
2073 * sw_chk - check switch register bits
2074 * @hw: 	The hardware instance.
2075 * @addr:	The address of the switch register.
2076 * @bits:	The data bits to check.
2077 *
2078 * This function checks whether the specified bits of the switch register are
2079 * set or not.
2080 *
2081 * Return 0 if the bits are not set.
2082 */
2083static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2084{
2085	u16 data;
2086
2087	data = readw(hw->io + addr);
2088	return (data & bits) == bits;
2089}
2090
2091/**
2092 * sw_cfg - set switch register bits
2093 * @hw: 	The hardware instance.
2094 * @addr:	The address of the switch register.
2095 * @bits:	The data bits to set.
2096 * @set:	The flag indicating whether the bits are to be set or not.
2097 *
2098 * This function sets or resets the specified bits of the switch register.
2099 */
2100static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2101{
2102	u16 data;
2103
2104	data = readw(hw->io + addr);
2105	if (set)
2106		data |= bits;
2107	else
2108		data &= ~bits;
2109	writew(data, hw->io + addr);
2110}
2111
2112/* Bandwidth */
2113
2114static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2115{
2116	port_cfg(hw, p,
2117		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2118}
2119
2120static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2121{
2122	return port_chk(hw, p,
2123		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2124}
2125
2126/* Driver set switch broadcast storm protection at 10% rate. */
2127#define BROADCAST_STORM_PROTECTION_RATE	10
2128
2129/* 148,800 frames * 67 ms / 100 */
2130#define BROADCAST_STORM_VALUE		9969
2131
2132/**
2133 * sw_cfg_broad_storm - configure broadcast storm threshold
2134 * @hw: 	The hardware instance.
2135 * @percent:	Broadcast storm threshold in percent of transmit rate.
2136 *
2137 * This routine configures the broadcast storm threshold of the switch.
2138 */
2139static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2140{
2141	u16 data;
2142	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2143
2144	if (value > BROADCAST_STORM_RATE)
2145		value = BROADCAST_STORM_RATE;
2146
2147	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2148	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2149	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2150	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2151}
2152
2153/**
2154 * sw_get_board_storm - get broadcast storm threshold
2155 * @hw: 	The hardware instance.
2156 * @percent:	Buffer to store the broadcast storm threshold percentage.
2157 *
2158 * This routine retrieves the broadcast storm threshold of the switch.
2159 */
2160static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2161{
2162	int num;
2163	u16 data;
2164
2165	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166	num = (data & BROADCAST_STORM_RATE_HI);
2167	num <<= 8;
2168	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2169	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2170	*percent = (u8) num;
2171}
2172
2173/**
2174 * sw_dis_broad_storm - disable broadstorm
2175 * @hw: 	The hardware instance.
2176 * @port:	The port index.
2177 *
2178 * This routine disables the broadcast storm limit function of the switch.
2179 */
2180static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2181{
2182	port_cfg_broad_storm(hw, port, 0);
2183}
2184
2185/**
2186 * sw_ena_broad_storm - enable broadcast storm
2187 * @hw: 	The hardware instance.
2188 * @port:	The port index.
2189 *
2190 * This routine enables the broadcast storm limit function of the switch.
2191 */
2192static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2193{
2194	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2195	port_cfg_broad_storm(hw, port, 1);
2196}
2197
2198/**
2199 * sw_init_broad_storm - initialize broadcast storm
2200 * @hw: 	The hardware instance.
2201 *
2202 * This routine initializes the broadcast storm limit function of the switch.
2203 */
2204static void sw_init_broad_storm(struct ksz_hw *hw)
2205{
2206	int port;
2207
2208	hw->ksz_switch->broad_per = 1;
2209	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210	for (port = 0; port < TOTAL_PORT_NUM; port++)
2211		sw_dis_broad_storm(hw, port);
2212	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2213}
2214
2215/**
2216 * hw_cfg_broad_storm - configure broadcast storm
2217 * @hw: 	The hardware instance.
2218 * @percent:	Broadcast storm threshold in percent of transmit rate.
2219 *
2220 * This routine configures the broadcast storm threshold of the switch.
2221 * It is called by user functions.  The hardware should be acquired first.
2222 */
2223static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2224{
2225	if (percent > 100)
2226		percent = 100;
2227
2228	sw_cfg_broad_storm(hw, percent);
2229	sw_get_broad_storm(hw, &percent);
2230	hw->ksz_switch->broad_per = percent;
2231}
2232
2233/**
2234 * sw_dis_prio_rate - disable switch priority rate
2235 * @hw: 	The hardware instance.
2236 * @port:	The port index.
2237 *
2238 * This routine disables the priority rate function of the switch.
2239 */
2240static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2241{
2242	u32 addr;
2243
2244	PORT_CTRL_ADDR(port, addr);
2245	addr += KS8842_PORT_IN_RATE_OFFSET;
2246	writel(0, hw->io + addr);
2247}
2248
2249/**
2250 * sw_init_prio_rate - initialize switch prioirty rate
2251 * @hw: 	The hardware instance.
2252 *
2253 * This routine initializes the priority rate function of the switch.
2254 */
2255static void sw_init_prio_rate(struct ksz_hw *hw)
2256{
2257	int port;
2258	int prio;
2259	struct ksz_switch *sw = hw->ksz_switch;
2260
2261	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2262		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2263			sw->port_cfg[port].rx_rate[prio] =
2264			sw->port_cfg[port].tx_rate[prio] = 0;
2265		}
2266		sw_dis_prio_rate(hw, port);
2267	}
2268}
2269
2270/* Communication */
2271
2272static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2273{
2274	port_cfg(hw, p,
2275		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2276}
2277
2278static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2279{
2280	port_cfg(hw, p,
2281		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2282}
2283
2284static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2285{
2286	return port_chk(hw, p,
2287		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2288}
2289
2290static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2291{
2292	return port_chk(hw, p,
2293		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2294}
2295
2296/* Spanning Tree */
2297
 
 
 
 
 
