Loading...
1/*
2 * Copyright 2011 Freescale Semiconductor, Inc
3 *
4 * Freescale Integrated Flash Controller
5 *
6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/compiler.h>
25#include <linux/spinlock.h>
26#include <linux/types.h>
27#include <linux/slab.h>
28#include <linux/io.h>
29#include <linux/of.h>
30#include <linux/of_device.h>
31#include <linux/platform_device.h>
32#include <linux/fsl_ifc.h>
33#include <asm/prom.h>
34
35struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
36EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
37
38/*
39 * convert_ifc_address - convert the base address
40 * @addr_base: base address of the memory bank
41 */
42unsigned int convert_ifc_address(phys_addr_t addr_base)
43{
44 return addr_base & CSPR_BA;
45}
46EXPORT_SYMBOL(convert_ifc_address);
47
48/*
49 * fsl_ifc_find - find IFC bank
50 * @addr_base: base address of the memory bank
51 *
52 * This function walks IFC banks comparing "Base address" field of the CSPR
53 * registers with the supplied addr_base argument. When bases match this
54 * function returns bank number (starting with 0), otherwise it returns
55 * appropriate errno value.
56 */
57int fsl_ifc_find(phys_addr_t addr_base)
58{
59 int i = 0;
60
61 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
62 return -ENODEV;
63
64 for (i = 0; i < ARRAY_SIZE(fsl_ifc_ctrl_dev->regs->cspr_cs); i++) {
65 u32 cspr = in_be32(&fsl_ifc_ctrl_dev->regs->cspr_cs[i].cspr);
66 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
67 convert_ifc_address(addr_base))
68 return i;
69 }
70
71 return -ENOENT;
72}
73EXPORT_SYMBOL(fsl_ifc_find);
74
75static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
76{
77 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
78
79 /*
80 * Clear all the common status and event registers
81 */
82 if (in_be32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
83 out_be32(&ifc->cm_evter_stat, IFC_CM_EVTER_STAT_CSER);
84
85 /* enable all error and events */
86 out_be32(&ifc->cm_evter_en, IFC_CM_EVTER_EN_CSEREN);
87
88 /* enable all error and event interrupts */
89 out_be32(&ifc->cm_evter_intr_en, IFC_CM_EVTER_INTR_EN_CSERIREN);
90 out_be32(&ifc->cm_erattr0, 0x0);
91 out_be32(&ifc->cm_erattr1, 0x0);
92
93 return 0;
94}
95
96static int fsl_ifc_ctrl_remove(struct platform_device *dev)
97{
98 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
99
100 free_irq(ctrl->nand_irq, ctrl);
101 free_irq(ctrl->irq, ctrl);
102
103 irq_dispose_mapping(ctrl->nand_irq);
104 irq_dispose_mapping(ctrl->irq);
105
106 iounmap(ctrl->regs);
107
108 dev_set_drvdata(&dev->dev, NULL);
109 kfree(ctrl);
110
111 return 0;
112}
113
114/*
115 * NAND events are split between an operational interrupt which only
116 * receives OPC, and an error interrupt that receives everything else,
117 * including non-NAND errors. Whichever interrupt gets to it first
118 * records the status and wakes the wait queue.
119 */
120static DEFINE_SPINLOCK(nand_irq_lock);
121
122static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
123{
124 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
125 unsigned long flags;
126 u32 stat;
127
128 spin_lock_irqsave(&nand_irq_lock, flags);
129
130 stat = in_be32(&ifc->ifc_nand.nand_evter_stat);
131 if (stat) {
132 out_be32(&ifc->ifc_nand.nand_evter_stat, stat);
133 ctrl->nand_stat = stat;
134 wake_up(&ctrl->nand_wait);
135 }
136
137 spin_unlock_irqrestore(&nand_irq_lock, flags);
138
139 return stat;
140}
141
142static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
143{
144 struct fsl_ifc_ctrl *ctrl = data;
145
146 if (check_nand_stat(ctrl))
147 return IRQ_HANDLED;
148
149 return IRQ_NONE;
150}
151
152/*
153 * NOTE: This interrupt is used to report ifc events of various kinds,
154 * such as transaction errors on the chipselects.
