Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *	http://www.sata-io.org (SATA)
  37 *	http://www.compactflash.org (CF)
  38 *	http://www.qic.org (QIC157 - Tape and DSC)
  39 *	http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
 
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
 
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
 
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
 
  69#include <linux/pm_runtime.h>
  70#include <linux/platform_device.h>
  71
 
 
 
  72#include "libata.h"
  73#include "libata-transport.h"
  74
  75/* debounce timing parameters in msecs { interval, duration, timeout } */
  76const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  77const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  78const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  79
  80const struct ata_port_operations ata_base_port_ops = {
  81	.prereset		= ata_std_prereset,
  82	.postreset		= ata_std_postreset,
  83	.error_handler		= ata_std_error_handler,
  84	.sched_eh		= ata_std_sched_eh,
  85	.end_eh			= ata_std_end_eh,
  86};
  87
  88const struct ata_port_operations sata_port_ops = {
  89	.inherits		= &ata_base_port_ops,
  90
  91	.qc_defer		= ata_std_qc_defer,
  92	.hardreset		= sata_std_hardreset,
  93};
  94
  95static unsigned int ata_dev_init_params(struct ata_device *dev,
  96					u16 heads, u16 sectors);
  97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  98static void ata_dev_xfermask(struct ata_device *dev);
  99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 100
 101atomic_t ata_print_id = ATOMIC_INIT(0);
 102
 103struct ata_force_param {
 104	const char	*name;
 105	unsigned int	cbl;
 106	int		spd_limit;
 107	unsigned long	xfer_mask;
 108	unsigned int	horkage_on;
 109	unsigned int	horkage_off;
 110	unsigned int	lflags;
 111};
 112
 113struct ata_force_ent {
 114	int			port;
 115	int			device;
 116	struct ata_force_param	param;
 117};
 118
 119static struct ata_force_ent *ata_force_tbl;
 120static int ata_force_tbl_size;
 121
 122static char ata_force_param_buf[PAGE_SIZE] __initdata;
 123/* param_buf is thrown away after initialization, disallow read */
 124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 126
 127static int atapi_enabled = 1;
 128module_param(atapi_enabled, int, 0444);
 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 130
 131static int atapi_dmadir = 0;
 132module_param(atapi_dmadir, int, 0444);
 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 134
 135int atapi_passthru16 = 1;
 136module_param(atapi_passthru16, int, 0444);
 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 138
 139int libata_fua = 0;
 140module_param_named(fua, libata_fua, int, 0444);
 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 142
 143static int ata_ignore_hpa;
 144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 146
 147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 148module_param_named(dma, libata_dma_mask, int, 0444);
 149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 150
 151static int ata_probe_timeout;
 152module_param(ata_probe_timeout, int, 0444);
 153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 154
 155int libata_noacpi = 0;
 156module_param_named(noacpi, libata_noacpi, int, 0444);
 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 158
 159int libata_allow_tpm = 0;
 160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 162
 163static int atapi_an;
 164module_param(atapi_an, int, 0444);
 165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 166
 167MODULE_AUTHOR("Jeff Garzik");
 168MODULE_DESCRIPTION("Library module for ATA devices");
 169MODULE_LICENSE("GPL");
 170MODULE_VERSION(DRV_VERSION);
 171
 172
 173static bool ata_sstatus_online(u32 sstatus)
 174{
 175	return (sstatus & 0xf) == 0x3;
 176}
 177
 178/**
 179 *	ata_link_next - link iteration helper
 180 *	@link: the previous link, NULL to start
 181 *	@ap: ATA port containing links to iterate
 182 *	@mode: iteration mode, one of ATA_LITER_*
 183 *
 184 *	LOCKING:
 185 *	Host lock or EH context.
 186 *
 187 *	RETURNS:
 188 *	Pointer to the next link.
 189 */
 190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 191			       enum ata_link_iter_mode mode)
 192{
 193	BUG_ON(mode != ATA_LITER_EDGE &&
 194	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 195
 196	/* NULL link indicates start of iteration */
 197	if (!link)
 198		switch (mode) {
 199		case ATA_LITER_EDGE:
 200		case ATA_LITER_PMP_FIRST:
 201			if (sata_pmp_attached(ap))
 202				return ap->pmp_link;
 203			/* fall through */
 204		case ATA_LITER_HOST_FIRST:
 205			return &ap->link;
 206		}
 207
 208	/* we just iterated over the host link, what's next? */
 209	if (link == &ap->link)
 210		switch (mode) {
 211		case ATA_LITER_HOST_FIRST:
 212			if (sata_pmp_attached(ap))
 213				return ap->pmp_link;
 214			/* fall through */
 215		case ATA_LITER_PMP_FIRST:
 216			if (unlikely(ap->slave_link))
 217				return ap->slave_link;
 218			/* fall through */
 219		case ATA_LITER_EDGE:
 220			return NULL;
 221		}
 222
 223	/* slave_link excludes PMP */
 224	if (unlikely(link == ap->slave_link))
 225		return NULL;
 226
 227	/* we were over a PMP link */
 228	if (++link < ap->pmp_link + ap->nr_pmp_links)
 229		return link;
 230
 231	if (mode == ATA_LITER_PMP_FIRST)
 232		return &ap->link;
 233
 234	return NULL;
 235}
 236
 237/**
 238 *	ata_dev_next - device iteration helper
 239 *	@dev: the previous device, NULL to start
 240 *	@link: ATA link containing devices to iterate
 241 *	@mode: iteration mode, one of ATA_DITER_*
 242 *
 243 *	LOCKING:
 244 *	Host lock or EH context.
 245 *
 246 *	RETURNS:
 247 *	Pointer to the next device.
 248 */
 249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 250				enum ata_dev_iter_mode mode)
 251{
 252	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 253	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 254
 255	/* NULL dev indicates start of iteration */
 256	if (!dev)
 257		switch (mode) {
 258		case ATA_DITER_ENABLED:
 259		case ATA_DITER_ALL:
 260			dev = link->device;
 261			goto check;
 262		case ATA_DITER_ENABLED_REVERSE:
 263		case ATA_DITER_ALL_REVERSE:
 264			dev = link->device + ata_link_max_devices(link) - 1;
 265			goto check;
 266		}
 267
 268 next:
 269	/* move to the next one */
 270	switch (mode) {
 271	case ATA_DITER_ENABLED:
 272	case ATA_DITER_ALL:
 273		if (++dev < link->device + ata_link_max_devices(link))
 274			goto check;
 275		return NULL;
 276	case ATA_DITER_ENABLED_REVERSE:
 277	case ATA_DITER_ALL_REVERSE:
 278		if (--dev >= link->device)
 279			goto check;
 280		return NULL;
 281	}
 282
 283 check:
 284	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 285	    !ata_dev_enabled(dev))
 286		goto next;
 287	return dev;
 288}
 289
 290/**
 291 *	ata_dev_phys_link - find physical link for a device
 292 *	@dev: ATA device to look up physical link for
 293 *
 294 *	Look up physical link which @dev is attached to.  Note that
 295 *	this is different from @dev->link only when @dev is on slave
 296 *	link.  For all other cases, it's the same as @dev->link.
 297 *
 298 *	LOCKING:
 299 *	Don't care.
 300 *
 301 *	RETURNS:
 302 *	Pointer to the found physical link.
 303 */
 304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 305{
 306	struct ata_port *ap = dev->link->ap;
 307
 308	if (!ap->slave_link)
 309		return dev->link;
 310	if (!dev->devno)
 311		return &ap->link;
 312	return ap->slave_link;
 313}
 314
 315/**
 316 *	ata_force_cbl - force cable type according to libata.force
 317 *	@ap: ATA port of interest
 318 *
 319 *	Force cable type according to libata.force and whine about it.
 320 *	The last entry which has matching port number is used, so it
 321 *	can be specified as part of device force parameters.  For
 322 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *	same effect.
 324 *
 325 *	LOCKING:
 326 *	EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330	int i;
 331
 332	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333		const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335		if (fe->port != -1 && fe->port != ap->print_id)
 336			continue;
 337
 338		if (fe->param.cbl == ATA_CBL_NONE)
 339			continue;
 340
 341		ap->cbl = fe->param.cbl;
 342		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343		return;
 344	}
 345}
 346
 347/**
 348 *	ata_force_link_limits - force link limits according to libata.force
 349 *	@link: ATA link of interest
 350 *
 351 *	Force link flags and SATA spd limit according to libata.force
 352 *	and whine about it.  When only the port part is specified
 353 *	(e.g. 1:), the limit applies to all links connected to both
 354 *	the host link and all fan-out ports connected via PMP.  If the
 355 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *	first fan-out link not the host link.  Device number 15 always
 357 *	points to the host link whether PMP is attached or not.  If the
 358 *	controller has slave link, device number 16 points to it.
 359 *
 360 *	LOCKING:
 361 *	EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365	bool did_spd = false;
 366	int linkno = link->pmp;
 367	int i;
 368
 369	if (ata_is_host_link(link))
 370		linkno += 15;
 371
 372	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373		const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375		if (fe->port != -1 && fe->port != link->ap->print_id)
 376			continue;
 377
 378		if (fe->device != -1 && fe->device != linkno)
 379			continue;
 380
 381		/* only honor the first spd limit */
 382		if (!did_spd && fe->param.spd_limit) {
 383			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385					fe->param.name);
 386			did_spd = true;
 387		}
 388
 389		/* let lflags stack */
 390		if (fe->param.lflags) {
 391			link->flags |= fe->param.lflags;
 392			ata_link_notice(link,
 393					"FORCE: link flag 0x%x forced -> 0x%x\n",
 394					fe->param.lflags, link->flags);
 395		}
 396	}
 397}
 398
 399/**
 400 *	ata_force_xfermask - force xfermask according to libata.force
 401 *	@dev: ATA device of interest
 402 *
 403 *	Force xfer_mask according to libata.force and whine about it.
 404 *	For consistency with link selection, device number 15 selects
 405 *	the first device connected to the host link.
 406 *
 407 *	LOCKING:
 408 *	EH context.
 409 */
 410static void ata_force_xfermask(struct ata_device *dev)
 411{
 412	int devno = dev->link->pmp + dev->devno;
 413	int alt_devno = devno;
 414	int i;
 415
 416	/* allow n.15/16 for devices attached to host port */
 417	if (ata_is_host_link(dev->link))
 418		alt_devno += 15;
 419
 420	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 421		const struct ata_force_ent *fe = &ata_force_tbl[i];
 422		unsigned long pio_mask, mwdma_mask, udma_mask;
 423
 424		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 425			continue;
 426
 427		if (fe->device != -1 && fe->device != devno &&
 428		    fe->device != alt_devno)
 429			continue;
 430
 431		if (!fe->param.xfer_mask)
 432			continue;
 433
 434		ata_unpack_xfermask(fe->param.xfer_mask,
 435				    &pio_mask, &mwdma_mask, &udma_mask);
 436		if (udma_mask)
 437			dev->udma_mask = udma_mask;
 438		else if (mwdma_mask) {
 439			dev->udma_mask = 0;
 440			dev->mwdma_mask = mwdma_mask;
 441		} else {
 442			dev->udma_mask = 0;
 443			dev->mwdma_mask = 0;
 444			dev->pio_mask = pio_mask;
 445		}
 446
 447		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 448			       fe->param.name);
 449		return;
 450	}
 451}
 452
 453/**
 454 *	ata_force_horkage - force horkage according to libata.force
 455 *	@dev: ATA device of interest
 456 *
 457 *	Force horkage according to libata.force and whine about it.
 458 *	For consistency with link selection, device number 15 selects
 459 *	the first device connected to the host link.
 460 *
 461 *	LOCKING:
 462 *	EH context.
 463 */
 464static void ata_force_horkage(struct ata_device *dev)
 465{
 466	int devno = dev->link->pmp + dev->devno;
 467	int alt_devno = devno;
 468	int i;
 469
 470	/* allow n.15/16 for devices attached to host port */
 471	if (ata_is_host_link(dev->link))
 472		alt_devno += 15;
 473
 474	for (i = 0; i < ata_force_tbl_size; i++) {
 475		const struct ata_force_ent *fe = &ata_force_tbl[i];
 476
 477		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 478			continue;
 479
 480		if (fe->device != -1 && fe->device != devno &&
 481		    fe->device != alt_devno)
 482			continue;
 483
 484		if (!(~dev->horkage & fe->param.horkage_on) &&
 485		    !(dev->horkage & fe->param.horkage_off))
 486			continue;
 487
 488		dev->horkage |= fe->param.horkage_on;
 489		dev->horkage &= ~fe->param.horkage_off;
 490
 491		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 492			       fe->param.name);
 493	}
 494}
 495
 496/**
 497 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 498 *	@opcode: SCSI opcode
 499 *
 500 *	Determine ATAPI command type from @opcode.
 501 *
 502 *	LOCKING:
 503 *	None.
 504 *
 505 *	RETURNS:
 506 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 507 */
 508int atapi_cmd_type(u8 opcode)
 509{
 510	switch (opcode) {
 511	case GPCMD_READ_10:
 512	case GPCMD_READ_12:
 513		return ATAPI_READ;
 514
 515	case GPCMD_WRITE_10:
 516	case GPCMD_WRITE_12:
 517	case GPCMD_WRITE_AND_VERIFY_10:
 518		return ATAPI_WRITE;
 519
 520	case GPCMD_READ_CD:
 521	case GPCMD_READ_CD_MSF:
 522		return ATAPI_READ_CD;
 523
 524	case ATA_16:
 525	case ATA_12:
 526		if (atapi_passthru16)
 527			return ATAPI_PASS_THRU;
 528		/* fall thru */
 529	default:
 530		return ATAPI_MISC;
 531	}
 532}
 533
 534/**
 535 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 536 *	@tf: Taskfile to convert
 537 *	@pmp: Port multiplier port
 538 *	@is_cmd: This FIS is for command
 539 *	@fis: Buffer into which data will output
 540 *
 541 *	Converts a standard ATA taskfile to a Serial ATA
 542 *	FIS structure (Register - Host to Device).
 543 *
 544 *	LOCKING:
 545 *	Inherited from caller.
 546 */
 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 548{
 549	fis[0] = 0x27;			/* Register - Host to Device FIS */
 550	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 551	if (is_cmd)
 552		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 553
 554	fis[2] = tf->command;
 555	fis[3] = tf->feature;
 556
 557	fis[4] = tf->lbal;
 558	fis[5] = tf->lbam;
 559	fis[6] = tf->lbah;
 560	fis[7] = tf->device;
 561
 562	fis[8] = tf->hob_lbal;
 563	fis[9] = tf->hob_lbam;
 564	fis[10] = tf->hob_lbah;
 565	fis[11] = tf->hob_feature;
 566
 567	fis[12] = tf->nsect;
 568	fis[13] = tf->hob_nsect;
 569	fis[14] = 0;
 570	fis[15] = tf->ctl;
 571
 572	fis[16] = tf->auxiliary & 0xff;
 573	fis[17] = (tf->auxiliary >> 8) & 0xff;
 574	fis[18] = (tf->auxiliary >> 16) & 0xff;
 575	fis[19] = (tf->auxiliary >> 24) & 0xff;
 576}
 577
 578/**
 579 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 580 *	@fis: Buffer from which data will be input
 581 *	@tf: Taskfile to output
 582 *
 583 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 584 *
 585 *	LOCKING:
 586 *	Inherited from caller.
 587 */
 588
 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 590{
 591	tf->command	= fis[2];	/* status */
 592	tf->feature	= fis[3];	/* error */
 593
 594	tf->lbal	= fis[4];
 595	tf->lbam	= fis[5];
 596	tf->lbah	= fis[6];
 597	tf->device	= fis[7];
 598
 599	tf->hob_lbal	= fis[8];
 600	tf->hob_lbam	= fis[9];
 601	tf->hob_lbah	= fis[10];
 602
 603	tf->nsect	= fis[12];
 604	tf->hob_nsect	= fis[13];
 605}
 606
 607static const u8 ata_rw_cmds[] = {
 608	/* pio multi */
 609	ATA_CMD_READ_MULTI,
 610	ATA_CMD_WRITE_MULTI,
 611	ATA_CMD_READ_MULTI_EXT,
 612	ATA_CMD_WRITE_MULTI_EXT,
 613	0,
 614	0,
 615	0,
 616	ATA_CMD_WRITE_MULTI_FUA_EXT,
 617	/* pio */
 618	ATA_CMD_PIO_READ,
 619	ATA_CMD_PIO_WRITE,
 620	ATA_CMD_PIO_READ_EXT,
 621	ATA_CMD_PIO_WRITE_EXT,
 622	0,
 623	0,
 624	0,
 625	0,
 626	/* dma */
 627	ATA_CMD_READ,
 628	ATA_CMD_WRITE,
 629	ATA_CMD_READ_EXT,
 630	ATA_CMD_WRITE_EXT,
 631	0,
 632	0,
 633	0,
 634	ATA_CMD_WRITE_FUA_EXT
 635};
 636
 637/**
 638 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 639 *	@tf: command to examine and configure
 640 *	@dev: device tf belongs to
 641 *
 642 *	Examine the device configuration and tf->flags to calculate
 643 *	the proper read/write commands and protocol to use.
 644 *
 645 *	LOCKING:
 646 *	caller.
 647 */
 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 649{
 650	u8 cmd;
 651
 652	int index, fua, lba48, write;
 653
 654	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 655	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 656	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 657
 658	if (dev->flags & ATA_DFLAG_PIO) {
 659		tf->protocol = ATA_PROT_PIO;
 660		index = dev->multi_count ? 0 : 8;
 661	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 662		/* Unable to use DMA due to host limitation */
 663		tf->protocol = ATA_PROT_PIO;
 664		index = dev->multi_count ? 0 : 8;
 665	} else {
 666		tf->protocol = ATA_PROT_DMA;
 667		index = 16;
 668	}
 669
 670	cmd = ata_rw_cmds[index + fua + lba48 + write];
 671	if (cmd) {
 672		tf->command = cmd;
 673		return 0;
 674	}
 675	return -1;
 676}
 677
 678/**
 679 *	ata_tf_read_block - Read block address from ATA taskfile
 680 *	@tf: ATA taskfile of interest
 681 *	@dev: ATA device @tf belongs to
 682 *
 683 *	LOCKING:
 684 *	None.
 685 *
 686 *	Read block address from @tf.  This function can handle all
 687 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 688 *	flags select the address format to use.
 689 *
 690 *	RETURNS:
 691 *	Block address read from @tf.
 692 */
 693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 694{
 695	u64 block = 0;
 696
 697	if (tf->flags & ATA_TFLAG_LBA) {
 698		if (tf->flags & ATA_TFLAG_LBA48) {
 699			block |= (u64)tf->hob_lbah << 40;
 700			block |= (u64)tf->hob_lbam << 32;
 701			block |= (u64)tf->hob_lbal << 24;
 702		} else
 703			block |= (tf->device & 0xf) << 24;
 704
 705		block |= tf->lbah << 16;
 706		block |= tf->lbam << 8;
 707		block |= tf->lbal;
 708	} else {
 709		u32 cyl, head, sect;
 710
 711		cyl = tf->lbam | (tf->lbah << 8);
 712		head = tf->device & 0xf;
 713		sect = tf->lbal;
 714
 715		if (!sect) {
 716			ata_dev_warn(dev,
 717				     "device reported invalid CHS sector 0\n");
 718			sect = 1; /* oh well */
 719		}
 720
 721		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 722	}
 723
 724	return block;
 725}
 726
 727/**
 728 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 729 *	@tf: Target ATA taskfile
 730 *	@dev: ATA device @tf belongs to
 731 *	@block: Block address
 732 *	@n_block: Number of blocks
 733 *	@tf_flags: RW/FUA etc...
 734 *	@tag: tag
 
 735 *
 736 *	LOCKING:
 737 *	None.
 738 *
 739 *	Build ATA taskfile @tf for read/write request described by
 740 *	@block, @n_block, @tf_flags and @tag on @dev.
 741 *
 742 *	RETURNS:
 743 *
 744 *	0 on success, -ERANGE if the request is too large for @dev,
 745 *	-EINVAL if the request is invalid.
 746 */
 747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 748		    u64 block, u32 n_block, unsigned int tf_flags,
 749		    unsigned int tag)
 750{
 751	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 752	tf->flags |= tf_flags;
 753
 754	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 755		/* yay, NCQ */
 756		if (!lba_48_ok(block, n_block))
 757			return -ERANGE;
 758
 759		tf->protocol = ATA_PROT_NCQ;
 760		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 761
 762		if (tf->flags & ATA_TFLAG_WRITE)
 763			tf->command = ATA_CMD_FPDMA_WRITE;
 764		else
 765			tf->command = ATA_CMD_FPDMA_READ;
 766
 767		tf->nsect = tag << 3;
 768		tf->hob_feature = (n_block >> 8) & 0xff;
 769		tf->feature = n_block & 0xff;
 770
 771		tf->hob_lbah = (block >> 40) & 0xff;
 772		tf->hob_lbam = (block >> 32) & 0xff;
 773		tf->hob_lbal = (block >> 24) & 0xff;
 774		tf->lbah = (block >> 16) & 0xff;
 775		tf->lbam = (block >> 8) & 0xff;
 776		tf->lbal = block & 0xff;
 777
 778		tf->device = ATA_LBA;
 779		if (tf->flags & ATA_TFLAG_FUA)
 780			tf->device |= 1 << 7;
 
 
 
 
 