 
2298static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2299{
2300	port_cfg(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2302}
2303
2304static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2305{
2306	port_cfg(hw, p,
2307		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2308}
2309
2310static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2311{
2312	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2313}
2314
2315static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2316{
2317	if (!(hw->overrides & FAST_AGING)) {
2318		sw_cfg_fast_aging(hw, 1);
2319		mdelay(1);
2320		sw_cfg_fast_aging(hw, 0);
2321	}
2322}
2323
2324/* VLAN */
2325
2326static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2327{
2328	port_cfg(hw, p,
2329		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2330}
2331
2332static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2333{
2334	port_cfg(hw, p,
2335		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2336}
2337
2338static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2339{
2340	return port_chk(hw, p,
2341		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2342}
2343
2344static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2345{
2346	return port_chk(hw, p,
2347		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2348}
2349
2350static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2351{
2352	port_cfg(hw, p,
2353		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2354}
2355
2356static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2357{
2358	port_cfg(hw, p,
2359		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2360}
2361
2362static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2363{
2364	return port_chk(hw, p,
2365		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2366}
2367
2368static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2369{
2370	return port_chk(hw, p,
2371		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2372}
2373
2374/* Mirroring */
2375
2376static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2377{
2378	port_cfg(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2380}
2381
2382static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2383{
2384	port_cfg(hw, p,
2385		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2386}
2387
2388static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2389{
2390	port_cfg(hw, p,
2391		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2392}
2393
2394static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2395{
2396	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2397}
2398
2399static void sw_init_mirror(struct ksz_hw *hw)
2400{
2401	int port;
2402
2403	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2404		port_cfg_mirror_sniffer(hw, port, 0);
2405		port_cfg_mirror_rx(hw, port, 0);
2406		port_cfg_mirror_tx(hw, port, 0);
2407	}
2408	sw_cfg_mirror_rx_tx(hw, 0);
2409}
2410
2411static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2412{
2413	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2414		SWITCH_UNK_DEF_PORT_ENABLE, set);
2415}
2416
2417static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2418{
2419	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2420		SWITCH_UNK_DEF_PORT_ENABLE);
2421}
2422
2423static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2424{
2425	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2426}
2427
2428static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2429{
2430	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2431}
2432
2433/* Priority */
2434
2435static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2436{
2437	port_cfg(hw, p,
2438		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2439}
2440
2441static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2442{
2443	port_cfg(hw, p,
2444		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2445}
2446
2447static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2448{
2449	port_cfg(hw, p,
2450		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2451}
2452
2453static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2454{
2455	port_cfg(hw, p,
2456		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2457}
2458
2459static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2460{
2461	return port_chk(hw, p,
2462		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2463}
2464
2465static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2466{
2467	return port_chk(hw, p,
2468		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2469}
2470
2471static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2472{
2473	return port_chk(hw, p,
2474		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2475}
2476
2477static inline int port_chk_prio(struct ksz_hw *hw, int p)
2478{
2479	return port_chk(hw, p,
2480		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2481}
2482
2483/**
2484 * sw_dis_diffserv - disable switch DiffServ priority
2485 * @hw: 	The hardware instance.
2486 * @port:	The port index.
2487 *
2488 * This routine disables the DiffServ priority function of the switch.
2489 */
2490static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2491{
2492	port_cfg_diffserv(hw, port, 0);
2493}
2494
2495/**
2496 * sw_dis_802_1p - disable switch 802.1p priority
2497 * @hw: 	The hardware instance.
2498 * @port:	The port index.
2499 *
2500 * This routine disables the 802.1p priority function of the switch.
2501 */
2502static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2503{
2504	port_cfg_802_1p(hw, port, 0);
2505}
2506
2507/**
2508 * sw_cfg_replace_null_vid -
2509 * @hw: 	The hardware instance.
2510 * @set:	The flag to disable or enable.
2511 *
2512 */
2513static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2514{
2515	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2516}
2517
2518/**
2519 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2520 * @hw: 	The hardware instance.
2521 * @port:	The port index.
2522 * @set:	The flag to disable or enable.
2523 *
2524 * This routine enables the 802.1p priority re-mapping function of the switch.
2525 * That allows 802.1p priority field to be replaced with the port's default
2526 * tag's priority value if the ingress packet's 802.1p priority has a higher
2527 * priority than port's default tag's priority.
2528 */
2529static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2530{
2531	port_cfg_replace_vid(hw, port, set);
2532}
2533
2534/**
2535 * sw_cfg_port_based - configure switch port based priority
2536 * @hw: 	The hardware instance.
2537 * @port:	The port index.
2538 * @prio:	The priority to set.
2539 *
2540 * This routine configures the port based priority of the switch.
2541 */
2542static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2543{
2544	u16 data;
2545
2546	if (prio > PORT_BASED_PRIORITY_BASE)
2547		prio = PORT_BASED_PRIORITY_BASE;
2548
2549	hw->ksz_switch->port_cfg[port].port_prio = prio;
2550
2551	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2552	data &= ~PORT_BASED_PRIORITY_MASK;
2553	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2554	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2555}
2556
2557/**
2558 * sw_dis_multi_queue - disable transmit multiple queues
2559 * @hw: 	The hardware instance.
2560 * @port:	The port index.
2561 *
2562 * This routine disables the transmit multiple queues selection of the switch
2563 * port.  Only single transmit queue on the port.
2564 */
2565static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2566{
2567	port_cfg_prio(hw, port, 0);
2568}
2569
2570/**
2571 * sw_init_prio - initialize switch priority
2572 * @hw: 	The hardware instance.
2573 *
2574 * This routine initializes the switch QoS priority functions.
2575 */
2576static void sw_init_prio(struct ksz_hw *hw)
2577{
2578	int port;
2579	int tos;
2580	struct ksz_switch *sw = hw->ksz_switch;
2581
2582	/*
2583	 * Init all the 802.1p tag priority value to be assigned to different
2584	 * priority queue.
2585	 */
2586	sw->p_802_1p[0] = 0;
2587	sw->p_802_1p[1] = 0;
2588	sw->p_802_1p[2] = 1;
2589	sw->p_802_1p[3] = 1;
2590	sw->p_802_1p[4] = 2;
2591	sw->p_802_1p[5] = 2;
2592	sw->p_802_1p[6] = 3;
2593	sw->p_802_1p[7] = 3;
2594
2595	/*
2596	 * Init all the DiffServ priority value to be assigned to priority
2597	 * queue 0.
2598	 */
2599	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2600		sw->diffserv[tos] = 0;
2601
2602	/* All QoS functions disabled. */
2603	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2604		sw_dis_multi_queue(hw, port);
2605		sw_dis_diffserv(hw, port);
2606		sw_dis_802_1p(hw, port);
2607		sw_cfg_replace_vid(hw, port, 0);
2608
2609		sw->port_cfg[port].port_prio = 0;
2610		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2611	}
2612	sw_cfg_replace_null_vid(hw, 0);
2613}
2614
2615/**
2616 * port_get_def_vid - get port default VID.
2617 * @hw: 	The hardware instance.
2618 * @port:	The port index.
2619 * @vid:	Buffer to store the VID.
2620 *
2621 * This routine retrieves the default VID of the port.
2622 */
2623static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2624{
2625	u32 addr;
2626
2627	PORT_CTRL_ADDR(port, addr);
2628	addr += KS8842_PORT_CTRL_VID_OFFSET;
2629	*vid = readw(hw->io + addr);
2630}
2631
2632/**
2633 * sw_init_vlan - initialize switch VLAN
2634 * @hw: 	The hardware instance.
2635 *
2636 * This routine initializes the VLAN function of the switch.
2637 */
2638static void sw_init_vlan(struct ksz_hw *hw)
2639{
2640	int port;
2641	int entry;
2642	struct ksz_switch *sw = hw->ksz_switch;
2643
2644	/* Read 16 VLAN entries from device's VLAN table. */
2645	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2646		sw_r_vlan_table(hw, entry,
2647			&sw->vlan_table[entry].vid,
2648			&sw->vlan_table[entry].fid,
2649			&sw->vlan_table[entry].member);
2650	}
2651
2652	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2653		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2654		sw->port_cfg[port].member = PORT_MASK;
2655	}
2656}
2657
2658/**
2659 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2660 * @hw: 	The hardware instance.
2661 * @port:	The port index.
2662 * @member:	The port-based VLAN membership.
2663 *
2664 * This routine configures the port-based VLAN membership of the port.
2665 */
2666static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2667{
2668	u32 addr;
2669	u8 data;
2670
2671	PORT_CTRL_ADDR(port, addr);
2672	addr += KS8842_PORT_CTRL_2_OFFSET;
2673
2674	data = readb(hw->io + addr);
2675	data &= ~PORT_VLAN_MEMBERSHIP;
2676	data |= (member & PORT_MASK);
2677	writeb(data, hw->io + addr);
2678
2679	hw->ksz_switch->port_cfg[port].member = member;
2680}
2681
2682/**
2683 * sw_get_addr - get the switch MAC address.
2684 * @hw: 	The hardware instance.
2685 * @mac_addr:	Buffer to store the MAC address.
2686 *
2687 * This function retrieves the MAC address of the switch.
2688 */
2689static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2690{
2691	int i;
2692
2693	for (i = 0; i < 6; i += 2) {
2694		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2695		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2696	}
2697}
2698
2699/**
2700 * sw_set_addr - configure switch MAC address
2701 * @hw: 	The hardware instance.
2702 * @mac_addr:	The MAC address.
2703 *
2704 * This function configures the MAC address of the switch.
2705 */
2706static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2707{
2708	int i;
2709
2710	for (i = 0; i < 6; i += 2) {
2711		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713	}
2714}
2715
2716/**
2717 * sw_set_global_ctrl - set switch global control
2718 * @hw: 	The hardware instance.
2719 *
2720 * This routine sets the global control of the switch function.
2721 */
2722static void sw_set_global_ctrl(struct ksz_hw *hw)
2723{
2724	u16 data;
2725
2726	/* Enable switch MII flow control. */
2727	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2728	data |= SWITCH_FLOW_CTRL;
2729	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730
2731	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2732
2733	/* Enable aggressive back off algorithm in half duplex mode. */
2734	data |= SWITCH_AGGR_BACKOFF;
2735
2736	/* Enable automatic fast aging when link changed detected. */
2737	data |= SWITCH_AGING_ENABLE;
2738	data |= SWITCH_LINK_AUTO_AGING;
2739
2740	if (hw->overrides & FAST_AGING)
2741		data |= SWITCH_FAST_AGING;
2742	else
2743		data &= ~SWITCH_FAST_AGING;
2744	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2745
2746	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2747
2748	/* Enable no excessive collision drop. */
2749	data |= NO_EXC_COLLISION_DROP;
2750	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2751}
2752
2753enum {
2754	STP_STATE_DISABLED = 0,
2755	STP_STATE_LISTENING,
2756	STP_STATE_LEARNING,
2757	STP_STATE_FORWARDING,
2758	STP_STATE_BLOCKED,
2759	STP_STATE_SIMPLE
2760};
2761
2762/**
2763 * port_set_stp_state - configure port spanning tree state
2764 * @hw: 	The hardware instance.
2765 * @port:	The port index.
2766 * @state:	The spanning tree state.
2767 *
2768 * This routine configures the spanning tree state of the port.
2769 */
2770static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2771{
2772	u16 data;
2773
2774	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2775	switch (state) {
2776	case STP_STATE_DISABLED:
2777		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2778		data |= PORT_LEARN_DISABLE;
2779		break;
2780	case STP_STATE_LISTENING:
2781/*
2782 * No need to turn on transmit because of port direct mode.
2783 * Turning on receive is required if static MAC table is not setup.
2784 */
2785		data &= ~PORT_TX_ENABLE;
2786		data |= PORT_RX_ENABLE;
2787		data |= PORT_LEARN_DISABLE;
2788		break;
2789	case STP_STATE_LEARNING:
2790		data &= ~PORT_TX_ENABLE;
2791		data |= PORT_RX_ENABLE;
2792		data &= ~PORT_LEARN_DISABLE;
2793		break;
2794	case STP_STATE_FORWARDING:
2795		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2796		data &= ~PORT_LEARN_DISABLE;
2797		break;
2798	case STP_STATE_BLOCKED:
2799/*
2800 * Need to setup static MAC table with override to keep receiving BPDU
2801 * messages.  See sw_init_stp routine.
2802 */
2803		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2804		data |= PORT_LEARN_DISABLE;
2805		break;
2806	case STP_STATE_SIMPLE:
2807		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2808		data |= PORT_LEARN_DISABLE;
2809		break;
2810	}
2811	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2812	hw->ksz_switch->port_cfg[port].stp_state = state;
2813}
2814
2815#define STP_ENTRY			0
2816#define BROADCAST_ENTRY			1
2817#define BRIDGE_ADDR_ENTRY		2
2818#define IPV6_ADDR_ENTRY			3
2819
2820/**
2821 * sw_clr_sta_mac_table - clear static MAC table
2822 * @hw: 	The hardware instance.
2823 *
2824 * This routine clears the static MAC table.
2825 */
2826static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2827{
2828	struct ksz_mac_table *entry;
2829	int i;
2830
2831	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2832		entry = &hw->ksz_switch->mac_table[i];
2833		sw_w_sta_mac_table(hw, i,
2834			entry->mac_addr, entry->ports,
2835			entry->override, 0,
2836			entry->use_fid, entry->fid);
2837	}
2838}
2839
2840/**
2841 * sw_init_stp - initialize switch spanning tree support
2842 * @hw: 	The hardware instance.
2843 *
2844 * This routine initializes the spanning tree support of the switch.
2845 */
2846static void sw_init_stp(struct ksz_hw *hw)
2847{
2848	struct ksz_mac_table *entry;
2849
2850	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2851	entry->mac_addr[0] = 0x01;
2852	entry->mac_addr[1] = 0x80;
2853	entry->mac_addr[2] = 0xC2;
2854	entry->mac_addr[3] = 0x00;
2855	entry->mac_addr[4] = 0x00;
2856	entry->mac_addr[5] = 0x00;
2857	entry->ports = HOST_MASK;
2858	entry->override = 1;
2859	entry->valid = 1;
2860	sw_w_sta_mac_table(hw, STP_ENTRY,
2861		entry->mac_addr, entry->ports,
2862		entry->override, entry->valid,
2863		entry->use_fid, entry->fid);
2864}
2865
2866/**
2867 * sw_block_addr - block certain packets from the host port
2868 * @hw: 	The hardware instance.
2869 *
2870 * This routine blocks certain packets from reaching to the host port.
2871 */
2872static void sw_block_addr(struct ksz_hw *hw)
2873{
2874	struct ksz_mac_table *entry;
2875	int i;
2876
2877	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2878		entry = &hw->ksz_switch->mac_table[i];
2879		entry->valid = 0;
2880		sw_w_sta_mac_table(hw, i,
2881			entry->mac_addr, entry->ports,
2882			entry->override, entry->valid,
2883			entry->use_fid, entry->fid);
2884	}
2885}
2886
2887#define PHY_LINK_SUPPORT		\
2888	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2889	PHY_AUTO_NEG_SYM_PAUSE |	\
2890	PHY_AUTO_NEG_100BT4 |		\
2891	PHY_AUTO_NEG_100BTX_FD |	\
2892	PHY_AUTO_NEG_100BTX |		\
2893	PHY_AUTO_NEG_10BT_FD |		\
2894	PHY_AUTO_NEG_10BT)
2895
2896static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2897{
2898	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2899}
2900
2901static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2902{
2903	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2904}
2905
2906static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2907{
2908	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2909}
2910
2911static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2914}
2915
2916static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2917{
2918	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2919}
2920
2921static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2924}
2925
2926static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2929}
2930
2931static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2932{
2933	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2934}
2935
2936static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2939}
2940
2941static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2942{
2943	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2947{
2948	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2949}
2950
2951static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2952{
2953	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2954}
2955
2956/**
2957 * hw_r_phy - read data from PHY register
2958 * @hw: 	The hardware instance.
2959 * @port:	Port to read.
2960 * @reg:	PHY register to read.
2961 * @val:	Buffer to store the read data.
2962 *
2963 * This routine reads data from the PHY register.
2964 */
2965static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2966{
2967	int phy;
2968
2969	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2970	*val = readw(hw->io + phy);
2971}
2972
2973/**
2974 * port_w_phy - write data to PHY register
2975 * @hw: 	The hardware instance.
2976 * @port:	Port to write.
2977 * @reg:	PHY register to write.
2978 * @val:	Word data to write.
2979 *
2980 * This routine writes data to the PHY register.
2981 */
2982static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2983{
2984	int phy;
2985
2986	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987	writew(val, hw->io + phy);
2988}
2989
2990/*
2991 * EEPROM access functions
2992 */
2993
2994#define AT93C_CODE			0
2995#define AT93C_WR_OFF			0x00
2996#define AT93C_WR_ALL			0x10
2997#define AT93C_ER_ALL			0x20
2998#define AT93C_WR_ON			0x30
2999
3000#define AT93C_WRITE			1
3001#define AT93C_READ			2
3002#define AT93C_ERASE			3
3003
3004#define EEPROM_DELAY			4
3005
3006static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3007{
3008	u16 data;
3009
3010	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3011	data &= ~gpio;
3012	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013}
3014
3015static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3016{
3017	u16 data;
3018
3019	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3020	data |= gpio;
3021	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022}
3023
3024static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3025{
3026	u16 data;
3027
3028	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029	return (u8)(data & gpio);
3030}
3031
3032static void eeprom_clk(struct ksz_hw *hw)
3033{
3034	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3035	udelay(EEPROM_DELAY);
3036	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3037	udelay(EEPROM_DELAY);
3038}
3039
3040static u16 spi_r(struct ksz_hw *hw)
3041{
3042	int i;
3043	u16 temp = 0;
3044
3045	for (i = 15; i >= 0; i--) {
3046		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3047		udelay(EEPROM_DELAY);
3048
3049		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3050
3051		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052		udelay(EEPROM_DELAY);
3053	}
3054	return temp;
3055}
3056
3057static void spi_w(struct ksz_hw *hw, u16 data)
3058{
3059	int i;
3060
3061	for (i = 15; i >= 0; i--) {
3062		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3063			drop_gpio(hw, EEPROM_DATA_OUT);
3064		eeprom_clk(hw);
3065	}
3066}
3067
3068static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3069{
3070	int i;
3071
3072	/* Initial start bit */
3073	raise_gpio(hw, EEPROM_DATA_OUT);
3074	eeprom_clk(hw);
3075
3076	/* AT93C operation */
3077	for (i = 1; i >= 0; i--) {
3078		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079			drop_gpio(hw, EEPROM_DATA_OUT);
3080		eeprom_clk(hw);
3081	}
3082
3083	/* Address location */
3084	for (i = 5; i >= 0; i--) {
3085		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3086			drop_gpio(hw, EEPROM_DATA_OUT);
3087		eeprom_clk(hw);
3088	}
3089}
3090
3091#define EEPROM_DATA_RESERVED		0
3092#define EEPROM_DATA_MAC_ADDR_0		1
3093#define EEPROM_DATA_MAC_ADDR_1		2
3094#define EEPROM_DATA_MAC_ADDR_2		3
3095#define EEPROM_DATA_SUBSYS_ID		4
3096#define EEPROM_DATA_SUBSYS_VEN_ID	5
3097#define EEPROM_DATA_PM_CAP		6
3098
3099/* User defined EEPROM data */
3100#define EEPROM_DATA_OTHER_MAC_ADDR	9
3101
3102/**
3103 * eeprom_read - read from AT93C46 EEPROM
3104 * @hw: 	The hardware instance.
3105 * @reg:	The register offset.
3106 *
3107 * This function reads a word from the AT93C46 EEPROM.
3108 *
3109 * Return the data value.
3110 */
3111static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3112{
3113	u16 data;
3114
3115	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3116
3117	spi_reg(hw, AT93C_READ, reg);
3118	data = spi_r(hw);
3119
3120	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3121
3122	return data;
3123}
3124
3125/**
3126 * eeprom_write - write to AT93C46 EEPROM
3127 * @hw: 	The hardware instance.
3128 * @reg:	The register offset.
3129 * @data:	The data value.
3130 *
3131 * This procedure writes a word to the AT93C46 EEPROM.
3132 */
3133static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3134{
3135	int timeout;
3136
3137	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138
3139	/* Enable write. */
3140	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3141	drop_gpio(hw, EEPROM_CHIP_SELECT);
3142	udelay(1);
3143
3144	/* Erase the register. */
3145	raise_gpio(hw, EEPROM_CHIP_SELECT);
3146	spi_reg(hw, AT93C_ERASE, reg);
3147	drop_gpio(hw, EEPROM_CHIP_SELECT);
3148	udelay(1);
3149
3150	/* Check operation complete. */
3151	raise_gpio(hw, EEPROM_CHIP_SELECT);
3152	timeout = 8;
3153	mdelay(2);
3154	do {
3155		mdelay(1);
3156	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3157	drop_gpio(hw, EEPROM_CHIP_SELECT);
3158	udelay(1);
3159
3160	/* Write the register. */
3161	raise_gpio(hw, EEPROM_CHIP_SELECT);
3162	spi_reg(hw, AT93C_WRITE, reg);
3163	spi_w(hw, data);
3164	drop_gpio(hw, EEPROM_CHIP_SELECT);
3165	udelay(1);
3166
3167	/* Check operation complete. */
3168	raise_gpio(hw, EEPROM_CHIP_SELECT);
3169	timeout = 8;
3170	mdelay(2);
3171	do {
3172		mdelay(1);
3173	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174	drop_gpio(hw, EEPROM_CHIP_SELECT);
3175	udelay(1);
3176
3177	/* Disable write. */
3178	raise_gpio(hw, EEPROM_CHIP_SELECT);
3179	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3180
3181	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3182}
3183
3184/*
3185 * Link detection routines
3186 */
3187
3188static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3189{
3190	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3191	switch (port->flow_ctrl) {
3192	case PHY_FLOW_CTRL:
3193		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3194		break;
3195	/* Not supported. */
3196	case PHY_TX_ONLY:
3197	case PHY_RX_ONLY:
3198	default:
3199		break;
3200	}
3201	return ctrl;
3202}
3203
3204static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3205{
3206	u32 rx_cfg;
3207	u32 tx_cfg;
3208
3209	rx_cfg = hw->rx_cfg;
3210	tx_cfg = hw->tx_cfg;
3211	if (rx)
3212		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3213	else
3214		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3215	if (tx)
3216		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3217	else
3218		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3219	if (hw->enabled) {
3220		if (rx_cfg != hw->rx_cfg)
3221			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3222		if (tx_cfg != hw->tx_cfg)
3223			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3224	}
3225}
3226
3227static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3228	u16 local, u16 remote)
3229{
3230	int rx;
3231	int tx;
3232
3233	if (hw->overrides & PAUSE_FLOW_CTRL)
3234		return;
3235
3236	rx = tx = 0;
3237	if (port->force_link)
3238		rx = tx = 1;
3239	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3240		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3241			rx = tx = 1;
3242		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3243				(local & PHY_AUTO_NEG_PAUSE) ==
3244				PHY_AUTO_NEG_ASYM_PAUSE) {
3245			tx = 1;
3246		}
3247	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3248		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3249			rx = 1;
3250	}
3251	if (!hw->ksz_switch)
3252		set_flow_ctrl(hw, rx, tx);
3253}
3254
3255static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3256	struct ksz_port_info *info, u16 link_status)
3257{
3258	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3259			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3260		u32 cfg = hw->tx_cfg;
3261
3262		/* Disable flow control in the half duplex mode. */
3263		if (1 == info->duplex)
3264			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3265		if (hw->enabled && cfg != hw->tx_cfg)
3266			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3267	}
3268}
3269
3270/**
3271 * port_get_link_speed - get current link status
3272 * @port: 	The port instance.
3273 *
3274 * This routine reads PHY registers to determine the current link status of the
3275 * switch ports.
3276 */
3277static void port_get_link_speed(struct ksz_port *port)
3278{
3279	uint interrupt;
3280	struct ksz_port_info *info;
3281	struct ksz_port_info *linked = NULL;
3282	struct ksz_hw *hw = port->hw;
3283	u16 data;
3284	u16 status;
3285	u8 local;
3286	u8 remote;
3287	int i;
3288	int p;
3289	int change = 0;
3290
3291	interrupt = hw_block_intr(hw);
3292
3293	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3294		info = &hw->port_info[p];
3295		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3296		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3297
3298		/*
3299		 * Link status is changing all the time even when there is no
3300		 * cable connection!
3301		 */
3302		remote = status & (PORT_AUTO_NEG_COMPLETE |
3303			PORT_STATUS_LINK_GOOD);
3304		local = (u8) data;
3305
3306		/* No change to status. */
3307		if (local == info->advertised && remote == info->partner)
3308			continue;
3309
3310		info->advertised = local;
3311		info->partner = remote;
3312		if (status & PORT_STATUS_LINK_GOOD) {
3313
3314			/* Remember the first linked port. */
3315			if (!linked)
3316				linked = info;
3317
3318			info->tx_rate = 10 * TX_RATE_UNIT;
3319			if (status & PORT_STATUS_SPEED_100MBIT)
3320				info->tx_rate = 100 * TX_RATE_UNIT;
3321
3322			info->duplex = 1;
3323			if (status & PORT_STATUS_FULL_DUPLEX)
3324				info->duplex = 2;
3325
3326			if (media_connected != info->state) {
3327				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3328					&data);
3329				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3330					&status);
3331				determine_flow_ctrl(hw, port, data, status);
3332				if (hw->ksz_switch) {
3333					port_cfg_back_pressure(hw, p,
3334						(1 == info->duplex));
3335				}
3336				change |= 1 << i;
3337				port_cfg_change(hw, port, info, status);
3338			}
3339			info->state = media_connected;
3340		} else {
3341			if (media_disconnected != info->state) {
3342				change |= 1 << i;
3343
3344				/* Indicate the link just goes down. */
3345				hw->port_mib[p].link_down = 1;
3346			}
3347			info->state = media_disconnected;
3348		}
3349		hw->port_mib[p].state = (u8) info->state;
3350	}
3351
3352	if (linked && media_disconnected == port->linked->state)
3353		port->linked = linked;
3354
3355	hw_restore_intr(hw, interrupt);
3356}
3357
3358#define PHY_RESET_TIMEOUT		10
3359
3360/**
3361 * port_set_link_speed - set port speed
3362 * @port: 	The port instance.
3363 *
3364 * This routine sets the link speed of the switch ports.
3365 */
3366static void port_set_link_speed(struct ksz_port *port)
3367{
 
3368	struct ksz_hw *hw = port->hw;
3369	u16 data;
3370	u16 cfg;
3371	u8 status;
3372	int i;
3373	int p;
3374
3375	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
 
