Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c)  2018 Intel Corporation */
  3
  4#include <linux/delay.h>
  5
  6#include "igc_hw.h"
  7
  8/**
  9 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 10 * @hw: pointer to the HW structure
 11 *
 12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 14 * Return successful if access grant bit set, else clear the request for
 15 * EEPROM access and return -IGC_ERR_NVM (-1).
 16 */
 17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
 18{
 19	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 20}
 21
 22/**
 23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
 24 * @hw: pointer to the HW structure
 25 *
 26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 27 * then release the semaphores acquired.
 28 */
 29static void igc_release_nvm_i225(struct igc_hw *hw)
 30{
 31	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 32}
 33
 34/**
 35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 36 * @hw: pointer to the HW structure
 37 *
 38 * Acquire the HW semaphore to access the PHY or NVM
 39 */
 40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
 41{
 42	s32 timeout = hw->nvm.word_size + 1;
 43	s32 i = 0;
 44	u32 swsm;
 45
 46	/* Get the SW semaphore */
 47	while (i < timeout) {
 48		swsm = rd32(IGC_SWSM);
 49		if (!(swsm & IGC_SWSM_SMBI))
 50			break;
 51
 52		usleep_range(500, 600);
 53		i++;
 54	}
 55
 56	if (i == timeout) {
 57		/* In rare circumstances, the SW semaphore may already be held
 58		 * unintentionally. Clear the semaphore once before giving up.
 59		 */
 60		if (hw->dev_spec._base.clear_semaphore_once) {
 61			hw->dev_spec._base.clear_semaphore_once = false;
 62			igc_put_hw_semaphore(hw);
 63			for (i = 0; i < timeout; i++) {
 64				swsm = rd32(IGC_SWSM);
 65				if (!(swsm & IGC_SWSM_SMBI))
 66					break;
 67
 68				usleep_range(500, 600);
 69			}
 70		}
 71
 72		/* If we do not have the semaphore here, we have to give up. */
 73		if (i == timeout) {
 74			hw_dbg("Driver can't access device - SMBI bit is set.\n");
 75			return -IGC_ERR_NVM;
 76		}
 77	}
 78
 79	/* Get the FW semaphore. */
 80	for (i = 0; i < timeout; i++) {
 81		swsm = rd32(IGC_SWSM);
 82		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
 83
 84		/* Semaphore acquired if bit latched */
 85		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
 86			break;
 87
 88		usleep_range(500, 600);
 89	}
 90
 91	if (i == timeout) {
 92		/* Release semaphores */
 93		igc_put_hw_semaphore(hw);
 94		hw_dbg("Driver can't access the NVM\n");
 95		return -IGC_ERR_NVM;
 96	}
 97
 98	return 0;
 99}
100
101/**
102 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
103 * @hw: pointer to the HW structure
104 * @mask: specifies which semaphore to acquire
105 *
106 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
107 * will also specify which port we're acquiring the lock for.
108 */
109s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
110{
111	s32 i = 0, timeout = 200;
112	u32 fwmask = mask << 16;
113	u32 swmask = mask;
114	s32 ret_val = 0;
115	u32 swfw_sync;
116
117	while (i < timeout) {
118		if (igc_get_hw_semaphore_i225(hw)) {
119			ret_val = -IGC_ERR_SWFW_SYNC;
120			goto out;
121		}
122
123		swfw_sync = rd32(IGC_SW_FW_SYNC);
124		if (!(swfw_sync & (fwmask | swmask)))
125			break;
126
127		/* Firmware currently using resource (fwmask) */
128		igc_put_hw_semaphore(hw);
129		mdelay(5);
130		i++;
131	}
132
133	if (i == timeout) {
134		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
135		ret_val = -IGC_ERR_SWFW_SYNC;
136		goto out;
137	}
138
139	swfw_sync |= swmask;
140	wr32(IGC_SW_FW_SYNC, swfw_sync);
141
142	igc_put_hw_semaphore(hw);
143out:
144	return ret_val;
145}
146
147/**
148 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
149 * @hw: pointer to the HW structure
150 * @mask: specifies which semaphore to acquire
151 *
152 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
153 * will also specify which port we're releasing the lock for.
154 */
155void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
156{
157	u32 swfw_sync;
158
159	while (igc_get_hw_semaphore_i225(hw))
160		; /* Empty */
161
162	swfw_sync = rd32(IGC_SW_FW_SYNC);
163	swfw_sync &= ~mask;
164	wr32(IGC_SW_FW_SYNC, swfw_sync);
165
166	igc_put_hw_semaphore(hw);
167}
168
169/**
170 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171 * @hw: pointer to the HW structure
172 * @offset: offset of word in the Shadow Ram to read
173 * @words: number of words to read
174 * @data: word read from the Shadow Ram
175 *
176 * Reads a 16 bit word from the Shadow Ram using the EERD register.