155 */
156static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
157{
158 struct fsl_ifc_ctrl *ctrl = data;
159 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
160 u32 err_axiid, err_srcid, status, cs_err, err_addr;
161 irqreturn_t ret = IRQ_NONE;
162
163 /* read for chip select error */
164 cs_err = in_be32(&ifc->cm_evter_stat);
165 if (cs_err) {
166 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
167 "any memory bank 0x%08X\n", cs_err);
168 /* clear the chip select error */
169 out_be32(&ifc->cm_evter_stat, IFC_CM_EVTER_STAT_CSER);
170
171 /* read error attribute registers print the error information */
172 status = in_be32(&ifc->cm_erattr0);
173 err_addr = in_be32(&ifc->cm_erattr1);
174
175 if (status & IFC_CM_ERATTR0_ERTYP_READ)
176 dev_err(ctrl->dev, "Read transaction error"
177 "CM_ERATTR0 0x%08X\n", status);
178 else
179 dev_err(ctrl->dev, "Write transaction error"
180 "CM_ERATTR0 0x%08X\n", status);
181
182 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
183 IFC_CM_ERATTR0_ERAID_SHIFT;
184 dev_err(ctrl->dev, "AXI ID of the error"
185 "transaction 0x%08X\n", err_axiid);
186
187 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
188 IFC_CM_ERATTR0_ESRCID_SHIFT;
189 dev_err(ctrl->dev, "SRC ID of the error"
190 "transaction 0x%08X\n", err_srcid);
191
192 dev_err(ctrl->dev, "Transaction Address corresponding to error"
193 "ERADDR 0x%08X\n", err_addr);
194
195 ret = IRQ_HANDLED;
196 }
197
198 if (check_nand_stat(ctrl))
199 ret = IRQ_HANDLED;
200
201 return ret;
202}
203
204/*
205 * fsl_ifc_ctrl_probe
206 *
207 * called by device layer when it finds a device matching
208 * one our driver can handled. This code allocates all of
209 * the resources needed for the controller only. The
210 * resources for the NAND banks themselves are allocated
211 * in the chip probe function.
212*/
213static int fsl_ifc_ctrl_probe(struct platform_device *dev)
214{
215 int ret = 0;
216
217
218 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
219
220 fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
221 if (!fsl_ifc_ctrl_dev)
222 return -ENOMEM;
223
224 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
225
226 /* IOMAP the entire IFC region */
227 fsl_ifc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
228 if (!fsl_ifc_ctrl_dev->regs) {
229 dev_err(&dev->dev, "failed to get memory region\n");
230 ret = -ENODEV;
231 goto err;
232 }
233
234 /* get the Controller level irq */
235 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
236 if (fsl_ifc_ctrl_dev->irq == NO_IRQ) {
237 dev_err(&dev->dev, "failed to get irq resource "
238 "for IFC\n");
239 ret = -ENODEV;
240 goto err;
241 }
242
243 /* get the nand machine irq */
244 fsl_ifc_ctrl_dev->nand_irq =
245 irq_of_parse_and_map(dev->dev.of_node, 1);
246
247 fsl_ifc_ctrl_dev->dev = &dev->dev;
248
249 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
250 if (ret < 0)
251 goto err;
252
253 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
254
255 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
256 "fsl-ifc", fsl_ifc_ctrl_dev);
257 if (ret != 0) {
258 dev_err(&dev->dev, "failed to install irq (%d)\n",
259 fsl_ifc_ctrl_dev->irq);
260 goto err_irq;
261 }
262
263 if (fsl_ifc_ctrl_dev->nand_irq) {
264 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
265 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
266 if (ret != 0) {
267 dev_err(&dev->dev, "failed to install irq (%d)\n",
268 fsl_ifc_ctrl_dev->nand_irq);
269 goto err_nandirq;
270 }
271 }
272
273 return 0;
274
275err_nandirq:
276 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
277 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
278err_irq:
279 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
280 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
281err:
282 return ret;
283}
284
285static const struct of_device_id fsl_ifc_match[] = {
286 {
287 .compatible = "fsl,ifc",
288 },
289 {},
290};
291
292static struct platform_driver fsl_ifc_ctrl_driver = {
293 .driver = {
294 .name = "fsl-ifc",
295 .of_match_table = fsl_ifc_match,
296 },
297 .probe = fsl_ifc_ctrl_probe,
298 .remove = fsl_ifc_ctrl_remove,
299};
300
301static int __init fsl_ifc_init(void)
302{
303 return platform_driver_register(&fsl_ifc_ctrl_driver);
304}
305subsys_initcall(fsl_ifc_init);
306
307MODULE_LICENSE("GPL");
308MODULE_AUTHOR("Freescale Semiconductor");
309MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2011 Freescale Semiconductor, Inc
4 *
5 * Freescale Integrated Flash Controller
6 *
7 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8 */
9#include <linux/module.h>
10#include <linux/kernel.h>
11#include <linux/compiler.h>
12#include <linux/sched.h>
13#include <linux/spinlock.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/io.h>
17#include <linux/of.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/fsl_ifc.h>
21#include <linux/irqdomain.h>
22#include <linux/of_address.h>
23#include <linux/of_irq.h>
24
25struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27
28/*
29 * convert_ifc_address - convert the base address
30 * @addr_base: base address of the memory bank
31 */
32unsigned int convert_ifc_address(phys_addr_t addr_base)
33{
34 return addr_base & CSPR_BA;
35}
36EXPORT_SYMBOL(convert_ifc_address);
37
38/*
39 * fsl_ifc_find - find IFC bank
40 * @addr_base: base address of the memory bank
41 *
42 * This function walks IFC banks comparing "Base address" field of the CSPR
43 * registers with the supplied addr_base argument. When bases match this
44 * function returns bank number (starting with 0), otherwise it returns
45 * appropriate errno value.
