Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * cn_proc.c - process events connector
  3 *
  4 * Copyright (C) Matt Helsley, IBM Corp. 2005
  5 * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
  6 * Original copyright notice follows:
  7 * Copyright (C) 2005 BULL SA.
  8 *
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License as published by
 12 * the Free Software Foundation; either version 2 of the License, or
 13 * (at your option) any later version.
 14 *
 15 * This program is distributed in the hope that it will be useful,
 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 18 * GNU General Public License for more details.
 19 *
 20 * You should have received a copy of the GNU General Public License
 21 * along with this program; if not, write to the Free Software
 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 23 */
 24
 25#include <linux/module.h>
 26#include <linux/kernel.h>
 27#include <linux/ktime.h>
 28#include <linux/init.h>
 29#include <linux/connector.h>
 30#include <linux/gfp.h>
 31#include <linux/ptrace.h>
 32#include <linux/atomic.h>
 33#include <linux/pid_namespace.h>
 34
 35#include <linux/cn_proc.h>
 36
 37/*
 38 * Size of a cn_msg followed by a proc_event structure.  Since the
 39 * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
 40 * add one 4-byte word to the size here, and then start the actual
 41 * cn_msg structure 4 bytes into the stack buffer.  The result is that
 42 * the immediately following proc_event structure is aligned to 8 bytes.
 43 */
 44#define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
 45
 46/* See comment above; we test our assumption about sizeof struct cn_msg here. */
 47static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
 48{
 49	BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
 50	return (struct cn_msg *)(buffer + 4);
 51}
 52
 53static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
 54static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
 55
 56/* proc_event_counts is used as the sequence number of the netlink message */
 57static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
 58
 59static inline void get_seq(__u32 *ts, int *cpu)
 60{
 61	preempt_disable();
 62	*ts = __this_cpu_inc_return(proc_event_counts) - 1;
 63	*cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 64	preempt_enable();
 65}
 66
 67void proc_fork_connector(struct task_struct *task)
 68{
 69	struct cn_msg *msg;
 70	struct proc_event *ev;
 71	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 72	struct timespec ts;
 73	struct task_struct *parent;
 74
 75	if (atomic_read(&proc_event_num_listeners) < 1)
 76		return;
 77
 78	msg = buffer_to_cn_msg(buffer);
 79	ev = (struct proc_event *)msg->data;
 80	memset(&ev->event_data, 0, sizeof(ev->event_data));
 81	get_seq(&msg->seq, &ev->cpu);
 82	ktime_get_ts(&ts); /* get high res monotonic timestamp */
 83	ev->timestamp_ns = timespec_to_ns(&ts);
 84	ev->what = PROC_EVENT_FORK;
 85	rcu_read_lock();
 86	parent = rcu_dereference(task->real_parent);
 87	ev->event_data.fork.parent_pid = parent->pid;
 88	ev->event_data.fork.parent_tgid = parent->tgid;
 89	rcu_read_unlock();
 90	ev->event_data.fork.child_pid = task->pid;
 91	ev->event_data.fork.child_tgid = task->tgid;
 92
 93	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
 94	msg->ack = 0; /* not used */
 95	msg->len = sizeof(*ev);
 96	msg->flags = 0; /* not used */
 97	/*  If cn_netlink_send() failed, the data is not sent */
 98	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
 99}
100
101void proc_exec_connector(struct task_struct *task)
102{
103	struct cn_msg *msg;
104	struct proc_event *ev;
105	struct timespec ts;
106	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
107
108	if (atomic_read(&proc_event_num_listeners) < 1)
109		return;
110
111	msg = buffer_to_cn_msg(buffer);
112	ev = (struct proc_event *)msg->data;
113	memset(&ev->event_data, 0, sizeof(ev->event_data));
114	get_seq(&msg->seq, &ev->cpu);
115	ktime_get_ts(&ts); /* get high res monotonic timestamp */
116	ev->timestamp_ns = timespec_to_ns(&ts);
117	ev->what = PROC_EVENT_EXEC;
118	ev->event_data.exec.process_pid = task->pid;
119	ev->event_data.exec.process_tgid = task->tgid;
120
121	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
122	msg->ack = 0; /* not used */
123	msg->len = sizeof(*ev);
124	msg->flags = 0; /* not used */
125	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
126}
127
128void proc_id_connector(struct task_struct *task, int which_id)
