Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * e100net.c: A network driver for the ETRAX 100LX network controller.
   3 *
   4 * Copyright (c) 1998-2002 Axis Communications AB.
   5 *
   6 * The outline of this driver comes from skeleton.c.
   7 *
   8 */
   9
  10
  11#include <linux/module.h>
  12
  13#include <linux/kernel.h>
  14#include <linux/delay.h>
  15#include <linux/types.h>
  16#include <linux/fcntl.h>
  17#include <linux/interrupt.h>
  18#include <linux/ptrace.h>
  19#include <linux/ioport.h>
  20#include <linux/in.h>
  21#include <linux/string.h>
  22#include <linux/spinlock.h>
  23#include <linux/errno.h>
  24#include <linux/init.h>
  25#include <linux/bitops.h>
  26
  27#include <linux/if.h>
  28#include <linux/mii.h>
  29#include <linux/netdevice.h>
  30#include <linux/etherdevice.h>
  31#include <linux/skbuff.h>
  32#include <linux/ethtool.h>
  33
  34#include <arch/svinto.h>/* DMA and register descriptions */
  35#include <asm/io.h>         /* CRIS_LED_* I/O functions */
  36#include <asm/irq.h>
  37#include <asm/dma.h>
  38#include <asm/ethernet.h>
  39#include <asm/cache.h>
  40#include <arch/io_interface_mux.h>
  41
  42//#define ETHDEBUG
  43#define D(x)
  44
  45/*
  46 * The name of the card. Is used for messages and in the requests for
  47 * io regions, irqs and dma channels
  48 */
  49
  50static const char* cardname = "ETRAX 100LX built-in ethernet controller";
  51
  52/* A default ethernet address. Highlevel SW will set the real one later */
  53
  54static struct sockaddr default_mac = {
  55	0,
  56	{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
  57};
  58
  59/* Information that need to be kept for each board. */
  60struct net_local {
  61	struct mii_if_info mii_if;
  62
  63	/* Tx control lock.  This protects the transmit buffer ring
  64	 * state along with the "tx full" state of the driver.  This
  65	 * means all netif_queue flow control actions are protected
  66	 * by this lock as well.
  67	 */
  68	spinlock_t lock;
  69
  70	spinlock_t led_lock; /* Protect LED state */
  71	spinlock_t transceiver_lock; /* Protect transceiver state. */
  72};
  73
  74typedef struct etrax_eth_descr
  75{
  76	etrax_dma_descr descr;
  77	struct sk_buff* skb;
  78} etrax_eth_descr;
  79
  80/* Some transceivers requires special handling */
  81struct transceiver_ops
  82{
  83	unsigned int oui;
  84	void (*check_speed)(struct net_device* dev);
  85	void (*check_duplex)(struct net_device* dev);
  86};
  87
  88/* Duplex settings */
  89enum duplex
  90{
  91	half,
  92	full,
  93	autoneg
  94};
  95
  96/* Dma descriptors etc. */
  97
  98#define MAX_MEDIA_DATA_SIZE 1522
  99
 100#define MIN_PACKET_LEN      46
 101#define ETHER_HEAD_LEN      14
 102
 103/*
 104** MDIO constants.
 105*/
 106#define MDIO_START                          0x1
 107#define MDIO_READ                           0x2
 108#define MDIO_WRITE                          0x1
 109#define MDIO_PREAMBLE              0xfffffffful
 110
 111/* Broadcom specific */
 112#define MDIO_AUX_CTRL_STATUS_REG           0x18
 113#define MDIO_BC_FULL_DUPLEX_IND             0x1
 114#define MDIO_BC_SPEED                       0x2
 115
 116/* TDK specific */
 117#define MDIO_TDK_DIAGNOSTIC_REG              18
 118#define MDIO_TDK_DIAGNOSTIC_RATE          0x400
 119#define MDIO_TDK_DIAGNOSTIC_DPLX          0x800
 120
 121/*Intel LXT972A specific*/
 122#define MDIO_INT_STATUS_REG_2			0x0011
 123#define MDIO_INT_FULL_DUPLEX_IND       (1 << 9)
 124#define MDIO_INT_SPEED                (1 << 14)
 125
 126/* Network flash constants */
 127#define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
 128#define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
 129#define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
 130#define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */
 131
 132#define NO_NETWORK_ACTIVITY 0
 133#define NETWORK_ACTIVITY    1
 134
 135#define NBR_OF_RX_DESC     32
 136#define NBR_OF_TX_DESC     16
 137
 138/* Large packets are sent directly to upper layers while small packets are */
 139/* copied (to reduce memory waste). The following constant decides the breakpoint */
 140#define RX_COPYBREAK 256
 141
 142/* Due to a chip bug we need to flush the cache when descriptors are returned */
 143/* to the DMA. To decrease performance impact we return descriptors in chunks. */
 144/* The following constant determines the number of descriptors to return. */
 145#define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2
 146
 147#define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)
 148
 149/* Define some macros to access ETRAX 100 registers */
 150#define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
 151					  IO_FIELD_(reg##_, field##_, val)
 152#define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
 153					  IO_STATE_(reg##_, field##_, _##val)
 154
 155static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
 156                                          to be processed */
 157static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */
 158
 159static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
 160
 161static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
 162static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
 163static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
 164static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
 165
 166static unsigned int network_rec_config_shadow = 0;
 167
 168static unsigned int network_tr_ctrl_shadow = 0;
 169
 170/* Network speed indication. */
 171static DEFINE_TIMER(speed_timer, NULL, 0, 0);
 172static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
 173static int current_speed; /* Speed read from transceiver */
 174static int current_speed_selection; /* Speed selected by user */
 175static unsigned long led_next_time;
 176static int led_active;
 177static int rx_queue_len;
 178
 179/* Duplex */
 180static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
 181static int full_duplex;
 182static enum duplex current_duplex;
 183
 184/* Index to functions, as function prototypes. */
 185
 186static int etrax_ethernet_init(void);
 187
 188static int e100_open(struct net_device *dev);
 189static int e100_set_mac_address(struct net_device *dev, void *addr);
 190static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
 191static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
 192static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
 193static void e100_rx(struct net_device *dev);
 194static int e100_close(struct net_device *dev);
 195static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
 196static int e100_set_config(struct net_device* dev, struct ifmap* map);
 197static void e100_tx_timeout(struct net_device *dev);
 198static struct net_device_stats *e100_get_stats(struct net_device *dev);
 199static void set_multicast_list(struct net_device *dev);
 200static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
 201static void update_rx_stats(struct net_device_stats *);
 202static void update_tx_stats(struct net_device_stats *);
 203static int e100_probe_transceiver(struct net_device* dev);
 204
 205static void e100_check_speed(unsigned long priv);
 206static void e100_set_speed(struct net_device* dev, unsigned long speed);
 207static void e100_check_duplex(unsigned long priv);
