Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright(c) 2015 EZchip Technologies.
  4 */
  5
  6#include <linux/module.h>
  7#include <linux/etherdevice.h>
  8#include <linux/interrupt.h>
  9#include <linux/of_address.h>
 10#include <linux/of_irq.h>
 11#include <linux/of_net.h>
 12#include <linux/of_platform.h>
 13#include "nps_enet.h"
 14
 15#define DRV_NAME			"nps_mgt_enet"
 16
 17static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
 18{
 19	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
 20	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
 21
 22	return (!tx_ctrl_ct && priv->tx_skb);
 23}
 24
 25static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
 26{
 27	struct nps_enet_priv *priv = netdev_priv(ndev);
 28	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
 29
 30	/* Empty Rx FIFO buffer by reading all words */
 31	for (i = 0; i < len; i++)
 32		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 33}
 34
 35static void nps_enet_read_rx_fifo(struct net_device *ndev,
 36				  unsigned char *dst, u32 length)
 37{
 38	struct nps_enet_priv *priv = netdev_priv(ndev);
 39	s32 i, last = length & (sizeof(u32) - 1);
 40	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
 41	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
 42
 43	/* In case dst is not aligned we need an intermediate buffer */
 44	if (dst_is_aligned) {
 45		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
 46		reg += len;
 47	} else { /* !dst_is_aligned */
 48		for (i = 0; i < len; i++, reg++) {
 49			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 50
 51			put_unaligned_be32(buf, reg);
 52		}
 53	}
 54	/* copy last bytes (if any) */
 55	if (last) {
 56		u32 buf;
 57
 58		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
 59		memcpy((u8 *)reg, &buf, last);
 60	}
 61}
 62
 63static u32 nps_enet_rx_handler(struct net_device *ndev)
 64{
 65	u32 frame_len, err = 0;
 66	u32 work_done = 0;
 67	struct nps_enet_priv *priv = netdev_priv(ndev);
 68	struct sk_buff *skb;
 69	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
 70	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
 71	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
 72	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
 73
 74	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
 75
 76	/* Check if we got RX */
 77	if (!rx_ctrl_cr)
 78		return work_done;
 79
 80	/* If we got here there is a work for us */
 81	work_done++;
 82
 83	/* Check Rx error */
 84	if (rx_ctrl_er) {
 85		ndev->stats.rx_errors++;
 86		err = 1;
 87	}
 88
 89	/* Check Rx CRC error */
 90	if (rx_ctrl_crc) {
 91		ndev->stats.rx_crc_errors++;
 92		ndev->stats.rx_dropped++;
 93		err = 1;
 94	}
 95
 96	/* Check Frame length Min 64b */
 97	if (unlikely(frame_len < ETH_ZLEN)) {
 98		ndev->stats.rx_length_errors++;
 99		ndev->stats.rx_dropped++;
100		err = 1;
101	}
102
103	if (err)
104		goto rx_irq_clean;
105
106	/* Skb allocation */
107	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
108	if (unlikely(!skb)) {
109		ndev->stats.rx_errors++;
110		ndev->stats.rx_dropped++;
111		goto rx_irq_clean;
112	}
113
114	/* Copy frame from Rx fifo into the skb */
115	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
116
117	skb_put(skb, frame_len);
118	skb->protocol = eth_type_trans(skb, ndev);
119	skb->ip_summed = CHECKSUM_UNNECESSARY;
120
121	ndev->stats.rx_packets++;
122	ndev->stats.rx_bytes += frame_len;
123	netif_receive_skb(skb);
124
125	goto rx_irq_frame_done;
126
127rx_irq_clean:
128	/* Clean Rx fifo */
129	nps_enet_clean_rx_fifo(ndev, frame_len);
130
131rx_irq_frame_done:
132	/* Ack Rx ctrl register */
133	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
134
135	return work_done;
136}
137
138static void nps_enet_tx_handler(struct net_device *ndev)
139{
140	struct nps_enet_priv *priv = netdev_priv(ndev);
141	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
142	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
143	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
144
145	/* Check if we got TX */
146	if (!nps_enet_is_tx_pending(priv))
147		return;
148
149	/* Ack Tx ctrl register */
150	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
151
152	/* Check Tx transmit error */
153	if (unlikely(tx_ctrl_et)) {
154		ndev->stats.tx_errors++;
155	} else {
156		ndev->stats.tx_packets++;
157		ndev->stats.tx_bytes += tx_ctrl_nt;
158	}
159
160	dev_kfree_skb(priv->tx_skb);
161	priv->tx_skb = NULL;
162
163	if (netif_queue_stopped(ndev))
164		netif_wake_queue(ndev);
165}
166
167/**
168 * nps_enet_poll - NAPI poll handler.
