Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
 
 
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
 
  42 *
  43 * The data to be stored is divided into chunks using chunksize.  Each device
  44 * is divided into far_copies sections.   In each section, chunks are laid out
  45 * in a style similar to raid0, but near_copies copies of each chunk is stored
  46 * (each on a different drive).  The starting device for each section is offset
  47 * near_copies from the starting device of the previous section.  Thus there
  48 * are (near_copies * far_copies) of each chunk, and each is on a different
  49 * drive.  near_copies and far_copies must be at least one, and their product
  50 * is at most raid_disks.
  51 *
  52 * If far_offset is true, then the far_copies are handled a bit differently.
  53 * The copies are still in different stripes, but instead of being very far
  54 * apart on disk, there are adjacent stripes.
  55 *
  56 * The far and offset algorithms are handled slightly differently if
  57 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  58 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  59 * are still shifted by 'near_copies' devices, but this shifting stays confined
  60 * to the set rather than the entire array.  This is done to improve the number
  61 * of device combinations that can fail without causing the array to fail.
  62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  63 * on a device):
  64 *    A B C D    A B C D E
  65 *      ...         ...
  66 *    D A B C    E A B C D
  67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  68 *    [A B] [C D]    [A B] [C D E]
  69 *    |...| |...|    |...| | ... |
  70 *    [B A] [D C]    [B A] [E C D]
  71 */
  72
  73/*
  74 * Number of guaranteed r10bios in case of extreme VM load:
  75 */
  76#define	NR_RAID10_BIOS 256
  77
  78/* when we get a read error on a read-only array, we redirect to another
  79 * device without failing the first device, or trying to over-write to
  80 * correct the read error.  To keep track of bad blocks on a per-bio
  81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  82 */
  83#define IO_BLOCKED ((struct bio *)1)
  84/* When we successfully write to a known bad-block, we need to remove the
  85 * bad-block marking which must be done from process context.  So we record
  86 * the success by setting devs[n].bio to IO_MADE_GOOD
  87 */
  88#define IO_MADE_GOOD ((struct bio *)2)
  89
  90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  91
  92/* When there are this many requests queued to be written by
  93 * the raid10 thread, we become 'congested' to provide back-pressure
  94 * for writeback.
  95 */
  96static int max_queued_requests = 1024;
  97
  98static void allow_barrier(struct r10conf *conf);
  99static void lower_barrier(struct r10conf *conf);
 100static int _enough(struct r10conf *conf, int previous, int ignore);
 
 101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 102				int *skipped);
 103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 104static void end_reshape_write(struct bio *bio, int error);
 105static void end_reshape(struct r10conf *conf);
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 108{
 109	struct r10conf *conf = data;
 110	int size = offsetof(struct r10bio, devs[conf->copies]);
 111
 112	/* allocate a r10bio with room for raid_disks entries in the
 113	 * bios array */
 114	return kzalloc(size, gfp_flags);
 115}
 116
 117static void r10bio_pool_free(void *r10_bio, void *data)
 118{
 119	kfree(r10_bio);
 120}
 121
 122/* Maximum size of each resync request */
 123#define RESYNC_BLOCK_SIZE (64*1024)
 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 125/* amount of memory to reserve for resync requests */
 126#define RESYNC_WINDOW (1024*1024)
 127/* maximum number of concurrent requests, memory permitting */
 128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 
 
 129
 130/*
 131 * When performing a resync, we need to read and compare, so
 132 * we need as many pages are there are copies.
 133 * When performing a recovery, we need 2 bios, one for read,
 134 * one for write (we recover only one drive per r10buf)
 135 *
 136 */
 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 138{
 139	struct r10conf *conf = data;
 140	struct page *page;
 141	struct r10bio *r10_bio;
 142	struct bio *bio;
 143	int i, j;
 144	int nalloc;
 
 145
 146	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 147	if (!r10_bio)
 148		return NULL;
 149
 150	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 151	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 152		nalloc = conf->copies; /* resync */
 153	else
 154		nalloc = 2; /* recovery */
 155
 
 
 
 
 
 
 
 
 
 156	/*
 157	 * Allocate bios.
 158	 */
 159	for (j = nalloc ; j-- ; ) {
 160		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 161		if (!bio)
 162			goto out_free_bio;
 163		r10_bio->devs[j].bio = bio;
 164		if (!conf->have_replacement)
 165			continue;
 166		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 167		if (!bio)
 168			goto out_free_bio;
 169		r10_bio->devs[j].repl_bio = bio;
 170	}
 171	/*
 172	 * Allocate RESYNC_PAGES data pages and attach them
 173	 * where needed.
 174	 */
 175	for (j = 0 ; j < nalloc; j++) {
 176		struct bio *rbio = r10_bio->devs[j].repl_bio;
 
 
 
 
 
 
 177		bio = r10_bio->devs[j].bio;
 178		for (i = 0; i < RESYNC_PAGES; i++) {
 179			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 180					       &conf->mddev->recovery)) {
 181				/* we can share bv_page's during recovery
 182				 * and reshape */
 183				struct bio *rbio = r10_bio->devs[0].bio;
 184				page = rbio->bi_io_vec[i].bv_page;
 185				get_page(page);
 186			} else
 187				page = alloc_page(gfp_flags);
 188			if (unlikely(!page))
 189				goto out_free_pages;
 
 
 
 
 190
 191			bio->bi_io_vec[i].bv_page = page;
 192			if (rbio)
 193				rbio->bi_io_vec[i].bv_page = page;
 
 
 194		}
 195	}
 196
 197	return r10_bio;
 198
 199out_free_pages:
 200	for ( ; i > 0 ; i--)
 201		safe_put_page(bio->bi_io_vec[i-1].bv_page);
 202	while (j--)
 203		for (i = 0; i < RESYNC_PAGES ; i++)
 204			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 205	j = 0;
 206out_free_bio:
 207	for ( ; j < nalloc; j++) {
 208		if (r10_bio->devs[j].bio)
 209			bio_put(r10_bio->devs[j].bio);
 210		if (r10_bio->devs[j].repl_bio)
 211			bio_put(r10_bio->devs[j].repl_bio);
 212	}
 213	r10bio_pool_free(r10_bio, conf);
 
 
 214	return NULL;
 215}
 216
 217static void r10buf_pool_free(void *__r10_bio, void *data)
 218{
 219	int i;
 220	struct r10conf *conf = data;
 221	struct r10bio *r10bio = __r10_bio;
 222	int j;
 
 223
 224	for (j=0; j < conf->copies; j++) {
 225		struct bio *bio = r10bio->devs[j].bio;
 
 226		if (bio) {
 227			for (i = 0; i < RESYNC_PAGES; i++) {
 228				safe_put_page(bio->bi_io_vec[i].bv_page);
 229				bio->bi_io_vec[i].bv_page = NULL;
 230			}
 231			bio_put(bio);
 232		}
 
 233		bio = r10bio->devs[j].repl_bio;
 234		if (bio)
 235			bio_put(bio);
 236	}
 237	r10bio_pool_free(r10bio, conf);
 
 
 
 
 238}
 239
 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 241{
 242	int i;
 243
 244	for (i = 0; i < conf->copies; i++) {
 245		struct bio **bio = & r10_bio->devs[i].bio;
 246		if (!BIO_SPECIAL(*bio))
 247			bio_put(*bio);
 248		*bio = NULL;
 249		bio = &r10_bio->devs[i].repl_bio;
 250		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 251			bio_put(*bio);
 252		*bio = NULL;
 253	}
 254}
 255
 256static void free_r10bio(struct r10bio *r10_bio)
 257{
 258	struct r10conf *conf = r10_bio->mddev->private;
 259
 260	put_all_bios(conf, r10_bio);
 261	mempool_free(r10_bio, conf->r10bio_pool);
 262}
 263
 264static void put_buf(struct r10bio *r10_bio)
 265{
 266	struct r10conf *conf = r10_bio->mddev->private;
 267
 268	mempool_free(r10_bio, conf->r10buf_pool);
 269
 270	lower_barrier(conf);
 271}
 272
 273static void reschedule_retry(struct r10bio *r10_bio)
 274{
 275	unsigned long flags;
 276	struct mddev *mddev = r10_bio->mddev;
 277	struct r10conf *conf = mddev->private;
 278
 279	spin_lock_irqsave(&conf->device_lock, flags);
 280	list_add(&r10_bio->retry_list, &conf->retry_list);
 281	conf->nr_queued ++;
 282	spin_unlock_irqrestore(&conf->device_lock, flags);
 283
 284	/* wake up frozen array... */
 285	wake_up(&conf->wait_barrier);
 286
 287	md_wakeup_thread(mddev->thread);
 288}
 289
 290/*
 291 * raid_end_bio_io() is called when we have finished servicing a mirrored
 292 * operation and are ready to return a success/failure code to the buffer
 293 * cache layer.
 294 */
 295static void raid_end_bio_io(struct r10bio *r10_bio)
 296{
 297	struct bio *bio = r10_bio->master_bio;
 298	int done;
 299	struct r10conf *conf = r10_bio->mddev->private;
 300
 301	if (bio->bi_phys_segments) {
 302		unsigned long flags;
 303		spin_lock_irqsave(&conf->device_lock, flags);
 304		bio->bi_phys_segments--;
 305		done = (bio->bi_phys_segments == 0);
 306		spin_unlock_irqrestore(&conf->device_lock, flags);
 307	} else
 308		done = 1;
 309	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 310		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 311	if (done) {
 312		bio_endio(bio, 0);
 313		/*
 314		 * Wake up any possible resync thread that waits for the device
 315		 * to go idle.
 316		 */
 317		allow_barrier(conf);
 318	}
 319	free_r10bio(r10_bio);
 320}
 321
 322/*
 323 * Update disk head position estimator based on IRQ completion info.
 324 */
 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 326{
 327	struct r10conf *conf = r10_bio->mddev->private;
 328
 329	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 330		r10_bio->devs[slot].addr + (r10_bio->sectors);
 331}
 332
 333/*
 334 * Find the disk number which triggered given bio
 335 */
 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 337			 struct bio *bio, int *slotp, int *replp)
 338{
 339	int slot;
 340	int repl = 0;
 341
 342	for (slot = 0; slot < conf->copies; slot++) {
 343		if (r10_bio->devs[slot].bio == bio)
 344			break;
 345		if (r10_bio->devs[slot].repl_bio == bio) {
 346			repl = 1;
 347			break;
 348		}
 349	}
 350
 351	BUG_ON(slot == conf->copies);
 352	update_head_pos(slot, r10_bio);
 353
 354	if (slotp)
 355		*slotp = slot;
 356	if (replp)
 357		*replp = repl;
 358	return r10_bio->devs[slot].devnum;
 359}
 360
 361static void raid10_end_read_request(struct bio *bio, int error)
 362{
 363	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 364	struct r10bio *r10_bio = bio->bi_private;
 365	int slot, dev;
 366	struct md_rdev *rdev;
 367	struct r10conf *conf = r10_bio->mddev->private;
 368
 369
 370	slot = r10_bio->read_slot;
 371	dev = r10_bio->devs[slot].devnum;
 372	rdev = r10_bio->devs[slot].rdev;
 373	/*
 374	 * this branch is our 'one mirror IO has finished' event handler:
 375	 */
 376	update_head_pos(slot, r10_bio);
 377
 378	if (uptodate) {
 379		/*
 380		 * Set R10BIO_Uptodate in our master bio, so that
 381		 * we will return a good error code to the higher
 382		 * levels even if IO on some other mirrored buffer fails.
 383		 *
 384		 * The 'master' represents the composite IO operation to
 385		 * user-side. So if something waits for IO, then it will
 386		 * wait for the 'master' bio.
 387		 */
 388		set_bit(R10BIO_Uptodate, &r10_bio->state);
 389	} else {
 390		/* If all other devices that store this block have
 391		 * failed, we want to return the error upwards rather
 392		 * than fail the last device.  Here we redefine
 393		 * "uptodate" to mean "Don't want to retry"
 394		 */
 395		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 396			     rdev->raid_disk))
 397			uptodate = 1;
 398	}
 399	if (uptodate) {
 400		raid_end_bio_io(r10_bio);
 401		rdev_dec_pending(rdev, conf->mddev);
 402	} else {
 403		/*
 404		 * oops, read error - keep the refcount on the rdev
 405		 */
 406		char b[BDEVNAME_SIZE];
 407		printk_ratelimited(KERN_ERR
 408				   "md/raid10:%s: %s: rescheduling sector %llu\n",
 409				   mdname(conf->mddev),
 410				   bdevname(rdev->bdev, b),
 411				   (unsigned long long)r10_bio->sector);
 412		set_bit(R10BIO_ReadError, &r10_bio->state);
 413		reschedule_retry(r10_bio);
 414	}
 415}
 416
 417static void close_write(struct r10bio *r10_bio)
 418{
 419	/* clear the bitmap if all writes complete successfully */
 420	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 421			r10_bio->sectors,
 422			!test_bit(R10BIO_Degraded, &r10_bio->state),
 423			0);
 424	md_write_end(r10_bio->mddev);
 425}
 426
 427static void one_write_done(struct r10bio *r10_bio)
 428{
 429	if (atomic_dec_and_test(&r10_bio->remaining)) {
 430		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 431			reschedule_retry(r10_bio);
 432		else {
 433			close_write(r10_bio);
 434			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 435				reschedule_retry(r10_bio);
 436			else
 437				raid_end_bio_io(r10_bio);
 438		}
 439	}
 440}
 441
 442static void raid10_end_write_request(struct bio *bio, int error)
 443{
 444	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 445	struct r10bio *r10_bio = bio->bi_private;
 446	int dev;
 447	int dec_rdev = 1;
 448	struct r10conf *conf = r10_bio->mddev->private;
 449	int slot, repl;
 450	struct md_rdev *rdev = NULL;
 
 
 
 
 451
 452	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 453
 454	if (repl)
 455		rdev = conf->mirrors[dev].replacement;
 456	if (!rdev) {
 457		smp_rmb();
 458		repl = 0;
 459		rdev = conf->mirrors[dev].rdev;
 460	}
 461	/*
 462	 * this branch is our 'one mirror IO has finished' event handler:
 463	 */
 464	if (!uptodate) {
 465		if (repl)
 466			/* Never record new bad blocks to replacement,
 467			 * just fail it.
 468			 */
 469			md_error(rdev->mddev, rdev);
 470		else {
 471			set_bit(WriteErrorSeen,	&rdev->flags);
 472			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 473				set_bit(MD_RECOVERY_NEEDED,
 474					&rdev->mddev->recovery);
 475			set_bit(R10BIO_WriteError, &r10_bio->state);
 476			dec_rdev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477		}
 478	} else {
 479		/*
 480		 * Set R10BIO_Uptodate in our master bio, so that
 481		 * we will return a good error code for to the higher
 482		 * levels even if IO on some other mirrored buffer fails.
 483		 *
 484		 * The 'master' represents the composite IO operation to
 485		 * user-side. So if something waits for IO, then it will
 486		 * wait for the 'master' bio.
 487		 */
 488		sector_t first_bad;
 489		int bad_sectors;
 490
 491		/*
 492		 * Do not set R10BIO_Uptodate if the current device is
 493		 * rebuilding or Faulty. This is because we cannot use
 494		 * such device for properly reading the data back (we could
 495		 * potentially use it, if the current write would have felt
 496		 * before rdev->recovery_offset, but for simplicity we don't
 497		 * check this here.
 498		 */
 499		if (test_bit(In_sync, &rdev->flags) &&
 500		    !test_bit(Faulty, &rdev->flags))
 501			set_bit(R10BIO_Uptodate, &r10_bio->state);
 502
 503		/* Maybe we can clear some bad blocks. */
 504		if (is_badblock(rdev,
 505				r10_bio->devs[slot].addr,
 506				r10_bio->sectors,
 507				&first_bad, &bad_sectors)) {
 508			bio_put(bio);
 509			if (repl)
 510				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 511			else
 512				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 513			dec_rdev = 0;
 514			set_bit(R10BIO_MadeGood, &r10_bio->state);
 515		}
 516	}
 517
 518	/*
 519	 *
 520	 * Let's see if all mirrored write operations have finished
 521	 * already.
 522	 */
 523	one_write_done(r10_bio);
 524	if (dec_rdev)
 525		rdev_dec_pending(rdev, conf->mddev);
 
 
 526}
 527
 528/*
 529 * RAID10 layout manager
 530 * As well as the chunksize and raid_disks count, there are two
 531 * parameters: near_copies and far_copies.
 532 * near_copies * far_copies must be <= raid_disks.
 533 * Normally one of these will be 1.
 534 * If both are 1, we get raid0.
 535 * If near_copies == raid_disks, we get raid1.
 536 *
 537 * Chunks are laid out in raid0 style with near_copies copies of the
 538 * first chunk, followed by near_copies copies of the next chunk and
 539 * so on.
 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 541 * as described above, we start again with a device offset of near_copies.
 542 * So we effectively have another copy of the whole array further down all
 543 * the drives, but with blocks on different drives.
 544 * With this layout, and block is never stored twice on the one device.
 545 *
 546 * raid10_find_phys finds the sector offset of a given virtual sector
 547 * on each device that it is on.
 548 *
 549 * raid10_find_virt does the reverse mapping, from a device and a
 550 * sector offset to a virtual address
 551 */
 552
 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 554{
 555	int n,f;
 556	sector_t sector;
 557	sector_t chunk;
 558	sector_t stripe;
 559	int dev;
 560	int slot = 0;
 561	int last_far_set_start, last_far_set_size;
 562
 563	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 564	last_far_set_start *= geo->far_set_size;
 565
 566	last_far_set_size = geo->far_set_size;
 567	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 568
 569	/* now calculate first sector/dev */
 570	chunk = r10bio->sector >> geo->chunk_shift;
 571	sector = r10bio->sector & geo->chunk_mask;
 572
 573	chunk *= geo->near_copies;
 574	stripe = chunk;
 575	dev = sector_div(stripe, geo->raid_disks);
 576	if (geo->far_offset)
 577		stripe *= geo->far_copies;
 578
 579	sector += stripe << geo->chunk_shift;
 580
 581	/* and calculate all the others */
 582	for (n = 0; n < geo->near_copies; n++) {
 583		int d = dev;
 584		int set;
 585		sector_t s = sector;
 586		r10bio->devs[slot].devnum = d;
 587		r10bio->devs[slot].addr = s;
 588		slot++;
 589
 590		for (f = 1; f < geo->far_copies; f++) {
 591			set = d / geo->far_set_size;
 592			d += geo->near_copies;
 593
 594			if ((geo->raid_disks % geo->far_set_size) &&
 595			    (d > last_far_set_start)) {
 596				d -= last_far_set_start;
 597				d %= last_far_set_size;
 598				d += last_far_set_start;
 599			} else {
 600				d %= geo->far_set_size;
 601				d += geo->far_set_size * set;
 602			}
 603			s += geo->stride;
 604			r10bio->devs[slot].devnum = d;
 605			r10bio->devs[slot].addr = s;
 606			slot++;
 607		}
 608		dev++;
 609		if (dev >= geo->raid_disks) {
 610			dev = 0;
 611			sector += (geo->chunk_mask + 1);
 612		}
 613	}
 614}
 615
 616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 617{
 618	struct geom *geo = &conf->geo;
 619
 620	if (conf->reshape_progress != MaxSector &&
 621	    ((r10bio->sector >= conf->reshape_progress) !=
 622	     conf->mddev->reshape_backwards)) {
 623		set_bit(R10BIO_Previous, &r10bio->state);
 624		geo = &conf->prev;
 625	} else
 626		clear_bit(R10BIO_Previous, &r10bio->state);
 627
 628	__raid10_find_phys(geo, r10bio);
 629}
 630
 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 632{
 633	sector_t offset, chunk, vchunk;
 634	/* Never use conf->prev as this is only called during resync
 635	 * or recovery, so reshape isn't happening
 636	 */
 637	struct geom *geo = &conf->geo;
 638	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 639	int far_set_size = geo->far_set_size;
 640	int last_far_set_start;
 641
 642	if (geo->raid_disks % geo->far_set_size) {
 643		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 644		last_far_set_start *= geo->far_set_size;
 645
 646		if (dev >= last_far_set_start) {
 647			far_set_size = geo->far_set_size;
 648			far_set_size += (geo->raid_disks % geo->far_set_size);
 649			far_set_start = last_far_set_start;
 650		}
 651	}
 652
 653	offset = sector & geo->chunk_mask;
 654	if (geo->far_offset) {
 655		int fc;
 656		chunk = sector >> geo->chunk_shift;
 657		fc = sector_div(chunk, geo->far_copies);
 658		dev -= fc * geo->near_copies;
 659		if (dev < far_set_start)
 660			dev += far_set_size;
 661	} else {
 662		while (sector >= geo->stride) {
 663			sector -= geo->stride;
 664			if (dev < (geo->near_copies + far_set_start))
 665				dev += far_set_size - geo->near_copies;
 666			else
 667				dev -= geo->near_copies;
 668		}
 669		chunk = sector >> geo->chunk_shift;
 670	}
 671	vchunk = chunk * geo->raid_disks + dev;
 672	sector_div(vchunk, geo->near_copies);
 673	return (vchunk << geo->chunk_shift) + offset;
 674}
 675
 676/**
 677 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 678 *	@q: request queue
 679 *	@bvm: properties of new bio
 680 *	@biovec: the request that could be merged to it.
 681 *
 682 *	Return amount of bytes we can accept at this offset
 683 *	This requires checking for end-of-chunk if near_copies != raid_disks,
 684 *	and for subordinate merge_bvec_fns if merge_check_needed.
 685 */
 686static int raid10_mergeable_bvec(struct request_queue *q,
 687				 struct bvec_merge_data *bvm,
 688				 struct bio_vec *biovec)
 689{
 690	struct mddev *mddev = q->queuedata;
 691	struct r10conf *conf = mddev->private;
 692	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 693	int max;
 694	unsigned int chunk_sectors;
 695	unsigned int bio_sectors = bvm->bi_size >> 9;
 696	struct geom *geo = &conf->geo;
 697
 698	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 699	if (conf->reshape_progress != MaxSector &&
 700	    ((sector >= conf->reshape_progress) !=
 701	     conf->mddev->reshape_backwards))
 702		geo = &conf->prev;
 703
 704	if (geo->near_copies < geo->raid_disks) {
 705		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 706					+ bio_sectors)) << 9;
 707		if (max < 0)
 708			/* bio_add cannot handle a negative return */
 709			max = 0;
 710		if (max <= biovec->bv_len && bio_sectors == 0)
 711			return biovec->bv_len;
 712	} else
 713		max = biovec->bv_len;
 714
 715	if (mddev->merge_check_needed) {
 716		struct {
 717			struct r10bio r10_bio;
 718			struct r10dev devs[conf->copies];
 719		} on_stack;
 720		struct r10bio *r10_bio = &on_stack.r10_bio;
 721		int s;
 722		if (conf->reshape_progress != MaxSector) {
 723			/* Cannot give any guidance during reshape */
 724			if (max <= biovec->bv_len && bio_sectors == 0)
 725				return biovec->bv_len;
 726			return 0;
 727		}
 728		r10_bio->sector = sector;
 729		raid10_find_phys(conf, r10_bio);
 730		rcu_read_lock();
 731		for (s = 0; s < conf->copies; s++) {
 732			int disk = r10_bio->devs[s].devnum;
 733			struct md_rdev *rdev = rcu_dereference(
 734				conf->mirrors[disk].rdev);
 735			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 736				struct request_queue *q =
 737					bdev_get_queue(rdev->bdev);
 738				if (q->merge_bvec_fn) {
 739					bvm->bi_sector = r10_bio->devs[s].addr
 740						+ rdev->data_offset;
 741					bvm->bi_bdev = rdev->bdev;
 742					max = min(max, q->merge_bvec_fn(
 743							  q, bvm, biovec));
 744				}
 745			}
 746			rdev = rcu_dereference(conf->mirrors[disk].replacement);
 747			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 748				struct request_queue *q =
 749					bdev_get_queue(rdev->bdev);
 750				if (q->merge_bvec_fn) {
 751					bvm->bi_sector = r10_bio->devs[s].addr
 752						+ rdev->data_offset;
 753					bvm->bi_bdev = rdev->bdev;
 754					max = min(max, q->merge_bvec_fn(
 755							  q, bvm, biovec));
 756				}
 757			}
 758		}
 759		rcu_read_unlock();
 760	}
 761	return max;
 762}
 763
 764/*
 765 * This routine returns the disk from which the requested read should
 766 * be done. There is a per-array 'next expected sequential IO' sector
 767 * number - if this matches on the next IO then we use the last disk.
 768 * There is also a per-disk 'last know head position' sector that is
 769 * maintained from IRQ contexts, both the normal and the resync IO
 770 * completion handlers update this position correctly. If there is no
 771 * perfect sequential match then we pick the disk whose head is closest.
 772 *
 773 * If there are 2 mirrors in the same 2 devices, performance degrades
 774 * because position is mirror, not device based.
 775 *
 776 * The rdev for the device selected will have nr_pending incremented.
 777 */
 778
 779/*
 780 * FIXME: possibly should rethink readbalancing and do it differently
 781 * depending on near_copies / far_copies geometry.
 782 */
 783static struct md_rdev *read_balance(struct r10conf *conf,
 784				    struct r10bio *r10_bio,
 785				    int *max_sectors)
 786{
 787	const sector_t this_sector = r10_bio->sector;
 788	int disk, slot;
 789	int sectors = r10_bio->sectors;
 790	int best_good_sectors;
 791	sector_t new_distance, best_dist;
 792	struct md_rdev *best_rdev, *rdev = NULL;
 793	int do_balance;
 794	int best_slot;
 
 
 795	struct geom *geo = &conf->geo;
 796
 797	raid10_find_phys(conf, r10_bio);
 798	rcu_read_lock();
 799retry:
 800	sectors = r10_bio->sectors;
 801	best_slot = -1;
 802	best_rdev = NULL;
 803	best_dist = MaxSector;
 804	best_good_sectors = 0;
 805	do_balance = 1;
 
 806	/*
 807	 * Check if we can balance. We can balance on the whole
 808	 * device if no resync is going on (recovery is ok), or below
 809	 * the resync window. We take the first readable disk when
 810	 * above the resync window.
 811	 */
 812	if (conf->mddev->recovery_cp < MaxSector
 813	    && (this_sector + sectors >= conf->next_resync))
 
 
 
 814		do_balance = 0;
 815
 816	for (slot = 0; slot < conf->copies ; slot++) {
 817		sector_t first_bad;
 818		int bad_sectors;
 819		sector_t dev_sector;
 
 
 820
 821		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 822			continue;
 823		disk = r10_bio->devs[slot].devnum;
 824		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 825		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 826		    test_bit(Unmerged, &rdev->flags) ||
 827		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 828			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 829		if (rdev == NULL ||
 830		    test_bit(Faulty, &rdev->flags) ||
 831		    test_bit(Unmerged, &rdev->flags))
 832			continue;
 833		if (!test_bit(In_sync, &rdev->flags) &&
 834		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 835			continue;
 836
 837		dev_sector = r10_bio->devs[slot].addr;
 838		if (is_badblock(rdev, dev_sector, sectors,
 839				&first_bad, &bad_sectors)) {
 840			if (best_dist < MaxSector)
 841				/* Already have a better slot */
 842				continue;
 843			if (first_bad <= dev_sector) {
 844				/* Cannot read here.  If this is the
 845				 * 'primary' device, then we must not read
 846				 * beyond 'bad_sectors' from another device.
 847				 */
 848				bad_sectors -= (dev_sector - first_bad);
 849				if (!do_balance && sectors > bad_sectors)
 850					sectors = bad_sectors;
 851				if (best_good_sectors > sectors)
 852					best_good_sectors = sectors;
 853			} else {
 854				sector_t good_sectors =
 855					first_bad - dev_sector;
 856				if (good_sectors > best_good_sectors) {
 857					best_good_sectors = good_sectors;
 858					best_slot = slot;
 859					best_rdev = rdev;
 860				}
 861				if (!do_balance)
 862					/* Must read from here */
 863					break;
 864			}
 865			continue;
 866		} else
 867			best_good_sectors = sectors;
 868
 869		if (!do_balance)
 870			break;
 871
 
 
 
 
 
 
 
 
 
 
 
 
 872		/* This optimisation is debatable, and completely destroys
 873		 * sequential read speed for 'far copies' arrays.  So only
 874		 * keep it for 'near' arrays, and review those later.
 875		 */
 876		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 877			break;
 878
 879		/* for far > 1 always use the lowest address */
 880		if (geo->far_copies > 1)
 881			new_distance = r10_bio->devs[slot].addr;
 882		else
 883			new_distance = abs(r10_bio->devs[slot].addr -
 884					   conf->mirrors[disk].head_position);
 
 885		if (new_distance < best_dist) {
 886			best_dist = new_distance;
 887			best_slot = slot;
 888			best_rdev = rdev;
 889		}
 890	}
 891	if (slot >= conf->copies) {
 892		slot = best_slot;
 893		rdev = best_rdev;
 
 
 
 
 
 894	}
 895
 896	if (slot >= 0) {
 897		atomic_inc(&rdev->nr_pending);
 898		if (test_bit(Faulty, &rdev->flags)) {
 899			/* Cannot risk returning a device that failed
 900			 * before we inc'ed nr_pending
 901			 */
 902			rdev_dec_pending(rdev, conf->mddev);
 903			goto retry;
 904		}
 905		r10_bio->read_slot = slot;
 906	} else
 907		rdev = NULL;
 908	rcu_read_unlock();
 909	*max_sectors = best_good_sectors;
 910
 911	return rdev;
 912}
 913
 914int md_raid10_congested(struct mddev *mddev, int bits)
 915{
 916	struct r10conf *conf = mddev->private;
 917	int i, ret = 0;
 918
 919	if ((bits & (1 << BDI_async_congested)) &&
 920	    conf->pending_count >= max_queued_requests)
 921		return 1;
 922
 923	rcu_read_lock();
 924	for (i = 0;
 925	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 926		     && ret == 0;
 927	     i++) {
 928		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 929		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 930			struct request_queue *q = bdev_get_queue(rdev->bdev);
 931
 932			ret |= bdi_congested(&q->backing_dev_info, bits);
 933		}
 934	}
 935	rcu_read_unlock();
 936	return ret;
 937}
 938EXPORT_SYMBOL_GPL(md_raid10_congested);
 939
 940static int raid10_congested(void *data, int bits)
 941{
 942	struct mddev *mddev = data;
 943
 944	return mddev_congested(mddev, bits) ||
 945		md_raid10_congested(mddev, bits);
 946}
 947
 948static void flush_pending_writes(struct r10conf *conf)
 949{
 950	/* Any writes that have been queued but are awaiting
 951	 * bitmap updates get flushed here.
 952	 */
 953	spin_lock_irq(&conf->device_lock);
 954
 955	if (conf->pending_bio_list.head) {
 
 956		struct bio *bio;
 
 957		bio = bio_list_get(&conf->pending_bio_list);
 958		conf->pending_count = 0;
 959		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 960		/* flush any pending bitmap writes to disk
 961		 * before proceeding w/ I/O */
 962		bitmap_unplug(conf->mddev->bitmap);
 963		wake_up(&conf->wait_barrier);
 964
 965		while (bio) { /* submit pending writes */
 966			struct bio *next = bio->bi_next;
 
 967			bio->bi_next = NULL;
 968			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 969			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 
 
 
 970				/* Just ignore it */
 971				bio_endio(bio, 0);
 972			else
 973				generic_make_request(bio);
 974			bio = next;
 975		}
 
 976	} else
 977		spin_unlock_irq(&conf->device_lock);
 978}
 979
 980/* Barriers....
 981 * Sometimes we need to suspend IO while we do something else,
 982 * either some resync/recovery, or reconfigure the array.
 983 * To do this we raise a 'barrier'.
 984 * The 'barrier' is a counter that can be raised multiple times
 985 * to count how many activities are happening which preclude
 986 * normal IO.
 987 * We can only raise the barrier if there is no pending IO.
 988 * i.e. if nr_pending == 0.
 989 * We choose only to raise the barrier if no-one is waiting for the
 990 * barrier to go down.  This means that as soon as an IO request
 991 * is ready, no other operations which require a barrier will start
 992 * until the IO request has had a chance.
 993 *
 994 * So: regular IO calls 'wait_barrier'.  When that returns there
 995 *    is no backgroup IO happening,  It must arrange to call
 996 *    allow_barrier when it has finished its IO.
 997 * backgroup IO calls must call raise_barrier.  Once that returns
 998 *    there is no normal IO happeing.  It must arrange to call
 999 *    lower_barrier when the particular background IO completes.
1000 */
1001
1002static void raise_barrier(struct r10conf *conf, int force)
1003{
1004	BUG_ON(force && !conf->barrier);
1005	spin_lock_irq(&conf->resync_lock);
1006
1007	/* Wait until no block IO is waiting (unless 'force') */
1008	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009			    conf->resync_lock);
1010
1011	/* block any new IO from starting */
1012	conf->barrier++;
1013
1014	/* Now wait for all pending IO to complete */
1015	wait_event_lock_irq(conf->wait_barrier,
1016			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017			    conf->resync_lock);
1018
1019	spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void lower_barrier(struct r10conf *conf)
1023{
1024	unsigned long flags;
1025	spin_lock_irqsave(&conf->resync_lock, flags);
1026	conf->barrier--;
1027	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028	wake_up(&conf->wait_barrier);
1029}
1030
1031static void wait_barrier(struct r10conf *conf)
1032{
1033	spin_lock_irq(&conf->resync_lock);
1034	if (conf->barrier) {
1035		conf->nr_waiting++;
1036		/* Wait for the barrier to drop.
1037		 * However if there are already pending
1038		 * requests (preventing the barrier from
1039		 * rising completely), and the
1040		 * pre-process bio queue isn't empty,
1041		 * then don't wait, as we need to empty
1042		 * that queue to get the nr_pending
1043		 * count down.
1044		 */
 
1045		wait_event_lock_irq(conf->wait_barrier,
1046				    !conf->barrier ||
1047				    (conf->nr_pending &&
1048				     current->bio_list &&
1049				     !bio_list_empty(current->bio_list)),
 
1050				    conf->resync_lock);
1051		conf->nr_waiting--;
 
 
1052	}
1053	conf->nr_pending++;
1054	spin_unlock_irq(&conf->resync_lock);
1055}
1056
1057static void allow_barrier(struct r10conf *conf)
1058{
1059	unsigned long flags;
1060	spin_lock_irqsave(&conf->resync_lock, flags);
1061	conf->nr_pending--;
1062	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063	wake_up(&conf->wait_barrier);
1064}
1065
1066static void freeze_array(struct r10conf *conf, int extra)
1067{
1068	/* stop syncio and normal IO and wait for everything to
1069	 * go quiet.
1070	 * We increment barrier and nr_waiting, and then
1071	 * wait until nr_pending match nr_queued+extra
1072	 * This is called in the context of one normal IO request
1073	 * that has failed. Thus any sync request that might be pending
1074	 * will be blocked by nr_pending, and we need to wait for
1075	 * pending IO requests to complete or be queued for re-try.
1076	 * Thus the number queued (nr_queued) plus this request (extra)
1077	 * must match the number of pending IOs (nr_pending) before
1078	 * we continue.
1079	 */
1080	spin_lock_irq(&conf->resync_lock);
 
1081	conf->barrier++;
1082	conf->nr_waiting++;
1083	wait_event_lock_irq_cmd(conf->wait_barrier,
1084				conf->nr_pending == conf->nr_queued+extra,
1085				conf->resync_lock,
1086				flush_pending_writes(conf));
1087
 
1088	spin_unlock_irq(&conf->resync_lock);
1089}
1090
1091static void unfreeze_array(struct r10conf *conf)
1092{
1093	/* reverse the effect of the freeze */
1094	spin_lock_irq(&conf->resync_lock);
1095	conf->barrier--;
1096	conf->nr_waiting--;
1097	wake_up(&conf->wait_barrier);
1098	spin_unlock_irq(&conf->resync_lock);
1099}
1100
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102				   struct md_rdev *rdev)
1103{
1104	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105	    test_bit(R10BIO_Previous, &r10_bio->state))
1106		return rdev->data_offset;
1107	else
1108		return rdev->new_data_offset;
1109}
1110
1111struct raid10_plug_cb {
1112	struct blk_plug_cb	cb;
1113	struct bio_list		pending;
1114	int			pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120						   cb);
1121	struct mddev *mddev = plug->cb.data;
1122	struct r10conf *conf = mddev->private;
1123	struct bio *bio;
1124
1125	if (from_schedule || current->bio_list) {
1126		spin_lock_irq(&conf->device_lock);
1127		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128		conf->pending_count += plug->pending_cnt;
1129		spin_unlock_irq(&conf->device_lock);
1130		wake_up(&conf->wait_barrier);
1131		md_wakeup_thread(mddev->thread);
1132		kfree(plug);
1133		return;
1134	}
1135
1136	/* we aren't scheduling, so we can do the write-out directly. */
1137	bio = bio_list_get(&plug->pending);
1138	bitmap_unplug(mddev->bitmap);
1139	wake_up(&conf->wait_barrier);
1140
1141	while (bio) { /* submit pending writes */
1142		struct bio *next = bio->bi_next;
 
1143		bio->bi_next = NULL;
1144		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 
 
 
1146			/* Just ignore it */
1147			bio_endio(bio, 0);
1148		else
1149			generic_make_request(bio);
1150		bio = next;
1151	}
1152	kfree(plug);
1153}
1154
1155static void __make_request(struct mddev *mddev, struct bio *bio)
 
 
 
 
 
 
 