 
 781	} else if (dev->flags & ATA_DFLAG_LBA) {
 782		tf->flags |= ATA_TFLAG_LBA;
 783
 784		if (lba_28_ok(block, n_block)) {
 785			/* use LBA28 */
 786			tf->device |= (block >> 24) & 0xf;
 787		} else if (lba_48_ok(block, n_block)) {
 788			if (!(dev->flags & ATA_DFLAG_LBA48))
 789				return -ERANGE;
 790
 791			/* use LBA48 */
 792			tf->flags |= ATA_TFLAG_LBA48;
 793
 794			tf->hob_nsect = (n_block >> 8) & 0xff;
 795
 796			tf->hob_lbah = (block >> 40) & 0xff;
 797			tf->hob_lbam = (block >> 32) & 0xff;
 798			tf->hob_lbal = (block >> 24) & 0xff;
 799		} else
 800			/* request too large even for LBA48 */
 801			return -ERANGE;
 802
 803		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 804			return -EINVAL;
 805
 806		tf->nsect = n_block & 0xff;
 807
 808		tf->lbah = (block >> 16) & 0xff;
 809		tf->lbam = (block >> 8) & 0xff;
 810		tf->lbal = block & 0xff;
 811
 812		tf->device |= ATA_LBA;
 813	} else {
 814		/* CHS */
 815		u32 sect, head, cyl, track;
 816
 817		/* The request -may- be too large for CHS addressing. */
 818		if (!lba_28_ok(block, n_block))
 819			return -ERANGE;
 820
 821		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 822			return -EINVAL;
 823
 824		/* Convert LBA to CHS */
 825		track = (u32)block / dev->sectors;
 826		cyl   = track / dev->heads;
 827		head  = track % dev->heads;
 828		sect  = (u32)block % dev->sectors + 1;
 829
 830		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 831			(u32)block, track, cyl, head, sect);
 832
 833		/* Check whether the converted CHS can fit.
 834		   Cylinder: 0-65535
 835		   Head: 0-15
 836		   Sector: 1-255*/
 837		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 838			return -ERANGE;
 839
 840		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 841		tf->lbal = sect;
 842		tf->lbam = cyl;
 843		tf->lbah = cyl >> 8;
 844		tf->device |= head;
 845	}
 846
 847	return 0;
 848}
 849
 850/**
 851 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 852 *	@pio_mask: pio_mask
 853 *	@mwdma_mask: mwdma_mask
 854 *	@udma_mask: udma_mask
 855 *
 856 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 857 *	unsigned int xfer_mask.
 858 *
 859 *	LOCKING:
 860 *	None.
 861 *
 862 *	RETURNS:
 863 *	Packed xfer_mask.
 864 */
 865unsigned long ata_pack_xfermask(unsigned long pio_mask,
 866				unsigned long mwdma_mask,
 867				unsigned long udma_mask)
 868{
 869	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 870		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 871		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 872}
 873
 874/**
 875 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 876 *	@xfer_mask: xfer_mask to unpack
 877 *	@pio_mask: resulting pio_mask
 878 *	@mwdma_mask: resulting mwdma_mask
 879 *	@udma_mask: resulting udma_mask
 880 *
 881 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 882 *	Any NULL distination masks will be ignored.
 883 */
 884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 885			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 886{
 887	if (pio_mask)
 888		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 889	if (mwdma_mask)
 890		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 891	if (udma_mask)
 892		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 893}
 894
 895static const struct ata_xfer_ent {
 896	int shift, bits;
 897	u8 base;
 898} ata_xfer_tbl[] = {
 899	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 900	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 901	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 902	{ -1, },
 903};
 904
 905/**
 906 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 907 *	@xfer_mask: xfer_mask of interest
 908 *
 909 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 910 *	bit of @xfer_mask is considered.
 911 *
 912 *	LOCKING:
 913 *	None.
 914 *
 915 *	RETURNS:
 916 *	Matching XFER_* value, 0xff if no match found.
 917 */
 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 919{
 920	int highbit = fls(xfer_mask) - 1;
 921	const struct ata_xfer_ent *ent;
 922
 923	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 924		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 925			return ent->base + highbit - ent->shift;
 926	return 0xff;
 927}
 928
 929/**
 930 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 931 *	@xfer_mode: XFER_* of interest
 932 *
 933 *	Return matching xfer_mask for @xfer_mode.
 934 *
 935 *	LOCKING:
 936 *	None.
 937 *
 938 *	RETURNS:
 939 *	Matching xfer_mask, 0 if no match found.
 940 */
 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 942{
 943	const struct ata_xfer_ent *ent;
 944
 945	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 946		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 947			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 948				& ~((1 << ent->shift) - 1);
 949	return 0;
 950}
 951
 952/**
 953 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 954 *	@xfer_mode: XFER_* of interest
 955 *
 956 *	Return matching xfer_shift for @xfer_mode.
 957 *
 958 *	LOCKING:
 959 *	None.
 960 *
 961 *	RETURNS:
 962 *	Matching xfer_shift, -1 if no match found.
 963 */
 964int ata_xfer_mode2shift(unsigned long xfer_mode)
 965{
 966	const struct ata_xfer_ent *ent;
 967
 968	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 969		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 970			return ent->shift;
 971	return -1;
 972}
 973
 974/**
 975 *	ata_mode_string - convert xfer_mask to string
 976 *	@xfer_mask: mask of bits supported; only highest bit counts.
 977 *
 978 *	Determine string which represents the highest speed
 979 *	(highest bit in @modemask).
 980 *
 981 *	LOCKING:
 982 *	None.
 983 *
 984 *	RETURNS:
 985 *	Constant C string representing highest speed listed in
 986 *	@mode_mask, or the constant C string "<n/a>".
 987 */
 988const char *ata_mode_string(unsigned long xfer_mask)
 989{
 990	static const char * const xfer_mode_str[] = {
 991		"PIO0",
 992		"PIO1",
 993		"PIO2",
 994		"PIO3",
 995		"PIO4",
 996		"PIO5",
 997		"PIO6",
 998		"MWDMA0",
 999		"MWDMA1",
1000		"MWDMA2",
1001		"MWDMA3",
1002		"MWDMA4",
1003		"UDMA/16",
1004		"UDMA/25",
1005		"UDMA/33",
1006		"UDMA/44",
1007		"UDMA/66",
1008		"UDMA/100",
1009		"UDMA/133",
1010		"UDMA7",
1011	};
1012	int highbit;
1013
1014	highbit = fls(xfer_mask) - 1;
1015	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016		return xfer_mode_str[highbit];
1017	return "<n/a>";
1018}
1019
1020const char *sata_spd_string(unsigned int spd)
1021{
1022	static const char * const spd_str[] = {
1023		"1.5 Gbps",
1024		"3.0 Gbps",
1025		"6.0 Gbps",
1026	};
1027
1028	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029		return "<unknown>";
1030	return spd_str[spd - 1];
1031}
1032
1033/**
1034 *	ata_dev_classify - determine device type based on ATA-spec signature
1035 *	@tf: ATA taskfile register set for device to be identified
1036 *
1037 *	Determine from taskfile register contents whether a device is
1038 *	ATA or ATAPI, as per "Signature and persistence" section
1039 *	of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 *	LOCKING:
1042 *	None.
1043 *
1044 *	RETURNS:
1045 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 *	%ATA_DEV_UNKNOWN the event of failure.
1047 */
1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049{
1050	/* Apple's open source Darwin code hints that some devices only
1051	 * put a proper signature into the LBA mid/high registers,
1052	 * So, we only check those.  It's sufficient for uniqueness.
1053	 *
1054	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057	 * spec has never mentioned about using different signatures
1058	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059	 * Multiplier specification began to use 0x69/0x96 to identify
1060	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062	 * 0x69/0x96 shortly and described them as reserved for
1063	 * SerialATA.
1064	 *
1065	 * We follow the current spec and consider that 0x69/0x96
1066	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068	 * SEMB signature.  This is worked around in
1069	 * ata_dev_read_id().
1070	 */
1071	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072		DPRINTK("found ATA device by sig\n");
1073		return ATA_DEV_ATA;
1074	}
1075
1076	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077		DPRINTK("found ATAPI device by sig\n");
1078		return ATA_DEV_ATAPI;
1079	}
1080
1081	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082		DPRINTK("found PMP device by sig\n");
1083		return ATA_DEV_PMP;
1084	}
1085
1086	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088		return ATA_DEV_SEMB;
1089	}
1090
 
 
 
 
 
1091	DPRINTK("unknown device\n");
1092	return ATA_DEV_UNKNOWN;
1093}
1094
1095/**
1096 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097 *	@id: IDENTIFY DEVICE results we will examine
1098 *	@s: string into which data is output
1099 *	@ofs: offset into identify device page
1100 *	@len: length of string to return. must be an even number.
1101 *
1102 *	The strings in the IDENTIFY DEVICE page are broken up into
1103 *	16-bit chunks.  Run through the string, and output each
1104 *	8-bit chunk linearly, regardless of platform.
1105 *
1106 *	LOCKING:
1107 *	caller.
1108 */
1109
1110void ata_id_string(const u16 *id, unsigned char *s,
1111		   unsigned int ofs, unsigned int len)
1112{
1113	unsigned int c;
1114
1115	BUG_ON(len & 1);
1116
1117	while (len > 0) {
1118		c = id[ofs] >> 8;
1119		*s = c;
1120		s++;
1121
1122		c = id[ofs] & 0xff;
1123		*s = c;
1124		s++;
1125
1126		ofs++;
1127		len -= 2;
1128	}
1129}
1130
1131/**
1132 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 *	@id: IDENTIFY DEVICE results we will examine
1134 *	@s: string into which data is output
1135 *	@ofs: offset into identify device page
1136 *	@len: length of string to return. must be an odd number.
1137 *
1138 *	This function is identical to ata_id_string except that it
1139 *	trims trailing spaces and terminates the resulting string with
1140 *	null.  @len must be actual maximum length (even number) + 1.
1141 *
1142 *	LOCKING:
1143 *	caller.
1144 */
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146		     unsigned int ofs, unsigned int len)
1147{
1148	unsigned char *p;
1149
1150	ata_id_string(id, s, ofs, len - 1);
1151
1152	p = s + strnlen(s, len - 1);
1153	while (p > s && p[-1] == ' ')
1154		p--;
1155	*p = '\0';
1156}
1157
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160	if (ata_id_has_lba(id)) {
1161		if (ata_id_has_lba48(id))
1162			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163		else
1164			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165	} else {
1166		if (ata_id_current_chs_valid(id))
1167			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168			       id[ATA_ID_CUR_SECTORS];
1169		else
1170			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171			       id[ATA_ID_SECTORS];
1172	}
1173}
1174
1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176{
1177	u64 sectors = 0;
1178
1179	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182	sectors |= (tf->lbah & 0xff) << 16;
1183	sectors |= (tf->lbam & 0xff) << 8;
1184	sectors |= (tf->lbal & 0xff);
1185
1186	return sectors;
1187}
1188
1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190{
1191	u64 sectors = 0;
1192
1193	sectors |= (tf->device & 0x0f) << 24;
1194	sectors |= (tf->lbah & 0xff) << 16;
1195	sectors |= (tf->lbam & 0xff) << 8;
1196	sectors |= (tf->lbal & 0xff);
1197
1198	return sectors;
1199}
1200
1201/**
1202 *	ata_read_native_max_address - Read native max address
1203 *	@dev: target device
1204 *	@max_sectors: out parameter for the result native max address
1205 *
1206 *	Perform an LBA48 or LBA28 native size query upon the device in
1207 *	question.
1208 *
1209 *	RETURNS:
1210 *	0 on success, -EACCES if command is aborted by the drive.
1211 *	-EIO on other errors.
1212 */
1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214{
1215	unsigned int err_mask;
1216	struct ata_taskfile tf;
1217	int lba48 = ata_id_has_lba48(dev->id);
1218
1219	ata_tf_init(dev, &tf);
1220
1221	/* always clear all address registers */
1222	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224	if (lba48) {
1225		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226		tf.flags |= ATA_TFLAG_LBA48;
1227	} else
1228		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230	tf.protocol |= ATA_PROT_NODATA;
1231	tf.device |= ATA_LBA;
1232
1233	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234	if (err_mask) {
1235		ata_dev_warn(dev,
1236			     "failed to read native max address (err_mask=0x%x)\n",
1237			     err_mask);
1238		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239			return -EACCES;
1240		return -EIO;
1241	}
1242
1243	if (lba48)
1244		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245	else
1246		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248		(*max_sectors)--;
1249	return 0;
1250}
1251
1252/**
1253 *	ata_set_max_sectors - Set max sectors
1254 *	@dev: target device
1255 *	@new_sectors: new max sectors value to set for the device
1256 *
1257 *	Set max sectors of @dev to @new_sectors.
1258 *
1259 *	RETURNS:
1260 *	0 on success, -EACCES if command is aborted or denied (due to
1261 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262 *	errors.
1263 */
1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265{
1266	unsigned int err_mask;
1267	struct ata_taskfile tf;
1268	int lba48 = ata_id_has_lba48(dev->id);
1269
1270	new_sectors--;
1271
1272	ata_tf_init(dev, &tf);
1273
1274	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276	if (lba48) {
1277		tf.command = ATA_CMD_SET_MAX_EXT;
1278		tf.flags |= ATA_TFLAG_LBA48;
1279
1280		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283	} else {
1284		tf.command = ATA_CMD_SET_MAX;
1285
1286		tf.device |= (new_sectors >> 24) & 0xf;
1287	}
1288
1289	tf.protocol |= ATA_PROT_NODATA;
1290	tf.device |= ATA_LBA;
1291
1292	tf.lbal = (new_sectors >> 0) & 0xff;
1293	tf.lbam = (new_sectors >> 8) & 0xff;
1294	tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297	if (err_mask) {
1298		ata_dev_warn(dev,
1299			     "failed to set max address (err_mask=0x%x)\n",
1300			     err_mask);
1301		if (err_mask == AC_ERR_DEV &&
1302		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303			return -EACCES;
1304		return -EIO;
1305	}
1306
1307	return 0;
1308}
1309
1310/**
1311 *	ata_hpa_resize		-	Resize a device with an HPA set
1312 *	@dev: Device to resize
1313 *
1314 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 *	it if required to the full size of the media. The caller must check
1316 *	the drive has the HPA feature set enabled.
1317 *
1318 *	RETURNS:
1319 *	0 on success, -errno on failure.
1320 */
1321static int ata_hpa_resize(struct ata_device *dev)
1322{
1323	struct ata_eh_context *ehc = &dev->link->eh_context;
1324	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326	u64 sectors = ata_id_n_sectors(dev->id);
1327	u64 native_sectors;
1328	int rc;
1329
1330	/* do we need to do it? */
1331	if (dev->class != ATA_DEV_ATA ||
1332	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334		return 0;
1335
1336	/* read native max address */
1337	rc = ata_read_native_max_address(dev, &native_sectors);
1338	if (rc) {
1339		/* If device aborted the command or HPA isn't going to
1340		 * be unlocked, skip HPA resizing.
1341		 */
1342		if (rc == -EACCES || !unlock_hpa) {
1343			ata_dev_warn(dev,
1344				     "HPA support seems broken, skipping HPA handling\n");
1345			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347			/* we can continue if device aborted the command */
1348			if (rc == -EACCES)
1349				rc = 0;
1350		}
1351
1352		return rc;
1353	}
1354	dev->n_native_sectors = native_sectors;
1355
1356	/* nothing to do? */
1357	if (native_sectors <= sectors || !unlock_hpa) {
1358		if (!print_info || native_sectors == sectors)
1359			return 0;
1360
1361		if (native_sectors > sectors)
1362			ata_dev_info(dev,
1363				"HPA detected: current %llu, native %llu\n",
1364				(unsigned long long)sectors,
1365				(unsigned long long)native_sectors);
1366		else if (native_sectors < sectors)
1367			ata_dev_warn(dev,
1368				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369				(unsigned long long)native_sectors,
1370				(unsigned long long)sectors);
1371		return 0;
1372	}
1373
1374	/* let's unlock HPA */
1375	rc = ata_set_max_sectors(dev, native_sectors);
1376	if (rc == -EACCES) {
1377		/* if device aborted the command, skip HPA resizing */
1378		ata_dev_warn(dev,
1379			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380			     (unsigned long long)sectors,
1381			     (unsigned long long)native_sectors);
1382		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383		return 0;
1384	} else if (rc)
1385		return rc;
1386
1387	/* re-read IDENTIFY data */
1388	rc = ata_dev_reread_id(dev, 0);
1389	if (rc) {
1390		ata_dev_err(dev,
1391			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392		return rc;
1393	}
1394
1395	if (print_info) {
1396		u64 new_sectors = ata_id_n_sectors(dev->id);
1397		ata_dev_info(dev,
1398			"HPA unlocked: %llu -> %llu, native %llu\n",
1399			(unsigned long long)sectors,
1400			(unsigned long long)new_sectors,
1401			(unsigned long long)native_sectors);
1402	}
1403
1404	return 0;
1405}
1406
1407/**
1408 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409 *	@id: IDENTIFY DEVICE page to dump
1410 *
1411 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 *	page.
1413 *
1414 *	LOCKING:
1415 *	caller.
1416 */
1417
1418static inline void ata_dump_id(const u16 *id)
1419{
1420	DPRINTK("49==0x%04x  "
1421		"53==0x%04x  "
1422		"63==0x%04x  "
1423		"64==0x%04x  "
1424		"75==0x%04x  \n",
1425		id[49],
1426		id[53],
1427		id[63],
1428		id[64],
1429		id[75]);
1430	DPRINTK("80==0x%04x  "
1431		"81==0x%04x  "
1432		"82==0x%04x  "
1433		"83==0x%04x  "
1434		"84==0x%04x  \n",
1435		id[80],
1436		id[81],
1437		id[82],
1438		id[83],
1439		id[84]);
1440	DPRINTK("88==0x%04x  "
1441		"93==0x%04x\n",
1442		id[88],
1443		id[93]);
1444}
1445
1446/**
1447 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 *	@id: IDENTIFY data to compute xfer mask from
1449 *
1450 *	Compute the xfermask for this device. This is not as trivial
1451 *	as it seems if we must consider early devices correctly.
1452 *
1453 *	FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 *	LOCKING:
1456 *	None.
1457 *
1458 *	RETURNS:
1459 *	Computed xfermask
1460 */
1461unsigned long ata_id_xfermask(const u16 *id)
1462{
1463	unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465	/* Usual case. Word 53 indicates word 64 is valid */
1466	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468		pio_mask <<= 3;
1469		pio_mask |= 0x7;
1470	} else {
1471		/* If word 64 isn't valid then Word 51 high byte holds
1472		 * the PIO timing number for the maximum. Turn it into
1473		 * a mask.
1474		 */
1475		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476		if (mode < 5)	/* Valid PIO range */
1477			pio_mask = (2 << mode) - 1;
1478		else
1479			pio_mask = 1;
1480
1481		/* But wait.. there's more. Design your standards by
1482		 * committee and you too can get a free iordy field to
1483		 * process. However its the speeds not the modes that
1484		 * are supported... Note drivers using the timing API
1485		 * will get this right anyway
1486		 */
1487	}
1488
1489	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491	if (ata_id_is_cfa(id)) {
1492		/*
1493		 *	Process compact flash extended modes
1494		 */
1495		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498		if (pio)
1499			pio_mask |= (1 << 5);
1500		if (pio > 1)
1501			pio_mask |= (1 << 6);
1502		if (dma)
1503			mwdma_mask |= (1 << 3);
1504		if (dma > 1)
1505			mwdma_mask |= (1 << 4);
1506	}
1507
1508	udma_mask = 0;
1509	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516{
1517	struct completion *waiting = qc->private_data;
1518
1519	complete(waiting);
1520}
1521
1522/**
1523 *	ata_exec_internal_sg - execute libata internal command
1524 *	@dev: Device to which the command is sent
1525 *	@tf: Taskfile registers for the command and the result
1526 *	@cdb: CDB for packet command
1527 *	@dma_dir: Data transfer direction of the command
1528 *	@sgl: sg list for the data buffer of the command
1529 *	@n_elem: Number of sg entries
1530 *	@timeout: Timeout in msecs (0 for default)
1531 *
1532 *	Executes libata internal command with timeout.  @tf contains
1533 *	command on entry and result on return.  Timeout and error
1534 *	conditions are reported via return value.  No recovery action
1535 *	is taken after a command times out.  It's caller's duty to
1536 *	clean up after timeout.
1537 *
1538 *	LOCKING:
1539 *	None.  Should be called with kernel context, might sleep.
1540 *
1541 *	RETURNS:
1542 *	Zero on success, AC_ERR_* mask on failure
1543 */
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545			      struct ata_taskfile *tf, const u8 *cdb,
1546			      int dma_dir, struct scatterlist *sgl,
1547			      unsigned int n_elem, unsigned long timeout)
1548{
1549	struct ata_link *link = dev->link;
1550	struct ata_port *ap = link->ap;
1551	u8 command = tf->command;
1552	int auto_timeout = 0;
1553	struct ata_queued_cmd *qc;
1554	unsigned int tag, preempted_tag;
1555	u32 preempted_sactive, preempted_qc_active;
 
1556	int preempted_nr_active_links;
1557	DECLARE_COMPLETION_ONSTACK(wait);
1558	unsigned long flags;
1559	unsigned int err_mask;
1560	int rc;
1561
1562	spin_lock_irqsave(ap->lock, flags);
1563
1564	/* no internal command while frozen */
1565	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566		spin_unlock_irqrestore(ap->lock, flags);
1567		return AC_ERR_SYSTEM;
1568	}
1569
1570	/* initialize internal qc */
 
1571
1572	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573	 * drivers choke if any other tag is given.  This breaks
1574	 * ata_tag_internal() test for those drivers.  Don't use new
1575	 * EH stuff without converting to it.
1576	 */
1577	if (ap->ops->error_handler)
1578		tag = ATA_TAG_INTERNAL;
1579	else
1580		tag = 0;
1581
1582	if (test_and_set_bit(tag, &ap->qc_allocated))
1583		BUG();
1584	qc = __ata_qc_from_tag(ap, tag);
1585
1586	qc->tag = tag;
1587	qc->scsicmd = NULL;
1588	qc->ap = ap;
1589	qc->dev = dev;
1590	ata_qc_reinit(qc);
1591
1592	preempted_tag = link->active_tag;
1593	preempted_sactive = link->sactive;
1594	preempted_qc_active = ap->qc_active;
1595	preempted_nr_active_links = ap->nr_active_links;
1596	link->active_tag = ATA_TAG_POISON;
1597	link->sactive = 0;
1598	ap->qc_active = 0;
1599	ap->nr_active_links = 0;
1600
1601	/* prepare & issue qc */
1602	qc->tf = *tf;
1603	if (cdb)
1604		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606	/* some SATA bridges need us to indicate data xfer direction */
1607	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608	    dma_dir == DMA_FROM_DEVICE)
1609		qc->tf.feature |= ATAPI_DMADIR;
1610
1611	qc->flags |= ATA_QCFLAG_RESULT_TF;
1612	qc->dma_dir = dma_dir;
1613	if (dma_dir != DMA_NONE) {
1614		unsigned int i, buflen = 0;
1615		struct scatterlist *sg;
1616
1617		for_each_sg(sgl, sg, n_elem, i)
1618			buflen += sg->length;
1619
1620		ata_sg_init(qc, sgl, n_elem);
1621		qc->nbytes = buflen;
1622	}
1623
1624	qc->private_data = &wait;
1625	qc->complete_fn = ata_qc_complete_internal;
1626
1627	ata_qc_issue(qc);
1628
1629	spin_unlock_irqrestore(ap->lock, flags);
1630
1631	if (!timeout) {
1632		if (ata_probe_timeout)
1633			timeout = ata_probe_timeout * 1000;
1634		else {
1635			timeout = ata_internal_cmd_timeout(dev, command);
1636			auto_timeout = 1;
1637		}
1638	}
1639
1640	if (ap->ops->error_handler)
1641		ata_eh_release(ap);
1642
1643	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645	if (ap->ops->error_handler)
1646		ata_eh_acquire(ap);
1647
1648	ata_sff_flush_pio_task(ap);
1649
1650	if (!rc) {
1651		spin_lock_irqsave(ap->lock, flags);
1652
1653		/* We're racing with irq here.  If we lose, the
1654		 * following test prevents us from completing the qc
1655		 * twice.  If we win, the port is frozen and will be
1656		 * cleaned up by ->post_internal_cmd().
1657		 */
1658		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659			qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661			if (ap->ops->error_handler)
1662				ata_port_freeze(ap);
1663			else
1664				ata_qc_complete(qc);
1665
1666			if (ata_msg_warn(ap))
1667				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668					     command);
1669		}
1670
1671		spin_unlock_irqrestore(ap->lock, flags);
1672	}
1673
1674	/* do post_internal_cmd */
1675	if (ap->ops->post_internal_cmd)
1676		ap->ops->post_internal_cmd(qc);
1677
1678	/* perform minimal error analysis */
1679	if (qc->flags & ATA_QCFLAG_FAILED) {
1680		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681			qc->err_mask |= AC_ERR_DEV;
1682
1683		if (!qc->err_mask)
1684			qc->err_mask |= AC_ERR_OTHER;
1685
1686		if (qc->err_mask & ~AC_ERR_OTHER)
1687			qc->err_mask &= ~AC_ERR_OTHER;
 