 208static void e100_set_duplex(struct net_device* dev, enum duplex);
 209static void e100_negotiate(struct net_device* dev);
 210
 211static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
 212static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
 213
 214static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
 215static void e100_send_mdio_bit(unsigned char bit);
 216static unsigned char e100_receive_mdio_bit(void);
 217static void e100_reset_transceiver(struct net_device* net);
 218
 219static void e100_clear_network_leds(unsigned long dummy);
 220static void e100_set_network_leds(int active);
 221
 222static const struct ethtool_ops e100_ethtool_ops;
 223#if defined(CONFIG_ETRAX_NO_PHY)
 224static void dummy_check_speed(struct net_device* dev);
 225static void dummy_check_duplex(struct net_device* dev);
 226#else
 227static void broadcom_check_speed(struct net_device* dev);
 228static void broadcom_check_duplex(struct net_device* dev);
 229static void tdk_check_speed(struct net_device* dev);
 230static void tdk_check_duplex(struct net_device* dev);
 231static void intel_check_speed(struct net_device* dev);
 232static void intel_check_duplex(struct net_device* dev);
 233static void generic_check_speed(struct net_device* dev);
 234static void generic_check_duplex(struct net_device* dev);
 235#endif
 236#ifdef CONFIG_NET_POLL_CONTROLLER
 237static void e100_netpoll(struct net_device* dev);
 238#endif
 239
 240static int autoneg_normal = 1;
 241
 242struct transceiver_ops transceivers[] =
 243{
 244#if defined(CONFIG_ETRAX_NO_PHY)
 245	{0x0000, dummy_check_speed, dummy_check_duplex}        /* Dummy */
 246#else
 247	{0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
 248	{0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
 249	{0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
 250        {0x04de, intel_check_speed, intel_check_duplex},     	/* Intel LXT972A*/
 251	{0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
 252#endif
 253};
 254
 255struct transceiver_ops* transceiver = &transceivers[0];
 256
 257static const struct net_device_ops e100_netdev_ops = {
 258	.ndo_open		= e100_open,
 259	.ndo_stop		= e100_close,
 260	.ndo_start_xmit		= e100_send_packet,
 261	.ndo_tx_timeout		= e100_tx_timeout,
 262	.ndo_get_stats		= e100_get_stats,
 263	.ndo_set_rx_mode	= set_multicast_list,
 264	.ndo_do_ioctl		= e100_ioctl,
 265	.ndo_set_mac_address	= e100_set_mac_address,
 266	.ndo_validate_addr	= eth_validate_addr,
 267	.ndo_change_mtu		= eth_change_mtu,
 268	.ndo_set_config		= e100_set_config,
 269#ifdef CONFIG_NET_POLL_CONTROLLER
 270	.ndo_poll_controller	= e100_netpoll,
 271#endif
 272};
 273
 274#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
 275
 276/*
 277 * Check for a network adaptor of this type, and return '0' if one exists.
 278 * If dev->base_addr == 0, probe all likely locations.
 279 * If dev->base_addr == 1, always return failure.
 280 * If dev->base_addr == 2, allocate space for the device and return success
 281 * (detachable devices only).
 282 */
 283
 284static int __init
 285etrax_ethernet_init(void)
 286{
 287	struct net_device *dev;
 288        struct net_local* np;
 289	int i, err;
 290
 291	printk(KERN_INFO
 292	       "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
 293
 294	if (cris_request_io_interface(if_eth, cardname)) {
 295		printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
 296		return -EBUSY;
 297	}
 298
 299	dev = alloc_etherdev(sizeof(struct net_local));
 300	if (!dev)
 301		return -ENOMEM;
 302
 303	np = netdev_priv(dev);
 304
 305	/* we do our own locking */
 306	dev->features |= NETIF_F_LLTX;
 307
 308	dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
 309
 310	/* now setup our etrax specific stuff */
 311
 312	dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
 313	dev->dma = NETWORK_RX_DMA_NBR;
 314
 315	/* fill in our handlers so the network layer can talk to us in the future */
 316
 317	dev->ethtool_ops	= &e100_ethtool_ops;
 318	dev->netdev_ops		= &e100_netdev_ops;
 319
 320	spin_lock_init(&np->lock);
 321	spin_lock_init(&np->led_lock);
 322	spin_lock_init(&np->transceiver_lock);
 323
 324	/* Initialise the list of Etrax DMA-descriptors */
 325
 326	/* Initialise receive descriptors */
 327
 328	for (i = 0; i < NBR_OF_RX_DESC; i++) {
 329		/* Allocate two extra cachelines to make sure that buffer used
 330		 * by DMA does not share cacheline with any other data (to
 331		 * avoid cache bug)
 332		 */
 333		RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
 334		if (!RxDescList[i].skb)
 335			return -ENOMEM;
 336		RxDescList[i].descr.ctrl   = 0;
 337		RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
 338		RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
 339		RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
 340		RxDescList[i].descr.status = 0;
 341		RxDescList[i].descr.hw_len = 0;
 342		prepare_rx_descriptor(&RxDescList[i].descr);
 343	}
 344
 345	RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
 346	RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
 347	rx_queue_len = 0;
 348
 349	/* Initialize transmit descriptors */
 350	for (i = 0; i < NBR_OF_TX_DESC; i++) {
 351		TxDescList[i].descr.ctrl   = 0;
 352		TxDescList[i].descr.sw_len = 0;
 353		TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
 354		TxDescList[i].descr.buf    = 0;
 355		TxDescList[i].descr.status = 0;
 356		TxDescList[i].descr.hw_len = 0;
 357		TxDescList[i].skb = 0;
 358	}
 359
 360	TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
 361	TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);
 362
 363	/* Initialise initial pointers */
 364
 365	myNextRxDesc  = &RxDescList[0];
 366	myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
 367	myFirstTxDesc = &TxDescList[0];
 368	myNextTxDesc  = &TxDescList[0];
 369	myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];
 370
 371	/* Register device */
 372	err = register_netdev(dev);
 373	if (err) {
 374		free_netdev(dev);
 375		return err;
 376	}
 377
 378	/* set the default MAC address */
 379
 380	e100_set_mac_address(dev, &default_mac);
 381
 382	/* Initialize speed indicator stuff. */
 383
 384	current_speed = 10;
 385	current_speed_selection = 0; /* Auto */
 386	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
 387	speed_timer.data = (unsigned long)dev;
 388	speed_timer.function = e100_check_speed;
 389
 390	clear_led_timer.function = e100_clear_network_leds;
 391	clear_led_timer.data = (unsigned long)dev;
 392
 393	full_duplex = 0;
 394	current_duplex = autoneg;
 395	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
 396        duplex_timer.data = (unsigned long)dev;
 397	duplex_timer.function = e100_check_duplex;
 398
 399        /* Initialize mii interface */
 400	np->mii_if.phy_id_mask = 0x1f;
 401	np->mii_if.reg_num_mask = 0x1f;
 402	np->mii_if.dev = dev;
 403	np->mii_if.mdio_read = e100_get_mdio_reg;
 404	np->mii_if.mdio_write = e100_set_mdio_reg;
 405
 406	/* Initialize group address registers to make sure that no */
 407	/* unwanted addresses are matched */
 408	*R_NETWORK_GA_0 = 0x00000000;
 409	*R_NETWORK_GA_1 = 0x00000000;
 410
 411	/* Initialize next time the led can flash */
 412	led_next_time = jiffies;
 413	return 0;
 414}
 415
 416/* set MAC address of the interface. called from the core after a
 417 * SIOCSIFADDR ioctl, and from the bootup above.
