Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * CARMA DATA-FPGA Access Driver
   3 *
   4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; either version 2 of the License, or (at your
   9 * option) any later version.
  10 */
  11
  12/*
  13 * FPGA Memory Dump Format
  14 *
  15 * FPGA #0 control registers (32 x 32-bit words)
  16 * FPGA #1 control registers (32 x 32-bit words)
  17 * FPGA #2 control registers (32 x 32-bit words)
  18 * FPGA #3 control registers (32 x 32-bit words)
  19 * SYSFPGA control registers (32 x 32-bit words)
  20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
  21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
  22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
  23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
  24 *
  25 * Each correlation array consists of:
  26 *
  27 * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
  28 * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
  29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
  30 *
  31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
  32 * the FPGA configuration registers. They do not change once the FPGA's
  33 * have been programmed, they only change on re-programming.
  34 */
  35
  36/*
  37 * Basic Description:
  38 *
  39 * This driver is used to capture correlation spectra off of the four data
  40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
  41 * this driver supports dynamic enable/disable of capture while the device
  42 * remains open.
  43 *
  44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
  45 * capture rate, all buffers are pre-allocated to avoid any potentially long
  46 * running memory allocations while capturing.
  47 *
  48 * There are two lists and one pointer which are used to keep track of the
  49 * different states of data buffers.
  50 *
  51 * 1) free list
  52 * This list holds all empty data buffers which are ready to receive data.
  53 *
  54 * 2) inflight pointer
  55 * This pointer holds the currently inflight data buffer. This buffer is having
  56 * data copied into it by the DMA engine.
  57 *
  58 * 3) used list
  59 * This list holds data buffers which have been filled, and are waiting to be
  60 * read by userspace.
  61 *
  62 * All buffers start life on the free list, then move successively to the
  63 * inflight pointer, and then to the used list. After they have been read by
  64 * userspace, they are moved back to the free list. The cycle repeats as long
  65 * as necessary.
  66 *
  67 * It should be noted that all buffers are mapped and ready for DMA when they
  68 * are on any of the three lists. They are only unmapped when they are in the
  69 * process of being read by userspace.
  70 */
  71
  72/*
  73 * Notes on the IRQ masking scheme:
  74 *
  75 * The IRQ masking scheme here is different than most other hardware. The only
  76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
  77 * the data is if the status registers are not cleared before the next
  78 * correlation data dump is ready.
  79 *
  80 * The interrupt line is connected to the status registers, such that when they
  81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
  82 * to schedule a long-running DMA operation and return from the interrupt
  83 * handler quickly, but we cannot clear the status registers.
  84 *
  85 * To handle this, the system controller FPGA has the capability to connect the
  86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
  87 * (unasserted) and left that way. To mask the interrupt, we change the
  88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
  89 */
  90
  91#include <linux/of_address.h>
  92#include <linux/of_irq.h>
  93#include <linux/of_platform.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/miscdevice.h>
  96#include <linux/interrupt.h>
  97#include <linux/dmaengine.h>
  98#include <linux/seq_file.h>
  99#include <linux/highmem.h>
 100#include <linux/debugfs.h>
 101#include <linux/kernel.h>
 102#include <linux/module.h>
 103#include <linux/poll.h>
 104#include <linux/slab.h>
 105#include <linux/kref.h>
 106#include <linux/io.h>
 107
 108#include <media/videobuf-dma-sg.h>
 109
 110/* system controller registers */
 111#define SYS_IRQ_SOURCE_CTL	0x24
 112#define SYS_IRQ_OUTPUT_EN	0x28
 113#define SYS_IRQ_OUTPUT_DATA	0x2C
 114#define SYS_IRQ_INPUT_DATA	0x30
 115#define SYS_FPGA_CONFIG_STATUS	0x44
 116
 117/* GPIO IRQ line assignment */
 118#define IRQ_CORL_DONE		0x10
 119
 120/* FPGA registers */
 121#define MMAP_REG_VERSION	0x00
 122#define MMAP_REG_CORL_CONF1	0x08
 123#define MMAP_REG_CORL_CONF2	0x0C
 124#define MMAP_REG_STATUS		0x48
 125
 126#define SYS_FPGA_BLOCK		0xF0000000
 127
 128#define DATA_FPGA_START		0x400000
 129#define DATA_FPGA_SIZE		0x80000
 130
 131static const char drv_name[] = "carma-fpga";
 132
 133#define NUM_FPGA	4
 134
 135#define MIN_DATA_BUFS	8
 136#define MAX_DATA_BUFS	64
 137
 138struct fpga_info {
 139	unsigned int num_lag_ram;
 140	unsigned int blk_size;
 141};
 142
 143struct data_buf {
 144	struct list_head entry;
 145	struct videobuf_dmabuf vb;
 146	size_t size;
 147};
 148
 149struct fpga_device {
 150	/* character device */
 151	struct miscdevice miscdev;
 152	struct device *dev;
 153	struct mutex mutex;
 154
 155	/* reference count */
 156	struct kref ref;
 157
 158	/* FPGA registers and information */
 159	struct fpga_info info[NUM_FPGA];
 160	void __iomem *regs;
 161	int irq;
 162
 163	/* FPGA Physical Address/Size Information */
 164	resource_size_t phys_addr;
 165	size_t phys_size;
 166
 167	/* DMA structures */
 168	struct sg_table corl_table;
 169	unsigned int corl_nents;
 170	struct dma_chan *chan;
 171
 172	/* Protection for all members below */
 173	spinlock_t lock;
 174
 175	/* Device enable/disable flag */
 176	bool enabled;
 177
 178	/* Correlation data buffers */
 179	wait_queue_head_t wait;
 180	struct list_head free;
 181	struct list_head used;
 182	struct data_buf *inflight;
 183
 184	/* Information about data buffers */
 185	unsigned int num_dropped;
 186	unsigned int num_buffers;
 187	size_t bufsize;
 188	struct dentry *dbg_entry;
 189};
 190
 191struct fpga_reader {
 192	struct fpga_device *priv;
 193	struct data_buf *buf;
 194	off_t buf_start;
 195};
 196
 197static void fpga_device_release(struct kref *ref)
 198{
 199	struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
 200
 201	/* the last reader has exited, cleanup the last bits */
 202	mutex_destroy(&priv->mutex);
 203	kfree(priv);
 204}
 205
 206/*
 207 * Data Buffer Allocation Helpers
 208 */
 209
 210/**
 211 * data_free_buffer() - free a single data buffer and all allocated memory
 212 * @buf: the buffer to free
 213 *
 214 * This will free all of the pages allocated to the given data buffer, and
 215 * then free the structure itself
 216 */
 217static void data_free_buffer(struct data_buf *buf)
 218{
 219	/* It is ok to free a NULL buffer */
 220	if (!buf)
 221		return;
 222
 223	/* free all memory */
 224	videobuf_dma_free(&buf->vb);
 225	kfree(buf);
 226}
 227
 228/**
 229 * data_alloc_buffer() - allocate and fill a data buffer with pages
 230 * @bytes: the number of bytes required
 231 *
 232 * This allocates all space needed for a data buffer. It must be mapped before
 233 * use in a DMA transaction using videobuf_dma_map().