129{
130	struct cn_msg *msg;
131	struct proc_event *ev;
132	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
133	struct timespec ts;
134	const struct cred *cred;
135
136	if (atomic_read(&proc_event_num_listeners) < 1)
137		return;
138
139	msg = buffer_to_cn_msg(buffer);
140	ev = (struct proc_event *)msg->data;
141	memset(&ev->event_data, 0, sizeof(ev->event_data));
142	ev->what = which_id;
143	ev->event_data.id.process_pid = task->pid;
144	ev->event_data.id.process_tgid = task->tgid;
145	rcu_read_lock();
146	cred = __task_cred(task);
147	if (which_id == PROC_EVENT_UID) {
148		ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
149		ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
150	} else if (which_id == PROC_EVENT_GID) {
151		ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
152		ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
153	} else {
154		rcu_read_unlock();
155		return;
156	}
157	rcu_read_unlock();
158	get_seq(&msg->seq, &ev->cpu);
159	ktime_get_ts(&ts); /* get high res monotonic timestamp */
160	ev->timestamp_ns = timespec_to_ns(&ts);
161
162	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
163	msg->ack = 0; /* not used */
164	msg->len = sizeof(*ev);
165	msg->flags = 0; /* not used */
166	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
167}
168
169void proc_sid_connector(struct task_struct *task)
170{
171	struct cn_msg *msg;
172	struct proc_event *ev;
173	struct timespec ts;
174	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
175
176	if (atomic_read(&proc_event_num_listeners) < 1)
177		return;
178
179	msg = buffer_to_cn_msg(buffer);
180	ev = (struct proc_event *)msg->data;
181	memset(&ev->event_data, 0, sizeof(ev->event_data));
182	get_seq(&msg->seq, &ev->cpu);
183	ktime_get_ts(&ts); /* get high res monotonic timestamp */
184	ev->timestamp_ns = timespec_to_ns(&ts);
185	ev->what = PROC_EVENT_SID;
186	ev->event_data.sid.process_pid = task->pid;
187	ev->event_data.sid.process_tgid = task->tgid;
188
189	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
190	msg->ack = 0; /* not used */
191	msg->len = sizeof(*ev);
192	msg->flags = 0; /* not used */
193	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
194}
195
196void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
197{
198	struct cn_msg *msg;
199	struct proc_event *ev;
200	struct timespec ts;
201	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
202
203	if (atomic_read(&proc_event_num_listeners) < 1)
204		return;
205
206	msg = buffer_to_cn_msg(buffer);
207	ev = (struct proc_event *)msg->data;
208	memset(&ev->event_data, 0, sizeof(ev->event_data));
209	get_seq(&msg->seq, &ev->cpu);
210	ktime_get_ts(&ts); /* get high res monotonic timestamp */
211	ev->timestamp_ns = timespec_to_ns(&ts);
212	ev->what = PROC_EVENT_PTRACE;
213	ev->event_data.ptrace.process_pid  = task->pid;
214	ev->event_data.ptrace.process_tgid = task->tgid;
215	if (ptrace_id == PTRACE_ATTACH) {
216		ev->event_data.ptrace.tracer_pid  = current->pid;
217		ev->event_data.ptrace.tracer_tgid = current->tgid;
218	} else if (ptrace_id == PTRACE_DETACH) {
219		ev->event_data.ptrace.tracer_pid  = 0;
220		ev->event_data.ptrace.tracer_tgid = 0;
221	} else
222		return;
223
224	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
225	msg->ack = 0; /* not used */
226	msg->len = sizeof(*ev);
227	msg->flags = 0; /* not used */
228	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
229}
230
231void proc_comm_connector(struct task_struct *task)
232{
233	struct cn_msg *msg;
234	struct proc_event *ev;
235	struct timespec ts;
236	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
237
238	if (atomic_read(&proc_event_num_listeners) < 1)
239		return;
240
241	msg = buffer_to_cn_msg(buffer);
242	ev = (struct proc_event *)msg->data;
243	memset(&ev->event_data, 0, sizeof(ev->event_data));
244	get_seq(&msg->seq, &ev->cpu);
245	ktime_get_ts(&ts); /* get high res monotonic timestamp */
246	ev->timestamp_ns = timespec_to_ns(&ts);
247	ev->what = PROC_EVENT_COMM;
248	ev->event_data.comm.process_pid  = task->pid;
249	ev->event_data.comm.process_tgid = task->tgid;
250	get_task_comm(ev->event_data.comm.comm, task);
251
252	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
253	msg->ack = 0; /* not used */
254	msg->len = sizeof(*ev);
255	msg->flags = 0; /* not used */
256	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
257}
258
259void proc_coredump_connector(struct task_struct *task)
260{
261	struct cn_msg *msg;
262	struct proc_event *ev;
 