1156{
1157	struct r10conf *conf = mddev->private;
1158	struct r10bio *r10_bio;
1159	struct bio *read_bio;
1160	int i;
1161	const int rw = bio_data_dir(bio);
1162	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164	const unsigned long do_discard = (bio->bi_rw
1165					  & (REQ_DISCARD | REQ_SECURE));
1166	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167	unsigned long flags;
1168	struct md_rdev *blocked_rdev;
1169	struct blk_plug_cb *cb;
1170	struct raid10_plug_cb *plug = NULL;
1171	int sectors_handled;
1172	int max_sectors;
1173	int sectors;
1174
1175	/*
1176	 * Register the new request and wait if the reconstruction
1177	 * thread has put up a bar for new requests.
1178	 * Continue immediately if no resync is active currently.
1179	 */
1180	wait_barrier(conf);
1181
1182	sectors = bio_sectors(bio);
1183	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1185	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186		/* IO spans the reshape position.  Need to wait for
1187		 * reshape to pass
1188		 */
1189		allow_barrier(conf);
1190		wait_event(conf->wait_barrier,
1191			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1193			   sectors);
1194		wait_barrier(conf);
1195	}
1196	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197	    bio_data_dir(bio) == WRITE &&
1198	    (mddev->reshape_backwards
1199	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203		/* Need to update reshape_position in metadata */
1204		mddev->reshape_position = conf->reshape_progress;
1205		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207		md_wakeup_thread(mddev->thread);
1208		wait_event(mddev->sb_wait,
1209			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210
1211		conf->reshape_safe = mddev->reshape_position;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212	}
1213
1214	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215
1216	r10_bio->master_bio = bio;
1217	r10_bio->sectors = sectors;
1218
1219	r10_bio->mddev = mddev;
1220	r10_bio->sector = bio->bi_iter.bi_sector;
1221	r10_bio->state = 0;
1222
1223	/* We might need to issue multiple reads to different
1224	 * devices if there are bad blocks around, so we keep
1225	 * track of the number of reads in bio->bi_phys_segments.
1226	 * If this is 0, there is only one r10_bio and no locking
1227	 * will be needed when the request completes.  If it is
1228	 * non-zero, then it is the number of not-completed requests.
1229	 */
1230	bio->bi_phys_segments = 0;
1231	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232
1233	if (rw == READ) {
1234		/*
1235		 * read balancing logic:
1236		 */
1237		struct md_rdev *rdev;
1238		int slot;
 
1239
1240read_again:
1241		rdev = read_balance(conf, r10_bio, &max_sectors);
1242		if (!rdev) {
1243			raid_end_bio_io(r10_bio);
1244			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245		}
1246		slot = r10_bio->read_slot;
 
1247
1248		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250			 max_sectors);
1251
1252		r10_bio->devs[slot].bio = read_bio;
1253		r10_bio->devs[slot].rdev = rdev;
1254
1255		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256			choose_data_offset(r10_bio, rdev);
1257		read_bio->bi_bdev = rdev->bdev;
1258		read_bio->bi_end_io = raid10_end_read_request;
1259		read_bio->bi_rw = READ | do_sync;
1260		read_bio->bi_private = r10_bio;
1261
1262		if (max_sectors < r10_bio->sectors) {
1263			/* Could not read all from this device, so we will
1264			 * need another r10_bio.
1265			 */
1266			sectors_handled = (r10_bio->sector + max_sectors
1267					   - bio->bi_iter.bi_sector);
1268			r10_bio->sectors = max_sectors;
1269			spin_lock_irq(&conf->device_lock);
1270			if (bio->bi_phys_segments == 0)
1271				bio->bi_phys_segments = 2;
1272			else
1273				bio->bi_phys_segments++;
1274			spin_unlock_irq(&conf->device_lock);
1275			/* Cannot call generic_make_request directly
1276			 * as that will be queued in __generic_make_request
1277			 * and subsequent mempool_alloc might block
1278			 * waiting for it.  so hand bio over to raid10d.
1279			 */
1280			reschedule_retry(r10_bio);
1281
1282			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284			r10_bio->master_bio = bio;
1285			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286			r10_bio->state = 0;
1287			r10_bio->mddev = mddev;
1288			r10_bio->sector = bio->bi_iter.bi_sector +
1289				sectors_handled;
1290			goto read_again;
1291		} else
1292			generic_make_request(read_bio);
1293		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294	}
1295
1296	/*
1297	 * WRITE:
1298	 */
1299	if (conf->pending_count >= max_queued_requests) {
1300		md_wakeup_thread(mddev->thread);
 
1301		wait_event(conf->wait_barrier,
1302			   conf->pending_count < max_queued_requests);
1303	}
1304	/* first select target devices under rcu_lock and
1305	 * inc refcount on their rdev.  Record them by setting
1306	 * bios[x] to bio
1307	 * If there are known/acknowledged bad blocks on any device
1308	 * on which we have seen a write error, we want to avoid
1309	 * writing to those blocks.  This potentially requires several
1310	 * writes to write around the bad blocks.  Each set of writes
1311	 * gets its own r10_bio with a set of bios attached.  The number
1312	 * of r10_bios is recored in bio->bi_phys_segments just as with
1313	 * the read case.
1314	 */
1315
1316	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317	raid10_find_phys(conf, r10_bio);
1318retry_write:
1319	blocked_rdev = NULL;
1320	rcu_read_lock();
1321	max_sectors = r10_bio->sectors;
1322
1323	for (i = 0;  i < conf->copies; i++) {
1324		int d = r10_bio->devs[i].devnum;
1325		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326		struct md_rdev *rrdev = rcu_dereference(
1327			conf->mirrors[d].replacement);
1328		if (rdev == rrdev)
1329			rrdev = NULL;
1330		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331			atomic_inc(&rdev->nr_pending);
1332			blocked_rdev = rdev;
1333			break;
1334		}
1335		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336			atomic_inc(&rrdev->nr_pending);
1337			blocked_rdev = rrdev;
1338			break;
1339		}
1340		if (rdev && (test_bit(Faulty, &rdev->flags)
1341			     || test_bit(Unmerged, &rdev->flags)))
1342			rdev = NULL;
1343		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344			      || test_bit(Unmerged, &rrdev->flags)))
1345			rrdev = NULL;
1346
1347		r10_bio->devs[i].bio = NULL;
1348		r10_bio->devs[i].repl_bio = NULL;
1349
1350		if (!rdev && !rrdev) {
1351			set_bit(R10BIO_Degraded, &r10_bio->state);
1352			continue;
1353		}
1354		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355			sector_t first_bad;
1356			sector_t dev_sector = r10_bio->devs[i].addr;
1357			int bad_sectors;
1358			int is_bad;
1359
1360			is_bad = is_badblock(rdev, dev_sector,
1361					     max_sectors,
1362					     &first_bad, &bad_sectors);
1363			if (is_bad < 0) {
1364				/* Mustn't write here until the bad block
1365				 * is acknowledged
1366				 */
1367				atomic_inc(&rdev->nr_pending);
1368				set_bit(BlockedBadBlocks, &rdev->flags);
1369				blocked_rdev = rdev;
1370				break;
1371			}
1372			if (is_bad && first_bad <= dev_sector) {
1373				/* Cannot write here at all */
1374				bad_sectors -= (dev_sector - first_bad);
1375				if (bad_sectors < max_sectors)
1376					/* Mustn't write more than bad_sectors
1377					 * to other devices yet
1378					 */
1379					max_sectors = bad_sectors;
1380				/* We don't set R10BIO_Degraded as that
1381				 * only applies if the disk is missing,
1382				 * so it might be re-added, and we want to
1383				 * know to recover this chunk.
1384				 * In this case the device is here, and the
1385				 * fact that this chunk is not in-sync is
1386				 * recorded in the bad block log.
1387				 */
1388				continue;
1389			}
1390			if (is_bad) {
1391				int good_sectors = first_bad - dev_sector;
1392				if (good_sectors < max_sectors)
1393					max_sectors = good_sectors;
1394			}
1395		}
1396		if (rdev) {
1397			r10_bio->devs[i].bio = bio;
1398			atomic_inc(&rdev->nr_pending);
1399		}
1400		if (rrdev) {
1401			r10_bio->devs[i].repl_bio = bio;
1402			atomic_inc(&rrdev->nr_pending);
1403		}
1404	}
1405	rcu_read_unlock();
1406
1407	if (unlikely(blocked_rdev)) {
1408		/* Have to wait for this device to get unblocked, then retry */
1409		int j;
1410		int d;
1411
1412		for (j = 0; j < i; j++) {
1413			if (r10_bio->devs[j].bio) {
1414				d = r10_bio->devs[j].devnum;
1415				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416			}
1417			if (r10_bio->devs[j].repl_bio) {
1418				struct md_rdev *rdev;
1419				d = r10_bio->devs[j].devnum;
1420				rdev = conf->mirrors[d].replacement;
1421				if (!rdev) {
1422					/* Race with remove_disk */
1423					smp_mb();
1424					rdev = conf->mirrors[d].rdev;
1425				}
1426				rdev_dec_pending(rdev, mddev);
1427			}
1428		}
1429		allow_barrier(conf);
 
1430		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431		wait_barrier(conf);
1432		goto retry_write;
1433	}
1434
1435	if (max_sectors < r10_bio->sectors) {
1436		/* We are splitting this into multiple parts, so
1437		 * we need to prepare for allocating another r10_bio.
1438		 */
1439		r10_bio->sectors = max_sectors;
1440		spin_lock_irq(&conf->device_lock);
1441		if (bio->bi_phys_segments == 0)
1442			bio->bi_phys_segments = 2;
1443		else
1444			bio->bi_phys_segments++;
1445		spin_unlock_irq(&conf->device_lock);
 
 
 
 
1446	}
1447	sectors_handled = r10_bio->sector + max_sectors -
1448		bio->bi_iter.bi_sector;
1449
1450	atomic_set(&r10_bio->remaining, 1);
1451	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452
1453	for (i = 0; i < conf->copies; i++) {
1454		struct bio *mbio;
1455		int d = r10_bio->devs[i].devnum;
1456		if (r10_bio->devs[i].bio) {
1457			struct md_rdev *rdev = conf->mirrors[d].rdev;
1458			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460				 max_sectors);
1461			r10_bio->devs[i].bio = mbio;
1462
1463			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1464					   choose_data_offset(r10_bio,
1465							      rdev));
1466			mbio->bi_bdev = rdev->bdev;
1467			mbio->bi_end_io	= raid10_end_write_request;
1468			mbio->bi_rw =
1469				WRITE | do_sync | do_fua | do_discard | do_same;
1470			mbio->bi_private = r10_bio;
1471
1472			atomic_inc(&r10_bio->remaining);
1473
1474			cb = blk_check_plugged(raid10_unplug, mddev,
1475					       sizeof(*plug));
1476			if (cb)
1477				plug = container_of(cb, struct raid10_plug_cb,
1478						    cb);
1479			else
1480				plug = NULL;
1481			spin_lock_irqsave(&conf->device_lock, flags);
1482			if (plug) {
1483				bio_list_add(&plug->pending, mbio);
1484				plug->pending_cnt++;
1485			} else {
1486				bio_list_add(&conf->pending_bio_list, mbio);
1487				conf->pending_count++;
1488			}
1489			spin_unlock_irqrestore(&conf->device_lock, flags);
1490			if (!plug)
1491				md_wakeup_thread(mddev->thread);
1492		}
1493
1494		if (r10_bio->devs[i].repl_bio) {
1495			struct md_rdev *rdev = conf->mirrors[d].replacement;
1496			if (rdev == NULL) {
1497				/* Replacement just got moved to main 'rdev' */
1498				smp_mb();
1499				rdev = conf->mirrors[d].rdev;
1500			}
1501			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503				 max_sectors);
1504			r10_bio->devs[i].repl_bio = mbio;
1505
1506			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1507					   choose_data_offset(
1508						   r10_bio, rdev));
1509			mbio->bi_bdev = rdev->bdev;
1510			mbio->bi_end_io	= raid10_end_write_request;
1511			mbio->bi_rw =
1512				WRITE | do_sync | do_fua | do_discard | do_same;
1513			mbio->bi_private = r10_bio;
1514
1515			atomic_inc(&r10_bio->remaining);
1516			spin_lock_irqsave(&conf->device_lock, flags);
1517			bio_list_add(&conf->pending_bio_list, mbio);
1518			conf->pending_count++;
1519			spin_unlock_irqrestore(&conf->device_lock, flags);
1520			if (!mddev_check_plugged(mddev))
1521				md_wakeup_thread(mddev->thread);
1522		}
1523	}
 
 
1524
1525	/* Don't remove the bias on 'remaining' (one_write_done) until
1526	 * after checking if we need to go around again.
1527	 */
 
1528
1529	if (sectors_handled < bio_sectors(bio)) {
1530		one_write_done(r10_bio);
1531		/* We need another r10_bio.  It has already been counted
1532		 * in bio->bi_phys_segments.
1533		 */
1534		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535
1536		r10_bio->master_bio = bio;
1537		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538
1539		r10_bio->mddev = mddev;
1540		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541		r10_bio->state = 0;
1542		goto retry_write;
1543	}
1544	one_write_done(r10_bio);
 
 
 
1545}
1546
1547static void make_request(struct mddev *mddev, struct bio *bio)
1548{
1549	struct r10conf *conf = mddev->private;
1550	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551	int chunk_sects = chunk_mask + 1;
 
1552
1553	struct bio *split;
1554
1555	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556		md_flush_request(mddev, bio);
1557		return;
1558	}
1559
1560	md_write_start(mddev, bio);
1561
1562
1563	do {
1564
1565		/*
1566		 * If this request crosses a chunk boundary, we need to split
1567		 * it.
1568		 */
1569		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570			     bio_sectors(bio) > chunk_sects
1571			     && (conf->geo.near_copies < conf->geo.raid_disks
1572				 || conf->prev.near_copies <
1573				 conf->prev.raid_disks))) {
1574			split = bio_split(bio, chunk_sects -
1575					  (bio->bi_iter.bi_sector &
1576					   (chunk_sects - 1)),
1577					  GFP_NOIO, fs_bio_set);
1578			bio_chain(split, bio);
1579		} else {
1580			split = bio;
1581		}
1582
1583		__make_request(mddev, split);
1584	} while (split != bio);
 
 
 
 
 
 
 
 
 
 
 
1585
1586	/* In case raid10d snuck in to freeze_array */
1587	wake_up(&conf->wait_barrier);
 
1588}
1589
1590static void status(struct seq_file *seq, struct mddev *mddev)
1591{
1592	struct r10conf *conf = mddev->private;
1593	int i;
1594
1595	if (conf->geo.near_copies < conf->geo.raid_disks)
1596		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597	if (conf->geo.near_copies > 1)
1598		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599	if (conf->geo.far_copies > 1) {
1600		if (conf->geo.far_offset)
1601			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602		else
1603			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
 
 
1604	}
1605	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606					conf->geo.raid_disks - mddev->degraded);
1607	for (i = 0; i < conf->geo.raid_disks; i++)
1608		seq_printf(seq, "%s",
1609			      conf->mirrors[i].rdev &&
1610			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 
 
1611	seq_printf(seq, "]");
1612}
1613
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
1619static int _enough(struct r10conf *conf, int previous, int ignore)
1620{
1621	int first = 0;
1622	int has_enough = 0;
1623	int disks, ncopies;
1624	if (previous) {
1625		disks = conf->prev.raid_disks;
1626		ncopies = conf->prev.near_copies;
1627	} else {
1628		disks = conf->geo.raid_disks;
1629		ncopies = conf->geo.near_copies;
1630	}
1631
1632	rcu_read_lock();
1633	do {
1634		int n = conf->copies;
1635		int cnt = 0;
1636		int this = first;
1637		while (n--) {
1638			struct md_rdev *rdev;
1639			if (this != ignore &&
1640			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641			    test_bit(In_sync, &rdev->flags))
1642				cnt++;
1643			this = (this+1) % disks;
1644		}
1645		if (cnt == 0)
1646			goto out;
1647		first = (first + ncopies) % disks;
1648	} while (first != 0);
1649	has_enough = 1;
1650out:
1651	rcu_read_unlock();
1652	return has_enough;
1653}
1654
1655static int enough(struct r10conf *conf, int ignore)
1656{
1657	/* when calling 'enough', both 'prev' and 'geo' must
1658	 * be stable.
1659	 * This is ensured if ->reconfig_mutex or ->device_lock
1660	 * is held.
1661	 */
1662	return _enough(conf, 0, ignore) &&
1663		_enough(conf, 1, ignore);
1664}
1665
1666static void error(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668	char b[BDEVNAME_SIZE];
1669	struct r10conf *conf = mddev->private;
1670	unsigned long flags;
1671
1672	/*
1673	 * If it is not operational, then we have already marked it as dead
1674	 * else if it is the last working disks, ignore the error, let the
1675	 * next level up know.
1676	 * else mark the drive as failed
1677	 */
1678	spin_lock_irqsave(&conf->device_lock, flags);
1679	if (test_bit(In_sync, &rdev->flags)
1680	    && !enough(conf, rdev->raid_disk)) {
1681		/*
1682		 * Don't fail the drive, just return an IO error.
1683		 */
1684		spin_unlock_irqrestore(&conf->device_lock, flags);
1685		return;
1686	}
1687	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1688		mddev->degraded++;
1689			/*
1690		 * if recovery is running, make sure it aborts.
1691		 */
1692		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693	}
1694	set_bit(Blocked, &rdev->flags);
1695	set_bit(Faulty, &rdev->flags);
1696	set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
1697	spin_unlock_irqrestore(&conf->device_lock, flags);
1698	printk(KERN_ALERT
1699	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1700	       "md/raid10:%s: Operation continuing on %d devices.\n",
1701	       mdname(mddev), bdevname(rdev->bdev, b),
1702	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1703}
1704
1705static void print_conf(struct r10conf *conf)
1706{
1707	int i;
1708	struct raid10_info *tmp;
1709
1710	printk(KERN_DEBUG "RAID10 conf printout:\n");
1711	if (!conf) {
1712		printk(KERN_DEBUG "(!conf)\n");
1713		return;
1714	}
1715	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1716		conf->geo.raid_disks);
1717
 
 
1718	for (i = 0; i < conf->geo.raid_disks; i++) {
1719		char b[BDEVNAME_SIZE];
1720		tmp = conf->mirrors + i;
1721		if (tmp->rdev)
1722			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1723				i, !test_bit(In_sync, &tmp->rdev->flags),
1724			        !test_bit(Faulty, &tmp->rdev->flags),
1725				bdevname(tmp->rdev->bdev,b));
1726	}
1727}
1728
1729static void close_sync(struct r10conf *conf)
1730{
1731	wait_barrier(conf);
1732	allow_barrier(conf);
1733
1734	mempool_destroy(conf->r10buf_pool);
1735	conf->r10buf_pool = NULL;
1736}
1737
1738static int raid10_spare_active(struct mddev *mddev)
1739{
1740	int i;
1741	struct r10conf *conf = mddev->private;
1742	struct raid10_info *tmp;
1743	int count = 0;
1744	unsigned long flags;
1745
1746	/*
1747	 * Find all non-in_sync disks within the RAID10 configuration
1748	 * and mark them in_sync
1749	 */
1750	for (i = 0; i < conf->geo.raid_disks; i++) {
1751		tmp = conf->mirrors + i;
1752		if (tmp->replacement
1753		    && tmp->replacement->recovery_offset == MaxSector
1754		    && !test_bit(Faulty, &tmp->replacement->flags)
1755		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1756			/* Replacement has just become active */
1757			if (!tmp->rdev
1758			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1759				count++;
1760			if (tmp->rdev) {
1761				/* Replaced device not technically faulty,
1762				 * but we need to be sure it gets removed
1763				 * and never re-added.
1764				 */
1765				set_bit(Faulty, &tmp->rdev->flags);
1766				sysfs_notify_dirent_safe(
1767					tmp->rdev->sysfs_state);
1768			}
1769			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1770		} else if (tmp->rdev
1771			   && tmp->rdev->recovery_offset == MaxSector
1772			   && !test_bit(Faulty, &tmp->rdev->flags)
1773			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1774			count++;
1775			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1776		}
1777	}
1778	spin_lock_irqsave(&conf->device_lock, flags);
1779	mddev->degraded -= count;
1780	spin_unlock_irqrestore(&conf->device_lock, flags);
1781
1782	print_conf(conf);
1783	return count;
1784}
1785
1786
1787static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788{
1789	struct r10conf *conf = mddev->private;
1790	int err = -EEXIST;
1791	int mirror;
1792	int first = 0;
1793	int last = conf->geo.raid_disks - 1;
1794	struct request_queue *q = bdev_get_queue(rdev->bdev);
1795
1796	if (mddev->recovery_cp < MaxSector)
1797		/* only hot-add to in-sync arrays, as recovery is
1798		 * very different from resync
1799		 */
1800		return -EBUSY;
1801	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802		return -EINVAL;
1803
 
 
 
1804	if (rdev->raid_disk >= 0)
1805		first = last = rdev->raid_disk;
1806
1807	if (q->merge_bvec_fn) {
1808		set_bit(Unmerged, &rdev->flags);
1809		mddev->merge_check_needed = 1;
1810	}
1811
1812	if (rdev->saved_raid_disk >= first &&
 
1813	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814		mirror = rdev->saved_raid_disk;
1815	else
1816		mirror = first;
1817	for ( ; mirror <= last ; mirror++) {
1818		struct raid10_info *p = &conf->mirrors[mirror];
1819		if (p->recovery_disabled == mddev->recovery_disabled)
1820			continue;
1821		if (p->rdev) {
1822			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823			    p->replacement != NULL)
1824				continue;
1825			clear_bit(In_sync, &rdev->flags);
1826			set_bit(Replacement, &rdev->flags);
1827			rdev->raid_disk = mirror;
1828			err = 0;
1829			if (mddev->gendisk)
1830				disk_stack_limits(mddev->gendisk, rdev->bdev,
1831						  rdev->data_offset << 9);
1832			conf->fullsync = 1;
1833			rcu_assign_pointer(p->replacement, rdev);
1834			break;
1835		}
1836
1837		if (mddev->gendisk)
1838			disk_stack_limits(mddev->gendisk, rdev->bdev,
1839					  rdev->data_offset << 9);
1840
1841		p->head_position = 0;
1842		p->recovery_disabled = mddev->recovery_disabled - 1;
1843		rdev->raid_disk = mirror;
1844		err = 0;
1845		if (rdev->saved_raid_disk != mirror)
1846			conf->fullsync = 1;
1847		rcu_assign_pointer(p->rdev, rdev);
1848		break;
1849	}
1850	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1851		/* Some requests might not have seen this new
1852		 * merge_bvec_fn.  We must wait for them to complete
1853		 * before merging the device fully.
1854		 * First we make sure any code which has tested
1855		 * our function has submitted the request, then
1856		 * we wait for all outstanding requests to complete.
1857		 */
1858		synchronize_sched();
1859		freeze_array(conf, 0);
1860		unfreeze_array(conf);
1861		clear_bit(Unmerged, &rdev->flags);
1862	}
1863	md_integrity_add_rdev(rdev, mddev);
1864	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1865		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1866
1867	print_conf(conf);
1868	return err;
1869}
1870
1871static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1872{
1873	struct r10conf *conf = mddev->private;
1874	int err = 0;
1875	int number = rdev->raid_disk;
1876	struct md_rdev **rdevp;
1877	struct raid10_info *p = conf->mirrors + number;
1878
1879	print_conf(conf);
1880	if (rdev == p->rdev)
1881		rdevp = &p->rdev;
1882	else if (rdev == p->replacement)
1883		rdevp = &p->replacement;
1884	else
1885		return 0;
1886
1887	if (test_bit(In_sync, &rdev->flags) ||
1888	    atomic_read(&rdev->nr_pending)) {
1889		err = -EBUSY;
1890		goto abort;
1891	}
1892	/* Only remove faulty devices if recovery
1893	 * is not possible.
1894	 */
1895	if (!test_bit(Faulty, &rdev->flags) &&
1896	    mddev->recovery_disabled != p->recovery_disabled &&
1897	    (!p->replacement || p->replacement == rdev) &&
1898	    number < conf->geo.raid_disks &&
1899	    enough(conf, -1)) {
1900		err = -EBUSY;
1901		goto abort;
1902	}
1903	*rdevp = NULL;
1904	synchronize_rcu();
1905	if (atomic_read(&rdev->nr_pending)) {
1906		/* lost the race, try later */
1907		err = -EBUSY;
1908		*rdevp = rdev;
1909		goto abort;
1910	} else if (p->replacement) {
 
 
 
1911		/* We must have just cleared 'rdev' */
1912		p->rdev = p->replacement;
1913		clear_bit(Replacement, &p->replacement->flags);
1914		smp_mb(); /* Make sure other CPUs may see both as identical
1915			   * but will never see neither -- if they are careful.
1916			   */
1917		p->replacement = NULL;
1918		clear_bit(WantReplacement, &rdev->flags);
1919	} else
1920		/* We might have just remove the Replacement as faulty
1921		 * Clear the flag just in case
1922		 */
1923		clear_bit(WantReplacement, &rdev->flags);
1924
 
1925	err = md_integrity_register(mddev);
1926
1927abort:
1928
1929	print_conf(conf);
1930	return err;
1931}
1932
1933
1934static void end_sync_read(struct bio *bio, int error)
1935{
1936	struct r10bio *r10_bio = bio->bi_private;
1937	struct r10conf *conf = r10_bio->mddev->private;
1938	int d;
1939
1940	if (bio == r10_bio->master_bio) {
1941		/* this is a reshape read */
1942		d = r10_bio->read_slot; /* really the read dev */
1943	} else
1944		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1945
1946	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1947		set_bit(R10BIO_Uptodate, &r10_bio->state);
1948	else
1949		/* The write handler will notice the lack of
1950		 * R10BIO_Uptodate and record any errors etc
1951		 */
1952		atomic_add(r10_bio->sectors,
1953			   &conf->mirrors[d].rdev->corrected_errors);
1954
1955	/* for reconstruct, we always reschedule after a read.
1956	 * for resync, only after all reads
1957	 */
1958	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1959	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1960	    atomic_dec_and_test(&r10_bio->remaining)) {
1961		/* we have read all the blocks,
1962		 * do the comparison in process context in raid10d
1963		 */
1964		reschedule_retry(r10_bio);
1965	}
1966}
1967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968static void end_sync_request(struct r10bio *r10_bio)
1969{
1970	struct mddev *mddev = r10_bio->mddev;
1971
1972	while (atomic_dec_and_test(&r10_bio->remaining)) {
1973		if (r10_bio->master_bio == NULL) {
1974			/* the primary of several recovery bios */
1975			sector_t s = r10_bio->sectors;
1976			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977			    test_bit(R10BIO_WriteError, &r10_bio->state))
1978				reschedule_retry(r10_bio);
1979			else
1980				put_buf(r10_bio);
1981			md_done_sync(mddev, s, 1);
1982			break;
1983		} else {
1984			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1985			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1986			    test_bit(R10BIO_WriteError, &r10_bio->state))
1987				reschedule_retry(r10_bio);
1988			else
1989				put_buf(r10_bio);
1990			r10_bio = r10_bio2;
1991		}
1992	}
1993}
1994
1995static void end_sync_write(struct bio *bio, int error)
1996{
1997	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1998	struct r10bio *r10_bio = bio->bi_private;
1999	struct mddev *mddev = r10_bio->mddev;
2000	struct r10conf *conf = mddev->private;
2001	int d;
2002	sector_t first_bad;
2003	int bad_sectors;
2004	int slot;
2005	int repl;
2006	struct md_rdev *rdev = NULL;
2007
2008	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2009	if (repl)
2010		rdev = conf->mirrors[d].replacement;
2011	else
2012		rdev = conf->mirrors[d].rdev;
2013
2014	if (!uptodate) {
2015		if (repl)
2016			md_error(mddev, rdev);
2017		else {
2018			set_bit(WriteErrorSeen, &rdev->flags);
2019			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2020				set_bit(MD_RECOVERY_NEEDED,
2021					&rdev->mddev->recovery);
2022			set_bit(R10BIO_WriteError, &r10_bio->state);
2023		}
2024	} else if (is_badblock(rdev,
2025			     r10_bio->devs[slot].addr,
2026			     r10_bio->sectors,
2027			     &first_bad, &bad_sectors))
2028		set_bit(R10BIO_MadeGood, &r10_bio->state);
2029
2030	rdev_dec_pending(rdev, mddev);
2031
2032	end_sync_request(r10_bio);
2033}
2034
2035/*
2036 * Note: sync and recover and handled very differently for raid10
2037 * This code is for resync.
2038 * For resync, we read through virtual addresses and read all blocks.
2039 * If there is any error, we schedule a write.  The lowest numbered
2040 * drive is authoritative.
2041 * However requests come for physical address, so we need to map.
2042 * For every physical address there are raid_disks/copies virtual addresses,
2043 * which is always are least one, but is not necessarly an integer.
2044 * This means that a physical address can span multiple chunks, so we may
2045 * have to submit multiple io requests for a single sync request.
2046 */
2047/*
2048 * We check if all blocks are in-sync and only write to blocks that
2049 * aren't in sync
2050 */
2051static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2052{
2053	struct r10conf *conf = mddev->private;
2054	int i, first;
2055	struct bio *tbio, *fbio;
2056	int vcnt;
 
2057
2058	atomic_set(&r10_bio->remaining, 1);
2059
2060	/* find the first device with a block */
2061	for (i=0; i<conf->copies; i++)
2062		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2063			break;
2064
2065	if (i == conf->copies)
2066		goto done;
2067
2068	first = i;
2069	fbio = r10_bio->devs[i].bio;
 
 
 
2070
2071	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2072	/* now find blocks with errors */
2073	for (i=0 ; i < conf->copies ; i++) {
2074		int  j, d;
 
 
2075
2076		tbio = r10_bio->devs[i].bio;
2077
2078		if (tbio->bi_end_io != end_sync_read)
2079			continue;
2080		if (i == first)
2081			continue;
2082		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
 
 
 
 
2083			/* We know that the bi_io_vec layout is the same for
2084			 * both 'first' and 'i', so we just compare them.
2085			 * All vec entries are PAGE_SIZE;
2086			 */
2087			int sectors = r10_bio->sectors;
2088			for (j = 0; j < vcnt; j++) {
2089				int len = PAGE_SIZE;
2090				if (sectors < (len / 512))
2091					len = sectors * 512;
2092				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2093					   page_address(tbio->bi_io_vec[j].bv_page),
2094					   len))
2095					break;
2096				sectors -= len/512;
2097			}
2098			if (j == vcnt)
2099				continue;
2100			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102				/* Don't fix anything. */
2103				continue;
 
 
 
 
2104		}
2105		/* Ok, we need to write this bio, either to correct an
2106		 * inconsistency or to correct an unreadable block.
2107		 * First we need to fixup bv_offset, bv_len and
2108		 * bi_vecs, as the read request might have corrupted these
2109		 */
 
2110		bio_reset(tbio);
2111
2112		tbio->bi_vcnt = vcnt;
2113		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2114		tbio->bi_rw = WRITE;
2115		tbio->bi_private = r10_bio;
2116		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2117
2118		for (j=0; j < vcnt ; j++) {
2119			tbio->bi_io_vec[j].bv_offset = 0;
2120			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2121
2122			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2123			       page_address(fbio->bi_io_vec[j].bv_page),
2124			       PAGE_SIZE);
2125		}
2126		tbio->bi_end_io = end_sync_write;
 
 
 
2127
2128		d = r10_bio->devs[i].devnum;
2129		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130		atomic_inc(&r10_bio->remaining);
2131		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132
 
 
2133		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2135		generic_make_request(tbio);
2136	}
2137
2138	/* Now write out to any replacement devices
2139	 * that are active
2140	 */
2141	for (i = 0; i < conf->copies; i++) {
2142		int j, d;
2143
2144		tbio = r10_bio->devs[i].repl_bio;
2145		if (!tbio || !tbio->bi_end_io)
2146			continue;
2147		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148		    && r10_bio->devs[i].bio != fbio)
2149			for (j = 0; j < vcnt; j++)
2150				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2151				       page_address(fbio->bi_io_vec[j].bv_page),
2152				       PAGE_SIZE);
2153		d = r10_bio->devs[i].devnum;
2154		atomic_inc(&r10_bio->remaining);
2155		md_sync_acct(conf->mirrors[d].replacement->bdev,
2156			     bio_sectors(tbio));
2157		generic_make_request(tbio);
2158	}
2159
2160done:
2161	if (atomic_dec_and_test(&r10_bio->remaining)) {
2162		md_done_sync(mddev, r10_bio->sectors, 1);
2163		put_buf(r10_bio);
2164	}
2165}
2166
2167/*
2168 * Now for the recovery code.
2169 * Recovery happens across physical sectors.
2170 * We recover all non-is_sync drives by finding the virtual address of
2171 * each, and then choose a working drive that also has that virt address.
2172 * There is a separate r10_bio for each non-in_sync drive.
2173 * Only the first two slots are in use. The first for reading,
2174 * The second for writing.
2175 *
2176 */
2177static void fix_recovery_read_error(struct r10bio *r10_bio)
2178{
2179	/* We got a read error during recovery.
2180	 * We repeat the read in smaller page-sized sections.
2181	 * If a read succeeds, write it to the new device or record
2182	 * a bad block if we cannot.
2183	 * If a read fails, record a bad block on both old and
2184	 * new devices.
2185	 */
2186	struct mddev *mddev = r10_bio->mddev;
2187	struct r10conf *conf = mddev->private;
2188	struct bio *bio = r10_bio->devs[0].bio;
2189	sector_t sect = 0;
2190	int sectors = r10_bio->sectors;
2191	int idx = 0;
2192	int dr = r10_bio->devs[0].devnum;
2193	int dw = r10_bio->devs[1].devnum;
 
2194
2195	while (sectors) {
2196		int s = sectors;
2197		struct md_rdev *rdev;
2198		sector_t addr;
2199		int ok;
2200
2201		if (s > (PAGE_SIZE>>9))
2202			s = PAGE_SIZE >> 9;
2203
2204		rdev = conf->mirrors[dr].rdev;
2205		addr = r10_bio->devs[0].addr + sect,
2206		ok = sync_page_io(rdev,
2207				  addr,
2208				  s << 9,
2209				  bio->bi_io_vec[idx].bv_page,
2210				  READ, false);
2211		if (ok) {
2212			rdev = conf->mirrors[dw].rdev;
2213			addr = r10_bio->devs[1].addr + sect;
2214			ok = sync_page_io(rdev,
2215					  addr,
2216					  s << 9,
2217					  bio->bi_io_vec[idx].bv_page,
2218					  WRITE, false);
2219			if (!ok) {
2220				set_bit(WriteErrorSeen, &rdev->flags);
2221				if (!test_and_set_bit(WantReplacement,
2222						      &rdev->flags))
2223					set_bit(MD_RECOVERY_NEEDED,
2224						&rdev->mddev->recovery);
2225			}
2226		}
2227		if (!ok) {
2228			/* We don't worry if we cannot set a bad block -
2229			 * it really is bad so there is no loss in not
2230			 * recording it yet
2231			 */
2232			rdev_set_badblocks(rdev, addr, s, 0);
2233
2234			if (rdev != conf->mirrors[dw].rdev) {
2235				/* need bad block on destination too */
2236				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237				addr = r10_bio->devs[1].addr + sect;
2238				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239				if (!ok) {
2240					/* just abort the recovery */
2241					printk(KERN_NOTICE
2242					       "md/raid10:%s: recovery aborted"
2243					       " due to read error\n",
2244					       mdname(mddev));
2245
2246					conf->mirrors[dw].recovery_disabled
2247						= mddev->recovery_disabled;
2248					set_bit(MD_RECOVERY_INTR,
2249						&mddev->recovery);
2250					break;
2251				}
2252			}
2253		}
2254
2255		sectors -= s;
2256		sect += s;
2257		idx++;
2258	}
2259}
2260
2261static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262{
2263	struct r10conf *conf = mddev->private;
2264	int d;
2265	struct bio *wbio, *wbio2;
2266
2267	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268		fix_recovery_read_error(r10_bio);
2269		end_sync_request(r10_bio);
2270		return;
2271	}
2272
2273	/*
2274	 * share the pages with the first bio
2275	 * and submit the write request
2276	 */
2277	d = r10_bio->devs[1].devnum;
2278	wbio = r10_bio->devs[1].bio;
2279	wbio2 = r10_bio->devs[1].repl_bio;
2280	/* Need to test wbio2->bi_end_io before we call
2281	 * generic_make_request as if the former is NULL,
2282	 * the latter is free to free wbio2.
2283	 */
2284	if (wbio2 && !wbio2->bi_end_io)
2285		wbio2 = NULL;
2286	if (wbio->bi_end_io) {
2287		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289		generic_make_request(wbio);
2290	}
2291	if (wbio2) {
2292		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293		md_sync_acct(conf->mirrors[d].replacement->bdev,
2294			     bio_sectors(wbio2));
2295		generic_make_request(wbio2);
2296	}
2297}
2298
2299
2300/*
2301 * Used by fix_read_error() to decay the per rdev read_errors.
2302 * We halve the read error count for every hour that has elapsed
2303 * since the last recorded read error.
2304 *
2305 */
2306static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307{
2308	struct timespec cur_time_mon;
2309	unsigned long hours_since_last;
2310	unsigned int read_errors = atomic_read(&rdev->read_errors);
2311
2312	ktime_get_ts(&cur_time_mon);
2313
2314	if (rdev->last_read_error.tv_sec == 0 &&
2315	    rdev->last_read_error.tv_nsec == 0) {
2316		/* first time we've seen a read error */
2317		rdev->last_read_error = cur_time_mon;
2318		return;
2319	}
2320
2321	hours_since_last = (cur_time_mon.tv_sec -
2322			    rdev->last_read_error.tv_sec) / 3600;
2323
2324	rdev->last_read_error = cur_time_mon;
2325
2326	/*
2327	 * if hours_since_last is > the number of bits in read_errors
2328	 * just set read errors to 0. We do this to avoid
2329	 * overflowing the shift of read_errors by hours_since_last.
2330	 */
2331	if (hours_since_last >= 8 * sizeof(read_errors))
2332		atomic_set(&rdev->read_errors, 0);
2333	else
2334		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2335}
2336
2337static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2338			    int sectors, struct page *page, int rw)
2339{
2340	sector_t first_bad;
2341	int bad_sectors;
2342
2343	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2344	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2345		return -1;
2346	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2347		/* success */
2348		return 1;
2349	if (rw == WRITE) {
2350		set_bit(WriteErrorSeen, &rdev->flags);
2351		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2352			set_bit(MD_RECOVERY_NEEDED,
2353				&rdev->mddev->recovery);
2354	}
2355	/* need to record an error - either for the block or the device */
2356	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2357		md_error(rdev->mddev, rdev);
2358	return 0;
2359}
2360
2361/*
2362 * This is a kernel thread which:
2363 *
2364 *	1.	Retries failed read operations on working mirrors.
2365 *	2.	Updates the raid superblock when problems encounter.
2366 *	3.	Performs writes following reads for array synchronising.
2367 */
2368
2369static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2370{
2371	int sect = 0; /* Offset from r10_bio->sector */
2372	int sectors = r10_bio->sectors;
2373	struct md_rdev*rdev;
2374	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2375	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2376
2377	/* still own a reference to this rdev, so it cannot
2378	 * have been cleared recently.
2379	 */
2380	rdev = conf->mirrors[d].rdev;
2381
2382	if (test_bit(Faulty, &rdev->flags))
2383		/* drive has already been failed, just ignore any
2384		   more fix_read_error() attempts */
2385		return;
2386
2387	check_decay_read_errors(mddev, rdev);
2388	atomic_inc(&rdev->read_errors);
2389	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2390		char b[BDEVNAME_SIZE];
2391		bdevname(rdev->bdev, b);
2392
2393		printk(KERN_NOTICE
2394		       "md/raid10:%s: %s: Raid device exceeded "
2395		       "read_error threshold [cur %d:max %d]\n",
2396		       mdname(mddev), b,
2397		       atomic_read(&rdev->read_errors), max_read_errors);
2398		printk(KERN_NOTICE
2399		       "md/raid10:%s: %s: Failing raid device\n",
2400		       mdname(mddev), b);
2401		md_error(mddev, conf->mirrors[d].rdev);
2402		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2403		return;
2404	}
2405
2406	while(sectors) {
2407		int s = sectors;
2408		int sl = r10_bio->read_slot;
2409		int success = 0;
2410		int start;
2411
2412		if (s > (PAGE_SIZE>>9))
2413			s = PAGE_SIZE >> 9;
2414
2415		rcu_read_lock();
2416		do {
2417			sector_t first_bad;
2418			int bad_sectors;
2419
2420			d = r10_bio->devs[sl].devnum;
2421			rdev = rcu_dereference(conf->mirrors[d].rdev);
2422			if (rdev &&
2423			    !test_bit(Unmerged, &rdev->flags) &&
2424			    test_bit(In_sync, &rdev->flags) &&
 