 
1688	}
1689
1690	/* finish up */
1691	spin_lock_irqsave(ap->lock, flags);
1692
1693	*tf = qc->result_tf;
1694	err_mask = qc->err_mask;
1695
1696	ata_qc_free(qc);
1697	link->active_tag = preempted_tag;
1698	link->sactive = preempted_sactive;
1699	ap->qc_active = preempted_qc_active;
1700	ap->nr_active_links = preempted_nr_active_links;
1701
1702	spin_unlock_irqrestore(ap->lock, flags);
1703
1704	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705		ata_internal_cmd_timed_out(dev, command);
1706
1707	return err_mask;
1708}
1709
1710/**
1711 *	ata_exec_internal - execute libata internal command
1712 *	@dev: Device to which the command is sent
1713 *	@tf: Taskfile registers for the command and the result
1714 *	@cdb: CDB for packet command
1715 *	@dma_dir: Data transfer direction of the command
1716 *	@buf: Data buffer of the command
1717 *	@buflen: Length of data buffer
1718 *	@timeout: Timeout in msecs (0 for default)
1719 *
1720 *	Wrapper around ata_exec_internal_sg() which takes simple
1721 *	buffer instead of sg list.
1722 *
1723 *	LOCKING:
1724 *	None.  Should be called with kernel context, might sleep.
1725 *
1726 *	RETURNS:
1727 *	Zero on success, AC_ERR_* mask on failure
1728 */
1729unsigned ata_exec_internal(struct ata_device *dev,
1730			   struct ata_taskfile *tf, const u8 *cdb,
1731			   int dma_dir, void *buf, unsigned int buflen,
1732			   unsigned long timeout)
1733{
1734	struct scatterlist *psg = NULL, sg;
1735	unsigned int n_elem = 0;
1736
1737	if (dma_dir != DMA_NONE) {
1738		WARN_ON(!buf);
1739		sg_init_one(&sg, buf, buflen);
1740		psg = &sg;
1741		n_elem++;
1742	}
1743
1744	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745				    timeout);
1746}
1747
1748/**
1749 *	ata_do_simple_cmd - execute simple internal command
1750 *	@dev: Device to which the command is sent
1751 *	@cmd: Opcode to execute
1752 *
1753 *	Execute a 'simple' command, that only consists of the opcode
1754 *	'cmd' itself, without filling any other registers
1755 *
1756 *	LOCKING:
1757 *	Kernel thread context (may sleep).
1758 *
1759 *	RETURNS:
1760 *	Zero on success, AC_ERR_* mask on failure
1761 */
1762unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763{
1764	struct ata_taskfile tf;
1765
1766	ata_tf_init(dev, &tf);
1767
1768	tf.command = cmd;
1769	tf.flags |= ATA_TFLAG_DEVICE;
1770	tf.protocol = ATA_PROT_NODATA;
1771
1772	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773}
1774
1775/**
1776 *	ata_pio_need_iordy	-	check if iordy needed
1777 *	@adev: ATA device
1778 *
1779 *	Check if the current speed of the device requires IORDY. Used
1780 *	by various controllers for chip configuration.
1781 */
1782unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783{
1784	/* Don't set IORDY if we're preparing for reset.  IORDY may
1785	 * lead to controller lock up on certain controllers if the
1786	 * port is not occupied.  See bko#11703 for details.
1787	 */
1788	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789		return 0;
1790	/* Controller doesn't support IORDY.  Probably a pointless
1791	 * check as the caller should know this.
1792	 */
1793	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794		return 0;
1795	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1796	if (ata_id_is_cfa(adev->id)
1797	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798		return 0;
1799	/* PIO3 and higher it is mandatory */
1800	if (adev->pio_mode > XFER_PIO_2)
1801		return 1;
1802	/* We turn it on when possible */
1803	if (ata_id_has_iordy(adev->id))
1804		return 1;
1805	return 0;
1806}
1807
1808/**
1809 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1810 *	@adev: ATA device
1811 *
1812 *	Compute the highest mode possible if we are not using iordy. Return
1813 *	-1 if no iordy mode is available.
1814 */
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1817	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1818	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1819		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820		/* Is the speed faster than the drive allows non IORDY ? */
1821		if (pio) {
1822			/* This is cycle times not frequency - watch the logic! */
1823			if (pio > 240)	/* PIO2 is 240nS per cycle */
1824				return 3 << ATA_SHIFT_PIO;
1825			return 7 << ATA_SHIFT_PIO;
1826		}
1827	}
1828	return 3 << ATA_SHIFT_PIO;
1829}
1830
1831/**
1832 *	ata_do_dev_read_id		-	default ID read method
1833 *	@dev: device
1834 *	@tf: proposed taskfile
1835 *	@id: data buffer
1836 *
1837 *	Issue the identify taskfile and hand back the buffer containing
1838 *	identify data. For some RAID controllers and for pre ATA devices
1839 *	this function is wrapped or replaced by the driver
1840 */
1841unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842					struct ata_taskfile *tf, u16 *id)
1843{
1844	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846}
1847
1848/**
1849 *	ata_dev_read_id - Read ID data from the specified device
1850 *	@dev: target device
1851 *	@p_class: pointer to class of the target device (may be changed)
1852 *	@flags: ATA_READID_* flags
1853 *	@id: buffer to read IDENTIFY data into
1854 *
1855 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1856 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 *	for pre-ATA4 drives.
1859 *
1860 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 *	now we abort if we hit that case.
1862 *
1863 *	LOCKING:
1864 *	Kernel thread context (may sleep)
1865 *
1866 *	RETURNS:
1867 *	0 on success, -errno otherwise.
1868 */
1869int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870		    unsigned int flags, u16 *id)
1871{
1872	struct ata_port *ap = dev->link->ap;
1873	unsigned int class = *p_class;
1874	struct ata_taskfile tf;
1875	unsigned int err_mask = 0;
1876	const char *reason;
1877	bool is_semb = class == ATA_DEV_SEMB;
1878	int may_fallback = 1, tried_spinup = 0;
1879	int rc;
1880
1881	if (ata_msg_ctl(ap))
1882		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884retry:
1885	ata_tf_init(dev, &tf);
1886
1887	switch (class) {
1888	case ATA_DEV_SEMB:
1889		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
 
1890	case ATA_DEV_ATA:
 
1891		tf.command = ATA_CMD_ID_ATA;
1892		break;
1893	case ATA_DEV_ATAPI:
1894		tf.command = ATA_CMD_ID_ATAPI;
1895		break;
1896	default:
1897		rc = -ENODEV;
1898		reason = "unsupported class";
1899		goto err_out;
1900	}
1901
1902	tf.protocol = ATA_PROT_PIO;
1903
1904	/* Some devices choke if TF registers contain garbage.  Make
1905	 * sure those are properly initialized.
1906	 */
1907	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909	/* Device presence detection is unreliable on some
1910	 * controllers.  Always poll IDENTIFY if available.
1911	 */
1912	tf.flags |= ATA_TFLAG_POLLING;
1913
1914	if (ap->ops->read_id)
1915		err_mask = ap->ops->read_id(dev, &tf, id);
1916	else
1917		err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919	if (err_mask) {
1920		if (err_mask & AC_ERR_NODEV_HINT) {
1921			ata_dev_dbg(dev, "NODEV after polling detection\n");
1922			return -ENOENT;
1923		}
1924
1925		if (is_semb) {
1926			ata_dev_info(dev,
1927		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928			/* SEMB is not supported yet */
1929			*p_class = ATA_DEV_SEMB_UNSUP;
1930			return 0;
1931		}
1932
1933		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934			/* Device or controller might have reported
1935			 * the wrong device class.  Give a shot at the
1936			 * other IDENTIFY if the current one is
1937			 * aborted by the device.
1938			 */
1939			if (may_fallback) {
1940				may_fallback = 0;
1941
1942				if (class == ATA_DEV_ATA)
1943					class = ATA_DEV_ATAPI;
1944				else
1945					class = ATA_DEV_ATA;
1946				goto retry;
1947			}
1948
1949			/* Control reaches here iff the device aborted
1950			 * both flavors of IDENTIFYs which happens
1951			 * sometimes with phantom devices.
1952			 */
1953			ata_dev_dbg(dev,
1954				    "both IDENTIFYs aborted, assuming NODEV\n");
1955			return -ENOENT;
1956		}
1957
1958		rc = -EIO;
1959		reason = "I/O error";
1960		goto err_out;
1961	}
1962
1963	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965			    "class=%d may_fallback=%d tried_spinup=%d\n",
1966			    class, may_fallback, tried_spinup);
1967		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969	}
1970
1971	/* Falling back doesn't make sense if ID data was read
1972	 * successfully at least once.
1973	 */
1974	may_fallback = 0;
1975
1976	swap_buf_le16(id, ATA_ID_WORDS);
1977
1978	/* sanity check */
1979	rc = -EINVAL;
1980	reason = "device reports invalid type";
1981
1982	if (class == ATA_DEV_ATA) {
1983		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984			goto err_out;
1985		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986							ata_id_is_ata(id)) {
1987			ata_dev_dbg(dev,
1988				"host indicates ignore ATA devices, ignored\n");
1989			return -ENOENT;
1990		}
1991	} else {
1992		if (ata_id_is_ata(id))
1993			goto err_out;
1994	}
1995
1996	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997		tried_spinup = 1;
1998		/*
1999		 * Drive powered-up in standby mode, and requires a specific
2000		 * SET_FEATURES spin-up subcommand before it will accept
2001		 * anything other than the original IDENTIFY command.
2002		 */
2003		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004		if (err_mask && id[2] != 0x738c) {
2005			rc = -EIO;
2006			reason = "SPINUP failed";
2007			goto err_out;
2008		}
2009		/*
2010		 * If the drive initially returned incomplete IDENTIFY info,
2011		 * we now must reissue the IDENTIFY command.
2012		 */
2013		if (id[2] == 0x37c8)
2014			goto retry;
2015	}
2016
2017	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
 
2018		/*
2019		 * The exact sequence expected by certain pre-ATA4 drives is:
2020		 * SRST RESET
2021		 * IDENTIFY (optional in early ATA)
2022		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023		 * anything else..
2024		 * Some drives were very specific about that exact sequence.
2025		 *
2026		 * Note that ATA4 says lba is mandatory so the second check
2027		 * should never trigger.
2028		 */
2029		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031			if (err_mask) {
2032				rc = -EIO;
2033				reason = "INIT_DEV_PARAMS failed";
2034				goto err_out;
2035			}
2036
2037			/* current CHS translation info (id[53-58]) might be
2038			 * changed. reread the identify device info.
2039			 */
2040			flags &= ~ATA_READID_POSTRESET;
2041			goto retry;
2042		}
2043	}
2044
2045	*p_class = class;
2046
2047	return 0;
2048
2049 err_out:
2050	if (ata_msg_warn(ap))
2051		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052			     reason, err_mask);
2053	return rc;
2054}
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056static int ata_do_link_spd_horkage(struct ata_device *dev)
2057{
2058	struct ata_link *plink = ata_dev_phys_link(dev);
2059	u32 target, target_limit;
2060
2061	if (!sata_scr_valid(plink))
2062		return 0;
2063
2064	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065		target = 1;
2066	else
2067		return 0;
2068
2069	target_limit = (1 << target) - 1;
2070
2071	/* if already on stricter limit, no need to push further */
2072	if (plink->sata_spd_limit <= target_limit)
2073		return 0;
2074
2075	plink->sata_spd_limit = target_limit;
2076
2077	/* Request another EH round by returning -EAGAIN if link is
2078	 * going faster than the target speed.  Forward progress is
2079	 * guaranteed by setting sata_spd_limit to target_limit above.
2080	 */
2081	if (plink->sata_spd > target) {
2082		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083			     sata_spd_string(target));
2084		return -EAGAIN;
2085	}
2086	return 0;
2087}
2088
2089static inline u8 ata_dev_knobble(struct ata_device *dev)
2090{
2091	struct ata_port *ap = dev->link->ap;
2092
2093	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094		return 0;
2095
2096	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097}
2098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099static int ata_dev_config_ncq(struct ata_device *dev,
2100			       char *desc, size_t desc_sz)
2101{
2102	struct ata_port *ap = dev->link->ap;
2103	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104	unsigned int err_mask;
2105	char *aa_desc = "";
2106
2107	if (!ata_id_has_ncq(dev->id)) {
2108		desc[0] = '\0';
2109		return 0;
2110	}
2111	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112		snprintf(desc, desc_sz, "NCQ (not used)");
2113		return 0;
2114	}
2115	if (ap->flags & ATA_FLAG_NCQ) {
2116		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117		dev->flags |= ATA_DFLAG_NCQ;
2118	}
2119
2120	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2122		ata_id_has_fpdma_aa(dev->id)) {
2123		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124			SATA_FPDMA_AA);
2125		if (err_mask) {
2126			ata_dev_err(dev,
2127				    "failed to enable AA (error_mask=0x%x)\n",
2128				    err_mask);
2129			if (err_mask != AC_ERR_DEV) {
2130				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131				return -EIO;
2132			}
2133		} else
2134			aa_desc = ", AA";
2135	}
2136
2137	if (hdepth >= ddepth)
2138		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139	else
2140		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141			ddepth, aa_desc);
2142
2143	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144	    ata_id_has_ncq_send_and_recv(dev->id)) {
2145		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146					     0, ap->sector_buf, 1);
2147		if (err_mask) {
2148			ata_dev_dbg(dev,
2149				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150				    err_mask);
2151		} else {
2152			u8 *cmds = dev->ncq_send_recv_cmds;
2153
2154			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2156
2157			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2161			}
2162		}
 
 
 
 
 
 
 
 
 
2163	}
 
2164
2165	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166}
2167
2168/**
2169 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2170 *	@dev: Target device to configure
2171 *
2172 *	Configure @dev according to @dev->id.  Generic and low-level
2173 *	driver specific fixups are also applied.
2174 *
2175 *	LOCKING:
2176 *	Kernel thread context (may sleep)
2177 *
2178 *	RETURNS:
2179 *	0 on success, -errno otherwise
2180 */
2181int ata_dev_configure(struct ata_device *dev)
2182{
2183	struct ata_port *ap = dev->link->ap;
2184	struct ata_eh_context *ehc = &dev->link->eh_context;
2185	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186	const u16 *id = dev->id;
2187	unsigned long xfer_mask;
2188	unsigned int err_mask;
2189	char revbuf[7];		/* XYZ-99\0 */
2190	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191	char modelbuf[ATA_ID_PROD_LEN+1];
2192	int rc;
2193
2194	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196		return 0;
2197	}
2198
2199	if (ata_msg_probe(ap))
2200		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2201
2202	/* set horkage */
2203	dev->horkage |= ata_dev_blacklisted(dev);
2204	ata_force_horkage(dev);
2205
2206	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207		ata_dev_info(dev, "unsupported device, disabling\n");
2208		ata_dev_disable(dev);
2209		return 0;
2210	}
2211
2212	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213	    dev->class == ATA_DEV_ATAPI) {
2214		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215			     atapi_enabled ? "not supported with this driver"
2216			     : "disabled");
2217		ata_dev_disable(dev);
2218		return 0;
2219	}
2220
2221	rc = ata_do_link_spd_horkage(dev);
2222	if (rc)
2223		return rc;
2224
2225	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228		dev->horkage |= ATA_HORKAGE_NOLPM;
2229
 
 
 
2230	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2233	}
2234
2235	/* let ACPI work its magic */
2236	rc = ata_acpi_on_devcfg(dev);
2237	if (rc)
2238		return rc;
2239
2240	/* massage HPA, do it early as it might change IDENTIFY data */
2241	rc = ata_hpa_resize(dev);
2242	if (rc)
2243		return rc;
2244
2245	/* print device capabilities */
2246	if (ata_msg_probe(ap))
2247		ata_dev_dbg(dev,
2248			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250			    __func__,
2251			    id[49], id[82], id[83], id[84],
2252			    id[85], id[86], id[87], id[88]);
2253
2254	/* initialize to-be-configured parameters */
2255	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2256	dev->max_sectors = 0;
2257	dev->cdb_len = 0;
2258	dev->n_sectors = 0;
2259	dev->cylinders = 0;
2260	dev->heads = 0;
2261	dev->sectors = 0;
2262	dev->multi_count = 0;
2263
2264	/*
2265	 * common ATA, ATAPI feature tests
2266	 */
2267
2268	/* find max transfer mode; for printk only */
2269	xfer_mask = ata_id_xfermask(id);
2270
2271	if (ata_msg_probe(ap))
2272		ata_dump_id(id);
2273
2274	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276			sizeof(fwrevbuf));
2277
2278	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279			sizeof(modelbuf));
2280
2281	/* ATA-specific feature tests */
2282	if (dev->class == ATA_DEV_ATA) {
2283		if (ata_id_is_cfa(id)) {
2284			/* CPRM may make this media unusable */
2285			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2286				ata_dev_warn(dev,
2287	"supports DRM functions and may not be fully accessible\n");
2288			snprintf(revbuf, 7, "CFA");
2289		} else {
2290			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2291			/* Warn the user if the device has TPM extensions */
2292			if (ata_id_has_tpm(id))
2293				ata_dev_warn(dev,
2294	"supports DRM functions and may not be fully accessible\n");
2295		}
2296
2297		dev->n_sectors = ata_id_n_sectors(id);
2298
2299		/* get current R/W Multiple count setting */
2300		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301			unsigned int max = dev->id[47] & 0xff;
2302			unsigned int cnt = dev->id[59] & 0xff;
2303			/* only recognize/allow powers of two here */
2304			if (is_power_of_2(max) && is_power_of_2(cnt))
2305				if (cnt <= max)
2306					dev->multi_count = cnt;
2307		}
2308
2309		if (ata_id_has_lba(id)) {
2310			const char *lba_desc;
2311			char ncq_desc[24];
2312
2313			lba_desc = "LBA";
2314			dev->flags |= ATA_DFLAG_LBA;
2315			if (ata_id_has_lba48(id)) {
2316				dev->flags |= ATA_DFLAG_LBA48;
2317				lba_desc = "LBA48";
2318
2319				if (dev->n_sectors >= (1UL << 28) &&
2320				    ata_id_has_flush_ext(id))
2321					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2322			}
2323
2324			/* config NCQ */
2325			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326			if (rc)
2327				return rc;
2328
2329			/* print device info to dmesg */
2330			if (ata_msg_drv(ap) && print_info) {
2331				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332					     revbuf, modelbuf, fwrevbuf,
2333					     ata_mode_string(xfer_mask));
2334				ata_dev_info(dev,
2335					     "%llu sectors, multi %u: %s %s\n",
2336					(unsigned long long)dev->n_sectors,
2337					dev->multi_count, lba_desc, ncq_desc);
2338			}
2339		} else {
2340			/* CHS */
2341
2342			/* Default translation */
2343			dev->cylinders	= id[1];
2344			dev->heads	= id[3];
2345			dev->sectors	= id[6];
2346
2347			if (ata_id_current_chs_valid(id)) {
2348				/* Current CHS translation is valid. */
2349				dev->cylinders = id[54];
2350				dev->heads     = id[55];
2351				dev->sectors   = id[56];
2352			}
2353
2354			/* print device info to dmesg */
2355			if (ata_msg_drv(ap) && print_info) {
2356				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357					     revbuf,	modelbuf, fwrevbuf,
2358					     ata_mode_string(xfer_mask));
2359				ata_dev_info(dev,
2360					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361					     (unsigned long long)dev->n_sectors,
2362					     dev->multi_count, dev->cylinders,
2363					     dev->heads, dev->sectors);
2364			}
2365		}
2366
2367		/* Check and mark DevSlp capability. Get DevSlp timing variables
2368		 * from SATA Settings page of Identify Device Data Log.
2369		 */
2370		if (ata_id_has_devslp(dev->id)) {
2371			u8 *sata_setting = ap->sector_buf;
2372			int i, j;
2373
2374			dev->flags |= ATA_DFLAG_DEVSLP;
2375			err_mask = ata_read_log_page(dev,
2376						     ATA_LOG_SATA_ID_DEV_DATA,
2377						     ATA_LOG_SATA_SETTINGS,
2378						     sata_setting,
2379						     1);
2380			if (err_mask)
2381				ata_dev_dbg(dev,
2382					    "failed to get Identify Device Data, Emask 0x%x\n",
2383					    err_mask);
2384			else
2385				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386					j = ATA_LOG_DEVSLP_OFFSET + i;
2387					dev->devslp_timing[i] = sata_setting[j];
2388				}
2389		}
2390
2391		dev->cdb_len = 16;
 
 
2392	}
2393
2394	/* ATAPI-specific feature tests */
2395	else if (dev->class == ATA_DEV_ATAPI) {
2396		const char *cdb_intr_string = "";
2397		const char *atapi_an_string = "";
2398		const char *dma_dir_string = "";
2399		u32 sntf;
2400
2401		rc = atapi_cdb_len(id);
2402		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403			if (ata_msg_warn(ap))
2404				ata_dev_warn(dev, "unsupported CDB len\n");
2405			rc = -EINVAL;
2406			goto err_out_nosup;
2407		}
2408		dev->cdb_len = (unsigned int) rc;
2409
2410		/* Enable ATAPI AN if both the host and device have
2411		 * the support.  If PMP is attached, SNTF is required
2412		 * to enable ATAPI AN to discern between PHY status
2413		 * changed notifications and ATAPI ANs.
2414		 */
2415		if (atapi_an &&
2416		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417		    (!sata_pmp_attached(ap) ||
2418		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2419			/* issue SET feature command to turn this on */
2420			err_mask = ata_dev_set_feature(dev,
2421					SETFEATURES_SATA_ENABLE, SATA_AN);
2422			if (err_mask)
2423				ata_dev_err(dev,
2424					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425					    err_mask);
2426			else {
2427				dev->flags |= ATA_DFLAG_AN;
2428				atapi_an_string = ", ATAPI AN";
2429			}
2430		}
2431
2432		if (ata_id_cdb_intr(dev->id)) {
2433			dev->flags |= ATA_DFLAG_CDB_INTR;
2434			cdb_intr_string = ", CDB intr";
2435		}
2436
2437		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2438			dev->flags |= ATA_DFLAG_DMADIR;
2439			dma_dir_string = ", DMADIR";
2440		}
2441
2442		if (ata_id_has_da(dev->id)) {
2443			dev->flags |= ATA_DFLAG_DA;
2444			zpodd_init(dev);
2445		}
2446
2447		/* print device info to dmesg */
2448		if (ata_msg_drv(ap) && print_info)
2449			ata_dev_info(dev,
2450				     "ATAPI: %s, %s, max %s%s%s%s\n",
2451				     modelbuf, fwrevbuf,
2452				     ata_mode_string(xfer_mask),
2453				     cdb_intr_string, atapi_an_string,
2454				     dma_dir_string);
2455	}
2456
2457	/* determine max_sectors */
2458	dev->max_sectors = ATA_MAX_SECTORS;
2459	if (dev->flags & ATA_DFLAG_LBA48)
2460		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2461
2462	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2463	   200 sectors */
2464	if (ata_dev_knobble(dev)) {
2465		if (ata_msg_drv(ap) && print_info)
2466			ata_dev_info(dev, "applying bridge limits\n");
2467		dev->udma_mask &= ATA_UDMA5;
2468		dev->max_sectors = ATA_MAX_SECTORS;
2469	}
2470
2471	if ((dev->class == ATA_DEV_ATAPI) &&
2472	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2473		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2474		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2475	}
2476
2477	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2478		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479					 dev->max_sectors);
2480
 