263	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
264	struct timespec ts;
265
266	if (atomic_read(&proc_event_num_listeners) < 1)
267		return;
268
269	msg = buffer_to_cn_msg(buffer);
270	ev = (struct proc_event *)msg->data;
271	memset(&ev->event_data, 0, sizeof(ev->event_data));
272	get_seq(&msg->seq, &ev->cpu);
273	ktime_get_ts(&ts); /* get high res monotonic timestamp */
274	ev->timestamp_ns = timespec_to_ns(&ts);
275	ev->what = PROC_EVENT_COREDUMP;
276	ev->event_data.coredump.process_pid = task->pid;
277	ev->event_data.coredump.process_tgid = task->tgid;
278
 
 
 
 
 
 
 
 
279	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
280	msg->ack = 0; /* not used */
281	msg->len = sizeof(*ev);
282	msg->flags = 0; /* not used */
283	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
284}
285
286void proc_exit_connector(struct task_struct *task)
287{
288	struct cn_msg *msg;
289	struct proc_event *ev;
 
290	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
291	struct timespec ts;
292
293	if (atomic_read(&proc_event_num_listeners) < 1)
294		return;
295
296	msg = buffer_to_cn_msg(buffer);
297	ev = (struct proc_event *)msg->data;
298	memset(&ev->event_data, 0, sizeof(ev->event_data));
299	get_seq(&msg->seq, &ev->cpu);
300	ktime_get_ts(&ts); /* get high res monotonic timestamp */
301	ev->timestamp_ns = timespec_to_ns(&ts);
302	ev->what = PROC_EVENT_EXIT;
303	ev->event_data.exit.process_pid = task->pid;
304	ev->event_data.exit.process_tgid = task->tgid;
305	ev->event_data.exit.exit_code = task->exit_code;
306	ev->event_data.exit.exit_signal = task->exit_signal;
307
 
 
 
 
 
 
 