2425			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2426					&first_bad, &bad_sectors) == 0) {
2427				atomic_inc(&rdev->nr_pending);
2428				rcu_read_unlock();
2429				success = sync_page_io(rdev,
2430						       r10_bio->devs[sl].addr +
2431						       sect,
2432						       s<<9,
2433						       conf->tmppage, READ, false);
 
2434				rdev_dec_pending(rdev, mddev);
2435				rcu_read_lock();
2436				if (success)
2437					break;
2438			}
2439			sl++;
2440			if (sl == conf->copies)
2441				sl = 0;
2442		} while (!success && sl != r10_bio->read_slot);
2443		rcu_read_unlock();
2444
2445		if (!success) {
2446			/* Cannot read from anywhere, just mark the block
2447			 * as bad on the first device to discourage future
2448			 * reads.
2449			 */
2450			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451			rdev = conf->mirrors[dn].rdev;
2452
2453			if (!rdev_set_badblocks(
2454				    rdev,
2455				    r10_bio->devs[r10_bio->read_slot].addr
2456				    + sect,
2457				    s, 0)) {
2458				md_error(mddev, rdev);
2459				r10_bio->devs[r10_bio->read_slot].bio
2460					= IO_BLOCKED;
2461			}
2462			break;
2463		}
2464
2465		start = sl;
2466		/* write it back and re-read */
2467		rcu_read_lock();
2468		while (sl != r10_bio->read_slot) {
2469			char b[BDEVNAME_SIZE];
2470
2471			if (sl==0)
2472				sl = conf->copies;
2473			sl--;
2474			d = r10_bio->devs[sl].devnum;
2475			rdev = rcu_dereference(conf->mirrors[d].rdev);
2476			if (!rdev ||
2477			    test_bit(Unmerged, &rdev->flags) ||
2478			    !test_bit(In_sync, &rdev->flags))
2479				continue;
2480
2481			atomic_inc(&rdev->nr_pending);
2482			rcu_read_unlock();
2483			if (r10_sync_page_io(rdev,
2484					     r10_bio->devs[sl].addr +
2485					     sect,
2486					     s, conf->tmppage, WRITE)
2487			    == 0) {
2488				/* Well, this device is dead */
2489				printk(KERN_NOTICE
2490				       "md/raid10:%s: read correction "
2491				       "write failed"
2492				       " (%d sectors at %llu on %s)\n",
2493				       mdname(mddev), s,
2494				       (unsigned long long)(
2495					       sect +
2496					       choose_data_offset(r10_bio,
2497								  rdev)),
2498				       bdevname(rdev->bdev, b));
2499				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2500				       "drive\n",
2501				       mdname(mddev),
2502				       bdevname(rdev->bdev, b));
2503			}
2504			rdev_dec_pending(rdev, mddev);
2505			rcu_read_lock();
2506		}
2507		sl = start;
2508		while (sl != r10_bio->read_slot) {
2509			char b[BDEVNAME_SIZE];
2510
2511			if (sl==0)
2512				sl = conf->copies;
2513			sl--;
2514			d = r10_bio->devs[sl].devnum;
2515			rdev = rcu_dereference(conf->mirrors[d].rdev);
2516			if (!rdev ||
 
2517			    !test_bit(In_sync, &rdev->flags))
2518				continue;
2519
2520			atomic_inc(&rdev->nr_pending);
2521			rcu_read_unlock();
2522			switch (r10_sync_page_io(rdev,
2523					     r10_bio->devs[sl].addr +
2524					     sect,
2525					     s, conf->tmppage,
2526						 READ)) {
2527			case 0:
2528				/* Well, this device is dead */
2529				printk(KERN_NOTICE
2530				       "md/raid10:%s: unable to read back "
2531				       "corrected sectors"
2532				       " (%d sectors at %llu on %s)\n",
2533				       mdname(mddev), s,
2534				       (unsigned long long)(
2535					       sect +
2536					       choose_data_offset(r10_bio, rdev)),
2537				       bdevname(rdev->bdev, b));
2538				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2539				       "drive\n",
2540				       mdname(mddev),
2541				       bdevname(rdev->bdev, b));
2542				break;
2543			case 1:
2544				printk(KERN_INFO
2545				       "md/raid10:%s: read error corrected"
2546				       " (%d sectors at %llu on %s)\n",
2547				       mdname(mddev), s,
2548				       (unsigned long long)(
2549					       sect +
2550					       choose_data_offset(r10_bio, rdev)),
2551				       bdevname(rdev->bdev, b));
2552				atomic_add(s, &rdev->corrected_errors);
2553			}
2554
2555			rdev_dec_pending(rdev, mddev);
2556			rcu_read_lock();
2557		}
2558		rcu_read_unlock();
2559
2560		sectors -= s;
2561		sect += s;
2562	}
2563}
2564
2565static int narrow_write_error(struct r10bio *r10_bio, int i)
2566{
2567	struct bio *bio = r10_bio->master_bio;
2568	struct mddev *mddev = r10_bio->mddev;
2569	struct r10conf *conf = mddev->private;
2570	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2571	/* bio has the data to be written to slot 'i' where
2572	 * we just recently had a write error.
2573	 * We repeatedly clone the bio and trim down to one block,
2574	 * then try the write.  Where the write fails we record
2575	 * a bad block.
2576	 * It is conceivable that the bio doesn't exactly align with
2577	 * blocks.  We must handle this.
2578	 *
2579	 * We currently own a reference to the rdev.
2580	 */
2581
2582	int block_sectors;
2583	sector_t sector;
2584	int sectors;
2585	int sect_to_write = r10_bio->sectors;
2586	int ok = 1;
2587
2588	if (rdev->badblocks.shift < 0)
2589		return 0;
2590
2591	block_sectors = 1 << rdev->badblocks.shift;
 
2592	sector = r10_bio->sector;
2593	sectors = ((r10_bio->sector + block_sectors)
2594		   & ~(sector_t)(block_sectors - 1))
2595		- sector;
2596
2597	while (sect_to_write) {
2598		struct bio *wbio;
 
2599		if (sectors > sect_to_write)
2600			sectors = sect_to_write;
2601		/* Write at 'sector' for 'sectors' */
2602		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2603		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2604		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2605				   choose_data_offset(r10_bio, rdev) +
2606				   (sector - r10_bio->sector));
2607		wbio->bi_bdev = rdev->bdev;
2608		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
2609			/* Failure! */
2610			ok = rdev_set_badblocks(rdev, sector,
2611						sectors, 0)
2612				&& ok;
2613
2614		bio_put(wbio);
2615		sect_to_write -= sectors;
2616		sector += sectors;
2617		sectors = block_sectors;
2618	}
2619	return ok;
2620}
2621
2622static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623{
2624	int slot = r10_bio->read_slot;
2625	struct bio *bio;
2626	struct r10conf *conf = mddev->private;
2627	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628	char b[BDEVNAME_SIZE];
2629	unsigned long do_sync;
2630	int max_sectors;
2631
2632	/* we got a read error. Maybe the drive is bad.  Maybe just
2633	 * the block and we can fix it.
2634	 * We freeze all other IO, and try reading the block from
2635	 * other devices.  When we find one, we re-write
2636	 * and check it that fixes the read error.
2637	 * This is all done synchronously while the array is
2638	 * frozen.
2639	 */
2640	bio = r10_bio->devs[slot].bio;
2641	bdevname(bio->bi_bdev, b);
2642	bio_put(bio);
2643	r10_bio->devs[slot].bio = NULL;
2644
2645	if (mddev->ro == 0) {
 
 
2646		freeze_array(conf, 1);
2647		fix_read_error(conf, mddev, r10_bio);
2648		unfreeze_array(conf);
2649	} else
2650		r10_bio->devs[slot].bio = IO_BLOCKED;
2651
2652	rdev_dec_pending(rdev, mddev);
2653
2654read_more:
2655	rdev = read_balance(conf, r10_bio, &max_sectors);
2656	if (rdev == NULL) {
2657		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2658		       " read error for block %llu\n",
2659		       mdname(mddev), b,
2660		       (unsigned long long)r10_bio->sector);
2661		raid_end_bio_io(r10_bio);
2662		return;
2663	}
2664
2665	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2666	slot = r10_bio->read_slot;
2667	printk_ratelimited(
2668		KERN_ERR
2669		"md/raid10:%s: %s: redirecting "
2670		"sector %llu to another mirror\n",
2671		mdname(mddev),
2672		bdevname(rdev->bdev, b),
2673		(unsigned long long)r10_bio->sector);
2674	bio = bio_clone_mddev(r10_bio->master_bio,
2675			      GFP_NOIO, mddev);
2676	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2677	r10_bio->devs[slot].bio = bio;
2678	r10_bio->devs[slot].rdev = rdev;
2679	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2680		+ choose_data_offset(r10_bio, rdev);
2681	bio->bi_bdev = rdev->bdev;
2682	bio->bi_rw = READ | do_sync;
2683	bio->bi_private = r10_bio;
2684	bio->bi_end_io = raid10_end_read_request;
2685	if (max_sectors < r10_bio->sectors) {
2686		/* Drat - have to split this up more */
2687		struct bio *mbio = r10_bio->master_bio;
2688		int sectors_handled =
2689			r10_bio->sector + max_sectors
2690			- mbio->bi_iter.bi_sector;
2691		r10_bio->sectors = max_sectors;
2692		spin_lock_irq(&conf->device_lock);
2693		if (mbio->bi_phys_segments == 0)
2694			mbio->bi_phys_segments = 2;
2695		else
2696			mbio->bi_phys_segments++;
2697		spin_unlock_irq(&conf->device_lock);
2698		generic_make_request(bio);
2699
2700		r10_bio = mempool_alloc(conf->r10bio_pool,
2701					GFP_NOIO);
2702		r10_bio->master_bio = mbio;
2703		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2704		r10_bio->state = 0;
2705		set_bit(R10BIO_ReadError,
2706			&r10_bio->state);
2707		r10_bio->mddev = mddev;
2708		r10_bio->sector = mbio->bi_iter.bi_sector
2709			+ sectors_handled;
2710
2711		goto read_more;
2712	} else
2713		generic_make_request(bio);
2714}
2715
2716static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2717{
2718	/* Some sort of write request has finished and it
2719	 * succeeded in writing where we thought there was a
2720	 * bad block.  So forget the bad block.
2721	 * Or possibly if failed and we need to record
2722	 * a bad block.
2723	 */
2724	int m;
2725	struct md_rdev *rdev;
2726
2727	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2728	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2729		for (m = 0; m < conf->copies; m++) {
2730			int dev = r10_bio->devs[m].devnum;
2731			rdev = conf->mirrors[dev].rdev;
2732			if (r10_bio->devs[m].bio == NULL)
 
2733				continue;
2734			if (test_bit(BIO_UPTODATE,
2735				     &r10_bio->devs[m].bio->bi_flags)) {
2736				rdev_clear_badblocks(
2737					rdev,
2738					r10_bio->devs[m].addr,
2739					r10_bio->sectors, 0);
2740			} else {
2741				if (!rdev_set_badblocks(
2742					    rdev,
2743					    r10_bio->devs[m].addr,
2744					    r10_bio->sectors, 0))
2745					md_error(conf->mddev, rdev);
2746			}
2747			rdev = conf->mirrors[dev].replacement;
2748			if (r10_bio->devs[m].repl_bio == NULL)
 
2749				continue;
2750			if (test_bit(BIO_UPTODATE,
2751				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2752				rdev_clear_badblocks(
2753					rdev,
2754					r10_bio->devs[m].addr,
2755					r10_bio->sectors, 0);
2756			} else {
2757				if (!rdev_set_badblocks(
2758					    rdev,
2759					    r10_bio->devs[m].addr,
2760					    r10_bio->sectors, 0))
2761					md_error(conf->mddev, rdev);
2762			}
2763		}
2764		put_buf(r10_bio);
2765	} else {
 
2766		for (m = 0; m < conf->copies; m++) {
2767			int dev = r10_bio->devs[m].devnum;
2768			struct bio *bio = r10_bio->devs[m].bio;
2769			rdev = conf->mirrors[dev].rdev;
2770			if (bio == IO_MADE_GOOD) {
2771				rdev_clear_badblocks(
2772					rdev,
2773					r10_bio->devs[m].addr,
2774					r10_bio->sectors, 0);
2775				rdev_dec_pending(rdev, conf->mddev);
2776			} else if (bio != NULL &&
2777				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2778				if (!narrow_write_error(r10_bio, m)) {
2779					md_error(conf->mddev, rdev);
2780					set_bit(R10BIO_Degraded,
2781						&r10_bio->state);
2782				}
2783				rdev_dec_pending(rdev, conf->mddev);
2784			}
2785			bio = r10_bio->devs[m].repl_bio;
2786			rdev = conf->mirrors[dev].replacement;
2787			if (rdev && bio == IO_MADE_GOOD) {
2788				rdev_clear_badblocks(
2789					rdev,
2790					r10_bio->devs[m].addr,
2791					r10_bio->sectors, 0);
2792				rdev_dec_pending(rdev, conf->mddev);
2793			}
2794		}
2795		if (test_bit(R10BIO_WriteError,
2796			     &r10_bio->state))
2797			close_write(r10_bio);
2798		raid_end_bio_io(r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	}
2800}
2801
2802static void raid10d(struct md_thread *thread)
2803{
2804	struct mddev *mddev = thread->mddev;
2805	struct r10bio *r10_bio;
2806	unsigned long flags;
2807	struct r10conf *conf = mddev->private;
2808	struct list_head *head = &conf->retry_list;
2809	struct blk_plug plug;
2810
2811	md_check_recovery(mddev);
2812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813	blk_start_plug(&plug);
2814	for (;;) {
2815
2816		flush_pending_writes(conf);
2817
2818		spin_lock_irqsave(&conf->device_lock, flags);
2819		if (list_empty(head)) {
2820			spin_unlock_irqrestore(&conf->device_lock, flags);
2821			break;
2822		}
2823		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2824		list_del(head->prev);
2825		conf->nr_queued--;
2826		spin_unlock_irqrestore(&conf->device_lock, flags);
2827
2828		mddev = r10_bio->mddev;
2829		conf = mddev->private;
2830		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2831		    test_bit(R10BIO_WriteError, &r10_bio->state))
2832			handle_write_completed(conf, r10_bio);
2833		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2834			reshape_request_write(mddev, r10_bio);
2835		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2836			sync_request_write(mddev, r10_bio);
2837		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2838			recovery_request_write(mddev, r10_bio);
2839		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2840			handle_read_error(mddev, r10_bio);
2841		else {
2842			/* just a partial read to be scheduled from a
2843			 * separate context
2844			 */
2845			int slot = r10_bio->read_slot;
2846			generic_make_request(r10_bio->devs[slot].bio);
2847		}
2848
2849		cond_resched();
2850		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2851			md_check_recovery(mddev);
2852	}
2853	blk_finish_plug(&plug);
2854}
2855
2856
2857static int init_resync(struct r10conf *conf)
2858{
2859	int buffs;
2860	int i;
2861
2862	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863	BUG_ON(conf->r10buf_pool);
2864	conf->have_replacement = 0;
2865	for (i = 0; i < conf->geo.raid_disks; i++)
2866		if (conf->mirrors[i].replacement)
2867			conf->have_replacement = 1;
2868	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869	if (!conf->r10buf_pool)
2870		return -ENOMEM;
 
2871	conf->next_resync = 0;
2872	return 0;
2873}
2874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875/*
2876 * perform a "sync" on one "block"
2877 *
2878 * We need to make sure that no normal I/O request - particularly write
2879 * requests - conflict with active sync requests.
2880 *
2881 * This is achieved by tracking pending requests and a 'barrier' concept
2882 * that can be installed to exclude normal IO requests.
2883 *
2884 * Resync and recovery are handled very differently.
2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886 *
2887 * For resync, we iterate over virtual addresses, read all copies,
2888 * and update if there are differences.  If only one copy is live,
2889 * skip it.
2890 * For recovery, we iterate over physical addresses, read a good
2891 * value for each non-in_sync drive, and over-write.
2892 *
2893 * So, for recovery we may have several outstanding complex requests for a
2894 * given address, one for each out-of-sync device.  We model this by allocating
2895 * a number of r10_bio structures, one for each out-of-sync device.
2896 * As we setup these structures, we collect all bio's together into a list
2897 * which we then process collectively to add pages, and then process again
2898 * to pass to generic_make_request.
2899 *
2900 * The r10_bio structures are linked using a borrowed master_bio pointer.
2901 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902 * has its remaining count decremented to 0, the whole complex operation
2903 * is complete.
2904 *
2905 */
2906
2907static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2908			     int *skipped, int go_faster)
2909{
2910	struct r10conf *conf = mddev->private;
2911	struct r10bio *r10_bio;
2912	struct bio *biolist = NULL, *bio;
2913	sector_t max_sector, nr_sectors;
2914	int i;
2915	int max_sync;
2916	sector_t sync_blocks;
2917	sector_t sectors_skipped = 0;
2918	int chunks_skipped = 0;
2919	sector_t chunk_mask = conf->geo.chunk_mask;
 
2920
2921	if (!conf->r10buf_pool)
2922		if (init_resync(conf))
2923			return 0;
2924
2925	/*
2926	 * Allow skipping a full rebuild for incremental assembly
2927	 * of a clean array, like RAID1 does.
2928	 */
2929	if (mddev->bitmap == NULL &&
2930	    mddev->recovery_cp == MaxSector &&
2931	    mddev->reshape_position == MaxSector &&
2932	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935	    conf->fullsync == 0) {
2936		*skipped = 1;
2937		return mddev->dev_sectors - sector_nr;
2938	}
2939
2940 skipped:
2941	max_sector = mddev->dev_sectors;
2942	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944		max_sector = mddev->resync_max_sectors;
2945	if (sector_nr >= max_sector) {
 
 
 
2946		/* If we aborted, we need to abort the
2947		 * sync on the 'current' bitmap chucks (there can
2948		 * be several when recovering multiple devices).
2949		 * as we may have started syncing it but not finished.
2950		 * We can find the current address in
2951		 * mddev->curr_resync, but for recovery,
2952		 * we need to convert that to several
2953		 * virtual addresses.
2954		 */
2955		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2956			end_reshape(conf);
 
2957			return 0;
2958		}
2959
2960		if (mddev->curr_resync < max_sector) { /* aborted */
2961			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963						&sync_blocks, 1);
2964			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965				sector_t sect =
2966					raid10_find_virt(conf, mddev->curr_resync, i);
2967				bitmap_end_sync(mddev->bitmap, sect,
2968						&sync_blocks, 1);
2969			}
2970		} else {
2971			/* completed sync */
2972			if ((!mddev->bitmap || conf->fullsync)
2973			    && conf->have_replacement
2974			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975				/* Completed a full sync so the replacements
2976				 * are now fully recovered.
2977				 */
2978				for (i = 0; i < conf->geo.raid_disks; i++)
2979					if (conf->mirrors[i].replacement)
2980						conf->mirrors[i].replacement
2981							->recovery_offset
2982							= MaxSector;
 
 
 
2983			}
2984			conf->fullsync = 0;
2985		}
2986		bitmap_close_sync(mddev->bitmap);
2987		close_sync(conf);
2988		*skipped = 1;
2989		return sectors_skipped;
2990	}
2991
2992	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993		return reshape_request(mddev, sector_nr, skipped);
2994
2995	if (chunks_skipped >= conf->geo.raid_disks) {
2996		/* if there has been nothing to do on any drive,
2997		 * then there is nothing to do at all..
2998		 */
2999		*skipped = 1;
3000		return (max_sector - sector_nr) + sectors_skipped;
3001	}
3002
3003	if (max_sector > mddev->resync_max)
3004		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005
3006	/* make sure whole request will fit in a chunk - if chunks
3007	 * are meaningful
3008	 */
3009	if (conf->geo.near_copies < conf->geo.raid_disks &&
3010	    max_sector > (sector_nr | chunk_mask))
3011		max_sector = (sector_nr | chunk_mask) + 1;
 
3012	/*
3013	 * If there is non-resync activity waiting for us then
3014	 * put in a delay to throttle resync.
3015	 */
3016	if (!go_faster && conf->nr_waiting)
3017		msleep_interruptible(1000);
3018
3019	/* Again, very different code for resync and recovery.
3020	 * Both must result in an r10bio with a list of bios that
3021	 * have bi_end_io, bi_sector, bi_bdev set,
3022	 * and bi_private set to the r10bio.
3023	 * For recovery, we may actually create several r10bios
3024	 * with 2 bios in each, that correspond to the bios in the main one.
3025	 * In this case, the subordinate r10bios link back through a
3026	 * borrowed master_bio pointer, and the counter in the master
3027	 * includes a ref from each subordinate.
3028	 */
3029	/* First, we decide what to do and set ->bi_end_io
3030	 * To end_sync_read if we want to read, and
3031	 * end_sync_write if we will want to write.
3032	 */
3033
3034	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036		/* recovery... the complicated one */
3037		int j;
3038		r10_bio = NULL;
3039
3040		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041			int still_degraded;
3042			struct r10bio *rb2;
3043			sector_t sect;
3044			int must_sync;
3045			int any_working;
 
 
3046			struct raid10_info *mirror = &conf->mirrors[i];
 
 
 
 
 
3047
3048			if ((mirror->rdev == NULL ||
3049			     test_bit(In_sync, &mirror->rdev->flags))
3050			    &&
3051			    (mirror->replacement == NULL ||
3052			     test_bit(Faulty,
3053				      &mirror->replacement->flags)))
 
 
 
 
3054				continue;
 
3055
3056			still_degraded = 0;
3057			/* want to reconstruct this device */
3058			rb2 = r10_bio;
3059			sect = raid10_find_virt(conf, sector_nr, i);
3060			if (sect >= mddev->resync_max_sectors) {
3061				/* last stripe is not complete - don't
3062				 * try to recover this sector.
3063				 */
 
3064				continue;
3065			}
 
 
3066			/* Unless we are doing a full sync, or a replacement
3067			 * we only need to recover the block if it is set in
3068			 * the bitmap
3069			 */
3070			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071						      &sync_blocks, 1);
3072			if (sync_blocks < max_sync)
3073				max_sync = sync_blocks;
3074			if (!must_sync &&
3075			    mirror->replacement == NULL &&
3076			    !conf->fullsync) {
3077				/* yep, skip the sync_blocks here, but don't assume
3078				 * that there will never be anything to do here
3079				 */
3080				chunks_skipped = -1;
 
3081				continue;
3082			}
 
 
 
 
3083
3084			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
3085			raise_barrier(conf, rb2 != NULL);
3086			atomic_set(&r10_bio->remaining, 0);
3087
3088			r10_bio->master_bio = (struct bio*)rb2;
3089			if (rb2)
3090				atomic_inc(&rb2->remaining);
3091			r10_bio->mddev = mddev;
3092			set_bit(R10BIO_IsRecover, &r10_bio->state);
3093			r10_bio->sector = sect;
3094
3095			raid10_find_phys(conf, r10_bio);
3096
3097			/* Need to check if the array will still be
3098			 * degraded
3099			 */
3100			for (j = 0; j < conf->geo.raid_disks; j++)
3101				if (conf->mirrors[j].rdev == NULL ||
3102				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
 
 
3103					still_degraded = 1;
3104					break;
3105				}
 
3106
3107			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108						      &sync_blocks, still_degraded);
3109
3110			any_working = 0;
3111			for (j=0; j<conf->copies;j++) {
3112				int k;
3113				int d = r10_bio->devs[j].devnum;
3114				sector_t from_addr, to_addr;
3115				struct md_rdev *rdev;
 
3116				sector_t sector, first_bad;
3117				int bad_sectors;
3118				if (!conf->mirrors[d].rdev ||
3119				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3120					continue;
3121				/* This is where we read from */
3122				any_working = 1;
3123				rdev = conf->mirrors[d].rdev;
3124				sector = r10_bio->devs[j].addr;
3125
3126				if (is_badblock(rdev, sector, max_sync,
3127						&first_bad, &bad_sectors)) {
3128					if (first_bad > sector)
3129						max_sync = first_bad - sector;
3130					else {
3131						bad_sectors -= (sector
3132								- first_bad);
3133						if (max_sync > bad_sectors)
3134							max_sync = bad_sectors;
3135						continue;
3136					}
3137				}
3138				bio = r10_bio->devs[0].bio;
3139				bio_reset(bio);
3140				bio->bi_next = biolist;
3141				biolist = bio;
3142				bio->bi_private = r10_bio;
3143				bio->bi_end_io = end_sync_read;
3144				bio->bi_rw = READ;
 
 
3145				from_addr = r10_bio->devs[j].addr;
3146				bio->bi_iter.bi_sector = from_addr +
3147					rdev->data_offset;
3148				bio->bi_bdev = rdev->bdev;
3149				atomic_inc(&rdev->nr_pending);
3150				/* and we write to 'i' (if not in_sync) */
3151
3152				for (k=0; k<conf->copies; k++)
3153					if (r10_bio->devs[k].devnum == i)
3154						break;
3155				BUG_ON(k == conf->copies);
3156				to_addr = r10_bio->devs[k].addr;
3157				r10_bio->devs[0].devnum = d;
3158				r10_bio->devs[0].addr = from_addr;
3159				r10_bio->devs[1].devnum = i;
3160				r10_bio->devs[1].addr = to_addr;
3161
3162				rdev = mirror->rdev;
3163				if (!test_bit(In_sync, &rdev->flags)) {
3164					bio = r10_bio->devs[1].bio;
3165					bio_reset(bio);
3166					bio->bi_next = biolist;
3167					biolist = bio;
3168					bio->bi_private = r10_bio;
3169					bio->bi_end_io = end_sync_write;
3170					bio->bi_rw = WRITE;
3171					bio->bi_iter.bi_sector = to_addr
3172						+ rdev->data_offset;
3173					bio->bi_bdev = rdev->bdev;
3174					atomic_inc(&r10_bio->remaining);
3175				} else
3176					r10_bio->devs[1].bio->bi_end_io = NULL;
3177
3178				/* and maybe write to replacement */
3179				bio = r10_bio->devs[1].repl_bio;
3180				if (bio)
3181					bio->bi_end_io = NULL;
3182				rdev = mirror->replacement;
3183				/* Note: if rdev != NULL, then bio
3184				 * cannot be NULL as r10buf_pool_alloc will
3185				 * have allocated it.
3186				 * So the second test here is pointless.
3187				 * But it keeps semantic-checkers happy, and
3188				 * this comment keeps human reviewers
3189				 * happy.
3190				 */
3191				if (rdev == NULL || bio == NULL ||
3192				    test_bit(Faulty, &rdev->flags))
3193					break;
3194				bio_reset(bio);
3195				bio->bi_next = biolist;
3196				biolist = bio;
3197				bio->bi_private = r10_bio;
3198				bio->bi_end_io = end_sync_write;
3199				bio->bi_rw = WRITE;
3200				bio->bi_iter.bi_sector = to_addr +
3201					rdev->data_offset;
3202				bio->bi_bdev = rdev->bdev;
3203				atomic_inc(&r10_bio->remaining);
3204				break;
3205			}
 
3206			if (j == conf->copies) {
3207				/* Cannot recover, so abort the recovery or
3208				 * record a bad block */
3209				if (any_working) {
3210					/* problem is that there are bad blocks
3211					 * on other device(s)
3212					 */
3213					int k;
3214					for (k = 0; k < conf->copies; k++)
3215						if (r10_bio->devs[k].devnum == i)
3216							break;
3217					if (!test_bit(In_sync,
3218						      &mirror->rdev->flags)
3219					    && !rdev_set_badblocks(
3220						    mirror->rdev,
3221						    r10_bio->devs[k].addr,
3222						    max_sync, 0))
3223						any_working = 0;
3224					if (mirror->replacement &&
3225					    !rdev_set_badblocks(
3226						    mirror->replacement,
3227						    r10_bio->devs[k].addr,
3228						    max_sync, 0))
3229						any_working = 0;
3230				}
3231				if (!any_working)  {
3232					if (!test_and_set_bit(MD_RECOVERY_INTR,
3233							      &mddev->recovery))
3234						printk(KERN_INFO "md/raid10:%s: insufficient "
3235						       "working devices for recovery.\n",
3236						       mdname(mddev));
3237					mirror->recovery_disabled
3238						= mddev->recovery_disabled;
3239				}
3240				put_buf(r10_bio);
3241				if (rb2)
3242					atomic_dec(&rb2->remaining);
3243				r10_bio = rb2;
 
 
 
3244				break;
3245			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246		}
3247		if (biolist == NULL) {
3248			while (r10_bio) {
3249				struct r10bio *rb2 = r10_bio;
3250				r10_bio = (struct r10bio*) rb2->master_bio;
3251				rb2->master_bio = NULL;
3252				put_buf(rb2);
3253			}
3254			goto giveup;
3255		}
3256	} else {
3257		/* resync. Schedule a read for every block at this virt offset */
3258		int count = 0;
3259
3260		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
 
 
 
 
 
 
 
 
3261
3262		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3263				       &sync_blocks, mddev->degraded) &&
3264		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3265						 &mddev->recovery)) {
3266			/* We can skip this block */
3267			*skipped = 1;
3268			return sync_blocks + sectors_skipped;
3269		}
3270		if (sync_blocks < max_sync)
3271			max_sync = sync_blocks;
3272		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
3273
3274		r10_bio->mddev = mddev;
3275		atomic_set(&r10_bio->remaining, 0);
3276		raise_barrier(conf, 0);
3277		conf->next_resync = sector_nr;
3278
3279		r10_bio->master_bio = NULL;
3280		r10_bio->sector = sector_nr;
3281		set_bit(R10BIO_IsSync, &r10_bio->state);
3282		raid10_find_phys(conf, r10_bio);
3283		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3284
3285		for (i = 0; i < conf->copies; i++) {
3286			int d = r10_bio->devs[i].devnum;
3287			sector_t first_bad, sector;
3288			int bad_sectors;
 
3289
3290			if (r10_bio->devs[i].repl_bio)
3291				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3292
3293			bio = r10_bio->devs[i].bio;
3294			bio_reset(bio);
3295			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3296			if (conf->mirrors[d].rdev == NULL ||
3297			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 
3298				continue;
 
3299			sector = r10_bio->devs[i].addr;
3300			if (is_badblock(conf->mirrors[d].rdev,
3301					sector, max_sync,
3302					&first_bad, &bad_sectors)) {
3303				if (first_bad > sector)
3304					max_sync = first_bad - sector;
3305				else {
3306					bad_sectors -= (sector - first_bad);
3307					if (max_sync > bad_sectors)
3308						max_sync = bad_sectors;
 
3309					continue;
3310				}
3311			}
3312			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3313			atomic_inc(&r10_bio->remaining);
3314			bio->bi_next = biolist;
3315			biolist = bio;
3316			bio->bi_private = r10_bio;
3317			bio->bi_end_io = end_sync_read;
3318			bio->bi_rw = READ;
3319			bio->bi_iter.bi_sector = sector +
3320				conf->mirrors[d].rdev->data_offset;
3321			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
3322			count++;
3323
3324			if (conf->mirrors[d].replacement == NULL ||
3325			    test_bit(Faulty,
3326				     &conf->mirrors[d].replacement->flags))
3327				continue;
 
 
3328
3329			/* Need to set up for writing to the replacement */
3330			bio = r10_bio->devs[i].repl_bio;
3331			bio_reset(bio);
3332			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3333
3334			sector = r10_bio->devs[i].addr;
3335			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3336			bio->bi_next = biolist;
3337			biolist = bio;
3338			bio->bi_private = r10_bio;
3339			bio->bi_end_io = end_sync_write;
3340			bio->bi_rw = WRITE;
3341			bio->bi_iter.bi_sector = sector +
3342				conf->mirrors[d].replacement->data_offset;
3343			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
 
3344			count++;
 
3345		}
3346
3347		if (count < 2) {
3348			for (i=0; i<conf->copies; i++) {
3349				int d = r10_bio->devs[i].devnum;
3350				if (r10_bio->devs[i].bio->bi_end_io)
3351					rdev_dec_pending(conf->mirrors[d].rdev,
3352							 mddev);
3353				if (r10_bio->devs[i].repl_bio &&
3354				    r10_bio->devs[i].repl_bio->bi_end_io)
3355					rdev_dec_pending(
3356						conf->mirrors[d].replacement,
3357						mddev);
3358			}
3359			put_buf(r10_bio);
3360			biolist = NULL;
3361			goto giveup;
3362		}
3363	}
3364
3365	nr_sectors = 0;
3366	if (sector_nr + max_sync < max_sector)
3367		max_sector = sector_nr + max_sync;
3368	do {
3369		struct page *page;
3370		int len = PAGE_SIZE;
3371		if (sector_nr + (len>>9) > max_sector)
3372			len = (max_sector - sector_nr) << 9;
3373		if (len == 0)
3374			break;
3375		for (bio= biolist ; bio ; bio=bio->bi_next) {
3376			struct bio *bio2;
3377			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3378			if (bio_add_page(bio, page, len, 0))
3379				continue;
3380
3381			/* stop here */
3382			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3383			for (bio2 = biolist;
3384			     bio2 && bio2 != bio;
3385			     bio2 = bio2->bi_next) {
3386				/* remove last page from this bio */
3387				bio2->bi_vcnt--;
3388				bio2->bi_iter.bi_size -= len;
3389				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3390			}
3391			goto bio_full;
3392		}
3393		nr_sectors += len>>9;
3394		sector_nr += len>>9;
3395	} while (biolist->bi_vcnt < RESYNC_PAGES);
3396 bio_full:
3397	r10_bio->sectors = nr_sectors;
3398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399	while (biolist) {
3400		bio = biolist;
3401		biolist = biolist->bi_next;
3402
3403		bio->bi_next = NULL;
3404		r10_bio = bio->bi_private;
3405		r10_bio->sectors = nr_sectors;
3406
3407		if (bio->bi_end_io == end_sync_read) {
3408			md_sync_acct(bio->bi_bdev, nr_sectors);
3409			set_bit(BIO_UPTODATE, &bio->bi_flags);
3410			generic_make_request(bio);
3411		}
3412	}
3413
3414	if (sectors_skipped)
3415		/* pretend they weren't skipped, it makes
3416		 * no important difference in this case
3417		 */
3418		md_done_sync(mddev, sectors_skipped, 1);
3419
3420	return sectors_skipped + nr_sectors;
3421 giveup:
3422	/* There is nowhere to write, so all non-sync
3423	 * drives must be failed or in resync, all drives
3424	 * have a bad block, so try the next chunk...
3425	 */
3426	if (sector_nr + max_sync < max_sector)
3427		max_sector = sector_nr + max_sync;
3428
3429	sectors_skipped += (max_sector - sector_nr);
3430	chunks_skipped ++;
3431	sector_nr = max_sector;
3432	goto skipped;
3433}
3434
3435static sector_t
3436raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437{
3438	sector_t size;
3439	struct r10conf *conf = mddev->private;
3440
3441	if (!raid_disks)
3442		raid_disks = min(conf->geo.raid_disks,
3443				 conf->prev.raid_disks);
3444	if (!sectors)
3445		sectors = conf->dev_sectors;
3446
3447	size = sectors >> conf->geo.chunk_shift;
3448	sector_div(size, conf->geo.far_copies);
3449	size = size * raid_disks;
3450	sector_div(size, conf->geo.near_copies);
3451
3452	return size << conf->geo.chunk_shift;
3453}
3454
3455static void calc_sectors(struct r10conf *conf, sector_t size)
3456{
3457	/* Calculate the number of sectors-per-device that will
3458	 * actually be used, and set conf->dev_sectors and
3459	 * conf->stride
3460	 */
3461
3462	size = size >> conf->geo.chunk_shift;
3463	sector_div(size, conf->geo.far_copies);
3464	size = size * conf->geo.raid_disks;
3465	sector_div(size, conf->geo.near_copies);
3466	/* 'size' is now the number of chunks in the array */
3467	/* calculate "used chunks per device" */
3468	size = size * conf->copies;
3469
3470	/* We need to round up when dividing by raid_disks to
3471	 * get the stride size.
3472	 */
3473	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474
3475	conf->dev_sectors = size << conf->geo.chunk_shift;
3476
3477	if (conf->geo.far_offset)
3478		conf->geo.stride = 1 << conf->geo.chunk_shift;
3479	else {
3480		sector_div(size, conf->geo.far_copies);
3481		conf->geo.stride = size << conf->geo.chunk_shift;
3482	}
3483}
3484
3485enum geo_type {geo_new, geo_old, geo_start};
3486static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487{
3488	int nc, fc, fo;
3489	int layout, chunk, disks;
3490	switch (new) {
3491	case geo_old:
3492		layout = mddev->layout;
3493		chunk = mddev->chunk_sectors;
3494		disks = mddev->raid_disks - mddev->delta_disks;
3495		break;
3496	case geo_new:
3497		layout = mddev->new_layout;
3498		chunk = mddev->new_chunk_sectors;
3499		disks = mddev->raid_disks;
3500		break;
3501	default: /* avoid 'may be unused' warnings */
3502	case geo_start: /* new when starting reshape - raid_disks not
3503			 * updated yet. */
3504		layout = mddev->new_layout;
3505		chunk = mddev->new_chunk_sectors;
3506		disks = mddev->raid_disks + mddev->delta_disks;
3507		break;
3508	}
3509	if (layout >> 18)
3510		return -1;
3511	if (chunk < (PAGE_SIZE >> 9) ||
3512	    !is_power_of_2(chunk))
3513		return -2;
3514	nc = layout & 255;
3515	fc = (layout >> 8) & 255;
3516	fo = layout & (1<<16);
3517	geo->raid_disks = disks;
3518	geo->near_copies = nc;
3519	geo->far_copies = fc;
3520	geo->far_offset = fo;
3521	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522	geo->chunk_mask = chunk - 1;
3523	geo->chunk_shift = ffz(~chunk);
3524	return nc*fc;
3525}
3526
3527static struct r10conf *setup_conf(struct mddev *mddev)
3528{
3529	struct r10conf *conf = NULL;
3530	int err = -EINVAL;
3531	struct geom geo;
3532	int copies;
3533
3534	copies = setup_geo(&geo, mddev, geo_new);
3535
3536	if (copies == -2) {
3537		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539		       mdname(mddev), PAGE_SIZE);
3540		goto out;
3541	}
3542
3543	if (copies < 2 || copies > mddev->raid_disks) {
3544		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545		       mdname(mddev), mddev->new_layout);
3546		goto out;
3547	}
3548
3549	err = -ENOMEM;
3550	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551	if (!conf)
3552		goto out;
3553
3554	/* FIXME calc properly */
3555	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556							    max(0,-mddev->delta_disks)),
3557				GFP_KERNEL);
3558	if (!conf->mirrors)
3559		goto out;
3560
3561	conf->tmppage = alloc_page(GFP_KERNEL);
3562	if (!conf->tmppage)
3563		goto out;
3564
3565	conf->geo = geo;
3566	conf->copies = copies;
3567	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568					   r10bio_pool_free, conf);
3569	if (!conf->r10bio_pool)
 