 
3376		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3377		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3378
3379		cfg = 0;
3380		if (status & PORT_STATUS_LINK_GOOD)
3381			cfg = data;
3382
3383		data |= PORT_AUTO_NEG_ENABLE;
3384		data = advertised_flow_ctrl(port, data);
3385
3386		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3387			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3388
3389		/* Check if manual configuration is specified by the user. */
3390		if (port->speed || port->duplex) {
3391			if (10 == port->speed)
3392				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3393					PORT_AUTO_NEG_100BTX);
3394			else if (100 == port->speed)
3395				data &= ~(PORT_AUTO_NEG_10BT_FD |
3396					PORT_AUTO_NEG_10BT);
3397			if (1 == port->duplex)
3398				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3399					PORT_AUTO_NEG_10BT_FD);
3400			else if (2 == port->duplex)
3401				data &= ~(PORT_AUTO_NEG_100BTX |
3402					PORT_AUTO_NEG_10BT);
3403		}
3404		if (data != cfg) {
3405			data |= PORT_AUTO_NEG_RESTART;
3406			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3407		}
3408	}
3409}
3410
3411/**
3412 * port_force_link_speed - force port speed
3413 * @port: 	The port instance.
3414 *
3415 * This routine forces the link speed of the switch ports.
3416 */
3417static void port_force_link_speed(struct ksz_port *port)
3418{
3419	struct ksz_hw *hw = port->hw;
3420	u16 data;
3421	int i;
3422	int phy;
3423	int p;
3424
3425	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3426		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3427		hw_r_phy_ctrl(hw, phy, &data);
3428
3429		data &= ~PHY_AUTO_NEG_ENABLE;
3430
3431		if (10 == port->speed)
3432			data &= ~PHY_SPEED_100MBIT;
3433		else if (100 == port->speed)
3434			data |= PHY_SPEED_100MBIT;
3435		if (1 == port->duplex)
3436			data &= ~PHY_FULL_DUPLEX;
3437		else if (2 == port->duplex)
3438			data |= PHY_FULL_DUPLEX;
3439		hw_w_phy_ctrl(hw, phy, data);
3440	}
3441}
3442
3443static void port_set_power_saving(struct ksz_port *port, int enable)
3444{
3445	struct ksz_hw *hw = port->hw;
3446	int i;
3447	int p;
3448
3449	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3450		port_cfg(hw, p,
3451			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3452}
3453
3454/*
3455 * KSZ8841 power management functions
3456 */
3457
3458/**
3459 * hw_chk_wol_pme_status - check PMEN pin
3460 * @hw: 	The hardware instance.
3461 *
3462 * This function is used to check PMEN pin is asserted.
3463 *
3464 * Return 1 if PMEN pin is asserted; otherwise, 0.
3465 */
3466static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3467{
3468	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3469	struct pci_dev *pdev = hw_priv->pdev;
3470	u16 data;
3471
3472	if (!pdev->pm_cap)
3473		return 0;
3474	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3475	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3476}
3477
3478/**
3479 * hw_clr_wol_pme_status - clear PMEN pin
3480 * @hw: 	The hardware instance.
3481 *
3482 * This routine is used to clear PME_Status to deassert PMEN pin.
3483 */
3484static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3485{
3486	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487	struct pci_dev *pdev = hw_priv->pdev;
3488	u16 data;
3489
3490	if (!pdev->pm_cap)
3491		return;
3492
3493	/* Clear PME_Status to deassert PMEN pin. */
3494	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495	data |= PCI_PM_CTRL_PME_STATUS;
3496	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3497}
3498
3499/**
3500 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3501 * @hw: 	The hardware instance.
3502 * @set:	The flag indicating whether to enable or disable.
3503 *
3504 * This routine is used to enable or disable Wake-on-LAN.
3505 */
3506static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3507{
3508	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3509	struct pci_dev *pdev = hw_priv->pdev;
3510	u16 data;
3511
3512	if (!pdev->pm_cap)
3513		return;
3514	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515	data &= ~PCI_PM_CTRL_STATE_MASK;
3516	if (set)
3517		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3518	else
3519		data &= ~PCI_PM_CTRL_PME_ENABLE;
3520	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521}
3522
3523/**
3524 * hw_cfg_wol - configure Wake-on-LAN features
3525 * @hw: 	The hardware instance.
3526 * @frame:	The pattern frame bit.
3527 * @set:	The flag indicating whether to enable or disable.
3528 *
3529 * This routine is used to enable or disable certain Wake-on-LAN features.
3530 */
3531static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3532{
3533	u16 data;
3534
3535	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3536	if (set)
3537		data |= frame;
3538	else
3539		data &= ~frame;
3540	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3541}
3542
3543/**
3544 * hw_set_wol_frame - program Wake-on-LAN pattern
3545 * @hw: 	The hardware instance.
3546 * @i:		The frame index.
3547 * @mask_size:	The size of the mask.
3548 * @mask:	Mask to ignore certain bytes in the pattern.
3549 * @frame_size:	The size of the frame.
3550 * @pattern:	The frame data.
3551 *
3552 * This routine is used to program Wake-on-LAN pattern.
3553 */
3554static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3555	const u8 *mask, uint frame_size, const u8 *pattern)
3556{
3557	int bits;
3558	int from;
3559	int len;
3560	int to;
3561	u32 crc;
3562	u8 data[64];
3563	u8 val = 0;
3564
3565	if (frame_size > mask_size * 8)
3566		frame_size = mask_size * 8;
3567	if (frame_size > 64)
3568		frame_size = 64;
3569
3570	i *= 0x10;
3571	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3572	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3573
3574	bits = len = from = to = 0;
3575	do {
3576		if (bits) {
3577			if ((val & 1))
3578				data[to++] = pattern[from];
3579			val >>= 1;
3580			++from;
3581			--bits;
3582		} else {
3583			val = mask[len];
3584			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3585				+ len);
3586			++len;
3587			if (val)
3588				bits = 8;
3589			else
3590				from += 8;
3591		}
3592	} while (from < (int) frame_size);
3593	if (val) {
3594		bits = mask[len - 1];
3595		val <<= (from % 8);
3596		bits &= ~val;
3597		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3598			1);
3599	}
3600	crc = ether_crc(to, data);
3601	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3602}
3603
3604/**
3605 * hw_add_wol_arp - add ARP pattern
3606 * @hw: 	The hardware instance.
3607 * @ip_addr:	The IPv4 address assigned to the device.
3608 *
3609 * This routine is used to add ARP pattern for waking up the host.
3610 */
3611static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3612{
3613	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3614	u8 pattern[42] = {
3615		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3616		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3617		0x08, 0x06,
3618		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3619		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3620		0x00, 0x00, 0x00, 0x00,
3621		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622		0x00, 0x00, 0x00, 0x00 };
3623
3624	memcpy(&pattern[38], ip_addr, 4);
3625	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3626}
3627
3628/**
3629 * hw_add_wol_bcast - add broadcast pattern
3630 * @hw: 	The hardware instance.
3631 *
3632 * This routine is used to add broadcast pattern for waking up the host.
3633 */
3634static void hw_add_wol_bcast(struct ksz_hw *hw)
3635{
3636	static const u8 mask[] = { 0x3F };
3637	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3638
3639	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3640}
3641
3642/**
3643 * hw_add_wol_mcast - add multicast pattern
3644 * @hw: 	The hardware instance.
3645 *
3646 * This routine is used to add multicast pattern for waking up the host.
3647 *
3648 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3649 * by IPv6 ping command.  Note that multicast packets are filtred through the
3650 * multicast hash table, so not all multicast packets can wake up the host.
3651 */
3652static void hw_add_wol_mcast(struct ksz_hw *hw)
3653{
3654	static const u8 mask[] = { 0x3F };
3655	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3656
3657	memcpy(&pattern[3], &hw->override_addr[3], 3);
3658	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3659}
3660
3661/**
3662 * hw_add_wol_ucast - add unicast pattern
3663 * @hw: 	The hardware instance.
3664 *
3665 * This routine is used to add unicast pattern to wakeup the host.
3666 *
3667 * It is assumed the unicast packet is directed to the device, as the hardware
3668 * can only receive them in normal case.
3669 */
3670static void hw_add_wol_ucast(struct ksz_hw *hw)
3671{
3672	static const u8 mask[] = { 0x3F };
3673
3674	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3675}
3676
3677/**
3678 * hw_enable_wol - enable Wake-on-LAN
3679 * @hw: 	The hardware instance.
3680 * @wol_enable:	The Wake-on-LAN settings.
3681 * @net_addr:	The IPv4 address assigned to the device.
3682 *
3683 * This routine is used to enable Wake-on-LAN depending on driver settings.
3684 */
3685static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3686{
3687	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3688	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3689	hw_add_wol_ucast(hw);
3690	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3691	hw_add_wol_mcast(hw);
3692	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3693	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3694	hw_add_wol_arp(hw, net_addr);
3695}
3696
3697/**
3698 * hw_init - check driver is correct for the hardware
3699 * @hw: 	The hardware instance.
3700 *
3701 * This function checks the hardware is correct for this driver and sets the
3702 * hardware up for proper initialization.
3703 *
3704 * Return number of ports or 0 if not right.
3705 */
3706static int hw_init(struct ksz_hw *hw)
3707{
3708	int rc = 0;
3709	u16 data;
3710	u16 revision;
3711
3712	/* Set bus speed to 125MHz. */
3713	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3714
3715	/* Check KSZ884x chip ID. */
3716	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3717
3718	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3719	data &= KS884X_CHIP_ID_MASK_41;
3720	if (REG_CHIP_ID_41 == data)
3721		rc = 1;
3722	else if (REG_CHIP_ID_42 == data)
3723		rc = 2;
3724	else
3725		return 0;
3726
3727	/* Setup hardware features or bug workarounds. */
3728	if (revision <= 1) {
3729		hw->features |= SMALL_PACKET_TX_BUG;
3730		if (1 == rc)
3731			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3732	}
3733	return rc;
3734}
3735
3736/**
3737 * hw_reset - reset the hardware
3738 * @hw: 	The hardware instance.
3739 *
3740 * This routine resets the hardware.
3741 */
3742static void hw_reset(struct ksz_hw *hw)
3743{
3744	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3745
3746	/* Wait for device to reset. */
3747	mdelay(10);
3748
3749	/* Write 0 to clear device reset. */
3750	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3751}
3752
3753/**
3754 * hw_setup - setup the hardware
3755 * @hw: 	The hardware instance.
3756 *
3757 * This routine setup the hardware for proper operation.
3758 */
3759static void hw_setup(struct ksz_hw *hw)
3760{
3761#if SET_DEFAULT_LED
3762	u16 data;
3763
3764	/* Change default LED mode. */
3765	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3766	data &= ~LED_MODE;
3767	data |= SET_DEFAULT_LED;
3768	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3769#endif
3770
3771	/* Setup transmit control. */
3772	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3773		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3774
3775	/* Setup receive control. */
3776	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3777		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3778	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3779
3780	/* Hardware cannot handle UDP packet in IP fragments. */
3781	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3782
3783	if (hw->all_multi)
3784		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3785	if (hw->promiscuous)
3786		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3787}
3788
3789/**
3790 * hw_setup_intr - setup interrupt mask
3791 * @hw: 	The hardware instance.
3792 *
3793 * This routine setup the interrupt mask for proper operation.
3794 */
3795static void hw_setup_intr(struct ksz_hw *hw)
3796{
3797	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3798}
3799
3800static void ksz_check_desc_num(struct ksz_desc_info *info)
3801{
3802#define MIN_DESC_SHIFT  2
3803
3804	int alloc = info->alloc;
3805	int shift;
3806
3807	shift = 0;
3808	while (!(alloc & 1)) {
3809		shift++;
3810		alloc >>= 1;
3811	}
3812	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3813		pr_alert("Hardware descriptor numbers not right!\n");
3814		while (alloc) {
3815			shift++;
3816			alloc >>= 1;
3817		}
3818		if (shift < MIN_DESC_SHIFT)
3819			shift = MIN_DESC_SHIFT;
3820		alloc = 1 << shift;
3821		info->alloc = alloc;
3822	}
3823	info->mask = info->alloc - 1;
3824}
3825
3826static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3827{
3828	int i;
3829	u32 phys = desc_info->ring_phys;
3830	struct ksz_hw_desc *desc = desc_info->ring_virt;
3831	struct ksz_desc *cur = desc_info->ring;
3832	struct ksz_desc *previous = NULL;
3833
3834	for (i = 0; i < desc_info->alloc; i++) {
3835		cur->phw = desc++;
3836		phys += desc_info->size;
3837		previous = cur++;
3838		previous->phw->next = cpu_to_le32(phys);
3839	}
3840	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3841	previous->sw.buf.rx.end_of_ring = 1;
3842	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3843
3844	desc_info->avail = desc_info->alloc;
3845	desc_info->last = desc_info->next = 0;
3846
3847	desc_info->cur = desc_info->ring;
3848}
3849
3850/**
3851 * hw_set_desc_base - set descriptor base addresses
3852 * @hw: 	The hardware instance.
3853 * @tx_addr:	The transmit descriptor base.
3854 * @rx_addr:	The receive descriptor base.
3855 *
3856 * This routine programs the descriptor base addresses after reset.
3857 */
3858static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3859{
3860	/* Set base address of Tx/Rx descriptors. */
3861	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3862	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3863}
3864
3865static void hw_reset_pkts(struct ksz_desc_info *info)
3866{
3867	info->cur = info->ring;
3868	info->avail = info->alloc;
3869	info->last = info->next = 0;
3870}
3871
3872static inline void hw_resume_rx(struct ksz_hw *hw)
3873{
3874	writel(DMA_START, hw->io + KS_DMA_RX_START);
3875}
3876
3877/**
3878 * hw_start_rx - start receiving
3879 * @hw: 	The hardware instance.
3880 *
3881 * This routine starts the receive function of the hardware.
3882 */
3883static void hw_start_rx(struct ksz_hw *hw)
3884{
3885	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3886
3887	/* Notify when the receive stops. */
3888	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3889
3890	writel(DMA_START, hw->io + KS_DMA_RX_START);
3891	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3892	hw->rx_stop++;
3893
3894	/* Variable overflows. */
3895	if (0 == hw->rx_stop)
3896		hw->rx_stop = 2;
3897}
3898
3899/**
3900 * hw_stop_rx - stop receiving
3901 * @hw: 	The hardware instance.
3902 *
3903 * This routine stops the receive function of the hardware.
3904 */
3905static void hw_stop_rx(struct ksz_hw *hw)
3906{
3907	hw->rx_stop = 0;
3908	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3909	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3910}
3911
3912/**
3913 * hw_start_tx - start transmitting
3914 * @hw: 	The hardware instance.
3915 *
3916 * This routine starts the transmit function of the hardware.
3917 */
3918static void hw_start_tx(struct ksz_hw *hw)
3919{
3920	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3921}
3922
3923/**
3924 * hw_stop_tx - stop transmitting
3925 * @hw: 	The hardware instance.
3926 *
3927 * This routine stops the transmit function of the hardware.
3928 */
3929static void hw_stop_tx(struct ksz_hw *hw)
3930{
3931	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_disable - disable hardware
3936 * @hw: 	The hardware instance.
3937 *
3938 * This routine disables the hardware.
3939 */
3940static void hw_disable(struct ksz_hw *hw)
3941{
3942	hw_stop_rx(hw);
3943	hw_stop_tx(hw);
3944	hw->enabled = 0;
3945}
3946
3947/**
3948 * hw_enable - enable hardware
3949 * @hw: 	The hardware instance.
3950 *
3951 * This routine enables the hardware.
3952 */
3953static void hw_enable(struct ksz_hw *hw)
3954{
3955	hw_start_tx(hw);
3956	hw_start_rx(hw);
3957	hw->enabled = 1;
3958}
3959
3960/**
3961 * hw_alloc_pkt - allocate enough descriptors for transmission
3962 * @hw: 	The hardware instance.
3963 * @length:	The length of the packet.
3964 * @physical:	Number of descriptors required.
3965 *
3966 * This function allocates descriptors for transmission.
3967 *
3968 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3969 */
3970static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3971{
3972	/* Always leave one descriptor free. */
3973	if (hw->tx_desc_info.avail <= 1)
3974		return 0;
3975
3976	/* Allocate a descriptor for transmission and mark it current. */
3977	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3978	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3979
3980	/* Keep track of number of transmit descriptors used so far. */
3981	++hw->tx_int_cnt;
3982	hw->tx_size += length;
3983
3984	/* Cannot hold on too much data. */
3985	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3986		hw->tx_int_cnt = hw->tx_int_mask + 1;
3987
3988	if (physical > hw->tx_desc_info.avail)
3989		return 1;
3990
3991	return hw->tx_desc_info.avail;
3992}
3993
3994/**
3995 * hw_send_pkt - mark packet for transmission
3996 * @hw: 	The hardware instance.
3997 *
3998 * This routine marks the packet for transmission in PCI version.
3999 */
4000static void hw_send_pkt(struct ksz_hw *hw)
4001{
4002	struct ksz_desc *cur = hw->tx_desc_info.cur;
4003
4004	cur->sw.buf.tx.last_seg = 1;
4005
4006	/* Interrupt only after specified number of descriptors used. */
4007	if (hw->tx_int_cnt > hw->tx_int_mask) {
4008		cur->sw.buf.tx.intr = 1;
4009		hw->tx_int_cnt = 0;
4010		hw->tx_size = 0;
4011	}
4012
4013	/* KSZ8842 supports port directed transmission. */
4014	cur->sw.buf.tx.dest_port = hw->dst_ports;
4015
4016	release_desc(cur);
4017
4018	writel(0, hw->io + KS_DMA_TX_START);
4019}
4020
4021static int empty_addr(u8 *addr)
4022{
4023	u32 *addr1 = (u32 *) addr;
4024	u16 *addr2 = (u16 *) &addr[4];
4025
4026	return 0 == *addr1 && 0 == *addr2;
4027}
4028
4029/**
4030 * hw_set_addr - set MAC address
4031 * @hw: 	The hardware instance.
4032 *
4033 * This routine programs the MAC address of the hardware when the address is
4034 * overridden.
4035 */
4036static void hw_set_addr(struct ksz_hw *hw)
4037{
4038	int i;
4039
4040	for (i = 0; i < ETH_ALEN; i++)
4041		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4042			hw->io + KS884X_ADDR_0_OFFSET + i);
4043
4044	sw_set_addr(hw, hw->override_addr);
4045}
4046
4047/**
4048 * hw_read_addr - read MAC address
4049 * @hw: 	The hardware instance.
4050 *
4051 * This routine retrieves the MAC address of the hardware.
4052 */
4053static void hw_read_addr(struct ksz_hw *hw)
4054{
4055	int i;
4056
4057	for (i = 0; i < ETH_ALEN; i++)
4058		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4059			KS884X_ADDR_0_OFFSET + i);
4060
4061	if (!hw->mac_override) {
4062		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4063		if (empty_addr(hw->override_addr)) {
4064			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4065			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4066			       ETH_ALEN);
4067			hw->override_addr[5] += hw->id;
4068			hw_set_addr(hw);
4069		}
4070	}
4071}
4072
4073static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4074{
4075	int i;
4076	u32 mac_addr_lo;
4077	u32 mac_addr_hi;
4078
4079	mac_addr_hi = 0;
4080	for (i = 0; i < 2; i++) {
4081		mac_addr_hi <<= 8;
4082		mac_addr_hi |= mac_addr[i];
4083	}
4084	mac_addr_hi |= ADD_ADDR_ENABLE;
4085	mac_addr_lo = 0;
4086	for (i = 2; i < 6; i++) {
4087		mac_addr_lo <<= 8;
4088		mac_addr_lo |= mac_addr[i];
4089	}
4090	index *= ADD_ADDR_INCR;
4091
4092	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4093	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4094}
4095
4096static void hw_set_add_addr(struct ksz_hw *hw)
4097{
4098	int i;
4099
4100	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4101		if (empty_addr(hw->address[i]))
4102			writel(0, hw->io + ADD_ADDR_INCR * i +
4103				KS_ADD_ADDR_0_HI);
4104		else
4105			hw_ena_add_addr(hw, i, hw->address[i]);
4106	}
4107}
4108
4109static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4110{
4111	int i;
4112	int j = ADDITIONAL_ENTRIES;
4113
4114	if (ether_addr_equal(hw->override_addr, mac_addr))
4115		return 0;
4116	for (i = 0; i < hw->addr_list_size; i++) {
4117		if (ether_addr_equal(hw->address[i], mac_addr))
4118			return 0;
4119		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4120			j = i;
4121	}
4122	if (j < ADDITIONAL_ENTRIES) {
4123		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4124		hw_ena_add_addr(hw, j, hw->address[j]);
4125		return 0;
4126	}
4127	return -1;
4128}
4129
4130static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4131{
4132	int i;
4133
4134	for (i = 0; i < hw->addr_list_size; i++) {
4135		if (ether_addr_equal(hw->address[i], mac_addr)) {
4136			eth_zero_addr(hw->address[i]);
4137			writel(0, hw->io + ADD_ADDR_INCR * i +
4138				KS_ADD_ADDR_0_HI);
4139			return 0;
4140		}
4141	}
4142	return -1;
4143}
4144
4145/**
4146 * hw_clr_multicast - clear multicast addresses
4147 * @hw: 	The hardware instance.
4148 *
4149 * This routine removes all multicast addresses set in the hardware.
4150 */
4151static void hw_clr_multicast(struct ksz_hw *hw)
4152{
4153	int i;
4154
4155	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4156		hw->multi_bits[i] = 0;
4157
4158		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4159	}
4160}
4161
4162/**
4163 * hw_set_grp_addr - set multicast addresses
4164 * @hw: 	The hardware instance.
4165 *
4166 * This routine programs multicast addresses for the hardware to accept those
4167 * addresses.
4168 */
4169static void hw_set_grp_addr(struct ksz_hw *hw)
4170{
4171	int i;
4172	int index;
4173	int position;
4174	int value;
4175
4176	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4177
4178	for (i = 0; i < hw->multi_list_size; i++) {
4179		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4180		index = position >> 3;
4181		value = 1 << (position & 7);
4182		hw->multi_bits[index] |= (u8) value;
4183	}
4184
4185	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4186		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4187			i);
4188}
4189
4190/**
4191 * hw_set_multicast - enable or disable all multicast receiving
4192 * @hw: 	The hardware instance.
4193 * @multicast:	To turn on or off the all multicast feature.
4194 *
4195 * This routine enables/disables the hardware to accept all multicast packets.
4196 */
4197static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4198{
4199	/* Stop receiving for reconfiguration. */
4200	hw_stop_rx(hw);
4201
4202	if (multicast)
4203		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4204	else
4205		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4206
4207	if (hw->enabled)
4208		hw_start_rx(hw);
4209}
4210
4211/**
4212 * hw_set_promiscuous - enable or disable promiscuous receiving
4213 * @hw: 	The hardware instance.
4214 * @prom:	To turn on or off the promiscuous feature.
4215 *
4216 * This routine enables/disables the hardware to accept all packets.
4217 */
4218static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4219{
4220	/* Stop receiving for reconfiguration. */
4221	hw_stop_rx(hw);
4222
4223	if (prom)
4224		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4225	else
4226		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4227
4228	if (hw->enabled)
4229		hw_start_rx(hw);
4230}
4231
4232/**
4233 * sw_enable - enable the switch
4234 * @hw: 	The hardware instance.
4235 * @enable:	The flag to enable or disable the switch
4236 *
4237 * This routine is used to enable/disable the switch in KSZ8842.
4238 */
4239static void sw_enable(struct ksz_hw *hw, int enable)
4240{
4241	int port;
4242
4243	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4244		if (hw->dev_count > 1) {
4245			/* Set port-base vlan membership with host port. */
4246			sw_cfg_port_base_vlan(hw, port,
4247				HOST_MASK | (1 << port));
4248			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4249		} else {
4250			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4251			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4252		}
4253	}
4254	if (hw->dev_count > 1)
4255		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4256	else
4257		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4258
4259	if (enable)
4260		enable = KS8842_START;
4261	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4262}
4263
4264/**
4265 * sw_setup - setup the switch
4266 * @hw: 	The hardware instance.
4267 *
4268 * This routine setup the hardware switch engine for default operation.
4269 */
4270static void sw_setup(struct ksz_hw *hw)
4271{
4272	int port;
4273
4274	sw_set_global_ctrl(hw);
4275
4276	/* Enable switch broadcast storm protection at 10% percent rate. */
4277	sw_init_broad_storm(hw);
4278	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4279	for (port = 0; port < SWITCH_PORT_NUM; port++)
4280		sw_ena_broad_storm(hw, port);
4281
4282	sw_init_prio(hw);
4283
4284	sw_init_mirror(hw);
4285
4286	sw_init_prio_rate(hw);
4287
4288	sw_init_vlan(hw);
4289
4290	if (hw->features & STP_SUPPORT)
4291		sw_init_stp(hw);
4292	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4293			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4294		hw->overrides |= PAUSE_FLOW_CTRL;
4295	sw_enable(hw, 1);
4296}
4297
4298/**
4299 * ksz_start_timer - start kernel timer
4300 * @info:	Kernel timer information.
4301 * @time:	The time tick.
4302 *
4303 * This routine starts the kernel timer after the specified time tick.
4304 */
4305static void ksz_start_timer(struct ksz_timer_info *info, int time)
4306{
4307	info->cnt = 0;
4308	info->timer.expires = jiffies + time;
4309	add_timer(&info->timer);
4310
4311	/* infinity */
4312	info->max = -1;
4313}
4314
4315/**
4316 * ksz_stop_timer - stop kernel timer
4317 * @info:	Kernel timer information.
4318 *
4319 * This routine stops the kernel timer.
4320 */
4321static void ksz_stop_timer(struct ksz_timer_info *info)
4322{
4323	if (info->max) {
4324		info->max = 0;
4325		del_timer_sync(&info->timer);
4326	}
4327}
4328
4329static void ksz_init_timer(struct ksz_timer_info *info, int period,
4330	void (*function)(struct timer_list *))
4331{
4332	info->max = 0;
4333	info->period = period;
4334	timer_setup(&info->timer, function, 0);
 