177 * Uses necessary synchronization semaphores.
178 */
179static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180				  u16 *data)
181{
182	s32 status = 0;
183	u16 i, count;
184
185	/* We cannot hold synchronization semaphores for too long,
186	 * because of forceful takeover procedure. However it is more efficient
187	 * to read in bursts than synchronizing access for each word.
188	 */
189	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191			IGC_EERD_EEWR_MAX_COUNT : (words - i);
192
193		status = hw->nvm.ops.acquire(hw);
194		if (status)
195			break;
196
197		status = igc_read_nvm_eerd(hw, offset, count, data + i);
198		hw->nvm.ops.release(hw);
199		if (status)
200			break;
201	}
202
203	return status;
204}
205
206/**
207 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208 * @hw: pointer to the HW structure
209 * @offset: offset within the Shadow Ram to be written to
210 * @words: number of words to write
211 * @data: 16 bit word(s) to be written to the Shadow Ram
212 *
213 * Writes data to Shadow Ram at offset using EEWR register.
214 *
215 * If igc_update_nvm_checksum is not called after this function , the
216 * Shadow Ram will most likely contain an invalid checksum.
217 */
218static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219			      u16 *data)
220{
221	struct igc_nvm_info *nvm = &hw->nvm;
222	u32 attempts = 100000;
223	u32 i, k, eewr = 0;
224	s32 ret_val = 0;
225
226	/* A check for invalid values:  offset too large, too many words,
227	 * too many words for the offset, and not enough words.
228	 */
229	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230	    words == 0) {
231		hw_dbg("nvm parameter(s) out of bounds\n");
232		ret_val = -IGC_ERR_NVM;
233		goto out;
234	}
235
236	for (i = 0; i < words; i++) {
237		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238			(data[i] << IGC_NVM_RW_REG_DATA) |
239			IGC_NVM_RW_REG_START;
240
241		wr32(IGC_SRWR, eewr);
242
243		for (k = 0; k < attempts; k++) {
244			if (IGC_NVM_RW_REG_DONE &
245			    rd32(IGC_SRWR)) {
246				ret_val = 0;
247				break;
248			}
249			udelay(5);
250		}
251
252		if (ret_val) {
253			hw_dbg("Shadow RAM write EEWR timed out\n");
254			break;
255		}
256	}
257
258out:
259	return ret_val;
260}
261
262/**
263 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
264 * @hw: pointer to the HW structure
265 * @offset: offset within the Shadow RAM to be written to
266 * @words: number of words to write
267 * @data: 16 bit word(s) to be written to the Shadow RAM
268 *
269 * Writes data to Shadow RAM at offset using EEWR register.
270 *
271 * If igc_update_nvm_checksum is not called after this function , the
272 * data will not be committed to FLASH and also Shadow RAM will most likely
273 * contain an invalid checksum.
274 *
275 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
276 * partially written.
277 */
278static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
279				   u16 *data)
280{
281	s32 status = 0;
282	u16 i, count;
283
284	/* We cannot hold synchronization semaphores for too long,
285	 * because of forceful takeover procedure. However it is more efficient
286	 * to write in bursts than synchronizing access for each word.
287	 */
288	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
289		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
290			IGC_EERD_EEWR_MAX_COUNT : (words - i);
291
292		status = hw->nvm.ops.acquire(hw);
293		if (status)
294			break;
295
296		status = igc_write_nvm_srwr(hw, offset, count, data + i);
297		hw->nvm.ops.release(hw);
298		if (status)
299			break;
300	}
301
302	return status;
303}
304
305/**
306 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
307 * @hw: pointer to the HW structure
308 *
309 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
310 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
311 */
312static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
313{
314	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
315			   u16 *data);
316	s32 status = 0;
317
318	status = hw->nvm.ops.acquire(hw);
319	if (status)
320		goto out;
321
322	/* Replace the read function with semaphore grabbing with
323	 * the one that skips this for a while.
324	 * We have semaphore taken already here.