 
 
 
2481	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2483
2484	if (ap->ops->dev_config)
2485		ap->ops->dev_config(dev);
2486
2487	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488		/* Let the user know. We don't want to disallow opens for
2489		   rescue purposes, or in case the vendor is just a blithering
2490		   idiot. Do this after the dev_config call as some controllers
2491		   with buggy firmware may want to avoid reporting false device
2492		   bugs */
2493
2494		if (print_info) {
2495			ata_dev_warn(dev,
2496"Drive reports diagnostics failure. This may indicate a drive\n");
2497			ata_dev_warn(dev,
2498"fault or invalid emulation. Contact drive vendor for information.\n");
2499		}
2500	}
2501
2502	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2503		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2505	}
2506
2507	return 0;
2508
2509err_out_nosup:
2510	if (ata_msg_probe(ap))
2511		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2512	return rc;
2513}
2514
2515/**
2516 *	ata_cable_40wire	-	return 40 wire cable type
2517 *	@ap: port
2518 *
2519 *	Helper method for drivers which want to hardwire 40 wire cable
2520 *	detection.
2521 */
2522
2523int ata_cable_40wire(struct ata_port *ap)
2524{
2525	return ATA_CBL_PATA40;
2526}
2527
2528/**
2529 *	ata_cable_80wire	-	return 80 wire cable type
2530 *	@ap: port
2531 *
2532 *	Helper method for drivers which want to hardwire 80 wire cable
2533 *	detection.
2534 */
2535
2536int ata_cable_80wire(struct ata_port *ap)
2537{
2538	return ATA_CBL_PATA80;
2539}
2540
2541/**
2542 *	ata_cable_unknown	-	return unknown PATA cable.
2543 *	@ap: port
2544 *
2545 *	Helper method for drivers which have no PATA cable detection.
2546 */
2547
2548int ata_cable_unknown(struct ata_port *ap)
2549{
2550	return ATA_CBL_PATA_UNK;
2551}
2552
2553/**
2554 *	ata_cable_ignore	-	return ignored PATA cable.
2555 *	@ap: port
2556 *
2557 *	Helper method for drivers which don't use cable type to limit
2558 *	transfer mode.
2559 */
2560int ata_cable_ignore(struct ata_port *ap)
2561{
2562	return ATA_CBL_PATA_IGN;
2563}
2564
2565/**
2566 *	ata_cable_sata	-	return SATA cable type
2567 *	@ap: port
2568 *
2569 *	Helper method for drivers which have SATA cables
2570 */
2571
2572int ata_cable_sata(struct ata_port *ap)
2573{
2574	return ATA_CBL_SATA;
2575}
2576
2577/**
2578 *	ata_bus_probe - Reset and probe ATA bus
2579 *	@ap: Bus to probe
2580 *
2581 *	Master ATA bus probing function.  Initiates a hardware-dependent
2582 *	bus reset, then attempts to identify any devices found on
2583 *	the bus.
2584 *
2585 *	LOCKING:
2586 *	PCI/etc. bus probe sem.
2587 *
2588 *	RETURNS:
2589 *	Zero on success, negative errno otherwise.
2590 */
2591
2592int ata_bus_probe(struct ata_port *ap)
2593{
2594	unsigned int classes[ATA_MAX_DEVICES];
2595	int tries[ATA_MAX_DEVICES];
2596	int rc;
2597	struct ata_device *dev;
2598
2599	ata_for_each_dev(dev, &ap->link, ALL)
2600		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2601
2602 retry:
2603	ata_for_each_dev(dev, &ap->link, ALL) {
2604		/* If we issue an SRST then an ATA drive (not ATAPI)
2605		 * may change configuration and be in PIO0 timing. If
2606		 * we do a hard reset (or are coming from power on)
2607		 * this is true for ATA or ATAPI. Until we've set a
2608		 * suitable controller mode we should not touch the
2609		 * bus as we may be talking too fast.
2610		 */
2611		dev->pio_mode = XFER_PIO_0;
2612		dev->dma_mode = 0xff;
2613
2614		/* If the controller has a pio mode setup function
2615		 * then use it to set the chipset to rights. Don't
2616		 * touch the DMA setup as that will be dealt with when
2617		 * configuring devices.
2618		 */
2619		if (ap->ops->set_piomode)
2620			ap->ops->set_piomode(ap, dev);
2621	}
2622
2623	/* reset and determine device classes */
2624	ap->ops->phy_reset(ap);
2625
2626	ata_for_each_dev(dev, &ap->link, ALL) {
2627		if (dev->class != ATA_DEV_UNKNOWN)
2628			classes[dev->devno] = dev->class;
2629		else
2630			classes[dev->devno] = ATA_DEV_NONE;
2631
2632		dev->class = ATA_DEV_UNKNOWN;
2633	}
2634
2635	/* read IDENTIFY page and configure devices. We have to do the identify
2636	   specific sequence bass-ackwards so that PDIAG- is released by
2637	   the slave device */
2638
2639	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2640		if (tries[dev->devno])
2641			dev->class = classes[dev->devno];
2642
2643		if (!ata_dev_enabled(dev))
2644			continue;
2645
2646		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647				     dev->id);
2648		if (rc)
2649			goto fail;
2650	}
2651
2652	/* Now ask for the cable type as PDIAG- should have been released */
2653	if (ap->ops->cable_detect)
2654		ap->cbl = ap->ops->cable_detect(ap);
2655
2656	/* We may have SATA bridge glue hiding here irrespective of
2657	 * the reported cable types and sensed types.  When SATA
2658	 * drives indicate we have a bridge, we don't know which end
2659	 * of the link the bridge is which is a problem.
2660	 */
2661	ata_for_each_dev(dev, &ap->link, ENABLED)
2662		if (ata_id_is_sata(dev->id))
2663			ap->cbl = ATA_CBL_SATA;
2664
2665	/* After the identify sequence we can now set up the devices. We do
2666	   this in the normal order so that the user doesn't get confused */
2667
2668	ata_for_each_dev(dev, &ap->link, ENABLED) {
2669		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2670		rc = ata_dev_configure(dev);
2671		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2672		if (rc)
2673			goto fail;
2674	}
2675
2676	/* configure transfer mode */
2677	rc = ata_set_mode(&ap->link, &dev);
2678	if (rc)
2679		goto fail;
2680
2681	ata_for_each_dev(dev, &ap->link, ENABLED)
2682		return 0;
2683
2684	return -ENODEV;
2685
2686 fail:
2687	tries[dev->devno]--;
2688
2689	switch (rc) {
2690	case -EINVAL:
2691		/* eeek, something went very wrong, give up */
2692		tries[dev->devno] = 0;
2693		break;
2694
2695	case -ENODEV:
2696		/* give it just one more chance */
2697		tries[dev->devno] = min(tries[dev->devno], 1);
 
2698	case -EIO:
2699		if (tries[dev->devno] == 1) {
2700			/* This is the last chance, better to slow
2701			 * down than lose it.
2702			 */
2703			sata_down_spd_limit(&ap->link, 0);
2704			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2705		}
2706	}
2707
2708	if (!tries[dev->devno])
2709		ata_dev_disable(dev);
2710
2711	goto retry;
2712}
2713
2714/**
2715 *	sata_print_link_status - Print SATA link status
2716 *	@link: SATA link to printk link status about
2717 *
2718 *	This function prints link speed and status of a SATA link.
2719 *
2720 *	LOCKING:
2721 *	None.
2722 */
2723static void sata_print_link_status(struct ata_link *link)
2724{
2725	u32 sstatus, scontrol, tmp;
2726
2727	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2728		return;
2729	sata_scr_read(link, SCR_CONTROL, &scontrol);
2730
2731	if (ata_phys_link_online(link)) {
2732		tmp = (sstatus >> 4) & 0xf;
2733		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734			      sata_spd_string(tmp), sstatus, scontrol);
2735	} else {
2736		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737			      sstatus, scontrol);
2738	}
2739}
2740
2741/**
2742 *	ata_dev_pair		-	return other device on cable
2743 *	@adev: device
2744 *
2745 *	Obtain the other device on the same cable, or if none is
2746 *	present NULL is returned
2747 */
2748
2749struct ata_device *ata_dev_pair(struct ata_device *adev)
2750{
2751	struct ata_link *link = adev->link;
2752	struct ata_device *pair = &link->device[1 - adev->devno];
2753	if (!ata_dev_enabled(pair))
2754		return NULL;
2755	return pair;
2756}
2757
2758/**
2759 *	sata_down_spd_limit - adjust SATA spd limit downward
2760 *	@link: Link to adjust SATA spd limit for
2761 *	@spd_limit: Additional limit
2762 *
2763 *	Adjust SATA spd limit of @link downward.  Note that this
2764 *	function only adjusts the limit.  The change must be applied
2765 *	using sata_set_spd().
2766 *
2767 *	If @spd_limit is non-zero, the speed is limited to equal to or
2768 *	lower than @spd_limit if such speed is supported.  If
2769 *	@spd_limit is slower than any supported speed, only the lowest
2770 *	supported speed is allowed.
2771 *
2772 *	LOCKING:
2773 *	Inherited from caller.
2774 *
2775 *	RETURNS:
2776 *	0 on success, negative errno on failure
2777 */
2778int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2779{
2780	u32 sstatus, spd, mask;
2781	int rc, bit;
2782
2783	if (!sata_scr_valid(link))
2784		return -EOPNOTSUPP;
2785
2786	/* If SCR can be read, use it to determine the current SPD.
2787	 * If not, use cached value in link->sata_spd.
2788	 */
2789	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2790	if (rc == 0 && ata_sstatus_online(sstatus))
2791		spd = (sstatus >> 4) & 0xf;
2792	else
2793		spd = link->sata_spd;
2794
2795	mask = link->sata_spd_limit;
2796	if (mask <= 1)
2797		return -EINVAL;
2798
2799	/* unconditionally mask off the highest bit */
2800	bit = fls(mask) - 1;
2801	mask &= ~(1 << bit);
2802
2803	/* Mask off all speeds higher than or equal to the current
2804	 * one.  Force 1.5Gbps if current SPD is not available.
 
 
 
 
 
 
2805	 */
2806	if (spd > 1)
2807		mask &= (1 << (spd - 1)) - 1;
2808	else
2809		mask &= 1;
2810
2811	/* were we already at the bottom? */
2812	if (!mask)
2813		return -EINVAL;
2814
2815	if (spd_limit) {
2816		if (mask & ((1 << spd_limit) - 1))
2817			mask &= (1 << spd_limit) - 1;
2818		else {
2819			bit = ffs(mask) - 1;
2820			mask = 1 << bit;
2821		}
2822	}
2823
2824	link->sata_spd_limit = mask;
2825
2826	ata_link_warn(link, "limiting SATA link speed to %s\n",
2827		      sata_spd_string(fls(mask)));
2828
2829	return 0;
2830}
2831
2832static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2833{
2834	struct ata_link *host_link = &link->ap->link;
2835	u32 limit, target, spd;
2836
2837	limit = link->sata_spd_limit;
2838
2839	/* Don't configure downstream link faster than upstream link.
2840	 * It doesn't speed up anything and some PMPs choke on such
2841	 * configuration.
2842	 */
2843	if (!ata_is_host_link(link) && host_link->sata_spd)
2844		limit &= (1 << host_link->sata_spd) - 1;
2845
2846	if (limit == UINT_MAX)
2847		target = 0;
2848	else
2849		target = fls(limit);
2850
2851	spd = (*scontrol >> 4) & 0xf;
2852	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2853
2854	return spd != target;
2855}
2856
2857/**
2858 *	sata_set_spd_needed - is SATA spd configuration needed
2859 *	@link: Link in question
2860 *
2861 *	Test whether the spd limit in SControl matches
2862 *	@link->sata_spd_limit.  This function is used to determine
2863 *	whether hardreset is necessary to apply SATA spd
2864 *	configuration.
2865 *
2866 *	LOCKING:
2867 *	Inherited from caller.
2868 *
2869 *	RETURNS:
2870 *	1 if SATA spd configuration is needed, 0 otherwise.
2871 */
2872static int sata_set_spd_needed(struct ata_link *link)
2873{
2874	u32 scontrol;
2875
2876	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2877		return 1;
2878
2879	return __sata_set_spd_needed(link, &scontrol);
2880}
2881
2882/**
2883 *	sata_set_spd - set SATA spd according to spd limit
2884 *	@link: Link to set SATA spd for
2885 *
2886 *	Set SATA spd of @link according to sata_spd_limit.
2887 *
2888 *	LOCKING:
2889 *	Inherited from caller.
2890 *
2891 *	RETURNS:
2892 *	0 if spd doesn't need to be changed, 1 if spd has been
2893 *	changed.  Negative errno if SCR registers are inaccessible.
2894 */
2895int sata_set_spd(struct ata_link *link)
2896{
2897	u32 scontrol;
2898	int rc;
2899
2900	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2901		return rc;
2902
2903	if (!__sata_set_spd_needed(link, &scontrol))
2904		return 0;
2905
2906	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2907		return rc;
2908
2909	return 1;
2910}
2911
2912/*
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2915 */
2916/*
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2920 *
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2922 */
2923
2924static const struct ata_timing ata_timing[] = {
2925/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2926	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2927	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2928	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2929	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2930	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2931	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2932	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2933
2934	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2935	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2936	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2937
2938	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2939	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2940	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2941	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2942	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2943
2944/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2945	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2946	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2947	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2948	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2949	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2950	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2951	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2952
2953	{ 0xFF }
2954};
2955
2956#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2957#define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2958
2959static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2960{
2961	q->setup	= EZ(t->setup      * 1000,  T);
2962	q->act8b	= EZ(t->act8b      * 1000,  T);
2963	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2964	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2965	q->active	= EZ(t->active     * 1000,  T);
2966	q->recover	= EZ(t->recover    * 1000,  T);
2967	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2968	q->cycle	= EZ(t->cycle      * 1000,  T);
2969	q->udma		= EZ(t->udma       * 1000, UT);
2970}
2971
2972void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973		      struct ata_timing *m, unsigned int what)
2974{
2975	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2976	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2977	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2978	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2979	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2980	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2981	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2982	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2983	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2984}
2985
2986const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2987{
2988	const struct ata_timing *t = ata_timing;
2989
2990	while (xfer_mode > t->mode)
2991		t++;
2992
2993	if (xfer_mode == t->mode)
2994		return t;
2995
2996	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997			__func__, xfer_mode);
2998
2999	return NULL;
3000}
3001
3002int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003		       struct ata_timing *t, int T, int UT)
3004{
3005	const u16 *id = adev->id;
3006	const struct ata_timing *s;
3007	struct ata_timing p;
3008
3009	/*
3010	 * Find the mode.
3011	 */
3012
3013	if (!(s = ata_timing_find_mode(speed)))
3014		return -EINVAL;
3015
3016	memcpy(t, s, sizeof(*s));
3017
3018	/*
3019	 * If the drive is an EIDE drive, it can tell us it needs extended
3020	 * PIO/MW_DMA cycle timing.
3021	 */
3022
3023	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3024		memset(&p, 0, sizeof(p));
3025
3026		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3027			if (speed <= XFER_PIO_2)
3028				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029			else if ((speed <= XFER_PIO_4) ||
3030				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3034
3035		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3036	}
3037
3038	/*
3039	 * Convert the timing to bus clock counts.
3040	 */
3041
3042	ata_timing_quantize(t, t, T, UT);
3043
3044	/*
3045	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046	 * S.M.A.R.T * and some other commands. We have to ensure that the
3047	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3048	 */
3049
3050	if (speed > XFER_PIO_6) {
3051		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3053	}
3054
3055	/*
3056	 * Lengthen active & recovery time so that cycle time is correct.
3057	 */
3058
3059	if (t->act8b + t->rec8b < t->cyc8b) {
3060		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061		t->rec8b = t->cyc8b - t->act8b;
3062	}
3063
3064	if (t->active + t->recover < t->cycle) {
3065		t->active += (t->cycle - (t->active + t->recover)) / 2;
3066		t->recover = t->cycle - t->active;
3067	}
3068
3069	/* In a few cases quantisation may produce enough errors to
3070	   leave t->cycle too low for the sum of active and recovery
3071	   if so we must correct this */
3072	if (t->active + t->recover > t->cycle)
3073		t->cycle = t->active + t->recover;
3074
3075	return 0;
3076}
3077
3078/**
3079 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 *	@cycle: cycle duration in ns
3082 *
3083 *	Return matching xfer mode for @cycle.  The returned mode is of
3084 *	the transfer type specified by @xfer_shift.  If @cycle is too
3085 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3086 *	than the fastest known mode, the fasted mode is returned.
3087 *
3088 *	LOCKING:
3089 *	None.
3090 *
3091 *	RETURNS:
3092 *	Matching xfer_mode, 0xff if no match found.
3093 */
3094u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3095{
3096	u8 base_mode = 0xff, last_mode = 0xff;
3097	const struct ata_xfer_ent *ent;
3098	const struct ata_timing *t;
3099
3100	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101		if (ent->shift == xfer_shift)
3102			base_mode = ent->base;
3103
3104	for (t = ata_timing_find_mode(base_mode);
3105	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106		unsigned short this_cycle;
3107
3108		switch (xfer_shift) {
3109		case ATA_SHIFT_PIO:
3110		case ATA_SHIFT_MWDMA:
3111			this_cycle = t->cycle;
3112			break;
3113		case ATA_SHIFT_UDMA:
3114			this_cycle = t->udma;
3115			break;
3116		default:
3117			return 0xff;
3118		}
3119
3120		if (cycle > this_cycle)
3121			break;
3122
3123		last_mode = t->mode;
3124	}
3125
3126	return last_mode;
3127}
3128
3129/**
3130 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3131 *	@dev: Device to adjust xfer masks
3132 *	@sel: ATA_DNXFER_* selector
3133 *
3134 *	Adjust xfer masks of @dev downward.  Note that this function
3135 *	does not apply the change.  Invoking ata_set_mode() afterwards
3136 *	will apply the limit.
3137 *
3138 *	LOCKING:
3139 *	Inherited from caller.
3140 *
3141 *	RETURNS:
3142 *	0 on success, negative errno on failure
3143 */
3144int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3145{
3146	char buf[32];
3147	unsigned long orig_mask, xfer_mask;
3148	unsigned long pio_mask, mwdma_mask, udma_mask;
3149	int quiet, highbit;
3150
3151	quiet = !!(sel & ATA_DNXFER_QUIET);
3152	sel &= ~ATA_DNXFER_QUIET;
3153
3154	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155						  dev->mwdma_mask,
3156						  dev->udma_mask);
3157	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3158
3159	switch (sel) {
3160	case ATA_DNXFER_PIO:
3161		highbit = fls(pio_mask) - 1;
3162		pio_mask &= ~(1 << highbit);
3163		break;
3164
3165	case ATA_DNXFER_DMA:
3166		if (udma_mask) {
3167			highbit = fls(udma_mask) - 1;
3168			udma_mask &= ~(1 << highbit);
3169			if (!udma_mask)
3170				return -ENOENT;
3171		} else if (mwdma_mask) {
3172			highbit = fls(mwdma_mask) - 1;
3173			mwdma_mask &= ~(1 << highbit);
3174			if (!mwdma_mask)
3175				return -ENOENT;
3176		}
3177		break;
3178
3179	case ATA_DNXFER_40C:
3180		udma_mask &= ATA_UDMA_MASK_40C;
3181		break;
3182
3183	case ATA_DNXFER_FORCE_PIO0:
3184		pio_mask &= 1;
 
3185	case ATA_DNXFER_FORCE_PIO:
3186		mwdma_mask = 0;
3187		udma_mask = 0;
3188		break;
3189
3190	default:
3191		BUG();
3192	}
3193
3194	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3195
3196	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197		return -ENOENT;
3198
3199	if (!quiet) {
3200		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201			snprintf(buf, sizeof(buf), "%s:%s",
3202				 ata_mode_string(xfer_mask),
3203				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204		else
3205			snprintf(buf, sizeof(buf), "%s",
3206				 ata_mode_string(xfer_mask));
3207
3208		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3209	}
3210
3211	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212			    &dev->udma_mask);
3213
3214	return 0;
3215}
3216
3217static int ata_dev_set_mode(struct ata_device *dev)
3218{
3219	struct ata_port *ap = dev->link->ap;
3220	struct ata_eh_context *ehc = &dev->link->eh_context;
3221	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3222	const char *dev_err_whine = "";
3223	int ign_dev_err = 0;
3224	unsigned int err_mask = 0;
3225	int rc;
3226
3227	dev->flags &= ~ATA_DFLAG_PIO;
3228	if (dev->xfer_shift == ATA_SHIFT_PIO)
3229		dev->flags |= ATA_DFLAG_PIO;
3230
3231	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232		dev_err_whine = " (SET_XFERMODE skipped)";
3233	else {
3234		if (nosetxfer)
3235			ata_dev_warn(dev,
3236				     "NOSETXFER but PATA detected - can't "
3237				     "skip SETXFER, might malfunction\n");
3238		err_mask = ata_dev_set_xfermode(dev);
3239	}
3240
3241	if (err_mask & ~AC_ERR_DEV)
3242		goto fail;
3243
3244	/* revalidate */
3245	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248	if (rc)
3249		return rc;
3250
3251	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252		/* Old CFA may refuse this command, which is just fine */
3253		if (ata_id_is_cfa(dev->id))
3254			ign_dev_err = 1;
3255		/* Catch several broken garbage emulations plus some pre
3256		   ATA devices */
3257		if (ata_id_major_version(dev->id) == 0 &&
3258					dev->pio_mode <= XFER_PIO_2)
3259			ign_dev_err = 1;
3260		/* Some very old devices and some bad newer ones fail
3261		   any kind of SET_XFERMODE request but support PIO0-2
3262		   timings and no IORDY */
3263		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264			ign_dev_err = 1;
3265	}
3266	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3269	    dev->dma_mode == XFER_MW_DMA_0 &&
3270	    (dev->id[63] >> 8) & 1)
3271		ign_dev_err = 1;
3272
3273	/* if the device is actually configured correctly, ignore dev err */
3274	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275		ign_dev_err = 1;
3276
3277	if (err_mask & AC_ERR_DEV) {
3278		if (!ign_dev_err)
3279			goto fail;
3280		else
3281			dev_err_whine = " (device error ignored)";
3282	}
3283
3284	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285		dev->xfer_shift, (int)dev->xfer_mode);
3286
3287	ata_dev_info(dev, "configured for %s%s\n",
3288		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289		     dev_err_whine);
 