 
4335}
4336
4337static void ksz_update_timer(struct ksz_timer_info *info)
4338{
4339	++info->cnt;
4340	if (info->max > 0) {
4341		if (info->cnt < info->max) {
4342			info->timer.expires = jiffies + info->period;
4343			add_timer(&info->timer);
4344		} else
4345			info->max = 0;
4346	} else if (info->max < 0) {
4347		info->timer.expires = jiffies + info->period;
4348		add_timer(&info->timer);
4349	}
4350}
4351
4352/**
4353 * ksz_alloc_soft_desc - allocate software descriptors
4354 * @desc_info:	Descriptor information structure.
4355 * @transmit:	Indication that descriptors are for transmit.
4356 *
4357 * This local function allocates software descriptors for manipulation in
4358 * memory.
4359 *
4360 * Return 0 if successful.
4361 */
4362static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4363{
4364	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4365				  GFP_KERNEL);
4366	if (!desc_info->ring)
4367		return 1;
4368	hw_init_desc(desc_info, transmit);
4369	return 0;
4370}
4371
4372/**
4373 * ksz_alloc_desc - allocate hardware descriptors
4374 * @adapter:	Adapter information structure.
4375 *
4376 * This local function allocates hardware descriptors for receiving and
4377 * transmitting.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_desc(struct dev_info *adapter)
4382{
4383	struct ksz_hw *hw = &adapter->hw;
4384	int offset;
4385
4386	/* Allocate memory for RX & TX descriptors. */
4387	adapter->desc_pool.alloc_size =
4388		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4389		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4390		DESC_ALIGNMENT;
4391
4392	adapter->desc_pool.alloc_virt =
4393		pci_zalloc_consistent(adapter->pdev,
4394				      adapter->desc_pool.alloc_size,
4395				      &adapter->desc_pool.dma_addr);
4396	if (adapter->desc_pool.alloc_virt == NULL) {
4397		adapter->desc_pool.alloc_size = 0;
4398		return 1;
4399	}
 
4400
4401	/* Align to the next cache line boundary. */
4402	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4403		(DESC_ALIGNMENT -
4404		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4405	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4406	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4407
4408	/* Allocate receive/transmit descriptors. */
4409	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4410		adapter->desc_pool.virt;
4411	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4412	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4413	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4414		(adapter->desc_pool.virt + offset);
4415	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4416
4417	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4418		return 1;
4419	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4420		return 1;
4421
4422	return 0;
4423}
4424
4425/**
4426 * free_dma_buf - release DMA buffer resources
4427 * @adapter:	Adapter information structure.
4428 *
4429 * This routine is just a helper function to release the DMA buffer resources.
4430 */
4431static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4432	int direction)
4433{
4434	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4435	dev_kfree_skb(dma_buf->skb);
4436	dma_buf->skb = NULL;
4437	dma_buf->dma = 0;
4438}
4439
4440/**
4441 * ksz_init_rx_buffers - initialize receive descriptors
4442 * @adapter:	Adapter information structure.
4443 *
4444 * This routine initializes DMA buffers for receiving.
4445 */
4446static void ksz_init_rx_buffers(struct dev_info *adapter)
4447{
4448	int i;
4449	struct ksz_desc *desc;
4450	struct ksz_dma_buf *dma_buf;
4451	struct ksz_hw *hw = &adapter->hw;
4452	struct ksz_desc_info *info = &hw->rx_desc_info;
4453
4454	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4455		get_rx_pkt(info, &desc);
4456
4457		dma_buf = DMA_BUFFER(desc);
4458		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4459			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4460		dma_buf->len = adapter->mtu;
4461		if (!dma_buf->skb)
4462			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4463		if (dma_buf->skb && !dma_buf->dma)
4464			dma_buf->dma = pci_map_single(
4465				adapter->pdev,
4466				skb_tail_pointer(dma_buf->skb),
4467				dma_buf->len,
4468				PCI_DMA_FROMDEVICE);
4469
4470		/* Set descriptor. */
4471		set_rx_buf(desc, dma_buf->dma);
4472		set_rx_len(desc, dma_buf->len);
4473		release_desc(desc);
4474	}
4475}
4476
4477/**
4478 * ksz_alloc_mem - allocate memory for hardware descriptors
4479 * @adapter:	Adapter information structure.
4480 *
4481 * This function allocates memory for use by hardware descriptors for receiving
4482 * and transmitting.
4483 *
4484 * Return 0 if successful.
4485 */
4486static int ksz_alloc_mem(struct dev_info *adapter)
4487{
4488	struct ksz_hw *hw = &adapter->hw;
4489
4490	/* Determine the number of receive and transmit descriptors. */
4491	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4492	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4493
4494	/* Determine how many descriptors to skip transmit interrupt. */
4495	hw->tx_int_cnt = 0;
4496	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4497	if (hw->tx_int_mask > 8)
4498		hw->tx_int_mask = 8;
4499	while (hw->tx_int_mask) {
4500		hw->tx_int_cnt++;
4501		hw->tx_int_mask >>= 1;
4502	}
4503	if (hw->tx_int_cnt) {
4504		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4505		hw->tx_int_cnt = 0;
4506	}
4507
4508	/* Determine the descriptor size. */
4509	hw->rx_desc_info.size =
4510		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4511		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4512	hw->tx_desc_info.size =
4513		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4514		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4515	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4516		pr_alert("Hardware descriptor size not right!\n");
4517	ksz_check_desc_num(&hw->rx_desc_info);
4518	ksz_check_desc_num(&hw->tx_desc_info);
4519
4520	/* Allocate descriptors. */
4521	if (ksz_alloc_desc(adapter))
4522		return 1;
4523
4524	return 0;
4525}
4526
4527/**
4528 * ksz_free_desc - free software and hardware descriptors
4529 * @adapter:	Adapter information structure.
4530 *
4531 * This local routine frees the software and hardware descriptors allocated by
4532 * ksz_alloc_desc().
4533 */
4534static void ksz_free_desc(struct dev_info *adapter)
4535{
4536	struct ksz_hw *hw = &adapter->hw;
4537
4538	/* Reset descriptor. */
4539	hw->rx_desc_info.ring_virt = NULL;
4540	hw->tx_desc_info.ring_virt = NULL;
4541	hw->rx_desc_info.ring_phys = 0;
4542	hw->tx_desc_info.ring_phys = 0;
4543
4544	/* Free memory. */
4545	if (adapter->desc_pool.alloc_virt)
4546		pci_free_consistent(
4547			adapter->pdev,
4548			adapter->desc_pool.alloc_size,
4549			adapter->desc_pool.alloc_virt,
4550			adapter->desc_pool.dma_addr);
4551
4552	/* Reset resource pool. */
4553	adapter->desc_pool.alloc_size = 0;
4554	adapter->desc_pool.alloc_virt = NULL;
4555
4556	kfree(hw->rx_desc_info.ring);
4557	hw->rx_desc_info.ring = NULL;
4558	kfree(hw->tx_desc_info.ring);
4559	hw->tx_desc_info.ring = NULL;
4560}
4561
4562/**
4563 * ksz_free_buffers - free buffers used in the descriptors
4564 * @adapter:	Adapter information structure.
4565 * @desc_info:	Descriptor information structure.
4566 *
4567 * This local routine frees buffers used in the DMA buffers.
4568 */
4569static void ksz_free_buffers(struct dev_info *adapter,
4570	struct ksz_desc_info *desc_info, int direction)
4571{
4572	int i;
4573	struct ksz_dma_buf *dma_buf;
4574	struct ksz_desc *desc = desc_info->ring;
4575
4576	for (i = 0; i < desc_info->alloc; i++) {
4577		dma_buf = DMA_BUFFER(desc);
4578		if (dma_buf->skb)
4579			free_dma_buf(adapter, dma_buf, direction);
4580		desc++;
4581	}
4582}
4583
4584/**
4585 * ksz_free_mem - free all resources used by descriptors
4586 * @adapter:	Adapter information structure.
4587 *
4588 * This local routine frees all the resources allocated by ksz_alloc_mem().
4589 */
4590static void ksz_free_mem(struct dev_info *adapter)
4591{
4592	/* Free transmit buffers. */
4593	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4594		PCI_DMA_TODEVICE);
4595
4596	/* Free receive buffers. */
4597	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4598		PCI_DMA_FROMDEVICE);
4599
4600	/* Free descriptors. */
4601	ksz_free_desc(adapter);
4602}
4603
4604static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4605	u64 *counter)
4606{
4607	int i;
4608	int mib;
4609	int port;
4610	struct ksz_port_mib *port_mib;
4611
4612	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4613	for (i = 0, port = first; i < cnt; i++, port++) {
4614		port_mib = &hw->port_mib[port];
4615		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4616			counter[mib] += port_mib->counter[mib];
4617	}
4618}
4619
4620/**
4621 * send_packet - send packet
4622 * @skb:	Socket buffer.
4623 * @dev:	Network device.
4624 *
4625 * This routine is used to send a packet out to the network.
4626 */
4627static void send_packet(struct sk_buff *skb, struct net_device *dev)
4628{
4629	struct ksz_desc *desc;
4630	struct ksz_desc *first;
4631	struct dev_priv *priv = netdev_priv(dev);
4632	struct dev_info *hw_priv = priv->adapter;
4633	struct ksz_hw *hw = &hw_priv->hw;
4634	struct ksz_desc_info *info = &hw->tx_desc_info;
4635	struct ksz_dma_buf *dma_buf;
4636	int len;
4637	int last_frag = skb_shinfo(skb)->nr_frags;
4638
4639	/*
4640	 * KSZ8842 with multiple device interfaces needs to be told which port
4641	 * to send.
4642	 */
4643	if (hw->dev_count > 1)
4644		hw->dst_ports = 1 << priv->port.first_port;
4645
4646	/* Hardware will pad the length to 60. */
4647	len = skb->len;
4648
4649	/* Remember the very first descriptor. */
4650	first = info->cur;
4651	desc = first;
4652
4653	dma_buf = DMA_BUFFER(desc);
4654	if (last_frag) {
4655		int frag;
4656		skb_frag_t *this_frag;
4657
4658		dma_buf->len = skb_headlen(skb);
4659
4660		dma_buf->dma = pci_map_single(
4661			hw_priv->pdev, skb->data, dma_buf->len,
4662			PCI_DMA_TODEVICE);
4663		set_tx_buf(desc, dma_buf->dma);
4664		set_tx_len(desc, dma_buf->len);
4665
4666		frag = 0;
4667		do {
4668			this_frag = &skb_shinfo(skb)->frags[frag];
4669
4670			/* Get a new descriptor. */
4671			get_tx_pkt(info, &desc);
4672
4673			/* Keep track of descriptors used so far. */
4674			++hw->tx_int_cnt;
4675
4676			dma_buf = DMA_BUFFER(desc);
4677			dma_buf->len = skb_frag_size(this_frag);
4678
4679			dma_buf->dma = pci_map_single(
4680				hw_priv->pdev,
4681				skb_frag_address(this_frag),
4682				dma_buf->len,
4683				PCI_DMA_TODEVICE);
4684			set_tx_buf(desc, dma_buf->dma);
4685			set_tx_len(desc, dma_buf->len);
4686
4687			frag++;
4688			if (frag == last_frag)
4689				break;
4690
4691			/* Do not release the last descriptor here. */
4692			release_desc(desc);
4693		} while (1);
4694
4695		/* current points to the last descriptor. */
4696		info->cur = desc;
4697
4698		/* Release the first descriptor. */
4699		release_desc(first);
4700	} else {
4701		dma_buf->len = len;
4702
4703		dma_buf->dma = pci_map_single(
4704			hw_priv->pdev, skb->data, dma_buf->len,
4705			PCI_DMA_TODEVICE);
4706		set_tx_buf(desc, dma_buf->dma);
4707		set_tx_len(desc, dma_buf->len);
4708	}
4709
4710	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4711		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4712		(desc)->sw.buf.tx.csum_gen_udp = 1;
4713	}
4714
4715	/*
4716	 * The last descriptor holds the packet so that it can be returned to
4717	 * network subsystem after all descriptors are transmitted.
4718	 */
4719	dma_buf->skb = skb;
4720
4721	hw_send_pkt(hw);
4722
4723	/* Update transmit statistics. */
4724	dev->stats.tx_packets++;
4725	dev->stats.tx_bytes += len;
4726}
4727
4728/**
4729 * transmit_cleanup - clean up transmit descriptors
4730 * @dev:	Network device.
4731 *
4732 * This routine is called to clean up the transmitted buffers.
4733 */
4734static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735{
4736	int last;
4737	union desc_stat status;
4738	struct ksz_hw *hw = &hw_priv->hw;
4739	struct ksz_desc_info *info = &hw->tx_desc_info;
4740	struct ksz_desc *desc;
4741	struct ksz_dma_buf *dma_buf;
4742	struct net_device *dev = NULL;
4743
4744	spin_lock_irq(&hw_priv->hwlock);
4745	last = info->last;
4746
4747	while (info->avail < info->alloc) {
4748		/* Get next descriptor which is not hardware owned. */
4749		desc = &info->ring[last];
4750		status.data = le32_to_cpu(desc->phw->ctrl.data);
4751		if (status.tx.hw_owned) {
4752			if (normal)
4753				break;
4754			else
4755				reset_desc(desc, status);
4756		}
4757
4758		dma_buf = DMA_BUFFER(desc);
4759		pci_unmap_single(
4760			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4761			PCI_DMA_TODEVICE);
4762
4763		/* This descriptor contains the last buffer in the packet. */
4764		if (dma_buf->skb) {
4765			dev = dma_buf->skb->dev;
4766
4767			/* Release the packet back to network subsystem. */
4768			dev_kfree_skb_irq(dma_buf->skb);
4769			dma_buf->skb = NULL;
4770		}
4771
4772		/* Free the transmitted descriptor. */
4773		last++;
4774		last &= info->mask;
4775		info->avail++;
4776	}
4777	info->last = last;
4778	spin_unlock_irq(&hw_priv->hwlock);
4779
4780	/* Notify the network subsystem that the packet has been sent. */
4781	if (dev)
4782		netif_trans_update(dev);
4783}
4784
4785/**
4786 * transmit_done - transmit done processing
4787 * @dev:	Network device.
4788 *
4789 * This routine is called when the transmit interrupt is triggered, indicating
4790 * either a packet is sent successfully or there are transmit errors.
4791 */
4792static void tx_done(struct dev_info *hw_priv)
4793{
4794	struct ksz_hw *hw = &hw_priv->hw;
4795	int port;
4796
4797	transmit_cleanup(hw_priv, 1);
4798
4799	for (port = 0; port < hw->dev_count; port++) {
4800		struct net_device *dev = hw->port_info[port].pdev;
4801
4802		if (netif_running(dev) && netif_queue_stopped(dev))
4803			netif_wake_queue(dev);
4804	}
4805}
4806
4807static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4808{
4809	skb->dev = old->dev;
4810	skb->protocol = old->protocol;
4811	skb->ip_summed = old->ip_summed;
4812	skb->csum = old->csum;
4813	skb_set_network_header(skb, ETH_HLEN);
4814
4815	dev_consume_skb_any(old);
4816}
4817
4818/**
4819 * netdev_tx - send out packet
4820 * @skb:	Socket buffer.
4821 * @dev:	Network device.
4822 *
4823 * This function is used by the upper network layer to send out a packet.
4824 *
4825 * Return 0 if successful; otherwise an error code indicating failure.
4826 */
4827static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4828{
4829	struct dev_priv *priv = netdev_priv(dev);
4830	struct dev_info *hw_priv = priv->adapter;
4831	struct ksz_hw *hw = &hw_priv->hw;
4832	int left;
4833	int num = 1;
4834	int rc = 0;
4835
4836	if (hw->features & SMALL_PACKET_TX_BUG) {
4837		struct sk_buff *org_skb = skb;
4838
4839		if (skb->len <= 48) {
4840			if (skb_end_pointer(skb) - skb->data >= 50) {
4841				memset(&skb->data[skb->len], 0, 50 - skb->len);
4842				skb->len = 50;
4843			} else {
4844				skb = netdev_alloc_skb(dev, 50);
4845				if (!skb)
4846					return NETDEV_TX_BUSY;
4847				memcpy(skb->data, org_skb->data, org_skb->len);
4848				memset(&skb->data[org_skb->len], 0,
4849					50 - org_skb->len);
4850				skb->len = 50;
4851				copy_old_skb(org_skb, skb);
4852			}
4853		}
4854	}
4855
4856	spin_lock_irq(&hw_priv->hwlock);
4857
4858	num = skb_shinfo(skb)->nr_frags + 1;
4859	left = hw_alloc_pkt(hw, skb->len, num);
4860	if (left) {
4861		if (left < num ||
4862		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4863		     skb->protocol == htons(ETH_P_IPV6))) {
4864			struct sk_buff *org_skb = skb;
4865
4866			skb = netdev_alloc_skb(dev, org_skb->len);
4867			if (!skb) {
4868				rc = NETDEV_TX_BUSY;
4869				goto unlock;
4870			}
4871			skb_copy_and_csum_dev(org_skb, skb->data);
4872			org_skb->ip_summed = CHECKSUM_NONE;
4873			skb->len = org_skb->len;
4874			copy_old_skb(org_skb, skb);
4875		}
4876		send_packet(skb, dev);
4877		if (left <= num)
4878			netif_stop_queue(dev);
4879	} else {
4880		/* Stop the transmit queue until packet is allocated. */
4881		netif_stop_queue(dev);
4882		rc = NETDEV_TX_BUSY;
4883	}
4884unlock:
4885	spin_unlock_irq(&hw_priv->hwlock);
4886
4887	return rc;
4888}
4889
4890/**
4891 * netdev_tx_timeout - transmit timeout processing
4892 * @dev:	Network device.
4893 *
4894 * This routine is called when the transmit timer expires.  That indicates the
4895 * hardware is not running correctly because transmit interrupts are not
4896 * triggered to free up resources so that the transmit routine can continue
4897 * sending out packets.  The hardware is reset to correct the problem.
4898 */
4899static void netdev_tx_timeout(struct net_device *dev)
4900{
4901	static unsigned long last_reset;
4902
4903	struct dev_priv *priv = netdev_priv(dev);
4904	struct dev_info *hw_priv = priv->adapter;
4905	struct ksz_hw *hw = &hw_priv->hw;
4906	int port;
4907
4908	if (hw->dev_count > 1) {
4909		/*
4910		 * Only reset the hardware if time between calls is long
4911		 * enough.
4912		 */
4913		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914			hw_priv = NULL;
4915	}
4916
4917	last_reset = jiffies;
4918	if (hw_priv) {
4919		hw_dis_intr(hw);
4920		hw_disable(hw);
4921
4922		transmit_cleanup(hw_priv, 0);
4923		hw_reset_pkts(&hw->rx_desc_info);
4924		hw_reset_pkts(&hw->tx_desc_info);
4925		ksz_init_rx_buffers(hw_priv);
4926
4927		hw_reset(hw);
4928
4929		hw_set_desc_base(hw,
4930			hw->tx_desc_info.ring_phys,
4931			hw->rx_desc_info.ring_phys);
4932		hw_set_addr(hw);
4933		if (hw->all_multi)
4934			hw_set_multicast(hw, hw->all_multi);
4935		else if (hw->multi_list_size)
4936			hw_set_grp_addr(hw);
4937
4938		if (hw->dev_count > 1) {
4939			hw_set_add_addr(hw);
4940			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941				struct net_device *port_dev;
4942
4943				port_set_stp_state(hw, port,
4944					STP_STATE_DISABLED);
4945
4946				port_dev = hw->port_info[port].pdev;
4947				if (netif_running(port_dev))
4948					port_set_stp_state(hw, port,
4949						STP_STATE_SIMPLE);
4950			}
4951		}
4952
4953		hw_enable(hw);
4954		hw_ena_intr(hw);
4955	}
4956
4957	netif_trans_update(dev);
4958	netif_wake_queue(dev);
4959}
4960
4961static inline void csum_verified(struct sk_buff *skb)
4962{
4963	unsigned short protocol;
4964	struct iphdr *iph;
4965
4966	protocol = skb->protocol;
4967	skb_reset_network_header(skb);
4968	iph = (struct iphdr *) skb_network_header(skb);
4969	if (protocol == htons(ETH_P_8021Q)) {
4970		protocol = iph->tot_len;
4971		skb_set_network_header(skb, VLAN_HLEN);
4972		iph = (struct iphdr *) skb_network_header(skb);
4973	}
4974	if (protocol == htons(ETH_P_IP)) {
4975		if (iph->protocol == IPPROTO_TCP)
4976			skb->ip_summed = CHECKSUM_UNNECESSARY;
4977	}
4978}
4979
4980static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981	struct ksz_desc *desc, union desc_stat status)
4982{
4983	int packet_len;
4984	struct dev_priv *priv = netdev_priv(dev);
4985	struct dev_info *hw_priv = priv->adapter;
4986	struct ksz_dma_buf *dma_buf;
4987	struct sk_buff *skb;
4988	int rx_status;
4989
4990	/* Received length includes 4-byte CRC. */
4991	packet_len = status.rx.frame_len - 4;
4992
4993	dma_buf = DMA_BUFFER(desc);
4994	pci_dma_sync_single_for_cpu(
4995		hw_priv->pdev, dma_buf->dma, packet_len + 4,
4996		PCI_DMA_FROMDEVICE);
4997
4998	do {
4999		/* skb->data != skb->head */
5000		skb = netdev_alloc_skb(dev, packet_len + 2);
5001		if (!skb) {
5002			dev->stats.rx_dropped++;
5003			return -ENOMEM;
5004		}
5005
5006		/*
5007		 * Align socket buffer in 4-byte boundary for better
5008		 * performance.
5009		 */
5010		skb_reserve(skb, 2);
5011
5012		skb_put_data(skb, dma_buf->skb->data, packet_len);
 