 234 *
 235 * Returns NULL on failure
 236 */
 237static struct data_buf *data_alloc_buffer(const size_t bytes)
 238{
 239	unsigned int nr_pages;
 240	struct data_buf *buf;
 241	int ret;
 242
 243	/* calculate the number of pages necessary */
 244	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
 245
 246	/* allocate the buffer structure */
 247	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
 248	if (!buf)
 249		goto out_return;
 250
 251	/* initialize internal fields */
 252	INIT_LIST_HEAD(&buf->entry);
 253	buf->size = bytes;
 254
 255	/* allocate the videobuf */
 256	videobuf_dma_init(&buf->vb);
 257	ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
 258	if (ret)
 259		goto out_free_buf;
 260
 261	return buf;
 262
 263out_free_buf:
 264	kfree(buf);
 265out_return:
 266	return NULL;
 267}
 268
 269/**
 270 * data_free_buffers() - free all allocated buffers
 271 * @priv: the driver's private data structure
 272 *
 273 * Free all buffers allocated by the driver (except those currently in the
 274 * process of being read by userspace).
 275 *
 276 * LOCKING: must hold dev->mutex
 277 * CONTEXT: user
 278 */
 279static void data_free_buffers(struct fpga_device *priv)
 280{
 281	struct data_buf *buf, *tmp;
 282
 283	/* the device should be stopped, no DMA in progress */
 284	BUG_ON(priv->inflight != NULL);
 285
 286	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
 287		list_del_init(&buf->entry);
 288		videobuf_dma_unmap(priv->dev, &buf->vb);
 289		data_free_buffer(buf);
 290	}
 291
 292	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
 293		list_del_init(&buf->entry);
 294		videobuf_dma_unmap(priv->dev, &buf->vb);
 295		data_free_buffer(buf);
 296	}
 297
 298	priv->num_buffers = 0;
 299	priv->bufsize = 0;
 300}
 301
 302/**
 303 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
 304 * @priv: the driver's private data structure
 305 *
 306 * Allocate enough buffers for a whole second worth of data
 307 *
 308 * This routine will attempt to degrade nicely by succeeding even if a full
 309 * second worth of data buffers could not be allocated, as long as a minimum
 310 * number were allocated. In this case, it will print a message to the kernel
 311 * log.
 312 *
 313 * The device must not be modifying any lists when this is called.
 314 *
 315 * CONTEXT: user
 316 * LOCKING: must hold dev->mutex
 317 *
 318 * Returns 0 on success, -ERRNO otherwise
 319 */
 320static int data_alloc_buffers(struct fpga_device *priv)
 321{
 322	struct data_buf *buf;
 323	int i, ret;
 324
 325	for (i = 0; i < MAX_DATA_BUFS; i++) {
 326
 327		/* allocate a buffer */
 328		buf = data_alloc_buffer(priv->bufsize);
 329		if (!buf)
 330			break;
 331
 332		/* map it for DMA */
 333		ret = videobuf_dma_map(priv->dev, &buf->vb);
 334		if (ret) {
 335			data_free_buffer(buf);
 336			break;
 337		}
 338
 339		/* add it to the list of free buffers */
 340		list_add_tail(&buf->entry, &priv->free);
 341		priv->num_buffers++;
 342	}
 343
 344	/* Make sure we allocated the minimum required number of buffers */
 345	if (priv->num_buffers < MIN_DATA_BUFS) {
 346		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
 347		data_free_buffers(priv);
 348		return -ENOMEM;
 349	}
 350
 351	/* Warn if we are running in a degraded state, but do not fail */
 352	if (priv->num_buffers < MAX_DATA_BUFS) {
 353		dev_warn(priv->dev,
 354			 "Unable to allocate %d buffers, using %d buffers instead\n",
 355			 MAX_DATA_BUFS, i);
 356	}
 357
 358	return 0;
 359}
 360
 361/*
 362 * DMA Operations Helpers
 363 */
 364
 365/**
 366 * fpga_start_addr() - get the physical address a DATA-FPGA
 367 * @priv: the driver's private data structure
 368 * @fpga: the DATA-FPGA number (zero based)
 369 */
 370static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
 371{
 372	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
 373}
 374
 375/**
 376 * fpga_block_addr() - get the physical address of a correlation data block
 377 * @priv: the driver's private data structure
 378 * @fpga: the DATA-FPGA number (zero based)
 379 * @blknum: the correlation block number (zero based)
 380 */
 381static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
 382				  unsigned int blknum)
 383{
 384	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
 385}
 386
 387#define REG_BLOCK_SIZE	(32 * 4)
 388
 389/**
 390 * data_setup_corl_table() - create the scatterlist for correlation dumps
 391 * @priv: the driver's private data structure
 392 *
 393 * Create the scatterlist for transferring a correlation dump from the
 394 * DATA FPGAs. This structure will be reused for each buffer than needs
 395 * to be filled with correlation data.