 
 
 
3570		goto out;
3571
3572	calc_sectors(conf, mddev->dev_sectors);
3573	if (mddev->reshape_position == MaxSector) {
3574		conf->prev = conf->geo;
3575		conf->reshape_progress = MaxSector;
3576	} else {
3577		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578			err = -EINVAL;
3579			goto out;
3580		}
3581		conf->reshape_progress = mddev->reshape_position;
3582		if (conf->prev.far_offset)
3583			conf->prev.stride = 1 << conf->prev.chunk_shift;
3584		else
3585			/* far_copies must be 1 */
3586			conf->prev.stride = conf->dev_sectors;
3587	}
 
3588	spin_lock_init(&conf->device_lock);
3589	INIT_LIST_HEAD(&conf->retry_list);
 
3590
3591	spin_lock_init(&conf->resync_lock);
3592	init_waitqueue_head(&conf->wait_barrier);
 
3593
 
3594	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595	if (!conf->thread)
3596		goto out;
3597
3598	conf->mddev = mddev;
3599	return conf;
3600
3601 out:
3602	if (err == -ENOMEM)
3603		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604		       mdname(mddev));
3605	if (conf) {
3606		if (conf->r10bio_pool)
3607			mempool_destroy(conf->r10bio_pool);
3608		kfree(conf->mirrors);
3609		safe_put_page(conf->tmppage);
 
3610		kfree(conf);
3611	}
3612	return ERR_PTR(err);
3613}
3614
3615static int run(struct mddev *mddev)
3616{
3617	struct r10conf *conf;
3618	int i, disk_idx, chunk_size;
3619	struct raid10_info *disk;
3620	struct md_rdev *rdev;
3621	sector_t size;
3622	sector_t min_offset_diff = 0;
3623	int first = 1;
3624	bool discard_supported = false;
3625
 
 
 
3626	if (mddev->private == NULL) {
3627		conf = setup_conf(mddev);
3628		if (IS_ERR(conf))
3629			return PTR_ERR(conf);
3630		mddev->private = conf;
3631	}
3632	conf = mddev->private;
3633	if (!conf)
3634		goto out;
3635
 
 
 
 
 
 
 
 
 
 
 
 
3636	mddev->thread = conf->thread;
3637	conf->thread = NULL;
3638
3639	chunk_size = mddev->chunk_sectors << 9;
3640	if (mddev->queue) {
3641		blk_queue_max_discard_sectors(mddev->queue,
3642					      mddev->chunk_sectors);
3643		blk_queue_max_write_same_sectors(mddev->queue, 0);
 
3644		blk_queue_io_min(mddev->queue, chunk_size);
3645		if (conf->geo.raid_disks % conf->geo.near_copies)
3646			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647		else
3648			blk_queue_io_opt(mddev->queue, chunk_size *
3649					 (conf->geo.raid_disks / conf->geo.near_copies));
3650	}
3651
3652	rdev_for_each(rdev, mddev) {
3653		long long diff;
3654		struct request_queue *q;
3655
3656		disk_idx = rdev->raid_disk;
3657		if (disk_idx < 0)
3658			continue;
3659		if (disk_idx >= conf->geo.raid_disks &&
3660		    disk_idx >= conf->prev.raid_disks)
3661			continue;
3662		disk = conf->mirrors + disk_idx;
3663
3664		if (test_bit(Replacement, &rdev->flags)) {
3665			if (disk->replacement)
3666				goto out_free_conf;
3667			disk->replacement = rdev;
3668		} else {
3669			if (disk->rdev)
3670				goto out_free_conf;
3671			disk->rdev = rdev;
3672		}
3673		q = bdev_get_queue(rdev->bdev);
3674		if (q->merge_bvec_fn)
3675			mddev->merge_check_needed = 1;
3676		diff = (rdev->new_data_offset - rdev->data_offset);
3677		if (!mddev->reshape_backwards)
3678			diff = -diff;
3679		if (diff < 0)
3680			diff = 0;
3681		if (first || diff < min_offset_diff)
3682			min_offset_diff = diff;
3683
3684		if (mddev->gendisk)
3685			disk_stack_limits(mddev->gendisk, rdev->bdev,
3686					  rdev->data_offset << 9);
3687
3688		disk->head_position = 0;
3689
3690		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691			discard_supported = true;
 
3692	}
3693
3694	if (mddev->queue) {
3695		if (discard_supported)
3696			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697						mddev->queue);
3698		else
3699			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700						  mddev->queue);
3701	}
3702	/* need to check that every block has at least one working mirror */
3703	if (!enough(conf, -1)) {
3704		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705		       mdname(mddev));
3706		goto out_free_conf;
3707	}
3708
3709	if (conf->reshape_progress != MaxSector) {
3710		/* must ensure that shape change is supported */
3711		if (conf->geo.far_copies != 1 &&
3712		    conf->geo.far_offset == 0)
3713			goto out_free_conf;
3714		if (conf->prev.far_copies != 1 &&
3715		    conf->prev.far_offset == 0)
3716			goto out_free_conf;
3717	}
3718
3719	mddev->degraded = 0;
3720	for (i = 0;
3721	     i < conf->geo.raid_disks
3722		     || i < conf->prev.raid_disks;
3723	     i++) {
3724
3725		disk = conf->mirrors + i;
3726
3727		if (!disk->rdev && disk->replacement) {
3728			/* The replacement is all we have - use it */
3729			disk->rdev = disk->replacement;
3730			disk->replacement = NULL;
3731			clear_bit(Replacement, &disk->rdev->flags);
3732		}
3733
3734		if (!disk->rdev ||
3735		    !test_bit(In_sync, &disk->rdev->flags)) {
3736			disk->head_position = 0;
3737			mddev->degraded++;
3738			if (disk->rdev &&
3739			    disk->rdev->saved_raid_disk < 0)
3740				conf->fullsync = 1;
3741		}
 
 
 
 
 
 
 
3742		disk->recovery_disabled = mddev->recovery_disabled - 1;
3743	}
3744
3745	if (mddev->recovery_cp != MaxSector)
3746		printk(KERN_NOTICE "md/raid10:%s: not clean"
3747		       " -- starting background reconstruction\n",
3748		       mdname(mddev));
3749	printk(KERN_INFO
3750		"md/raid10:%s: active with %d out of %d devices\n",
3751		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752		conf->geo.raid_disks);
3753	/*
3754	 * Ok, everything is just fine now
3755	 */
3756	mddev->dev_sectors = conf->dev_sectors;
3757	size = raid10_size(mddev, 0, 0);
3758	md_set_array_sectors(mddev, size);
3759	mddev->resync_max_sectors = size;
 
3760
3761	if (mddev->queue) {
3762		int stripe = conf->geo.raid_disks *
3763			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765		mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767		/* Calculate max read-ahead size.
3768		 * We need to readahead at least twice a whole stripe....
3769		 * maybe...
3770		 */
3771		stripe /= conf->geo.near_copies;
3772		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775	}
3776
3777
3778	if (md_integrity_register(mddev))
3779		goto out_free_conf;
3780
3781	if (conf->reshape_progress != MaxSector) {
3782		unsigned long before_length, after_length;
3783
3784		before_length = ((1 << conf->prev.chunk_shift) *
3785				 conf->prev.far_copies);
3786		after_length = ((1 << conf->geo.chunk_shift) *
3787				conf->geo.far_copies);
3788
3789		if (max(before_length, after_length) > min_offset_diff) {
3790			/* This cannot work */
3791			printk("md/raid10: offset difference not enough to continue reshape\n");
3792			goto out_free_conf;
3793		}
3794		conf->offset_diff = min_offset_diff;
3795
3796		conf->reshape_safe = conf->reshape_progress;
3797		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802							"reshape");
 
 
3803	}
3804
3805	return 0;
3806
3807out_free_conf:
3808	md_unregister_thread(&mddev->thread);
3809	if (conf->r10bio_pool)
3810		mempool_destroy(conf->r10bio_pool);
3811	safe_put_page(conf->tmppage);
3812	kfree(conf->mirrors);
3813	kfree(conf);
3814	mddev->private = NULL;
3815out:
3816	return -EIO;
3817}
3818
3819static int stop(struct mddev *mddev)
3820{
3821	struct r10conf *conf = mddev->private;
3822
3823	raise_barrier(conf, 0);
3824	lower_barrier(conf);
3825
3826	md_unregister_thread(&mddev->thread);
3827	if (mddev->queue)
3828		/* the unplug fn references 'conf'*/
3829		blk_sync_queue(mddev->queue);
3830
3831	if (conf->r10bio_pool)
3832		mempool_destroy(conf->r10bio_pool);
3833	safe_put_page(conf->tmppage);
3834	kfree(conf->mirrors);
 
 
 
3835	kfree(conf);
3836	mddev->private = NULL;
3837	return 0;
3838}
3839
3840static void raid10_quiesce(struct mddev *mddev, int state)
3841{
3842	struct r10conf *conf = mddev->private;
3843
3844	switch(state) {
3845	case 1:
3846		raise_barrier(conf, 0);
3847		break;
3848	case 0:
3849		lower_barrier(conf);
3850		break;
3851	}
3852}
3853
3854static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855{
3856	/* Resize of 'far' arrays is not supported.
3857	 * For 'near' and 'offset' arrays we can set the
3858	 * number of sectors used to be an appropriate multiple
3859	 * of the chunk size.
3860	 * For 'offset', this is far_copies*chunksize.
3861	 * For 'near' the multiplier is the LCM of
3862	 * near_copies and raid_disks.
3863	 * So if far_copies > 1 && !far_offset, fail.
3864	 * Else find LCM(raid_disks, near_copy)*far_copies and
3865	 * multiply by chunk_size.  Then round to this number.
3866	 * This is mostly done by raid10_size()
3867	 */
3868	struct r10conf *conf = mddev->private;
3869	sector_t oldsize, size;
3870
3871	if (mddev->reshape_position != MaxSector)
3872		return -EBUSY;
3873
3874	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875		return -EINVAL;
3876
3877	oldsize = raid10_size(mddev, 0, 0);
3878	size = raid10_size(mddev, sectors, 0);
3879	if (mddev->external_size &&
3880	    mddev->array_sectors > size)
3881		return -EINVAL;
3882	if (mddev->bitmap) {
3883		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884		if (ret)
3885			return ret;
3886	}
3887	md_set_array_sectors(mddev, size);
3888	set_capacity(mddev->gendisk, mddev->array_sectors);
3889	revalidate_disk(mddev->gendisk);
3890	if (sectors > mddev->dev_sectors &&
3891	    mddev->recovery_cp > oldsize) {
3892		mddev->recovery_cp = oldsize;
3893		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894	}
3895	calc_sectors(conf, sectors);
3896	mddev->dev_sectors = conf->dev_sectors;
3897	mddev->resync_max_sectors = size;
3898	return 0;
3899}
3900
3901static void *raid10_takeover_raid0(struct mddev *mddev)
3902{
3903	struct md_rdev *rdev;
3904	struct r10conf *conf;
3905
3906	if (mddev->degraded > 0) {
3907		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908		       mdname(mddev));
3909		return ERR_PTR(-EINVAL);
3910	}
 
3911
3912	/* Set new parameters */
3913	mddev->new_level = 10;
3914	/* new layout: far_copies = 1, near_copies = 2 */
3915	mddev->new_layout = (1<<8) + 2;
3916	mddev->new_chunk_sectors = mddev->chunk_sectors;
3917	mddev->delta_disks = mddev->raid_disks;
3918	mddev->raid_disks *= 2;
3919	/* make sure it will be not marked as dirty */
3920	mddev->recovery_cp = MaxSector;
 
3921
3922	conf = setup_conf(mddev);
3923	if (!IS_ERR(conf)) {
3924		rdev_for_each(rdev, mddev)
3925			if (rdev->raid_disk >= 0)
3926				rdev->new_raid_disk = rdev->raid_disk * 2;
 
 
3927		conf->barrier = 1;
3928	}
3929
3930	return conf;
3931}
3932
3933static void *raid10_takeover(struct mddev *mddev)
3934{
3935	struct r0conf *raid0_conf;
3936
3937	/* raid10 can take over:
3938	 *  raid0 - providing it has only two drives
3939	 */
3940	if (mddev->level == 0) {
3941		/* for raid0 takeover only one zone is supported */
3942		raid0_conf = mddev->private;
3943		if (raid0_conf->nr_strip_zones > 1) {
3944			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945			       " with more than one zone.\n",
3946			       mdname(mddev));
3947			return ERR_PTR(-EINVAL);
3948		}
3949		return raid10_takeover_raid0(mddev);
 
 
3950	}
3951	return ERR_PTR(-EINVAL);
3952}
3953
3954static int raid10_check_reshape(struct mddev *mddev)
3955{
3956	/* Called when there is a request to change
3957	 * - layout (to ->new_layout)
3958	 * - chunk size (to ->new_chunk_sectors)
3959	 * - raid_disks (by delta_disks)
3960	 * or when trying to restart a reshape that was ongoing.
3961	 *
3962	 * We need to validate the request and possibly allocate
3963	 * space if that might be an issue later.
3964	 *
3965	 * Currently we reject any reshape of a 'far' mode array,
3966	 * allow chunk size to change if new is generally acceptable,
3967	 * allow raid_disks to increase, and allow
3968	 * a switch between 'near' mode and 'offset' mode.
3969	 */
3970	struct r10conf *conf = mddev->private;
3971	struct geom geo;
3972
3973	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974		return -EINVAL;
3975
3976	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977		/* mustn't change number of copies */
3978		return -EINVAL;
3979	if (geo.far_copies > 1 && !geo.far_offset)
3980		/* Cannot switch to 'far' mode */
3981		return -EINVAL;
3982
3983	if (mddev->array_sectors & geo.chunk_mask)
3984			/* not factor of array size */
3985			return -EINVAL;
3986
3987	if (!enough(conf, -1))
3988		return -EINVAL;
3989
3990	kfree(conf->mirrors_new);
3991	conf->mirrors_new = NULL;
3992	if (mddev->delta_disks > 0) {
3993		/* allocate new 'mirrors' list */
3994		conf->mirrors_new = kzalloc(
3995			sizeof(struct raid10_info)
3996			*(mddev->raid_disks +
3997			  mddev->delta_disks),
3998			GFP_KERNEL);
3999		if (!conf->mirrors_new)
4000			return -ENOMEM;
4001	}
4002	return 0;
4003}
4004
4005/*
4006 * Need to check if array has failed when deciding whether to:
4007 *  - start an array
4008 *  - remove non-faulty devices
4009 *  - add a spare
4010 *  - allow a reshape
4011 * This determination is simple when no reshape is happening.
4012 * However if there is a reshape, we need to carefully check
4013 * both the before and after sections.
4014 * This is because some failed devices may only affect one
4015 * of the two sections, and some non-in_sync devices may
4016 * be insync in the section most affected by failed devices.
4017 */
4018static int calc_degraded(struct r10conf *conf)
4019{
4020	int degraded, degraded2;
4021	int i;
4022
4023	rcu_read_lock();
4024	degraded = 0;
4025	/* 'prev' section first */
4026	for (i = 0; i < conf->prev.raid_disks; i++) {
4027		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028		if (!rdev || test_bit(Faulty, &rdev->flags))
4029			degraded++;
4030		else if (!test_bit(In_sync, &rdev->flags))
4031			/* When we can reduce the number of devices in
4032			 * an array, this might not contribute to
4033			 * 'degraded'.  It does now.
4034			 */
4035			degraded++;
4036	}
4037	rcu_read_unlock();
4038	if (conf->geo.raid_disks == conf->prev.raid_disks)
4039		return degraded;
4040	rcu_read_lock();
4041	degraded2 = 0;
4042	for (i = 0; i < conf->geo.raid_disks; i++) {
4043		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044		if (!rdev || test_bit(Faulty, &rdev->flags))
4045			degraded2++;
4046		else if (!test_bit(In_sync, &rdev->flags)) {
4047			/* If reshape is increasing the number of devices,
4048			 * this section has already been recovered, so
4049			 * it doesn't contribute to degraded.
4050			 * else it does.
4051			 */
4052			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053				degraded2++;
4054		}
4055	}
4056	rcu_read_unlock();
4057	if (degraded2 > degraded)
4058		return degraded2;
4059	return degraded;
4060}
4061
4062static int raid10_start_reshape(struct mddev *mddev)
4063{
4064	/* A 'reshape' has been requested. This commits
4065	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066	 * This also checks if there are enough spares and adds them
4067	 * to the array.
4068	 * We currently require enough spares to make the final
4069	 * array non-degraded.  We also require that the difference
4070	 * between old and new data_offset - on each device - is
4071	 * enough that we never risk over-writing.
4072	 */
4073
4074	unsigned long before_length, after_length;
4075	sector_t min_offset_diff = 0;
4076	int first = 1;
4077	struct geom new;
4078	struct r10conf *conf = mddev->private;
4079	struct md_rdev *rdev;
4080	int spares = 0;
4081	int ret;
4082
4083	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084		return -EBUSY;
4085
4086	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087		return -EINVAL;
4088
4089	before_length = ((1 << conf->prev.chunk_shift) *
4090			 conf->prev.far_copies);
4091	after_length = ((1 << conf->geo.chunk_shift) *
4092			conf->geo.far_copies);
4093
4094	rdev_for_each(rdev, mddev) {
4095		if (!test_bit(In_sync, &rdev->flags)
4096		    && !test_bit(Faulty, &rdev->flags))
4097			spares++;
4098		if (rdev->raid_disk >= 0) {
4099			long long diff = (rdev->new_data_offset
4100					  - rdev->data_offset);
4101			if (!mddev->reshape_backwards)
4102				diff = -diff;
4103			if (diff < 0)
4104				diff = 0;
4105			if (first || diff < min_offset_diff)
4106				min_offset_diff = diff;
 
4107		}
4108	}
4109
4110	if (max(before_length, after_length) > min_offset_diff)
4111		return -EINVAL;
4112
4113	if (spares < mddev->delta_disks)
4114		return -EINVAL;
4115
4116	conf->offset_diff = min_offset_diff;
4117	spin_lock_irq(&conf->device_lock);
4118	if (conf->mirrors_new) {
4119		memcpy(conf->mirrors_new, conf->mirrors,
4120		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4121		smp_mb();
4122		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123		conf->mirrors_old = conf->mirrors;
4124		conf->mirrors = conf->mirrors_new;
4125		conf->mirrors_new = NULL;
4126	}
4127	setup_geo(&conf->geo, mddev, geo_start);
4128	smp_mb();
4129	if (mddev->reshape_backwards) {
4130		sector_t size = raid10_size(mddev, 0, 0);
4131		if (size < mddev->array_sectors) {
4132			spin_unlock_irq(&conf->device_lock);
4133			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134			       mdname(mddev));
4135			return -EINVAL;
4136		}
4137		mddev->resync_max_sectors = size;
4138		conf->reshape_progress = size;
4139	} else
4140		conf->reshape_progress = 0;
 
4141	spin_unlock_irq(&conf->device_lock);
4142
4143	if (mddev->delta_disks && mddev->bitmap) {
4144		ret = bitmap_resize(mddev->bitmap,
4145				    raid10_size(mddev, 0,
4146						conf->geo.raid_disks),
4147				    0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4148		if (ret)
4149			goto abort;
 
 
 
 
 
 
4150	}
 
4151	if (mddev->delta_disks > 0) {
4152		rdev_for_each(rdev, mddev)
4153			if (rdev->raid_disk < 0 &&
4154			    !test_bit(Faulty, &rdev->flags)) {
4155				if (raid10_add_disk(mddev, rdev) == 0) {
4156					if (rdev->raid_disk >=
4157					    conf->prev.raid_disks)
4158						set_bit(In_sync, &rdev->flags);
4159					else
4160						rdev->recovery_offset = 0;
4161
4162					if (sysfs_link_rdev(mddev, rdev))
4163						/* Failure here  is OK */;
4164				}
4165			} else if (rdev->raid_disk >= conf->prev.raid_disks
4166				   && !test_bit(Faulty, &rdev->flags)) {
4167				/* This is a spare that was manually added */
4168				set_bit(In_sync, &rdev->flags);
4169			}
4170	}
4171	/* When a reshape changes the number of devices,
4172	 * ->degraded is measured against the larger of the
4173	 * pre and  post numbers.
4174	 */
4175	spin_lock_irq(&conf->device_lock);
4176	mddev->degraded = calc_degraded(conf);
4177	spin_unlock_irq(&conf->device_lock);
4178	mddev->raid_disks = conf->geo.raid_disks;
4179	mddev->reshape_position = conf->reshape_progress;
4180	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 
4184	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188						"reshape");
4189	if (!mddev->sync_thread) {
4190		ret = -EAGAIN;
4191		goto abort;
4192	}
4193	conf->reshape_checkpoint = jiffies;
4194	md_wakeup_thread(mddev->sync_thread);
4195	md_new_event(mddev);
4196	return 0;
4197
4198abort:
4199	mddev->recovery = 0;
4200	spin_lock_irq(&conf->device_lock);
4201	conf->geo = conf->prev;
4202	mddev->raid_disks = conf->geo.raid_disks;
4203	rdev_for_each(rdev, mddev)
4204		rdev->new_data_offset = rdev->data_offset;
4205	smp_wmb();
4206	conf->reshape_progress = MaxSector;
 
4207	mddev->reshape_position = MaxSector;
4208	spin_unlock_irq(&conf->device_lock);
4209	return ret;
4210}
4211
4212/* Calculate the last device-address that could contain
4213 * any block from the chunk that includes the array-address 's'
4214 * and report the next address.
4215 * i.e. the address returned will be chunk-aligned and after
4216 * any data that is in the chunk containing 's'.
4217 */
4218static sector_t last_dev_address(sector_t s, struct geom *geo)
4219{
4220	s = (s | geo->chunk_mask) + 1;
4221	s >>= geo->chunk_shift;
4222	s *= geo->near_copies;
4223	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224	s *= geo->far_copies;
4225	s <<= geo->chunk_shift;
4226	return s;
4227}
4228
4229/* Calculate the first device-address that could contain
4230 * any block from the chunk that includes the array-address 's'.
4231 * This too will be the start of a chunk
4232 */
4233static sector_t first_dev_address(sector_t s, struct geom *geo)
4234{
4235	s >>= geo->chunk_shift;
4236	s *= geo->near_copies;
4237	sector_div(s, geo->raid_disks);
4238	s *= geo->far_copies;
4239	s <<= geo->chunk_shift;
4240	return s;
4241}
4242
4243static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244				int *skipped)
4245{
4246	/* We simply copy at most one chunk (smallest of old and new)
4247	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4248	 * or we hit a bad block or something.
4249	 * This might mean we pause for normal IO in the middle of
4250	 * a chunk, but that is not a problem was mddev->reshape_position
4251	 * can record any location.
4252	 *
4253	 * If we will want to write to a location that isn't
4254	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4255	 * we need to flush all reshape requests and update the metadata.
4256	 *
4257	 * When reshaping forwards (e.g. to more devices), we interpret
4258	 * 'safe' as the earliest block which might not have been copied
4259	 * down yet.  We divide this by previous stripe size and multiply
4260	 * by previous stripe length to get lowest device offset that we
4261	 * cannot write to yet.
4262	 * We interpret 'sector_nr' as an address that we want to write to.
4263	 * From this we use last_device_address() to find where we might
4264	 * write to, and first_device_address on the  'safe' position.
4265	 * If this 'next' write position is after the 'safe' position,
4266	 * we must update the metadata to increase the 'safe' position.
4267	 *
4268	 * When reshaping backwards, we round in the opposite direction
4269	 * and perform the reverse test:  next write position must not be
4270	 * less than current safe position.
4271	 *
4272	 * In all this the minimum difference in data offsets
4273	 * (conf->offset_diff - always positive) allows a bit of slack,
4274	 * so next can be after 'safe', but not by more than offset_disk
4275	 *
4276	 * We need to prepare all the bios here before we start any IO
4277	 * to ensure the size we choose is acceptable to all devices.
4278	 * The means one for each copy for write-out and an extra one for
4279	 * read-in.
4280	 * We store the read-in bio in ->master_bio and the others in
4281	 * ->devs[x].bio and ->devs[x].repl_bio.
4282	 */
4283	struct r10conf *conf = mddev->private;
4284	struct r10bio *r10_bio;
4285	sector_t next, safe, last;
4286	int max_sectors;
4287	int nr_sectors;
4288	int s;
4289	struct md_rdev *rdev;
4290	int need_flush = 0;
4291	struct bio *blist;
4292	struct bio *bio, *read_bio;
4293	int sectors_done = 0;
 
4294
4295	if (sector_nr == 0) {
4296		/* If restarting in the middle, skip the initial sectors */
4297		if (mddev->reshape_backwards &&
4298		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299			sector_nr = (raid10_size(mddev, 0, 0)
4300				     - conf->reshape_progress);
4301		} else if (!mddev->reshape_backwards &&
4302			   conf->reshape_progress > 0)
4303			sector_nr = conf->reshape_progress;
4304		if (sector_nr) {
4305			mddev->curr_resync_completed = sector_nr;
4306			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307			*skipped = 1;
4308			return sector_nr;
4309		}
4310	}
4311
4312	/* We don't use sector_nr to track where we are up to
4313	 * as that doesn't work well for ->reshape_backwards.
4314	 * So just use ->reshape_progress.
4315	 */
4316	if (mddev->reshape_backwards) {
4317		/* 'next' is the earliest device address that we might
4318		 * write to for this chunk in the new layout
4319		 */
4320		next = first_dev_address(conf->reshape_progress - 1,
4321					 &conf->geo);
4322
4323		/* 'safe' is the last device address that we might read from
4324		 * in the old layout after a restart
4325		 */
4326		safe = last_dev_address(conf->reshape_safe - 1,
4327					&conf->prev);
4328
4329		if (next + conf->offset_diff < safe)
4330			need_flush = 1;
4331
4332		last = conf->reshape_progress - 1;
4333		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334					       & conf->prev.chunk_mask);
4335		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337	} else {
4338		/* 'next' is after the last device address that we
4339		 * might write to for this chunk in the new layout
4340		 */
4341		next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343		/* 'safe' is the earliest device address that we might
4344		 * read from in the old layout after a restart
4345		 */
4346		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348		/* Need to update metadata if 'next' might be beyond 'safe'
4349		 * as that would possibly corrupt data
4350		 */
4351		if (next > safe + conf->offset_diff)
4352			need_flush = 1;
4353
4354		sector_nr = conf->reshape_progress;
4355		last  = sector_nr | (conf->geo.chunk_mask
4356				     & conf->prev.chunk_mask);
4357
4358		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360	}
4361
4362	if (need_flush ||
4363	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364		/* Need to update reshape_position in metadata */
4365		wait_barrier(conf);
4366		mddev->reshape_position = conf->reshape_progress;
4367		if (mddev->reshape_backwards)
4368			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369				- conf->reshape_progress;
4370		else
4371			mddev->curr_resync_completed = conf->reshape_progress;
4372		conf->reshape_checkpoint = jiffies;
4373		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374		md_wakeup_thread(mddev->thread);
4375		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4377		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4378			allow_barrier(conf);
4379			return sectors_done;
4380		}
4381		conf->reshape_safe = mddev->reshape_position;
4382		allow_barrier(conf);
4383	}
4384
 
4385read_more:
4386	/* Now schedule reads for blocks from sector_nr to last */
4387	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4388	raise_barrier(conf, sectors_done != 0);
 
4389	atomic_set(&r10_bio->remaining, 0);
4390	r10_bio->mddev = mddev;
4391	r10_bio->sector = sector_nr;
4392	set_bit(R10BIO_IsReshape, &r10_bio->state);
4393	r10_bio->sectors = last - sector_nr + 1;
4394	rdev = read_balance(conf, r10_bio, &max_sectors);
4395	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4396
4397	if (!rdev) {
4398		/* Cannot read from here, so need to record bad blocks
4399		 * on all the target devices.
4400		 */
4401		// FIXME
 
4402		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4403		return sectors_done;
4404	}
4405
4406	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4407
4408	read_bio->bi_bdev = rdev->bdev;
4409	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4410			       + rdev->data_offset);
4411	read_bio->bi_private = r10_bio;
4412	read_bio->bi_end_io = end_sync_read;
4413	read_bio->bi_rw = READ;
4414	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4415	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4416	read_bio->bi_vcnt = 0;
4417	read_bio->bi_iter.bi_size = 0;
4418	r10_bio->master_bio = read_bio;
4419	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4421	/* Now find the locations in the new layout */
4422	__raid10_find_phys(&conf->geo, r10_bio);
4423
4424	blist = read_bio;
4425	read_bio->bi_next = NULL;
4426
 
4427	for (s = 0; s < conf->copies*2; s++) {
4428		struct bio *b;
4429		int d = r10_bio->devs[s/2].devnum;
4430		struct md_rdev *rdev2;
4431		if (s&1) {
4432			rdev2 = conf->mirrors[d].replacement;
4433			b = r10_bio->devs[s/2].repl_bio;
4434		} else {
4435			rdev2 = conf->mirrors[d].rdev;
4436			b = r10_bio->devs[s/2].bio;
4437		}
4438		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4439			continue;
4440
4441		bio_reset(b);
4442		b->bi_bdev = rdev2->bdev;
4443		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4444			rdev2->new_data_offset;
4445		b->bi_private = r10_bio;
4446		b->bi_end_io = end_reshape_write;
4447		b->bi_rw = WRITE;
4448		b->bi_next = blist;
4449		blist = b;
4450	}
4451
4452	/* Now add as many pages as possible to all of these bios. */
4453
4454	nr_sectors = 0;
 
4455	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457		int len = (max_sectors - s) << 9;
4458		if (len > PAGE_SIZE)
4459			len = PAGE_SIZE;
4460		for (bio = blist; bio ; bio = bio->bi_next) {
4461			struct bio *bio2;
4462			if (bio_add_page(bio, page, len, 0))
4463				continue;
4464
4465			/* Didn't fit, must stop */
4466			for (bio2 = blist;
4467			     bio2 && bio2 != bio;
4468			     bio2 = bio2->bi_next) {
4469				/* Remove last page from this bio */
4470				bio2->bi_vcnt--;
4471				bio2->bi_iter.bi_size -= len;
4472				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473			}
4474			goto bio_full;
4475		}
4476		sector_nr += len >> 9;
4477		nr_sectors += len >> 9;
4478	}
4479bio_full:
4480	r10_bio->sectors = nr_sectors;
4481
4482	/* Now submit the read */
4483	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484	atomic_inc(&r10_bio->remaining);
4485	read_bio->bi_next = NULL;
4486	generic_make_request(read_bio);
4487	sector_nr += nr_sectors;
4488	sectors_done += nr_sectors;
4489	if (sector_nr <= last)
4490		goto read_more;
4491
 
 
4492	/* Now that we have done the whole section we can
4493	 * update reshape_progress
4494	 */
4495	if (mddev->reshape_backwards)
4496		conf->reshape_progress -= sectors_done;
4497	else
4498		conf->reshape_progress += sectors_done;
4499
4500	return sectors_done;
4501}
4502
4503static void end_reshape_request(struct r10bio *r10_bio);
4504static int handle_reshape_read_error(struct mddev *mddev,
4505				     struct r10bio *r10_bio);
4506static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507{
4508	/* Reshape read completed.  Hopefully we have a block
4509	 * to write out.
4510	 * If we got a read error then we do sync 1-page reads from
4511	 * elsewhere until we find the data - or give up.
4512	 */
4513	struct r10conf *conf = mddev->private;
4514	int s;
4515
4516	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518			/* Reshape has been aborted */
4519			md_done_sync(mddev, r10_bio->sectors, 0);
4520			return;
4521		}
4522
4523	/* We definitely have the data in the pages, schedule the
4524	 * writes.
4525	 */
4526	atomic_set(&r10_bio->remaining, 1);
4527	for (s = 0; s < conf->copies*2; s++) {
4528		struct bio *b;
4529		int d = r10_bio->devs[s/2].devnum;
4530		struct md_rdev *rdev;
 
4531		if (s&1) {
4532			rdev = conf->mirrors[d].replacement;
4533			b = r10_bio->devs[s/2].repl_bio;
4534		} else {
4535			rdev = conf->mirrors[d].rdev;
4536			b = r10_bio->devs[s/2].bio;
4537		}
4538		if (!rdev || test_bit(Faulty, &rdev->flags))
 
4539			continue;
 
4540		atomic_inc(&rdev->nr_pending);
4541		md_sync_acct(b->bi_bdev, r10_bio->sectors);
 
4542		atomic_inc(&r10_bio->remaining);
4543		b->bi_next = NULL;
4544		generic_make_request(b);
4545	}
4546	end_reshape_request(r10_bio);
4547}
4548
4549static void end_reshape(struct r10conf *conf)
4550{
4551	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552		return;
4553
4554	spin_lock_irq(&conf->device_lock);
4555	conf->prev = conf->geo;
4556	md_finish_reshape(conf->mddev);
4557	smp_wmb();
4558	conf->reshape_progress = MaxSector;
 
4559	spin_unlock_irq(&conf->device_lock);
4560
4561	/* read-ahead size must cover two whole stripes, which is
4562	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563	 */
4564	if (conf->mddev->queue) {
4565		int stripe = conf->geo.raid_disks *
4566			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567		stripe /= conf->geo.near_copies;
4568		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570	}
4571	conf->fullsync = 0;
4572}
4573
 
 
 
 
 
 
 
 
 
 
 
 
4574
4575static int handle_reshape_read_error(struct mddev *mddev,
4576				     struct r10bio *r10_bio)
4577{
4578	/* Use sync reads to get the blocks from somewhere else */
4579	int sectors = r10_bio->sectors;
4580	struct r10conf *conf = mddev->private;
4581	struct {
4582		struct r10bio r10_bio;
4583		struct r10dev devs[conf->copies];
4584	} on_stack;
4585	struct r10bio *r10b = &on_stack.r10_bio;
4586	int slot = 0;
4587	int idx = 0;
4588	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
 
 
 
 
 
 
 
 
 
4589
4590	r10b->sector = r10_bio->sector;
4591	__raid10_find_phys(&conf->prev, r10b);
4592
4593	while (sectors) {
4594		int s = sectors;
4595		int success = 0;
4596		int first_slot = slot;
4597
4598		if (s > (PAGE_SIZE >> 9))
4599			s = PAGE_SIZE >> 9;
4600
 
4601		while (!success) {
4602			int d = r10b->devs[slot].devnum;
4603			struct md_rdev *rdev = conf->mirrors[d].rdev;
4604			sector_t addr;
4605			if (rdev == NULL ||
4606			    test_bit(Faulty, &rdev->flags) ||
4607			    !test_bit(In_sync, &rdev->flags))
4608				goto failed;
4609
4610			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
 
 
4611			success = sync_page_io(rdev,
4612					       addr,
4613					       s << 9,
4614					       bvec[idx].bv_page,
4615					       READ, false);
 
 
4616			if (success)
4617				break;
4618		failed:
4619			slot++;
4620			if (slot >= conf->copies)
4621				slot = 0;
4622			if (slot == first_slot)
4623				break;
4624		}
 
4625		if (!success) {
4626			/* couldn't read this block, must give up */
4627			set_bit(MD_RECOVERY_INTR,
4628				&mddev->recovery);
 
4629			return -EIO;
4630		}
4631		sectors -= s;
4632		idx++;
4633	}
 
4634	return 0;
4635}
4636
4637static void end_reshape_write(struct bio *bio, int error)
4638{
4639	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640	struct r10bio *r10_bio = bio->bi_private;
4641	struct mddev *mddev = r10_bio->mddev;
4642	struct r10conf *conf = mddev->private;
4643	int d;
4644	int slot;
4645	int repl;
4646	struct md_rdev *rdev = NULL;
4647
4648	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649	if (repl)
4650		rdev = conf->mirrors[d].replacement;
4651	if (!rdev) {
4652		smp_mb();
4653		rdev = conf->mirrors[d].rdev;
4654	}
4655
4656	if (!uptodate) {
4657		/* FIXME should record badblock */
4658		md_error(mddev, rdev);
4659	}
4660
4661	rdev_dec_pending(rdev, mddev);
4662	end_reshape_request(r10_bio);
4663}
4664
4665static void end_reshape_request(struct r10bio *r10_bio)
4666{
4667	if (!atomic_dec_and_test(&r10_bio->remaining))
4668		return;
4669	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670	bio_put(r10_bio->master_bio);
4671	put_buf(r10_bio);
4672}
4673
4674static void raid10_finish_reshape(struct mddev *mddev)
4675{
4676	struct r10conf *conf = mddev->private;
4677
4678	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679		return;
4680
4681	if (mddev->delta_disks > 0) {
4682		sector_t size = raid10_size(mddev, 0, 0);
4683		md_set_array_sectors(mddev, size);
4684		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685			mddev->recovery_cp = mddev->resync_max_sectors;
4686			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687		}
4688		mddev->resync_max_sectors = size;
4689		set_capacity(mddev->gendisk, mddev->array_sectors);
4690		revalidate_disk(mddev->gendisk);
4691	} else {
4692		int d;
 