 418 */
 419
 420static int
 421e100_set_mac_address(struct net_device *dev, void *p)
 422{
 423	struct net_local *np = netdev_priv(dev);
 424	struct sockaddr *addr = p;
 425
 426	spin_lock(&np->lock); /* preemption protection */
 427
 428	/* remember it */
 429
 430	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 431
 432	/* Write it to the hardware.
 433	 * Note the way the address is wrapped:
 434	 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
 435	 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
 436	 */
 437
 438	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
 439		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
 440	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
 441	*R_NETWORK_SA_2 = 0;
 442
 443	/* show it in the log as well */
 444
 445	printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
 446
 447	spin_unlock(&np->lock);
 448
 449	return 0;
 450}
 451
 452/*
 453 * Open/initialize the board. This is called (in the current kernel)
 454 * sometime after booting when the 'ifconfig' program is run.
 455 *
 456 * This routine should set everything up anew at each open, even
 457 * registers that "should" only need to be set once at boot, so that
 458 * there is non-reboot way to recover if something goes wrong.
 459 */
 460
 461static int
 462e100_open(struct net_device *dev)
 463{
 464	unsigned long flags;
 465
 466	/* enable the MDIO output pin */
 467
 468	*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
 469
 470	*R_IRQ_MASK0_CLR =
 471		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
 472		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
 473		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
 474
 475	/* clear dma0 and 1 eop and descr irq masks */
 476	*R_IRQ_MASK2_CLR =
 477		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
 478		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
 479		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
 480		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
 481
 482	/* Reset and wait for the DMA channels */
 483
 484	RESET_DMA(NETWORK_TX_DMA_NBR);
 485	RESET_DMA(NETWORK_RX_DMA_NBR);
 486	WAIT_DMA(NETWORK_TX_DMA_NBR);
 487	WAIT_DMA(NETWORK_RX_DMA_NBR);
 488
 489	/* Initialise the etrax network controller */
 490
 491	/* allocate the irq corresponding to the receiving DMA */
 492
 493	if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
 494			(void *)dev)) {
 495		goto grace_exit0;
 496	}
 497
 498	/* allocate the irq corresponding to the transmitting DMA */
 499
 500	if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
 501			cardname, (void *)dev)) {
 502		goto grace_exit1;
 503	}
 504
 505	/* allocate the irq corresponding to the network errors etc */
 506
 507	if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
 508			cardname, (void *)dev)) {
 509		goto grace_exit2;
 510	}
 511
 512	/*
 513	 * Always allocate the DMA channels after the IRQ,
 514	 * and clean up on failure.
 515	 */
 516
 517	if (cris_request_dma(NETWORK_TX_DMA_NBR,
 518	                     cardname,
 519	                     DMA_VERBOSE_ON_ERROR,
 520	                     dma_eth)) {
 521		goto grace_exit3;
 522        }
 523
 524	if (cris_request_dma(NETWORK_RX_DMA_NBR,
 525	                     cardname,
 526	                     DMA_VERBOSE_ON_ERROR,
 527	                     dma_eth)) {
 528		goto grace_exit4;
 529        }
 530
 531	/* give the HW an idea of what MAC address we want */
 532
 533	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
 534		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
 535	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
 536	*R_NETWORK_SA_2 = 0;
 537
 538#if 0
 539	/* use promiscuous mode for testing */
 540	*R_NETWORK_GA_0 = 0xffffffff;
 541	*R_NETWORK_GA_1 = 0xffffffff;
 542
 543	*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
 544#else
 545	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
 546	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
 547	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
 548	SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
 549	*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
 550#endif
 551
 552	*R_NETWORK_GEN_CONFIG =
 553		IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
 554		IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
 555
 556	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
 557	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
 558	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
 559	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
 560	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
 561	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
 562	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
 563	*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
 564
 565	local_irq_save(flags);
 566
 567	/* enable the irq's for ethernet DMA */
 568
 569	*R_IRQ_MASK2_SET =
 570		IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
 571		IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
 572
 573	*R_IRQ_MASK0_SET =
 574		IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
 575		IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
 576		IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
 577
 578	/* make sure the irqs are cleared */
 579
 580	*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
 581	*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
 582
 583	/* make sure the rec and transmit error counters are cleared */
 584
 585	(void)*R_REC_COUNTERS;  /* dummy read */
 586	(void)*R_TR_COUNTERS;   /* dummy read */
 587
 588	/* start the receiving DMA channel so we can receive packets from now on */
 589
 590	*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
 591	*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
 592
 593	/* Set up transmit DMA channel so it can be restarted later */
 594
 595	*R_DMA_CH0_FIRST = 0;
 596	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
 597	netif_start_queue(dev);
 598
 599	local_irq_restore(flags);
 600
 601	/* Probe for transceiver */
 602	if (e100_probe_transceiver(dev))
 603		goto grace_exit5;
 604
 605	/* Start duplex/speed timers */
 606	add_timer(&speed_timer);
 607	add_timer(&duplex_timer);
 608
 609	/* We are now ready to accept transmit requeusts from
 610	 * the queueing layer of the networking.