 396 *
 397 * Returns 0 on success, -ERRNO otherwise
 398 */
 399static int data_setup_corl_table(struct fpga_device *priv)
 400{
 401	struct sg_table *table = &priv->corl_table;
 402	struct scatterlist *sg;
 403	struct fpga_info *info;
 404	int i, j, ret;
 405
 406	/* Calculate the number of entries needed */
 407	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 408	for (i = 0; i < NUM_FPGA; i++)
 409		priv->corl_nents += priv->info[i].num_lag_ram;
 410
 411	/* Allocate the scatterlist table */
 412	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
 413	if (ret) {
 414		dev_err(priv->dev, "unable to allocate DMA table\n");
 415		return ret;
 416	}
 417
 418	/* Add the DATA FPGA registers to the scatterlist */
 419	sg = table->sgl;
 420	for (i = 0; i < NUM_FPGA; i++) {
 421		sg_dma_address(sg) = fpga_start_addr(priv, i);
 422		sg_dma_len(sg) = REG_BLOCK_SIZE;
 423		sg = sg_next(sg);
 424	}
 425
 426	/* Add the SYS-FPGA registers to the scatterlist */
 427	sg_dma_address(sg) = SYS_FPGA_BLOCK;
 428	sg_dma_len(sg) = REG_BLOCK_SIZE;
 429	sg = sg_next(sg);
 430
 431	/* Add the FPGA correlation data blocks to the scatterlist */
 432	for (i = 0; i < NUM_FPGA; i++) {
 433		info = &priv->info[i];
 434		for (j = 0; j < info->num_lag_ram; j++) {
 435			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
 436			sg_dma_len(sg) = info->blk_size;
 437			sg = sg_next(sg);
 438		}
 439	}
 440
 441	/*
 442	 * All physical addresses and lengths are present in the structure
 443	 * now. It can be reused for every FPGA DATA interrupt
 444	 */
 445	return 0;
 446}
 447
 448/*
 449 * FPGA Register Access Helpers
 450 */
 451
 452static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
 453			   unsigned int reg, u32 val)
 454{
 455	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 456	iowrite32be(val, priv->regs + fpga_start + reg);
 457}
 458
 459static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
 460			 unsigned int reg)
 461{
 462	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 463	return ioread32be(priv->regs + fpga_start + reg);
 464}
 465
 466/**
 467 * data_calculate_bufsize() - calculate the data buffer size required
 468 * @priv: the driver's private data structure
 469 *
 470 * Calculate the total buffer size needed to hold a single block
 471 * of correlation data
 472 *
 473 * CONTEXT: user
 474 *
 475 * Returns 0 on success, -ERRNO otherwise
 476 */
 477static int data_calculate_bufsize(struct fpga_device *priv)
 478{
 479	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
 480	u32 conf1, conf2, version;
 481	u32 num_lag_ram, blk_size;
 482	int i;
 483
 484	/* Each buffer starts with the 5 FPGA register areas */
 485	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 486
 487	/* Read and store the configuration data for each FPGA */
 488	for (i = 0; i < NUM_FPGA; i++) {
 489		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
 490		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
 491		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
 492
 493		/* minor version 2 and later */
 494		if ((version & 0x000000FF) >= 2) {
 495			num_corl = (conf1 & 0x000000F0) >> 4;
 496			num_pack = (conf1 & 0x00000F00) >> 8;
 497			num_lags = (conf1 & 0x00FFF000) >> 12;
 498			num_meta = (conf1 & 0x7F000000) >> 24;
 499			num_qcnt = (conf2 & 0x00000FFF) >> 0;
 500		} else {
 501			num_corl = (conf1 & 0x000000F0) >> 4;
 502			num_pack = 1; /* implied */
 503			num_lags = (conf1 & 0x000FFF00) >> 8;
 504			num_meta = (conf1 & 0x7FF00000) >> 20;
 505			num_qcnt = (conf2 & 0x00000FFF) >> 0;
 506		}
 507
 508		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
 509		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
 510
 511		priv->info[i].num_lag_ram = num_lag_ram;
 512		priv->info[i].blk_size = blk_size;
 513		priv->bufsize += num_lag_ram * blk_size;
 514
 515		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
 516		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
 517		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
 518		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
 519		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
 520		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
 521	}
 522
 523	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
 524	return 0;
 525}
 526
 527/*
 528 * Interrupt Handling
 529 */
 530
 531/**
 532 * data_disable_interrupts() - stop the device from generating interrupts
 533 * @priv: the driver's private data structure
 534 *
 535 * Hide interrupts by switching to GPIO interrupt source
 536 *
 537 * LOCKING: must hold dev->lock
 538 */
 539static void data_disable_interrupts(struct fpga_device *priv)
 540{
 541	/* hide the interrupt by switching the IRQ driver to GPIO */
 542	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
 543}
 544
 545/**
 546 * data_enable_interrupts() - allow the device to generate interrupts
 547 * @priv: the driver's private data structure
 548 *
 549 * Unhide interrupts by switching to the FPGA interrupt source. At the
 550 * same time, clear the DATA-FPGA status registers.