4693		for (d = conf->geo.raid_disks ;
4694		     d < conf->geo.raid_disks - mddev->delta_disks;
4695		     d++) {
4696			struct md_rdev *rdev = conf->mirrors[d].rdev;
4697			if (rdev)
4698				clear_bit(In_sync, &rdev->flags);
4699			rdev = conf->mirrors[d].replacement;
4700			if (rdev)
4701				clear_bit(In_sync, &rdev->flags);
4702		}
 
4703	}
4704	mddev->layout = mddev->new_layout;
4705	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706	mddev->reshape_position = MaxSector;
4707	mddev->delta_disks = 0;
4708	mddev->reshape_backwards = 0;
4709}
4710
4711static struct md_personality raid10_personality =
4712{
4713	.name		= "raid10",
4714	.level		= 10,
4715	.owner		= THIS_MODULE,
4716	.make_request	= make_request,
4717	.run		= run,
4718	.stop		= stop,
4719	.status		= status,
4720	.error_handler	= error,
4721	.hot_add_disk	= raid10_add_disk,
4722	.hot_remove_disk= raid10_remove_disk,
4723	.spare_active	= raid10_spare_active,
4724	.sync_request	= sync_request,
4725	.quiesce	= raid10_quiesce,
4726	.size		= raid10_size,
4727	.resize		= raid10_resize,
4728	.takeover	= raid10_takeover,
4729	.check_reshape	= raid10_check_reshape,
4730	.start_reshape	= raid10_start_reshape,
4731	.finish_reshape	= raid10_finish_reshape,
 
 
4732};
4733
4734static int __init raid_init(void)
4735{
4736	return register_md_personality(&raid10_personality);
4737}
4738
4739static void raid_exit(void)
4740{
4741	unregister_md_personality(&raid10_personality);
4742}
4743
4744module_init(raid_init);
4745module_exit(raid_exit);
4746MODULE_LICENSE("GPL");
4747MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749MODULE_ALIAS("md-raid10");
4750MODULE_ALIAS("md-level-10");
4751
4752module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 
 
 
 
 
 
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 
 119	struct r10bio *r10_bio;
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 
 
 
 
 
 
 
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j * 2]);
 195
 
 
 196	j = 0;
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 
 
 223			bio_put(bio);
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->copies; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 
 295	struct r10conf *conf = r10_bio->mddev->private;
 296
 
 
 
 
 
 
 
 
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	bio_endio(bio);
 301	/*
 302	 * Wake up any possible resync thread that waits for the device
 303	 * to go idle.
 304	 */
 305	allow_barrier(conf);
 306
 307	free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315	struct r10conf *conf = r10_bio->mddev->private;
 316
 317	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318		r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325			 struct bio *bio, int *slotp, int *replp)
 326{
 327	int slot;
 328	int repl = 0;
 329
 330	for (slot = 0; slot < conf->copies; slot++) {
 331		if (r10_bio->devs[slot].bio == bio)
 332			break;
 333		if (r10_bio->devs[slot].repl_bio == bio) {
 334			repl = 1;
 335			break;
 336		}
 337	}
 338
 339	BUG_ON(slot == conf->copies);
 340	update_head_pos(slot, r10_bio);
 341
 342	if (slotp)
 343		*slotp = slot;
 344	if (replp)
 345		*replp = repl;
 346	return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351	int uptodate = !bio->bi_status;
 352	struct r10bio *r10_bio = bio->bi_private;
 353	int slot;
 354	struct md_rdev *rdev;
 355	struct r10conf *conf = r10_bio->mddev->private;
 356
 
 357	slot = r10_bio->read_slot;
 
 358	rdev = r10_bio->devs[slot].rdev;
 359	/*
 360	 * this branch is our 'one mirror IO has finished' event handler:
 361	 */
 362	update_head_pos(slot, r10_bio);
 363
 364	if (uptodate) {
 365		/*
 366		 * Set R10BIO_Uptodate in our master bio, so that
 367		 * we will return a good error code to the higher
 368		 * levels even if IO on some other mirrored buffer fails.
 369		 *
 370		 * The 'master' represents the composite IO operation to
 371		 * user-side. So if something waits for IO, then it will
 372		 * wait for the 'master' bio.
 373		 */
 374		set_bit(R10BIO_Uptodate, &r10_bio->state);
 375	} else {
 376		/* If all other devices that store this block have
 377		 * failed, we want to return the error upwards rather
 378		 * than fail the last device.  Here we redefine
 379		 * "uptodate" to mean "Don't want to retry"
 380		 */
 381		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382			     rdev->raid_disk))
 383			uptodate = 1;
 384	}
 385	if (uptodate) {
 386		raid_end_bio_io(r10_bio);
 387		rdev_dec_pending(rdev, conf->mddev);
 388	} else {
 389		/*
 390		 * oops, read error - keep the refcount on the rdev
 391		 */
 392		char b[BDEVNAME_SIZE];
 393		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 
 394				   mdname(conf->mddev),
 395				   bdevname(rdev->bdev, b),
 396				   (unsigned long long)r10_bio->sector);
 397		set_bit(R10BIO_ReadError, &r10_bio->state);
 398		reschedule_retry(r10_bio);
 399	}
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404	/* clear the bitmap if all writes complete successfully */
 405	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406			   r10_bio->sectors,
 407			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 408			   0);
 409	md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414	if (atomic_dec_and_test(&r10_bio->remaining)) {
 415		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416			reschedule_retry(r10_bio);
 417		else {
 418			close_write(r10_bio);
 419			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420				reschedule_retry(r10_bio);
 421			else
 422				raid_end_bio_io(r10_bio);
 423		}
 424	}
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 
 429	struct r10bio *r10_bio = bio->bi_private;
 430	int dev;
 431	int dec_rdev = 1;
 432	struct r10conf *conf = r10_bio->mddev->private;
 433	int slot, repl;
 434	struct md_rdev *rdev = NULL;
 435	struct bio *to_put = NULL;
 436	bool discard_error;
 437
 438	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442	if (repl)
 443		rdev = conf->mirrors[dev].replacement;
 444	if (!rdev) {
 445		smp_rmb();
 446		repl = 0;
 447		rdev = conf->mirrors[dev].rdev;
 448	}
 449	/*
 450	 * this branch is our 'one mirror IO has finished' event handler:
 451	 */
 452	if (bio->bi_status && !discard_error) {
 453		if (repl)
 454			/* Never record new bad blocks to replacement,
 455			 * just fail it.
 456			 */
 457			md_error(rdev->mddev, rdev);
 458		else {
 459			set_bit(WriteErrorSeen,	&rdev->flags);
 460			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461				set_bit(MD_RECOVERY_NEEDED,
 462					&rdev->mddev->recovery);
 463
 464			dec_rdev = 0;
 465			if (test_bit(FailFast, &rdev->flags) &&
 466			    (bio->bi_opf & MD_FAILFAST)) {
 467				md_error(rdev->mddev, rdev);
 468			}
 469
 470			/*
 471			 * When the device is faulty, it is not necessary to
 472			 * handle write error.
 473			 * For failfast, this is the only remaining device,
 474			 * We need to retry the write without FailFast.
 475			 */
 476			if (!test_bit(Faulty, &rdev->flags))
 477				set_bit(R10BIO_WriteError, &r10_bio->state);
 478			else {
 479				r10_bio->devs[slot].bio = NULL;
 480				to_put = bio;
 481				dec_rdev = 1;
 482			}
 483		}
 484	} else {
 485		/*
 486		 * Set R10BIO_Uptodate in our master bio, so that
 487		 * we will return a good error code for to the higher
 488		 * levels even if IO on some other mirrored buffer fails.
 489		 *
 490		 * The 'master' represents the composite IO operation to
 491		 * user-side. So if something waits for IO, then it will
 492		 * wait for the 'master' bio.
 493		 */
 494		sector_t first_bad;
 495		int bad_sectors;
 496
 497		/*
 498		 * Do not set R10BIO_Uptodate if the current device is
 499		 * rebuilding or Faulty. This is because we cannot use
 500		 * such device for properly reading the data back (we could
 501		 * potentially use it, if the current write would have felt
 502		 * before rdev->recovery_offset, but for simplicity we don't
 503		 * check this here.
 504		 */
 505		if (test_bit(In_sync, &rdev->flags) &&
 506		    !test_bit(Faulty, &rdev->flags))
 507			set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509		/* Maybe we can clear some bad blocks. */
 510		if (is_badblock(rdev,
 511				r10_bio->devs[slot].addr,
 512				r10_bio->sectors,
 513				&first_bad, &bad_sectors) && !discard_error) {
 514			bio_put(bio);
 515			if (repl)
 516				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517			else
 518				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519			dec_rdev = 0;
 520			set_bit(R10BIO_MadeGood, &r10_bio->state);
 521		}
 522	}
 523
 524	/*
 525	 *
 526	 * Let's see if all mirrored write operations have finished
 527	 * already.
 528	 */
 529	one_write_done(r10_bio);
 530	if (dec_rdev)
 531		rdev_dec_pending(rdev, conf->mddev);
 532	if (to_put)
 533		bio_put(to_put);
 534}
 535
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563	int n,f;
 564	sector_t sector;
 565	sector_t chunk;
 566	sector_t stripe;
 567	int dev;
 568	int slot = 0;
 569	int last_far_set_start, last_far_set_size;
 570
 571	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572	last_far_set_start *= geo->far_set_size;
 573
 574	last_far_set_size = geo->far_set_size;
 575	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577	/* now calculate first sector/dev */
 578	chunk = r10bio->sector >> geo->chunk_shift;
 579	sector = r10bio->sector & geo->chunk_mask;
 580
 581	chunk *= geo->near_copies;
 582	stripe = chunk;
 583	dev = sector_div(stripe, geo->raid_disks);
 584	if (geo->far_offset)
 585		stripe *= geo->far_copies;
 586
 587	sector += stripe << geo->chunk_shift;
 588
 589	/* and calculate all the others */
 590	for (n = 0; n < geo->near_copies; n++) {
 591		int d = dev;
 592		int set;
 593		sector_t s = sector;
 594		r10bio->devs[slot].devnum = d;
 595		r10bio->devs[slot].addr = s;
 596		slot++;
 597
 598		for (f = 1; f < geo->far_copies; f++) {
 599			set = d / geo->far_set_size;
 600			d += geo->near_copies;
 601
 602			if ((geo->raid_disks % geo->far_set_size) &&
 603			    (d > last_far_set_start)) {
 604				d -= last_far_set_start;
 605				d %= last_far_set_size;
 606				d += last_far_set_start;
 607			} else {
 608				d %= geo->far_set_size;
 609				d += geo->far_set_size * set;
 610			}
 611			s += geo->stride;
 612			r10bio->devs[slot].devnum = d;
 613			r10bio->devs[slot].addr = s;
 614			slot++;
 615		}
 616		dev++;
 617		if (dev >= geo->raid_disks) {
 618			dev = 0;
 619			sector += (geo->chunk_mask + 1);
 620		}
 621	}
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626	struct geom *geo = &conf->geo;
 627
 628	if (conf->reshape_progress != MaxSector &&
 629	    ((r10bio->sector >= conf->reshape_progress) !=
 630	     conf->mddev->reshape_backwards)) {
 631		set_bit(R10BIO_Previous, &r10bio->state);
 632		geo = &conf->prev;
 633	} else
 634		clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636	__raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641	sector_t offset, chunk, vchunk;
 642	/* Never use conf->prev as this is only called during resync
 643	 * or recovery, so reshape isn't happening
 644	 */
 645	struct geom *geo = &conf->geo;
 646	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647	int far_set_size = geo->far_set_size;
 648	int last_far_set_start;
 649
 650	if (geo->raid_disks % geo->far_set_size) {
 651		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652		last_far_set_start *= geo->far_set_size;
 653
 654		if (dev >= last_far_set_start) {
 655			far_set_size = geo->far_set_size;
 656			far_set_size += (geo->raid_disks % geo->far_set_size);
 657			far_set_start = last_far_set_start;
 658		}
 659	}
 660
 661	offset = sector & geo->chunk_mask;
 662	if (geo->far_offset) {
 663		int fc;
 664		chunk = sector >> geo->chunk_shift;
 665		fc = sector_div(chunk, geo->far_copies);
 666		dev -= fc * geo->near_copies;
 667		if (dev < far_set_start)
 668			dev += far_set_size;
 669	} else {
 670		while (sector >= geo->stride) {
 671			sector -= geo->stride;
 672			if (dev < (geo->near_copies + far_set_start))
 673				dev += far_set_size - geo->near_copies;
 674			else
 675				dev -= geo->near_copies;
 676		}
 677		chunk = sector >> geo->chunk_shift;
 678	}
 679	vchunk = chunk * geo->raid_disks + dev;
 680	sector_div(vchunk, geo->near_copies);
 681	return (vchunk << geo->chunk_shift) + offset;
 682}
 683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704				    struct r10bio *r10_bio,
 705				    int *max_sectors)
 706{
 707	const sector_t this_sector = r10_bio->sector;
 708	int disk, slot;
 709	int sectors = r10_bio->sectors;
 710	int best_good_sectors;
 711	sector_t new_distance, best_dist;
 712	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713	int do_balance;
 714	int best_dist_slot, best_pending_slot;
 715	bool has_nonrot_disk = false;
 716	unsigned int min_pending;
 717	struct geom *geo = &conf->geo;
 718
 719	raid10_find_phys(conf, r10_bio);
 720	rcu_read_lock();
 721	best_dist_slot = -1;
 722	min_pending = UINT_MAX;
 723	best_dist_rdev = NULL;
 724	best_pending_rdev = NULL;
 725	best_dist = MaxSector;
 726	best_good_sectors = 0;
 727	do_balance = 1;
 728	clear_bit(R10BIO_FailFast, &r10_bio->state);
 729	/*
 730	 * Check if we can balance. We can balance on the whole
 731	 * device if no resync is going on (recovery is ok), or below
 732	 * the resync window. We take the first readable disk when
 733	 * above the resync window.
 734	 */
 735	if ((conf->mddev->recovery_cp < MaxSector
 736	     && (this_sector + sectors >= conf->next_resync)) ||
 737	    (mddev_is_clustered(conf->mddev) &&
 738	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739					    this_sector + sectors)))
 740		do_balance = 0;
 741
 742	for (slot = 0; slot < conf->copies ; slot++) {
 743		sector_t first_bad;
 744		int bad_sectors;
 745		sector_t dev_sector;
 746		unsigned int pending;
 747		bool nonrot;
 748
 749		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750			continue;
 751		disk = r10_bio->devs[slot].devnum;
 752		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 
 754		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756		if (rdev == NULL ||
 757		    test_bit(Faulty, &rdev->flags))
 
 758			continue;
 759		if (!test_bit(In_sync, &rdev->flags) &&
 760		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761			continue;
 762
 763		dev_sector = r10_bio->devs[slot].addr;
 764		if (is_badblock(rdev, dev_sector, sectors,
 765				&first_bad, &bad_sectors)) {
 766			if (best_dist < MaxSector)
 767				/* Already have a better slot */
 768				continue;
 769			if (first_bad <= dev_sector) {
 770				/* Cannot read here.  If this is the
 771				 * 'primary' device, then we must not read
 772				 * beyond 'bad_sectors' from another device.
 773				 */
 774				bad_sectors -= (dev_sector - first_bad);
 775				if (!do_balance && sectors > bad_sectors)
 776					sectors = bad_sectors;
 777				if (best_good_sectors > sectors)
 778					best_good_sectors = sectors;
 779			} else {
 780				sector_t good_sectors =
 781					first_bad - dev_sector;
 782				if (good_sectors > best_good_sectors) {
 783					best_good_sectors = good_sectors;
 784					best_dist_slot = slot;
 785					best_dist_rdev = rdev;
 786				}
 787				if (!do_balance)
 788					/* Must read from here */
 789					break;
 790			}
 791			continue;
 792		} else
 793			best_good_sectors = sectors;
 794
 795		if (!do_balance)
 796			break;
 797
 798		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799		has_nonrot_disk |= nonrot;
 800		pending = atomic_read(&rdev->nr_pending);
 801		if (min_pending > pending && nonrot) {
 802			min_pending = pending;
 803			best_pending_slot = slot;
 804			best_pending_rdev = rdev;
 805		}
 806
 807		if (best_dist_slot >= 0)
 808			/* At least 2 disks to choose from so failfast is OK */
 809			set_bit(R10BIO_FailFast, &r10_bio->state);
 810		/* This optimisation is debatable, and completely destroys
 811		 * sequential read speed for 'far copies' arrays.  So only
 812		 * keep it for 'near' arrays, and review those later.
 813		 */
 814		if (geo->near_copies > 1 && !pending)
 815			new_distance = 0;
 816
 817		/* for far > 1 always use the lowest address */
 818		else if (geo->far_copies > 1)
 819			new_distance = r10_bio->devs[slot].addr;
 820		else
 821			new_distance = abs(r10_bio->devs[slot].addr -
 822					   conf->mirrors[disk].head_position);
 823
 824		if (new_distance < best_dist) {
 825			best_dist = new_distance;
 826			best_dist_slot = slot;
 827			best_dist_rdev = rdev;
 828		}
 829	}
 830	if (slot >= conf->copies) {
 831		if (has_nonrot_disk) {
 832			slot = best_pending_slot;
 833			rdev = best_pending_rdev;
 834		} else {
 835			slot = best_dist_slot;
 836			rdev = best_dist_rdev;
 837		}
 838	}
 839
 840	if (slot >= 0) {
 841		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 842		r10_bio->read_slot = slot;
 843	} else
 844		rdev = NULL;
 845	rcu_read_unlock();
 846	*max_sectors = best_good_sectors;
 847
 848	return rdev;
 849}
 850
 851static int raid10_congested(struct mddev *mddev, int bits)
 852{
 853	struct r10conf *conf = mddev->private;
 854	int i, ret = 0;
 855
 856	if ((bits & (1 << WB_async_congested)) &&
 857	    conf->pending_count >= max_queued_requests)
 858		return 1;
 859
 860	rcu_read_lock();
 861	for (i = 0;
 862	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 863		     && ret == 0;
 864	     i++) {
 865		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 866		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 867			struct request_queue *q = bdev_get_queue(rdev->bdev);
 868
 869			ret |= bdi_congested(q->backing_dev_info, bits);
 870		}
 871	}
 872	rcu_read_unlock();
 873	return ret;
 874}
 
 
 
 
 
 
 
 
 
 875
 876static void flush_pending_writes(struct r10conf *conf)
 877{
 878	/* Any writes that have been queued but are awaiting
 879	 * bitmap updates get flushed here.
 880	 */
 881	spin_lock_irq(&conf->device_lock);
 882
 883	if (conf->pending_bio_list.head) {
 884		struct blk_plug plug;
 885		struct bio *bio;
 886
 887		bio = bio_list_get(&conf->pending_bio_list);
 888		conf->pending_count = 0;
 889		spin_unlock_irq(&conf->device_lock);
 890
 891		/*
 892		 * As this is called in a wait_event() loop (see freeze_array),
 893		 * current->state might be TASK_UNINTERRUPTIBLE which will
 894		 * cause a warning when we prepare to wait again.  As it is
 895		 * rare that this path is taken, it is perfectly safe to force
 896		 * us to go around the wait_event() loop again, so the warning
 897		 * is a false-positive. Silence the warning by resetting
 898		 * thread state
 899		 */
 900		__set_current_state(TASK_RUNNING);
 901
 902		blk_start_plug(&plug);
 903		/* flush any pending bitmap writes to disk
 904		 * before proceeding w/ I/O */
 905		md_bitmap_unplug(conf->mddev->bitmap);
 906		wake_up(&conf->wait_barrier);
 907
 908		while (bio) { /* submit pending writes */
 909			struct bio *next = bio->bi_next;
 910			struct md_rdev *rdev = (void*)bio->bi_disk;
 911			bio->bi_next = NULL;
 912			bio_set_dev(bio, rdev->bdev);
 913			if (test_bit(Faulty, &rdev->flags)) {
 914				bio_io_error(bio);
 915			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 916					    !blk_queue_discard(bio->bi_disk->queue)))
 917				/* Just ignore it */
 918				bio_endio(bio);
 919			else
 920				generic_make_request(bio);
 921			bio = next;
 922		}
 923		blk_finish_plug(&plug);
 924	} else
 925		spin_unlock_irq(&conf->device_lock);
 926}
 927
 928/* Barriers....
 929 * Sometimes we need to suspend IO while we do something else,
 930 * either some resync/recovery, or reconfigure the array.
 931 * To do this we raise a 'barrier'.
 932 * The 'barrier' is a counter that can be raised multiple times
 933 * to count how many activities are happening which preclude
 934 * normal IO.
 935 * We can only raise the barrier if there is no pending IO.
 936 * i.e. if nr_pending == 0.
 937 * We choose only to raise the barrier if no-one is waiting for the
 938 * barrier to go down.  This means that as soon as an IO request
 939 * is ready, no other operations which require a barrier will start
 940 * until the IO request has had a chance.
 941 *
 942 * So: regular IO calls 'wait_barrier'.  When that returns there
 943 *    is no backgroup IO happening,  It must arrange to call
 944 *    allow_barrier when it has finished its IO.
 945 * backgroup IO calls must call raise_barrier.  Once that returns
 946 *    there is no normal IO happeing.  It must arrange to call
 947 *    lower_barrier when the particular background IO completes.
 948 */
 949
 950static void raise_barrier(struct r10conf *conf, int force)
 951{
 952	BUG_ON(force && !conf->barrier);
 953	spin_lock_irq(&conf->resync_lock);
 954
 955	/* Wait until no block IO is waiting (unless 'force') */
 956	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 957			    conf->resync_lock);
 958
 959	/* block any new IO from starting */
 960	conf->barrier++;
 961
 962	/* Now wait for all pending IO to complete */
 963	wait_event_lock_irq(conf->wait_barrier,
 964			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 965			    conf->resync_lock);
 966
 967	spin_unlock_irq(&conf->resync_lock);
 968}
 969
 970static void lower_barrier(struct r10conf *conf)
 971{
 972	unsigned long flags;
 973	spin_lock_irqsave(&conf->resync_lock, flags);
 974	conf->barrier--;
 975	spin_unlock_irqrestore(&conf->resync_lock, flags);
 976	wake_up(&conf->wait_barrier);
 977}
 978
 979static void wait_barrier(struct r10conf *conf)
 980{
 981	spin_lock_irq(&conf->resync_lock);
 982	if (conf->barrier) {
 983		conf->nr_waiting++;
 984		/* Wait for the barrier to drop.
 985		 * However if there are already pending
 986		 * requests (preventing the barrier from
 987		 * rising completely), and the
 988		 * pre-process bio queue isn't empty,
 989		 * then don't wait, as we need to empty
 990		 * that queue to get the nr_pending
 991		 * count down.
 992		 */
 993		raid10_log(conf->mddev, "wait barrier");
 994		wait_event_lock_irq(conf->wait_barrier,
 995				    !conf->barrier ||
 996				    (atomic_read(&conf->nr_pending) &&
 997				     current->bio_list &&
 998				     (!bio_list_empty(&current->bio_list[0]) ||
 999				      !bio_list_empty(&current->bio_list[1]))),
1000				    conf->resync_lock);
1001		conf->nr_waiting--;
1002		if (!conf->nr_waiting)
1003			wake_up(&conf->wait_barrier);
1004	}
1005	atomic_inc(&conf->nr_pending);
1006	spin_unlock_irq(&conf->resync_lock);
1007}
1008
1009static void allow_barrier(struct r10conf *conf)
1010{
1011	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012			(conf->array_freeze_pending))
1013		wake_up(&conf->wait_barrier);
 
 
1014}
1015
1016static void freeze_array(struct r10conf *conf, int extra)
1017{
1018	/* stop syncio and normal IO and wait for everything to
1019	 * go quiet.
1020	 * We increment barrier and nr_waiting, and then
1021	 * wait until nr_pending match nr_queued+extra
1022	 * This is called in the context of one normal IO request
1023	 * that has failed. Thus any sync request that might be pending
1024	 * will be blocked by nr_pending, and we need to wait for
1025	 * pending IO requests to complete or be queued for re-try.
1026	 * Thus the number queued (nr_queued) plus this request (extra)
1027	 * must match the number of pending IOs (nr_pending) before
1028	 * we continue.
1029	 */
1030	spin_lock_irq(&conf->resync_lock);
1031	conf->array_freeze_pending++;
1032	conf->barrier++;
1033	conf->nr_waiting++;
1034	wait_event_lock_irq_cmd(conf->wait_barrier,
1035				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036				conf->resync_lock,
1037				flush_pending_writes(conf));
1038
1039	conf->array_freeze_pending--;
1040	spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static void unfreeze_array(struct r10conf *conf)
1044{
1045	/* reverse the effect of the freeze */
1046	spin_lock_irq(&conf->resync_lock);
1047	conf->barrier--;
1048	conf->nr_waiting--;
1049	wake_up(&conf->wait_barrier);
1050	spin_unlock_irq(&conf->resync_lock);
1051}
1052
1053static sector_t choose_data_offset(struct r10bio *r10_bio,
1054				   struct md_rdev *rdev)
1055{
1056	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057	    test_bit(R10BIO_Previous, &r10_bio->state))
1058		return rdev->data_offset;
1059	else
1060		return rdev->new_data_offset;
1061}
1062
1063struct raid10_plug_cb {
1064	struct blk_plug_cb	cb;
1065	struct bio_list		pending;
1066	int			pending_cnt;
1067};
1068
1069static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070{
1071	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072						   cb);
1073	struct mddev *mddev = plug->cb.data;
1074	struct r10conf *conf = mddev->private;
1075	struct bio *bio;
1076
1077	if (from_schedule || current->bio_list) {
1078		spin_lock_irq(&conf->device_lock);
1079		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080		conf->pending_count += plug->pending_cnt;
1081		spin_unlock_irq(&conf->device_lock);
1082		wake_up(&conf->wait_barrier);
1083		md_wakeup_thread(mddev->thread);
1084		kfree(plug);
1085		return;
1086	}
1087
1088	/* we aren't scheduling, so we can do the write-out directly. */
1089	bio = bio_list_get(&plug->pending);
1090	md_bitmap_unplug(mddev->bitmap);
1091	wake_up(&conf->wait_barrier);
1092
1093	while (bio) { /* submit pending writes */
1094		struct bio *next = bio->bi_next;
1095		struct md_rdev *rdev = (void*)bio->bi_disk;
1096		bio->bi_next = NULL;
1097		bio_set_dev(bio, rdev->bdev);
1098		if (test_bit(Faulty, &rdev->flags)) {
1099			bio_io_error(bio);
1100		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101				    !blk_queue_discard(bio->bi_disk->queue)))
1102			/* Just ignore it */
1103			bio_endio(bio);
1104		else
1105			generic_make_request(bio);
1106		bio = next;
1107	}
1108	kfree(plug);
1109}
1110
1111/*
1112 * 1. Register the new request and wait if the reconstruction thread has put
1113 * up a bar for new requests. Continue immediately if no resync is active
1114 * currently.
1115 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116 */
1117static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118				 struct bio *bio, sector_t sectors)
1119{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120	wait_barrier(conf);
 
 
1121	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1123	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124		raid10_log(conf->mddev, "wait reshape");
 
 
1125		allow_barrier(conf);
1126		wait_event(conf->wait_barrier,
1127			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129			   sectors);
1130		wait_barrier(conf);
1131	}
1132}
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
1134static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135				struct r10bio *r10_bio)
1136{
1137	struct r10conf *conf = mddev->private;
1138	struct bio *read_bio;
1139	const int op = bio_op(bio);
1140	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141	int max_sectors;
1142	struct md_rdev *rdev;
1143	char b[BDEVNAME_SIZE];
1144	int slot = r10_bio->read_slot;
1145	struct md_rdev *err_rdev = NULL;
1146	gfp_t gfp = GFP_NOIO;
1147
1148	if (r10_bio->devs[slot].rdev) {
1149		/*
1150		 * This is an error retry, but we cannot
1151		 * safely dereference the rdev in the r10_bio,
1152		 * we must use the one in conf.
1153		 * If it has already been disconnected (unlikely)
1154		 * we lose the device name in error messages.
1155		 */
1156		int disk;
1157		/*
1158		 * As we are blocking raid10, it is a little safer to
1159		 * use __GFP_HIGH.
1160		 */
1161		gfp = GFP_NOIO | __GFP_HIGH;
1162
1163		rcu_read_lock();
1164		disk = r10_bio->devs[slot].devnum;
1165		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166		if (err_rdev)
1167			bdevname(err_rdev->bdev, b);
1168		else {
1169			strcpy(b, "???");
1170			/* This never gets dereferenced */
1171			err_rdev = r10_bio->devs[slot].rdev;
1172		}
1173		rcu_read_unlock();
1174	}
1175
1176	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177	rdev = read_balance(conf, r10_bio, &max_sectors);
1178	if (!rdev) {
1179		if (err_rdev) {
1180			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181					    mdname(mddev), b,
1182					    (unsigned long long)r10_bio->sector);
1183		}
1184		raid_end_bio_io(r10_bio);
1185		return;
1186	}
1187	if (err_rdev)
1188		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189				   mdname(mddev),
1190				   bdevname(rdev->bdev, b),
1191				   (unsigned long long)r10_bio->sector);
1192	if (max_sectors < bio_sectors(bio)) {
1193		struct bio *split = bio_split(bio, max_sectors,
1194					      gfp, &conf->bio_split);
1195		bio_chain(split, bio);
1196		allow_barrier(conf);
1197		generic_make_request(bio);
1198		wait_barrier(conf);
1199		bio = split;
1200		r10_bio->master_bio = bio;
1201		r10_bio->sectors = max_sectors;
1202	}
1203	slot = r10_bio->read_slot;
1204
1205	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
 
1206
1207	r10_bio->devs[slot].bio = read_bio;
1208	r10_bio->devs[slot].rdev = rdev;
 
1209
1210	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211		choose_data_offset(r10_bio, rdev);
1212	bio_set_dev(read_bio, rdev->bdev);
1213	read_bio->bi_end_io = raid10_end_read_request;
1214	bio_set_op_attrs(read_bio, op, do_sync);
1215	if (test_bit(FailFast, &rdev->flags) &&
1216	    test_bit(R10BIO_FailFast, &r10_bio->state))
1217	        read_bio->bi_opf |= MD_FAILFAST;
1218	read_bio->bi_private = r10_bio;
1219
1220	if (mddev->gendisk)
1221	        trace_block_bio_remap(read_bio->bi_disk->queue,
1222	                              read_bio, disk_devt(mddev->gendisk),
1223	                              r10_bio->sector);
1224	generic_make_request(read_bio);
1225	return;
1226}
1227
1228static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229				  struct bio *bio, bool replacement,
1230				  int n_copy)
1231{
1232	const int op = bio_op(bio);
1233	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235	unsigned long flags;
1236	struct blk_plug_cb *cb;
1237	struct raid10_plug_cb *plug = NULL;
1238	struct r10conf *conf = mddev->private;
1239	struct md_rdev *rdev;
1240	int devnum = r10_bio->devs[n_copy].devnum;
1241	struct bio *mbio;
1242
1243	if (replacement) {
1244		rdev = conf->mirrors[devnum].replacement;
1245		if (rdev == NULL) {
1246			/* Replacement just got moved to main 'rdev' */
1247			smp_mb();
1248			rdev = conf->mirrors[devnum].rdev;
1249		}
1250	} else
1251		rdev = conf->mirrors[devnum].rdev;
1252
1253	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254	if (replacement)
1255		r10_bio->devs[n_copy].repl_bio = mbio;
1256	else
1257		r10_bio->devs[n_copy].bio = mbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258
1259	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1260				   choose_data_offset(r10_bio, rdev));
1261	bio_set_dev(mbio, rdev->bdev);
1262	mbio->bi_end_io	= raid10_end_write_request;
1263	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264	if (!replacement && test_bit(FailFast,
1265				     &conf->mirrors[devnum].rdev->flags)
1266			 && enough(conf, devnum))
1267		mbio->bi_opf |= MD_FAILFAST;
1268	mbio->bi_private = r10_bio;
1269
1270	if (conf->mddev->gendisk)
1271		trace_block_bio_remap(mbio->bi_disk->queue,
1272				      mbio, disk_devt(conf->mddev->gendisk),
1273				      r10_bio->sector);
1274	/* flush_pending_writes() needs access to the rdev so...*/
1275	mbio->bi_disk = (void *)rdev;
1276
1277	atomic_inc(&r10_bio->remaining);
1278
1279	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280	if (cb)
1281		plug = container_of(cb, struct raid10_plug_cb, cb);
1282	else
1283		plug = NULL;
1284	if (plug) {
1285		bio_list_add(&plug->pending, mbio);
1286		plug->pending_cnt++;
1287	} else {
1288		spin_lock_irqsave(&conf->device_lock, flags);
1289		bio_list_add(&conf->pending_bio_list, mbio);
1290		conf->pending_count++;
1291		spin_unlock_irqrestore(&conf->device_lock, flags);
1292		md_wakeup_thread(mddev->thread);
1293	}
1294}
1295
1296static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297				 struct r10bio *r10_bio)
1298{
1299	struct r10conf *conf = mddev->private;
1300	int i;
1301	struct md_rdev *blocked_rdev;
1302	sector_t sectors;
1303	int max_sectors;
1304
1305	if ((mddev_is_clustered(mddev) &&
1306	     md_cluster_ops->area_resyncing(mddev, WRITE,
1307					    bio->bi_iter.bi_sector,
1308					    bio_end_sector(bio)))) {
1309		DEFINE_WAIT(w);
1310		for (;;) {
1311			prepare_to_wait(&conf->wait_barrier,
1312					&w, TASK_IDLE);
1313			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315				break;
1316			schedule();
1317		}
1318		finish_wait(&conf->wait_barrier, &w);
1319	}
1320
1321	sectors = r10_bio->sectors;
1322	regular_request_wait(mddev, conf, bio, sectors);
1323	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324	    (mddev->reshape_backwards
1325	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329		/* Need to update reshape_position in metadata */
1330		mddev->reshape_position = conf->reshape_progress;
1331		set_mask_bits(&mddev->sb_flags, 0,
1332			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333		md_wakeup_thread(mddev->thread);
1334		raid10_log(conf->mddev, "wait reshape metadata");
1335		wait_event(mddev->sb_wait,
1336			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337
1338		conf->reshape_safe = mddev->reshape_position;
1339	}
1340
 
 
 
1341	if (conf->pending_count >= max_queued_requests) {
1342		md_wakeup_thread(mddev->thread);
1343		raid10_log(mddev, "wait queued");
1344		wait_event(conf->wait_barrier,
1345			   conf->pending_count < max_queued_requests);
1346	}
1347	/* first select target devices under rcu_lock and
1348	 * inc refcount on their rdev.  Record them by setting
1349	 * bios[x] to bio
1350	 * If there are known/acknowledged bad blocks on any device
1351	 * on which we have seen a write error, we want to avoid
1352	 * writing to those blocks.  This potentially requires several
1353	 * writes to write around the bad blocks.  Each set of writes
1354	 * gets its own r10_bio with a set of bios attached.
 