 
308	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
309	msg->ack = 0; /* not used */
310	msg->len = sizeof(*ev);
311	msg->flags = 0; /* not used */
312	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
313}
314
315/*
316 * Send an acknowledgement message to userspace
317 *
318 * Use 0 for success, EFOO otherwise.
319 * Note: this is the negative of conventional kernel error
320 * values because it's not being returned via syscall return
321 * mechanisms.
322 */
323static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
324{
325	struct cn_msg *msg;
326	struct proc_event *ev;
327	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
328	struct timespec ts;
329
330	if (atomic_read(&proc_event_num_listeners) < 1)
331		return;
332
333	msg = buffer_to_cn_msg(buffer);
334	ev = (struct proc_event *)msg->data;
335	memset(&ev->event_data, 0, sizeof(ev->event_data));
336	msg->seq = rcvd_seq;
337	ktime_get_ts(&ts); /* get high res monotonic timestamp */
338	ev->timestamp_ns = timespec_to_ns(&ts);
339	ev->cpu = -1;
340	ev->what = PROC_EVENT_NONE;
341	ev->event_data.ack.err = err;
342	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
343	msg->ack = rcvd_ack + 1;
344	msg->len = sizeof(*ev);
345	msg->flags = 0; /* not used */
346	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
347}
348
349/**
350 * cn_proc_mcast_ctl
351 * @data: message sent from userspace via the connector
352 */
353static void cn_proc_mcast_ctl(struct cn_msg *msg,
354			      struct netlink_skb_parms *nsp)
355{
356	enum proc_cn_mcast_op *mc_op = NULL;
357	int err = 0;
358
359	if (msg->len != sizeof(*mc_op))
360		return;
361
362	/* 
363	 * Events are reported with respect to the initial pid
364	 * and user namespaces so ignore requestors from
365	 * other namespaces.
366	 */
367	if ((current_user_ns() != &init_user_ns) ||
368	    (task_active_pid_ns(current) != &init_pid_ns))
369		return;
370
371	/* Can only change if privileged. */
372	if (!__netlink_ns_capable(nsp, &init_user_ns, CAP_NET_ADMIN)) {
373		err = EPERM;
374		goto out;
375	}
376
377	mc_op = (enum proc_cn_mcast_op *)msg->data;
378	switch (*mc_op) {
379	case PROC_CN_MCAST_LISTEN:
380		atomic_inc(&proc_event_num_listeners);
381		break;
382	case PROC_CN_MCAST_IGNORE:
383		atomic_dec(&proc_event_num_listeners);
384		break;
385	default:
386		err = EINVAL;
387		break;
388	}
389
390out:
391	cn_proc_ack(err, msg->seq, msg->ack);
392}
393
394/*
395 * cn_proc_init - initialization entry point
396 *
397 * Adds the connector callback to the connector driver.
398 */
399static int __init cn_proc_init(void)
400{
401	int err = cn_add_callback(&cn_proc_event_id,
402				  "cn_proc",
403				  &cn_proc_mcast_ctl);
404	if (err) {
405		pr_warn("cn_proc failed to register\n");
406		return err;
407	}
408	return 0;
409}
410
411module_init(cn_proc_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * cn_proc.c - process events connector
  4 *
  5 * Copyright (C) Matt Helsley, IBM Corp. 2005
  6 * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
  7 * Original copyright notice follows:
  8 * Copyright (C) 2005 BULL SA.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 */
 10
 
 11#include <linux/kernel.h>
 12#include <linux/ktime.h>
 13#include <linux/init.h>
 14#include <linux/connector.h>
 15#include <linux/gfp.h>
 16#include <linux/ptrace.h>
 17#include <linux/atomic.h>
 18#include <linux/pid_namespace.h>
 19
 20#include <linux/cn_proc.h>
 21
 22/*
 23 * Size of a cn_msg followed by a proc_event structure.  Since the
 24 * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
 25 * add one 4-byte word to the size here, and then start the actual
 26 * cn_msg structure 4 bytes into the stack buffer.  The result is that
 27 * the immediately following proc_event structure is aligned to 8 bytes.
 28 */
 29#define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
 30
 31/* See comment above; we test our assumption about sizeof struct cn_msg here. */
 32static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
 33{
 34	BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
 35	return (struct cn_msg *)(buffer + 4);
 36}
 37
 38static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
 39static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
 40
 41/* proc_event_counts is used as the sequence number of the netlink message */
 42static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
 43
 44static inline void send_msg(struct cn_msg *msg)
 45{
 46	preempt_disable();
 47
 48	msg->seq = __this_cpu_inc_return(proc_event_counts) - 1;
 49	((struct proc_event *)msg->data)->cpu = smp_processor_id();
 50
 51	/*
 52	 * Preemption remains disabled during send to ensure the messages are
 53	 * ordered according to their sequence numbers.
 54	 *
 55	 * If cn_netlink_send() fails, the data is not sent.
 56	 */
 57	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_NOWAIT);
 58
 59	preempt_enable();
 60}
 61
 62void proc_fork_connector(struct task_struct *task)
 63{
 64	struct cn_msg *msg;
 65	struct proc_event *ev;
 66	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 
 67	struct task_struct *parent;
 68
 69	if (atomic_read(&proc_event_num_listeners) < 1)
 70		return;
 71
 72	msg = buffer_to_cn_msg(buffer);
 73	ev = (struct proc_event *)msg->data;
 74	memset(&ev->event_data, 0, sizeof(ev->event_data));
 75	ev->timestamp_ns = ktime_get_ns();
 