 611	 */
 612	netif_carrier_on(dev);
 613
 614	return 0;
 615
 616grace_exit5:
 617	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
 618grace_exit4:
 619	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
 620grace_exit3:
 621	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
 622grace_exit2:
 623	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
 624grace_exit1:
 625	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
 626grace_exit0:
 627	return -EAGAIN;
 628}
 629
 630#if defined(CONFIG_ETRAX_NO_PHY)
 631static void
 632dummy_check_speed(struct net_device* dev)
 633{
 634	current_speed = 100;
 635}
 636#else
 637static void
 638generic_check_speed(struct net_device* dev)
 639{
 640	unsigned long data;
 641	struct net_local *np = netdev_priv(dev);
 642
 643	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
 644	if ((data & ADVERTISE_100FULL) ||
 645	    (data & ADVERTISE_100HALF))
 646		current_speed = 100;
 647	else
 648		current_speed = 10;
 649}
 650
 651static void
 652tdk_check_speed(struct net_device* dev)
 653{
 654	unsigned long data;
 655	struct net_local *np = netdev_priv(dev);
 656
 657	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 658				 MDIO_TDK_DIAGNOSTIC_REG);
 659	current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
 660}
 661
 662static void
 663broadcom_check_speed(struct net_device* dev)
 664{
 665	unsigned long data;
 666	struct net_local *np = netdev_priv(dev);
 667
 668	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 669				 MDIO_AUX_CTRL_STATUS_REG);
 670	current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
 671}
 672
 673static void
 674intel_check_speed(struct net_device* dev)
 675{
 676	unsigned long data;
 677	struct net_local *np = netdev_priv(dev);
 678
 679	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 680				 MDIO_INT_STATUS_REG_2);
 681	current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
 682}
 683#endif
 684static void
 685e100_check_speed(unsigned long priv)
 686{
 687	struct net_device* dev = (struct net_device*)priv;
 688	struct net_local *np = netdev_priv(dev);
 689	static int led_initiated = 0;
 690	unsigned long data;
 691	int old_speed = current_speed;
 692
 693	spin_lock(&np->transceiver_lock);
 694
 695	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
 696	if (!(data & BMSR_LSTATUS)) {
 697		current_speed = 0;
 698	} else {
 699		transceiver->check_speed(dev);
 700	}
 701
 702	spin_lock(&np->led_lock);
 703	if ((old_speed != current_speed) || !led_initiated) {
 704		led_initiated = 1;
 705		e100_set_network_leds(NO_NETWORK_ACTIVITY);
 706		if (current_speed)
 707			netif_carrier_on(dev);
 708		else
 709			netif_carrier_off(dev);
 710	}
 711	spin_unlock(&np->led_lock);
 712
 713	/* Reinitialize the timer. */
 714	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
 715	add_timer(&speed_timer);
 716
 717	spin_unlock(&np->transceiver_lock);
 718}
 719
 720static void
 721e100_negotiate(struct net_device* dev)
 722{
 723	struct net_local *np = netdev_priv(dev);
 724	unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 725						MII_ADVERTISE);
 726
 727	/* Discard old speed and duplex settings */
 728	data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
 729	          ADVERTISE_10HALF | ADVERTISE_10FULL);
 730
 731	switch (current_speed_selection) {
 732		case 10:
 733			if (current_duplex == full)
 734				data |= ADVERTISE_10FULL;
 735			else if (current_duplex == half)
 736				data |= ADVERTISE_10HALF;
 737			else
 738				data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
 739			break;
 740
 741		case 100:
 742			 if (current_duplex == full)
 743				data |= ADVERTISE_100FULL;
 744			else if (current_duplex == half)
 745				data |= ADVERTISE_100HALF;
 746			else
 747				data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
 748			break;
 749
 750		case 0: /* Auto */
 751			 if (current_duplex == full)
 752				data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
 753			else if (current_duplex == half)
 754				data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
 755			else
 756				data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
 757				  ADVERTISE_100HALF | ADVERTISE_100FULL;
 758			break;
 759
 760		default: /* assume autoneg speed and duplex */
 761			data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
 762				  ADVERTISE_100HALF | ADVERTISE_100FULL;
 763			break;
 764	}
 765
 766	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
 767
 768	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
 769	if (autoneg_normal) {
 770		/* Renegotiate with link partner */
 771		data |= BMCR_ANENABLE | BMCR_ANRESTART;
 772	} else {
 773		/* Don't negotiate speed or duplex */
 774		data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
 775
 776		/* Set speed and duplex static */
 777		if (current_speed_selection == 10)
 778			data &= ~BMCR_SPEED100;
 779		else
 780			data |= BMCR_SPEED100;
 781
 782		if (current_duplex != full)
 783			data &= ~BMCR_FULLDPLX;
 784		else
 785			data |= BMCR_FULLDPLX;
 786	}
 787	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
 788}
 789
 790static void
 791e100_set_speed(struct net_device* dev, unsigned long speed)
 792{
 793	struct net_local *np = netdev_priv(dev);
 794
 795	spin_lock(&np->transceiver_lock);
 796	if (speed != current_speed_selection) {
 797		current_speed_selection = speed;
 798		e100_negotiate(dev);
 799	}
 800	spin_unlock(&np->transceiver_lock);
 801}
 802
 803static void
 804e100_check_duplex(unsigned long priv)
 805{
 806	struct net_device *dev = (struct net_device *)priv;
 807	struct net_local *np = netdev_priv(dev);
 808	int old_duplex;
 809
 810	spin_lock(&np->transceiver_lock);
 811	old_duplex = full_duplex;
 812	transceiver->check_duplex(dev);
 813	if (old_duplex != full_duplex) {
 814		/* Duplex changed */
 815		SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
 816		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
 817	}
 818
 819	/* Reinitialize the timer. */
 820	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
 821	add_timer(&duplex_timer);
 822	np->mii_if.full_duplex = full_duplex;
 823	spin_unlock(&np->transceiver_lock);
 824}
 825#if defined(CONFIG_ETRAX_NO_PHY)
 826static void
 827dummy_check_duplex(struct net_device* dev)
 828{
 829	full_duplex = 1;
 830}
 831#else
 832static void
 833generic_check_duplex(struct net_device* dev)
 834{
 835	unsigned long data;
 836	struct net_local *np = netdev_priv(dev);
 837
 838	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
 839	if ((data & ADVERTISE_10FULL) ||
 840	    (data & ADVERTISE_100FULL))
 841		full_duplex = 1;
 842	else
 843		full_duplex = 0;
 844}
 845
 846static void
 847tdk_check_duplex(struct net_device* dev)
 848{
 849	unsigned long data;
 850	struct net_local *np = netdev_priv(dev);
 851
 852	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 853				 MDIO_TDK_DIAGNOSTIC_REG);
 854	full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
 855}
 856
 857static void
 858broadcom_check_duplex(struct net_device* dev)
 859{
 860	unsigned long data;
 861	struct net_local *np = netdev_priv(dev);
 862
 863	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 864				 MDIO_AUX_CTRL_STATUS_REG);