5013	} while (0);
5014
5015	skb->protocol = eth_type_trans(skb, dev);
5016
5017	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5018		csum_verified(skb);
5019
5020	/* Update receive statistics. */
5021	dev->stats.rx_packets++;
5022	dev->stats.rx_bytes += packet_len;
5023
5024	/* Notify upper layer for received packet. */
5025	rx_status = netif_rx(skb);
5026
5027	return 0;
5028}
5029
5030static int dev_rcv_packets(struct dev_info *hw_priv)
5031{
5032	int next;
5033	union desc_stat status;
5034	struct ksz_hw *hw = &hw_priv->hw;
5035	struct net_device *dev = hw->port_info[0].pdev;
5036	struct ksz_desc_info *info = &hw->rx_desc_info;
5037	int left = info->alloc;
5038	struct ksz_desc *desc;
5039	int received = 0;
5040
5041	next = info->next;
5042	while (left--) {
5043		/* Get next descriptor which is not hardware owned. */
5044		desc = &info->ring[next];
5045		status.data = le32_to_cpu(desc->phw->ctrl.data);
5046		if (status.rx.hw_owned)
5047			break;
5048
5049		/* Status valid only when last descriptor bit is set. */
5050		if (status.rx.last_desc && status.rx.first_desc) {
5051			if (rx_proc(dev, hw, desc, status))
5052				goto release_packet;
5053			received++;
5054		}
5055
5056release_packet:
5057		release_desc(desc);
5058		next++;
5059		next &= info->mask;
5060	}
5061	info->next = next;
5062
5063	return received;
5064}
5065
5066static int port_rcv_packets(struct dev_info *hw_priv)
5067{
5068	int next;
5069	union desc_stat status;
5070	struct ksz_hw *hw = &hw_priv->hw;
5071	struct net_device *dev = hw->port_info[0].pdev;
5072	struct ksz_desc_info *info = &hw->rx_desc_info;
5073	int left = info->alloc;
5074	struct ksz_desc *desc;
5075	int received = 0;
5076
5077	next = info->next;
5078	while (left--) {
5079		/* Get next descriptor which is not hardware owned. */
5080		desc = &info->ring[next];
5081		status.data = le32_to_cpu(desc->phw->ctrl.data);
5082		if (status.rx.hw_owned)
5083			break;
5084
5085		if (hw->dev_count > 1) {
5086			/* Get received port number. */
5087			int p = HW_TO_DEV_PORT(status.rx.src_port);
5088
5089			dev = hw->port_info[p].pdev;
5090			if (!netif_running(dev))
5091				goto release_packet;
5092		}
5093
5094		/* Status valid only when last descriptor bit is set. */
5095		if (status.rx.last_desc && status.rx.first_desc) {
5096			if (rx_proc(dev, hw, desc, status))
5097				goto release_packet;
5098			received++;
5099		}
5100
5101release_packet:
5102		release_desc(desc);
5103		next++;
5104		next &= info->mask;
5105	}
5106	info->next = next;
5107
5108	return received;
5109}
5110
5111static int dev_rcv_special(struct dev_info *hw_priv)
5112{
5113	int next;
5114	union desc_stat status;
5115	struct ksz_hw *hw = &hw_priv->hw;
5116	struct net_device *dev = hw->port_info[0].pdev;
5117	struct ksz_desc_info *info = &hw->rx_desc_info;
5118	int left = info->alloc;
5119	struct ksz_desc *desc;
5120	int received = 0;
5121
5122	next = info->next;
5123	while (left--) {
5124		/* Get next descriptor which is not hardware owned. */
5125		desc = &info->ring[next];
5126		status.data = le32_to_cpu(desc->phw->ctrl.data);
5127		if (status.rx.hw_owned)
5128			break;
5129
5130		if (hw->dev_count > 1) {
5131			/* Get received port number. */
5132			int p = HW_TO_DEV_PORT(status.rx.src_port);
5133
5134			dev = hw->port_info[p].pdev;
5135			if (!netif_running(dev))
5136				goto release_packet;
5137		}
5138
5139		/* Status valid only when last descriptor bit is set. */
5140		if (status.rx.last_desc && status.rx.first_desc) {
5141			/*
5142			 * Receive without error.  With receive errors
5143			 * disabled, packets with receive errors will be
5144			 * dropped, so no need to check the error bit.
5145			 */
5146			if (!status.rx.error || (status.data &
5147					KS_DESC_RX_ERROR_COND) ==
5148					KS_DESC_RX_ERROR_TOO_LONG) {
5149				if (rx_proc(dev, hw, desc, status))
5150					goto release_packet;
5151				received++;
5152			} else {
5153				struct dev_priv *priv = netdev_priv(dev);
5154
5155				/* Update receive error statistics. */
5156				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5157			}
5158		}
5159
5160release_packet:
5161		release_desc(desc);
5162		next++;
5163		next &= info->mask;
5164	}
5165	info->next = next;
5166
5167	return received;
5168}
5169
5170static void rx_proc_task(unsigned long data)
5171{
5172	struct dev_info *hw_priv = (struct dev_info *) data;
5173	struct ksz_hw *hw = &hw_priv->hw;
5174
5175	if (!hw->enabled)
5176		return;
5177	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5178
5179		/* In case receive process is suspended because of overrun. */
5180		hw_resume_rx(hw);
5181
5182		/* tasklets are interruptible. */
5183		spin_lock_irq(&hw_priv->hwlock);
5184		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5185		spin_unlock_irq(&hw_priv->hwlock);
5186	} else {
5187		hw_ack_intr(hw, KS884X_INT_RX);
5188		tasklet_schedule(&hw_priv->rx_tasklet);
5189	}
5190}
5191
5192static void tx_proc_task(unsigned long data)
5193{
5194	struct dev_info *hw_priv = (struct dev_info *) data;
5195	struct ksz_hw *hw = &hw_priv->hw;
5196
5197	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5198
5199	tx_done(hw_priv);
5200
5201	/* tasklets are interruptible. */
5202	spin_lock_irq(&hw_priv->hwlock);
5203	hw_turn_on_intr(hw, KS884X_INT_TX);
5204	spin_unlock_irq(&hw_priv->hwlock);
5205}
5206
5207static inline void handle_rx_stop(struct ksz_hw *hw)
5208{
5209	/* Receive just has been stopped. */
5210	if (0 == hw->rx_stop)
5211		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5212	else if (hw->rx_stop > 1) {
5213		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5214			hw_start_rx(hw);
5215		} else {
5216			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5217			hw->rx_stop = 0;
5218		}
5219	} else
5220		/* Receive just has been started. */
5221		hw->rx_stop++;
5222}
5223
5224/**
5225 * netdev_intr - interrupt handling
5226 * @irq:	Interrupt number.
5227 * @dev_id:	Network device.
5228 *
5229 * This function is called by upper network layer to signal interrupt.
5230 *
5231 * Return IRQ_HANDLED if interrupt is handled.
5232 */
5233static irqreturn_t netdev_intr(int irq, void *dev_id)
5234{
5235	uint int_enable = 0;
5236	struct net_device *dev = (struct net_device *) dev_id;
5237	struct dev_priv *priv = netdev_priv(dev);
5238	struct dev_info *hw_priv = priv->adapter;
5239	struct ksz_hw *hw = &hw_priv->hw;
5240
5241	spin_lock(&hw_priv->hwlock);
5242
5243	hw_read_intr(hw, &int_enable);
5244
5245	/* Not our interrupt! */
5246	if (!int_enable) {
5247		spin_unlock(&hw_priv->hwlock);
5248		return IRQ_NONE;
5249	}
5250
5251	do {
5252		hw_ack_intr(hw, int_enable);
5253		int_enable &= hw->intr_mask;
5254
5255		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5256			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5257			tasklet_schedule(&hw_priv->tx_tasklet);
5258		}
5259
5260		if (likely(int_enable & KS884X_INT_RX)) {
5261			hw_dis_intr_bit(hw, KS884X_INT_RX);
5262			tasklet_schedule(&hw_priv->rx_tasklet);
5263		}
5264
5265		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5266			dev->stats.rx_fifo_errors++;
5267			hw_resume_rx(hw);
5268		}
5269
5270		if (unlikely(int_enable & KS884X_INT_PHY)) {
5271			struct ksz_port *port = &priv->port;
5272
5273			hw->features |= LINK_INT_WORKING;
5274			port_get_link_speed(port);
5275		}
5276
5277		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5278			handle_rx_stop(hw);
5279			break;
5280		}
5281
5282		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5283			u32 data;
5284
5285			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5286			pr_info("Tx stopped\n");
5287			data = readl(hw->io + KS_DMA_TX_CTRL);
5288			if (!(data & DMA_TX_ENABLE))
5289				pr_info("Tx disabled\n");
5290			break;
5291		}
5292	} while (0);
5293
5294	hw_ena_intr(hw);
5295
5296	spin_unlock(&hw_priv->hwlock);
5297
5298	return IRQ_HANDLED;
5299}
5300
5301/*
5302 * Linux network device functions
5303 */
5304
5305static unsigned long next_jiffies;
5306
5307#ifdef CONFIG_NET_POLL_CONTROLLER
5308static void netdev_netpoll(struct net_device *dev)
5309{
5310	struct dev_priv *priv = netdev_priv(dev);
5311	struct dev_info *hw_priv = priv->adapter;
5312
5313	hw_dis_intr(&hw_priv->hw);
5314	netdev_intr(dev->irq, dev);
5315}
5316#endif
5317
5318static void bridge_change(struct ksz_hw *hw)
5319{
5320	int port;
5321	u8  member;
5322	struct ksz_switch *sw = hw->ksz_switch;
5323
5324	/* No ports in forwarding state. */
5325	if (!sw->member) {
5326		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5327		sw_block_addr(hw);
5328	}
5329	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5330		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5331			member = HOST_MASK | sw->member;
5332		else
5333			member = HOST_MASK | (1 << port);
5334		if (member != sw->port_cfg[port].member)
5335			sw_cfg_port_base_vlan(hw, port, member);
5336	}
5337}
5338
5339/**
5340 * netdev_close - close network device
5341 * @dev:	Network device.
5342 *
5343 * This function process the close operation of network device.  This is caused
5344 * by the user command "ifconfig ethX down."
5345 *
5346 * Return 0 if successful; otherwise an error code indicating failure.
5347 */
5348static int netdev_close(struct net_device *dev)
5349{
5350	struct dev_priv *priv = netdev_priv(dev);
5351	struct dev_info *hw_priv = priv->adapter;
5352	struct ksz_port *port = &priv->port;
5353	struct ksz_hw *hw = &hw_priv->hw;
5354	int pi;
5355
5356	netif_stop_queue(dev);
5357
5358	ksz_stop_timer(&priv->monitor_timer_info);
5359
5360	/* Need to shut the port manually in multiple device interfaces mode. */
5361	if (hw->dev_count > 1) {
5362		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5363
5364		/* Port is closed.  Need to change bridge setting. */
5365		if (hw->features & STP_SUPPORT) {
5366			pi = 1 << port->first_port;
5367			if (hw->ksz_switch->member & pi) {
5368				hw->ksz_switch->member &= ~pi;
5369				bridge_change(hw);
5370			}
5371		}
5372	}
5373	if (port->first_port > 0)
5374		hw_del_addr(hw, dev->dev_addr);
5375	if (!hw_priv->wol_enable)
5376		port_set_power_saving(port, true);
5377
5378	if (priv->multicast)
5379		--hw->all_multi;
5380	if (priv->promiscuous)
5381		--hw->promiscuous;
5382
5383	hw_priv->opened--;
5384	if (!(hw_priv->opened)) {
5385		ksz_stop_timer(&hw_priv->mib_timer_info);
5386		flush_work(&hw_priv->mib_read);
5387
5388		hw_dis_intr(hw);
5389		hw_disable(hw);
5390		hw_clr_multicast(hw);
5391
5392		/* Delay for receive task to stop scheduling itself. */
5393		msleep(2000 / HZ);
5394
5395		tasklet_kill(&hw_priv->rx_tasklet);
5396		tasklet_kill(&hw_priv->tx_tasklet);
5397		free_irq(dev->irq, hw_priv->dev);
5398
5399		transmit_cleanup(hw_priv, 0);
5400		hw_reset_pkts(&hw->rx_desc_info);
5401		hw_reset_pkts(&hw->tx_desc_info);
5402
5403		/* Clean out static MAC table when the switch is shutdown. */
5404		if (hw->features & STP_SUPPORT)
5405			sw_clr_sta_mac_table(hw);
5406	}
5407
5408	return 0;
5409}
5410
5411static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5412{
5413	if (hw->ksz_switch) {
5414		u32 data;
5415
5416		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5417		if (hw->features & RX_HUGE_FRAME)
5418			data |= SWITCH_HUGE_PACKET;
5419		else
5420			data &= ~SWITCH_HUGE_PACKET;
5421		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5422	}
5423	if (hw->features & RX_HUGE_FRAME) {
5424		hw->rx_cfg |= DMA_RX_ERROR;
5425		hw_priv->dev_rcv = dev_rcv_special;
5426	} else {
5427		hw->rx_cfg &= ~DMA_RX_ERROR;
5428		if (hw->dev_count > 1)
5429			hw_priv->dev_rcv = port_rcv_packets;
5430		else
5431			hw_priv->dev_rcv = dev_rcv_packets;
5432	}
5433}
5434
5435static int prepare_hardware(struct net_device *dev)
5436{
5437	struct dev_priv *priv = netdev_priv(dev);
5438	struct dev_info *hw_priv = priv->adapter;
5439	struct ksz_hw *hw = &hw_priv->hw;
5440	int rc = 0;
5441
5442	/* Remember the network device that requests interrupts. */
5443	hw_priv->dev = dev;
5444	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5445	if (rc)
5446		return rc;
5447	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5448		     (unsigned long) hw_priv);
5449	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5450		     (unsigned long) hw_priv);
5451
5452	hw->promiscuous = 0;
5453	hw->all_multi = 0;
5454	hw->multi_list_size = 0;
5455
5456	hw_reset(hw);
5457
5458	hw_set_desc_base(hw,
5459		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5460	hw_set_addr(hw);
5461	hw_cfg_huge_frame(hw_priv, hw);
5462	ksz_init_rx_buffers(hw_priv);
5463	return 0;
5464}
5465
5466static void set_media_state(struct net_device *dev, int media_state)
5467{
5468	struct dev_priv *priv = netdev_priv(dev);
5469
5470	if (media_state == priv->media_state)
5471		netif_carrier_on(dev);
5472	else
5473		netif_carrier_off(dev);
5474	netif_info(priv, link, dev, "link %s\n",
5475		   media_state == priv->media_state ? "on" : "off");
5476}
5477
5478/**
5479 * netdev_open - open network device
5480 * @dev:	Network device.
5481 *
5482 * This function process the open operation of network device.  This is caused
5483 * by the user command "ifconfig ethX up."
5484 *
5485 * Return 0 if successful; otherwise an error code indicating failure.
5486 */
5487static int netdev_open(struct net_device *dev)
5488{
5489	struct dev_priv *priv = netdev_priv(dev);
5490	struct dev_info *hw_priv = priv->adapter;
5491	struct ksz_hw *hw = &hw_priv->hw;
5492	struct ksz_port *port = &priv->port;
5493	int i;
5494	int p;
5495	int rc = 0;
5496
5497	priv->multicast = 0;
5498	priv->promiscuous = 0;
5499
5500	/* Reset device statistics. */
5501	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5502	memset((void *) port->counter, 0,
5503		(sizeof(u64) * OID_COUNTER_LAST));
5504
5505	if (!(hw_priv->opened)) {
5506		rc = prepare_hardware(dev);
5507		if (rc)
5508			return rc;
5509		for (i = 0; i < hw->mib_port_cnt; i++) {
5510			if (next_jiffies < jiffies)
5511				next_jiffies = jiffies + HZ * 2;
5512			else
5513				next_jiffies += HZ * 1;
5514			hw_priv->counter[i].time = next_jiffies;
5515			hw->port_mib[i].state = media_disconnected;
5516			port_init_cnt(hw, i);
5517		}
5518		if (hw->ksz_switch)
5519			hw->port_mib[HOST_PORT].state = media_connected;
5520		else {
5521			hw_add_wol_bcast(hw);
5522			hw_cfg_wol_pme(hw, 0);
5523			hw_clr_wol_pme_status(&hw_priv->hw);
5524		}
5525	}
5526	port_set_power_saving(port, false);
5527
5528	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5529		/*
5530		 * Initialize to invalid value so that link detection
5531		 * is done.
5532		 */
5533		hw->port_info[p].partner = 0xFF;
5534		hw->port_info[p].state = media_disconnected;
5535	}
5536
5537	/* Need to open the port in multiple device interfaces mode. */
5538	if (hw->dev_count > 1) {
5539		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5540		if (port->first_port > 0)
5541			hw_add_addr(hw, dev->dev_addr);
5542	}
5543
5544	port_get_link_speed(port);
5545	if (port->force_link)
5546		port_force_link_speed(port);
5547	else
5548		port_set_link_speed(port);
5549
5550	if (!(hw_priv->opened)) {
5551		hw_setup_intr(hw);
5552		hw_enable(hw);
5553		hw_ena_intr(hw);
5554
5555		if (hw->mib_port_cnt)
5556			ksz_start_timer(&hw_priv->mib_timer_info,
5557				hw_priv->mib_timer_info.period);
5558	}
5559
5560	hw_priv->opened++;
5561
5562	ksz_start_timer(&priv->monitor_timer_info,
5563		priv->monitor_timer_info.period);
5564
5565	priv->media_state = port->linked->state;
5566
5567	set_media_state(dev, media_connected);
5568	netif_start_queue(dev);
5569
5570	return 0;
5571}
5572
5573/* RX errors = rx_errors */
5574/* RX dropped = rx_dropped */
5575/* RX overruns = rx_fifo_errors */
5576/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5577/* TX errors = tx_errors */
5578/* TX dropped = tx_dropped */
5579/* TX overruns = tx_fifo_errors */
5580/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5581/* collisions = collisions */
5582
5583/**
5584 * netdev_query_statistics - query network device statistics
5585 * @dev:	Network device.
5586 *
5587 * This function returns the statistics of the network device.  The device
5588 * needs not be opened.
5589 *
5590 * Return network device statistics.
5591 */
5592static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5593{
5594	struct dev_priv *priv = netdev_priv(dev);
5595	struct ksz_port *port = &priv->port;
5596	struct ksz_hw *hw = &priv->adapter->hw;
5597	struct ksz_port_mib *mib;
5598	int i;
5599	int p;
5600
5601	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5602	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5603
5604	/* Reset to zero to add count later. */
5605	dev->stats.multicast = 0;
5606	dev->stats.collisions = 0;
5607	dev->stats.rx_length_errors = 0;
5608	dev->stats.rx_crc_errors = 0;
5609	dev->stats.rx_frame_errors = 0;
5610	dev->stats.tx_window_errors = 0;
5611
5612	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5613		mib = &hw->port_mib[p];
5614
5615		dev->stats.multicast += (unsigned long)
5616			mib->counter[MIB_COUNTER_RX_MULTICAST];
5617
5618		dev->stats.collisions += (unsigned long)
5619			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5620
5621		dev->stats.rx_length_errors += (unsigned long)(
5622			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5623			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5624			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5625			mib->counter[MIB_COUNTER_RX_JABBER]);
5626		dev->stats.rx_crc_errors += (unsigned long)
5627			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5628		dev->stats.rx_frame_errors += (unsigned long)(
5629			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5630			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5631
5632		dev->stats.tx_window_errors += (unsigned long)
5633			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5634	}
5635
5636	return &dev->stats;
5637}
5638
5639/**
5640 * netdev_set_mac_address - set network device MAC address
5641 * @dev:	Network device.
5642 * @addr:	Buffer of MAC address.
5643 *
5644 * This function is used to set the MAC address of the network device.
5645 *
5646 * Return 0 to indicate success.
5647 */
5648static int netdev_set_mac_address(struct net_device *dev, void *addr)
5649{
5650	struct dev_priv *priv = netdev_priv(dev);
5651	struct dev_info *hw_priv = priv->adapter;
5652	struct ksz_hw *hw = &hw_priv->hw;
5653	struct sockaddr *mac = addr;
5654	uint interrupt;
5655
5656	if (priv->port.first_port > 0)
5657		hw_del_addr(hw, dev->dev_addr);
5658	else {
5659		hw->mac_override = 1;
5660		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5661	}
5662
5663	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5664
5665	interrupt = hw_block_intr(hw);
5666
5667	if (priv->port.first_port > 0)
5668		hw_add_addr(hw, dev->dev_addr);
5669	else
5670		hw_set_addr(hw);
5671	hw_restore_intr(hw, interrupt);
5672
5673	return 0;
5674}
5675
5676static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5677	struct ksz_hw *hw, int promiscuous)
5678{
5679	if (promiscuous != priv->promiscuous) {
5680		u8 prev_state = hw->promiscuous;
5681
5682		if (promiscuous)
5683			++hw->promiscuous;
5684		else
5685			--hw->promiscuous;
5686		priv->promiscuous = promiscuous;
5687
5688		/* Turn on/off promiscuous mode. */
5689		if (hw->promiscuous <= 1 && prev_state <= 1)
5690			hw_set_promiscuous(hw, hw->promiscuous);
5691
5692		/*
5693		 * Port is not in promiscuous mode, meaning it is released
5694		 * from the bridge.
5695		 */
5696		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5697		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5698			struct ksz_switch *sw = hw->ksz_switch;
5699			int port = priv->port.first_port;
5700
5701			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5702			port = 1 << port;
5703			if (sw->member & port) {
5704				sw->member &= ~port;
5705				bridge_change(hw);
5706			}
5707		}
5708	}
5709}
5710
5711static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5712	int multicast)
5713{
5714	if (multicast != priv->multicast) {
5715		u8 all_multi = hw->all_multi;
5716
5717		if (multicast)
5718			++hw->all_multi;
5719		else
5720			--hw->all_multi;
5721		priv->multicast = multicast;
5722
5723		/* Turn on/off all multicast mode. */
5724		if (hw->all_multi <= 1 && all_multi <= 1)
5725			hw_set_multicast(hw, hw->all_multi);
5726	}
5727}
5728
5729/**
5730 * netdev_set_rx_mode
5731 * @dev:	Network device.
5732 *
5733 * This routine is used to set multicast addresses or put the network device
5734 * into promiscuous mode.
5735 */
5736static void netdev_set_rx_mode(struct net_device *dev)
5737{
5738	struct dev_priv *priv = netdev_priv(dev);
5739	struct dev_info *hw_priv = priv->adapter;
5740	struct ksz_hw *hw = &hw_priv->hw;
5741	struct netdev_hw_addr *ha;
5742	int multicast = (dev->flags & IFF_ALLMULTI);
5743
5744	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5745
5746	if (hw_priv->hw.dev_count > 1)
5747		multicast |= (dev->flags & IFF_MULTICAST);
5748	dev_set_multicast(priv, hw, multicast);
5749
5750	/* Cannot use different hashes in multiple device interfaces mode. */
5751	if (hw_priv->hw.dev_count > 1)
5752		return;
5753
5754	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5755		int i = 0;
5756
5757		/* List too big to support so turn on all multicast mode. */
5758		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5759			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5760				hw->multi_list_size = MAX_MULTICAST_LIST;
5761				++hw->all_multi;
5762				hw_set_multicast(hw, hw->all_multi);
5763			}
5764			return;
5765		}
5766
5767		netdev_for_each_mc_addr(ha, dev) {
5768			if (i >= MAX_MULTICAST_LIST)
5769				break;
5770			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5771		}
5772		hw->multi_list_size = (u8) i;
5773		hw_set_grp_addr(hw);
5774	} else {
5775		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5776			--hw->all_multi;
5777			hw_set_multicast(hw, hw->all_multi);
5778		}
5779		hw->multi_list_size = 0;
5780		hw_clr_multicast(hw);
5781	}
5782}
5783
5784static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5785{
5786	struct dev_priv *priv = netdev_priv(dev);
5787	struct dev_info *hw_priv = priv->adapter;
5788	struct ksz_hw *hw = &hw_priv->hw;
5789	int hw_mtu;
5790
5791	if (netif_running(dev))
5792		return -EBUSY;
5793
5794	/* Cannot use different MTU in multiple device interfaces mode. */
5795	if (hw->dev_count > 1)
5796		if (dev != hw_priv->dev)
5797			return 0;
 