 551 *
 552 * LOCKING: must hold dev->lock
 553 */
 554static void data_enable_interrupts(struct fpga_device *priv)
 555{
 556	/* clear the actual FPGA corl_done interrupt */
 557	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
 558	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
 559	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
 560	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
 561
 562	/* flush the writes */
 563	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
 564	fpga_read_reg(priv, 1, MMAP_REG_STATUS);
 565	fpga_read_reg(priv, 2, MMAP_REG_STATUS);
 566	fpga_read_reg(priv, 3, MMAP_REG_STATUS);
 567
 568	/* switch back to the external interrupt source */
 569	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
 570}
 571
 572/**
 573 * data_dma_cb() - DMAEngine callback for DMA completion
 574 * @data: the driver's private data structure
 575 *
 576 * Complete a DMA transfer from the DATA-FPGA's
 577 *
 578 * This is called via the DMA callback mechanism, and will handle moving the
 579 * completed DMA transaction to the used list, and then wake any processes
 580 * waiting for new data
 581 *
 582 * CONTEXT: any, softirq expected
 583 */
 584static void data_dma_cb(void *data)
 585{
 586	struct fpga_device *priv = data;
 587	unsigned long flags;
 588
 589	spin_lock_irqsave(&priv->lock, flags);
 590
 591	/* If there is no inflight buffer, we've got a bug */
 592	BUG_ON(priv->inflight == NULL);
 593
 594	/* Move the inflight buffer onto the used list */
 595	list_move_tail(&priv->inflight->entry, &priv->used);
 596	priv->inflight = NULL;
 597
 598	/*
 599	 * If data dumping is still enabled, then clear the FPGA
 600	 * status registers and re-enable FPGA interrupts
 601	 */
 602	if (priv->enabled)
 603		data_enable_interrupts(priv);
 604
 605	spin_unlock_irqrestore(&priv->lock, flags);
 606
 607	/*
 608	 * We've changed both the inflight and used lists, so we need
 609	 * to wake up any processes that are blocking for those events
 610	 */
 611	wake_up(&priv->wait);
 612}
 613
 614/**
 615 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
 616 * @priv: the driver's private data structure
 617 * @buf: the data buffer
 618 *
 619 * Prepare and submit the necessary DMA transactions to fill a correlation
 620 * data buffer.
 621 *
 622 * LOCKING: must hold dev->lock
 623 * CONTEXT: hardirq only
 624 *
 625 * Returns 0 on success, -ERRNO otherwise
 626 */
 627static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
 628{
 629	struct scatterlist *dst_sg, *src_sg;
 630	unsigned int dst_nents, src_nents;
 631	struct dma_chan *chan = priv->chan;
 632	struct dma_async_tx_descriptor *tx;
 633	dma_cookie_t cookie;
 634	dma_addr_t dst, src;
 635	unsigned long dma_flags = 0;
 636
 637	dst_sg = buf->vb.sglist;
 638	dst_nents = buf->vb.sglen;
 639
 640	src_sg = priv->corl_table.sgl;
 641	src_nents = priv->corl_nents;
 642
 643	/*
 644	 * All buffers passed to this function should be ready and mapped
 645	 * for DMA already. Therefore, we don't need to do anything except
 646	 * submit it to the Freescale DMA Engine for processing
 647	 */
 648
 649	/* setup the scatterlist to scatterlist transfer */
 650	tx = chan->device->device_prep_dma_sg(chan,
 651					      dst_sg, dst_nents,
 652					      src_sg, src_nents,
 653					      0);
 654	if (!tx) {
 655		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
 656		return -ENOMEM;
 657	}
 658
 659	/* submit the transaction to the DMA controller */
 660	cookie = tx->tx_submit(tx);
 661	if (dma_submit_error(cookie)) {
 662		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
 663		return -ENOMEM;
 664	}
 665
 666	/* Prepare the re-read of the SYS-FPGA block */
 667	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
 668	src = SYS_FPGA_BLOCK;
 669	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
 670						  REG_BLOCK_SIZE,
 671						  dma_flags);
 672	if (!tx) {
 673		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
 674		return -ENOMEM;
 675	}
 676
 677	/* Setup the callback */
 678	tx->callback = data_dma_cb;
 679	tx->callback_param = priv;
 680
 681	/* submit the transaction to the DMA controller */
 682	cookie = tx->tx_submit(tx);
 683	if (dma_submit_error(cookie)) {
 684		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
 685		return -ENOMEM;
 686	}
 687
 688	return 0;
 689}
 690
 691#define CORL_DONE	0x1
 692#define CORL_ERR	0x2
 693
 694static irqreturn_t data_irq(int irq, void *dev_id)
 695{
 696	struct fpga_device *priv = dev_id;
 697	bool submitted = false;
 698	struct data_buf *buf;
 699	u32 status;
 700	int i;
 701
 702	/* detect spurious interrupts via FPGA status */
 703	for (i = 0; i < 4; i++) {
 704		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
 705		if (!(status & (CORL_DONE | CORL_ERR))) {
 706			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
 707			return IRQ_NONE;
 708		}
 709	}
 710
 711	/* detect spurious interrupts via raw IRQ pin readback */
 712	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
 713	if (status & IRQ_CORL_DONE) {
 714		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
 715		return IRQ_NONE;
 716	}
 717
 718	spin_lock(&priv->lock);
 719
 720	/*
 721	 * This is an error case that should never happen.