 
3290
3291	return 0;
3292
3293 fail:
3294	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3295	return -EIO;
3296}
3297
3298/**
3299 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 *	@link: link on which timings will be programmed
3301 *	@r_failed_dev: out parameter for failed device
3302 *
3303 *	Standard implementation of the function used to tune and set
3304 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3305 *	ata_dev_set_mode() fails, pointer to the failing device is
3306 *	returned in @r_failed_dev.
3307 *
3308 *	LOCKING:
3309 *	PCI/etc. bus probe sem.
3310 *
3311 *	RETURNS:
3312 *	0 on success, negative errno otherwise
3313 */
3314
3315int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3316{
3317	struct ata_port *ap = link->ap;
3318	struct ata_device *dev;
3319	int rc = 0, used_dma = 0, found = 0;
3320
3321	/* step 1: calculate xfer_mask */
3322	ata_for_each_dev(dev, link, ENABLED) {
3323		unsigned long pio_mask, dma_mask;
3324		unsigned int mode_mask;
3325
3326		mode_mask = ATA_DMA_MASK_ATA;
3327		if (dev->class == ATA_DEV_ATAPI)
3328			mode_mask = ATA_DMA_MASK_ATAPI;
3329		else if (ata_id_is_cfa(dev->id))
3330			mode_mask = ATA_DMA_MASK_CFA;
3331
3332		ata_dev_xfermask(dev);
3333		ata_force_xfermask(dev);
3334
3335		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3336
3337		if (libata_dma_mask & mode_mask)
3338			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339						     dev->udma_mask);
3340		else
3341			dma_mask = 0;
3342
3343		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3345
3346		found = 1;
3347		if (ata_dma_enabled(dev))
3348			used_dma = 1;
3349	}
3350	if (!found)
3351		goto out;
3352
3353	/* step 2: always set host PIO timings */
3354	ata_for_each_dev(dev, link, ENABLED) {
3355		if (dev->pio_mode == 0xff) {
3356			ata_dev_warn(dev, "no PIO support\n");
3357			rc = -EINVAL;
3358			goto out;
3359		}
3360
3361		dev->xfer_mode = dev->pio_mode;
3362		dev->xfer_shift = ATA_SHIFT_PIO;
3363		if (ap->ops->set_piomode)
3364			ap->ops->set_piomode(ap, dev);
3365	}
3366
3367	/* step 3: set host DMA timings */
3368	ata_for_each_dev(dev, link, ENABLED) {
3369		if (!ata_dma_enabled(dev))
3370			continue;
3371
3372		dev->xfer_mode = dev->dma_mode;
3373		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374		if (ap->ops->set_dmamode)
3375			ap->ops->set_dmamode(ap, dev);
3376	}
3377
3378	/* step 4: update devices' xfer mode */
3379	ata_for_each_dev(dev, link, ENABLED) {
3380		rc = ata_dev_set_mode(dev);
3381		if (rc)
3382			goto out;
3383	}
3384
3385	/* Record simplex status. If we selected DMA then the other
3386	 * host channels are not permitted to do so.
3387	 */
3388	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3389		ap->host->simplex_claimed = ap;
3390
3391 out:
3392	if (rc)
3393		*r_failed_dev = dev;
3394	return rc;
3395}
3396
3397/**
3398 *	ata_wait_ready - wait for link to become ready
3399 *	@link: link to be waited on
3400 *	@deadline: deadline jiffies for the operation
3401 *	@check_ready: callback to check link readiness
3402 *
3403 *	Wait for @link to become ready.  @check_ready should return
3404 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 *	link doesn't seem to be occupied, other errno for other error
3406 *	conditions.
3407 *
3408 *	Transient -ENODEV conditions are allowed for
3409 *	ATA_TMOUT_FF_WAIT.
3410 *
3411 *	LOCKING:
3412 *	EH context.
3413 *
3414 *	RETURNS:
3415 *	0 if @linke is ready before @deadline; otherwise, -errno.
3416 */
3417int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418		   int (*check_ready)(struct ata_link *link))
3419{
3420	unsigned long start = jiffies;
3421	unsigned long nodev_deadline;
3422	int warned = 0;
3423
3424	/* choose which 0xff timeout to use, read comment in libata.h */
3425	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427	else
3428		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429
3430	/* Slave readiness can't be tested separately from master.  On
3431	 * M/S emulation configuration, this function should be called
3432	 * only on the master and it will handle both master and slave.
3433	 */
3434	WARN_ON(link == link->ap->slave_link);
3435
3436	if (time_after(nodev_deadline, deadline))
3437		nodev_deadline = deadline;
3438
3439	while (1) {
3440		unsigned long now = jiffies;
3441		int ready, tmp;
3442
3443		ready = tmp = check_ready(link);
3444		if (ready > 0)
3445			return 0;
3446
3447		/*
3448		 * -ENODEV could be transient.  Ignore -ENODEV if link
3449		 * is online.  Also, some SATA devices take a long
3450		 * time to clear 0xff after reset.  Wait for
3451		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452		 * offline.
3453		 *
3454		 * Note that some PATA controllers (pata_ali) explode
3455		 * if status register is read more than once when
3456		 * there's no device attached.
3457		 */
3458		if (ready == -ENODEV) {
3459			if (ata_link_online(link))
3460				ready = 0;
3461			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462				 !ata_link_offline(link) &&
3463				 time_before(now, nodev_deadline))
3464				ready = 0;
3465		}
3466
3467		if (ready)
3468			return ready;
3469		if (time_after(now, deadline))
3470			return -EBUSY;
3471
3472		if (!warned && time_after(now, start + 5 * HZ) &&
3473		    (deadline - now > 3 * HZ)) {
3474			ata_link_warn(link,
3475				"link is slow to respond, please be patient "
3476				"(ready=%d)\n", tmp);
3477			warned = 1;
3478		}
3479
3480		ata_msleep(link->ap, 50);
3481	}
3482}
3483
3484/**
3485 *	ata_wait_after_reset - wait for link to become ready after reset
3486 *	@link: link to be waited on
3487 *	@deadline: deadline jiffies for the operation
3488 *	@check_ready: callback to check link readiness
3489 *
3490 *	Wait for @link to become ready after reset.
3491 *
3492 *	LOCKING:
3493 *	EH context.
3494 *
3495 *	RETURNS:
3496 *	0 if @linke is ready before @deadline; otherwise, -errno.
3497 */
3498int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499				int (*check_ready)(struct ata_link *link))
3500{
3501	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3502
3503	return ata_wait_ready(link, deadline, check_ready);
3504}
3505
3506/**
3507 *	sata_link_debounce - debounce SATA phy status
3508 *	@link: ATA link to debounce SATA phy status for
3509 *	@params: timing parameters { interval, duratinon, timeout } in msec
3510 *	@deadline: deadline jiffies for the operation
3511 *
3512 *	Make sure SStatus of @link reaches stable state, determined by
3513 *	holding the same value where DET is not 1 for @duration polled
3514 *	every @interval, before @timeout.  Timeout constraints the
3515 *	beginning of the stable state.  Because DET gets stuck at 1 on
3516 *	some controllers after hot unplugging, this functions waits
3517 *	until timeout then returns 0 if DET is stable at 1.
3518 *
3519 *	@timeout is further limited by @deadline.  The sooner of the
3520 *	two is used.
3521 *
3522 *	LOCKING:
3523 *	Kernel thread context (may sleep)
3524 *
3525 *	RETURNS:
3526 *	0 on success, -errno on failure.
3527 */
3528int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529		       unsigned long deadline)
3530{
3531	unsigned long interval = params[0];
3532	unsigned long duration = params[1];
3533	unsigned long last_jiffies, t;
3534	u32 last, cur;
3535	int rc;
3536
3537	t = ata_deadline(jiffies, params[2]);
3538	if (time_before(t, deadline))
3539		deadline = t;
3540
3541	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3542		return rc;
3543	cur &= 0xf;
3544
3545	last = cur;
3546	last_jiffies = jiffies;
3547
3548	while (1) {
3549		ata_msleep(link->ap, interval);
3550		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551			return rc;
3552		cur &= 0xf;
3553
3554		/* DET stable? */
3555		if (cur == last) {
3556			if (cur == 1 && time_before(jiffies, deadline))
3557				continue;
3558			if (time_after(jiffies,
3559				       ata_deadline(last_jiffies, duration)))
3560				return 0;
3561			continue;
3562		}
3563
3564		/* unstable, start over */
3565		last = cur;
3566		last_jiffies = jiffies;
3567
3568		/* Check deadline.  If debouncing failed, return
3569		 * -EPIPE to tell upper layer to lower link speed.
3570		 */
3571		if (time_after(jiffies, deadline))
3572			return -EPIPE;
3573	}
3574}
3575
3576/**
3577 *	sata_link_resume - resume SATA link
3578 *	@link: ATA link to resume SATA
3579 *	@params: timing parameters { interval, duratinon, timeout } in msec
3580 *	@deadline: deadline jiffies for the operation
3581 *
3582 *	Resume SATA phy @link and debounce it.
3583 *
3584 *	LOCKING:
3585 *	Kernel thread context (may sleep)
3586 *
3587 *	RETURNS:
3588 *	0 on success, -errno on failure.
3589 */
3590int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591		     unsigned long deadline)
3592{
3593	int tries = ATA_LINK_RESUME_TRIES;
3594	u32 scontrol, serror;
3595	int rc;
3596
3597	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598		return rc;
3599
3600	/*
3601	 * Writes to SControl sometimes get ignored under certain
3602	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3603	 * cleared.
3604	 */
3605	do {
3606		scontrol = (scontrol & 0x0f0) | 0x300;
3607		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608			return rc;
3609		/*
3610		 * Some PHYs react badly if SStatus is pounded
3611		 * immediately after resuming.  Delay 200ms before
3612		 * debouncing.
3613		 */
3614		ata_msleep(link->ap, 200);
 
3615
3616		/* is SControl restored correctly? */
3617		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618			return rc;
3619	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3620
3621	if ((scontrol & 0xf0f) != 0x300) {
3622		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3623			     scontrol);
3624		return 0;
3625	}
3626
3627	if (tries < ATA_LINK_RESUME_TRIES)
3628		ata_link_warn(link, "link resume succeeded after %d retries\n",
3629			      ATA_LINK_RESUME_TRIES - tries);
3630
3631	if ((rc = sata_link_debounce(link, params, deadline)))
3632		return rc;
3633
3634	/* clear SError, some PHYs require this even for SRST to work */
3635	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636		rc = sata_scr_write(link, SCR_ERROR, serror);
3637
3638	return rc != -EINVAL ? rc : 0;
3639}
3640
3641/**
3642 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 *	@link: ATA link to manipulate SControl for
3644 *	@policy: LPM policy to configure
3645 *	@spm_wakeup: initiate LPM transition to active state
3646 *
3647 *	Manipulate the IPM field of the SControl register of @link
3648 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3649 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3650 *	the link.  This function also clears PHYRDY_CHG before
3651 *	returning.
3652 *
3653 *	LOCKING:
3654 *	EH context.
3655 *
3656 *	RETURNS:
3657 *	0 on succes, -errno otherwise.
3658 */
3659int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660		      bool spm_wakeup)
3661{
3662	struct ata_eh_context *ehc = &link->eh_context;
3663	bool woken_up = false;
3664	u32 scontrol;
3665	int rc;
3666
3667	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668	if (rc)
3669		return rc;
3670
3671	switch (policy) {
3672	case ATA_LPM_MAX_POWER:
3673		/* disable all LPM transitions */
3674		scontrol |= (0x7 << 8);
3675		/* initiate transition to active state */
3676		if (spm_wakeup) {
3677			scontrol |= (0x4 << 12);
3678			woken_up = true;
3679		}
3680		break;
3681	case ATA_LPM_MED_POWER:
3682		/* allow LPM to PARTIAL */
3683		scontrol &= ~(0x1 << 8);
3684		scontrol |= (0x6 << 8);
3685		break;
 
 
3686	case ATA_LPM_MIN_POWER:
3687		if (ata_link_nr_enabled(link) > 0)
3688			/* no restrictions on LPM transitions */
3689			scontrol &= ~(0x7 << 8);
3690		else {
3691			/* empty port, power off */
3692			scontrol &= ~0xf;
3693			scontrol |= (0x1 << 2);
3694		}
3695		break;
3696	default:
3697		WARN_ON(1);
3698	}
3699
3700	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701	if (rc)
3702		return rc;
3703
3704	/* give the link time to transit out of LPM state */
3705	if (woken_up)
3706		msleep(10);
3707
3708	/* clear PHYRDY_CHG from SError */
3709	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3711}
3712
3713/**
3714 *	ata_std_prereset - prepare for reset
3715 *	@link: ATA link to be reset
3716 *	@deadline: deadline jiffies for the operation
3717 *
3718 *	@link is about to be reset.  Initialize it.  Failure from
3719 *	prereset makes libata abort whole reset sequence and give up
3720 *	that port, so prereset should be best-effort.  It does its
3721 *	best to prepare for reset sequence but if things go wrong, it
3722 *	should just whine, not fail.
3723 *
3724 *	LOCKING:
3725 *	Kernel thread context (may sleep)
3726 *
3727 *	RETURNS:
3728 *	0 on success, -errno otherwise.
3729 */
3730int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3731{
3732	struct ata_port *ap = link->ap;
3733	struct ata_eh_context *ehc = &link->eh_context;
3734	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3735	int rc;
3736
3737	/* if we're about to do hardreset, nothing more to do */
3738	if (ehc->i.action & ATA_EH_HARDRESET)
3739		return 0;
3740
3741	/* if SATA, resume link */
3742	if (ap->flags & ATA_FLAG_SATA) {
3743		rc = sata_link_resume(link, timing, deadline);
3744		/* whine about phy resume failure but proceed */
3745		if (rc && rc != -EOPNOTSUPP)
3746			ata_link_warn(link,
3747				      "failed to resume link for reset (errno=%d)\n",
3748				      rc);
3749	}
3750
3751	/* no point in trying softreset on offline link */
3752	if (ata_phys_link_offline(link))
3753		ehc->i.action &= ~ATA_EH_SOFTRESET;
3754
3755	return 0;
3756}
3757
3758/**
3759 *	sata_link_hardreset - reset link via SATA phy reset
3760 *	@link: link to reset
3761 *	@timing: timing parameters { interval, duratinon, timeout } in msec
3762 *	@deadline: deadline jiffies for the operation
3763 *	@online: optional out parameter indicating link onlineness
3764 *	@check_ready: optional callback to check link readiness
3765 *
3766 *	SATA phy-reset @link using DET bits of SControl register.
3767 *	After hardreset, link readiness is waited upon using
3768 *	ata_wait_ready() if @check_ready is specified.  LLDs are
3769 *	allowed to not specify @check_ready and wait itself after this
3770 *	function returns.  Device classification is LLD's
3771 *	responsibility.
3772 *
3773 *	*@online is set to one iff reset succeeded and @link is online
3774 *	after reset.
3775 *
3776 *	LOCKING:
3777 *	Kernel thread context (may sleep)
3778 *
3779 *	RETURNS:
3780 *	0 on success, -errno otherwise.
3781 */
3782int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3783			unsigned long deadline,
3784			bool *online, int (*check_ready)(struct ata_link *))
3785{
3786	u32 scontrol;
3787	int rc;
3788
3789	DPRINTK("ENTER\n");
3790
3791	if (online)
3792		*online = false;
3793
3794	if (sata_set_spd_needed(link)) {
3795		/* SATA spec says nothing about how to reconfigure
3796		 * spd.  To be on the safe side, turn off phy during
3797		 * reconfiguration.  This works for at least ICH7 AHCI
3798		 * and Sil3124.
3799		 */
3800		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801			goto out;
3802
3803		scontrol = (scontrol & 0x0f0) | 0x304;
3804
3805		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3806			goto out;
3807
3808		sata_set_spd(link);
3809	}
3810
3811	/* issue phy wake/reset */
3812	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3813		goto out;
3814
3815	scontrol = (scontrol & 0x0f0) | 0x301;
3816
3817	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3818		goto out;
3819
3820	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821	 * 10.4.2 says at least 1 ms.
3822	 */
3823	ata_msleep(link->ap, 1);
3824
3825	/* bring link back */
3826	rc = sata_link_resume(link, timing, deadline);
3827	if (rc)
3828		goto out;
3829	/* if link is offline nothing more to do */
3830	if (ata_phys_link_offline(link))
3831		goto out;
3832
3833	/* Link is online.  From this point, -ENODEV too is an error. */
3834	if (online)
3835		*online = true;
3836
3837	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3838		/* If PMP is supported, we have to do follow-up SRST.
3839		 * Some PMPs don't send D2H Reg FIS after hardreset if
3840		 * the first port is empty.  Wait only for
3841		 * ATA_TMOUT_PMP_SRST_WAIT.
3842		 */
3843		if (check_ready) {
3844			unsigned long pmp_deadline;
3845
3846			pmp_deadline = ata_deadline(jiffies,
3847						    ATA_TMOUT_PMP_SRST_WAIT);
3848			if (time_after(pmp_deadline, deadline))
3849				pmp_deadline = deadline;
3850			ata_wait_ready(link, pmp_deadline, check_ready);
3851		}
3852		rc = -EAGAIN;
3853		goto out;
3854	}
3855
3856	rc = 0;
3857	if (check_ready)
3858		rc = ata_wait_ready(link, deadline, check_ready);
3859 out:
3860	if (rc && rc != -EAGAIN) {
3861		/* online is set iff link is online && reset succeeded */
3862		if (online)
3863			*online = false;
3864		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3865	}
3866	DPRINTK("EXIT, rc=%d\n", rc);
3867	return rc;
3868}
3869
3870/**
3871 *	sata_std_hardreset - COMRESET w/o waiting or classification
3872 *	@link: link to reset
3873 *	@class: resulting class of attached device
3874 *	@deadline: deadline jiffies for the operation
3875 *
3876 *	Standard SATA COMRESET w/o waiting or classification.
3877 *
3878 *	LOCKING:
3879 *	Kernel thread context (may sleep)
3880 *
3881 *	RETURNS:
3882 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3883 */
3884int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885		       unsigned long deadline)
3886{
3887	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888	bool online;
3889	int rc;
3890
3891	/* do hardreset */
3892	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3893	return online ? -EAGAIN : rc;
3894}
3895
3896/**
3897 *	ata_std_postreset - standard postreset callback
3898 *	@link: the target ata_link
3899 *	@classes: classes of attached devices
3900 *
3901 *	This function is invoked after a successful reset.  Note that
3902 *	the device might have been reset more than once using
3903 *	different reset methods before postreset is invoked.
3904 *
3905 *	LOCKING:
3906 *	Kernel thread context (may sleep)
3907 */
3908void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3909{
3910	u32 serror;
3911
3912	DPRINTK("ENTER\n");
3913
3914	/* reset complete, clear SError */
3915	if (!sata_scr_read(link, SCR_ERROR, &serror))
3916		sata_scr_write(link, SCR_ERROR, serror);
3917
3918	/* print link status */
3919	sata_print_link_status(link);
3920
3921	DPRINTK("EXIT\n");
3922}
3923
3924/**
3925 *	ata_dev_same_device - Determine whether new ID matches configured device
3926 *	@dev: device to compare against
3927 *	@new_class: class of the new device
3928 *	@new_id: IDENTIFY page of the new device
3929 *
3930 *	Compare @new_class and @new_id against @dev and determine
3931 *	whether @dev is the device indicated by @new_class and
3932 *	@new_id.
3933 *
3934 *	LOCKING:
3935 *	None.
3936 *
3937 *	RETURNS:
3938 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3939 */
3940static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941			       const u16 *new_id)
3942{
3943	const u16 *old_id = dev->id;
3944	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3946
3947	if (dev->class != new_class) {
3948		ata_dev_info(dev, "class mismatch %d != %d\n",
3949			     dev->class, new_class);
3950		return 0;
3951	}
3952
3953	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3957
3958	if (strcmp(model[0], model[1])) {
3959		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960			     model[0], model[1]);
3961		return 0;
3962	}
3963
3964	if (strcmp(serial[0], serial[1])) {
3965		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966			     serial[0], serial[1]);
3967		return 0;
3968	}
3969
3970	return 1;
3971}
3972
3973/**
3974 *	ata_dev_reread_id - Re-read IDENTIFY data
3975 *	@dev: target ATA device
3976 *	@readid_flags: read ID flags
3977 *
3978 *	Re-read IDENTIFY page and make sure @dev is still attached to
3979 *	the port.
3980 *
3981 *	LOCKING:
3982 *	Kernel thread context (may sleep)
3983 *
3984 *	RETURNS:
3985 *	0 on success, negative errno otherwise
3986 */
3987int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3988{
3989	unsigned int class = dev->class;
3990	u16 *id = (void *)dev->link->ap->sector_buf;
3991	int rc;
3992
3993	/* read ID data */
3994	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3995	if (rc)
3996		return rc;
3997
3998	/* is the device still there? */
3999	if (!ata_dev_same_device(dev, class, id))
4000		return -ENODEV;
4001
4002	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4003	return 0;
4004}
4005
4006/**
4007 *	ata_dev_revalidate - Revalidate ATA device
4008 *	@dev: device to revalidate
4009 *	@new_class: new class code
4010 *	@readid_flags: read ID flags
4011 *
4012 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4013 *	port and reconfigure it according to the new IDENTIFY page.
4014 *
4015 *	LOCKING:
4016 *	Kernel thread context (may sleep)
4017 *
4018 *	RETURNS:
4019 *	0 on success, negative errno otherwise
4020 */
4021int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022		       unsigned int readid_flags)
4023{
4024	u64 n_sectors = dev->n_sectors;
4025	u64 n_native_sectors = dev->n_native_sectors;
4026	int rc;
4027
4028	if (!ata_dev_enabled(dev))
4029		return -ENODEV;
4030
4031	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032	if (ata_class_enabled(new_class) &&
4033	    new_class != ATA_DEV_ATA &&
4034	    new_class != ATA_DEV_ATAPI &&
 