169 * @napi:       Pointer to napi_struct structure.
170 * @budget:     How many frames to process on one call.
171 *
172 * returns:     Number of processed frames
173 */
174static int nps_enet_poll(struct napi_struct *napi, int budget)
175{
176	struct net_device *ndev = napi->dev;
177	struct nps_enet_priv *priv = netdev_priv(ndev);
178	u32 work_done;
179
180	nps_enet_tx_handler(ndev);
181	work_done = nps_enet_rx_handler(ndev);
182	if ((work_done < budget) && napi_complete_done(napi, work_done)) {
183		u32 buf_int_enable_value = 0;
184
185		/* set tx_done and rx_rdy bits */
186		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
187		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
188
189		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
190				 buf_int_enable_value);
191
192		/* in case we will get a tx interrupt while interrupts
193		 * are masked, we will lose it since the tx is edge interrupt.
194		 * specifically, while executing the code section above,
195		 * between nps_enet_tx_handler and the interrupts enable, all
196		 * tx requests will be stuck until we will get an rx interrupt.
197		 * the two code lines below will solve this situation by
198		 * re-adding ourselves to the poll list.
199		 */
200		if (nps_enet_is_tx_pending(priv)) {
201			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
202			napi_reschedule(napi);
203		}
204	}
205
206	return work_done;
207}
208
209/**
210 * nps_enet_irq_handler - Global interrupt handler for ENET.
211 * @irq:                irq number.
212 * @dev_instance:       device instance.
213 *
214 * returns: IRQ_HANDLED for all cases.
215 *
216 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
217 * CTRL registers we may tell what is a reason for interrupt to fire up.
218 * We got one for RX and the other for TX (completion).
219 */
220static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
221{
222	struct net_device *ndev = dev_instance;
223	struct nps_enet_priv *priv = netdev_priv(ndev);
224	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
225	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
226
227	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
228		if (likely(napi_schedule_prep(&priv->napi))) {
229			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
230			__napi_schedule(&priv->napi);
231		}
232
233	return IRQ_HANDLED;
234}
235
236static void nps_enet_set_hw_mac_address(struct net_device *ndev)
237{
238	struct nps_enet_priv *priv = netdev_priv(ndev);
239	u32 ge_mac_cfg_1_value = 0;
240	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
241
242	/* set MAC address in HW */
243	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
244	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
245	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
246	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
247	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
248		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
249	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
250		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
251
252	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
253			 ge_mac_cfg_1_value);
254
255	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
256			 *ge_mac_cfg_2_value);
257}
258
259/**
260 * nps_enet_hw_reset - Reset the network device.
261 * @ndev:       Pointer to the network device.
262 *
263 * This function reset the PCS and TX fifo.
264 * The programming model is to set the relevant reset bits
265 * wait for some time for this to propagate and then unset
266 * the reset bits. This way we ensure that reset procedure
267 * is done successfully by device.
268 */
269static void nps_enet_hw_reset(struct net_device *ndev)
270{
271	struct nps_enet_priv *priv = netdev_priv(ndev);
272	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
273
274	/* Pcs reset sequence*/
275	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
276	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
277	usleep_range(10, 20);
278	ge_rst_value = 0;
279	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
280
281	/* Tx fifo reset sequence */
282	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
283	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
284	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
285			 phase_fifo_ctl_value);
286	usleep_range(10, 20);
287	phase_fifo_ctl_value = 0;
288	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
289			 phase_fifo_ctl_value);
290}
291
292static void nps_enet_hw_enable_control(struct net_device *ndev)
293{
294	struct nps_enet_priv *priv = netdev_priv(ndev);
295	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
296	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
297	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
298	s32 max_frame_length;
299
300	/* Enable Rx and Tx statistics */
301	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
302		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
303
304	/* Discard packets with different MAC address */
305	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
306		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
307
308	/* Discard multicast packets */
309	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
310		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
311
312	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
313			 *ge_mac_cfg_2_value);
314
315	/* Discard Packets bigger than max frame length */
316	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
317	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
318		*ge_mac_cfg_3_value =
319			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
320			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
321	}
322
323	/* Enable interrupts */
324	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
325	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
326	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
327			 buf_int_enable_value);
328
329	/* Write device MAC address to HW */
330	nps_enet_set_hw_mac_address(ndev);
331
332	/* Rx and Tx HW features */
333	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
334	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
335	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
336
337	/* IFG configuration */
338	ge_mac_cfg_0_value |=
339		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
340	ge_mac_cfg_0_value |=
341		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
342
343	/* preamble configuration */
344	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
345	ge_mac_cfg_0_value |=
346		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
347
348	/* enable flow control frames */
349	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
350	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
351	ge_mac_cfg_0_value |=
352		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
353	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
354		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
355
356	/* Enable Rx and Tx */
357	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
358	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
359
360	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
361			 *ge_mac_cfg_3_value);
362	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
363			 ge_mac_cfg_0_value);
364}
365
366static void nps_enet_hw_disable_control(struct net_device *ndev)
367{
368	struct nps_enet_priv *priv = netdev_priv(ndev);
369
370	/* Disable interrupts */
371	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
372
373	/* Disable Rx and Tx */
374	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
375}
376
377static void nps_enet_send_frame(struct net_device *ndev,
378				struct sk_buff *skb)
379{
380	struct nps_enet_priv *priv = netdev_priv(ndev);
381	u32 tx_ctrl_value = 0;
382	short length = skb->len;
383	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
384	u32 *src = (void *)skb->data;
385	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
386
387	/* In case src is not aligned we need an intermediate buffer */
388	if (src_is_aligned)
389		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
390	else /* !src_is_aligned */
391		for (i = 0; i < len; i++, src++)
392			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
393					 get_unaligned_be32(src));
394
395	/* Write the length of the Frame */
396	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
397
398	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
399	/* Send Frame */
400	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
401}
402
403/**
404 * nps_enet_set_mac_address - Set the MAC address for this device.