 
1355	 */
1356
1357	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358	raid10_find_phys(conf, r10_bio);
1359retry_write:
1360	blocked_rdev = NULL;
1361	rcu_read_lock();
1362	max_sectors = r10_bio->sectors;
1363
1364	for (i = 0;  i < conf->copies; i++) {
1365		int d = r10_bio->devs[i].devnum;
1366		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367		struct md_rdev *rrdev = rcu_dereference(
1368			conf->mirrors[d].replacement);
1369		if (rdev == rrdev)
1370			rrdev = NULL;
1371		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372			atomic_inc(&rdev->nr_pending);
1373			blocked_rdev = rdev;
1374			break;
1375		}
1376		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377			atomic_inc(&rrdev->nr_pending);
1378			blocked_rdev = rrdev;
1379			break;
1380		}
1381		if (rdev && (test_bit(Faulty, &rdev->flags)))
 
1382			rdev = NULL;
1383		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
 
1384			rrdev = NULL;
1385
1386		r10_bio->devs[i].bio = NULL;
1387		r10_bio->devs[i].repl_bio = NULL;
1388
1389		if (!rdev && !rrdev) {
1390			set_bit(R10BIO_Degraded, &r10_bio->state);
1391			continue;
1392		}
1393		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394			sector_t first_bad;
1395			sector_t dev_sector = r10_bio->devs[i].addr;
1396			int bad_sectors;
1397			int is_bad;
1398
1399			is_bad = is_badblock(rdev, dev_sector, max_sectors,
 
1400					     &first_bad, &bad_sectors);
1401			if (is_bad < 0) {
1402				/* Mustn't write here until the bad block
1403				 * is acknowledged
1404				 */
1405				atomic_inc(&rdev->nr_pending);
1406				set_bit(BlockedBadBlocks, &rdev->flags);
1407				blocked_rdev = rdev;
1408				break;
1409			}
1410			if (is_bad && first_bad <= dev_sector) {
1411				/* Cannot write here at all */
1412				bad_sectors -= (dev_sector - first_bad);
1413				if (bad_sectors < max_sectors)
1414					/* Mustn't write more than bad_sectors
1415					 * to other devices yet
1416					 */
1417					max_sectors = bad_sectors;
1418				/* We don't set R10BIO_Degraded as that
1419				 * only applies if the disk is missing,
1420				 * so it might be re-added, and we want to
1421				 * know to recover this chunk.
1422				 * In this case the device is here, and the
1423				 * fact that this chunk is not in-sync is
1424				 * recorded in the bad block log.
1425				 */
1426				continue;
1427			}
1428			if (is_bad) {
1429				int good_sectors = first_bad - dev_sector;
1430				if (good_sectors < max_sectors)
1431					max_sectors = good_sectors;
1432			}
1433		}
1434		if (rdev) {
1435			r10_bio->devs[i].bio = bio;
1436			atomic_inc(&rdev->nr_pending);
1437		}
1438		if (rrdev) {
1439			r10_bio->devs[i].repl_bio = bio;
1440			atomic_inc(&rrdev->nr_pending);
1441		}
1442	}
1443	rcu_read_unlock();
1444
1445	if (unlikely(blocked_rdev)) {
1446		/* Have to wait for this device to get unblocked, then retry */
1447		int j;
1448		int d;
1449
1450		for (j = 0; j < i; j++) {
1451			if (r10_bio->devs[j].bio) {
1452				d = r10_bio->devs[j].devnum;
1453				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454			}
1455			if (r10_bio->devs[j].repl_bio) {
1456				struct md_rdev *rdev;
1457				d = r10_bio->devs[j].devnum;
1458				rdev = conf->mirrors[d].replacement;
1459				if (!rdev) {
1460					/* Race with remove_disk */
1461					smp_mb();
1462					rdev = conf->mirrors[d].rdev;
1463				}
1464				rdev_dec_pending(rdev, mddev);
1465			}
1466		}
1467		allow_barrier(conf);
1468		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470		wait_barrier(conf);
1471		goto retry_write;
1472	}
1473
1474	if (max_sectors < r10_bio->sectors)
 
 
 
1475		r10_bio->sectors = max_sectors;
1476
1477	if (r10_bio->sectors < bio_sectors(bio)) {
1478		struct bio *split = bio_split(bio, r10_bio->sectors,
1479					      GFP_NOIO, &conf->bio_split);
1480		bio_chain(split, bio);
1481		allow_barrier(conf);
1482		generic_make_request(bio);
1483		wait_barrier(conf);
1484		bio = split;
1485		r10_bio->master_bio = bio;
1486	}
 
 
1487
1488	atomic_set(&r10_bio->remaining, 1);
1489	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490
1491	for (i = 0; i < conf->copies; i++) {
1492		if (r10_bio->devs[i].bio)
1493			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494		if (r10_bio->devs[i].repl_bio)
1495			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	}
1497	one_write_done(r10_bio);
1498}
1499
1500static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501{
1502	struct r10conf *conf = mddev->private;
1503	struct r10bio *r10_bio;
1504
1505	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 
 
 
 
 
1506
1507	r10_bio->master_bio = bio;
1508	r10_bio->sectors = sectors;
1509
1510	r10_bio->mddev = mddev;
1511	r10_bio->sector = bio->bi_iter.bi_sector;
1512	r10_bio->state = 0;
1513	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514
1515	if (bio_data_dir(bio) == READ)
1516		raid10_read_request(mddev, bio, r10_bio);
1517	else
1518		raid10_write_request(mddev, bio, r10_bio);
1519}
1520
1521static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522{
1523	struct r10conf *conf = mddev->private;
1524	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525	int chunk_sects = chunk_mask + 1;
1526	int sectors = bio_sectors(bio);
1527
1528	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
 
 
1529		md_flush_request(mddev, bio);
1530		return true;
1531	}
1532
1533	if (!md_write_start(mddev, bio))
1534		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536	/*
1537	 * If this request crosses a chunk boundary, we need to split
1538	 * it.
1539	 */
1540	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1541		     sectors > chunk_sects
1542		     && (conf->geo.near_copies < conf->geo.raid_disks
1543			 || conf->prev.near_copies <
1544			 conf->prev.raid_disks)))
1545		sectors = chunk_sects -
1546			(bio->bi_iter.bi_sector &
1547			 (chunk_sects - 1));
1548	__make_request(mddev, bio, sectors);
1549
1550	/* In case raid10d snuck in to freeze_array */
1551	wake_up(&conf->wait_barrier);
1552	return true;
1553}
1554
1555static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1556{
1557	struct r10conf *conf = mddev->private;
1558	int i;
1559
1560	if (conf->geo.near_copies < conf->geo.raid_disks)
1561		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1562	if (conf->geo.near_copies > 1)
1563		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1564	if (conf->geo.far_copies > 1) {
1565		if (conf->geo.far_offset)
1566			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1567		else
1568			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1569		if (conf->geo.far_set_size != conf->geo.raid_disks)
1570			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1571	}
1572	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1573					conf->geo.raid_disks - mddev->degraded);
1574	rcu_read_lock();
1575	for (i = 0; i < conf->geo.raid_disks; i++) {
1576		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1577		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578	}
1579	rcu_read_unlock();
1580	seq_printf(seq, "]");
1581}
1582
1583/* check if there are enough drives for
1584 * every block to appear on atleast one.
1585 * Don't consider the device numbered 'ignore'
1586 * as we might be about to remove it.
1587 */
1588static int _enough(struct r10conf *conf, int previous, int ignore)
1589{
1590	int first = 0;
1591	int has_enough = 0;
1592	int disks, ncopies;
1593	if (previous) {
1594		disks = conf->prev.raid_disks;
1595		ncopies = conf->prev.near_copies;
1596	} else {
1597		disks = conf->geo.raid_disks;
1598		ncopies = conf->geo.near_copies;
1599	}
1600
1601	rcu_read_lock();
1602	do {
1603		int n = conf->copies;
1604		int cnt = 0;
1605		int this = first;
1606		while (n--) {
1607			struct md_rdev *rdev;
1608			if (this != ignore &&
1609			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1610			    test_bit(In_sync, &rdev->flags))
1611				cnt++;
1612			this = (this+1) % disks;
1613		}
1614		if (cnt == 0)
1615			goto out;
1616		first = (first + ncopies) % disks;
1617	} while (first != 0);
1618	has_enough = 1;
1619out:
1620	rcu_read_unlock();
1621	return has_enough;
1622}
1623
1624static int enough(struct r10conf *conf, int ignore)
1625{
1626	/* when calling 'enough', both 'prev' and 'geo' must
1627	 * be stable.
1628	 * This is ensured if ->reconfig_mutex or ->device_lock
1629	 * is held.
1630	 */
1631	return _enough(conf, 0, ignore) &&
1632		_enough(conf, 1, ignore);
1633}
1634
1635static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1636{
1637	char b[BDEVNAME_SIZE];
1638	struct r10conf *conf = mddev->private;
1639	unsigned long flags;
1640
1641	/*
1642	 * If it is not operational, then we have already marked it as dead
1643	 * else if it is the last working disks with "fail_last_dev == false",
1644	 * ignore the error, let the next level up know.
1645	 * else mark the drive as failed
1646	 */
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1649	    && !enough(conf, rdev->raid_disk)) {
1650		/*
1651		 * Don't fail the drive, just return an IO error.
1652		 */
1653		spin_unlock_irqrestore(&conf->device_lock, flags);
1654		return;
1655	}
1656	if (test_and_clear_bit(In_sync, &rdev->flags))
1657		mddev->degraded++;
1658	/*
1659	 * If recovery is running, make sure it aborts.
1660	 */
1661	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 
1662	set_bit(Blocked, &rdev->flags);
1663	set_bit(Faulty, &rdev->flags);
1664	set_mask_bits(&mddev->sb_flags, 0,
1665		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1666	spin_unlock_irqrestore(&conf->device_lock, flags);
1667	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1668		"md/raid10:%s: Operation continuing on %d devices.\n",
1669		mdname(mddev), bdevname(rdev->bdev, b),
1670		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
 
1671}
1672
1673static void print_conf(struct r10conf *conf)
1674{
1675	int i;
1676	struct md_rdev *rdev;
1677
1678	pr_debug("RAID10 conf printout:\n");
1679	if (!conf) {
1680		pr_debug("(!conf)\n");
1681		return;
1682	}
1683	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1684		 conf->geo.raid_disks);
1685
1686	/* This is only called with ->reconfix_mutex held, so
1687	 * rcu protection of rdev is not needed */
1688	for (i = 0; i < conf->geo.raid_disks; i++) {
1689		char b[BDEVNAME_SIZE];
1690		rdev = conf->mirrors[i].rdev;
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 bdevname(rdev->bdev,b));
1696	}
1697}
1698
1699static void close_sync(struct r10conf *conf)
1700{
1701	wait_barrier(conf);
1702	allow_barrier(conf);
1703
1704	mempool_exit(&conf->r10buf_pool);
 
1705}
1706
1707static int raid10_spare_active(struct mddev *mddev)
1708{
1709	int i;
1710	struct r10conf *conf = mddev->private;
1711	struct raid10_info *tmp;
1712	int count = 0;
1713	unsigned long flags;
1714
1715	/*
1716	 * Find all non-in_sync disks within the RAID10 configuration
1717	 * and mark them in_sync
1718	 */
1719	for (i = 0; i < conf->geo.raid_disks; i++) {
1720		tmp = conf->mirrors + i;
1721		if (tmp->replacement
1722		    && tmp->replacement->recovery_offset == MaxSector
1723		    && !test_bit(Faulty, &tmp->replacement->flags)
1724		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1725			/* Replacement has just become active */
1726			if (!tmp->rdev
1727			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1728				count++;
1729			if (tmp->rdev) {
1730				/* Replaced device not technically faulty,
1731				 * but we need to be sure it gets removed
1732				 * and never re-added.
1733				 */
1734				set_bit(Faulty, &tmp->rdev->flags);
1735				sysfs_notify_dirent_safe(
1736					tmp->rdev->sysfs_state);
1737			}
1738			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1739		} else if (tmp->rdev
1740			   && tmp->rdev->recovery_offset == MaxSector
1741			   && !test_bit(Faulty, &tmp->rdev->flags)
1742			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1743			count++;
1744			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1745		}
1746	}
1747	spin_lock_irqsave(&conf->device_lock, flags);
1748	mddev->degraded -= count;
1749	spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751	print_conf(conf);
1752	return count;
1753}
1754
 
1755static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756{
1757	struct r10conf *conf = mddev->private;
1758	int err = -EEXIST;
1759	int mirror;
1760	int first = 0;
1761	int last = conf->geo.raid_disks - 1;
 
1762
1763	if (mddev->recovery_cp < MaxSector)
1764		/* only hot-add to in-sync arrays, as recovery is
1765		 * very different from resync
1766		 */
1767		return -EBUSY;
1768	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1769		return -EINVAL;
1770
1771	if (md_integrity_add_rdev(rdev, mddev))
1772		return -ENXIO;
1773
1774	if (rdev->raid_disk >= 0)
1775		first = last = rdev->raid_disk;
1776
 
 
 
 
 
1777	if (rdev->saved_raid_disk >= first &&
1778	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1779	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780		mirror = rdev->saved_raid_disk;
1781	else
1782		mirror = first;
1783	for ( ; mirror <= last ; mirror++) {
1784		struct raid10_info *p = &conf->mirrors[mirror];
1785		if (p->recovery_disabled == mddev->recovery_disabled)
1786			continue;
1787		if (p->rdev) {
1788			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1789			    p->replacement != NULL)
1790				continue;
1791			clear_bit(In_sync, &rdev->flags);
1792			set_bit(Replacement, &rdev->flags);
1793			rdev->raid_disk = mirror;
1794			err = 0;
1795			if (mddev->gendisk)
1796				disk_stack_limits(mddev->gendisk, rdev->bdev,
1797						  rdev->data_offset << 9);
1798			conf->fullsync = 1;
1799			rcu_assign_pointer(p->replacement, rdev);
1800			break;
1801		}
1802
1803		if (mddev->gendisk)
1804			disk_stack_limits(mddev->gendisk, rdev->bdev,
1805					  rdev->data_offset << 9);
1806
1807		p->head_position = 0;
1808		p->recovery_disabled = mddev->recovery_disabled - 1;
1809		rdev->raid_disk = mirror;
1810		err = 0;
1811		if (rdev->saved_raid_disk != mirror)
1812			conf->fullsync = 1;
1813		rcu_assign_pointer(p->rdev, rdev);
1814		break;
1815	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1817		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1818
1819	print_conf(conf);
1820	return err;
1821}
1822
1823static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1824{
1825	struct r10conf *conf = mddev->private;
1826	int err = 0;
1827	int number = rdev->raid_disk;
1828	struct md_rdev **rdevp;
1829	struct raid10_info *p = conf->mirrors + number;
1830
1831	print_conf(conf);
1832	if (rdev == p->rdev)
1833		rdevp = &p->rdev;
1834	else if (rdev == p->replacement)
1835		rdevp = &p->replacement;
1836	else
1837		return 0;
1838
1839	if (test_bit(In_sync, &rdev->flags) ||
1840	    atomic_read(&rdev->nr_pending)) {
1841		err = -EBUSY;
1842		goto abort;
1843	}
1844	/* Only remove non-faulty devices if recovery
1845	 * is not possible.
1846	 */
1847	if (!test_bit(Faulty, &rdev->flags) &&
1848	    mddev->recovery_disabled != p->recovery_disabled &&
1849	    (!p->replacement || p->replacement == rdev) &&
1850	    number < conf->geo.raid_disks &&
1851	    enough(conf, -1)) {
1852		err = -EBUSY;
1853		goto abort;
1854	}
1855	*rdevp = NULL;
1856	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857		synchronize_rcu();
1858		if (atomic_read(&rdev->nr_pending)) {
1859			/* lost the race, try later */
1860			err = -EBUSY;
1861			*rdevp = rdev;
1862			goto abort;
1863		}
1864	}
1865	if (p->replacement) {
1866		/* We must have just cleared 'rdev' */
1867		p->rdev = p->replacement;
1868		clear_bit(Replacement, &p->replacement->flags);
1869		smp_mb(); /* Make sure other CPUs may see both as identical
1870			   * but will never see neither -- if they are careful.
1871			   */
1872		p->replacement = NULL;
1873	}
 
 
 
 
 
1874
1875	clear_bit(WantReplacement, &rdev->flags);
1876	err = md_integrity_register(mddev);
1877
1878abort:
1879
1880	print_conf(conf);
1881	return err;
1882}
1883
1884static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
 
1885{
 
1886	struct r10conf *conf = r10_bio->mddev->private;
 
1887
1888	if (!bio->bi_status)
 
 
 
 
 
 
1889		set_bit(R10BIO_Uptodate, &r10_bio->state);
1890	else
1891		/* The write handler will notice the lack of
1892		 * R10BIO_Uptodate and record any errors etc
1893		 */
1894		atomic_add(r10_bio->sectors,
1895			   &conf->mirrors[d].rdev->corrected_errors);
1896
1897	/* for reconstruct, we always reschedule after a read.
1898	 * for resync, only after all reads
1899	 */
1900	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1901	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1902	    atomic_dec_and_test(&r10_bio->remaining)) {
1903		/* we have read all the blocks,
1904		 * do the comparison in process context in raid10d
1905		 */
1906		reschedule_retry(r10_bio);
1907	}
1908}
1909
1910static void end_sync_read(struct bio *bio)
1911{
1912	struct r10bio *r10_bio = get_resync_r10bio(bio);
1913	struct r10conf *conf = r10_bio->mddev->private;
1914	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1915
1916	__end_sync_read(r10_bio, bio, d);
1917}
1918
1919static void end_reshape_read(struct bio *bio)
1920{
1921	/* reshape read bio isn't allocated from r10buf_pool */
1922	struct r10bio *r10_bio = bio->bi_private;
1923
1924	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1925}
1926
1927static void end_sync_request(struct r10bio *r10_bio)
1928{
1929	struct mddev *mddev = r10_bio->mddev;
1930
1931	while (atomic_dec_and_test(&r10_bio->remaining)) {
1932		if (r10_bio->master_bio == NULL) {
1933			/* the primary of several recovery bios */
1934			sector_t s = r10_bio->sectors;
1935			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1936			    test_bit(R10BIO_WriteError, &r10_bio->state))
1937				reschedule_retry(r10_bio);
1938			else
1939				put_buf(r10_bio);
1940			md_done_sync(mddev, s, 1);
1941			break;
1942		} else {
1943			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1944			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1945			    test_bit(R10BIO_WriteError, &r10_bio->state))
1946				reschedule_retry(r10_bio);
1947			else
1948				put_buf(r10_bio);
1949			r10_bio = r10_bio2;
1950		}
1951	}
1952}
1953
1954static void end_sync_write(struct bio *bio)
1955{
1956	struct r10bio *r10_bio = get_resync_r10bio(bio);
 
1957	struct mddev *mddev = r10_bio->mddev;
1958	struct r10conf *conf = mddev->private;
1959	int d;
1960	sector_t first_bad;
1961	int bad_sectors;
1962	int slot;
1963	int repl;
1964	struct md_rdev *rdev = NULL;
1965
1966	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1967	if (repl)
1968		rdev = conf->mirrors[d].replacement;
1969	else
1970		rdev = conf->mirrors[d].rdev;
1971
1972	if (bio->bi_status) {
1973		if (repl)
1974			md_error(mddev, rdev);
1975		else {
1976			set_bit(WriteErrorSeen, &rdev->flags);
1977			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978				set_bit(MD_RECOVERY_NEEDED,
1979					&rdev->mddev->recovery);
1980			set_bit(R10BIO_WriteError, &r10_bio->state);
1981		}
1982	} else if (is_badblock(rdev,
1983			     r10_bio->devs[slot].addr,
1984			     r10_bio->sectors,
1985			     &first_bad, &bad_sectors))
1986		set_bit(R10BIO_MadeGood, &r10_bio->state);
1987
1988	rdev_dec_pending(rdev, mddev);
1989
1990	end_sync_request(r10_bio);
1991}
1992
1993/*
1994 * Note: sync and recover and handled very differently for raid10
1995 * This code is for resync.
1996 * For resync, we read through virtual addresses and read all blocks.
1997 * If there is any error, we schedule a write.  The lowest numbered
1998 * drive is authoritative.
1999 * However requests come for physical address, so we need to map.
2000 * For every physical address there are raid_disks/copies virtual addresses,
2001 * which is always are least one, but is not necessarly an integer.
2002 * This means that a physical address can span multiple chunks, so we may
2003 * have to submit multiple io requests for a single sync request.
2004 */
2005/*
2006 * We check if all blocks are in-sync and only write to blocks that
2007 * aren't in sync
2008 */
2009static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2010{
2011	struct r10conf *conf = mddev->private;
2012	int i, first;
2013	struct bio *tbio, *fbio;
2014	int vcnt;
2015	struct page **tpages, **fpages;
2016
2017	atomic_set(&r10_bio->remaining, 1);
2018
2019	/* find the first device with a block */
2020	for (i=0; i<conf->copies; i++)
2021		if (!r10_bio->devs[i].bio->bi_status)
2022			break;
2023
2024	if (i == conf->copies)
2025		goto done;
2026
2027	first = i;
2028	fbio = r10_bio->devs[i].bio;
2029	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2030	fbio->bi_iter.bi_idx = 0;
2031	fpages = get_resync_pages(fbio)->pages;
2032
2033	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2034	/* now find blocks with errors */
2035	for (i=0 ; i < conf->copies ; i++) {
2036		int  j, d;
2037		struct md_rdev *rdev;
2038		struct resync_pages *rp;
2039
2040		tbio = r10_bio->devs[i].bio;
2041
2042		if (tbio->bi_end_io != end_sync_read)
2043			continue;
2044		if (i == first)
2045			continue;
2046
2047		tpages = get_resync_pages(tbio)->pages;
2048		d = r10_bio->devs[i].devnum;
2049		rdev = conf->mirrors[d].rdev;
2050		if (!r10_bio->devs[i].bio->bi_status) {
2051			/* We know that the bi_io_vec layout is the same for
2052			 * both 'first' and 'i', so we just compare them.
2053			 * All vec entries are PAGE_SIZE;
2054			 */
2055			int sectors = r10_bio->sectors;
2056			for (j = 0; j < vcnt; j++) {
2057				int len = PAGE_SIZE;
2058				if (sectors < (len / 512))
2059					len = sectors * 512;
2060				if (memcmp(page_address(fpages[j]),
2061					   page_address(tpages[j]),
2062					   len))
2063					break;
2064				sectors -= len/512;
2065			}
2066			if (j == vcnt)
2067				continue;
2068			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2069			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2070				/* Don't fix anything. */
2071				continue;
2072		} else if (test_bit(FailFast, &rdev->flags)) {
2073			/* Just give up on this device */
2074			md_error(rdev->mddev, rdev);
2075			continue;
2076		}
2077		/* Ok, we need to write this bio, either to correct an
2078		 * inconsistency or to correct an unreadable block.
2079		 * First we need to fixup bv_offset, bv_len and
2080		 * bi_vecs, as the read request might have corrupted these
2081		 */
2082		rp = get_resync_pages(tbio);
2083		bio_reset(tbio);
2084
2085		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
 
 
 
 
2086
2087		rp->raid_bio = r10_bio;
2088		tbio->bi_private = rp;
2089		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 
 
 
 
 
2090		tbio->bi_end_io = end_sync_write;
2091		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2092
2093		bio_copy_data(tbio, fbio);
2094
 
2095		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2096		atomic_inc(&r10_bio->remaining);
2097		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2098
2099		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2100			tbio->bi_opf |= MD_FAILFAST;
2101		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2102		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2103		generic_make_request(tbio);
2104	}
2105
2106	/* Now write out to any replacement devices
2107	 * that are active
2108	 */
2109	for (i = 0; i < conf->copies; i++) {
2110		int d;
2111
2112		tbio = r10_bio->devs[i].repl_bio;
2113		if (!tbio || !tbio->bi_end_io)
2114			continue;
2115		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2116		    && r10_bio->devs[i].bio != fbio)
2117			bio_copy_data(tbio, fbio);
 
 
 
2118		d = r10_bio->devs[i].devnum;
2119		atomic_inc(&r10_bio->remaining);
2120		md_sync_acct(conf->mirrors[d].replacement->bdev,
2121			     bio_sectors(tbio));
2122		generic_make_request(tbio);
2123	}
2124
2125done:
2126	if (atomic_dec_and_test(&r10_bio->remaining)) {
2127		md_done_sync(mddev, r10_bio->sectors, 1);
2128		put_buf(r10_bio);
2129	}
2130}
2131
2132/*
2133 * Now for the recovery code.
2134 * Recovery happens across physical sectors.
2135 * We recover all non-is_sync drives by finding the virtual address of
2136 * each, and then choose a working drive that also has that virt address.
2137 * There is a separate r10_bio for each non-in_sync drive.
2138 * Only the first two slots are in use. The first for reading,
2139 * The second for writing.
2140 *
2141 */
2142static void fix_recovery_read_error(struct r10bio *r10_bio)
2143{
2144	/* We got a read error during recovery.
2145	 * We repeat the read in smaller page-sized sections.
2146	 * If a read succeeds, write it to the new device or record
2147	 * a bad block if we cannot.
2148	 * If a read fails, record a bad block on both old and
2149	 * new devices.
2150	 */
2151	struct mddev *mddev = r10_bio->mddev;
2152	struct r10conf *conf = mddev->private;
2153	struct bio *bio = r10_bio->devs[0].bio;
2154	sector_t sect = 0;
2155	int sectors = r10_bio->sectors;
2156	int idx = 0;
2157	int dr = r10_bio->devs[0].devnum;
2158	int dw = r10_bio->devs[1].devnum;
2159	struct page **pages = get_resync_pages(bio)->pages;
2160
2161	while (sectors) {
2162		int s = sectors;
2163		struct md_rdev *rdev;
2164		sector_t addr;
2165		int ok;
2166
2167		if (s > (PAGE_SIZE>>9))
2168			s = PAGE_SIZE >> 9;
2169
2170		rdev = conf->mirrors[dr].rdev;
2171		addr = r10_bio->devs[0].addr + sect,
2172		ok = sync_page_io(rdev,
2173				  addr,
2174				  s << 9,
2175				  pages[idx],
2176				  REQ_OP_READ, 0, false);
2177		if (ok) {
2178			rdev = conf->mirrors[dw].rdev;
2179			addr = r10_bio->devs[1].addr + sect;
2180			ok = sync_page_io(rdev,
2181					  addr,
2182					  s << 9,
2183					  pages[idx],
2184					  REQ_OP_WRITE, 0, false);
2185			if (!ok) {
2186				set_bit(WriteErrorSeen, &rdev->flags);
2187				if (!test_and_set_bit(WantReplacement,
2188						      &rdev->flags))
2189					set_bit(MD_RECOVERY_NEEDED,
2190						&rdev->mddev->recovery);
2191			}
2192		}
2193		if (!ok) {
2194			/* We don't worry if we cannot set a bad block -
2195			 * it really is bad so there is no loss in not
2196			 * recording it yet
2197			 */
2198			rdev_set_badblocks(rdev, addr, s, 0);
2199
2200			if (rdev != conf->mirrors[dw].rdev) {
2201				/* need bad block on destination too */
2202				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2203				addr = r10_bio->devs[1].addr + sect;
2204				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2205				if (!ok) {
2206					/* just abort the recovery */
2207					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2208						  mdname(mddev));
 
 
2209
2210					conf->mirrors[dw].recovery_disabled
2211						= mddev->recovery_disabled;
2212					set_bit(MD_RECOVERY_INTR,
2213						&mddev->recovery);
2214					break;
2215				}
2216			}
2217		}
2218
2219		sectors -= s;
2220		sect += s;
2221		idx++;
2222	}
2223}
2224
2225static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2226{
2227	struct r10conf *conf = mddev->private;
2228	int d;
2229	struct bio *wbio, *wbio2;
2230
2231	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2232		fix_recovery_read_error(r10_bio);
2233		end_sync_request(r10_bio);
2234		return;
2235	}
2236
2237	/*
2238	 * share the pages with the first bio
2239	 * and submit the write request
2240	 */
2241	d = r10_bio->devs[1].devnum;
2242	wbio = r10_bio->devs[1].bio;
2243	wbio2 = r10_bio->devs[1].repl_bio;
2244	/* Need to test wbio2->bi_end_io before we call
2245	 * generic_make_request as if the former is NULL,
2246	 * the latter is free to free wbio2.
2247	 */
2248	if (wbio2 && !wbio2->bi_end_io)
2249		wbio2 = NULL;
2250	if (wbio->bi_end_io) {
2251		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2252		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2253		generic_make_request(wbio);
2254	}
2255	if (wbio2) {
2256		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2257		md_sync_acct(conf->mirrors[d].replacement->bdev,
2258			     bio_sectors(wbio2));
2259		generic_make_request(wbio2);
2260	}
2261}
2262
 
2263/*
2264 * Used by fix_read_error() to decay the per rdev read_errors.
2265 * We halve the read error count for every hour that has elapsed
2266 * since the last recorded read error.
2267 *
2268 */
2269static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2270{
2271	long cur_time_mon;
2272	unsigned long hours_since_last;
2273	unsigned int read_errors = atomic_read(&rdev->read_errors);
2274
2275	cur_time_mon = ktime_get_seconds();
2276
2277	if (rdev->last_read_error == 0) {
 
2278		/* first time we've seen a read error */
2279		rdev->last_read_error = cur_time_mon;
2280		return;
2281	}
2282
2283	hours_since_last = (long)(cur_time_mon -
2284			    rdev->last_read_error) / 3600;
2285
2286	rdev->last_read_error = cur_time_mon;
2287
2288	/*
2289	 * if hours_since_last is > the number of bits in read_errors
2290	 * just set read errors to 0. We do this to avoid
2291	 * overflowing the shift of read_errors by hours_since_last.
2292	 */
2293	if (hours_since_last >= 8 * sizeof(read_errors))
2294		atomic_set(&rdev->read_errors, 0);
2295	else
2296		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2297}
2298
2299static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2300			    int sectors, struct page *page, int rw)
2301{
2302	sector_t first_bad;
2303	int bad_sectors;
2304
2305	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2306	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2307		return -1;
2308	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2309		/* success */
2310		return 1;
2311	if (rw == WRITE) {
2312		set_bit(WriteErrorSeen, &rdev->flags);
2313		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2314			set_bit(MD_RECOVERY_NEEDED,
2315				&rdev->mddev->recovery);
2316	}
2317	/* need to record an error - either for the block or the device */
2318	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2319		md_error(rdev->mddev, rdev);
2320	return 0;
2321}
2322
2323/*
2324 * This is a kernel thread which:
2325 *
2326 *	1.	Retries failed read operations on working mirrors.
2327 *	2.	Updates the raid superblock when problems encounter.
2328 *	3.	Performs writes following reads for array synchronising.
2329 */
2330
2331static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2332{
2333	int sect = 0; /* Offset from r10_bio->sector */
2334	int sectors = r10_bio->sectors;
2335	struct md_rdev *rdev;
2336	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2337	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2338
2339	/* still own a reference to this rdev, so it cannot
2340	 * have been cleared recently.
2341	 */
2342	rdev = conf->mirrors[d].rdev;
2343
2344	if (test_bit(Faulty, &rdev->flags))
2345		/* drive has already been failed, just ignore any
2346		   more fix_read_error() attempts */
2347		return;
2348
2349	check_decay_read_errors(mddev, rdev);
2350	atomic_inc(&rdev->read_errors);
2351	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2352		char b[BDEVNAME_SIZE];
2353		bdevname(rdev->bdev, b);
2354
2355		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356			  mdname(mddev), b,
2357			  atomic_read(&rdev->read_errors), max_read_errors);
2358		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359			  mdname(mddev), b);
2360		md_error(mddev, rdev);
 
 
 
2361		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2362		return;
2363	}
2364
2365	while(sectors) {
2366		int s = sectors;
2367		int sl = r10_bio->read_slot;
2368		int success = 0;
2369		int start;
2370
2371		if (s > (PAGE_SIZE>>9))
2372			s = PAGE_SIZE >> 9;
2373
2374		rcu_read_lock();
2375		do {
2376			sector_t first_bad;
2377			int bad_sectors;
2378
2379			d = r10_bio->devs[sl].devnum;
2380			rdev = rcu_dereference(conf->mirrors[d].rdev);
2381			if (rdev &&
 
2382			    test_bit(In_sync, &rdev->flags) &&
2383			    !test_bit(Faulty, &rdev->flags) &&
2384			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2385					&first_bad, &bad_sectors) == 0) {
2386				atomic_inc(&rdev->nr_pending);
2387				rcu_read_unlock();
2388				success = sync_page_io(rdev,
2389						       r10_bio->devs[sl].addr +
2390						       sect,
2391						       s<<9,
2392						       conf->tmppage,
2393						       REQ_OP_READ, 0, false);
2394				rdev_dec_pending(rdev, mddev);
2395				rcu_read_lock();
2396				if (success)
2397					break;
2398			}
2399			sl++;
2400			if (sl == conf->copies)
2401				sl = 0;
2402		} while (!success && sl != r10_bio->read_slot);
2403		rcu_read_unlock();
2404
2405		if (!success) {
2406			/* Cannot read from anywhere, just mark the block
2407			 * as bad on the first device to discourage future
2408			 * reads.
2409			 */
2410			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2411			rdev = conf->mirrors[dn].rdev;
2412
2413			if (!rdev_set_badblocks(
2414				    rdev,
2415				    r10_bio->devs[r10_bio->read_slot].addr
2416				    + sect,
2417				    s, 0)) {
2418				md_error(mddev, rdev);
2419				r10_bio->devs[r10_bio->read_slot].bio
2420					= IO_BLOCKED;
2421			}
2422			break;
2423		}
2424
2425		start = sl;
2426		/* write it back and re-read */
2427		rcu_read_lock();
2428		while (sl != r10_bio->read_slot) {
2429			char b[BDEVNAME_SIZE];
2430
2431			if (sl==0)
2432				sl = conf->copies;
2433			sl--;
2434			d = r10_bio->devs[sl].devnum;
2435			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436			if (!rdev ||
2437			    test_bit(Faulty, &rdev->flags) ||
2438			    !test_bit(In_sync, &rdev->flags))
2439				continue;
2440
2441			atomic_inc(&rdev->nr_pending);
2442			rcu_read_unlock();
2443			if (r10_sync_page_io(rdev,
2444					     r10_bio->devs[sl].addr +
2445					     sect,
2446					     s, conf->tmppage, WRITE)
2447			    == 0) {
2448				/* Well, this device is dead */
2449				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450					  mdname(mddev), s,
2451					  (unsigned long long)(
2452						  sect +
2453						  choose_data_offset(r10_bio,
2454								     rdev)),
2455					  bdevname(rdev->bdev, b));
2456				pr_notice("md/raid10:%s: %s: failing drive\n",
2457					  mdname(mddev),
2458					  bdevname(rdev->bdev, b));
 
 
 
 
2459			}
2460			rdev_dec_pending(rdev, mddev);
2461			rcu_read_lock();
2462		}
2463		sl = start;
2464		while (sl != r10_bio->read_slot) {
2465			char b[BDEVNAME_SIZE];
2466
2467			if (sl==0)
2468				sl = conf->copies;
2469			sl--;
2470			d = r10_bio->devs[sl].devnum;
2471			rdev = rcu_dereference(conf->mirrors[d].rdev);
2472			if (!rdev ||
2473			    test_bit(Faulty, &rdev->flags) ||
2474			    !test_bit(In_sync, &rdev->flags))
2475				continue;
2476
2477			atomic_inc(&rdev->nr_pending);
2478			rcu_read_unlock();
2479			switch (r10_sync_page_io(rdev,
2480					     r10_bio->devs[sl].addr +
2481					     sect,
2482					     s, conf->tmppage,
2483						 READ)) {
2484			case 0:
2485				/* Well, this device is dead */
2486				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
 
 
 
2487				       mdname(mddev), s,
2488				       (unsigned long long)(
2489					       sect +
2490					       choose_data_offset(r10_bio, rdev)),
2491				       bdevname(rdev->bdev, b));
2492				pr_notice("md/raid10:%s: %s: failing drive\n",
 
2493				       mdname(mddev),
2494				       bdevname(rdev->bdev, b));
2495				break;
2496			case 1:
2497				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
 
 
2498				       mdname(mddev), s,
2499				       (unsigned long long)(
2500					       sect +
2501					       choose_data_offset(r10_bio, rdev)),
2502				       bdevname(rdev->bdev, b));
2503				atomic_add(s, &rdev->corrected_errors);
2504			}
2505
2506			rdev_dec_pending(rdev, mddev);
2507			rcu_read_lock();
2508		}
2509		rcu_read_unlock();
2510
2511		sectors -= s;
2512		sect += s;
2513	}
2514}
2515
2516static int narrow_write_error(struct r10bio *r10_bio, int i)
2517{
2518	struct bio *bio = r10_bio->master_bio;
2519	struct mddev *mddev = r10_bio->mddev;
2520	struct r10conf *conf = mddev->private;
2521	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2522	/* bio has the data to be written to slot 'i' where
2523	 * we just recently had a write error.
2524	 * We repeatedly clone the bio and trim down to one block,
2525	 * then try the write.  Where the write fails we record
2526	 * a bad block.
2527	 * It is conceivable that the bio doesn't exactly align with
2528	 * blocks.  We must handle this.
2529	 *
2530	 * We currently own a reference to the rdev.
2531	 */
2532
2533	int block_sectors;
2534	sector_t sector;
2535	int sectors;
2536	int sect_to_write = r10_bio->sectors;
2537	int ok = 1;
2538
2539	if (rdev->badblocks.shift < 0)
2540		return 0;
2541
2542	block_sectors = roundup(1 << rdev->badblocks.shift,
2543				bdev_logical_block_size(rdev->bdev) >> 9);
2544	sector = r10_bio->sector;
2545	sectors = ((r10_bio->sector + block_sectors)
2546		   & ~(sector_t)(block_sectors - 1))
2547		- sector;
2548
2549	while (sect_to_write) {
2550		struct bio *wbio;
2551		sector_t wsector;
2552		if (sectors > sect_to_write)
2553			sectors = sect_to_write;
2554		/* Write at 'sector' for 'sectors' */
2555		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2556		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2557		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2558		wbio->bi_iter.bi_sector = wsector +
2559				   choose_data_offset(r10_bio, rdev);
2560		bio_set_dev(wbio, rdev->bdev);
2561		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2562
2563		if (submit_bio_wait(wbio) < 0)
2564			/* Failure! */
2565			ok = rdev_set_badblocks(rdev, wsector,
2566						sectors, 0)
2567				&& ok;
2568
2569		bio_put(wbio);
2570		sect_to_write -= sectors;
2571		sector += sectors;
2572		sectors = block_sectors;
2573	}
2574	return ok;
2575}
2576
2577static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2578{
2579	int slot = r10_bio->read_slot;
2580	struct bio *bio;
2581	struct r10conf *conf = mddev->private;
2582	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 
 
 
2583
2584	/* we got a read error. Maybe the drive is bad.  Maybe just
2585	 * the block and we can fix it.
2586	 * We freeze all other IO, and try reading the block from
2587	 * other devices.  When we find one, we re-write
2588	 * and check it that fixes the read error.
2589	 * This is all done synchronously while the array is
2590	 * frozen.
2591	 */
2592	bio = r10_bio->devs[slot].bio;
 
2593	bio_put(bio);
2594	r10_bio->devs[slot].bio = NULL;
2595
2596	if (mddev->ro)
2597		r10_bio->devs[slot].bio = IO_BLOCKED;
2598	else if (!test_bit(FailFast, &rdev->flags)) {
2599		freeze_array(conf, 1);
2600		fix_read_error(conf, mddev, r10_bio);
2601		unfreeze_array(conf);
2602	} else
2603		md_error(mddev, rdev);
2604
2605	rdev_dec_pending(rdev, mddev);
2606	allow_barrier(conf);
2607	r10_bio->state = 0;
2608	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609}
2610
2611static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2612{
2613	/* Some sort of write request has finished and it
2614	 * succeeded in writing where we thought there was a
2615	 * bad block.  So forget the bad block.
2616	 * Or possibly if failed and we need to record
2617	 * a bad block.
2618	 */
2619	int m;
2620	struct md_rdev *rdev;
2621
2622	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2623	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2624		for (m = 0; m < conf->copies; m++) {
2625			int dev = r10_bio->devs[m].devnum;
2626			rdev = conf->mirrors[dev].rdev;
2627			if (r10_bio->devs[m].bio == NULL ||
2628				r10_bio->devs[m].bio->bi_end_io == NULL)
2629				continue;
2630			if (!r10_bio->devs[m].bio->bi_status) {
 