 722	 *
 723	 * If this driver has a bug and manages to re-enable interrupts while
 724	 * a DMA is in progress, then we will hit this statement and should
 725	 * start paying attention immediately.
 726	 */
 727	BUG_ON(priv->inflight != NULL);
 728
 729	/* hide the interrupt by switching the IRQ driver to GPIO */
 730	data_disable_interrupts(priv);
 731
 732	/* If there are no free buffers, drop this data */
 733	if (list_empty(&priv->free)) {
 734		priv->num_dropped++;
 735		goto out;
 736	}
 737
 738	buf = list_first_entry(&priv->free, struct data_buf, entry);
 739	list_del_init(&buf->entry);
 740	BUG_ON(buf->size != priv->bufsize);
 741
 742	/* Submit a DMA transfer to get the correlation data */
 743	if (data_submit_dma(priv, buf)) {
 744		dev_err(priv->dev, "Unable to setup DMA transfer\n");
 745		list_move_tail(&buf->entry, &priv->free);
 746		goto out;
 747	}
 748
 749	/* Save the buffer for the DMA callback */
 750	priv->inflight = buf;
 751	submitted = true;
 752
 753	/* Start the DMA Engine */
 754	dma_async_issue_pending(priv->chan);
 755
 756out:
 757	/* If no DMA was submitted, re-enable interrupts */
 758	if (!submitted)
 759		data_enable_interrupts(priv);
 760
 761	spin_unlock(&priv->lock);
 762	return IRQ_HANDLED;
 763}
 764
 765/*
 766 * Realtime Device Enable Helpers
 767 */
 768
 769/**
 770 * data_device_enable() - enable the device for buffered dumping
 771 * @priv: the driver's private data structure
 772 *
 773 * Enable the device for buffered dumping. Allocates buffers and hooks up
 774 * the interrupt handler. When this finishes, data will come pouring in.
 775 *
 776 * LOCKING: must hold dev->mutex
 777 * CONTEXT: user context only
 778 *
 779 * Returns 0 on success, -ERRNO otherwise
 780 */
 781static int data_device_enable(struct fpga_device *priv)
 782{
 783	bool enabled;
 784	u32 val;
 785	int ret;
 786
 787	/* multiple enables are safe: they do nothing */
 788	spin_lock_irq(&priv->lock);
 789	enabled = priv->enabled;
 790	spin_unlock_irq(&priv->lock);
 791	if (enabled)
 792		return 0;
 793
 794	/* check that the FPGAs are programmed */
 795	val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
 796	if (!(val & (1 << 18))) {
 797		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
 798		return -ENODATA;
 799	}
 800
 801	/* read the FPGAs to calculate the buffer size */
 802	ret = data_calculate_bufsize(priv);
 803	if (ret) {
 804		dev_err(priv->dev, "unable to calculate buffer size\n");
 805		goto out_error;
 806	}
 807
 808	/* allocate the correlation data buffers */
 809	ret = data_alloc_buffers(priv);
 810	if (ret) {
 811		dev_err(priv->dev, "unable to allocate buffers\n");
 812		goto out_error;
 813	}
 814
 815	/* setup the source scatterlist for dumping correlation data */
 816	ret = data_setup_corl_table(priv);
 817	if (ret) {
 818		dev_err(priv->dev, "unable to setup correlation DMA table\n");
 819		goto out_error;
 820	}
 821
 822	/* prevent the FPGAs from generating interrupts */
 823	data_disable_interrupts(priv);
 824
 825	/* hookup the irq handler */
 826	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
 827	if (ret) {
 828		dev_err(priv->dev, "unable to request IRQ handler\n");
 829		goto out_error;
 830	}
 831
 832	/* allow the DMA callback to re-enable FPGA interrupts */
 833	spin_lock_irq(&priv->lock);
 834	priv->enabled = true;
 835	spin_unlock_irq(&priv->lock);
 836
 837	/* allow the FPGAs to generate interrupts */
 838	data_enable_interrupts(priv);
 839	return 0;
 840
 841out_error:
 842	sg_free_table(&priv->corl_table);
 843	priv->corl_nents = 0;
 844
 845	data_free_buffers(priv);
 846	return ret;
 847}
 848
 849/**
 850 * data_device_disable() - disable the device for buffered dumping
 851 * @priv: the driver's private data structure
 852 *
 853 * Disable the device for buffered dumping. Stops new DMA transactions from
 854 * being generated, waits for all outstanding DMA to complete, and then frees
 855 * all buffers.