 
 76	ev->what = PROC_EVENT_FORK;
 77	rcu_read_lock();
 78	parent = rcu_dereference(task->real_parent);
 79	ev->event_data.fork.parent_pid = parent->pid;
 80	ev->event_data.fork.parent_tgid = parent->tgid;
 81	rcu_read_unlock();
 82	ev->event_data.fork.child_pid = task->pid;
 83	ev->event_data.fork.child_tgid = task->tgid;
 84
 85	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
 86	msg->ack = 0; /* not used */
 87	msg->len = sizeof(*ev);
 88	msg->flags = 0; /* not used */
 89	send_msg(msg);
 
 90}
 91
 92void proc_exec_connector(struct task_struct *task)
 93{
 94	struct cn_msg *msg;
 95	struct proc_event *ev;
 
 96	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 97
 98	if (atomic_read(&proc_event_num_listeners) < 1)
 99		return;
100
101	msg = buffer_to_cn_msg(buffer);
102	ev = (struct proc_event *)msg->data;
103	memset(&ev->event_data, 0, sizeof(ev->event_data));
104	ev->timestamp_ns = ktime_get_ns();
 
 
105	ev->what = PROC_EVENT_EXEC;
106	ev->event_data.exec.process_pid = task->pid;
107	ev->event_data.exec.process_tgid = task->tgid;
108
109	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
110	msg->ack = 0; /* not used */
111	msg->len = sizeof(*ev);
112	msg->flags = 0; /* not used */
113	send_msg(msg);
114}
115
116void proc_id_connector(struct task_struct *task, int which_id)
117{
118	struct cn_msg *msg;
119	struct proc_event *ev;
120	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 
121	const struct cred *cred;
122
123	if (atomic_read(&proc_event_num_listeners) < 1)
124		return;
125
126	msg = buffer_to_cn_msg(buffer);
127	ev = (struct proc_event *)msg->data;
128	memset(&ev->event_data, 0, sizeof(ev->event_data));
129	ev->what = which_id;
130	ev->event_data.id.process_pid = task->pid;
131	ev->event_data.id.process_tgid = task->tgid;
132	rcu_read_lock();
133	cred = __task_cred(task);
134	if (which_id == PROC_EVENT_UID) {
135		ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
136		ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
137	} else if (which_id == PROC_EVENT_GID) {
138		ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
139		ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
140	} else {
141		rcu_read_unlock();
142		return;
143	}
144	rcu_read_unlock();
145	ev->timestamp_ns = ktime_get_ns();
 
 
146
147	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
148	msg->ack = 0; /* not used */
149	msg->len = sizeof(*ev);
150	msg->flags = 0; /* not used */
151	send_msg(msg);
152}
153
154void proc_sid_connector(struct task_struct *task)
155{
156	struct cn_msg *msg;
157	struct proc_event *ev;
 
158	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
159
160	if (atomic_read(&proc_event_num_listeners) < 1)
161		return;
162
163	msg = buffer_to_cn_msg(buffer);
164	ev = (struct proc_event *)msg->data;
165	memset(&ev->event_data, 0, sizeof(ev->event_data));
166	ev->timestamp_ns = ktime_get_ns();
 