 
5798
5799	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5800	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5801		hw->features |= RX_HUGE_FRAME;
5802		hw_mtu = MAX_RX_BUF_SIZE;
5803	} else {
5804		hw->features &= ~RX_HUGE_FRAME;
5805		hw_mtu = REGULAR_RX_BUF_SIZE;
 
 
 
 
 
 
 
5806	}
5807	hw_mtu = (hw_mtu + 3) & ~3;
5808	hw_priv->mtu = hw_mtu;
5809	dev->mtu = new_mtu;
5810
5811	return 0;
5812}
5813
5814/**
5815 * netdev_ioctl - I/O control processing
5816 * @dev:	Network device.
5817 * @ifr:	Interface request structure.
5818 * @cmd:	I/O control code.
5819 *
5820 * This function is used to process I/O control calls.
5821 *
5822 * Return 0 to indicate success.
5823 */
5824static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5825{
5826	struct dev_priv *priv = netdev_priv(dev);
5827	struct dev_info *hw_priv = priv->adapter;
5828	struct ksz_hw *hw = &hw_priv->hw;
5829	struct ksz_port *port = &priv->port;
5830	int result = 0;
5831	struct mii_ioctl_data *data = if_mii(ifr);
5832
5833	if (down_interruptible(&priv->proc_sem))
5834		return -ERESTARTSYS;
5835
5836	switch (cmd) {
5837	/* Get address of MII PHY in use. */
5838	case SIOCGMIIPHY:
5839		data->phy_id = priv->id;
5840
5841		/* Fallthrough... */
5842
5843	/* Read MII PHY register. */
5844	case SIOCGMIIREG:
5845		if (data->phy_id != priv->id || data->reg_num >= 6)
5846			result = -EIO;
5847		else
5848			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5849				&data->val_out);
5850		break;
5851
5852	/* Write MII PHY register. */
5853	case SIOCSMIIREG:
5854		if (!capable(CAP_NET_ADMIN))
5855			result = -EPERM;
5856		else if (data->phy_id != priv->id || data->reg_num >= 6)
5857			result = -EIO;
5858		else
5859			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5860				data->val_in);
5861		break;
5862
5863	default:
5864		result = -EOPNOTSUPP;
5865	}
5866
5867	up(&priv->proc_sem);
5868
5869	return result;
5870}
5871
5872/*
5873 * MII support
5874 */
5875
5876/**
5877 * mdio_read - read PHY register
5878 * @dev:	Network device.
5879 * @phy_id:	The PHY id.
5880 * @reg_num:	The register number.
5881 *
5882 * This function returns the PHY register value.
5883 *
5884 * Return the register value.
5885 */
5886static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5887{
5888	struct dev_priv *priv = netdev_priv(dev);
5889	struct ksz_port *port = &priv->port;
5890	struct ksz_hw *hw = port->hw;
5891	u16 val_out;
5892
5893	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5894	return val_out;
5895}
5896
5897/**
5898 * mdio_write - set PHY register
5899 * @dev:	Network device.
5900 * @phy_id:	The PHY id.
5901 * @reg_num:	The register number.
5902 * @val:	The register value.
5903 *
5904 * This procedure sets the PHY register value.
5905 */
5906static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5907{
5908	struct dev_priv *priv = netdev_priv(dev);
5909	struct ksz_port *port = &priv->port;
5910	struct ksz_hw *hw = port->hw;
5911	int i;
5912	int pi;
5913
5914	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5915		hw_w_phy(hw, pi, reg_num << 1, val);
5916}
5917
5918/*
5919 * ethtool support
5920 */
5921
5922#define EEPROM_SIZE			0x40
5923
5924static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5925
5926#define ADVERTISED_ALL			\
5927	(ADVERTISED_10baseT_Half |	\
5928	ADVERTISED_10baseT_Full |	\
5929	ADVERTISED_100baseT_Half |	\
5930	ADVERTISED_100baseT_Full)
5931
5932/* These functions use the MII functions in mii.c. */
5933
5934/**
5935 * netdev_get_link_ksettings - get network device settings
5936 * @dev:	Network device.
5937 * @cmd:	Ethtool command.
5938 *
5939 * This function queries the PHY and returns its state in the ethtool command.
5940 *
5941 * Return 0 if successful; otherwise an error code.
5942 */
5943static int netdev_get_link_ksettings(struct net_device *dev,
5944				     struct ethtool_link_ksettings *cmd)
5945{
5946	struct dev_priv *priv = netdev_priv(dev);
5947	struct dev_info *hw_priv = priv->adapter;
5948
5949	mutex_lock(&hw_priv->lock);
5950	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5951	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5952	mutex_unlock(&hw_priv->lock);
5953
5954	/* Save advertised settings for workaround in next function. */
5955	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5956						cmd->link_modes.advertising);
5957
5958	return 0;
5959}
5960
5961/**
5962 * netdev_set_link_ksettings - set network device settings
5963 * @dev:	Network device.
5964 * @cmd:	Ethtool command.
5965 *
5966 * This function sets the PHY according to the ethtool command.
5967 *
5968 * Return 0 if successful; otherwise an error code.
5969 */
5970static int netdev_set_link_ksettings(struct net_device *dev,
5971				     const struct ethtool_link_ksettings *cmd)
5972{
5973	struct dev_priv *priv = netdev_priv(dev);
5974	struct dev_info *hw_priv = priv->adapter;
5975	struct ksz_port *port = &priv->port;
5976	struct ethtool_link_ksettings copy_cmd;
5977	u32 speed = cmd->base.speed;
5978	u32 advertising;
5979	int rc;
5980
5981	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5982						cmd->link_modes.advertising);
5983
5984	/*
5985	 * ethtool utility does not change advertised setting if auto
5986	 * negotiation is not specified explicitly.
5987	 */
5988	if (cmd->base.autoneg && priv->advertising == advertising) {
5989		advertising |= ADVERTISED_ALL;
5990		if (10 == speed)
5991			advertising &=
5992				~(ADVERTISED_100baseT_Full |
5993				ADVERTISED_100baseT_Half);
5994		else if (100 == speed)
5995			advertising &=
5996				~(ADVERTISED_10baseT_Full |
5997				ADVERTISED_10baseT_Half);
5998		if (0 == cmd->base.duplex)
5999			advertising &=
6000				~(ADVERTISED_100baseT_Full |
6001				ADVERTISED_10baseT_Full);
6002		else if (1 == cmd->base.duplex)
6003			advertising &=
6004				~(ADVERTISED_100baseT_Half |
6005				ADVERTISED_10baseT_Half);
6006	}
6007	mutex_lock(&hw_priv->lock);
6008	if (cmd->base.autoneg &&
6009	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
 