 856 *
 857 * LOCKING: must hold dev->mutex
 858 * CONTEXT: user only
 859 *
 860 * Returns 0 on success, -ERRNO otherwise
 861 */
 862static int data_device_disable(struct fpga_device *priv)
 863{
 864	spin_lock_irq(&priv->lock);
 865
 866	/* allow multiple disable */
 867	if (!priv->enabled) {
 868		spin_unlock_irq(&priv->lock);
 869		return 0;
 870	}
 871
 872	/*
 873	 * Mark the device disabled
 874	 *
 875	 * This stops DMA callbacks from re-enabling interrupts
 876	 */
 877	priv->enabled = false;
 878
 879	/* prevent the FPGAs from generating interrupts */
 880	data_disable_interrupts(priv);
 881
 882	/* wait until all ongoing DMA has finished */
 883	while (priv->inflight != NULL) {
 884		spin_unlock_irq(&priv->lock);
 885		wait_event(priv->wait, priv->inflight == NULL);
 886		spin_lock_irq(&priv->lock);
 887	}
 888
 889	spin_unlock_irq(&priv->lock);
 890
 891	/* unhook the irq handler */
 892	free_irq(priv->irq, priv);
 893
 894	/* free the correlation table */
 895	sg_free_table(&priv->corl_table);
 896	priv->corl_nents = 0;
 897
 898	/* free all buffers: the free and used lists are not being changed */
 899	data_free_buffers(priv);
 900	return 0;
 901}
 902
 903/*
 904 * DEBUGFS Interface
 905 */
 906#ifdef CONFIG_DEBUG_FS
 907
 908/*
 909 * Count the number of entries in the given list
 910 */
 911static unsigned int list_num_entries(struct list_head *list)
 912{
 913	struct list_head *entry;
 914	unsigned int ret = 0;
 915
 916	list_for_each(entry, list)
 917		ret++;
 918
 919	return ret;
 920}
 921
 922static int data_debug_show(struct seq_file *f, void *offset)
 923{
 924	struct fpga_device *priv = f->private;
 925
 926	spin_lock_irq(&priv->lock);
 927
 928	seq_printf(f, "enabled: %d\n", priv->enabled);
 929	seq_printf(f, "bufsize: %d\n", priv->bufsize);
 930	seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
 931	seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
 932	seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
 933	seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
 934	seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
 935
 936	spin_unlock_irq(&priv->lock);
 937	return 0;
 938}
 939
 940static int data_debug_open(struct inode *inode, struct file *file)
 941{
 942	return single_open(file, data_debug_show, inode->i_private);
 943}
 944
 945static const struct file_operations data_debug_fops = {
 946	.owner		= THIS_MODULE,
 947	.open		= data_debug_open,
 948	.read		= seq_read,
 949	.llseek		= seq_lseek,
 950	.release	= single_release,
 951};
 952
 953static int data_debugfs_init(struct fpga_device *priv)
 954{
 955	priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
 956					      &data_debug_fops);
 957	if (IS_ERR(priv->dbg_entry))
 958		return PTR_ERR(priv->dbg_entry);
 959
 960	return 0;
 961}
 962
 963static void data_debugfs_exit(struct fpga_device *priv)
 964{
 965	debugfs_remove(priv->dbg_entry);
 966}
 967
 968#else
 969
 970static inline int data_debugfs_init(struct fpga_device *priv)
 971{
 972	return 0;
 973}
 974
 975static inline void data_debugfs_exit(struct fpga_device *priv)
 976{
 977}
 978
 979#endif	/* CONFIG_DEBUG_FS */
 980
 981/*
 982 * SYSFS Attributes
 983 */
 984
 985static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
 986			    char *buf)
 987{
 988	struct fpga_device *priv = dev_get_drvdata(dev);
 989	int ret;
 990
 991	spin_lock_irq(&priv->lock);
 992	ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
 993	spin_unlock_irq(&priv->lock);
 994
 995	return ret;
 996}
 997
 998static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
 999			   const char *buf, size_t count)
1000{
1001	struct fpga_device *priv = dev_get_drvdata(dev);
1002	unsigned long enable;
1003	int ret;
1004
1005	ret = kstrtoul(buf, 0, &enable);
1006	if (ret) {
1007		dev_err(priv->dev, "unable to parse enable input\n");
1008		return ret;
1009	}
1010
1011	/* protect against concurrent enable/disable */
1012	ret = mutex_lock_interruptible(&priv->mutex);
1013	if (ret)
1014		return ret;
1015
1016	if (enable)
1017		ret = data_device_enable(priv);
1018	else
1019		ret = data_device_disable(priv);
1020
1021	if (ret) {
1022		dev_err(priv->dev, "device %s failed\n",
1023			enable ? "enable" : "disable");
1024		count = ret;
1025		goto out_unlock;
1026	}
1027
1028out_unlock:
1029	mutex_unlock(&priv->mutex);
1030	return count;
1031}
1032
1033static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1034
1035static struct attribute *data_sysfs_attrs[] = {
1036	&dev_attr_enable.attr,
1037	NULL,
1038};
1039
1040static const struct attribute_group rt_sysfs_attr_group = {
1041	.attrs = data_sysfs_attrs,
1042};
1043
1044/*
1045 * FPGA Realtime Data Character Device
1046 */
1047
1048static int data_open(struct inode *inode, struct file *filp)
1049{
1050	/*
1051	 * The miscdevice layer puts our struct miscdevice into the
1052	 * filp->private_data field. We use this to find our private
1053	 * data and then overwrite it with our own private structure.