4035	    new_class != ATA_DEV_SEMB) {
4036		ata_dev_info(dev, "class mismatch %u != %u\n",
4037			     dev->class, new_class);
4038		rc = -ENODEV;
4039		goto fail;
4040	}
4041
4042	/* re-read ID */
4043	rc = ata_dev_reread_id(dev, readid_flags);
4044	if (rc)
4045		goto fail;
4046
4047	/* configure device according to the new ID */
4048	rc = ata_dev_configure(dev);
4049	if (rc)
4050		goto fail;
4051
4052	/* verify n_sectors hasn't changed */
4053	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4054	    dev->n_sectors == n_sectors)
4055		return 0;
4056
4057	/* n_sectors has changed */
4058	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4059		     (unsigned long long)n_sectors,
4060		     (unsigned long long)dev->n_sectors);
4061
4062	/*
4063	 * Something could have caused HPA to be unlocked
4064	 * involuntarily.  If n_native_sectors hasn't changed and the
4065	 * new size matches it, keep the device.
4066	 */
4067	if (dev->n_native_sectors == n_native_sectors &&
4068	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4069		ata_dev_warn(dev,
4070			     "new n_sectors matches native, probably "
4071			     "late HPA unlock, n_sectors updated\n");
4072		/* use the larger n_sectors */
4073		return 0;
4074	}
4075
4076	/*
4077	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4078	 * unlocking HPA in those cases.
4079	 *
4080	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4081	 */
4082	if (dev->n_native_sectors == n_native_sectors &&
4083	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4084	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4085		ata_dev_warn(dev,
4086			     "old n_sectors matches native, probably "
4087			     "late HPA lock, will try to unlock HPA\n");
4088		/* try unlocking HPA */
4089		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4090		rc = -EIO;
4091	} else
4092		rc = -ENODEV;
4093
4094	/* restore original n_[native_]sectors and fail */
4095	dev->n_native_sectors = n_native_sectors;
4096	dev->n_sectors = n_sectors;
4097 fail:
4098	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4099	return rc;
4100}
4101
4102struct ata_blacklist_entry {
4103	const char *model_num;
4104	const char *model_rev;
4105	unsigned long horkage;
4106};
4107
4108static const struct ata_blacklist_entry ata_device_blacklist [] = {
4109	/* Devices with DMA related problems under Linux */
4110	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4111	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4112	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4113	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4114	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4115	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4116	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4117	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4118	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4119	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4120	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4121	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4122	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4123	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4124	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4125	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4126	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4127	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4128	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4129	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4130	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4131	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4132	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4133	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4134	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4135	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4136	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4137	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4138	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
 
4139	/* Odd clown on sil3726/4726 PMPs */
4140	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4141
4142	/* Weird ATAPI devices */
4143	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4144	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4145	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4146	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4147
 
 
 
 
 
 
 
 
 
 
 
 
 
4148	/* Devices we expect to fail diagnostics */
4149
4150	/* Devices where NCQ should be avoided */
4151	/* NCQ is slow */
4152	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4153	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4154	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4155	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4156	/* NCQ is broken */
4157	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4158	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4159	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4160	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4161	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4162
4163	/* Seagate NCQ + FLUSH CACHE firmware bug */
4164	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4165						ATA_HORKAGE_FIRMWARE_WARN },
4166
4167	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4168						ATA_HORKAGE_FIRMWARE_WARN },
4169
4170	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4171						ATA_HORKAGE_FIRMWARE_WARN },
4172
4173	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4174						ATA_HORKAGE_FIRMWARE_WARN },
4175
4176	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4178	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
 
 
4179
4180	/* Blacklist entries taken from Silicon Image 3124/3132
4181	   Windows driver .inf file - also several Linux problem reports */
4182	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4183	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4184	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4185
4186	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4188
 
 
 
 
4189	/* devices which puke on READ_NATIVE_MAX */
4190	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4191	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4192	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4193	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4194
4195	/* this one allows HPA unlocking but fails IOs on the area */
4196	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4197
4198	/* Devices which report 1 sector over size HPA */
4199	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4200	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4201	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4202
4203	/* Devices which get the IVB wrong */
4204	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4205	/* Maybe we should just blacklist TSSTcorp... */
4206	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4207
4208	/* Devices that do not need bridging limits applied */
4209	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4210	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4211
4212	/* Devices which aren't very happy with higher link speeds */
4213	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4214	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4215
4216	/*
4217	 * Devices which choke on SETXFER.  Applies only if both the
4218	 * device and controller are SATA.
4219	 */
4220	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4221	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4222	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4223	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4224	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4226	/* devices that don't properly handle queued TRIM commands */
4227	{ "Micron_M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4228	{ "Crucial_CT???M500SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4229	{ "Micron_M550*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4230	{ "Crucial_CT???M550SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4231
4232	/*
4233	 * Some WD SATA-I drives spin up and down erratically when the link
4234	 * is put into the slumber mode.  We don't have full list of the
4235	 * affected devices.  Disable LPM if the device matches one of the
4236	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4237	 * lost too.
4238	 *
4239	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4240	 */
4241	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4242	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4243	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4244	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4245	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4246	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4247	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4248
4249	/* End Marker */
4250	{ }
4251};
4252
4253/**
4254 *	glob_match - match a text string against a glob-style pattern
4255 *	@text: the string to be examined
4256 *	@pattern: the glob-style pattern to be matched against
4257 *
4258 *	Either/both of text and pattern can be empty strings.
4259 *
4260 *	Match text against a glob-style pattern, with wildcards and simple sets:
4261 *
4262 *		?	matches any single character.
4263 *		*	matches any run of characters.
4264 *		[xyz]	matches a single character from the set: x, y, or z.
4265 *		[a-d]	matches a single character from the range: a, b, c, or d.
4266 *		[a-d0-9] matches a single character from either range.
4267 *
4268 *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4269 *	Behaviour with malformed patterns is undefined, though generally reasonable.
4270 *
4271 *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4272 *
4273 *	This function uses one level of recursion per '*' in pattern.
4274 *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4275 *	this will not cause stack problems for any reasonable use here.
4276 *
4277 *	RETURNS:
4278 *	0 on match, 1 otherwise.
4279 */
4280static int glob_match (const char *text, const char *pattern)
4281{
4282	do {
4283		/* Match single character or a '?' wildcard */
4284		if (*text == *pattern || *pattern == '?') {
4285			if (!*pattern++)
4286				return 0;  /* End of both strings: match */
4287		} else {
4288			/* Match single char against a '[' bracketed ']' pattern set */
4289			if (!*text || *pattern != '[')
4290				break;  /* Not a pattern set */
4291			while (*++pattern && *pattern != ']' && *text != *pattern) {
4292				if (*pattern == '-' && *(pattern - 1) != '[')
4293					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4294						++pattern;
4295						break;
4296					}
4297			}
4298			if (!*pattern || *pattern == ']')
4299				return 1;  /* No match */
4300			while (*pattern && *pattern++ != ']');
4301		}
4302	} while (*++text && *pattern);
4303
4304	/* Match any run of chars against a '*' wildcard */
4305	if (*pattern == '*') {
4306		if (!*++pattern)
4307			return 0;  /* Match: avoid recursion at end of pattern */
4308		/* Loop to handle additional pattern chars after the wildcard */
4309		while (*text) {
4310			if (glob_match(text, pattern) == 0)
4311				return 0;  /* Remainder matched */
4312			++text;  /* Absorb (match) this char and try again */
4313		}
4314	}
4315	if (!*text && !*pattern)
4316		return 0;  /* End of both strings: match */
4317	return 1;  /* No match */
4318}
4319
4320static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4321{
4322	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4325
4326	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4327	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4328
4329	while (ad->model_num) {
4330		if (!glob_match(model_num, ad->model_num)) {
4331			if (ad->model_rev == NULL)
4332				return ad->horkage;
4333			if (!glob_match(model_rev, ad->model_rev))
4334				return ad->horkage;
4335		}
4336		ad++;
4337	}
4338	return 0;
4339}
4340
4341static int ata_dma_blacklisted(const struct ata_device *dev)
4342{
4343	/* We don't support polling DMA.
4344	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4345	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4346	 */
4347	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4348	    (dev->flags & ATA_DFLAG_CDB_INTR))
4349		return 1;
4350	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4351}
4352
4353/**
4354 *	ata_is_40wire		-	check drive side detection
4355 *	@dev: device
4356 *
4357 *	Perform drive side detection decoding, allowing for device vendors
4358 *	who can't follow the documentation.
4359 */
4360
4361static int ata_is_40wire(struct ata_device *dev)
4362{
4363	if (dev->horkage & ATA_HORKAGE_IVB)
4364		return ata_drive_40wire_relaxed(dev->id);
4365	return ata_drive_40wire(dev->id);
4366}
4367
4368/**
4369 *	cable_is_40wire		-	40/80/SATA decider
4370 *	@ap: port to consider
4371 *
4372 *	This function encapsulates the policy for speed management
4373 *	in one place. At the moment we don't cache the result but
4374 *	there is a good case for setting ap->cbl to the result when
4375 *	we are called with unknown cables (and figuring out if it
4376 *	impacts hotplug at all).
4377 *
4378 *	Return 1 if the cable appears to be 40 wire.
4379 */
4380
4381static int cable_is_40wire(struct ata_port *ap)
4382{
4383	struct ata_link *link;
4384	struct ata_device *dev;
4385
4386	/* If the controller thinks we are 40 wire, we are. */
4387	if (ap->cbl == ATA_CBL_PATA40)
4388		return 1;
4389
4390	/* If the controller thinks we are 80 wire, we are. */
4391	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4392		return 0;
4393
4394	/* If the system is known to be 40 wire short cable (eg
4395	 * laptop), then we allow 80 wire modes even if the drive
4396	 * isn't sure.
4397	 */
4398	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4399		return 0;
4400
4401	/* If the controller doesn't know, we scan.
4402	 *
4403	 * Note: We look for all 40 wire detects at this point.  Any
4404	 *       80 wire detect is taken to be 80 wire cable because
4405	 * - in many setups only the one drive (slave if present) will
4406	 *   give a valid detect
4407	 * - if you have a non detect capable drive you don't want it
4408	 *   to colour the choice
4409	 */
4410	ata_for_each_link(link, ap, EDGE) {
4411		ata_for_each_dev(dev, link, ENABLED) {
4412			if (!ata_is_40wire(dev))
4413				return 0;
4414		}
4415	}
4416	return 1;
4417}
4418
4419/**
4420 *	ata_dev_xfermask - Compute supported xfermask of the given device
4421 *	@dev: Device to compute xfermask for
4422 *
4423 *	Compute supported xfermask of @dev and store it in
4424 *	dev->*_mask.  This function is responsible for applying all
4425 *	known limits including host controller limits, device
4426 *	blacklist, etc...
4427 *
4428 *	LOCKING:
4429 *	None.
4430 */
4431static void ata_dev_xfermask(struct ata_device *dev)
4432{
4433	struct ata_link *link = dev->link;
4434	struct ata_port *ap = link->ap;
4435	struct ata_host *host = ap->host;
4436	unsigned long xfer_mask;
4437
4438	/* controller modes available */
4439	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4440				      ap->mwdma_mask, ap->udma_mask);
4441
4442	/* drive modes available */
4443	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4444				       dev->mwdma_mask, dev->udma_mask);
4445	xfer_mask &= ata_id_xfermask(dev->id);
4446
4447	/*
4448	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4449	 *	cable
4450	 */
4451	if (ata_dev_pair(dev)) {
4452		/* No PIO5 or PIO6 */
4453		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4454		/* No MWDMA3 or MWDMA 4 */
4455		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456	}
4457
4458	if (ata_dma_blacklisted(dev)) {
4459		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4460		ata_dev_warn(dev,
4461			     "device is on DMA blacklist, disabling DMA\n");
4462	}
4463
4464	if ((host->flags & ATA_HOST_SIMPLEX) &&
4465	    host->simplex_claimed && host->simplex_claimed != ap) {
4466		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4467		ata_dev_warn(dev,
4468			     "simplex DMA is claimed by other device, disabling DMA\n");
4469	}
4470
4471	if (ap->flags & ATA_FLAG_NO_IORDY)
4472		xfer_mask &= ata_pio_mask_no_iordy(dev);
4473
4474	if (ap->ops->mode_filter)
4475		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4476
4477	/* Apply cable rule here.  Don't apply it early because when
4478	 * we handle hot plug the cable type can itself change.
4479	 * Check this last so that we know if the transfer rate was
4480	 * solely limited by the cable.
4481	 * Unknown or 80 wire cables reported host side are checked
4482	 * drive side as well. Cases where we know a 40wire cable
4483	 * is used safely for 80 are not checked here.
4484	 */
4485	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4486		/* UDMA/44 or higher would be available */
4487		if (cable_is_40wire(ap)) {
4488			ata_dev_warn(dev,
4489				     "limited to UDMA/33 due to 40-wire cable\n");
4490			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491		}
4492
4493	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4494			    &dev->mwdma_mask, &dev->udma_mask);
4495}
4496
4497/**
4498 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 *	@dev: Device to which command will be sent
4500 *
4501 *	Issue SET FEATURES - XFER MODE command to device @dev
4502 *	on port @ap.
4503 *
4504 *	LOCKING:
4505 *	PCI/etc. bus probe sem.
4506 *
4507 *	RETURNS:
4508 *	0 on success, AC_ERR_* mask otherwise.
4509 */
4510
4511static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4512{
4513	struct ata_taskfile tf;
4514	unsigned int err_mask;
4515
4516	/* set up set-features taskfile */
4517	DPRINTK("set features - xfer mode\n");
4518
4519	/* Some controllers and ATAPI devices show flaky interrupt
4520	 * behavior after setting xfer mode.  Use polling instead.
4521	 */
4522	ata_tf_init(dev, &tf);
4523	tf.command = ATA_CMD_SET_FEATURES;
4524	tf.feature = SETFEATURES_XFER;
4525	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4526	tf.protocol = ATA_PROT_NODATA;
4527	/* If we are using IORDY we must send the mode setting command */
4528	if (ata_pio_need_iordy(dev))
4529		tf.nsect = dev->xfer_mode;
4530	/* If the device has IORDY and the controller does not - turn it off */
4531 	else if (ata_id_has_iordy(dev->id))
4532		tf.nsect = 0x01;
4533	else /* In the ancient relic department - skip all of this */
4534		return 0;
4535
4536	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 
4537
4538	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4539	return err_mask;
4540}
4541
4542/**
4543 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4544 *	@dev: Device to which command will be sent
4545 *	@enable: Whether to enable or disable the feature
4546 *	@feature: The sector count represents the feature to set
4547 *
4548 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4549 *	on port @ap with sector count
4550 *
4551 *	LOCKING:
4552 *	PCI/etc. bus probe sem.
4553 *
4554 *	RETURNS:
4555 *	0 on success, AC_ERR_* mask otherwise.
4556 */
4557unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4558{
4559	struct ata_taskfile tf;
4560	unsigned int err_mask;
 
4561
4562	/* set up set-features taskfile */
4563	DPRINTK("set features - SATA features\n");
4564
4565	ata_tf_init(dev, &tf);
4566	tf.command = ATA_CMD_SET_FEATURES;
4567	tf.feature = enable;
4568	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4569	tf.protocol = ATA_PROT_NODATA;
4570	tf.nsect = feature;
4571
4572	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 
 
 
4573
4574	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4575	return err_mask;
4576}
4577EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578
4579/**
4580 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4581 *	@dev: Device to which command will be sent
4582 *	@heads: Number of heads (taskfile parameter)
4583 *	@sectors: Number of sectors (taskfile parameter)
4584 *
4585 *	LOCKING:
4586 *	Kernel thread context (may sleep)
4587 *
4588 *	RETURNS:
4589 *	0 on success, AC_ERR_* mask otherwise.
4590 */
4591static unsigned int ata_dev_init_params(struct ata_device *dev,
4592					u16 heads, u16 sectors)
4593{
4594	struct ata_taskfile tf;
4595	unsigned int err_mask;
4596
4597	/* Number of sectors per track 1-255. Number of heads 1-16 */
4598	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4599		return AC_ERR_INVALID;
4600
4601	/* set up init dev params taskfile */
4602	DPRINTK("init dev params \n");
4603
4604	ata_tf_init(dev, &tf);
4605	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4606	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4607	tf.protocol = ATA_PROT_NODATA;
4608	tf.nsect = sectors;
4609	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4610
4611	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4612	/* A clean abort indicates an original or just out of spec drive
4613	   and we should continue as we issue the setup based on the
4614	   drive reported working geometry */
4615	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4616		err_mask = 0;
4617
4618	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4619	return err_mask;
4620}
4621
4622/**
4623 *	ata_sg_clean - Unmap DMA memory associated with command
4624 *	@qc: Command containing DMA memory to be released
4625 *
4626 *	Unmap all mapped DMA memory associated with this command.
4627 *
4628 *	LOCKING:
4629 *	spin_lock_irqsave(host lock)
4630 */
4631void ata_sg_clean(struct ata_queued_cmd *qc)
4632{
4633	struct ata_port *ap = qc->ap;
4634	struct scatterlist *sg = qc->sg;
4635	int dir = qc->dma_dir;
4636
4637	WARN_ON_ONCE(sg == NULL);
4638
4639	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4640
4641	if (qc->n_elem)
4642		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4643
4644	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4645	qc->sg = NULL;
4646}
4647
4648/**
4649 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4650 *	@qc: Metadata associated with taskfile to check
4651 *
4652 *	Allow low-level driver to filter ATA PACKET commands, returning
4653 *	a status indicating whether or not it is OK to use DMA for the
4654 *	supplied PACKET command.
4655 *
4656 *	LOCKING:
4657 *	spin_lock_irqsave(host lock)
4658 *
4659 *	RETURNS: 0 when ATAPI DMA can be used
4660 *               nonzero otherwise
4661 */
4662int atapi_check_dma(struct ata_queued_cmd *qc)
4663{
4664	struct ata_port *ap = qc->ap;
4665
4666	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4667	 * few ATAPI devices choke on such DMA requests.
4668	 */
4669	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4670	    unlikely(qc->nbytes & 15))
4671		return 1;
4672
4673	if (ap->ops->check_atapi_dma)
4674		return ap->ops->check_atapi_dma(qc);
4675
4676	return 0;
4677}
4678
4679/**
4680 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4681 *	@qc: ATA command in question
4682 *
4683 *	Non-NCQ commands cannot run with any other command, NCQ or
4684 *	not.  As upper layer only knows the queue depth, we are
4685 *	responsible for maintaining exclusion.  This function checks
4686 *	whether a new command @qc can be issued.
4687 *
4688 *	LOCKING:
4689 *	spin_lock_irqsave(host lock)
4690 *
4691 *	RETURNS:
4692 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4693 */
4694int ata_std_qc_defer(struct ata_queued_cmd *qc)
4695{
4696	struct ata_link *link = qc->dev->link;
4697
4698	if (qc->tf.protocol == ATA_PROT_NCQ) {
4699		if (!ata_tag_valid(link->active_tag))
4700			return 0;
4701	} else {
4702		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4703			return 0;
4704	}
4705
4706	return ATA_DEFER_LINK;
4707}
4708
4709void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4710
4711/**
4712 *	ata_sg_init - Associate command with scatter-gather table.
4713 *	@qc: Command to be associated
4714 *	@sg: Scatter-gather table.
4715 *	@n_elem: Number of elements in s/g table.
4716 *
4717 *	Initialize the data-related elements of queued_cmd @qc
4718 *	to point to a scatter-gather table @sg, containing @n_elem
4719 *	elements.
4720 *
4721 *	LOCKING:
4722 *	spin_lock_irqsave(host lock)
4723 */
4724void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4725		 unsigned int n_elem)
4726{
4727	qc->sg = sg;
4728	qc->n_elem = n_elem;
4729	qc->cursg = qc->sg;
4730}
4731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4732/**
4733 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4734 *	@qc: Command with scatter-gather table to be mapped.
4735 *
4736 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4737 *
4738 *	LOCKING:
4739 *	spin_lock_irqsave(host lock)
4740 *
4741 *	RETURNS:
4742 *	Zero on success, negative on error.
4743 *
4744 */
4745static int ata_sg_setup(struct ata_queued_cmd *qc)
4746{
4747	struct ata_port *ap = qc->ap;
4748	unsigned int n_elem;
4749
4750	VPRINTK("ENTER, ata%u\n", ap->print_id);
4751
4752	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4753	if (n_elem < 1)
4754		return -1;
4755
4756	DPRINTK("%d sg elements mapped\n", n_elem);
4757	qc->orig_n_elem = qc->n_elem;
4758	qc->n_elem = n_elem;
4759	qc->flags |= ATA_QCFLAG_DMAMAP;
4760
4761	return 0;
4762}
4763
 
 
 
 
 
 
 
4764/**
4765 *	swap_buf_le16 - swap halves of 16-bit words in place
4766 *	@buf:  Buffer to swap
4767 *	@buf_words:  Number of 16-bit words in buffer.
4768 *
4769 *	Swap halves of 16-bit words if needed to convert from
4770 *	little-endian byte order to native cpu byte order, or
4771 *	vice-versa.
4772 *
4773 *	LOCKING:
4774 *	Inherited from caller.
4775 */
4776void swap_buf_le16(u16 *buf, unsigned int buf_words)
4777{
4778#ifdef __BIG_ENDIAN
4779	unsigned int i;
4780
4781	for (i = 0; i < buf_words; i++)
4782		buf[i] = le16_to_cpu(buf[i]);
4783#endif /* __BIG_ENDIAN */
4784}
4785
4786/**
4787 *	ata_qc_new - Request an available ATA command, for queueing
4788 *	@ap: target port
 
4789 *
4790 *	LOCKING:
4791 *	None.
4792 */
4793
4794static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4795{
4796	struct ata_queued_cmd *qc = NULL;
4797	unsigned int i, tag;
4798
4799	/* no command while frozen */
4800	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4801		return NULL;
4802
4803	for (i = 0; i < ATA_MAX_QUEUE; i++) {
4804		tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE;
4805
4806		/* the last tag is reserved for internal command. */
4807		if (tag == ATA_TAG_INTERNAL)
4808			continue;
4809
4810		if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4811			qc = __ata_qc_from_tag(ap, tag);
4812			qc->tag = tag;
4813			ap->last_tag = tag;
4814			break;
4815		}
4816	}
4817
4818	return qc;
4819}
4820
4821/**
4822 *	ata_qc_new_init - Request an available ATA command, and initialize it
4823 *	@dev: Device from whom we request an available command structure
4824 *
4825 *	LOCKING:
4826 *	None.
4827 */
4828
4829struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4830{
4831	struct ata_port *ap = dev->link->ap;
4832	struct ata_queued_cmd *qc;
4833
4834	qc = ata_qc_new(ap);
4835	if (qc) {
4836		qc->scsicmd = NULL;
4837		qc->ap = ap;
4838		qc->dev = dev;
4839
4840		ata_qc_reinit(qc);
4841	}
4842
4843	return qc;
4844}
4845
4846/**
4847 *	ata_qc_free - free unused ata_queued_cmd
4848 *	@qc: Command to complete
4849 *
4850 *	Designed to free unused ata_queued_cmd object
4851 *	in case something prevents using it.
4852 *
4853 *	LOCKING:
4854 *	spin_lock_irqsave(host lock)
4855 */
4856void ata_qc_free(struct ata_queued_cmd *qc)
4857{
4858	struct ata_port *ap;
4859	unsigned int tag;
4860
4861	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4862	ap = qc->ap;
4863
4864	qc->flags = 0;
4865	tag = qc->tag;
4866	if (likely(ata_tag_valid(tag))) {
4867		qc->tag = ATA_TAG_POISON;
4868		clear_bit(tag, &ap->qc_allocated);
 