 865	full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
 866}
 867
 868static void
 869intel_check_duplex(struct net_device* dev)
 870{
 871	unsigned long data;
 872	struct net_local *np = netdev_priv(dev);
 873
 874	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
 875				 MDIO_INT_STATUS_REG_2);
 876	full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
 877}
 878#endif
 879static void
 880e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
 881{
 882	struct net_local *np = netdev_priv(dev);
 883
 884	spin_lock(&np->transceiver_lock);
 885	if (new_duplex != current_duplex) {
 886		current_duplex = new_duplex;
 887		e100_negotiate(dev);
 888	}
 889	spin_unlock(&np->transceiver_lock);
 890}
 891
 892static int
 893e100_probe_transceiver(struct net_device* dev)
 894{
 895	int ret = 0;
 896
 897#if !defined(CONFIG_ETRAX_NO_PHY)
 898	unsigned int phyid_high;
 899	unsigned int phyid_low;
 900	unsigned int oui;
 901	struct transceiver_ops* ops = NULL;
 902	struct net_local *np = netdev_priv(dev);
 903
 904	spin_lock(&np->transceiver_lock);
 905
 906	/* Probe MDIO physical address */
 907	for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
 908	     np->mii_if.phy_id++) {
 909		if (e100_get_mdio_reg(dev,
 910				      np->mii_if.phy_id, MII_BMSR) != 0xffff)
 911			break;
 912	}
 913	if (np->mii_if.phy_id == 32) {
 914		ret = -ENODEV;
 915		goto out;
 916	}
 917
 918	/* Get manufacturer */
 919	phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
 920	phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
 921	oui = (phyid_high << 6) | (phyid_low >> 10);
 922
 923	for (ops = &transceivers[0]; ops->oui; ops++) {
 924		if (ops->oui == oui)
 925			break;
 926	}
 927	transceiver = ops;
 928out:
 929	spin_unlock(&np->transceiver_lock);
 930#endif
 931	return ret;
 932}
 933
 934static int
 935e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
 936{
 937	unsigned short cmd;    /* Data to be sent on MDIO port */
 938	int data;   /* Data read from MDIO */
 939	int bitCounter;
 940
 941	/* Start of frame, OP Code, Physical Address, Register Address */
 942	cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
 943		(location << 2);
 944
 945	e100_send_mdio_cmd(cmd, 0);
 946
 947	data = 0;
 948
 949	/* Data... */
 950	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
 951		data |= (e100_receive_mdio_bit() << bitCounter);
 952	}
 953
 954	return data;
 955}
 956
 957static void
 958e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
 959{
 960	int bitCounter;
 961	unsigned short cmd;
 962
 963	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
 964	      (location << 2);
 965
 966	e100_send_mdio_cmd(cmd, 1);
 967
 968	/* Data... */
 969	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
 970		e100_send_mdio_bit(GET_BIT(bitCounter, value));
 971	}
 972
 973}
 974
 975static void
 976e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
 977{
 978	int bitCounter;
 979	unsigned char data = 0x2;
 980
 981	/* Preamble */
 982	for (bitCounter = 31; bitCounter>= 0; bitCounter--)
 983		e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
 984
 985	for (bitCounter = 15; bitCounter >= 2; bitCounter--)
 986		e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
 987
 988	/* Turnaround */
 989	for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
 990		if (write_cmd)
 991			e100_send_mdio_bit(GET_BIT(bitCounter, data));
 992		else
 993			e100_receive_mdio_bit();
 994}
 995
 996static void
 997e100_send_mdio_bit(unsigned char bit)
 998{
 999	*R_NETWORK_MGM_CTRL =
1000		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1001		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1002	udelay(1);
1003	*R_NETWORK_MGM_CTRL =
1004		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1005		IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1006		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1007	udelay(1);
1008}
1009
1010static unsigned char
1011e100_receive_mdio_bit(void)
1012{
1013	unsigned char bit;
1014	*R_NETWORK_MGM_CTRL = 0;
1015	bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1016	udelay(1);
1017	*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1018	udelay(1);
1019	return bit;
1020}
1021
1022static void
1023e100_reset_transceiver(struct net_device* dev)
1024{
1025	struct net_local *np = netdev_priv(dev);
1026	unsigned short cmd;
1027	unsigned short data;
1028	int bitCounter;
1029
1030	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1031
1032	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1033
1034	e100_send_mdio_cmd(cmd, 1);
1035
1036	data |= 0x8000;
1037
1038	for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1039		e100_send_mdio_bit(GET_BIT(bitCounter, data));
1040	}
1041}
1042
1043/* Called by upper layers if they decide it took too long to complete
1044 * sending a packet - we need to reset and stuff.
1045 */
1046
1047static void
1048e100_tx_timeout(struct net_device *dev)
1049{
1050	struct net_local *np = netdev_priv(dev);
1051	unsigned long flags;
1052
1053	spin_lock_irqsave(&np->lock, flags);
1054
1055	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1056	       tx_done(dev) ? "IRQ problem" : "network cable problem");
1057
1058	/* remember we got an error */
1059
1060	dev->stats.tx_errors++;
1061
1062	/* reset the TX DMA in case it has hung on something */
1063
1064	RESET_DMA(NETWORK_TX_DMA_NBR);
1065	WAIT_DMA(NETWORK_TX_DMA_NBR);
1066
1067	/* Reset the transceiver. */
1068
1069	e100_reset_transceiver(dev);
1070
1071	/* and get rid of the packets that never got an interrupt */
1072	while (myFirstTxDesc != myNextTxDesc) {
1073		dev_kfree_skb(myFirstTxDesc->skb);
1074		myFirstTxDesc->skb = 0;
1075		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1076	}
1077
1078	/* Set up transmit DMA channel so it can be restarted later */
1079	*R_DMA_CH0_FIRST = 0;
1080	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1081
1082	/* tell the upper layers we're ok again */
1083
1084	netif_wake_queue(dev);
1085	spin_unlock_irqrestore(&np->lock, flags);
1086}
1087
1088
1089/* This will only be invoked if the driver is _not_ in XOFF state.
1090 * What this means is that we need not check it, and that this
1091 * invariant will hold if we make sure that the netif_*_queue()
1092 * calls are done at the proper times.
1093 */
1094
1095static int
1096e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1097{
1098	struct net_local *np = netdev_priv(dev);
1099	unsigned char *buf = skb->data;
1100	unsigned long flags;
1101
1102#ifdef ETHDEBUG
1103	printk("send packet len %d\n", length);
1104#endif
1105	spin_lock_irqsave(&np->lock, flags);  /* protect from tx_interrupt and ourself */
1106
1107	myNextTxDesc->skb = skb;
1108
1109	dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1110
1111	e100_hardware_send_packet(np, buf, skb->len);
1112
1113	myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1114
1115	/* Stop queue if full */
1116	if (myNextTxDesc == myFirstTxDesc) {
1117		netif_stop_queue(dev);
1118	}
1119
1120	spin_unlock_irqrestore(&np->lock, flags);
1121
1122	return NETDEV_TX_OK;
1123}
1124
1125/*
1126 * The typical workload of the driver:
1127 *   Handle the network interface interrupts.