1054	 */
1055	struct fpga_device *priv = container_of(filp->private_data,
1056						struct fpga_device, miscdev);
1057	struct fpga_reader *reader;
1058	int ret;
1059
1060	/* allocate private data */
1061	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1062	if (!reader)
1063		return -ENOMEM;
1064
1065	reader->priv = priv;
1066	reader->buf = NULL;
1067
1068	filp->private_data = reader;
1069	ret = nonseekable_open(inode, filp);
1070	if (ret) {
1071		dev_err(priv->dev, "nonseekable-open failed\n");
1072		kfree(reader);
1073		return ret;
1074	}
1075
1076	/*
1077	 * success, increase the reference count of the private data structure
1078	 * so that it doesn't disappear if the device is unbound
1079	 */
1080	kref_get(&priv->ref);
1081	return 0;
1082}
1083
1084static int data_release(struct inode *inode, struct file *filp)
1085{
1086	struct fpga_reader *reader = filp->private_data;
1087	struct fpga_device *priv = reader->priv;
1088
1089	/* free the per-reader structure */
1090	data_free_buffer(reader->buf);
1091	kfree(reader);
1092	filp->private_data = NULL;
1093
1094	/* decrement our reference count to the private data */
1095	kref_put(&priv->ref, fpga_device_release);
1096	return 0;
1097}
1098
1099static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1100			 loff_t *f_pos)
1101{
1102	struct fpga_reader *reader = filp->private_data;
1103	struct fpga_device *priv = reader->priv;
1104	struct list_head *used = &priv->used;
1105	bool drop_buffer = false;
1106	struct data_buf *dbuf;
1107	size_t avail;
1108	void *data;
1109	int ret;
1110
1111	/* check if we already have a partial buffer */
1112	if (reader->buf) {
1113		dbuf = reader->buf;
1114		goto have_buffer;
1115	}
1116
1117	spin_lock_irq(&priv->lock);
1118
1119	/* Block until there is at least one buffer on the used list */
1120	while (list_empty(used)) {
1121		spin_unlock_irq(&priv->lock);
1122
1123		if (filp->f_flags & O_NONBLOCK)
1124			return -EAGAIN;
1125
1126		ret = wait_event_interruptible(priv->wait, !list_empty(used));
1127		if (ret)
1128			return ret;
1129
1130		spin_lock_irq(&priv->lock);
1131	}
1132
1133	/* Grab the first buffer off of the used list */
1134	dbuf = list_first_entry(used, struct data_buf, entry);
1135	list_del_init(&dbuf->entry);
1136
1137	spin_unlock_irq(&priv->lock);
1138
1139	/* Buffers are always mapped: unmap it */
1140	videobuf_dma_unmap(priv->dev, &dbuf->vb);
1141
1142	/* save the buffer for later */
1143	reader->buf = dbuf;
1144	reader->buf_start = 0;
1145
1146have_buffer:
1147	/* Get the number of bytes available */
1148	avail = dbuf->size - reader->buf_start;
1149	data = dbuf->vb.vaddr + reader->buf_start;
1150
1151	/* Get the number of bytes we can transfer */
1152	count = min(count, avail);
1153
1154	/* Copy the data to the userspace buffer */
1155	if (copy_to_user(ubuf, data, count))
1156		return -EFAULT;
1157
1158	/* Update the amount of available space */
1159	avail -= count;
1160
1161	/*
1162	 * If there is still some data available, save the buffer for the
1163	 * next userspace call to read() and return
1164	 */
1165	if (avail > 0) {
1166		reader->buf_start += count;
1167		reader->buf = dbuf;
1168		return count;
1169	}
1170
1171	/*
1172	 * Get the buffer ready to be reused for DMA
1173	 *
1174	 * If it fails, we pretend that the read never happed and return
1175	 * -EFAULT to userspace. The read will be retried.
1176	 */
1177	ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1178	if (ret) {
1179		dev_err(priv->dev, "unable to remap buffer for DMA\n");
1180		return -EFAULT;
1181	}
1182
1183	/* Lock against concurrent enable/disable */
1184	spin_lock_irq(&priv->lock);
1185
1186	/* the reader is finished with this buffer */
1187	reader->buf = NULL;
1188
1189	/*
1190	 * One of two things has happened, the device is disabled, or the
1191	 * device has been reconfigured underneath us. In either case, we
1192	 * should just throw away the buffer.
1193	 *
1194	 * Lockdep complains if this is done under the spinlock, so we
1195	 * handle it during the unlock path.
1196	 */
1197	if (!priv->enabled || dbuf->size != priv->bufsize) {
1198		drop_buffer = true;
1199		goto out_unlock;
1200	}
1201
1202	/* The buffer is safe to reuse, so add it back to the free list */
1203	list_add_tail(&dbuf->entry, &priv->free);
1204
1205out_unlock:
1206	spin_unlock_irq(&priv->lock);
1207
1208	if (drop_buffer) {
1209		videobuf_dma_unmap(priv->dev, &dbuf->vb);
1210		data_free_buffer(dbuf);
1211	}
1212
1213	return count;
1214}
1215
1216static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1217{
1218	struct fpga_reader *reader = filp->private_data;
1219	struct fpga_device *priv = reader->priv;
1220	unsigned int mask = 0;
1221
1222	poll_wait(filp, &priv->wait, tbl);
1223
1224	if (!list_empty(&priv->used))
1225		mask |= POLLIN | POLLRDNORM;
1226
1227	return mask;
1228}
1229
1230static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1231{
1232	struct fpga_reader *reader = filp->private_data;
1233	struct fpga_device *priv = reader->priv;
1234	unsigned long offset, vsize, psize, addr;
1235
1236	/* VMA properties */
1237	offset = vma->vm_pgoff << PAGE_SHIFT;
1238	vsize = vma->vm_end - vma->vm_start;
1239	psize = priv->phys_size - offset;
1240	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1241
1242	/* Check against the FPGA region's physical memory size */
1243	if (vsize > psize) {
1244		dev_err(priv->dev, "requested mmap mapping too large\n");
1245		return -EINVAL;
1246	}
1247
1248	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1249
1250	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1251				  vma->vm_page_prot);