325	 */
326	read_op_ptr = hw->nvm.ops.read;
327	hw->nvm.ops.read = igc_read_nvm_eerd;
328
329	status = igc_validate_nvm_checksum(hw);
330
331	/* Revert original read operation. */
332	hw->nvm.ops.read = read_op_ptr;
333
334	hw->nvm.ops.release(hw);
335
336out:
337	return status;
338}
339
340/**
341 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
342 * @hw: pointer to the HW structure
343 */
344static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
345{
346	s32 ret_val = -IGC_ERR_NVM;
347	u32 i, reg;
348
349	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
350		reg = rd32(IGC_EECD);
351		if (reg & IGC_EECD_FLUDONE_I225) {
352			ret_val = 0;
353			break;
354		}
355		udelay(5);
356	}
357
358	return ret_val;
359}
360
361/**
362 * igc_update_flash_i225 - Commit EEPROM to the flash
363 * @hw: pointer to the HW structure
364 */
365static s32 igc_update_flash_i225(struct igc_hw *hw)
366{
367	s32 ret_val = 0;
368	u32 flup;
369
370	ret_val = igc_pool_flash_update_done_i225(hw);
371	if (ret_val == -IGC_ERR_NVM) {
372		hw_dbg("Flash update time out\n");
373		goto out;
374	}
375
376	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
377	wr32(IGC_EECD, flup);
378
379	ret_val = igc_pool_flash_update_done_i225(hw);
380	if (ret_val)
381		hw_dbg("Flash update time out\n");
382	else
383		hw_dbg("Flash update complete\n");
384
385out:
386	return ret_val;
387}
388
389/**
390 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
391 * @hw: pointer to the HW structure
392 *
393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
394 * up to the checksum.  Then calculates the EEPROM checksum and writes the
395 * value to the EEPROM. Next commit EEPROM data onto the Flash.
396 */
397static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
398{
399	u16 checksum = 0;
400	s32 ret_val = 0;
401	u16 i, nvm_data;
402
403	/* Read the first word from the EEPROM. If this times out or fails, do
404	 * not continue or we could be in for a very long wait while every
405	 * EEPROM read fails
406	 */
407	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
408	if (ret_val) {
409		hw_dbg("EEPROM read failed\n");
410		goto out;
411	}
412
413	ret_val = hw->nvm.ops.acquire(hw);
414	if (ret_val)
415		goto out;
416
417	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
418	 * because we do not want to take the synchronization
419	 * semaphores twice here.
420	 */
421
422	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
423		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
424		if (ret_val) {
425			hw->nvm.ops.release(hw);
426			hw_dbg("NVM Read Error while updating checksum.\n");
427			goto out;
428		}
429		checksum += nvm_data;
430	}
431	checksum = (u16)NVM_SUM - checksum;
432	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
433				     &checksum);
434	if (ret_val) {
435		hw->nvm.ops.release(hw);
436		hw_dbg("NVM Write Error while updating checksum.\n");
437		goto out;
438	}
439
440	hw->nvm.ops.release(hw);
441
442	ret_val = igc_update_flash_i225(hw);
443
444out:
445	return ret_val;
446}
447
448/**
449 * igc_get_flash_presence_i225 - Check if flash device is detected
450 * @hw: pointer to the HW structure
451 */
452bool igc_get_flash_presence_i225(struct igc_hw *hw)
453{
454	bool ret_val = false;
455	u32 eec = 0;
456
457	eec = rd32(IGC_EECD);
458	if (eec & IGC_EECD_FLASH_DETECTED_I225)
459		ret_val = true;
460
461	return ret_val;
462}
463
464/**
465 * igc_init_nvm_params_i225 - Init NVM func ptrs.
466 * @hw: pointer to the HW structure
467 */
468s32 igc_init_nvm_params_i225(struct igc_hw *hw)
469{
470	struct igc_nvm_info *nvm = &hw->nvm;
471
472	nvm->ops.acquire = igc_acquire_nvm_i225;
473	nvm->ops.release = igc_release_nvm_i225;
474
475	/* NVM Function Pointers */
476	if (igc_get_flash_presence_i225(hw)) {
477		hw->nvm.type = igc_nvm_flash_hw;
478		nvm->ops.read = igc_read_nvm_srrd_i225;
479		nvm->ops.write = igc_write_nvm_srwr_i225;
480		nvm->ops.validate = igc_validate_nvm_checksum_i225;
481		nvm->ops.update = igc_update_nvm_checksum_i225;
482	} else {
483		hw->nvm.type = igc_nvm_invm;
484		nvm->ops.read = igc_read_nvm_eerd;
485		nvm->ops.write = NULL;
486		nvm->ops.validate = NULL;
487		nvm->ops.update = NULL;
488	}
489	return 0;
490}