 
167	ev->what = PROC_EVENT_SID;
168	ev->event_data.sid.process_pid = task->pid;
169	ev->event_data.sid.process_tgid = task->tgid;
170
171	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
172	msg->ack = 0; /* not used */
173	msg->len = sizeof(*ev);
174	msg->flags = 0; /* not used */
175	send_msg(msg);
176}
177
178void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
179{
180	struct cn_msg *msg;
181	struct proc_event *ev;
 
182	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
183
184	if (atomic_read(&proc_event_num_listeners) < 1)
185		return;
186
187	msg = buffer_to_cn_msg(buffer);
188	ev = (struct proc_event *)msg->data;
189	memset(&ev->event_data, 0, sizeof(ev->event_data));
190	ev->timestamp_ns = ktime_get_ns();
 
 
191	ev->what = PROC_EVENT_PTRACE;
192	ev->event_data.ptrace.process_pid  = task->pid;
193	ev->event_data.ptrace.process_tgid = task->tgid;
194	if (ptrace_id == PTRACE_ATTACH) {
195		ev->event_data.ptrace.tracer_pid  = current->pid;
196		ev->event_data.ptrace.tracer_tgid = current->tgid;
197	} else if (ptrace_id == PTRACE_DETACH) {
198		ev->event_data.ptrace.tracer_pid  = 0;
199		ev->event_data.ptrace.tracer_tgid = 0;
200	} else
201		return;
202
203	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
204	msg->ack = 0; /* not used */
205	msg->len = sizeof(*ev);
206	msg->flags = 0; /* not used */
207	send_msg(msg);
208}
209
210void proc_comm_connector(struct task_struct *task)
211{
212	struct cn_msg *msg;
213	struct proc_event *ev;
 
214	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
215
216	if (atomic_read(&proc_event_num_listeners) < 1)
217		return;
218
219	msg = buffer_to_cn_msg(buffer);
220	ev = (struct proc_event *)msg->data;
221	memset(&ev->event_data, 0, sizeof(ev->event_data));
222	ev->timestamp_ns = ktime_get_ns();
 
 
223	ev->what = PROC_EVENT_COMM;
224	ev->event_data.comm.process_pid  = task->pid;
225	ev->event_data.comm.process_tgid = task->tgid;
226	get_task_comm(ev->event_data.comm.comm, task);
227
228	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
229	msg->ack = 0; /* not used */
230	msg->len = sizeof(*ev);
231	msg->flags = 0; /* not used */
232	send_msg(msg);
233}
234
235void proc_coredump_connector(struct task_struct *task)
236{
237	struct cn_msg *msg;
238	struct proc_event *ev;
239	struct task_struct *parent;
240	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 
241
242	if (atomic_read(&proc_event_num_listeners) < 1)
243		return;
244
245	msg = buffer_to_cn_msg(buffer);
246	ev = (struct proc_event *)msg->data;
247	memset(&ev->event_data, 0, sizeof(ev->event_data));
248	ev->timestamp_ns = ktime_get_ns();
 
 
249	ev->what = PROC_EVENT_COREDUMP;
250	ev->event_data.coredump.process_pid = task->pid;
251	ev->event_data.coredump.process_tgid = task->tgid;
252
253	rcu_read_lock();
254	if (pid_alive(task)) {
255		parent = rcu_dereference(task->real_parent);
256		ev->event_data.coredump.parent_pid = parent->pid;
257		ev->event_data.coredump.parent_tgid = parent->tgid;
258	}
259	rcu_read_unlock();
260
261	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
262	msg->ack = 0; /* not used */
263	msg->len = sizeof(*ev);
264	msg->flags = 0; /* not used */
265	send_msg(msg);
266}
267
268void proc_exit_connector(struct task_struct *task)
269{
270	struct cn_msg *msg;
271	struct proc_event *ev;
272	struct task_struct *parent;
273	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 
274
275	if (atomic_read(&proc_event_num_listeners) < 1)
276		return;
277
278	msg = buffer_to_cn_msg(buffer);
279	ev = (struct proc_event *)msg->data;
280	memset(&ev->event_data, 0, sizeof(ev->event_data));
281	ev->timestamp_ns = ktime_get_ns();
 