1128 */
1129
1130static irqreturn_t
1131e100rxtx_interrupt(int irq, void *dev_id)
1132{
1133	struct net_device *dev = (struct net_device *)dev_id;
1134	unsigned long irqbits;
1135
1136	/*
1137	 * Note that both rx and tx interrupts are blocked at this point,
1138	 * regardless of which got us here.
1139	 */
1140
1141	irqbits = *R_IRQ_MASK2_RD;
1142
1143	/* Handle received packets */
1144	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1145		/* acknowledge the eop interrupt */
1146
1147		*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1148
1149		/* check if one or more complete packets were indeed received */
1150
1151		while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1152		       (myNextRxDesc != myLastRxDesc)) {
1153			/* Take out the buffer and give it to the OS, then
1154			 * allocate a new buffer to put a packet in.
1155			 */
1156			e100_rx(dev);
1157			dev->stats.rx_packets++;
1158			/* restart/continue on the channel, for safety */
1159			*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1160			/* clear dma channel 1 eop/descr irq bits */
1161			*R_DMA_CH1_CLR_INTR =
1162				IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1163				IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1164
1165			/* now, we might have gotten another packet
1166			   so we have to loop back and check if so */
1167		}
1168	}
1169
1170	/* Report any packets that have been sent */
1171	while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1172	       (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1173		dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1174		dev->stats.tx_packets++;
1175
1176		/* dma is ready with the transmission of the data in tx_skb, so now
1177		   we can release the skb memory */
1178		dev_kfree_skb_irq(myFirstTxDesc->skb);
1179		myFirstTxDesc->skb = 0;
1180		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1181                /* Wake up queue. */
1182		netif_wake_queue(dev);
1183	}
1184
1185	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1186		/* acknowledge the eop interrupt. */
1187		*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1188	}
1189
1190	return IRQ_HANDLED;
1191}
1192
1193static irqreturn_t
1194e100nw_interrupt(int irq, void *dev_id)
1195{
1196	struct net_device *dev = (struct net_device *)dev_id;
1197	unsigned long irqbits = *R_IRQ_MASK0_RD;
1198
1199	/* check for underrun irq */
1200	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1201		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1202		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1203		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1204		dev->stats.tx_errors++;
1205		D(printk("ethernet receiver underrun!\n"));
1206	}
1207
1208	/* check for overrun irq */
1209	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1210		update_rx_stats(&dev->stats); /* this will ack the irq */
1211		D(printk("ethernet receiver overrun!\n"));
1212	}
1213	/* check for excessive collision irq */
1214	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1215		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1216		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1217		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1218		dev->stats.tx_errors++;
1219		D(printk("ethernet excessive collisions!\n"));
1220	}
1221	return IRQ_HANDLED;
1222}
1223
1224/* We have a good packet(s), get it/them out of the buffers. */
1225static void
1226e100_rx(struct net_device *dev)
1227{
1228	struct sk_buff *skb;
1229	int length = 0;
1230	struct net_local *np = netdev_priv(dev);
1231	unsigned char *skb_data_ptr;
1232#ifdef ETHDEBUG
1233	int i;
1234#endif
1235	etrax_eth_descr *prevRxDesc;  /* The descriptor right before myNextRxDesc */
1236	spin_lock(&np->led_lock);
1237	if (!led_active && time_after(jiffies, led_next_time)) {
1238		/* light the network leds depending on the current speed. */
1239		e100_set_network_leds(NETWORK_ACTIVITY);
1240
1241		/* Set the earliest time we may clear the LED */
1242		led_next_time = jiffies + NET_FLASH_TIME;
1243		led_active = 1;
1244		mod_timer(&clear_led_timer, jiffies + HZ/10);
1245	}
1246	spin_unlock(&np->led_lock);
1247
1248	length = myNextRxDesc->descr.hw_len - 4;
1249	dev->stats.rx_bytes += length;
1250
1251#ifdef ETHDEBUG
1252	printk("Got a packet of length %d:\n", length);
1253	/* dump the first bytes in the packet */
1254	skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1255	for (i = 0; i < 8; i++) {
1256		printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1257		       skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1258		       skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1259		skb_data_ptr += 8;
1260	}
1261#endif
1262
1263	if (length < RX_COPYBREAK) {
1264		/* Small packet, copy data */
1265		skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1266		if (!skb) {
1267			dev->stats.rx_errors++;
1268			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1269			goto update_nextrxdesc;
1270		}
1271
1272		skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
1273		skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1274
1275#ifdef ETHDEBUG
1276		printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1277		       skb->head, skb->data, skb_tail_pointer(skb),
1278		       skb_end_pointer(skb));
1279		printk("copying packet to 0x%x.\n", skb_data_ptr);
1280#endif
1281
1282		memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1283	}
1284	else {
1285		/* Large packet, send directly to upper layers and allocate new
1286		 * memory (aligned to cache line boundary to avoid bug).
1287		 * Before sending the skb to upper layers we must make sure
1288		 * that skb->data points to the aligned start of the packet.