46 */
47int fsl_ifc_find(phys_addr_t addr_base)
48{
49 int i = 0;
50
51 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52 return -ENODEV;
53
54 for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
57 convert_ifc_address(addr_base))
58 return i;
59 }
60
61 return -ENOENT;
62}
63EXPORT_SYMBOL(fsl_ifc_find);
64
65static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
66{
67 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
68
69 /*
70 * Clear all the common status and event registers
71 */
72 if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
73 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
74
75 /* enable all error and events */
76 ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
77
78 /* enable all error and event interrupts */
79 ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
80 ifc_out32(0x0, &ifc->cm_erattr0);
81 ifc_out32(0x0, &ifc->cm_erattr1);
82
83 return 0;
84}
85
86static int fsl_ifc_ctrl_remove(struct platform_device *dev)
87{
88 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
89
90 free_irq(ctrl->nand_irq, ctrl);
91 free_irq(ctrl->irq, ctrl);
92
93 irq_dispose_mapping(ctrl->nand_irq);
94 irq_dispose_mapping(ctrl->irq);
95
96 iounmap(ctrl->gregs);
97
98 dev_set_drvdata(&dev->dev, NULL);
99 kfree(ctrl);
100
101 return 0;
102}
103
104/*
105 * NAND events are split between an operational interrupt which only
106 * receives OPC, and an error interrupt that receives everything else,
107 * including non-NAND errors. Whichever interrupt gets to it first
108 * records the status and wakes the wait queue.
109 */
110static DEFINE_SPINLOCK(nand_irq_lock);
111
112static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
113{
114 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
115 unsigned long flags;
116 u32 stat;
117
118 spin_lock_irqsave(&nand_irq_lock, flags);
119
120 stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
121 if (stat) {
122 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
123 ctrl->nand_stat = stat;
124 wake_up(&ctrl->nand_wait);
125 }
126
127 spin_unlock_irqrestore(&nand_irq_lock, flags);
128
129 return stat;
130}
131
132static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
133{
134 struct fsl_ifc_ctrl *ctrl = data;
135
136 if (check_nand_stat(ctrl))
137 return IRQ_HANDLED;
138
139 return IRQ_NONE;
140}
141
142/*
143 * NOTE: This interrupt is used to report ifc events of various kinds,
144 * such as transaction errors on the chipselects.