2631				rdev_clear_badblocks(
2632					rdev,
2633					r10_bio->devs[m].addr,
2634					r10_bio->sectors, 0);
2635			} else {
2636				if (!rdev_set_badblocks(
2637					    rdev,
2638					    r10_bio->devs[m].addr,
2639					    r10_bio->sectors, 0))
2640					md_error(conf->mddev, rdev);
2641			}
2642			rdev = conf->mirrors[dev].replacement;
2643			if (r10_bio->devs[m].repl_bio == NULL ||
2644				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2645				continue;
2646
2647			if (!r10_bio->devs[m].repl_bio->bi_status) {
2648				rdev_clear_badblocks(
2649					rdev,
2650					r10_bio->devs[m].addr,
2651					r10_bio->sectors, 0);
2652			} else {
2653				if (!rdev_set_badblocks(
2654					    rdev,
2655					    r10_bio->devs[m].addr,
2656					    r10_bio->sectors, 0))
2657					md_error(conf->mddev, rdev);
2658			}
2659		}
2660		put_buf(r10_bio);
2661	} else {
2662		bool fail = false;
2663		for (m = 0; m < conf->copies; m++) {
2664			int dev = r10_bio->devs[m].devnum;
2665			struct bio *bio = r10_bio->devs[m].bio;
2666			rdev = conf->mirrors[dev].rdev;
2667			if (bio == IO_MADE_GOOD) {
2668				rdev_clear_badblocks(
2669					rdev,
2670					r10_bio->devs[m].addr,
2671					r10_bio->sectors, 0);
2672				rdev_dec_pending(rdev, conf->mddev);
2673			} else if (bio != NULL && bio->bi_status) {
2674				fail = true;
2675				if (!narrow_write_error(r10_bio, m)) {
2676					md_error(conf->mddev, rdev);
2677					set_bit(R10BIO_Degraded,
2678						&r10_bio->state);
2679				}
2680				rdev_dec_pending(rdev, conf->mddev);
2681			}
2682			bio = r10_bio->devs[m].repl_bio;
2683			rdev = conf->mirrors[dev].replacement;
2684			if (rdev && bio == IO_MADE_GOOD) {
2685				rdev_clear_badblocks(
2686					rdev,
2687					r10_bio->devs[m].addr,
2688					r10_bio->sectors, 0);
2689				rdev_dec_pending(rdev, conf->mddev);
2690			}
2691		}
2692		if (fail) {
2693			spin_lock_irq(&conf->device_lock);
2694			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2695			conf->nr_queued++;
2696			spin_unlock_irq(&conf->device_lock);
2697			/*
2698			 * In case freeze_array() is waiting for condition
2699			 * nr_pending == nr_queued + extra to be true.
2700			 */
2701			wake_up(&conf->wait_barrier);
2702			md_wakeup_thread(conf->mddev->thread);
2703		} else {
2704			if (test_bit(R10BIO_WriteError,
2705				     &r10_bio->state))
2706				close_write(r10_bio);
2707			raid_end_bio_io(r10_bio);
2708		}
2709	}
2710}
2711
2712static void raid10d(struct md_thread *thread)
2713{
2714	struct mddev *mddev = thread->mddev;
2715	struct r10bio *r10_bio;
2716	unsigned long flags;
2717	struct r10conf *conf = mddev->private;
2718	struct list_head *head = &conf->retry_list;
2719	struct blk_plug plug;
2720
2721	md_check_recovery(mddev);
2722
2723	if (!list_empty_careful(&conf->bio_end_io_list) &&
2724	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725		LIST_HEAD(tmp);
2726		spin_lock_irqsave(&conf->device_lock, flags);
2727		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2728			while (!list_empty(&conf->bio_end_io_list)) {
2729				list_move(conf->bio_end_io_list.prev, &tmp);
2730				conf->nr_queued--;
2731			}
2732		}
2733		spin_unlock_irqrestore(&conf->device_lock, flags);
2734		while (!list_empty(&tmp)) {
2735			r10_bio = list_first_entry(&tmp, struct r10bio,
2736						   retry_list);
2737			list_del(&r10_bio->retry_list);
2738			if (mddev->degraded)
2739				set_bit(R10BIO_Degraded, &r10_bio->state);
2740
2741			if (test_bit(R10BIO_WriteError,
2742				     &r10_bio->state))
2743				close_write(r10_bio);
2744			raid_end_bio_io(r10_bio);
2745		}
2746	}
2747
2748	blk_start_plug(&plug);
2749	for (;;) {
2750
2751		flush_pending_writes(conf);
2752
2753		spin_lock_irqsave(&conf->device_lock, flags);
2754		if (list_empty(head)) {
2755			spin_unlock_irqrestore(&conf->device_lock, flags);
2756			break;
2757		}
2758		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759		list_del(head->prev);
2760		conf->nr_queued--;
2761		spin_unlock_irqrestore(&conf->device_lock, flags);
2762
2763		mddev = r10_bio->mddev;
2764		conf = mddev->private;
2765		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766		    test_bit(R10BIO_WriteError, &r10_bio->state))
2767			handle_write_completed(conf, r10_bio);
2768		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769			reshape_request_write(mddev, r10_bio);
2770		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771			sync_request_write(mddev, r10_bio);
2772		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773			recovery_request_write(mddev, r10_bio);
2774		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775			handle_read_error(mddev, r10_bio);
2776		else
2777			WARN_ON_ONCE(1);
 
 
 
 
 
2778
2779		cond_resched();
2780		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2781			md_check_recovery(mddev);
2782	}
2783	blk_finish_plug(&plug);
2784}
2785
 
2786static int init_resync(struct r10conf *conf)
2787{
2788	int ret, buffs, i;
 
2789
2790	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2791	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2792	conf->have_replacement = 0;
2793	for (i = 0; i < conf->geo.raid_disks; i++)
2794		if (conf->mirrors[i].replacement)
2795			conf->have_replacement = 1;
2796	ret = mempool_init(&conf->r10buf_pool, buffs,
2797			   r10buf_pool_alloc, r10buf_pool_free, conf);
2798	if (ret)
2799		return ret;
2800	conf->next_resync = 0;
2801	return 0;
2802}
2803
2804static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2805{
2806	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2807	struct rsync_pages *rp;
2808	struct bio *bio;
2809	int nalloc;
2810	int i;
2811
2812	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2813	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2814		nalloc = conf->copies; /* resync */
2815	else
2816		nalloc = 2; /* recovery */
2817
2818	for (i = 0; i < nalloc; i++) {
2819		bio = r10bio->devs[i].bio;
2820		rp = bio->bi_private;
2821		bio_reset(bio);
2822		bio->bi_private = rp;
2823		bio = r10bio->devs[i].repl_bio;
2824		if (bio) {
2825			rp = bio->bi_private;
2826			bio_reset(bio);
2827			bio->bi_private = rp;
2828		}
2829	}
2830	return r10bio;
2831}
2832
2833/*
2834 * Set cluster_sync_high since we need other nodes to add the
2835 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836 */
2837static void raid10_set_cluster_sync_high(struct r10conf *conf)
2838{
2839	sector_t window_size;
2840	int extra_chunk, chunks;
2841
2842	/*
2843	 * First, here we define "stripe" as a unit which across
2844	 * all member devices one time, so we get chunks by use
2845	 * raid_disks / near_copies. Otherwise, if near_copies is
2846	 * close to raid_disks, then resync window could increases
2847	 * linearly with the increase of raid_disks, which means
2848	 * we will suspend a really large IO window while it is not
2849	 * necessary. If raid_disks is not divisible by near_copies,
2850	 * an extra chunk is needed to ensure the whole "stripe" is
2851	 * covered.
2852	 */
2853
2854	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2855	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2856		extra_chunk = 0;
2857	else
2858		extra_chunk = 1;
2859	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2860
2861	/*
2862	 * At least use a 32M window to align with raid1's resync window
2863	 */
2864	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2865			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2866
2867	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2868}
2869
2870/*
2871 * perform a "sync" on one "block"
2872 *
2873 * We need to make sure that no normal I/O request - particularly write
2874 * requests - conflict with active sync requests.
2875 *
2876 * This is achieved by tracking pending requests and a 'barrier' concept
2877 * that can be installed to exclude normal IO requests.
2878 *
2879 * Resync and recovery are handled very differently.
2880 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881 *
2882 * For resync, we iterate over virtual addresses, read all copies,
2883 * and update if there are differences.  If only one copy is live,
2884 * skip it.
2885 * For recovery, we iterate over physical addresses, read a good
2886 * value for each non-in_sync drive, and over-write.
2887 *
2888 * So, for recovery we may have several outstanding complex requests for a
2889 * given address, one for each out-of-sync device.  We model this by allocating
2890 * a number of r10_bio structures, one for each out-of-sync device.
2891 * As we setup these structures, we collect all bio's together into a list
2892 * which we then process collectively to add pages, and then process again
2893 * to pass to generic_make_request.
2894 *
2895 * The r10_bio structures are linked using a borrowed master_bio pointer.
2896 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2897 * has its remaining count decremented to 0, the whole complex operation
2898 * is complete.
2899 *
2900 */
2901
2902static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2903			     int *skipped)
2904{
2905	struct r10conf *conf = mddev->private;
2906	struct r10bio *r10_bio;
2907	struct bio *biolist = NULL, *bio;
2908	sector_t max_sector, nr_sectors;
2909	int i;
2910	int max_sync;
2911	sector_t sync_blocks;
2912	sector_t sectors_skipped = 0;
2913	int chunks_skipped = 0;
2914	sector_t chunk_mask = conf->geo.chunk_mask;
2915	int page_idx = 0;
2916
2917	if (!mempool_initialized(&conf->r10buf_pool))
2918		if (init_resync(conf))
2919			return 0;
2920
2921	/*
2922	 * Allow skipping a full rebuild for incremental assembly
2923	 * of a clean array, like RAID1 does.
2924	 */
2925	if (mddev->bitmap == NULL &&
2926	    mddev->recovery_cp == MaxSector &&
2927	    mddev->reshape_position == MaxSector &&
2928	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2929	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2930	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2931	    conf->fullsync == 0) {
2932		*skipped = 1;
2933		return mddev->dev_sectors - sector_nr;
2934	}
2935
2936 skipped:
2937	max_sector = mddev->dev_sectors;
2938	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940		max_sector = mddev->resync_max_sectors;
2941	if (sector_nr >= max_sector) {
2942		conf->cluster_sync_low = 0;
2943		conf->cluster_sync_high = 0;
2944
2945		/* If we aborted, we need to abort the
2946		 * sync on the 'current' bitmap chucks (there can
2947		 * be several when recovering multiple devices).
2948		 * as we may have started syncing it but not finished.
2949		 * We can find the current address in
2950		 * mddev->curr_resync, but for recovery,
2951		 * we need to convert that to several
2952		 * virtual addresses.
2953		 */
2954		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955			end_reshape(conf);
2956			close_sync(conf);
2957			return 0;
2958		}
2959
2960		if (mddev->curr_resync < max_sector) { /* aborted */
2961			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963						   &sync_blocks, 1);
2964			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965				sector_t sect =
2966					raid10_find_virt(conf, mddev->curr_resync, i);
2967				md_bitmap_end_sync(mddev->bitmap, sect,
2968						   &sync_blocks, 1);
2969			}
2970		} else {
2971			/* completed sync */
2972			if ((!mddev->bitmap || conf->fullsync)
2973			    && conf->have_replacement
2974			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975				/* Completed a full sync so the replacements
2976				 * are now fully recovered.
2977				 */
2978				rcu_read_lock();
2979				for (i = 0; i < conf->geo.raid_disks; i++) {
2980					struct md_rdev *rdev =
2981						rcu_dereference(conf->mirrors[i].replacement);
2982					if (rdev)
2983						rdev->recovery_offset = MaxSector;
2984				}
2985				rcu_read_unlock();
2986			}
2987			conf->fullsync = 0;
2988		}
2989		md_bitmap_close_sync(mddev->bitmap);
2990		close_sync(conf);
2991		*skipped = 1;
2992		return sectors_skipped;
2993	}
2994
2995	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996		return reshape_request(mddev, sector_nr, skipped);
2997
2998	if (chunks_skipped >= conf->geo.raid_disks) {
2999		/* if there has been nothing to do on any drive,
3000		 * then there is nothing to do at all..
3001		 */
3002		*skipped = 1;
3003		return (max_sector - sector_nr) + sectors_skipped;
3004	}
3005
3006	if (max_sector > mddev->resync_max)
3007		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008
3009	/* make sure whole request will fit in a chunk - if chunks
3010	 * are meaningful
3011	 */
3012	if (conf->geo.near_copies < conf->geo.raid_disks &&
3013	    max_sector > (sector_nr | chunk_mask))
3014		max_sector = (sector_nr | chunk_mask) + 1;
3015
3016	/*
3017	 * If there is non-resync activity waiting for a turn, then let it
3018	 * though before starting on this new sync request.
3019	 */
3020	if (conf->nr_waiting)
3021		schedule_timeout_uninterruptible(1);
3022
3023	/* Again, very different code for resync and recovery.
3024	 * Both must result in an r10bio with a list of bios that
3025	 * have bi_end_io, bi_sector, bi_disk set,
3026	 * and bi_private set to the r10bio.
3027	 * For recovery, we may actually create several r10bios
3028	 * with 2 bios in each, that correspond to the bios in the main one.
3029	 * In this case, the subordinate r10bios link back through a
3030	 * borrowed master_bio pointer, and the counter in the master
3031	 * includes a ref from each subordinate.
3032	 */
3033	/* First, we decide what to do and set ->bi_end_io
3034	 * To end_sync_read if we want to read, and
3035	 * end_sync_write if we will want to write.
3036	 */
3037
3038	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040		/* recovery... the complicated one */
3041		int j;
3042		r10_bio = NULL;
3043
3044		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045			int still_degraded;
3046			struct r10bio *rb2;
3047			sector_t sect;
3048			int must_sync;
3049			int any_working;
3050			int need_recover = 0;
3051			int need_replace = 0;
3052			struct raid10_info *mirror = &conf->mirrors[i];
3053			struct md_rdev *mrdev, *mreplace;
3054
3055			rcu_read_lock();
3056			mrdev = rcu_dereference(mirror->rdev);
3057			mreplace = rcu_dereference(mirror->replacement);
3058
3059			if (mrdev != NULL &&
3060			    !test_bit(Faulty, &mrdev->flags) &&
3061			    !test_bit(In_sync, &mrdev->flags))
3062				need_recover = 1;
3063			if (mreplace != NULL &&
3064			    !test_bit(Faulty, &mreplace->flags))
3065				need_replace = 1;
3066
3067			if (!need_recover && !need_replace) {
3068				rcu_read_unlock();
3069				continue;
3070			}
3071
3072			still_degraded = 0;
3073			/* want to reconstruct this device */
3074			rb2 = r10_bio;
3075			sect = raid10_find_virt(conf, sector_nr, i);
3076			if (sect >= mddev->resync_max_sectors) {
3077				/* last stripe is not complete - don't
3078				 * try to recover this sector.
3079				 */
3080				rcu_read_unlock();
3081				continue;
3082			}
3083			if (mreplace && test_bit(Faulty, &mreplace->flags))
3084				mreplace = NULL;
3085			/* Unless we are doing a full sync, or a replacement
3086			 * we only need to recover the block if it is set in
3087			 * the bitmap
3088			 */
3089			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3090							 &sync_blocks, 1);
3091			if (sync_blocks < max_sync)
3092				max_sync = sync_blocks;
3093			if (!must_sync &&
3094			    mreplace == NULL &&
3095			    !conf->fullsync) {
3096				/* yep, skip the sync_blocks here, but don't assume
3097				 * that there will never be anything to do here
3098				 */
3099				chunks_skipped = -1;
3100				rcu_read_unlock();
3101				continue;
3102			}
3103			atomic_inc(&mrdev->nr_pending);
3104			if (mreplace)
3105				atomic_inc(&mreplace->nr_pending);
3106			rcu_read_unlock();
3107
3108			r10_bio = raid10_alloc_init_r10buf(conf);
3109			r10_bio->state = 0;
3110			raise_barrier(conf, rb2 != NULL);
3111			atomic_set(&r10_bio->remaining, 0);
3112
3113			r10_bio->master_bio = (struct bio*)rb2;
3114			if (rb2)
3115				atomic_inc(&rb2->remaining);
3116			r10_bio->mddev = mddev;
3117			set_bit(R10BIO_IsRecover, &r10_bio->state);
3118			r10_bio->sector = sect;
3119
3120			raid10_find_phys(conf, r10_bio);
3121
3122			/* Need to check if the array will still be
3123			 * degraded
3124			 */
3125			rcu_read_lock();
3126			for (j = 0; j < conf->geo.raid_disks; j++) {
3127				struct md_rdev *rdev = rcu_dereference(
3128					conf->mirrors[j].rdev);
3129				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3130					still_degraded = 1;
3131					break;
3132				}
3133			}
3134
3135			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3136							 &sync_blocks, still_degraded);
3137
3138			any_working = 0;
3139			for (j=0; j<conf->copies;j++) {
3140				int k;
3141				int d = r10_bio->devs[j].devnum;
3142				sector_t from_addr, to_addr;
3143				struct md_rdev *rdev =
3144					rcu_dereference(conf->mirrors[d].rdev);
3145				sector_t sector, first_bad;
3146				int bad_sectors;
3147				if (!rdev ||
3148				    !test_bit(In_sync, &rdev->flags))
3149					continue;
3150				/* This is where we read from */
3151				any_working = 1;
 
3152				sector = r10_bio->devs[j].addr;
3153
3154				if (is_badblock(rdev, sector, max_sync,
3155						&first_bad, &bad_sectors)) {
3156					if (first_bad > sector)
3157						max_sync = first_bad - sector;
3158					else {
3159						bad_sectors -= (sector
3160								- first_bad);
3161						if (max_sync > bad_sectors)
3162							max_sync = bad_sectors;
3163						continue;
3164					}
3165				}
3166				bio = r10_bio->devs[0].bio;
 
3167				bio->bi_next = biolist;
3168				biolist = bio;
 
3169				bio->bi_end_io = end_sync_read;
3170				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3171				if (test_bit(FailFast, &rdev->flags))
3172					bio->bi_opf |= MD_FAILFAST;
3173				from_addr = r10_bio->devs[j].addr;
3174				bio->bi_iter.bi_sector = from_addr +
3175					rdev->data_offset;
3176				bio_set_dev(bio, rdev->bdev);
3177				atomic_inc(&rdev->nr_pending);
3178				/* and we write to 'i' (if not in_sync) */
3179
3180				for (k=0; k<conf->copies; k++)
3181					if (r10_bio->devs[k].devnum == i)
3182						break;
3183				BUG_ON(k == conf->copies);
3184				to_addr = r10_bio->devs[k].addr;
3185				r10_bio->devs[0].devnum = d;
3186				r10_bio->devs[0].addr = from_addr;
3187				r10_bio->devs[1].devnum = i;
3188				r10_bio->devs[1].addr = to_addr;
3189
3190				if (need_recover) {
 
3191					bio = r10_bio->devs[1].bio;
 
3192					bio->bi_next = biolist;
3193					biolist = bio;
 
3194					bio->bi_end_io = end_sync_write;
3195					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3196					bio->bi_iter.bi_sector = to_addr
3197						+ mrdev->data_offset;
3198					bio_set_dev(bio, mrdev->bdev);
3199					atomic_inc(&r10_bio->remaining);
3200				} else
3201					r10_bio->devs[1].bio->bi_end_io = NULL;
3202
3203				/* and maybe write to replacement */
3204				bio = r10_bio->devs[1].repl_bio;
3205				if (bio)
3206					bio->bi_end_io = NULL;
3207				/* Note: if need_replace, then bio
 
3208				 * cannot be NULL as r10buf_pool_alloc will
3209				 * have allocated it.
 
 
 
 
3210				 */
3211				if (!need_replace)
 
3212					break;
 
3213				bio->bi_next = biolist;
3214				biolist = bio;
 
3215				bio->bi_end_io = end_sync_write;
3216				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3217				bio->bi_iter.bi_sector = to_addr +
3218					mreplace->data_offset;
3219				bio_set_dev(bio, mreplace->bdev);
3220				atomic_inc(&r10_bio->remaining);
3221				break;
3222			}
3223			rcu_read_unlock();
3224			if (j == conf->copies) {
3225				/* Cannot recover, so abort the recovery or
3226				 * record a bad block */
3227				if (any_working) {
3228					/* problem is that there are bad blocks
3229					 * on other device(s)
3230					 */
3231					int k;
3232					for (k = 0; k < conf->copies; k++)
3233						if (r10_bio->devs[k].devnum == i)
3234							break;
3235					if (!test_bit(In_sync,
3236						      &mrdev->flags)
3237					    && !rdev_set_badblocks(
3238						    mrdev,
3239						    r10_bio->devs[k].addr,
3240						    max_sync, 0))
3241						any_working = 0;
3242					if (mreplace &&
3243					    !rdev_set_badblocks(
3244						    mreplace,
3245						    r10_bio->devs[k].addr,
3246						    max_sync, 0))
3247						any_working = 0;
3248				}
3249				if (!any_working)  {
3250					if (!test_and_set_bit(MD_RECOVERY_INTR,
3251							      &mddev->recovery))
3252						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
 
3253						       mdname(mddev));
3254					mirror->recovery_disabled
3255						= mddev->recovery_disabled;
3256				}
3257				put_buf(r10_bio);
3258				if (rb2)
3259					atomic_dec(&rb2->remaining);
3260				r10_bio = rb2;
3261				rdev_dec_pending(mrdev, mddev);
3262				if (mreplace)
3263					rdev_dec_pending(mreplace, mddev);
3264				break;
3265			}
3266			rdev_dec_pending(mrdev, mddev);
3267			if (mreplace)
3268				rdev_dec_pending(mreplace, mddev);
3269			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3270				/* Only want this if there is elsewhere to
3271				 * read from. 'j' is currently the first
3272				 * readable copy.
3273				 */
3274				int targets = 1;
3275				for (; j < conf->copies; j++) {
3276					int d = r10_bio->devs[j].devnum;
3277					if (conf->mirrors[d].rdev &&
3278					    test_bit(In_sync,
3279						      &conf->mirrors[d].rdev->flags))
3280						targets++;
3281				}
3282				if (targets == 1)
3283					r10_bio->devs[0].bio->bi_opf
3284						&= ~MD_FAILFAST;
3285			}
3286		}
3287		if (biolist == NULL) {
3288			while (r10_bio) {
3289				struct r10bio *rb2 = r10_bio;
3290				r10_bio = (struct r10bio*) rb2->master_bio;
3291				rb2->master_bio = NULL;
3292				put_buf(rb2);
3293			}
3294			goto giveup;
3295		}
3296	} else {
3297		/* resync. Schedule a read for every block at this virt offset */
3298		int count = 0;
3299
3300		/*
3301		 * Since curr_resync_completed could probably not update in
3302		 * time, and we will set cluster_sync_low based on it.
3303		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3304		 * safety reason, which ensures curr_resync_completed is
3305		 * updated in bitmap_cond_end_sync.
3306		 */
3307		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3308					mddev_is_clustered(mddev) &&
3309					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3310
3311		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3312					  &sync_blocks, mddev->degraded) &&
3313		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3314						 &mddev->recovery)) {
3315			/* We can skip this block */
3316			*skipped = 1;
3317			return sync_blocks + sectors_skipped;
3318		}
3319		if (sync_blocks < max_sync)
3320			max_sync = sync_blocks;
3321		r10_bio = raid10_alloc_init_r10buf(conf);
3322		r10_bio->state = 0;
3323
3324		r10_bio->mddev = mddev;
3325		atomic_set(&r10_bio->remaining, 0);
3326		raise_barrier(conf, 0);
3327		conf->next_resync = sector_nr;
3328
3329		r10_bio->master_bio = NULL;
3330		r10_bio->sector = sector_nr;
3331		set_bit(R10BIO_IsSync, &r10_bio->state);
3332		raid10_find_phys(conf, r10_bio);
3333		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3334
3335		for (i = 0; i < conf->copies; i++) {
3336			int d = r10_bio->devs[i].devnum;
3337			sector_t first_bad, sector;
3338			int bad_sectors;
3339			struct md_rdev *rdev;
3340
3341			if (r10_bio->devs[i].repl_bio)
3342				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3343
3344			bio = r10_bio->devs[i].bio;
3345			bio->bi_status = BLK_STS_IOERR;
3346			rcu_read_lock();
3347			rdev = rcu_dereference(conf->mirrors[d].rdev);
3348			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3349				rcu_read_unlock();
3350				continue;
3351			}
3352			sector = r10_bio->devs[i].addr;
3353			if (is_badblock(rdev, sector, max_sync,
 
3354					&first_bad, &bad_sectors)) {
3355				if (first_bad > sector)
3356					max_sync = first_bad - sector;
3357				else {
3358					bad_sectors -= (sector - first_bad);
3359					if (max_sync > bad_sectors)
3360						max_sync = bad_sectors;
3361					rcu_read_unlock();
3362					continue;
3363				}
3364			}
3365			atomic_inc(&rdev->nr_pending);
3366			atomic_inc(&r10_bio->remaining);
3367			bio->bi_next = biolist;
3368			biolist = bio;
 
3369			bio->bi_end_io = end_sync_read;
3370			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3371			if (test_bit(FailFast, &rdev->flags))
3372				bio->bi_opf |= MD_FAILFAST;
3373			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3374			bio_set_dev(bio, rdev->bdev);
3375			count++;
3376
3377			rdev = rcu_dereference(conf->mirrors[d].replacement);
3378			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3379				rcu_read_unlock();
3380				continue;
3381			}
3382			atomic_inc(&rdev->nr_pending);
3383
3384			/* Need to set up for writing to the replacement */
3385			bio = r10_bio->devs[i].repl_bio;
3386			bio->bi_status = BLK_STS_IOERR;
 
3387
3388			sector = r10_bio->devs[i].addr;
 
3389			bio->bi_next = biolist;
3390			biolist = bio;
 
3391			bio->bi_end_io = end_sync_write;
3392			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3393			if (test_bit(FailFast, &rdev->flags))
3394				bio->bi_opf |= MD_FAILFAST;
3395			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3396			bio_set_dev(bio, rdev->bdev);
3397			count++;
3398			rcu_read_unlock();
3399		}
3400
3401		if (count < 2) {
3402			for (i=0; i<conf->copies; i++) {
3403				int d = r10_bio->devs[i].devnum;
3404				if (r10_bio->devs[i].bio->bi_end_io)
3405					rdev_dec_pending(conf->mirrors[d].rdev,
3406							 mddev);
3407				if (r10_bio->devs[i].repl_bio &&
3408				    r10_bio->devs[i].repl_bio->bi_end_io)
3409					rdev_dec_pending(
3410						conf->mirrors[d].replacement,
3411						mddev);
3412			}
3413			put_buf(r10_bio);
3414			biolist = NULL;
3415			goto giveup;
3416		}
3417	}
3418
3419	nr_sectors = 0;
3420	if (sector_nr + max_sync < max_sector)
3421		max_sector = sector_nr + max_sync;
3422	do {
3423		struct page *page;
3424		int len = PAGE_SIZE;
3425		if (sector_nr + (len>>9) > max_sector)
3426			len = (max_sector - sector_nr) << 9;
3427		if (len == 0)
3428			break;
3429		for (bio= biolist ; bio ; bio=bio->bi_next) {
3430			struct resync_pages *rp = get_resync_pages(bio);
3431			page = resync_fetch_page(rp, page_idx);
3432			/*
3433			 * won't fail because the vec table is big enough
3434			 * to hold all these pages
3435			 */
3436			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
3437		}
3438		nr_sectors += len>>9;
3439		sector_nr += len>>9;
3440	} while (++page_idx < RESYNC_PAGES);
 
3441	r10_bio->sectors = nr_sectors;
3442
3443	if (mddev_is_clustered(mddev) &&
3444	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445		/* It is resync not recovery */
3446		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3447			conf->cluster_sync_low = mddev->curr_resync_completed;
3448			raid10_set_cluster_sync_high(conf);
3449			/* Send resync message */
3450			md_cluster_ops->resync_info_update(mddev,
3451						conf->cluster_sync_low,
3452						conf->cluster_sync_high);
3453		}
3454	} else if (mddev_is_clustered(mddev)) {
3455		/* This is recovery not resync */
3456		sector_t sect_va1, sect_va2;
3457		bool broadcast_msg = false;
3458
3459		for (i = 0; i < conf->geo.raid_disks; i++) {
3460			/*
3461			 * sector_nr is a device address for recovery, so we
3462			 * need translate it to array address before compare
3463			 * with cluster_sync_high.
3464			 */
3465			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3466
3467			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3468				broadcast_msg = true;
3469				/*
3470				 * curr_resync_completed is similar as
3471				 * sector_nr, so make the translation too.
3472				 */
3473				sect_va2 = raid10_find_virt(conf,
3474					mddev->curr_resync_completed, i);
3475
3476				if (conf->cluster_sync_low == 0 ||
3477				    conf->cluster_sync_low > sect_va2)
3478					conf->cluster_sync_low = sect_va2;
3479			}
3480		}
3481		if (broadcast_msg) {
3482			raid10_set_cluster_sync_high(conf);
3483			md_cluster_ops->resync_info_update(mddev,
3484						conf->cluster_sync_low,
3485						conf->cluster_sync_high);
3486		}
3487	}
3488
3489	while (biolist) {
3490		bio = biolist;
3491		biolist = biolist->bi_next;
3492
3493		bio->bi_next = NULL;
3494		r10_bio = get_resync_r10bio(bio);
3495		r10_bio->sectors = nr_sectors;
3496
3497		if (bio->bi_end_io == end_sync_read) {
3498			md_sync_acct_bio(bio, nr_sectors);
3499			bio->bi_status = 0;
3500			generic_make_request(bio);
3501		}
3502	}
3503
3504	if (sectors_skipped)
3505		/* pretend they weren't skipped, it makes
3506		 * no important difference in this case
3507		 */
3508		md_done_sync(mddev, sectors_skipped, 1);
3509
3510	return sectors_skipped + nr_sectors;
3511 giveup:
3512	/* There is nowhere to write, so all non-sync
3513	 * drives must be failed or in resync, all drives
3514	 * have a bad block, so try the next chunk...
3515	 */
3516	if (sector_nr + max_sync < max_sector)
3517		max_sector = sector_nr + max_sync;
3518
3519	sectors_skipped += (max_sector - sector_nr);
3520	chunks_skipped ++;
3521	sector_nr = max_sector;
3522	goto skipped;
3523}
3524
3525static sector_t
3526raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3527{
3528	sector_t size;
3529	struct r10conf *conf = mddev->private;
3530
3531	if (!raid_disks)
3532		raid_disks = min(conf->geo.raid_disks,
3533				 conf->prev.raid_disks);
3534	if (!sectors)
3535		sectors = conf->dev_sectors;
3536
3537	size = sectors >> conf->geo.chunk_shift;
3538	sector_div(size, conf->geo.far_copies);
3539	size = size * raid_disks;
3540	sector_div(size, conf->geo.near_copies);
3541
3542	return size << conf->geo.chunk_shift;
3543}
3544
3545static void calc_sectors(struct r10conf *conf, sector_t size)
3546{
3547	/* Calculate the number of sectors-per-device that will
3548	 * actually be used, and set conf->dev_sectors and
3549	 * conf->stride
3550	 */
3551
3552	size = size >> conf->geo.chunk_shift;
3553	sector_div(size, conf->geo.far_copies);
3554	size = size * conf->geo.raid_disks;
3555	sector_div(size, conf->geo.near_copies);
3556	/* 'size' is now the number of chunks in the array */
3557	/* calculate "used chunks per device" */
3558	size = size * conf->copies;
3559
3560	/* We need to round up when dividing by raid_disks to
3561	 * get the stride size.
3562	 */
3563	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3564
3565	conf->dev_sectors = size << conf->geo.chunk_shift;
3566
3567	if (conf->geo.far_offset)
3568		conf->geo.stride = 1 << conf->geo.chunk_shift;
3569	else {
3570		sector_div(size, conf->geo.far_copies);
3571		conf->geo.stride = size << conf->geo.chunk_shift;
3572	}
3573}
3574
3575enum geo_type {geo_new, geo_old, geo_start};
3576static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3577{
3578	int nc, fc, fo;
3579	int layout, chunk, disks;
3580	switch (new) {
3581	case geo_old:
3582		layout = mddev->layout;
3583		chunk = mddev->chunk_sectors;
3584		disks = mddev->raid_disks - mddev->delta_disks;
3585		break;
3586	case geo_new:
3587		layout = mddev->new_layout;
3588		chunk = mddev->new_chunk_sectors;
3589		disks = mddev->raid_disks;
3590		break;
3591	default: /* avoid 'may be unused' warnings */
3592	case geo_start: /* new when starting reshape - raid_disks not
3593			 * updated yet. */
3594		layout = mddev->new_layout;
3595		chunk = mddev->new_chunk_sectors;
3596		disks = mddev->raid_disks + mddev->delta_disks;
3597		break;
3598	}
3599	if (layout >> 19)
3600		return -1;
3601	if (chunk < (PAGE_SIZE >> 9) ||
3602	    !is_power_of_2(chunk))
3603		return -2;
3604	nc = layout & 255;
3605	fc = (layout >> 8) & 255;
3606	fo = layout & (1<<16);
3607	geo->raid_disks = disks;
3608	geo->near_copies = nc;
3609	geo->far_copies = fc;
3610	geo->far_offset = fo;
3611	switch (layout >> 17) {
3612	case 0:	/* original layout.  simple but not always optimal */
3613		geo->far_set_size = disks;
3614		break;
3615	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3616		 * actually using this, but leave code here just in case.*/
3617		geo->far_set_size = disks/fc;
3618		WARN(geo->far_set_size < fc,
3619		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620		break;
3621	case 2: /* "improved" layout fixed to match documentation */
3622		geo->far_set_size = fc * nc;
3623		break;
3624	default: /* Not a valid layout */
3625		return -1;
3626	}
3627	geo->chunk_mask = chunk - 1;
3628	geo->chunk_shift = ffz(~chunk);
3629	return nc*fc;
3630}
3631
3632static struct r10conf *setup_conf(struct mddev *mddev)
3633{
3634	struct r10conf *conf = NULL;
3635	int err = -EINVAL;
3636	struct geom geo;
3637	int copies;
3638
3639	copies = setup_geo(&geo, mddev, geo_new);
3640
3641	if (copies == -2) {
3642		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3643			mdname(mddev), PAGE_SIZE);
 
3644		goto out;
3645	}
3646
3647	if (copies < 2 || copies > mddev->raid_disks) {
3648		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3649			mdname(mddev), mddev->new_layout);
3650		goto out;
3651	}
3652
3653	err = -ENOMEM;
3654	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3655	if (!conf)
3656		goto out;
3657
3658	/* FIXME calc properly */
3659	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3660				sizeof(struct raid10_info),
3661				GFP_KERNEL);
3662	if (!conf->mirrors)
3663		goto out;
3664
3665	conf->tmppage = alloc_page(GFP_KERNEL);
3666	if (!conf->tmppage)
3667		goto out;
3668
3669	conf->geo = geo;
3670	conf->copies = copies;
3671	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3672			   rbio_pool_free, conf);
3673	if (err)
3674		goto out;
3675
3676	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3677	if (err)
3678		goto out;
3679
3680	calc_sectors(conf, mddev->dev_sectors);
3681	if (mddev->reshape_position == MaxSector) {
3682		conf->prev = conf->geo;
3683		conf->reshape_progress = MaxSector;
3684	} else {
3685		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3686			err = -EINVAL;
3687			goto out;
3688		}
3689		conf->reshape_progress = mddev->reshape_position;
3690		if (conf->prev.far_offset)
3691			conf->prev.stride = 1 << conf->prev.chunk_shift;
3692		else
3693			/* far_copies must be 1 */
3694			conf->prev.stride = conf->dev_sectors;
3695	}
3696	conf->reshape_safe = conf->reshape_progress;
3697	spin_lock_init(&conf->device_lock);
3698	INIT_LIST_HEAD(&conf->retry_list);
3699	INIT_LIST_HEAD(&conf->bio_end_io_list);
3700
3701	spin_lock_init(&conf->resync_lock);
3702	init_waitqueue_head(&conf->wait_barrier);
3703	atomic_set(&conf->nr_pending, 0);
3704
3705	err = -ENOMEM;
3706	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707	if (!conf->thread)
3708		goto out;
3709
3710	conf->mddev = mddev;
3711	return conf;
3712
3713 out:
 
 
 
3714	if (conf) {
3715		mempool_exit(&conf->r10bio_pool);
 
3716		kfree(conf->mirrors);
3717		safe_put_page(conf->tmppage);
3718		bioset_exit(&conf->bio_split);
3719		kfree(conf);
3720	}
3721	return ERR_PTR(err);
3722}
3723
3724static int raid10_run(struct mddev *mddev)
3725{
3726	struct r10conf *conf;
3727	int i, disk_idx, chunk_size;
3728	struct raid10_info *disk;
3729	struct md_rdev *rdev;
3730	sector_t size;
3731	sector_t min_offset_diff = 0;
3732	int first = 1;
3733	bool discard_supported = false;
3734
3735	if (mddev_init_writes_pending(mddev) < 0)
3736		return -ENOMEM;
3737
3738	if (mddev->private == NULL) {
3739		conf = setup_conf(mddev);
3740		if (IS_ERR(conf))
3741			return PTR_ERR(conf);
3742		mddev->private = conf;
3743	}
3744	conf = mddev->private;
3745	if (!conf)
3746		goto out;
3747
3748	if (mddev_is_clustered(conf->mddev)) {
3749		int fc, fo;
3750
3751		fc = (mddev->layout >> 8) & 255;
3752		fo = mddev->layout & (1<<16);
3753		if (fc > 1 || fo > 0) {
3754			pr_err("only near layout is supported by clustered"
3755				" raid10\n");
3756			goto out_free_conf;
3757		}
3758	}
3759
3760	mddev->thread = conf->thread;
3761	conf->thread = NULL;
3762
3763	chunk_size = mddev->chunk_sectors << 9;
3764	if (mddev->queue) {
3765		blk_queue_max_discard_sectors(mddev->queue,
3766					      mddev->chunk_sectors);
3767		blk_queue_max_write_same_sectors(mddev->queue, 0);
3768		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3769		blk_queue_io_min(mddev->queue, chunk_size);
3770		if (conf->geo.raid_disks % conf->geo.near_copies)
3771			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3772		else
3773			blk_queue_io_opt(mddev->queue, chunk_size *
3774					 (conf->geo.raid_disks / conf->geo.near_copies));
3775	}
3776
3777	rdev_for_each(rdev, mddev) {
3778		long long diff;
 