6010		port->duplex = 0;
6011		port->speed = 0;
6012		port->force_link = 0;
6013	} else {
6014		port->duplex = cmd->base.duplex + 1;
6015		if (1000 != speed)
6016			port->speed = speed;
6017		if (cmd->base.autoneg)
6018			port->force_link = 0;
6019		else
6020			port->force_link = 1;
6021	}
6022
6023	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6024	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6025						advertising);
6026	rc = mii_ethtool_set_link_ksettings(
6027		&priv->mii_if,
6028		(const struct ethtool_link_ksettings *)&copy_cmd);
6029	mutex_unlock(&hw_priv->lock);
6030	return rc;
6031}
6032
6033/**
6034 * netdev_nway_reset - restart auto-negotiation
6035 * @dev:	Network device.
6036 *
6037 * This function restarts the PHY for auto-negotiation.
6038 *
6039 * Return 0 if successful; otherwise an error code.
6040 */
6041static int netdev_nway_reset(struct net_device *dev)
6042{
6043	struct dev_priv *priv = netdev_priv(dev);
6044	struct dev_info *hw_priv = priv->adapter;
6045	int rc;
6046
6047	mutex_lock(&hw_priv->lock);
6048	rc = mii_nway_restart(&priv->mii_if);
6049	mutex_unlock(&hw_priv->lock);
6050	return rc;
6051}
6052
6053/**
6054 * netdev_get_link - get network device link status
6055 * @dev:	Network device.
6056 *
6057 * This function gets the link status from the PHY.
6058 *
6059 * Return true if PHY is linked and false otherwise.
6060 */
6061static u32 netdev_get_link(struct net_device *dev)
6062{
6063	struct dev_priv *priv = netdev_priv(dev);
6064	int rc;
6065
6066	rc = mii_link_ok(&priv->mii_if);
6067	return rc;
6068}
6069
6070/**
6071 * netdev_get_drvinfo - get network driver information
6072 * @dev:	Network device.
6073 * @info:	Ethtool driver info data structure.
6074 *
6075 * This procedure returns the driver information.
6076 */
6077static void netdev_get_drvinfo(struct net_device *dev,
6078	struct ethtool_drvinfo *info)
6079{
6080	struct dev_priv *priv = netdev_priv(dev);
6081	struct dev_info *hw_priv = priv->adapter;
6082
6083	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6084	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6085	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6086		sizeof(info->bus_info));
6087}
6088
6089/**
6090 * netdev_get_regs_len - get length of register dump
6091 * @dev:	Network device.
6092 *
6093 * This function returns the length of the register dump.
6094 *
6095 * Return length of the register dump.
6096 */
6097static struct hw_regs {
6098	int start;
6099	int end;
6100} hw_regs_range[] = {
6101	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6102	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6103	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6104	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6105	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6106	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6107	{ 0, 0 }
6108};
6109
6110static int netdev_get_regs_len(struct net_device *dev)
6111{
6112	struct hw_regs *range = hw_regs_range;
6113	int regs_len = 0x10 * sizeof(u32);
6114
6115	while (range->end > range->start) {
6116		regs_len += (range->end - range->start + 3) / 4 * 4;
6117		range++;
6118	}
6119	return regs_len;
6120}
6121
6122/**
6123 * netdev_get_regs - get register dump
6124 * @dev:	Network device.
6125 * @regs:	Ethtool registers data structure.
6126 * @ptr:	Buffer to store the register values.
6127 *
6128 * This procedure dumps the register values in the provided buffer.
6129 */
6130static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6131	void *ptr)
6132{
6133	struct dev_priv *priv = netdev_priv(dev);
6134	struct dev_info *hw_priv = priv->adapter;
6135	struct ksz_hw *hw = &hw_priv->hw;
6136	int *buf = (int *) ptr;
6137	struct hw_regs *range = hw_regs_range;
6138	int len;
6139
6140	mutex_lock(&hw_priv->lock);
6141	regs->version = 0;
6142	for (len = 0; len < 0x40; len += 4) {
6143		pci_read_config_dword(hw_priv->pdev, len, buf);
6144		buf++;
6145	}
6146	while (range->end > range->start) {
6147		for (len = range->start; len < range->end; len += 4) {
6148			*buf = readl(hw->io + len);
6149			buf++;
6150		}
6151		range++;
6152	}
6153	mutex_unlock(&hw_priv->lock);
6154}
6155
6156#define WOL_SUPPORT			\
6157	(WAKE_PHY | WAKE_MAGIC |	\
6158	WAKE_UCAST | WAKE_MCAST |	\
6159	WAKE_BCAST | WAKE_ARP)
6160
6161/**
6162 * netdev_get_wol - get Wake-on-LAN support
6163 * @dev:	Network device.
6164 * @wol:	Ethtool Wake-on-LAN data structure.
6165 *
6166 * This procedure returns Wake-on-LAN support.
6167 */
6168static void netdev_get_wol(struct net_device *dev,
6169	struct ethtool_wolinfo *wol)
6170{
6171	struct dev_priv *priv = netdev_priv(dev);
6172	struct dev_info *hw_priv = priv->adapter;
6173
6174	wol->supported = hw_priv->wol_support;
6175	wol->wolopts = hw_priv->wol_enable;
6176	memset(&wol->sopass, 0, sizeof(wol->sopass));
6177}
6178
6179/**
6180 * netdev_set_wol - set Wake-on-LAN support
6181 * @dev:	Network device.
6182 * @wol:	Ethtool Wake-on-LAN data structure.
6183 *
6184 * This function sets Wake-on-LAN support.
6185 *
6186 * Return 0 if successful; otherwise an error code.
6187 */
6188static int netdev_set_wol(struct net_device *dev,
6189	struct ethtool_wolinfo *wol)
6190{
6191	struct dev_priv *priv = netdev_priv(dev);
6192	struct dev_info *hw_priv = priv->adapter;
6193
6194	/* Need to find a way to retrieve the device IP address. */
6195	static const u8 net_addr[] = { 192, 168, 1, 1 };
6196
6197	if (wol->wolopts & ~hw_priv->wol_support)
6198		return -EINVAL;
6199
6200	hw_priv->wol_enable = wol->wolopts;
6201
6202	/* Link wakeup cannot really be disabled. */
6203	if (wol->wolopts)
6204		hw_priv->wol_enable |= WAKE_PHY;
6205	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6206	return 0;
6207}
6208
6209/**
6210 * netdev_get_msglevel - get debug message level
6211 * @dev:	Network device.
6212 *
6213 * This function returns current debug message level.
6214 *
6215 * Return current debug message flags.
6216 */
6217static u32 netdev_get_msglevel(struct net_device *dev)
6218{
6219	struct dev_priv *priv = netdev_priv(dev);
6220
6221	return priv->msg_enable;
6222}
6223
6224/**
6225 * netdev_set_msglevel - set debug message level
6226 * @dev:	Network device.
6227 * @value:	Debug message flags.
6228 *
6229 * This procedure sets debug message level.
6230 */
6231static void netdev_set_msglevel(struct net_device *dev, u32 value)
6232{
6233	struct dev_priv *priv = netdev_priv(dev);
6234
6235	priv->msg_enable = value;
6236}
6237
6238/**
6239 * netdev_get_eeprom_len - get EEPROM length
6240 * @dev:	Network device.
6241 *
6242 * This function returns the length of the EEPROM.
6243 *
6244 * Return length of the EEPROM.
6245 */
6246static int netdev_get_eeprom_len(struct net_device *dev)
6247{
6248	return EEPROM_SIZE * 2;
6249}
6250
6251/**
6252 * netdev_get_eeprom - get EEPROM data
6253 * @dev:	Network device.
6254 * @eeprom:	Ethtool EEPROM data structure.
6255 * @data:	Buffer to store the EEPROM data.
6256 *
6257 * This function dumps the EEPROM data in the provided buffer.
6258 *
6259 * Return 0 if successful; otherwise an error code.
6260 */
6261#define EEPROM_MAGIC			0x10A18842
6262
6263static int netdev_get_eeprom(struct net_device *dev,
6264	struct ethtool_eeprom *eeprom, u8 *data)
6265{
6266	struct dev_priv *priv = netdev_priv(dev);
6267	struct dev_info *hw_priv = priv->adapter;
6268	u8 *eeprom_byte = (u8 *) eeprom_data;
6269	int i;
6270	int len;
6271
6272	len = (eeprom->offset + eeprom->len + 1) / 2;
6273	for (i = eeprom->offset / 2; i < len; i++)
6274		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6275	eeprom->magic = EEPROM_MAGIC;
6276	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6277
6278	return 0;
6279}
6280
6281/**
6282 * netdev_set_eeprom - write EEPROM data
6283 * @dev:	Network device.
6284 * @eeprom:	Ethtool EEPROM data structure.
6285 * @data:	Data buffer.
6286 *
6287 * This function modifies the EEPROM data one byte at a time.
6288 *
6289 * Return 0 if successful; otherwise an error code.
6290 */
6291static int netdev_set_eeprom(struct net_device *dev,
6292	struct ethtool_eeprom *eeprom, u8 *data)
6293{
6294	struct dev_priv *priv = netdev_priv(dev);
6295	struct dev_info *hw_priv = priv->adapter;
6296	u16 eeprom_word[EEPROM_SIZE];
6297	u8 *eeprom_byte = (u8 *) eeprom_word;
6298	int i;
6299	int len;
6300
6301	if (eeprom->magic != EEPROM_MAGIC)
6302		return -EINVAL;
6303
6304	len = (eeprom->offset + eeprom->len + 1) / 2;
6305	for (i = eeprom->offset / 2; i < len; i++)
6306		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6307	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6308	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6309	for (i = 0; i < EEPROM_SIZE; i++)
6310		if (eeprom_word[i] != eeprom_data[i]) {
6311			eeprom_data[i] = eeprom_word[i];
6312			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6313	}
6314
6315	return 0;
6316}
6317
6318/**
6319 * netdev_get_pauseparam - get flow control parameters
6320 * @dev:	Network device.
6321 * @pause:	Ethtool PAUSE settings data structure.
6322 *
6323 * This procedure returns the PAUSE control flow settings.
6324 */
6325static void netdev_get_pauseparam(struct net_device *dev,
6326	struct ethtool_pauseparam *pause)
6327{
6328	struct dev_priv *priv = netdev_priv(dev);
6329	struct dev_info *hw_priv = priv->adapter;
6330	struct ksz_hw *hw = &hw_priv->hw;
6331
6332	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6333	if (!hw->ksz_switch) {
6334		pause->rx_pause =
6335			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6336		pause->tx_pause =
6337			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6338	} else {
6339		pause->rx_pause =
6340			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6341				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6342		pause->tx_pause =
6343			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6344				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6345	}
6346}
6347
6348/**
6349 * netdev_set_pauseparam - set flow control parameters
6350 * @dev:	Network device.
6351 * @pause:	Ethtool PAUSE settings data structure.
6352 *
6353 * This function sets the PAUSE control flow settings.
6354 * Not implemented yet.
6355 *
6356 * Return 0 if successful; otherwise an error code.
6357 */
6358static int netdev_set_pauseparam(struct net_device *dev,
6359	struct ethtool_pauseparam *pause)
6360{
6361	struct dev_priv *priv = netdev_priv(dev);
6362	struct dev_info *hw_priv = priv->adapter;
6363	struct ksz_hw *hw = &hw_priv->hw;
6364	struct ksz_port *port = &priv->port;
6365
6366	mutex_lock(&hw_priv->lock);
6367	if (pause->autoneg) {
6368		if (!pause->rx_pause && !pause->tx_pause)
6369			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6370		else
6371			port->flow_ctrl = PHY_FLOW_CTRL;
6372		hw->overrides &= ~PAUSE_FLOW_CTRL;
6373		port->force_link = 0;
6374		if (hw->ksz_switch) {
6375			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6376				SWITCH_RX_FLOW_CTRL, 1);
6377			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6378				SWITCH_TX_FLOW_CTRL, 1);
6379		}
6380		port_set_link_speed(port);
6381	} else {
6382		hw->overrides |= PAUSE_FLOW_CTRL;
6383		if (hw->ksz_switch) {
6384			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6386			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6388		} else
6389			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6390	}
6391	mutex_unlock(&hw_priv->lock);
6392
6393	return 0;
6394}
6395
6396/**
6397 * netdev_get_ringparam - get tx/rx ring parameters
6398 * @dev:	Network device.
6399 * @pause:	Ethtool RING settings data structure.
6400 *
6401 * This procedure returns the TX/RX ring settings.
6402 */
6403static void netdev_get_ringparam(struct net_device *dev,
6404	struct ethtool_ringparam *ring)
6405{
6406	struct dev_priv *priv = netdev_priv(dev);
6407	struct dev_info *hw_priv = priv->adapter;
6408	struct ksz_hw *hw = &hw_priv->hw;
6409
6410	ring->tx_max_pending = (1 << 9);
6411	ring->tx_pending = hw->tx_desc_info.alloc;
6412	ring->rx_max_pending = (1 << 9);
6413	ring->rx_pending = hw->rx_desc_info.alloc;
6414}
6415
6416#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6417
6418static struct {
6419	char string[ETH_GSTRING_LEN];
6420} ethtool_stats_keys[STATS_LEN] = {
6421	{ "rx_lo_priority_octets" },
6422	{ "rx_hi_priority_octets" },
6423	{ "rx_undersize_packets" },
6424	{ "rx_fragments" },
6425	{ "rx_oversize_packets" },
6426	{ "rx_jabbers" },
6427	{ "rx_symbol_errors" },
6428	{ "rx_crc_errors" },
6429	{ "rx_align_errors" },
6430	{ "rx_mac_ctrl_packets" },
6431	{ "rx_pause_packets" },
6432	{ "rx_bcast_packets" },
6433	{ "rx_mcast_packets" },
6434	{ "rx_ucast_packets" },
6435	{ "rx_64_or_less_octet_packets" },
6436	{ "rx_65_to_127_octet_packets" },
6437	{ "rx_128_to_255_octet_packets" },
6438	{ "rx_256_to_511_octet_packets" },
6439	{ "rx_512_to_1023_octet_packets" },
6440	{ "rx_1024_to_1522_octet_packets" },
6441
6442	{ "tx_lo_priority_octets" },
6443	{ "tx_hi_priority_octets" },
6444	{ "tx_late_collisions" },
6445	{ "tx_pause_packets" },
6446	{ "tx_bcast_packets" },
6447	{ "tx_mcast_packets" },
6448	{ "tx_ucast_packets" },
6449	{ "tx_deferred" },
6450	{ "tx_total_collisions" },
6451	{ "tx_excessive_collisions" },
6452	{ "tx_single_collisions" },
6453	{ "tx_mult_collisions" },
6454
6455	{ "rx_discards" },
6456	{ "tx_discards" },
6457};
6458
6459/**
6460 * netdev_get_strings - get statistics identity strings
6461 * @dev:	Network device.
6462 * @stringset:	String set identifier.
6463 * @buf:	Buffer to store the strings.
6464 *
6465 * This procedure returns the strings used to identify the statistics.
6466 */
6467static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6468{
6469	struct dev_priv *priv = netdev_priv(dev);
6470	struct dev_info *hw_priv = priv->adapter;
6471	struct ksz_hw *hw = &hw_priv->hw;
6472
6473	if (ETH_SS_STATS == stringset)
6474		memcpy(buf, &ethtool_stats_keys,
6475			ETH_GSTRING_LEN * hw->mib_cnt);
6476}
6477
6478/**
6479 * netdev_get_sset_count - get statistics size
6480 * @dev:	Network device.
6481 * @sset:	The statistics set number.
6482 *
6483 * This function returns the size of the statistics to be reported.
6484 *
6485 * Return size of the statistics to be reported.
6486 */
6487static int netdev_get_sset_count(struct net_device *dev, int sset)
6488{
6489	struct dev_priv *priv = netdev_priv(dev);
6490	struct dev_info *hw_priv = priv->adapter;
6491	struct ksz_hw *hw = &hw_priv->hw;
6492
6493	switch (sset) {
6494	case ETH_SS_STATS:
6495		return hw->mib_cnt;
6496	default:
6497		return -EOPNOTSUPP;
6498	}
6499}
6500
6501/**
6502 * netdev_get_ethtool_stats - get network device statistics
6503 * @dev:	Network device.
6504 * @stats:	Ethtool statistics data structure.
6505 * @data:	Buffer to store the statistics.
6506 *
6507 * This procedure returns the statistics.
6508 */
6509static void netdev_get_ethtool_stats(struct net_device *dev,
6510	struct ethtool_stats *stats, u64 *data)
6511{
6512	struct dev_priv *priv = netdev_priv(dev);
6513	struct dev_info *hw_priv = priv->adapter;
6514	struct ksz_hw *hw = &hw_priv->hw;
6515	struct ksz_port *port = &priv->port;
6516	int n_stats = stats->n_stats;
6517	int i;
6518	int n;
6519	int p;
6520	int rc;
6521	u64 counter[TOTAL_PORT_COUNTER_NUM];
6522
6523	mutex_lock(&hw_priv->lock);
6524	n = SWITCH_PORT_NUM;
6525	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6526		if (media_connected == hw->port_mib[p].state) {
6527			hw_priv->counter[p].read = 1;
6528
6529			/* Remember first port that requests read. */
6530			if (n == SWITCH_PORT_NUM)
6531				n = p;
6532		}
6533	}
6534	mutex_unlock(&hw_priv->lock);
6535
6536	if (n < SWITCH_PORT_NUM)
6537		schedule_work(&hw_priv->mib_read);
6538
6539	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6540		p = n;
6541		rc = wait_event_interruptible_timeout(
6542			hw_priv->counter[p].counter,
6543			2 == hw_priv->counter[p].read,
6544			HZ * 1);
6545	} else
6546		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6547			if (0 == i) {
6548				rc = wait_event_interruptible_timeout(
6549					hw_priv->counter[p].counter,
6550					2 == hw_priv->counter[p].read,
6551					HZ * 2);
6552			} else if (hw->port_mib[p].cnt_ptr) {
6553				rc = wait_event_interruptible_timeout(
6554					hw_priv->counter[p].counter,
6555					2 == hw_priv->counter[p].read,
6556					HZ * 1);
6557			}
6558		}
6559
6560	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6561	n = hw->mib_cnt;
6562	if (n > n_stats)
6563		n = n_stats;
6564	n_stats -= n;
6565	for (i = 0; i < n; i++)
6566		*data++ = counter[i];
6567}
6568
6569/**
6570 * netdev_set_features - set receive checksum support
6571 * @dev:	Network device.
6572 * @features:	New device features (offloads).
6573 *
6574 * This function sets receive checksum support setting.
6575 *
6576 * Return 0 if successful; otherwise an error code.
6577 */
6578static int netdev_set_features(struct net_device *dev,
6579	netdev_features_t features)
6580{
6581	struct dev_priv *priv = netdev_priv(dev);
6582	struct dev_info *hw_priv = priv->adapter;
6583	struct ksz_hw *hw = &hw_priv->hw;
6584
6585	mutex_lock(&hw_priv->lock);
6586
6587	/* see note in hw_setup() */
6588	if (features & NETIF_F_RXCSUM)
6589		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6590	else
6591		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6592
6593	if (hw->enabled)
6594		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6595
6596	mutex_unlock(&hw_priv->lock);
6597
6598	return 0;
6599}
6600
6601static const struct ethtool_ops netdev_ethtool_ops = {
 