1289		 */
1290		int align;
1291		struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1292		if (!new_skb) {
1293			dev->stats.rx_errors++;
1294			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1295			goto update_nextrxdesc;
1296		}
1297		skb = myNextRxDesc->skb;
1298		align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1299		skb_put(skb, length + align);
1300		skb_pull(skb, align); /* Remove alignment bytes */
1301		myNextRxDesc->skb = new_skb;
1302		myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1303	}
1304
1305	skb->protocol = eth_type_trans(skb, dev);
1306
1307	/* Send the packet to the upper layers */
1308	netif_rx(skb);
1309
1310  update_nextrxdesc:
1311	/* Prepare for next packet */
1312	myNextRxDesc->descr.status = 0;
1313	prevRxDesc = myNextRxDesc;
1314	myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1315
1316	rx_queue_len++;
1317
1318	/* Check if descriptors should be returned */
1319	if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1320		flush_etrax_cache();
1321		prevRxDesc->descr.ctrl |= d_eol;
1322		myLastRxDesc->descr.ctrl &= ~d_eol;
1323		myLastRxDesc = prevRxDesc;
1324		rx_queue_len = 0;
1325	}
1326}
1327
1328/* The inverse routine to net_open(). */
1329static int
1330e100_close(struct net_device *dev)
1331{
1332	printk(KERN_INFO "Closing %s.\n", dev->name);
1333
1334	netif_stop_queue(dev);
1335
1336	*R_IRQ_MASK0_CLR =
1337		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1338		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1339		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1340
1341	*R_IRQ_MASK2_CLR =
1342		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1343		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1344		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1345		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1346
1347	/* Stop the receiver and the transmitter */
1348
1349	RESET_DMA(NETWORK_TX_DMA_NBR);
1350	RESET_DMA(NETWORK_RX_DMA_NBR);
1351
1352	/* Flush the Tx and disable Rx here. */
1353
1354	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1355	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1356	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1357
1358	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1359	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1360
1361	/* Update the statistics here. */
1362
1363	update_rx_stats(&dev->stats);
1364	update_tx_stats(&dev->stats);
1365
1366	/* Stop speed/duplex timers */
1367	del_timer(&speed_timer);
1368	del_timer(&duplex_timer);
1369
1370	return 0;
1371}
1372
1373static int
1374e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1375{
1376	struct mii_ioctl_data *data = if_mii(ifr);
1377	struct net_local *np = netdev_priv(dev);
1378	int rc = 0;
1379        int old_autoneg;
1380
1381	spin_lock(&np->lock); /* Preempt protection */
1382	switch (cmd) {
1383		/* The ioctls below should be considered obsolete but are */
1384		/* still present for compatibility with old scripts/apps  */
1385		case SET_ETH_SPEED_10:                  /* 10 Mbps */
1386			e100_set_speed(dev, 10);
1387			break;
1388		case SET_ETH_SPEED_100:                /* 100 Mbps */
1389			e100_set_speed(dev, 100);
1390			break;
1391		case SET_ETH_SPEED_AUTO:        /* Auto-negotiate speed */
1392			e100_set_speed(dev, 0);
1393			break;
1394		case SET_ETH_DUPLEX_HALF:       /* Half duplex */
1395			e100_set_duplex(dev, half);
1396			break;
1397		case SET_ETH_DUPLEX_FULL:       /* Full duplex */
1398			e100_set_duplex(dev, full);
1399			break;
1400		case SET_ETH_DUPLEX_AUTO:       /* Auto-negotiate duplex */
1401			e100_set_duplex(dev, autoneg);
1402			break;
1403	        case SET_ETH_AUTONEG:
1404			old_autoneg = autoneg_normal;
1405		        autoneg_normal = *(int*)data;
1406			if (autoneg_normal != old_autoneg)
1407				e100_negotiate(dev);
1408			break;
1409		default:
1410			rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1411						cmd, NULL);
1412			break;
1413	}
1414	spin_unlock(&np->lock);
1415	return rc;
1416}
1417
1418static int e100_get_settings(struct net_device *dev,
1419			     struct ethtool_cmd *cmd)
1420{
1421	struct net_local *np = netdev_priv(dev);
1422	int err;
1423
1424	spin_lock_irq(&np->lock);
1425	err = mii_ethtool_gset(&np->mii_if, cmd);
1426	spin_unlock_irq(&np->lock);
1427
1428	/* The PHY may support 1000baseT, but the Etrax100 does not.  */
1429	cmd->supported &= ~(SUPPORTED_1000baseT_Half
1430			    | SUPPORTED_1000baseT_Full);
1431	return err;
1432}
1433
1434static int e100_set_settings(struct net_device *dev,
1435			     struct ethtool_cmd *ecmd)
1436{
1437	if (ecmd->autoneg == AUTONEG_ENABLE) {
1438		e100_set_duplex(dev, autoneg);
1439		e100_set_speed(dev, 0);
1440	} else {
1441		e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1442		e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1443	}
1444
1445	return 0;
1446}
1447
1448static void e100_get_drvinfo(struct net_device *dev,
1449			     struct ethtool_drvinfo *info)
1450{
1451	strlcpy(info->driver, "ETRAX 100LX", sizeof(info->driver));
1452	strlcpy(info->version, "$Revision: 1.31 $", sizeof(info->version));
1453	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1454	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1455}
1456
1457static int e100_nway_reset(struct net_device *dev)
1458{
1459	if (current_duplex == autoneg && current_speed_selection == 0)
1460		e100_negotiate(dev);
1461	return 0;
1462}
1463
1464static const struct ethtool_ops e100_ethtool_ops = {
1465	.get_settings	= e100_get_settings,
1466	.set_settings	= e100_set_settings,
1467	.get_drvinfo	= e100_get_drvinfo,
1468	.nway_reset	= e100_nway_reset,
1469	.get_link	= ethtool_op_get_link,
1470};
1471
1472static int
1473e100_set_config(struct net_device *dev, struct ifmap *map)
1474{
1475	struct net_local *np = netdev_priv(dev);
1476
1477	spin_lock(&np->lock); /* Preempt protection */
1478
1479	switch(map->port) {
1480		case IF_PORT_UNKNOWN:
1481			/* Use autoneg */
1482			e100_set_speed(dev, 0);
1483			e100_set_duplex(dev, autoneg);
1484			break;
1485		case IF_PORT_10BASET:
1486			e100_set_speed(dev, 10);
1487			e100_set_duplex(dev, autoneg);
1488			break;
1489		case IF_PORT_100BASET:
1490		case IF_PORT_100BASETX:
1491			e100_set_speed(dev, 100);
1492			e100_set_duplex(dev, autoneg);
1493			break;
1494		case IF_PORT_100BASEFX:
1495		case IF_PORT_10BASE2:
1496		case IF_PORT_AUI:
1497			spin_unlock(&np->lock);
1498			return -EOPNOTSUPP;
1499			break;
1500		default:
1501			printk(KERN_ERR "%s: Invalid media selected", dev->name);
1502			spin_unlock(&np->lock);
1503			return -EINVAL;
1504	}
1505	spin_unlock(&np->lock);
1506	return 0;
1507}
1508
1509static void
1510update_rx_stats(struct net_device_stats *es)
1511{
1512	unsigned long r = *R_REC_COUNTERS;
1513	/* update stats relevant to reception errors */
1514	es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1515	es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1516	es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1517	es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1518}
1519
1520static void
1521update_tx_stats(struct net_device_stats *es)
1522{
1523	unsigned long r = *R_TR_COUNTERS;
1524	/* update stats relevant to transmission errors */
1525	es->collisions +=
1526		IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1527		IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1528}
1529
1530/*
1531 * Get the current statistics.
1532 * This may be called with the card open or closed.