4869	}
4870}
4871
4872void __ata_qc_complete(struct ata_queued_cmd *qc)
4873{
4874	struct ata_port *ap;
4875	struct ata_link *link;
4876
4877	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4878	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4879	ap = qc->ap;
4880	link = qc->dev->link;
4881
4882	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4883		ata_sg_clean(qc);
4884
4885	/* command should be marked inactive atomically with qc completion */
4886	if (qc->tf.protocol == ATA_PROT_NCQ) {
4887		link->sactive &= ~(1 << qc->tag);
4888		if (!link->sactive)
4889			ap->nr_active_links--;
4890	} else {
4891		link->active_tag = ATA_TAG_POISON;
4892		ap->nr_active_links--;
4893	}
4894
4895	/* clear exclusive status */
4896	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4897		     ap->excl_link == link))
4898		ap->excl_link = NULL;
4899
4900	/* atapi: mark qc as inactive to prevent the interrupt handler
4901	 * from completing the command twice later, before the error handler
4902	 * is called. (when rc != 0 and atapi request sense is needed)
4903	 */
4904	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4905	ap->qc_active &= ~(1 << qc->tag);
4906
4907	/* call completion callback */
4908	qc->complete_fn(qc);
4909}
4910
4911static void fill_result_tf(struct ata_queued_cmd *qc)
4912{
4913	struct ata_port *ap = qc->ap;
4914
4915	qc->result_tf.flags = qc->tf.flags;
4916	ap->ops->qc_fill_rtf(qc);
4917}
4918
4919static void ata_verify_xfer(struct ata_queued_cmd *qc)
4920{
4921	struct ata_device *dev = qc->dev;
4922
4923	if (ata_is_nodata(qc->tf.protocol))
4924		return;
4925
4926	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4927		return;
4928
4929	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4930}
4931
4932/**
4933 *	ata_qc_complete - Complete an active ATA command
4934 *	@qc: Command to complete
4935 *
4936 *	Indicate to the mid and upper layers that an ATA command has
4937 *	completed, with either an ok or not-ok status.
4938 *
4939 *	Refrain from calling this function multiple times when
4940 *	successfully completing multiple NCQ commands.
4941 *	ata_qc_complete_multiple() should be used instead, which will
4942 *	properly update IRQ expect state.
4943 *
4944 *	LOCKING:
4945 *	spin_lock_irqsave(host lock)
4946 */
4947void ata_qc_complete(struct ata_queued_cmd *qc)
4948{
4949	struct ata_port *ap = qc->ap;
4950
 
 
 
4951	/* XXX: New EH and old EH use different mechanisms to
4952	 * synchronize EH with regular execution path.
4953	 *
4954	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4955	 * Normal execution path is responsible for not accessing a
4956	 * failed qc.  libata core enforces the rule by returning NULL
4957	 * from ata_qc_from_tag() for failed qcs.
4958	 *
4959	 * Old EH depends on ata_qc_complete() nullifying completion
4960	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4961	 * not synchronize with interrupt handler.  Only PIO task is
4962	 * taken care of.
4963	 */
4964	if (ap->ops->error_handler) {
4965		struct ata_device *dev = qc->dev;
4966		struct ata_eh_info *ehi = &dev->link->eh_info;
4967
4968		if (unlikely(qc->err_mask))
4969			qc->flags |= ATA_QCFLAG_FAILED;
4970
4971		/*
4972		 * Finish internal commands without any further processing
4973		 * and always with the result TF filled.
4974		 */
4975		if (unlikely(ata_tag_internal(qc->tag))) {
4976			fill_result_tf(qc);
 
4977			__ata_qc_complete(qc);
4978			return;
4979		}
4980
4981		/*
4982		 * Non-internal qc has failed.  Fill the result TF and
4983		 * summon EH.
4984		 */
4985		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4986			fill_result_tf(qc);
 
4987			ata_qc_schedule_eh(qc);
4988			return;
4989		}
4990
4991		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4992
4993		/* read result TF if requested */
4994		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4995			fill_result_tf(qc);
4996
 
4997		/* Some commands need post-processing after successful
4998		 * completion.
4999		 */
5000		switch (qc->tf.command) {
5001		case ATA_CMD_SET_FEATURES:
5002			if (qc->tf.feature != SETFEATURES_WC_ON &&
5003			    qc->tf.feature != SETFEATURES_WC_OFF)
 
 
5004				break;
5005			/* fall through */
5006		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5007		case ATA_CMD_SET_MULTI: /* multi_count changed */
5008			/* revalidate device */
5009			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5010			ata_port_schedule_eh(ap);
5011			break;
5012
5013		case ATA_CMD_SLEEP:
5014			dev->flags |= ATA_DFLAG_SLEEPING;
5015			break;
5016		}
5017
5018		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5019			ata_verify_xfer(qc);
5020
5021		__ata_qc_complete(qc);
5022	} else {
5023		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5024			return;
5025
5026		/* read result TF if failed or requested */
5027		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5028			fill_result_tf(qc);
5029
5030		__ata_qc_complete(qc);
5031	}
5032}
5033
5034/**
5035 *	ata_qc_complete_multiple - Complete multiple qcs successfully
5036 *	@ap: port in question
5037 *	@qc_active: new qc_active mask
5038 *
5039 *	Complete in-flight commands.  This functions is meant to be
5040 *	called from low-level driver's interrupt routine to complete
5041 *	requests normally.  ap->qc_active and @qc_active is compared
5042 *	and commands are completed accordingly.
5043 *
5044 *	Always use this function when completing multiple NCQ commands
5045 *	from IRQ handlers instead of calling ata_qc_complete()
5046 *	multiple times to keep IRQ expect status properly in sync.
5047 *
5048 *	LOCKING:
5049 *	spin_lock_irqsave(host lock)
5050 *
5051 *	RETURNS:
5052 *	Number of completed commands on success, -errno otherwise.
5053 */
5054int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5055{
 
5056	int nr_done = 0;
5057	u32 done_mask;
5058
5059	done_mask = ap->qc_active ^ qc_active;
 
 
 
 
 
 
 
 
 
 
5060
5061	if (unlikely(done_mask & qc_active)) {
5062		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5063			     ap->qc_active, qc_active);
5064		return -EINVAL;
5065	}
5066
5067	while (done_mask) {
5068		struct ata_queued_cmd *qc;
5069		unsigned int tag = __ffs(done_mask);
5070
5071		qc = ata_qc_from_tag(ap, tag);
5072		if (qc) {
5073			ata_qc_complete(qc);
5074			nr_done++;
5075		}
5076		done_mask &= ~(1 << tag);
5077	}
5078
5079	return nr_done;
5080}
5081
5082/**
5083 *	ata_qc_issue - issue taskfile to device
5084 *	@qc: command to issue to device
5085 *
5086 *	Prepare an ATA command to submission to device.
5087 *	This includes mapping the data into a DMA-able
5088 *	area, filling in the S/G table, and finally
5089 *	writing the taskfile to hardware, starting the command.
5090 *
5091 *	LOCKING:
5092 *	spin_lock_irqsave(host lock)
5093 */
5094void ata_qc_issue(struct ata_queued_cmd *qc)
5095{
5096	struct ata_port *ap = qc->ap;
5097	struct ata_link *link = qc->dev->link;
5098	u8 prot = qc->tf.protocol;
5099
5100	/* Make sure only one non-NCQ command is outstanding.  The
5101	 * check is skipped for old EH because it reuses active qc to
5102	 * request ATAPI sense.
5103	 */
5104	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5105
5106	if (ata_is_ncq(prot)) {
5107		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5108
5109		if (!link->sactive)
5110			ap->nr_active_links++;
5111		link->sactive |= 1 << qc->tag;
5112	} else {
5113		WARN_ON_ONCE(link->sactive);
5114
5115		ap->nr_active_links++;
5116		link->active_tag = qc->tag;
5117	}
5118
5119	qc->flags |= ATA_QCFLAG_ACTIVE;
5120	ap->qc_active |= 1 << qc->tag;
5121
5122	/*
5123	 * We guarantee to LLDs that they will have at least one
5124	 * non-zero sg if the command is a data command.
5125	 */
5126	if (WARN_ON_ONCE(ata_is_data(prot) &&
5127			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5128		goto sys_err;
5129
5130	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5131				 (ap->flags & ATA_FLAG_PIO_DMA)))
5132		if (ata_sg_setup(qc))
5133			goto sys_err;
5134
5135	/* if device is sleeping, schedule reset and abort the link */
5136	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5137		link->eh_info.action |= ATA_EH_RESET;
5138		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5139		ata_link_abort(link);
5140		return;
5141	}
5142
5143	ap->ops->qc_prep(qc);
5144
5145	qc->err_mask |= ap->ops->qc_issue(qc);
5146	if (unlikely(qc->err_mask))
5147		goto err;
5148	return;
5149
5150sys_err:
5151	qc->err_mask |= AC_ERR_SYSTEM;
5152err:
5153	ata_qc_complete(qc);
5154}
5155
5156/**
5157 *	sata_scr_valid - test whether SCRs are accessible
5158 *	@link: ATA link to test SCR accessibility for
5159 *
5160 *	Test whether SCRs are accessible for @link.
5161 *
5162 *	LOCKING:
5163 *	None.
5164 *
5165 *	RETURNS:
5166 *	1 if SCRs are accessible, 0 otherwise.
5167 */
5168int sata_scr_valid(struct ata_link *link)
5169{
5170	struct ata_port *ap = link->ap;
5171
5172	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5173}
5174
5175/**
5176 *	sata_scr_read - read SCR register of the specified port
5177 *	@link: ATA link to read SCR for
5178 *	@reg: SCR to read
5179 *	@val: Place to store read value
5180 *
5181 *	Read SCR register @reg of @link into *@val.  This function is
5182 *	guaranteed to succeed if @link is ap->link, the cable type of
5183 *	the port is SATA and the port implements ->scr_read.
5184 *
5185 *	LOCKING:
5186 *	None if @link is ap->link.  Kernel thread context otherwise.
5187 *
5188 *	RETURNS:
5189 *	0 on success, negative errno on failure.
5190 */
5191int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5192{
5193	if (ata_is_host_link(link)) {
5194		if (sata_scr_valid(link))
5195			return link->ap->ops->scr_read(link, reg, val);
5196		return -EOPNOTSUPP;
5197	}
5198
5199	return sata_pmp_scr_read(link, reg, val);
5200}
5201
5202/**
5203 *	sata_scr_write - write SCR register of the specified port
5204 *	@link: ATA link to write SCR for
5205 *	@reg: SCR to write
5206 *	@val: value to write
5207 *
5208 *	Write @val to SCR register @reg of @link.  This function is
5209 *	guaranteed to succeed if @link is ap->link, the cable type of
5210 *	the port is SATA and the port implements ->scr_read.
5211 *
5212 *	LOCKING:
5213 *	None if @link is ap->link.  Kernel thread context otherwise.
5214 *
5215 *	RETURNS:
5216 *	0 on success, negative errno on failure.
5217 */
5218int sata_scr_write(struct ata_link *link, int reg, u32 val)
5219{
5220	if (ata_is_host_link(link)) {
5221		if (sata_scr_valid(link))
5222			return link->ap->ops->scr_write(link, reg, val);
5223		return -EOPNOTSUPP;
5224	}
5225
5226	return sata_pmp_scr_write(link, reg, val);
5227}
5228
5229/**
5230 *	sata_scr_write_flush - write SCR register of the specified port and flush
5231 *	@link: ATA link to write SCR for
5232 *	@reg: SCR to write
5233 *	@val: value to write
5234 *
5235 *	This function is identical to sata_scr_write() except that this
5236 *	function performs flush after writing to the register.
5237 *
5238 *	LOCKING:
5239 *	None if @link is ap->link.  Kernel thread context otherwise.
5240 *
5241 *	RETURNS:
5242 *	0 on success, negative errno on failure.
5243 */
5244int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5245{
5246	if (ata_is_host_link(link)) {
5247		int rc;
5248
5249		if (sata_scr_valid(link)) {
5250			rc = link->ap->ops->scr_write(link, reg, val);
5251			if (rc == 0)
5252				rc = link->ap->ops->scr_read(link, reg, &val);
5253			return rc;
5254		}
5255		return -EOPNOTSUPP;
5256	}
5257
5258	return sata_pmp_scr_write(link, reg, val);
5259}
5260
5261/**
5262 *	ata_phys_link_online - test whether the given link is online
5263 *	@link: ATA link to test
5264 *
5265 *	Test whether @link is online.  Note that this function returns
5266 *	0 if online status of @link cannot be obtained, so
5267 *	ata_link_online(link) != !ata_link_offline(link).
5268 *
5269 *	LOCKING:
5270 *	None.
5271 *
5272 *	RETURNS:
5273 *	True if the port online status is available and online.
5274 */
5275bool ata_phys_link_online(struct ata_link *link)
5276{
5277	u32 sstatus;
5278
5279	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5280	    ata_sstatus_online(sstatus))
5281		return true;
5282	return false;
5283}
5284
5285/**
5286 *	ata_phys_link_offline - test whether the given link is offline
5287 *	@link: ATA link to test
5288 *
5289 *	Test whether @link is offline.  Note that this function
5290 *	returns 0 if offline status of @link cannot be obtained, so
5291 *	ata_link_online(link) != !ata_link_offline(link).
5292 *
5293 *	LOCKING:
5294 *	None.
5295 *
5296 *	RETURNS:
5297 *	True if the port offline status is available and offline.
5298 */
5299bool ata_phys_link_offline(struct ata_link *link)
5300{
5301	u32 sstatus;
5302
5303	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5304	    !ata_sstatus_online(sstatus))
5305		return true;
5306	return false;
5307}
5308
5309/**
5310 *	ata_link_online - test whether the given link is online
5311 *	@link: ATA link to test
5312 *
5313 *	Test whether @link is online.  This is identical to
5314 *	ata_phys_link_online() when there's no slave link.  When
5315 *	there's a slave link, this function should only be called on
5316 *	the master link and will return true if any of M/S links is
5317 *	online.
5318 *
5319 *	LOCKING:
5320 *	None.
5321 *
5322 *	RETURNS:
5323 *	True if the port online status is available and online.
5324 */
5325bool ata_link_online(struct ata_link *link)
5326{
5327	struct ata_link *slave = link->ap->slave_link;
5328
5329	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5330
5331	return ata_phys_link_online(link) ||
5332		(slave && ata_phys_link_online(slave));
5333}
5334
5335/**
5336 *	ata_link_offline - test whether the given link is offline
5337 *	@link: ATA link to test
5338 *
5339 *	Test whether @link is offline.  This is identical to
5340 *	ata_phys_link_offline() when there's no slave link.  When
5341 *	there's a slave link, this function should only be called on
5342 *	the master link and will return true if both M/S links are
5343 *	offline.
5344 *
5345 *	LOCKING:
5346 *	None.
5347 *
5348 *	RETURNS:
5349 *	True if the port offline status is available and offline.
5350 */
5351bool ata_link_offline(struct ata_link *link)
5352{
5353	struct ata_link *slave = link->ap->slave_link;
5354
5355	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5356
5357	return ata_phys_link_offline(link) &&
5358		(!slave || ata_phys_link_offline(slave));
5359}
5360
5361#ifdef CONFIG_PM
5362static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5363				unsigned int action, unsigned int ehi_flags,
5364				bool async)
5365{
5366	struct ata_link *link;
5367	unsigned long flags;
5368
5369	/* Previous resume operation might still be in
5370	 * progress.  Wait for PM_PENDING to clear.
5371	 */
5372	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373		ata_port_wait_eh(ap);
5374		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375	}
5376
5377	/* request PM ops to EH */
5378	spin_lock_irqsave(ap->lock, flags);
5379
5380	ap->pm_mesg = mesg;
5381	ap->pflags |= ATA_PFLAG_PM_PENDING;
5382	ata_for_each_link(link, ap, HOST_FIRST) {
5383		link->eh_info.action |= action;
5384		link->eh_info.flags |= ehi_flags;
5385	}
5386
5387	ata_port_schedule_eh(ap);
5388
5389	spin_unlock_irqrestore(ap->lock, flags);
5390
5391	if (!async) {
5392		ata_port_wait_eh(ap);
5393		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394	}
5395}
5396
5397/*
5398 * On some hardware, device fails to respond after spun down for suspend.  As
5399 * the device won't be used before being resumed, we don't need to touch the
5400 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5401 *
5402 * http://thread.gmane.org/gmane.linux.ide/46764
5403 */
5404static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5405						 | ATA_EHI_NO_AUTOPSY
5406						 | ATA_EHI_NO_RECOVERY;
5407
5408static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5409{
5410	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5411}
5412
5413static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5414{
5415	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5416}
5417
5418static int ata_port_pm_suspend(struct device *dev)
5419{
5420	struct ata_port *ap = to_ata_port(dev);
5421
5422	if (pm_runtime_suspended(dev))
5423		return 0;
5424
5425	ata_port_suspend(ap, PMSG_SUSPEND);
5426	return 0;
5427}
5428
5429static int ata_port_pm_freeze(struct device *dev)
5430{
5431	struct ata_port *ap = to_ata_port(dev);
5432
5433	if (pm_runtime_suspended(dev))
5434		return 0;
5435
5436	ata_port_suspend(ap, PMSG_FREEZE);
5437	return 0;
5438}
5439
5440static int ata_port_pm_poweroff(struct device *dev)
5441{
5442	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5443	return 0;
5444}
5445
5446static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5447						| ATA_EHI_QUIET;
5448
5449static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5450{
5451	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5452}
5453
5454static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5455{
5456	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5457}
5458
5459static int ata_port_pm_resume(struct device *dev)
5460{
5461	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5462	pm_runtime_disable(dev);
5463	pm_runtime_set_active(dev);
5464	pm_runtime_enable(dev);
5465	return 0;
5466}
5467
5468/*
5469 * For ODDs, the upper layer will poll for media change every few seconds,
5470 * which will make it enter and leave suspend state every few seconds. And
5471 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5472 * is very little and the ODD may malfunction after constantly being reset.
5473 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5474 * ODD is attached to the port.
5475 */
5476static int ata_port_runtime_idle(struct device *dev)
5477{
5478	struct ata_port *ap = to_ata_port(dev);
5479	struct ata_link *link;
5480	struct ata_device *adev;
5481
5482	ata_for_each_link(link, ap, HOST_FIRST) {
5483		ata_for_each_dev(adev, link, ENABLED)
5484			if (adev->class == ATA_DEV_ATAPI &&
5485			    !zpodd_dev_enabled(adev))
5486				return -EBUSY;
5487	}
5488
5489	return 0;
5490}
5491
5492static int ata_port_runtime_suspend(struct device *dev)
5493{
5494	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5495	return 0;
5496}
5497
5498static int ata_port_runtime_resume(struct device *dev)
5499{
5500	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5501	return 0;
5502}
5503
5504static const struct dev_pm_ops ata_port_pm_ops = {
5505	.suspend = ata_port_pm_suspend,
5506	.resume = ata_port_pm_resume,
5507	.freeze = ata_port_pm_freeze,
5508	.thaw = ata_port_pm_resume,
5509	.poweroff = ata_port_pm_poweroff,
5510	.restore = ata_port_pm_resume,
5511
5512	.runtime_suspend = ata_port_runtime_suspend,
5513	.runtime_resume = ata_port_runtime_resume,
5514	.runtime_idle = ata_port_runtime_idle,
5515};
5516
5517/* sas ports don't participate in pm runtime management of ata_ports,
5518 * and need to resume ata devices at the domain level, not the per-port
5519 * level. sas suspend/resume is async to allow parallel port recovery
5520 * since sas has multiple ata_port instances per Scsi_Host.
5521 */
5522void ata_sas_port_suspend(struct ata_port *ap)
5523{
5524	ata_port_suspend_async(ap, PMSG_SUSPEND);
5525}
5526EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5527
5528void ata_sas_port_resume(struct ata_port *ap)
5529{
5530	ata_port_resume_async(ap, PMSG_RESUME);
5531}
5532EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5533
5534/**
5535 *	ata_host_suspend - suspend host
5536 *	@host: host to suspend
5537 *	@mesg: PM message
5538 *
5539 *	Suspend @host.  Actual operation is performed by port suspend.
5540 */
5541int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5542{
5543	host->dev->power.power_state = mesg;
5544	return 0;
5545}
5546
5547/**
5548 *	ata_host_resume - resume host
5549 *	@host: host to resume
5550 *
5551 *	Resume @host.  Actual operation is performed by port resume.
5552 */
5553void ata_host_resume(struct ata_host *host)
5554{
5555	host->dev->power.power_state = PMSG_ON;
5556}
5557#endif
5558
5559struct device_type ata_port_type = {
5560	.name = "ata_port",
5561#ifdef CONFIG_PM
5562	.pm = &ata_port_pm_ops,
5563#endif
5564};
5565
5566/**
5567 *	ata_dev_init - Initialize an ata_device structure
5568 *	@dev: Device structure to initialize
5569 *
5570 *	Initialize @dev in preparation for probing.
5571 *
5572 *	LOCKING:
5573 *	Inherited from caller.
5574 */
5575void ata_dev_init(struct ata_device *dev)
5576{
5577	struct ata_link *link = ata_dev_phys_link(dev);
5578	struct ata_port *ap = link->ap;
5579	unsigned long flags;
5580
5581	/* SATA spd limit is bound to the attached device, reset together */
5582	link->sata_spd_limit = link->hw_sata_spd_limit;
5583	link->sata_spd = 0;
5584
5585	/* High bits of dev->flags are used to record warm plug
5586	 * requests which occur asynchronously.  Synchronize using
5587	 * host lock.
5588	 */
5589	spin_lock_irqsave(ap->lock, flags);
5590	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5591	dev->horkage = 0;
5592	spin_unlock_irqrestore(ap->lock, flags);
5593
5594	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5595	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5596	dev->pio_mask = UINT_MAX;
5597	dev->mwdma_mask = UINT_MAX;
5598	dev->udma_mask = UINT_MAX;
5599}
5600
5601/**
5602 *	ata_link_init - Initialize an ata_link structure
5603 *	@ap: ATA port link is attached to
5604 *	@link: Link structure to initialize
5605 *	@pmp: Port multiplier port number
5606 *
5607 *	Initialize @link.
5608 *
5609 *	LOCKING:
5610 *	Kernel thread context (may sleep)
5611 */
5612void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5613{
5614	int i;
5615
5616	/* clear everything except for devices */
5617	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5618	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5619
5620	link->ap = ap;
5621	link->pmp = pmp;
5622	link->active_tag = ATA_TAG_POISON;
5623	link->hw_sata_spd_limit = UINT_MAX;
5624
5625	/* can't use iterator, ap isn't initialized yet */
5626	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5627		struct ata_device *dev = &link->device[i];
5628
5629		dev->link = link;
5630		dev->devno = dev - link->device;
5631#ifdef CONFIG_ATA_ACPI
5632		dev->gtf_filter = ata_acpi_gtf_filter;
5633#endif
5634		ata_dev_init(dev);
5635	}
5636}
5637
5638/**
5639 *	sata_link_init_spd - Initialize link->sata_spd_limit
5640 *	@link: Link to configure sata_spd_limit for
5641 *
5642 *	Initialize @link->[hw_]sata_spd_limit to the currently
5643 *	configured value.
5644 *
5645 *	LOCKING:
5646 *	Kernel thread context (may sleep).
5647 *
5648 *	RETURNS:
5649 *	0 on success, -errno on failure.
5650 */
5651int sata_link_init_spd(struct ata_link *link)
5652{
5653	u8 spd;
5654	int rc;
5655
5656	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5657	if (rc)
5658		return rc;
5659
5660	spd = (link->saved_scontrol >> 4) & 0xf;
5661	if (spd)
5662		link->hw_sata_spd_limit &= (1 << spd) - 1;
5663
5664	ata_force_link_limits(link);
5665
5666	link->sata_spd_limit = link->hw_sata_spd_limit;
5667
5668	return 0;
5669}
5670
5671/**
5672 *	ata_port_alloc - allocate and initialize basic ATA port resources
5673 *	@host: ATA host this allocated port belongs to
5674 *
5675 *	Allocate and initialize basic ATA port resources.
5676 *
5677 *	RETURNS:
5678 *	Allocate ATA port on success, NULL on failure.
5679 *
5680 *	LOCKING:
5681 *	Inherited from calling layer (may sleep).
5682 */
5683struct ata_port *ata_port_alloc(struct ata_host *host)
5684{
5685	struct ata_port *ap;
5686
5687	DPRINTK("ENTER\n");
5688
5689	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5690	if (!ap)
5691		return NULL;
5692
5693	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5694	ap->lock = &host->lock;
5695	ap->print_id = -1;
5696	ap->local_port_no = -1;
5697	ap->host = host;
5698	ap->dev = host->dev;
5699
5700#if defined(ATA_VERBOSE_DEBUG)
5701	/* turn on all debugging levels */
5702	ap->msg_enable = 0x00FF;
5703#elif defined(ATA_DEBUG)
5704	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5705#else
5706	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5707#endif
5708
5709	mutex_init(&ap->scsi_scan_mutex);
5710	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5711	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5712	INIT_LIST_HEAD(&ap->eh_done_q);
5713	init_waitqueue_head(&ap->eh_wait_q);
5714	init_completion(&ap->park_req_pending);
5715	init_timer_deferrable(&ap->fastdrain_timer);
5716	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5717	ap->fastdrain_timer.data = (unsigned long)ap;
5718
5719	ap->cbl = ATA_CBL_NONE;
5720
5721	ata_link_init(ap, &ap->link, 0);
5722
5723#ifdef ATA_IRQ_TRAP
5724	ap->stats.unhandled_irq = 1;
5725	ap->stats.idle_irq = 1;
5726#endif
5727	ata_sff_port_init(ap);
5728
5729	return ap;
5730}
5731
5732static void ata_host_release(struct device *gendev, void *res)
5733{
5734	struct ata_host *host = dev_get_drvdata(gendev);
5735	int i;
5736
5737	for (i = 0; i < host->n_ports; i++) {
5738		struct ata_port *ap = host->ports[i];
5739
5740		if (!ap)
5741			continue;
5742
5743		if (ap->scsi_host)
5744			scsi_host_put(ap->scsi_host);
5745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5746		kfree(ap->pmp_link);
5747		kfree(ap->slave_link);
5748		kfree(ap);
5749		host->ports[i] = NULL;
5750	}
 