 
6602	.nway_reset		= netdev_nway_reset,
6603	.get_link		= netdev_get_link,
6604	.get_drvinfo		= netdev_get_drvinfo,
6605	.get_regs_len		= netdev_get_regs_len,
6606	.get_regs		= netdev_get_regs,
6607	.get_wol		= netdev_get_wol,
6608	.set_wol		= netdev_set_wol,
6609	.get_msglevel		= netdev_get_msglevel,
6610	.set_msglevel		= netdev_set_msglevel,
6611	.get_eeprom_len		= netdev_get_eeprom_len,
6612	.get_eeprom		= netdev_get_eeprom,
6613	.set_eeprom		= netdev_set_eeprom,
6614	.get_pauseparam		= netdev_get_pauseparam,
6615	.set_pauseparam		= netdev_set_pauseparam,
6616	.get_ringparam		= netdev_get_ringparam,
6617	.get_strings		= netdev_get_strings,
6618	.get_sset_count		= netdev_get_sset_count,
6619	.get_ethtool_stats	= netdev_get_ethtool_stats,
6620	.get_link_ksettings	= netdev_get_link_ksettings,
6621	.set_link_ksettings	= netdev_set_link_ksettings,
6622};
6623
6624/*
6625 * Hardware monitoring
6626 */
6627
6628static void update_link(struct net_device *dev, struct dev_priv *priv,
6629	struct ksz_port *port)
6630{
6631	if (priv->media_state != port->linked->state) {
6632		priv->media_state = port->linked->state;
6633		if (netif_running(dev))
6634			set_media_state(dev, media_connected);
6635	}
6636}
6637
6638static void mib_read_work(struct work_struct *work)
6639{
6640	struct dev_info *hw_priv =
6641		container_of(work, struct dev_info, mib_read);
6642	struct ksz_hw *hw = &hw_priv->hw;
6643	struct ksz_port_mib *mib;
6644	int i;
6645
6646	next_jiffies = jiffies;
6647	for (i = 0; i < hw->mib_port_cnt; i++) {
6648		mib = &hw->port_mib[i];
6649
6650		/* Reading MIB counters or requested to read. */
6651		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6652
6653			/* Need to process receive interrupt. */
6654			if (port_r_cnt(hw, i))
6655				break;
6656			hw_priv->counter[i].read = 0;
6657
6658			/* Finish reading counters. */
6659			if (0 == mib->cnt_ptr) {
6660				hw_priv->counter[i].read = 2;
6661				wake_up_interruptible(
6662					&hw_priv->counter[i].counter);
6663			}
6664		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6665			/* Only read MIB counters when the port is connected. */
6666			if (media_connected == mib->state)
6667				hw_priv->counter[i].read = 1;
6668			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6669			hw_priv->counter[i].time = next_jiffies;
6670
6671		/* Port is just disconnected. */
6672		} else if (mib->link_down) {
6673			mib->link_down = 0;
6674
6675			/* Read counters one last time after link is lost. */
6676			hw_priv->counter[i].read = 1;
6677		}
6678	}
6679}
6680
6681static void mib_monitor(struct timer_list *t)
6682{
6683	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6684
6685	mib_read_work(&hw_priv->mib_read);
6686
6687	/* This is used to verify Wake-on-LAN is working. */
6688	if (hw_priv->pme_wait) {
6689		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6690			hw_clr_wol_pme_status(&hw_priv->hw);
6691			hw_priv->pme_wait = 0;
6692		}
6693	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6694
6695		/* PME is asserted.  Wait 2 seconds to clear it. */
6696		hw_priv->pme_wait = jiffies + HZ * 2;
6697	}
6698
6699	ksz_update_timer(&hw_priv->mib_timer_info);
6700}
6701
6702/**
6703 * dev_monitor - periodic monitoring
6704 * @ptr:	Network device pointer.
6705 *
6706 * This routine is run in a kernel timer to monitor the network device.
6707 */
6708static void dev_monitor(struct timer_list *t)
6709{
6710	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6711	struct net_device *dev = priv->mii_if.dev;
6712	struct dev_info *hw_priv = priv->adapter;
6713	struct ksz_hw *hw = &hw_priv->hw;
6714	struct ksz_port *port = &priv->port;
6715
6716	if (!(hw->features & LINK_INT_WORKING))
6717		port_get_link_speed(port);
6718	update_link(dev, priv, port);
6719
6720	ksz_update_timer(&priv->monitor_timer_info);
6721}
6722
6723/*
6724 * Linux network device interface functions
6725 */
6726
6727/* Driver exported variables */
6728
6729static int msg_enable;
6730
6731static char *macaddr = ":";
6732static char *mac1addr = ":";
6733
6734/*
6735 * This enables multiple network device mode for KSZ8842, which contains a
6736 * switch with two physical ports.  Some users like to take control of the
6737 * ports for running Spanning Tree Protocol.  The driver will create an
6738 * additional eth? device for the other port.
6739 *
6740 * Some limitations are the network devices cannot have different MTU and
6741 * multicast hash tables.
6742 */
6743static int multi_dev;
6744
6745/*
6746 * As most users select multiple network device mode to use Spanning Tree
6747 * Protocol, this enables a feature in which most unicast and multicast packets
6748 * are forwarded inside the switch and not passed to the host.  Only packets
6749 * that need the host's attention are passed to it.  This prevents the host
6750 * wasting CPU time to examine each and every incoming packets and do the
6751 * forwarding itself.
6752 *
6753 * As the hack requires the private bridge header, the driver cannot compile
6754 * with just the kernel headers.
6755 *
6756 * Enabling STP support also turns on multiple network device mode.
6757 */
6758static int stp;
6759
6760/*
6761 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6762 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6763 * STP support is enabled.
6764 */
6765static int fast_aging;
6766
6767/**
6768 * netdev_init - initialize network device.
6769 * @dev:	Network device.
6770 *
6771 * This function initializes the network device.
6772 *
6773 * Return 0 if successful; otherwise an error code indicating failure.
6774 */
6775static int __init netdev_init(struct net_device *dev)
6776{
6777	struct dev_priv *priv = netdev_priv(dev);
6778
6779	/* 500 ms timeout */
6780	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6781		dev_monitor);
6782
6783	/* 500 ms timeout */
6784	dev->watchdog_timeo = HZ / 2;
6785
6786	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6787
6788	/*
6789	 * Hardware does not really support IPv6 checksum generation, but
6790	 * driver actually runs faster with this on.
6791	 */
6792	dev->hw_features |= NETIF_F_IPV6_CSUM;
6793
6794	dev->features |= dev->hw_features;
6795
6796	sema_init(&priv->proc_sem, 1);
6797
6798	priv->mii_if.phy_id_mask = 0x1;
6799	priv->mii_if.reg_num_mask = 0x7;
6800	priv->mii_if.dev = dev;
6801	priv->mii_if.mdio_read = mdio_read;
6802	priv->mii_if.mdio_write = mdio_write;
6803	priv->mii_if.phy_id = priv->port.first_port + 1;
6804
6805	priv->msg_enable = netif_msg_init(msg_enable,
6806		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6807
6808	return 0;
6809}
6810
6811static const struct net_device_ops netdev_ops = {
6812	.ndo_init		= netdev_init,
6813	.ndo_open		= netdev_open,
6814	.ndo_stop		= netdev_close,
6815	.ndo_get_stats		= netdev_query_statistics,
6816	.ndo_start_xmit		= netdev_tx,
6817	.ndo_tx_timeout		= netdev_tx_timeout,
6818	.ndo_change_mtu		= netdev_change_mtu,
6819	.ndo_set_features	= netdev_set_features,
6820	.ndo_set_mac_address	= netdev_set_mac_address,
6821	.ndo_validate_addr	= eth_validate_addr,
6822	.ndo_do_ioctl		= netdev_ioctl,
6823	.ndo_set_rx_mode	= netdev_set_rx_mode,
6824#ifdef CONFIG_NET_POLL_CONTROLLER
6825	.ndo_poll_controller	= netdev_netpoll,
6826#endif
6827};
6828
6829static void netdev_free(struct net_device *dev)
6830{
6831	if (dev->watchdog_timeo)
6832		unregister_netdev(dev);
6833
6834	free_netdev(dev);
6835}
6836
6837struct platform_info {
6838	struct dev_info dev_info;
6839	struct net_device *netdev[SWITCH_PORT_NUM];
6840};
6841
6842static int net_device_present;
6843
6844static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6845{
6846	int i;
6847	int j;
6848	int got_num;
6849	int num;
6850
6851	i = j = num = got_num = 0;
6852	while (j < ETH_ALEN) {
6853		if (macaddr[i]) {
6854			int digit;
6855
6856			got_num = 1;
6857			digit = hex_to_bin(macaddr[i]);
6858			if (digit >= 0)
6859				num = num * 16 + digit;
6860			else if (':' == macaddr[i])
6861				got_num = 2;
6862			else
6863				break;
6864		} else if (got_num)
6865			got_num = 2;
6866		else
6867			break;
6868		if (2 == got_num) {
6869			if (MAIN_PORT == port) {
6870				hw_priv->hw.override_addr[j++] = (u8) num;
6871				hw_priv->hw.override_addr[5] +=
6872					hw_priv->hw.id;
6873			} else {
6874				hw_priv->hw.ksz_switch->other_addr[j++] =
6875					(u8) num;
6876				hw_priv->hw.ksz_switch->other_addr[5] +=
6877					hw_priv->hw.id;
6878			}
6879			num = got_num = 0;
6880		}
6881		i++;
6882	}
6883	if (ETH_ALEN == j) {
6884		if (MAIN_PORT == port)
6885			hw_priv->hw.mac_override = 1;
6886	}
6887}
6888
6889#define KS884X_DMA_MASK			(~0x0UL)
6890
6891static void read_other_addr(struct ksz_hw *hw)
6892{
6893	int i;
6894	u16 data[3];
6895	struct ksz_switch *sw = hw->ksz_switch;
6896
6897	for (i = 0; i < 3; i++)
6898		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6899	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6900		sw->other_addr[5] = (u8) data[0];
6901		sw->other_addr[4] = (u8)(data[0] >> 8);
6902		sw->other_addr[3] = (u8) data[1];
6903		sw->other_addr[2] = (u8)(data[1] >> 8);
6904		sw->other_addr[1] = (u8) data[2];
6905		sw->other_addr[0] = (u8)(data[2] >> 8);
6906	}
6907}
6908
6909#ifndef PCI_VENDOR_ID_MICREL_KS
6910#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6911#endif
6912
6913static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6914{
6915	struct net_device *dev;
6916	struct dev_priv *priv;
6917	struct dev_info *hw_priv;
6918	struct ksz_hw *hw;
6919	struct platform_info *info;
6920	struct ksz_port *port;
6921	unsigned long reg_base;
6922	unsigned long reg_len;
6923	int cnt;
6924	int i;
6925	int mib_port_count;
6926	int pi;
6927	int port_count;
6928	int result;
6929	char banner[sizeof(version)];
6930	struct ksz_switch *sw = NULL;
6931
6932	result = pci_enable_device(pdev);
6933	if (result)
6934		return result;
6935
6936	result = -ENODEV;
6937
6938	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6939			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6940		return result;
6941
6942	reg_base = pci_resource_start(pdev, 0);
6943	reg_len = pci_resource_len(pdev, 0);
6944	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6945		return result;
6946
6947	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6948		return result;
6949	pci_set_master(pdev);
6950
6951	result = -ENOMEM;
6952
6953	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6954	if (!info)
6955		goto pcidev_init_dev_err;
6956
6957	hw_priv = &info->dev_info;
6958	hw_priv->pdev = pdev;
6959
6960	hw = &hw_priv->hw;
6961
6962	hw->io = ioremap(reg_base, reg_len);
6963	if (!hw->io)
6964		goto pcidev_init_io_err;
6965
6966	cnt = hw_init(hw);
6967	if (!cnt) {
6968		if (msg_enable & NETIF_MSG_PROBE)
6969			pr_alert("chip not detected\n");
6970		result = -ENODEV;
6971		goto pcidev_init_alloc_err;
6972	}
6973
6974	snprintf(banner, sizeof(banner), "%s", version);
6975	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6976	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6977	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6978
6979	/* Assume device is KSZ8841. */
6980	hw->dev_count = 1;
6981	port_count = 1;
6982	mib_port_count = 1;
6983	hw->addr_list_size = 0;
6984	hw->mib_cnt = PORT_COUNTER_NUM;
6985	hw->mib_port_cnt = 1;
6986
6987	/* KSZ8842 has a switch with multiple ports. */
6988	if (2 == cnt) {
6989		if (fast_aging)
6990			hw->overrides |= FAST_AGING;
6991
6992		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6993
6994		/* Multiple network device interfaces are required. */
6995		if (multi_dev) {
6996			hw->dev_count = SWITCH_PORT_NUM;
6997			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6998		}
6999
7000		/* Single network device has multiple ports. */
7001		if (1 == hw->dev_count) {
7002			port_count = SWITCH_PORT_NUM;
7003			mib_port_count = SWITCH_PORT_NUM;
7004		}
7005		hw->mib_port_cnt = TOTAL_PORT_NUM;
7006		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7007		if (!hw->ksz_switch)
7008			goto pcidev_init_alloc_err;
7009
7010		sw = hw->ksz_switch;
7011	}
7012	for (i = 0; i < hw->mib_port_cnt; i++)
7013		hw->port_mib[i].mib_start = 0;
7014
7015	hw->parent = hw_priv;
7016
7017	/* Default MTU is 1500. */
7018	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7019
7020	if (ksz_alloc_mem(hw_priv))
7021		goto pcidev_init_mem_err;
7022
7023	hw_priv->hw.id = net_device_present;
7024
7025	spin_lock_init(&hw_priv->hwlock);
7026	mutex_init(&hw_priv->lock);
7027
7028	for (i = 0; i < TOTAL_PORT_NUM; i++)
7029		init_waitqueue_head(&hw_priv->counter[i].counter);
7030
7031	if (macaddr[0] != ':')
7032		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7033
7034	/* Read MAC address and initialize override address if not overridden. */
7035	hw_read_addr(hw);
7036
7037	/* Multiple device interfaces mode requires a second MAC address. */
7038	if (hw->dev_count > 1) {
7039		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7040		read_other_addr(hw);
7041		if (mac1addr[0] != ':')
7042			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7043	}
7044
7045	hw_setup(hw);
7046	if (hw->ksz_switch)
7047		sw_setup(hw);
7048	else {
7049		hw_priv->wol_support = WOL_SUPPORT;
7050		hw_priv->wol_enable = 0;
7051	}
7052
7053	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7054
7055	/* 500 ms timeout */
7056	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7057		mib_monitor);
7058
7059	for (i = 0; i < hw->dev_count; i++) {
7060		dev = alloc_etherdev(sizeof(struct dev_priv));
7061		if (!dev)
7062			goto pcidev_init_reg_err;
7063		SET_NETDEV_DEV(dev, &pdev->dev);
7064		info->netdev[i] = dev;
7065
7066		priv = netdev_priv(dev);
7067		priv->adapter = hw_priv;
7068		priv->id = net_device_present++;
7069
7070		port = &priv->port;
7071		port->port_cnt = port_count;
7072		port->mib_port_cnt = mib_port_count;
7073		port->first_port = i;
7074		port->flow_ctrl = PHY_FLOW_CTRL;
7075
7076		port->hw = hw;
7077		port->linked = &hw->port_info[port->first_port];
7078
7079		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7080			hw->port_info[pi].port_id = pi;
7081			hw->port_info[pi].pdev = dev;
7082			hw->port_info[pi].state = media_disconnected;
7083		}
7084
7085		dev->mem_start = (unsigned long) hw->io;
7086		dev->mem_end = dev->mem_start + reg_len - 1;
7087		dev->irq = pdev->irq;
7088		if (MAIN_PORT == i)
7089			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7090			       ETH_ALEN);
7091		else {
7092			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7093			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7094				dev->dev_addr[5] += port->first_port;
7095		}
7096
7097		dev->netdev_ops = &netdev_ops;
7098		dev->ethtool_ops = &netdev_ethtool_ops;
7099
7100		/* MTU range: 60 - 1894 */
7101		dev->min_mtu = ETH_ZLEN;
7102		dev->max_mtu = MAX_RX_BUF_SIZE -
7103			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7104
7105		if (register_netdev(dev))
7106			goto pcidev_init_reg_err;
7107		port_set_power_saving(port, true);
7108	}
7109
7110	pci_dev_get(hw_priv->pdev);
7111	pci_set_drvdata(pdev, info);
7112	return 0;
7113
7114pcidev_init_reg_err:
7115	for (i = 0; i < hw->dev_count; i++) {
7116		if (info->netdev[i]) {
7117			netdev_free(info->netdev[i]);
7118			info->netdev[i] = NULL;
7119		}
7120	}
7121
7122pcidev_init_mem_err:
7123	ksz_free_mem(hw_priv);
7124	kfree(hw->ksz_switch);
7125
7126pcidev_init_alloc_err:
7127	iounmap(hw->io);
7128
7129pcidev_init_io_err:
7130	kfree(info);
7131
7132pcidev_init_dev_err:
7133	release_mem_region(reg_base, reg_len);
7134
7135	return result;
7136}
7137
7138static void pcidev_exit(struct pci_dev *pdev)
7139{
7140	int i;
7141	struct platform_info *info = pci_get_drvdata(pdev);
7142	struct dev_info *hw_priv = &info->dev_info;
7143
7144	release_mem_region(pci_resource_start(pdev, 0),
7145		pci_resource_len(pdev, 0));
7146	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7147		if (info->netdev[i])
7148			netdev_free(info->netdev[i]);
7149	}
7150	if (hw_priv->hw.io)
7151		iounmap(hw_priv->hw.io);
7152	ksz_free_mem(hw_priv);
7153	kfree(hw_priv->hw.ksz_switch);
7154	pci_dev_put(hw_priv->pdev);
7155	kfree(info);
7156}
7157
7158#ifdef CONFIG_PM
7159static int pcidev_resume(struct pci_dev *pdev)
7160{
7161	int i;
7162	struct platform_info *info = pci_get_drvdata(pdev);
7163	struct dev_info *hw_priv = &info->dev_info;
7164	struct ksz_hw *hw = &hw_priv->hw;
7165
7166	pci_set_power_state(pdev, PCI_D0);
7167	pci_restore_state(pdev);
7168	pci_enable_wake(pdev, PCI_D0, 0);
7169
7170	if (hw_priv->wol_enable)
7171		hw_cfg_wol_pme(hw, 0);
7172	for (i = 0; i < hw->dev_count; i++) {
7173		if (info->netdev[i]) {
7174			struct net_device *dev = info->netdev[i];
7175
7176			if (netif_running(dev)) {
7177				netdev_open(dev);
7178				netif_device_attach(dev);
7179			}
7180		}
7181	}
7182	return 0;
7183}
7184
7185static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7186{
7187	int i;
7188	struct platform_info *info = pci_get_drvdata(pdev);
7189	struct dev_info *hw_priv = &info->dev_info;
7190	struct ksz_hw *hw = &hw_priv->hw;
7191
7192	/* Need to find a way to retrieve the device IP address. */
7193	static const u8 net_addr[] = { 192, 168, 1, 1 };
7194
7195	for (i = 0; i < hw->dev_count; i++) {
7196		if (info->netdev[i]) {
7197			struct net_device *dev = info->netdev[i];
7198
7199			if (netif_running(dev)) {
7200				netif_device_detach(dev);
7201				netdev_close(dev);
7202			}
7203		}
7204	}
7205	if (hw_priv->wol_enable) {
7206		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7207		hw_cfg_wol_pme(hw, 1);
7208	}
7209
7210	pci_save_state(pdev);
7211	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7212	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7213	return 0;
7214}
7215#endif
7216
7217static char pcidev_name[] = "ksz884xp";
7218
7219static const struct pci_device_id pcidev_table[] = {
7220	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7221		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7222	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7223		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7224	{ 0 }
7225};
7226
7227MODULE_DEVICE_TABLE(pci, pcidev_table);
7228
7229static struct pci_driver pci_device_driver = {
7230#ifdef CONFIG_PM
7231	.suspend	= pcidev_suspend,
7232	.resume		= pcidev_resume,
7233#endif
7234	.name		= pcidev_name,
7235	.id_table	= pcidev_table,
7236	.probe		= pcidev_init,
7237	.remove		= pcidev_exit
7238};
7239
7240module_pci_driver(pci_device_driver);
7241
7242MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7243MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7244MODULE_LICENSE("GPL");
7245
7246module_param_named(message, msg_enable, int, 0);
7247MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7248
7249module_param(macaddr, charp, 0);
7250module_param(mac1addr, charp, 0);
7251module_param(fast_aging, int, 0);
7252module_param(multi_dev, int, 0);
7253module_param(stp, int, 0);
7254MODULE_PARM_DESC(macaddr, "MAC address");
7255MODULE_PARM_DESC(mac1addr, "Second MAC address");
7256MODULE_PARM_DESC(fast_aging, "Fast aging");
7257MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7258MODULE_PARM_DESC(stp, "STP support");