3779
3780		disk_idx = rdev->raid_disk;
3781		if (disk_idx < 0)
3782			continue;
3783		if (disk_idx >= conf->geo.raid_disks &&
3784		    disk_idx >= conf->prev.raid_disks)
3785			continue;
3786		disk = conf->mirrors + disk_idx;
3787
3788		if (test_bit(Replacement, &rdev->flags)) {
3789			if (disk->replacement)
3790				goto out_free_conf;
3791			disk->replacement = rdev;
3792		} else {
3793			if (disk->rdev)
3794				goto out_free_conf;
3795			disk->rdev = rdev;
3796		}
 
 
 
3797		diff = (rdev->new_data_offset - rdev->data_offset);
3798		if (!mddev->reshape_backwards)
3799			diff = -diff;
3800		if (diff < 0)
3801			diff = 0;
3802		if (first || diff < min_offset_diff)
3803			min_offset_diff = diff;
3804
3805		if (mddev->gendisk)
3806			disk_stack_limits(mddev->gendisk, rdev->bdev,
3807					  rdev->data_offset << 9);
3808
3809		disk->head_position = 0;
3810
3811		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3812			discard_supported = true;
3813		first = 0;
3814	}
3815
3816	if (mddev->queue) {
3817		if (discard_supported)
3818			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3819						mddev->queue);
3820		else
3821			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3822						  mddev->queue);
3823	}
3824	/* need to check that every block has at least one working mirror */
3825	if (!enough(conf, -1)) {
3826		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3827		       mdname(mddev));
3828		goto out_free_conf;
3829	}
3830
3831	if (conf->reshape_progress != MaxSector) {
3832		/* must ensure that shape change is supported */
3833		if (conf->geo.far_copies != 1 &&
3834		    conf->geo.far_offset == 0)
3835			goto out_free_conf;
3836		if (conf->prev.far_copies != 1 &&
3837		    conf->prev.far_offset == 0)
3838			goto out_free_conf;
3839	}
3840
3841	mddev->degraded = 0;
3842	for (i = 0;
3843	     i < conf->geo.raid_disks
3844		     || i < conf->prev.raid_disks;
3845	     i++) {
3846
3847		disk = conf->mirrors + i;
3848
3849		if (!disk->rdev && disk->replacement) {
3850			/* The replacement is all we have - use it */
3851			disk->rdev = disk->replacement;
3852			disk->replacement = NULL;
3853			clear_bit(Replacement, &disk->rdev->flags);
3854		}
3855
3856		if (!disk->rdev ||
3857		    !test_bit(In_sync, &disk->rdev->flags)) {
3858			disk->head_position = 0;
3859			mddev->degraded++;
3860			if (disk->rdev &&
3861			    disk->rdev->saved_raid_disk < 0)
3862				conf->fullsync = 1;
3863		}
3864
3865		if (disk->replacement &&
3866		    !test_bit(In_sync, &disk->replacement->flags) &&
3867		    disk->replacement->saved_raid_disk < 0) {
3868			conf->fullsync = 1;
3869		}
3870
3871		disk->recovery_disabled = mddev->recovery_disabled - 1;
3872	}
3873
3874	if (mddev->recovery_cp != MaxSector)
3875		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876			  mdname(mddev));
3877	pr_info("md/raid10:%s: active with %d out of %d devices\n",
 
 
3878		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3879		conf->geo.raid_disks);
3880	/*
3881	 * Ok, everything is just fine now
3882	 */
3883	mddev->dev_sectors = conf->dev_sectors;
3884	size = raid10_size(mddev, 0, 0);
3885	md_set_array_sectors(mddev, size);
3886	mddev->resync_max_sectors = size;
3887	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3888
3889	if (mddev->queue) {
3890		int stripe = conf->geo.raid_disks *
3891			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 
 
3892
3893		/* Calculate max read-ahead size.
3894		 * We need to readahead at least twice a whole stripe....
3895		 * maybe...
3896		 */
3897		stripe /= conf->geo.near_copies;
3898		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3899			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
 
3900	}
3901
 
3902	if (md_integrity_register(mddev))
3903		goto out_free_conf;
3904
3905	if (conf->reshape_progress != MaxSector) {
3906		unsigned long before_length, after_length;
3907
3908		before_length = ((1 << conf->prev.chunk_shift) *
3909				 conf->prev.far_copies);
3910		after_length = ((1 << conf->geo.chunk_shift) *
3911				conf->geo.far_copies);
3912
3913		if (max(before_length, after_length) > min_offset_diff) {
3914			/* This cannot work */
3915			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3916			goto out_free_conf;
3917		}
3918		conf->offset_diff = min_offset_diff;
3919
 
3920		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3921		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3922		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3923		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3924		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3925							"reshape");
3926		if (!mddev->sync_thread)
3927			goto out_free_conf;
3928	}
3929
3930	return 0;
3931
3932out_free_conf:
3933	md_unregister_thread(&mddev->thread);
3934	mempool_exit(&conf->r10bio_pool);
 
3935	safe_put_page(conf->tmppage);
3936	kfree(conf->mirrors);
3937	kfree(conf);
3938	mddev->private = NULL;
3939out:
3940	return -EIO;
3941}
3942
3943static void raid10_free(struct mddev *mddev, void *priv)
3944{
3945	struct r10conf *conf = priv;
3946
3947	mempool_exit(&conf->r10bio_pool);
 
 
 
 
 
 
 
 
 
3948	safe_put_page(conf->tmppage);
3949	kfree(conf->mirrors);
3950	kfree(conf->mirrors_old);
3951	kfree(conf->mirrors_new);
3952	bioset_exit(&conf->bio_split);
3953	kfree(conf);
 
 
3954}
3955
3956static void raid10_quiesce(struct mddev *mddev, int quiesce)
3957{
3958	struct r10conf *conf = mddev->private;
3959
3960	if (quiesce)
 
3961		raise_barrier(conf, 0);
3962	else
 
3963		lower_barrier(conf);
 
 
3964}
3965
3966static int raid10_resize(struct mddev *mddev, sector_t sectors)
3967{
3968	/* Resize of 'far' arrays is not supported.
3969	 * For 'near' and 'offset' arrays we can set the
3970	 * number of sectors used to be an appropriate multiple
3971	 * of the chunk size.
3972	 * For 'offset', this is far_copies*chunksize.
3973	 * For 'near' the multiplier is the LCM of
3974	 * near_copies and raid_disks.
3975	 * So if far_copies > 1 && !far_offset, fail.
3976	 * Else find LCM(raid_disks, near_copy)*far_copies and
3977	 * multiply by chunk_size.  Then round to this number.
3978	 * This is mostly done by raid10_size()
3979	 */
3980	struct r10conf *conf = mddev->private;
3981	sector_t oldsize, size;
3982
3983	if (mddev->reshape_position != MaxSector)
3984		return -EBUSY;
3985
3986	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3987		return -EINVAL;
3988
3989	oldsize = raid10_size(mddev, 0, 0);
3990	size = raid10_size(mddev, sectors, 0);
3991	if (mddev->external_size &&
3992	    mddev->array_sectors > size)
3993		return -EINVAL;
3994	if (mddev->bitmap) {
3995		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3996		if (ret)
3997			return ret;
3998	}
3999	md_set_array_sectors(mddev, size);
 
 
4000	if (sectors > mddev->dev_sectors &&
4001	    mddev->recovery_cp > oldsize) {
4002		mddev->recovery_cp = oldsize;
4003		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004	}
4005	calc_sectors(conf, sectors);
4006	mddev->dev_sectors = conf->dev_sectors;
4007	mddev->resync_max_sectors = size;
4008	return 0;
4009}
4010
4011static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4012{
4013	struct md_rdev *rdev;
4014	struct r10conf *conf;
4015
4016	if (mddev->degraded > 0) {
4017		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018			mdname(mddev));
4019		return ERR_PTR(-EINVAL);
4020	}
4021	sector_div(size, devs);
4022
4023	/* Set new parameters */
4024	mddev->new_level = 10;
4025	/* new layout: far_copies = 1, near_copies = 2 */
4026	mddev->new_layout = (1<<8) + 2;
4027	mddev->new_chunk_sectors = mddev->chunk_sectors;
4028	mddev->delta_disks = mddev->raid_disks;
4029	mddev->raid_disks *= 2;
4030	/* make sure it will be not marked as dirty */
4031	mddev->recovery_cp = MaxSector;
4032	mddev->dev_sectors = size;
4033
4034	conf = setup_conf(mddev);
4035	if (!IS_ERR(conf)) {
4036		rdev_for_each(rdev, mddev)
4037			if (rdev->raid_disk >= 0) {
4038				rdev->new_raid_disk = rdev->raid_disk * 2;
4039				rdev->sectors = size;
4040			}
4041		conf->barrier = 1;
4042	}
4043
4044	return conf;
4045}
4046
4047static void *raid10_takeover(struct mddev *mddev)
4048{
4049	struct r0conf *raid0_conf;
4050
4051	/* raid10 can take over:
4052	 *  raid0 - providing it has only two drives
4053	 */
4054	if (mddev->level == 0) {
4055		/* for raid0 takeover only one zone is supported */
4056		raid0_conf = mddev->private;
4057		if (raid0_conf->nr_strip_zones > 1) {
4058			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059				mdname(mddev));
 
4060			return ERR_PTR(-EINVAL);
4061		}
4062		return raid10_takeover_raid0(mddev,
4063			raid0_conf->strip_zone->zone_end,
4064			raid0_conf->strip_zone->nb_dev);
4065	}
4066	return ERR_PTR(-EINVAL);
4067}
4068
4069static int raid10_check_reshape(struct mddev *mddev)
4070{
4071	/* Called when there is a request to change
4072	 * - layout (to ->new_layout)
4073	 * - chunk size (to ->new_chunk_sectors)
4074	 * - raid_disks (by delta_disks)
4075	 * or when trying to restart a reshape that was ongoing.
4076	 *
4077	 * We need to validate the request and possibly allocate
4078	 * space if that might be an issue later.
4079	 *
4080	 * Currently we reject any reshape of a 'far' mode array,
4081	 * allow chunk size to change if new is generally acceptable,
4082	 * allow raid_disks to increase, and allow
4083	 * a switch between 'near' mode and 'offset' mode.
4084	 */
4085	struct r10conf *conf = mddev->private;
4086	struct geom geo;
4087
4088	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4089		return -EINVAL;
4090
4091	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4092		/* mustn't change number of copies */
4093		return -EINVAL;
4094	if (geo.far_copies > 1 && !geo.far_offset)
4095		/* Cannot switch to 'far' mode */
4096		return -EINVAL;
4097
4098	if (mddev->array_sectors & geo.chunk_mask)
4099			/* not factor of array size */
4100			return -EINVAL;
4101
4102	if (!enough(conf, -1))
4103		return -EINVAL;
4104
4105	kfree(conf->mirrors_new);
4106	conf->mirrors_new = NULL;
4107	if (mddev->delta_disks > 0) {
4108		/* allocate new 'mirrors' list */
4109		conf->mirrors_new =
4110			kcalloc(mddev->raid_disks + mddev->delta_disks,
4111				sizeof(struct raid10_info),
4112				GFP_KERNEL);
 
4113		if (!conf->mirrors_new)
4114			return -ENOMEM;
4115	}
4116	return 0;
4117}
4118
4119/*
4120 * Need to check if array has failed when deciding whether to:
4121 *  - start an array
4122 *  - remove non-faulty devices
4123 *  - add a spare
4124 *  - allow a reshape
4125 * This determination is simple when no reshape is happening.
4126 * However if there is a reshape, we need to carefully check
4127 * both the before and after sections.
4128 * This is because some failed devices may only affect one
4129 * of the two sections, and some non-in_sync devices may
4130 * be insync in the section most affected by failed devices.
4131 */
4132static int calc_degraded(struct r10conf *conf)
4133{
4134	int degraded, degraded2;
4135	int i;
4136
4137	rcu_read_lock();
4138	degraded = 0;
4139	/* 'prev' section first */
4140	for (i = 0; i < conf->prev.raid_disks; i++) {
4141		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4142		if (!rdev || test_bit(Faulty, &rdev->flags))
4143			degraded++;
4144		else if (!test_bit(In_sync, &rdev->flags))
4145			/* When we can reduce the number of devices in
4146			 * an array, this might not contribute to
4147			 * 'degraded'.  It does now.
4148			 */
4149			degraded++;
4150	}
4151	rcu_read_unlock();
4152	if (conf->geo.raid_disks == conf->prev.raid_disks)
4153		return degraded;
4154	rcu_read_lock();
4155	degraded2 = 0;
4156	for (i = 0; i < conf->geo.raid_disks; i++) {
4157		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4158		if (!rdev || test_bit(Faulty, &rdev->flags))
4159			degraded2++;
4160		else if (!test_bit(In_sync, &rdev->flags)) {
4161			/* If reshape is increasing the number of devices,
4162			 * this section has already been recovered, so
4163			 * it doesn't contribute to degraded.
4164			 * else it does.
4165			 */
4166			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4167				degraded2++;
4168		}
4169	}
4170	rcu_read_unlock();
4171	if (degraded2 > degraded)
4172		return degraded2;
4173	return degraded;
4174}
4175
4176static int raid10_start_reshape(struct mddev *mddev)
4177{
4178	/* A 'reshape' has been requested. This commits
4179	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4180	 * This also checks if there are enough spares and adds them
4181	 * to the array.
4182	 * We currently require enough spares to make the final
4183	 * array non-degraded.  We also require that the difference
4184	 * between old and new data_offset - on each device - is
4185	 * enough that we never risk over-writing.
4186	 */
4187
4188	unsigned long before_length, after_length;
4189	sector_t min_offset_diff = 0;
4190	int first = 1;
4191	struct geom new;
4192	struct r10conf *conf = mddev->private;
4193	struct md_rdev *rdev;
4194	int spares = 0;
4195	int ret;
4196
4197	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4198		return -EBUSY;
4199
4200	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4201		return -EINVAL;
4202
4203	before_length = ((1 << conf->prev.chunk_shift) *
4204			 conf->prev.far_copies);
4205	after_length = ((1 << conf->geo.chunk_shift) *
4206			conf->geo.far_copies);
4207
4208	rdev_for_each(rdev, mddev) {
4209		if (!test_bit(In_sync, &rdev->flags)
4210		    && !test_bit(Faulty, &rdev->flags))
4211			spares++;
4212		if (rdev->raid_disk >= 0) {
4213			long long diff = (rdev->new_data_offset
4214					  - rdev->data_offset);
4215			if (!mddev->reshape_backwards)
4216				diff = -diff;
4217			if (diff < 0)
4218				diff = 0;
4219			if (first || diff < min_offset_diff)
4220				min_offset_diff = diff;
4221			first = 0;
4222		}
4223	}
4224
4225	if (max(before_length, after_length) > min_offset_diff)
4226		return -EINVAL;
4227
4228	if (spares < mddev->delta_disks)
4229		return -EINVAL;
4230
4231	conf->offset_diff = min_offset_diff;
4232	spin_lock_irq(&conf->device_lock);
4233	if (conf->mirrors_new) {
4234		memcpy(conf->mirrors_new, conf->mirrors,
4235		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4236		smp_mb();
4237		kfree(conf->mirrors_old);
4238		conf->mirrors_old = conf->mirrors;
4239		conf->mirrors = conf->mirrors_new;
4240		conf->mirrors_new = NULL;
4241	}
4242	setup_geo(&conf->geo, mddev, geo_start);
4243	smp_mb();
4244	if (mddev->reshape_backwards) {
4245		sector_t size = raid10_size(mddev, 0, 0);
4246		if (size < mddev->array_sectors) {
4247			spin_unlock_irq(&conf->device_lock);
4248			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4249				mdname(mddev));
4250			return -EINVAL;
4251		}
4252		mddev->resync_max_sectors = size;
4253		conf->reshape_progress = size;
4254	} else
4255		conf->reshape_progress = 0;
4256	conf->reshape_safe = conf->reshape_progress;
4257	spin_unlock_irq(&conf->device_lock);
4258
4259	if (mddev->delta_disks && mddev->bitmap) {
4260		struct mdp_superblock_1 *sb = NULL;
4261		sector_t oldsize, newsize;
4262
4263		oldsize = raid10_size(mddev, 0, 0);
4264		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4265
4266		if (!mddev_is_clustered(mddev)) {
4267			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268			if (ret)
4269				goto abort;
4270			else
4271				goto out;
4272		}
4273
4274		rdev_for_each(rdev, mddev) {
4275			if (rdev->raid_disk > -1 &&
4276			    !test_bit(Faulty, &rdev->flags))
4277				sb = page_address(rdev->sb_page);
4278		}
4279
4280		/*
4281		 * some node is already performing reshape, and no need to
4282		 * call md_bitmap_resize again since it should be called when
4283		 * receiving BITMAP_RESIZE msg
4284		 */
4285		if ((sb && (le32_to_cpu(sb->feature_map) &
4286			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4287			goto out;
4288
4289		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4290		if (ret)
4291			goto abort;
4292
4293		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4294		if (ret) {
4295			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4296			goto abort;
4297		}
4298	}
4299out:
4300	if (mddev->delta_disks > 0) {
4301		rdev_for_each(rdev, mddev)
4302			if (rdev->raid_disk < 0 &&
4303			    !test_bit(Faulty, &rdev->flags)) {
4304				if (raid10_add_disk(mddev, rdev) == 0) {
4305					if (rdev->raid_disk >=
4306					    conf->prev.raid_disks)
4307						set_bit(In_sync, &rdev->flags);
4308					else
4309						rdev->recovery_offset = 0;
4310
4311					if (sysfs_link_rdev(mddev, rdev))
4312						/* Failure here  is OK */;
4313				}
4314			} else if (rdev->raid_disk >= conf->prev.raid_disks
4315				   && !test_bit(Faulty, &rdev->flags)) {
4316				/* This is a spare that was manually added */
4317				set_bit(In_sync, &rdev->flags);
4318			}
4319	}
4320	/* When a reshape changes the number of devices,
4321	 * ->degraded is measured against the larger of the
4322	 * pre and  post numbers.
4323	 */
4324	spin_lock_irq(&conf->device_lock);
4325	mddev->degraded = calc_degraded(conf);
4326	spin_unlock_irq(&conf->device_lock);
4327	mddev->raid_disks = conf->geo.raid_disks;
4328	mddev->reshape_position = conf->reshape_progress;
4329	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4330
4331	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4332	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4333	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4334	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4335	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4336
4337	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4338						"reshape");
4339	if (!mddev->sync_thread) {
4340		ret = -EAGAIN;
4341		goto abort;
4342	}
4343	conf->reshape_checkpoint = jiffies;
4344	md_wakeup_thread(mddev->sync_thread);
4345	md_new_event(mddev);
4346	return 0;
4347
4348abort:
4349	mddev->recovery = 0;
4350	spin_lock_irq(&conf->device_lock);
4351	conf->geo = conf->prev;
4352	mddev->raid_disks = conf->geo.raid_disks;
4353	rdev_for_each(rdev, mddev)
4354		rdev->new_data_offset = rdev->data_offset;
4355	smp_wmb();
4356	conf->reshape_progress = MaxSector;
4357	conf->reshape_safe = MaxSector;
4358	mddev->reshape_position = MaxSector;
4359	spin_unlock_irq(&conf->device_lock);
4360	return ret;
4361}
4362
4363/* Calculate the last device-address that could contain
4364 * any block from the chunk that includes the array-address 's'
4365 * and report the next address.
4366 * i.e. the address returned will be chunk-aligned and after
4367 * any data that is in the chunk containing 's'.
4368 */
4369static sector_t last_dev_address(sector_t s, struct geom *geo)
4370{
4371	s = (s | geo->chunk_mask) + 1;
4372	s >>= geo->chunk_shift;
4373	s *= geo->near_copies;
4374	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4375	s *= geo->far_copies;
4376	s <<= geo->chunk_shift;
4377	return s;
4378}
4379
4380/* Calculate the first device-address that could contain
4381 * any block from the chunk that includes the array-address 's'.
4382 * This too will be the start of a chunk
4383 */
4384static sector_t first_dev_address(sector_t s, struct geom *geo)
4385{
4386	s >>= geo->chunk_shift;
4387	s *= geo->near_copies;
4388	sector_div(s, geo->raid_disks);
4389	s *= geo->far_copies;
4390	s <<= geo->chunk_shift;
4391	return s;
4392}
4393
4394static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4395				int *skipped)
4396{
4397	/* We simply copy at most one chunk (smallest of old and new)
4398	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4399	 * or we hit a bad block or something.
4400	 * This might mean we pause for normal IO in the middle of
4401	 * a chunk, but that is not a problem as mddev->reshape_position
4402	 * can record any location.
4403	 *
4404	 * If we will want to write to a location that isn't
4405	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4406	 * we need to flush all reshape requests and update the metadata.
4407	 *
4408	 * When reshaping forwards (e.g. to more devices), we interpret
4409	 * 'safe' as the earliest block which might not have been copied
4410	 * down yet.  We divide this by previous stripe size and multiply
4411	 * by previous stripe length to get lowest device offset that we
4412	 * cannot write to yet.
4413	 * We interpret 'sector_nr' as an address that we want to write to.
4414	 * From this we use last_device_address() to find where we might
4415	 * write to, and first_device_address on the  'safe' position.
4416	 * If this 'next' write position is after the 'safe' position,
4417	 * we must update the metadata to increase the 'safe' position.
4418	 *
4419	 * When reshaping backwards, we round in the opposite direction
4420	 * and perform the reverse test:  next write position must not be
4421	 * less than current safe position.
4422	 *
4423	 * In all this the minimum difference in data offsets
4424	 * (conf->offset_diff - always positive) allows a bit of slack,
4425	 * so next can be after 'safe', but not by more than offset_diff
4426	 *
4427	 * We need to prepare all the bios here before we start any IO
4428	 * to ensure the size we choose is acceptable to all devices.
4429	 * The means one for each copy for write-out and an extra one for
4430	 * read-in.
4431	 * We store the read-in bio in ->master_bio and the others in
4432	 * ->devs[x].bio and ->devs[x].repl_bio.
4433	 */
4434	struct r10conf *conf = mddev->private;
4435	struct r10bio *r10_bio;
4436	sector_t next, safe, last;
4437	int max_sectors;
4438	int nr_sectors;
4439	int s;
4440	struct md_rdev *rdev;
4441	int need_flush = 0;
4442	struct bio *blist;
4443	struct bio *bio, *read_bio;
4444	int sectors_done = 0;
4445	struct page **pages;
4446
4447	if (sector_nr == 0) {
4448		/* If restarting in the middle, skip the initial sectors */
4449		if (mddev->reshape_backwards &&
4450		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4451			sector_nr = (raid10_size(mddev, 0, 0)
4452				     - conf->reshape_progress);
4453		} else if (!mddev->reshape_backwards &&
4454			   conf->reshape_progress > 0)
4455			sector_nr = conf->reshape_progress;
4456		if (sector_nr) {
4457			mddev->curr_resync_completed = sector_nr;
4458			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4459			*skipped = 1;
4460			return sector_nr;
4461		}
4462	}
4463
4464	/* We don't use sector_nr to track where we are up to
4465	 * as that doesn't work well for ->reshape_backwards.
4466	 * So just use ->reshape_progress.
4467	 */
4468	if (mddev->reshape_backwards) {
4469		/* 'next' is the earliest device address that we might
4470		 * write to for this chunk in the new layout
4471		 */
4472		next = first_dev_address(conf->reshape_progress - 1,
4473					 &conf->geo);
4474
4475		/* 'safe' is the last device address that we might read from
4476		 * in the old layout after a restart
4477		 */
4478		safe = last_dev_address(conf->reshape_safe - 1,
4479					&conf->prev);
4480
4481		if (next + conf->offset_diff < safe)
4482			need_flush = 1;
4483
4484		last = conf->reshape_progress - 1;
4485		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4486					       & conf->prev.chunk_mask);
4487		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4488			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4489	} else {
4490		/* 'next' is after the last device address that we
4491		 * might write to for this chunk in the new layout
4492		 */
4493		next = last_dev_address(conf->reshape_progress, &conf->geo);
4494
4495		/* 'safe' is the earliest device address that we might
4496		 * read from in the old layout after a restart
4497		 */
4498		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4499
4500		/* Need to update metadata if 'next' might be beyond 'safe'
4501		 * as that would possibly corrupt data
4502		 */
4503		if (next > safe + conf->offset_diff)
4504			need_flush = 1;
4505
4506		sector_nr = conf->reshape_progress;
4507		last  = sector_nr | (conf->geo.chunk_mask
4508				     & conf->prev.chunk_mask);
4509
4510		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4511			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4512	}
4513
4514	if (need_flush ||
4515	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4516		/* Need to update reshape_position in metadata */
4517		wait_barrier(conf);
4518		mddev->reshape_position = conf->reshape_progress;
4519		if (mddev->reshape_backwards)
4520			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4521				- conf->reshape_progress;
4522		else
4523			mddev->curr_resync_completed = conf->reshape_progress;
4524		conf->reshape_checkpoint = jiffies;
4525		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4526		md_wakeup_thread(mddev->thread);
4527		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4528			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4529		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4530			allow_barrier(conf);
4531			return sectors_done;
4532		}
4533		conf->reshape_safe = mddev->reshape_position;
4534		allow_barrier(conf);
4535	}
4536
4537	raise_barrier(conf, 0);
4538read_more:
4539	/* Now schedule reads for blocks from sector_nr to last */
4540	r10_bio = raid10_alloc_init_r10buf(conf);
4541	r10_bio->state = 0;
4542	raise_barrier(conf, 1);
4543	atomic_set(&r10_bio->remaining, 0);
4544	r10_bio->mddev = mddev;
4545	r10_bio->sector = sector_nr;
4546	set_bit(R10BIO_IsReshape, &r10_bio->state);
4547	r10_bio->sectors = last - sector_nr + 1;
4548	rdev = read_balance(conf, r10_bio, &max_sectors);
4549	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4550
4551	if (!rdev) {
4552		/* Cannot read from here, so need to record bad blocks
4553		 * on all the target devices.
4554		 */
4555		// FIXME
4556		mempool_free(r10_bio, &conf->r10buf_pool);
4557		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558		return sectors_done;
4559	}
4560
4561	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4562
4563	bio_set_dev(read_bio, rdev->bdev);
4564	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4565			       + rdev->data_offset);
4566	read_bio->bi_private = r10_bio;
4567	read_bio->bi_end_io = end_reshape_read;
4568	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4569	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4570	read_bio->bi_status = 0;
4571	read_bio->bi_vcnt = 0;
4572	read_bio->bi_iter.bi_size = 0;
4573	r10_bio->master_bio = read_bio;
4574	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4575
4576	/*
4577	 * Broadcast RESYNC message to other nodes, so all nodes would not
4578	 * write to the region to avoid conflict.
4579	*/
4580	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4581		struct mdp_superblock_1 *sb = NULL;
4582		int sb_reshape_pos = 0;
4583
4584		conf->cluster_sync_low = sector_nr;
4585		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4586		sb = page_address(rdev->sb_page);
4587		if (sb) {
4588			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4589			/*
4590			 * Set cluster_sync_low again if next address for array
4591			 * reshape is less than cluster_sync_low. Since we can't
4592			 * update cluster_sync_low until it has finished reshape.
4593			 */
4594			if (sb_reshape_pos < conf->cluster_sync_low)
4595				conf->cluster_sync_low = sb_reshape_pos;
4596		}
4597
4598		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4599							  conf->cluster_sync_high);
4600	}
4601
4602	/* Now find the locations in the new layout */
4603	__raid10_find_phys(&conf->geo, r10_bio);
4604
4605	blist = read_bio;
4606	read_bio->bi_next = NULL;
4607
4608	rcu_read_lock();
4609	for (s = 0; s < conf->copies*2; s++) {
4610		struct bio *b;
4611		int d = r10_bio->devs[s/2].devnum;
4612		struct md_rdev *rdev2;
4613		if (s&1) {
4614			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4615			b = r10_bio->devs[s/2].repl_bio;
4616		} else {
4617			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4618			b = r10_bio->devs[s/2].bio;
4619		}
4620		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4621			continue;
4622
4623		bio_set_dev(b, rdev2->bdev);
 
4624		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4625			rdev2->new_data_offset;
 
4626		b->bi_end_io = end_reshape_write;
4627		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4628		b->bi_next = blist;
4629		blist = b;
4630	}
4631
4632	/* Now add as many pages as possible to all of these bios. */
4633
4634	nr_sectors = 0;
4635	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4636	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4637		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4638		int len = (max_sectors - s) << 9;
4639		if (len > PAGE_SIZE)
4640			len = PAGE_SIZE;
4641		for (bio = blist; bio ; bio = bio->bi_next) {
4642			/*
4643			 * won't fail because the vec table is big enough
4644			 * to hold all these pages
4645			 */
4646			bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
4647		}
4648		sector_nr += len >> 9;
4649		nr_sectors += len >> 9;
4650	}
4651	rcu_read_unlock();
4652	r10_bio->sectors = nr_sectors;
4653
4654	/* Now submit the read */
4655	md_sync_acct_bio(read_bio, r10_bio->sectors);
4656	atomic_inc(&r10_bio->remaining);
4657	read_bio->bi_next = NULL;
4658	generic_make_request(read_bio);
 
4659	sectors_done += nr_sectors;
4660	if (sector_nr <= last)
4661		goto read_more;
4662
4663	lower_barrier(conf);
4664
4665	/* Now that we have done the whole section we can
4666	 * update reshape_progress
4667	 */
4668	if (mddev->reshape_backwards)
4669		conf->reshape_progress -= sectors_done;
4670	else
4671		conf->reshape_progress += sectors_done;
4672
4673	return sectors_done;
4674}
4675
4676static void end_reshape_request(struct r10bio *r10_bio);
4677static int handle_reshape_read_error(struct mddev *mddev,
4678				     struct r10bio *r10_bio);
4679static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4680{
4681	/* Reshape read completed.  Hopefully we have a block
4682	 * to write out.
4683	 * If we got a read error then we do sync 1-page reads from
4684	 * elsewhere until we find the data - or give up.
4685	 */
4686	struct r10conf *conf = mddev->private;
4687	int s;
4688
4689	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4690		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4691			/* Reshape has been aborted */
4692			md_done_sync(mddev, r10_bio->sectors, 0);
4693			return;
4694		}
4695
4696	/* We definitely have the data in the pages, schedule the
4697	 * writes.
4698	 */
4699	atomic_set(&r10_bio->remaining, 1);
4700	for (s = 0; s < conf->copies*2; s++) {
4701		struct bio *b;
4702		int d = r10_bio->devs[s/2].devnum;
4703		struct md_rdev *rdev;
4704		rcu_read_lock();
4705		if (s&1) {
4706			rdev = rcu_dereference(conf->mirrors[d].replacement);
4707			b = r10_bio->devs[s/2].repl_bio;
4708		} else {
4709			rdev = rcu_dereference(conf->mirrors[d].rdev);
4710			b = r10_bio->devs[s/2].bio;
4711		}
4712		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4713			rcu_read_unlock();
4714			continue;
4715		}
4716		atomic_inc(&rdev->nr_pending);
4717		rcu_read_unlock();
4718		md_sync_acct_bio(b, r10_bio->sectors);
4719		atomic_inc(&r10_bio->remaining);
4720		b->bi_next = NULL;
4721		generic_make_request(b);
4722	}
4723	end_reshape_request(r10_bio);
4724}
4725
4726static void end_reshape(struct r10conf *conf)
4727{
4728	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4729		return;
4730
4731	spin_lock_irq(&conf->device_lock);
4732	conf->prev = conf->geo;
4733	md_finish_reshape(conf->mddev);
4734	smp_wmb();
4735	conf->reshape_progress = MaxSector;
4736	conf->reshape_safe = MaxSector;
4737	spin_unlock_irq(&conf->device_lock);
4738
4739	/* read-ahead size must cover two whole stripes, which is
4740	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741	 */
4742	if (conf->mddev->queue) {
4743		int stripe = conf->geo.raid_disks *
4744			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4745		stripe /= conf->geo.near_copies;
4746		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4747			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4748	}
4749	conf->fullsync = 0;
4750}
4751
4752static void raid10_update_reshape_pos(struct mddev *mddev)
4753{
4754	struct r10conf *conf = mddev->private;
4755	sector_t lo, hi;
4756
4757	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4758	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4759	    || mddev->reshape_position == MaxSector)
4760		conf->reshape_progress = mddev->reshape_position;
4761	else
4762		WARN_ON_ONCE(1);
4763}
4764
4765static int handle_reshape_read_error(struct mddev *mddev,
4766				     struct r10bio *r10_bio)
4767{
4768	/* Use sync reads to get the blocks from somewhere else */
4769	int sectors = r10_bio->sectors;
4770	struct r10conf *conf = mddev->private;
4771	struct r10bio *r10b;
 
 
 
 
4772	int slot = 0;
4773	int idx = 0;
4774	struct page **pages;
4775
4776	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4777	if (!r10b) {
4778		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4779		return -ENOMEM;
4780	}
4781
4782	/* reshape IOs share pages from .devs[0].bio */
4783	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4784
4785	r10b->sector = r10_bio->sector;
4786	__raid10_find_phys(&conf->prev, r10b);
4787
4788	while (sectors) {
4789		int s = sectors;
4790		int success = 0;
4791		int first_slot = slot;
4792
4793		if (s > (PAGE_SIZE >> 9))
4794			s = PAGE_SIZE >> 9;
4795
4796		rcu_read_lock();
4797		while (!success) {
4798			int d = r10b->devs[slot].devnum;
4799			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4800			sector_t addr;
4801			if (rdev == NULL ||
4802			    test_bit(Faulty, &rdev->flags) ||
4803			    !test_bit(In_sync, &rdev->flags))
4804				goto failed;
4805
4806			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4807			atomic_inc(&rdev->nr_pending);
4808			rcu_read_unlock();
4809			success = sync_page_io(rdev,
4810					       addr,
4811					       s << 9,
4812					       pages[idx],
4813					       REQ_OP_READ, 0, false);
4814			rdev_dec_pending(rdev, mddev);
4815			rcu_read_lock();
4816			if (success)
4817				break;
4818		failed:
4819			slot++;
4820			if (slot >= conf->copies)
4821				slot = 0;
4822			if (slot == first_slot)
4823				break;
4824		}
4825		rcu_read_unlock();
4826		if (!success) {
4827			/* couldn't read this block, must give up */
4828			set_bit(MD_RECOVERY_INTR,
4829				&mddev->recovery);
4830			kfree(r10b);
4831			return -EIO;
4832		}
4833		sectors -= s;
4834		idx++;
4835	}
4836	kfree(r10b);
4837	return 0;
4838}
4839
4840static void end_reshape_write(struct bio *bio)
4841{
4842	struct r10bio *r10_bio = get_resync_r10bio(bio);
 
4843	struct mddev *mddev = r10_bio->mddev;
4844	struct r10conf *conf = mddev->private;
4845	int d;
4846	int slot;
4847	int repl;
4848	struct md_rdev *rdev = NULL;
4849
4850	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4851	if (repl)
4852		rdev = conf->mirrors[d].replacement;
4853	if (!rdev) {
4854		smp_mb();
4855		rdev = conf->mirrors[d].rdev;
4856	}
4857
4858	if (bio->bi_status) {
4859		/* FIXME should record badblock */
4860		md_error(mddev, rdev);
4861	}
4862
4863	rdev_dec_pending(rdev, mddev);
4864	end_reshape_request(r10_bio);
4865}
4866
4867static void end_reshape_request(struct r10bio *r10_bio)
4868{
4869	if (!atomic_dec_and_test(&r10_bio->remaining))
4870		return;
4871	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4872	bio_put(r10_bio->master_bio);
4873	put_buf(r10_bio);
4874}
4875
4876static void raid10_finish_reshape(struct mddev *mddev)
4877{
4878	struct r10conf *conf = mddev->private;
4879
4880	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4881		return;
4882
4883	if (mddev->delta_disks > 0) {
 
 
4884		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4885			mddev->recovery_cp = mddev->resync_max_sectors;
4886			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4887		}
4888		mddev->resync_max_sectors = mddev->array_sectors;
 
 
4889	} else {
4890		int d;
4891		rcu_read_lock();
4892		for (d = conf->geo.raid_disks ;
4893		     d < conf->geo.raid_disks - mddev->delta_disks;
4894		     d++) {
4895			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4896			if (rdev)
4897				clear_bit(In_sync, &rdev->flags);
4898			rdev = rcu_dereference(conf->mirrors[d].replacement);
4899			if (rdev)
4900				clear_bit(In_sync, &rdev->flags);
4901		}
4902		rcu_read_unlock();
4903	}
4904	mddev->layout = mddev->new_layout;
4905	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4906	mddev->reshape_position = MaxSector;
4907	mddev->delta_disks = 0;
4908	mddev->reshape_backwards = 0;
4909}
4910
4911static struct md_personality raid10_personality =
4912{
4913	.name		= "raid10",
4914	.level		= 10,
4915	.owner		= THIS_MODULE,
4916	.make_request	= raid10_make_request,
4917	.run		= raid10_run,
4918	.free		= raid10_free,
4919	.status		= raid10_status,
4920	.error_handler	= raid10_error,
4921	.hot_add_disk	= raid10_add_disk,
4922	.hot_remove_disk= raid10_remove_disk,
4923	.spare_active	= raid10_spare_active,
4924	.sync_request	= raid10_sync_request,
4925	.quiesce	= raid10_quiesce,
4926	.size		= raid10_size,
4927	.resize		= raid10_resize,
4928	.takeover	= raid10_takeover,
4929	.check_reshape	= raid10_check_reshape,
4930	.start_reshape	= raid10_start_reshape,
4931	.finish_reshape	= raid10_finish_reshape,
4932	.update_reshape_pos = raid10_update_reshape_pos,
4933	.congested	= raid10_congested,
4934};
4935
4936static int __init raid_init(void)
4937{
4938	return register_md_personality(&raid10_personality);
4939}
4940
4941static void raid_exit(void)
4942{
4943	unregister_md_personality(&raid10_personality);
4944}
4945
4946module_init(raid_init);
4947module_exit(raid_exit);
4948MODULE_LICENSE("GPL");
4949MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4950MODULE_ALIAS("md-personality-9"); /* RAID10 */
4951MODULE_ALIAS("md-raid10");
4952MODULE_ALIAS("md-level-10");
4953
4954module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);