145 */
146static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
147{
148 struct fsl_ifc_ctrl *ctrl = data;
149 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
150 u32 err_axiid, err_srcid, status, cs_err, err_addr;
151 irqreturn_t ret = IRQ_NONE;
152
153 /* read for chip select error */
154 cs_err = ifc_in32(&ifc->cm_evter_stat);
155 if (cs_err) {
156 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
157 "any memory bank 0x%08X\n", cs_err);
158 /* clear the chip select error */
159 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
160
161 /* read error attribute registers print the error information */
162 status = ifc_in32(&ifc->cm_erattr0);
163 err_addr = ifc_in32(&ifc->cm_erattr1);
164
165 if (status & IFC_CM_ERATTR0_ERTYP_READ)
166 dev_err(ctrl->dev, "Read transaction error"
167 "CM_ERATTR0 0x%08X\n", status);
168 else
169 dev_err(ctrl->dev, "Write transaction error"
170 "CM_ERATTR0 0x%08X\n", status);
171
172 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
173 IFC_CM_ERATTR0_ERAID_SHIFT;
174 dev_err(ctrl->dev, "AXI ID of the error"
175 "transaction 0x%08X\n", err_axiid);
176
177 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
178 IFC_CM_ERATTR0_ESRCID_SHIFT;
179 dev_err(ctrl->dev, "SRC ID of the error"
180 "transaction 0x%08X\n", err_srcid);
181
182 dev_err(ctrl->dev, "Transaction Address corresponding to error"
183 "ERADDR 0x%08X\n", err_addr);
184
185 ret = IRQ_HANDLED;
186 }
187
188 if (check_nand_stat(ctrl))
189 ret = IRQ_HANDLED;
190
191 return ret;
192}
193
194/*
195 * fsl_ifc_ctrl_probe
196 *
197 * called by device layer when it finds a device matching
198 * one our driver can handled. This code allocates all of
199 * the resources needed for the controller only. The
200 * resources for the NAND banks themselves are allocated
201 * in the chip probe function.
202*/
203static int fsl_ifc_ctrl_probe(struct platform_device *dev)
204{
205 int ret = 0;
206 int version, banks;
207 void __iomem *addr;
208
209 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
210
211 fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
212 if (!fsl_ifc_ctrl_dev)
213 return -ENOMEM;
214
215 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
216
217 /* IOMAP the entire IFC region */
218 fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
219 if (!fsl_ifc_ctrl_dev->gregs) {
220 dev_err(&dev->dev, "failed to get memory region\n");
221 ret = -ENODEV;
222 goto err;
223 }
224
225 if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
226 fsl_ifc_ctrl_dev->little_endian = true;
227 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
228 } else {
229 fsl_ifc_ctrl_dev->little_endian = false;
230 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
231 }
232
233 version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
234 FSL_IFC_VERSION_MASK;
235
236 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
237 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
238 version >> 24, (version >> 16) & 0xf, banks);
239
240 fsl_ifc_ctrl_dev->version = version;
241 fsl_ifc_ctrl_dev->banks = banks;
242
243 addr = fsl_ifc_ctrl_dev->gregs;
244 if (version >= FSL_IFC_VERSION_2_0_0)
245 addr += PGOFFSET_64K;
246 else
247 addr += PGOFFSET_4K;
248 fsl_ifc_ctrl_dev->rregs = addr;
249
250 /* get the Controller level irq */
251 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
252 if (fsl_ifc_ctrl_dev->irq == 0) {
253 dev_err(&dev->dev, "failed to get irq resource "
254 "for IFC\n");
255 ret = -ENODEV;
256 goto err;
257 }
258
259 /* get the nand machine irq */
260 fsl_ifc_ctrl_dev->nand_irq =
261 irq_of_parse_and_map(dev->dev.of_node, 1);
262
263 fsl_ifc_ctrl_dev->dev = &dev->dev;
264
265 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
266 if (ret < 0)
267 goto err;
268
269 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
270
271 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
272 "fsl-ifc", fsl_ifc_ctrl_dev);
273 if (ret != 0) {
274 dev_err(&dev->dev, "failed to install irq (%d)\n",
275 fsl_ifc_ctrl_dev->irq);
276 goto err_irq;
277 }
278
279 if (fsl_ifc_ctrl_dev->nand_irq) {
280 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
281 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
282 if (ret != 0) {
283 dev_err(&dev->dev, "failed to install irq (%d)\n",
284 fsl_ifc_ctrl_dev->nand_irq);
285 goto err_nandirq;
286 }
287 }
288
289 return 0;
290
291err_nandirq:
292 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
293 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
294err_irq:
295 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
296 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
297err:
298 return ret;
299}
300
301static const struct of_device_id fsl_ifc_match[] = {
302 {
303 .compatible = "fsl,ifc",
304 },
305 {},
306};
307
308static struct platform_driver fsl_ifc_ctrl_driver = {
309 .driver = {
310 .name = "fsl-ifc",
311 .of_match_table = fsl_ifc_match,
312 },
313 .probe = fsl_ifc_ctrl_probe,
314 .remove = fsl_ifc_ctrl_remove,
315};
316
317static int __init fsl_ifc_init(void)
318{
319 return platform_driver_register(&fsl_ifc_ctrl_driver);
320}
321subsys_initcall(fsl_ifc_init);
322
323MODULE_LICENSE("GPL");
324MODULE_AUTHOR("Freescale Semiconductor");
325MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");