405 * @ndev:       Pointer to net_device structure.
406 * @p:          6 byte Address to be written as MAC address.
407 *
408 * This function copies the HW address from the sockaddr structure to the
409 * net_device structure and updates the address in HW.
410 *
411 * returns:     -EBUSY if the net device is busy or 0 if the address is set
412 *              successfully.
413 */
414static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
415{
416	struct sockaddr *addr = p;
417	s32 res;
418
419	if (netif_running(ndev))
420		return -EBUSY;
421
422	res = eth_mac_addr(ndev, p);
423	if (!res) {
424		ether_addr_copy(ndev->dev_addr, addr->sa_data);
425		nps_enet_set_hw_mac_address(ndev);
426	}
427
428	return res;
429}
430
431/**
432 * nps_enet_set_rx_mode - Change the receive filtering mode.
433 * @ndev:       Pointer to the network device.
434 *
435 * This function enables/disables promiscuous mode
436 */
437static void nps_enet_set_rx_mode(struct net_device *ndev)
438{
439	struct nps_enet_priv *priv = netdev_priv(ndev);
440	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
441
442	if (ndev->flags & IFF_PROMISC) {
443		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
444			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
445		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
446			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
447
448	} else {
449		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
450			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
451		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
452			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
453	}
454
455	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
456}
457
458/**
459 * nps_enet_open - Open the network device.
460 * @ndev:       Pointer to the network device.
461 *
462 * returns: 0, on success or non-zero error value on failure.
463 *
464 * This function sets the MAC address, requests and enables an IRQ
465 * for the ENET device and starts the Tx queue.
466 */
467static s32 nps_enet_open(struct net_device *ndev)
468{
469	struct nps_enet_priv *priv = netdev_priv(ndev);
470	s32 err;
471
472	/* Reset private variables */
473	priv->tx_skb = NULL;
474	priv->ge_mac_cfg_2_value = 0;
475	priv->ge_mac_cfg_3_value = 0;
476
477	/* ge_mac_cfg_3 default values */
478	priv->ge_mac_cfg_3_value |=
479		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
480
481	priv->ge_mac_cfg_3_value |=
482		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
483
484	/* Disable HW device */
485	nps_enet_hw_disable_control(ndev);
486
487	/* irq Rx allocation */
488	err = request_irq(priv->irq, nps_enet_irq_handler,
489			  0, "enet-rx-tx", ndev);
490	if (err)
491		return err;
492
493	napi_enable(&priv->napi);
494
495	/* Enable HW device */
496	nps_enet_hw_reset(ndev);
497	nps_enet_hw_enable_control(ndev);
498
499	netif_start_queue(ndev);
500
501	return 0;
502}
503
504/**
505 * nps_enet_stop - Close the network device.
506 * @ndev:       Pointer to the network device.
507 *
508 * This function stops the Tx queue, disables interrupts for the ENET device.
509 */
510static s32 nps_enet_stop(struct net_device *ndev)
511{
512	struct nps_enet_priv *priv = netdev_priv(ndev);
513
514	napi_disable(&priv->napi);
515	netif_stop_queue(ndev);
516	nps_enet_hw_disable_control(ndev);
517	free_irq(priv->irq, ndev);
518
519	return 0;
520}
521
522/**
523 * nps_enet_start_xmit - Starts the data transmission.
524 * @skb:        sk_buff pointer that contains data to be Transmitted.