1252}
1253
1254static const struct file_operations data_fops = {
1255	.owner		= THIS_MODULE,
1256	.open		= data_open,
1257	.release	= data_release,
1258	.read		= data_read,
1259	.poll		= data_poll,
1260	.mmap		= data_mmap,
1261	.llseek		= no_llseek,
1262};
1263
1264/*
1265 * OpenFirmware Device Subsystem
1266 */
1267
1268static bool dma_filter(struct dma_chan *chan, void *data)
1269{
1270	/*
1271	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1272	 *
1273	 * This probably won't survive an unload/load cycle of the Freescale
1274	 * DMAEngine driver, but that won't be a problem
1275	 */
1276	if (chan->chan_id == 0 && chan->device->dev_id == 0)
1277		return false;
1278
1279	return true;
1280}
1281
1282static int data_of_probe(struct platform_device *op)
1283{
1284	struct device_node *of_node = op->dev.of_node;
1285	struct device *this_device;
1286	struct fpga_device *priv;
1287	struct resource res;
1288	dma_cap_mask_t mask;
1289	int ret;
1290
1291	/* Allocate private data */
1292	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1293	if (!priv) {
1294		dev_err(&op->dev, "Unable to allocate device private data\n");
1295		ret = -ENOMEM;
1296		goto out_return;
1297	}
1298
1299	platform_set_drvdata(op, priv);
1300	priv->dev = &op->dev;
1301	kref_init(&priv->ref);
1302	mutex_init(&priv->mutex);
1303
1304	dev_set_drvdata(priv->dev, priv);
1305	spin_lock_init(&priv->lock);
1306	INIT_LIST_HEAD(&priv->free);
1307	INIT_LIST_HEAD(&priv->used);
1308	init_waitqueue_head(&priv->wait);
1309
1310	/* Setup the misc device */
1311	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1312	priv->miscdev.name = drv_name;
1313	priv->miscdev.fops = &data_fops;
1314
1315	/* Get the physical address of the FPGA registers */
1316	ret = of_address_to_resource(of_node, 0, &res);
1317	if (ret) {
1318		dev_err(&op->dev, "Unable to find FPGA physical address\n");
1319		ret = -ENODEV;
1320		goto out_free_priv;
1321	}
1322
1323	priv->phys_addr = res.start;
1324	priv->phys_size = resource_size(&res);
1325
1326	/* ioremap the registers for use */
1327	priv->regs = of_iomap(of_node, 0);
1328	if (!priv->regs) {
1329		dev_err(&op->dev, "Unable to ioremap registers\n");
1330		ret = -ENOMEM;
1331		goto out_free_priv;
1332	}
1333
1334	dma_cap_zero(mask);
1335	dma_cap_set(DMA_MEMCPY, mask);
1336	dma_cap_set(DMA_INTERRUPT, mask);
1337	dma_cap_set(DMA_SLAVE, mask);
1338	dma_cap_set(DMA_SG, mask);
1339
1340	/* Request a DMA channel */
1341	priv->chan = dma_request_channel(mask, dma_filter, NULL);
1342	if (!priv->chan) {
1343		dev_err(&op->dev, "Unable to request DMA channel\n");
1344		ret = -ENODEV;
1345		goto out_unmap_regs;
1346	}
1347
1348	/* Find the correct IRQ number */
1349	priv->irq = irq_of_parse_and_map(of_node, 0);
1350	if (priv->irq == NO_IRQ) {
1351		dev_err(&op->dev, "Unable to find IRQ line\n");
1352		ret = -ENODEV;
1353		goto out_release_dma;
1354	}
1355
1356	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
1357	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1358
1359	/* Register the miscdevice */
1360	ret = misc_register(&priv->miscdev);
1361	if (ret) {
1362		dev_err(&op->dev, "Unable to register miscdevice\n");
1363		goto out_irq_dispose_mapping;
1364	}
1365
1366	/* Create the debugfs files */
1367	ret = data_debugfs_init(priv);
1368	if (ret) {
1369		dev_err(&op->dev, "Unable to create debugfs files\n");
1370		goto out_misc_deregister;
1371	}
1372
1373	/* Create the sysfs files */
1374	this_device = priv->miscdev.this_device;
1375	dev_set_drvdata(this_device, priv);
1376	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1377	if (ret) {
1378		dev_err(&op->dev, "Unable to create sysfs files\n");
1379		goto out_data_debugfs_exit;
1380	}
1381
1382	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1383	return 0;
1384
1385out_data_debugfs_exit:
1386	data_debugfs_exit(priv);
1387out_misc_deregister:
1388	misc_deregister(&priv->miscdev);
1389out_irq_dispose_mapping:
1390	irq_dispose_mapping(priv->irq);
1391out_release_dma:
1392	dma_release_channel(priv->chan);
1393out_unmap_regs:
1394	iounmap(priv->regs);
1395out_free_priv:
1396	kref_put(&priv->ref, fpga_device_release);
1397out_return:
1398	return ret;
1399}
1400
1401static int data_of_remove(struct platform_device *op)
1402{
1403	struct fpga_device *priv = platform_get_drvdata(op);
1404	struct device *this_device = priv->miscdev.this_device;
1405
1406	/* remove all sysfs files, now the device cannot be re-enabled */
1407	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1408
1409	/* remove all debugfs files */
1410	data_debugfs_exit(priv);
1411
1412	/* disable the device from generating data */
1413	data_device_disable(priv);
1414
1415	/* remove the character device to stop new readers from appearing */
1416	misc_deregister(&priv->miscdev);
1417
1418	/* cleanup everything not needed by readers */
1419	irq_dispose_mapping(priv->irq);
1420	dma_release_channel(priv->chan);
1421	iounmap(priv->regs);
1422
1423	/* release our reference */
1424	kref_put(&priv->ref, fpga_device_release);
1425	return 0;
1426}
1427
1428static struct of_device_id data_of_match[] = {
1429	{ .compatible = "carma,carma-fpga", },
1430	{},
1431};
1432
1433static struct platform_driver data_of_driver = {
1434	.probe		= data_of_probe,
1435	.remove		= data_of_remove,
1436	.driver		= {
1437		.name		= drv_name,
1438		.of_match_table	= data_of_match,
1439		.owner		= THIS_MODULE,
1440	},
1441};
1442
1443module_platform_driver(data_of_driver);
1444
1445MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1446MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1447MODULE_LICENSE("GPL");