1533 */
1534static struct net_device_stats *
1535e100_get_stats(struct net_device *dev)
1536{
1537	struct net_local *lp = netdev_priv(dev);
1538	unsigned long flags;
1539
1540	spin_lock_irqsave(&lp->lock, flags);
1541
1542	update_rx_stats(&dev->stats);
1543	update_tx_stats(&dev->stats);
1544
1545	spin_unlock_irqrestore(&lp->lock, flags);
1546	return &dev->stats;
1547}
1548
1549/*
1550 * Set or clear the multicast filter for this adaptor.
1551 * num_addrs == -1	Promiscuous mode, receive all packets
1552 * num_addrs == 0	Normal mode, clear multicast list
1553 * num_addrs > 0	Multicast mode, receive normal and MC packets,
1554 *			and do best-effort filtering.
1555 */
1556static void
1557set_multicast_list(struct net_device *dev)
1558{
1559	struct net_local *lp = netdev_priv(dev);
1560	int num_addr = netdev_mc_count(dev);
1561	unsigned long int lo_bits;
1562	unsigned long int hi_bits;
1563
1564	spin_lock(&lp->lock);
1565	if (dev->flags & IFF_PROMISC) {
1566		/* promiscuous mode */
1567		lo_bits = 0xfffffffful;
1568		hi_bits = 0xfffffffful;
1569
1570		/* Enable individual receive */
1571		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1572		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1573	} else if (dev->flags & IFF_ALLMULTI) {
1574		/* enable all multicasts */
1575		lo_bits = 0xfffffffful;
1576		hi_bits = 0xfffffffful;
1577
1578		/* Disable individual receive */
1579		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1580		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1581	} else if (num_addr == 0) {
1582		/* Normal, clear the mc list */
1583		lo_bits = 0x00000000ul;
1584		hi_bits = 0x00000000ul;
1585
1586		/* Disable individual receive */
1587		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1588		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1589	} else {
1590		/* MC mode, receive normal and MC packets */
1591		char hash_ix;
1592		struct netdev_hw_addr *ha;
1593		char *baddr;
1594
1595		lo_bits = 0x00000000ul;
1596		hi_bits = 0x00000000ul;
1597		netdev_for_each_mc_addr(ha, dev) {
1598			/* Calculate the hash index for the GA registers */
1599
1600			hash_ix = 0;
1601			baddr = ha->addr;
1602			hash_ix ^= (*baddr) & 0x3f;
1603			hash_ix ^= ((*baddr) >> 6) & 0x03;
1604			++baddr;
1605			hash_ix ^= ((*baddr) << 2) & 0x03c;
1606			hash_ix ^= ((*baddr) >> 4) & 0xf;
1607			++baddr;
1608			hash_ix ^= ((*baddr) << 4) & 0x30;
1609			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1610			++baddr;
1611			hash_ix ^= (*baddr) & 0x3f;
1612			hash_ix ^= ((*baddr) >> 6) & 0x03;
1613			++baddr;
1614			hash_ix ^= ((*baddr) << 2) & 0x03c;
1615			hash_ix ^= ((*baddr) >> 4) & 0xf;
1616			++baddr;
1617			hash_ix ^= ((*baddr) << 4) & 0x30;
1618			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1619
1620			hash_ix &= 0x3f;
1621
1622			if (hash_ix >= 32) {
1623				hi_bits |= (1 << (hash_ix-32));
1624			} else {
1625				lo_bits |= (1 << hash_ix);
1626			}
1627		}
1628		/* Disable individual receive */
1629		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1630		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1631	}
1632	*R_NETWORK_GA_0 = lo_bits;
1633	*R_NETWORK_GA_1 = hi_bits;
1634	spin_unlock(&lp->lock);
1635}
1636
1637void
1638e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1639{
1640	D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1641
1642	spin_lock(&np->led_lock);
1643	if (!led_active && time_after(jiffies, led_next_time)) {
1644		/* light the network leds depending on the current speed. */
1645		e100_set_network_leds(NETWORK_ACTIVITY);
1646
1647		/* Set the earliest time we may clear the LED */
1648		led_next_time = jiffies + NET_FLASH_TIME;
1649		led_active = 1;
1650		mod_timer(&clear_led_timer, jiffies + HZ/10);
1651	}
1652	spin_unlock(&np->led_lock);
1653
1654	/* configure the tx dma descriptor */
1655	myNextTxDesc->descr.sw_len = length;
1656	myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1657	myNextTxDesc->descr.buf = virt_to_phys(buf);
1658
1659        /* Move end of list */
1660        myLastTxDesc->descr.ctrl &= ~d_eol;
1661        myLastTxDesc = myNextTxDesc;
1662
1663	/* Restart DMA channel */
1664	*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1665}
1666
1667static void
1668e100_clear_network_leds(unsigned long dummy)
1669{
1670	struct net_device *dev = (struct net_device *)dummy;
1671	struct net_local *np = netdev_priv(dev);
1672
1673	spin_lock(&np->led_lock);
1674
1675	if (led_active && time_after(jiffies, led_next_time)) {
1676		e100_set_network_leds(NO_NETWORK_ACTIVITY);
1677
1678		/* Set the earliest time we may set the LED */
1679		led_next_time = jiffies + NET_FLASH_PAUSE;
1680		led_active = 0;
1681	}
1682
1683	spin_unlock(&np->led_lock);
1684}
1685
1686static void
1687e100_set_network_leds(int active)
1688{
1689#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1690	int light_leds = (active == NO_NETWORK_ACTIVITY);
1691#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1692	int light_leds = (active == NETWORK_ACTIVITY);
1693#else
1694#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1695#endif
1696
1697	if (!current_speed) {
1698		/* Make LED red, link is down */
1699		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1700	} else if (light_leds) {
1701		if (current_speed == 10) {
1702			CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1703		} else {
1704			CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1705		}
1706	} else {
1707		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1708	}
1709}
1710
1711#ifdef CONFIG_NET_POLL_CONTROLLER
1712static void
1713e100_netpoll(struct net_device* netdev)
1714{
1715	e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev);
1716}
1717#endif
1718
1719static int
1720etrax_init_module(void)
1721{
1722	return etrax_ethernet_init();
1723}
1724
1725static int __init
1726e100_boot_setup(char* str)
1727{
1728	struct sockaddr sa = {0};
1729	int i;
1730
1731	/* Parse the colon separated Ethernet station address */
1732	for (i = 0; i <  ETH_ALEN; i++) {
1733		unsigned int tmp;
1734		if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1735			printk(KERN_WARNING "Malformed station address");
1736			return 0;
1737		}
1738		sa.sa_data[i] = (char)tmp;
1739	}
1740
1741	default_mac = sa;
1742	return 1;
1743}
1744
1745__setup("etrax100_eth=", e100_boot_setup);
1746
1747module_init(etrax_init_module);