525 * @ndev:       Pointer to net_device structure.
526 *
527 * returns: NETDEV_TX_OK, on success
528 *              NETDEV_TX_BUSY, if any of the descriptors are not free.
529 *
530 * This function is invoked from upper layers to initiate transmission.
531 */
532static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
533				       struct net_device *ndev)
534{
535	struct nps_enet_priv *priv = netdev_priv(ndev);
536
537	/* This driver handles one frame at a time  */
538	netif_stop_queue(ndev);
539
540	priv->tx_skb = skb;
541
542	/* make sure tx_skb is actually written to the memory
543	 * before the HW is informed and the IRQ is fired.
544	 */
545	wmb();
546
547	nps_enet_send_frame(ndev, skb);
548
549	return NETDEV_TX_OK;
550}
551
552#ifdef CONFIG_NET_POLL_CONTROLLER
553static void nps_enet_poll_controller(struct net_device *ndev)
554{
555	disable_irq(ndev->irq);
556	nps_enet_irq_handler(ndev->irq, ndev);
557	enable_irq(ndev->irq);
558}
559#endif
560
561static const struct net_device_ops nps_netdev_ops = {
562	.ndo_open		= nps_enet_open,
563	.ndo_stop		= nps_enet_stop,
564	.ndo_start_xmit		= nps_enet_start_xmit,
565	.ndo_set_mac_address	= nps_enet_set_mac_address,
566	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
567#ifdef CONFIG_NET_POLL_CONTROLLER
568	.ndo_poll_controller	= nps_enet_poll_controller,
569#endif
570};
571
572static s32 nps_enet_probe(struct platform_device *pdev)
573{
574	struct device *dev = &pdev->dev;
575	struct net_device *ndev;
576	struct nps_enet_priv *priv;
577	s32 err = 0;
578	const char *mac_addr;
579
580	if (!dev->of_node)
581		return -ENODEV;
582
583	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
584	if (!ndev)
585		return -ENOMEM;
586
587	platform_set_drvdata(pdev, ndev);
588	SET_NETDEV_DEV(ndev, dev);
589	priv = netdev_priv(ndev);
590
591	/* The EZ NET specific entries in the device structure. */
592	ndev->netdev_ops = &nps_netdev_ops;
593	ndev->watchdog_timeo = (400 * HZ / 1000);
594	/* FIXME :: no multicast support yet */
595	ndev->flags &= ~IFF_MULTICAST;
596
597	priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
598	if (IS_ERR(priv->regs_base)) {
599		err = PTR_ERR(priv->regs_base);
600		goto out_netdev;
601	}
602	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
603
604	/* set kernel MAC address to dev */
605	mac_addr = of_get_mac_address(dev->of_node);
606	if (!IS_ERR(mac_addr))
607		ether_addr_copy(ndev->dev_addr, mac_addr);
608	else
609		eth_hw_addr_random(ndev);
610
611	/* Get IRQ number */
612	priv->irq = platform_get_irq(pdev, 0);
613	if (!priv->irq) {
614		dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
615		err = -ENODEV;
616		goto out_netdev;
617	}
618
619	netif_napi_add(ndev, &priv->napi, nps_enet_poll,
620		       NPS_ENET_NAPI_POLL_WEIGHT);
621
622	/* Register the driver. Should be the last thing in probe */
623	err = register_netdev(ndev);
624	if (err) {
625		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
626			ndev->name, (s32)err);
627		goto out_netif_api;
628	}
629
630	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
631	return 0;
632
633out_netif_api:
634	netif_napi_del(&priv->napi);
635out_netdev:
636	if (err)
637		free_netdev(ndev);
638
639	return err;
640}
641
642static s32 nps_enet_remove(struct platform_device *pdev)
643{
644	struct net_device *ndev = platform_get_drvdata(pdev);
645	struct nps_enet_priv *priv = netdev_priv(ndev);
646
647	unregister_netdev(ndev);
648	free_netdev(ndev);
649	netif_napi_del(&priv->napi);
650
651	return 0;
652}
653
654static const struct of_device_id nps_enet_dt_ids[] = {
655	{ .compatible = "ezchip,nps-mgt-enet" },
656	{ /* Sentinel */ }
657};
658MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
659
660static struct platform_driver nps_enet_driver = {
661	.probe = nps_enet_probe,
662	.remove = nps_enet_remove,
663	.driver = {
664		.name = DRV_NAME,
665		.of_match_table  = nps_enet_dt_ids,
666	},
667};
668
669module_platform_driver(nps_enet_driver);
670
671MODULE_AUTHOR("EZchip Semiconductor");
672MODULE_LICENSE("GPL v2");