 
282	ev->what = PROC_EVENT_EXIT;
283	ev->event_data.exit.process_pid = task->pid;
284	ev->event_data.exit.process_tgid = task->tgid;
285	ev->event_data.exit.exit_code = task->exit_code;
286	ev->event_data.exit.exit_signal = task->exit_signal;
287
288	rcu_read_lock();
289	if (pid_alive(task)) {
290		parent = rcu_dereference(task->real_parent);
291		ev->event_data.exit.parent_pid = parent->pid;
292		ev->event_data.exit.parent_tgid = parent->tgid;
293	}
294	rcu_read_unlock();
295
296	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
297	msg->ack = 0; /* not used */
298	msg->len = sizeof(*ev);
299	msg->flags = 0; /* not used */
300	send_msg(msg);
301}
302
303/*
304 * Send an acknowledgement message to userspace
305 *
306 * Use 0 for success, EFOO otherwise.
307 * Note: this is the negative of conventional kernel error
308 * values because it's not being returned via syscall return
309 * mechanisms.
310 */
311static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
312{
313	struct cn_msg *msg;
314	struct proc_event *ev;
315	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
 
316
317	if (atomic_read(&proc_event_num_listeners) < 1)
318		return;
319
320	msg = buffer_to_cn_msg(buffer);
321	ev = (struct proc_event *)msg->data;
322	memset(&ev->event_data, 0, sizeof(ev->event_data));
323	msg->seq = rcvd_seq;
324	ev->timestamp_ns = ktime_get_ns();
 
325	ev->cpu = -1;
326	ev->what = PROC_EVENT_NONE;
327	ev->event_data.ack.err = err;
328	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
329	msg->ack = rcvd_ack + 1;
330	msg->len = sizeof(*ev);
331	msg->flags = 0; /* not used */
332	send_msg(msg);
333}
334
335/**
336 * cn_proc_mcast_ctl
337 * @data: message sent from userspace via the connector
338 */
339static void cn_proc_mcast_ctl(struct cn_msg *msg,
340			      struct netlink_skb_parms *nsp)
341{
342	enum proc_cn_mcast_op *mc_op = NULL;
343	int err = 0;
344
345	if (msg->len != sizeof(*mc_op))
346		return;
347
348	/* 
349	 * Events are reported with respect to the initial pid
350	 * and user namespaces so ignore requestors from
351	 * other namespaces.
352	 */
353	if ((current_user_ns() != &init_user_ns) ||
354	    (task_active_pid_ns(current) != &init_pid_ns))
355		return;
356
357	/* Can only change if privileged. */
358	if (!__netlink_ns_capable(nsp, &init_user_ns, CAP_NET_ADMIN)) {
359		err = EPERM;
360		goto out;
361	}
362
363	mc_op = (enum proc_cn_mcast_op *)msg->data;
364	switch (*mc_op) {
365	case PROC_CN_MCAST_LISTEN:
366		atomic_inc(&proc_event_num_listeners);
367		break;
368	case PROC_CN_MCAST_IGNORE:
369		atomic_dec(&proc_event_num_listeners);
370		break;
371	default:
372		err = EINVAL;
373		break;
374	}
375
376out:
377	cn_proc_ack(err, msg->seq, msg->ack);
378}
379
380/*
381 * cn_proc_init - initialization entry point
382 *
383 * Adds the connector callback to the connector driver.
384 */
385static int __init cn_proc_init(void)
386{
387	int err = cn_add_callback(&cn_proc_event_id,
388				  "cn_proc",
389				  &cn_proc_mcast_ctl);
390	if (err) {
391		pr_warn("cn_proc failed to register\n");
392		return err;
393	}
394	return 0;
395}
396device_initcall(cn_proc_init);