 
5751
5752	dev_set_drvdata(gendev, NULL);
 
 
 
 
 
 
 
5753}
5754
5755/**
5756 *	ata_host_alloc - allocate and init basic ATA host resources
5757 *	@dev: generic device this host is associated with
5758 *	@max_ports: maximum number of ATA ports associated with this host
5759 *
5760 *	Allocate and initialize basic ATA host resources.  LLD calls
5761 *	this function to allocate a host, initializes it fully and
5762 *	attaches it using ata_host_register().
5763 *
5764 *	@max_ports ports are allocated and host->n_ports is
5765 *	initialized to @max_ports.  The caller is allowed to decrease
5766 *	host->n_ports before calling ata_host_register().  The unused
5767 *	ports will be automatically freed on registration.
5768 *
5769 *	RETURNS:
5770 *	Allocate ATA host on success, NULL on failure.
5771 *
5772 *	LOCKING:
5773 *	Inherited from calling layer (may sleep).
5774 */
5775struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5776{
5777	struct ata_host *host;
5778	size_t sz;
5779	int i;
 
5780
5781	DPRINTK("ENTER\n");
5782
5783	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5784		return NULL;
5785
5786	/* alloc a container for our list of ATA ports (buses) */
5787	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5788	/* alloc a container for our list of ATA ports (buses) */
5789	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5790	if (!host)
 
 
 
 
 
 
 
5791		goto err_out;
5792
5793	devres_add(dev, host);
5794	dev_set_drvdata(dev, host);
5795
5796	spin_lock_init(&host->lock);
5797	mutex_init(&host->eh_mutex);
5798	host->dev = dev;
5799	host->n_ports = max_ports;
 
5800
5801	/* allocate ports bound to this host */
5802	for (i = 0; i < max_ports; i++) {
5803		struct ata_port *ap;
5804
5805		ap = ata_port_alloc(host);
5806		if (!ap)
5807			goto err_out;
5808
5809		ap->port_no = i;
5810		host->ports[i] = ap;
5811	}
5812
5813	devres_remove_group(dev, NULL);
5814	return host;
5815
5816 err_out:
5817	devres_release_group(dev, NULL);
 
 
5818	return NULL;
5819}
5820
5821/**
5822 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5823 *	@dev: generic device this host is associated with
5824 *	@ppi: array of ATA port_info to initialize host with
5825 *	@n_ports: number of ATA ports attached to this host
5826 *
5827 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5828 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5829 *	last entry will be used for the remaining ports.
5830 *
5831 *	RETURNS:
5832 *	Allocate ATA host on success, NULL on failure.
5833 *
5834 *	LOCKING:
5835 *	Inherited from calling layer (may sleep).
5836 */
5837struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5838				      const struct ata_port_info * const * ppi,
5839				      int n_ports)
5840{
5841	const struct ata_port_info *pi;
5842	struct ata_host *host;
5843	int i, j;
5844
5845	host = ata_host_alloc(dev, n_ports);
5846	if (!host)
5847		return NULL;
5848
5849	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5850		struct ata_port *ap = host->ports[i];
5851
5852		if (ppi[j])
5853			pi = ppi[j++];
5854
5855		ap->pio_mask = pi->pio_mask;
5856		ap->mwdma_mask = pi->mwdma_mask;
5857		ap->udma_mask = pi->udma_mask;
5858		ap->flags |= pi->flags;
5859		ap->link.flags |= pi->link_flags;
5860		ap->ops = pi->port_ops;
5861
5862		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5863			host->ops = pi->port_ops;
5864	}
5865
5866	return host;
5867}
5868
5869/**
5870 *	ata_slave_link_init - initialize slave link
5871 *	@ap: port to initialize slave link for
5872 *
5873 *	Create and initialize slave link for @ap.  This enables slave
5874 *	link handling on the port.
5875 *
5876 *	In libata, a port contains links and a link contains devices.
5877 *	There is single host link but if a PMP is attached to it,
5878 *	there can be multiple fan-out links.  On SATA, there's usually
5879 *	a single device connected to a link but PATA and SATA
5880 *	controllers emulating TF based interface can have two - master
5881 *	and slave.
5882 *
5883 *	However, there are a few controllers which don't fit into this
5884 *	abstraction too well - SATA controllers which emulate TF
5885 *	interface with both master and slave devices but also have
5886 *	separate SCR register sets for each device.  These controllers
5887 *	need separate links for physical link handling
5888 *	(e.g. onlineness, link speed) but should be treated like a
5889 *	traditional M/S controller for everything else (e.g. command
5890 *	issue, softreset).
5891 *
5892 *	slave_link is libata's way of handling this class of
5893 *	controllers without impacting core layer too much.  For
5894 *	anything other than physical link handling, the default host
5895 *	link is used for both master and slave.  For physical link
5896 *	handling, separate @ap->slave_link is used.  All dirty details
5897 *	are implemented inside libata core layer.  From LLD's POV, the
5898 *	only difference is that prereset, hardreset and postreset are
5899 *	called once more for the slave link, so the reset sequence
5900 *	looks like the following.
5901 *
5902 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5903 *	softreset(M) -> postreset(M) -> postreset(S)
5904 *
5905 *	Note that softreset is called only for the master.  Softreset
5906 *	resets both M/S by definition, so SRST on master should handle
5907 *	both (the standard method will work just fine).
5908 *
5909 *	LOCKING:
5910 *	Should be called before host is registered.
5911 *
5912 *	RETURNS:
5913 *	0 on success, -errno on failure.
5914 */
5915int ata_slave_link_init(struct ata_port *ap)
5916{
5917	struct ata_link *link;
5918
5919	WARN_ON(ap->slave_link);
5920	WARN_ON(ap->flags & ATA_FLAG_PMP);
5921
5922	link = kzalloc(sizeof(*link), GFP_KERNEL);
5923	if (!link)
5924		return -ENOMEM;
5925
5926	ata_link_init(ap, link, 1);
5927	ap->slave_link = link;
5928	return 0;
5929}
5930
5931static void ata_host_stop(struct device *gendev, void *res)
5932{
5933	struct ata_host *host = dev_get_drvdata(gendev);
5934	int i;
5935
5936	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5937
5938	for (i = 0; i < host->n_ports; i++) {
5939		struct ata_port *ap = host->ports[i];
5940
5941		if (ap->ops->port_stop)
5942			ap->ops->port_stop(ap);
5943	}
5944
5945	if (host->ops->host_stop)
5946		host->ops->host_stop(host);
5947}
5948
5949/**
5950 *	ata_finalize_port_ops - finalize ata_port_operations
5951 *	@ops: ata_port_operations to finalize
5952 *
5953 *	An ata_port_operations can inherit from another ops and that
5954 *	ops can again inherit from another.  This can go on as many
5955 *	times as necessary as long as there is no loop in the
5956 *	inheritance chain.
5957 *
5958 *	Ops tables are finalized when the host is started.  NULL or
5959 *	unspecified entries are inherited from the closet ancestor
5960 *	which has the method and the entry is populated with it.
5961 *	After finalization, the ops table directly points to all the
5962 *	methods and ->inherits is no longer necessary and cleared.
5963 *
5964 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5965 *
5966 *	LOCKING:
5967 *	None.
5968 */
5969static void ata_finalize_port_ops(struct ata_port_operations *ops)
5970{
5971	static DEFINE_SPINLOCK(lock);
5972	const struct ata_port_operations *cur;
5973	void **begin = (void **)ops;
5974	void **end = (void **)&ops->inherits;
5975	void **pp;
5976
5977	if (!ops || !ops->inherits)
5978		return;
5979
5980	spin_lock(&lock);
5981
5982	for (cur = ops->inherits; cur; cur = cur->inherits) {
5983		void **inherit = (void **)cur;
5984
5985		for (pp = begin; pp < end; pp++, inherit++)
5986			if (!*pp)
5987				*pp = *inherit;
5988	}
5989
5990	for (pp = begin; pp < end; pp++)
5991		if (IS_ERR(*pp))
5992			*pp = NULL;
5993
5994	ops->inherits = NULL;
5995
5996	spin_unlock(&lock);
5997}
5998
5999/**
6000 *	ata_host_start - start and freeze ports of an ATA host
6001 *	@host: ATA host to start ports for
6002 *
6003 *	Start and then freeze ports of @host.  Started status is
6004 *	recorded in host->flags, so this function can be called
6005 *	multiple times.  Ports are guaranteed to get started only
6006 *	once.  If host->ops isn't initialized yet, its set to the
6007 *	first non-dummy port ops.
6008 *
6009 *	LOCKING:
6010 *	Inherited from calling layer (may sleep).
6011 *
6012 *	RETURNS:
6013 *	0 if all ports are started successfully, -errno otherwise.
6014 */
6015int ata_host_start(struct ata_host *host)
6016{
6017	int have_stop = 0;
6018	void *start_dr = NULL;
6019	int i, rc;
6020
6021	if (host->flags & ATA_HOST_STARTED)
6022		return 0;
6023
6024	ata_finalize_port_ops(host->ops);
6025
6026	for (i = 0; i < host->n_ports; i++) {
6027		struct ata_port *ap = host->ports[i];
6028
6029		ata_finalize_port_ops(ap->ops);
6030
6031		if (!host->ops && !ata_port_is_dummy(ap))
6032			host->ops = ap->ops;
6033
6034		if (ap->ops->port_stop)
6035			have_stop = 1;
6036	}
6037
6038	if (host->ops->host_stop)
6039		have_stop = 1;
6040
6041	if (have_stop) {
6042		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6043		if (!start_dr)
6044			return -ENOMEM;
6045	}
6046
6047	for (i = 0; i < host->n_ports; i++) {
6048		struct ata_port *ap = host->ports[i];
6049
6050		if (ap->ops->port_start) {
6051			rc = ap->ops->port_start(ap);
6052			if (rc) {
6053				if (rc != -ENODEV)
6054					dev_err(host->dev,
6055						"failed to start port %d (errno=%d)\n",
6056						i, rc);
6057				goto err_out;
6058			}
6059		}
6060		ata_eh_freeze_port(ap);
6061	}
6062
6063	if (start_dr)
6064		devres_add(host->dev, start_dr);
6065	host->flags |= ATA_HOST_STARTED;
6066	return 0;
6067
6068 err_out:
6069	while (--i >= 0) {
6070		struct ata_port *ap = host->ports[i];
6071
6072		if (ap->ops->port_stop)
6073			ap->ops->port_stop(ap);
6074	}
6075	devres_free(start_dr);
6076	return rc;
6077}
6078
6079/**
6080 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6081 *	@host:	host to initialize
6082 *	@dev:	device host is attached to
6083 *	@ops:	port_ops
6084 *
6085 */
6086void ata_host_init(struct ata_host *host, struct device *dev,
6087		   struct ata_port_operations *ops)
6088{
6089	spin_lock_init(&host->lock);
6090	mutex_init(&host->eh_mutex);
 
6091	host->dev = dev;
6092	host->ops = ops;
 
6093}
6094
6095void __ata_port_probe(struct ata_port *ap)
6096{
6097	struct ata_eh_info *ehi = &ap->link.eh_info;
6098	unsigned long flags;
6099
6100	/* kick EH for boot probing */
6101	spin_lock_irqsave(ap->lock, flags);
6102
6103	ehi->probe_mask |= ATA_ALL_DEVICES;
6104	ehi->action |= ATA_EH_RESET;
6105	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6106
6107	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6108	ap->pflags |= ATA_PFLAG_LOADING;
6109	ata_port_schedule_eh(ap);
6110
6111	spin_unlock_irqrestore(ap->lock, flags);
6112}
6113
6114int ata_port_probe(struct ata_port *ap)
6115{
6116	int rc = 0;
6117
6118	if (ap->ops->error_handler) {
6119		__ata_port_probe(ap);
6120		ata_port_wait_eh(ap);
6121	} else {
6122		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6123		rc = ata_bus_probe(ap);
6124		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6125	}
6126	return rc;
6127}
6128
6129
6130static void async_port_probe(void *data, async_cookie_t cookie)
6131{
6132	struct ata_port *ap = data;
6133
6134	/*
6135	 * If we're not allowed to scan this host in parallel,
6136	 * we need to wait until all previous scans have completed
6137	 * before going further.
6138	 * Jeff Garzik says this is only within a controller, so we
6139	 * don't need to wait for port 0, only for later ports.
6140	 */
6141	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6142		async_synchronize_cookie(cookie);
6143
6144	(void)ata_port_probe(ap);
6145
6146	/* in order to keep device order, we need to synchronize at this point */
6147	async_synchronize_cookie(cookie);
6148
6149	ata_scsi_scan_host(ap, 1);
6150}
6151
6152/**
6153 *	ata_host_register - register initialized ATA host
6154 *	@host: ATA host to register
6155 *	@sht: template for SCSI host
6156 *
6157 *	Register initialized ATA host.  @host is allocated using
6158 *	ata_host_alloc() and fully initialized by LLD.  This function
6159 *	starts ports, registers @host with ATA and SCSI layers and
6160 *	probe registered devices.
6161 *
6162 *	LOCKING:
6163 *	Inherited from calling layer (may sleep).
6164 *
6165 *	RETURNS:
6166 *	0 on success, -errno otherwise.
6167 */
6168int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6169{
6170	int i, rc;
6171
 
 
6172	/* host must have been started */
6173	if (!(host->flags & ATA_HOST_STARTED)) {
6174		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6175		WARN_ON(1);
6176		return -EINVAL;
6177	}
6178
6179	/* Blow away unused ports.  This happens when LLD can't
6180	 * determine the exact number of ports to allocate at
6181	 * allocation time.
6182	 */
6183	for (i = host->n_ports; host->ports[i]; i++)
6184		kfree(host->ports[i]);
6185
6186	/* give ports names and add SCSI hosts */
6187	for (i = 0; i < host->n_ports; i++) {
6188		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6189		host->ports[i]->local_port_no = i + 1;
6190	}
6191
6192	/* Create associated sysfs transport objects  */
6193	for (i = 0; i < host->n_ports; i++) {
6194		rc = ata_tport_add(host->dev,host->ports[i]);
6195		if (rc) {
6196			goto err_tadd;
6197		}
6198	}
6199
6200	rc = ata_scsi_add_hosts(host, sht);
6201	if (rc)
6202		goto err_tadd;
6203
6204	/* set cable, sata_spd_limit and report */
6205	for (i = 0; i < host->n_ports; i++) {
6206		struct ata_port *ap = host->ports[i];
6207		unsigned long xfer_mask;
6208
6209		/* set SATA cable type if still unset */
6210		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6211			ap->cbl = ATA_CBL_SATA;
6212
6213		/* init sata_spd_limit to the current value */
6214		sata_link_init_spd(&ap->link);
6215		if (ap->slave_link)
6216			sata_link_init_spd(ap->slave_link);
6217
6218		/* print per-port info to dmesg */
6219		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6220					      ap->udma_mask);
6221
6222		if (!ata_port_is_dummy(ap)) {
6223			ata_port_info(ap, "%cATA max %s %s\n",
6224				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6225				      ata_mode_string(xfer_mask),
6226				      ap->link.eh_info.desc);
6227			ata_ehi_clear_desc(&ap->link.eh_info);
6228		} else
6229			ata_port_info(ap, "DUMMY\n");
6230	}
6231
6232	/* perform each probe asynchronously */
6233	for (i = 0; i < host->n_ports; i++) {
6234		struct ata_port *ap = host->ports[i];
6235		async_schedule(async_port_probe, ap);
6236	}
6237
6238	return 0;
6239
6240 err_tadd:
6241	while (--i >= 0) {
6242		ata_tport_delete(host->ports[i]);
6243	}
6244	return rc;
6245
6246}
6247
6248/**
6249 *	ata_host_activate - start host, request IRQ and register it
6250 *	@host: target ATA host
6251 *	@irq: IRQ to request
6252 *	@irq_handler: irq_handler used when requesting IRQ
6253 *	@irq_flags: irq_flags used when requesting IRQ
6254 *	@sht: scsi_host_template to use when registering the host
6255 *
6256 *	After allocating an ATA host and initializing it, most libata
6257 *	LLDs perform three steps to activate the host - start host,
6258 *	request IRQ and register it.  This helper takes necessasry
6259 *	arguments and performs the three steps in one go.
6260 *
6261 *	An invalid IRQ skips the IRQ registration and expects the host to
6262 *	have set polling mode on the port. In this case, @irq_handler
6263 *	should be NULL.
6264 *
6265 *	LOCKING:
6266 *	Inherited from calling layer (may sleep).
6267 *
6268 *	RETURNS:
6269 *	0 on success, -errno otherwise.
6270 */
6271int ata_host_activate(struct ata_host *host, int irq,
6272		      irq_handler_t irq_handler, unsigned long irq_flags,
6273		      struct scsi_host_template *sht)
6274{
6275	int i, rc;
 
6276
6277	rc = ata_host_start(host);
6278	if (rc)
6279		return rc;
6280
6281	/* Special case for polling mode */
6282	if (!irq) {
6283		WARN_ON(irq_handler);
6284		return ata_host_register(host, sht);
6285	}
6286
 
 
 
 
 
 
6287	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6288			      dev_driver_string(host->dev), host);
6289	if (rc)
6290		return rc;
6291
6292	for (i = 0; i < host->n_ports; i++)
6293		ata_port_desc(host->ports[i], "irq %d", irq);
6294
6295	rc = ata_host_register(host, sht);
6296	/* if failed, just free the IRQ and leave ports alone */
6297	if (rc)
6298		devm_free_irq(host->dev, irq, host);
6299
6300	return rc;
6301}
6302
6303/**
6304 *	ata_port_detach - Detach ATA port in prepration of device removal
6305 *	@ap: ATA port to be detached
6306 *
6307 *	Detach all ATA devices and the associated SCSI devices of @ap;
6308 *	then, remove the associated SCSI host.  @ap is guaranteed to
6309 *	be quiescent on return from this function.
6310 *
6311 *	LOCKING:
6312 *	Kernel thread context (may sleep).
6313 */
6314static void ata_port_detach(struct ata_port *ap)
6315{
6316	unsigned long flags;
6317	struct ata_link *link;
6318	struct ata_device *dev;
6319
6320	if (!ap->ops->error_handler)
6321		goto skip_eh;
6322
6323	/* tell EH we're leaving & flush EH */
6324	spin_lock_irqsave(ap->lock, flags);
6325	ap->pflags |= ATA_PFLAG_UNLOADING;
6326	ata_port_schedule_eh(ap);
6327	spin_unlock_irqrestore(ap->lock, flags);
6328
6329	/* wait till EH commits suicide */
6330	ata_port_wait_eh(ap);
6331
6332	/* it better be dead now */
6333	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6334
6335	cancel_delayed_work_sync(&ap->hotplug_task);
6336
6337 skip_eh:
6338	/* clean up zpodd on port removal */
6339	ata_for_each_link(link, ap, HOST_FIRST) {
6340		ata_for_each_dev(dev, link, ALL) {
6341			if (zpodd_dev_enabled(dev))
6342				zpodd_exit(dev);
6343		}
6344	}
6345	if (ap->pmp_link) {
6346		int i;
6347		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6348			ata_tlink_delete(&ap->pmp_link[i]);
6349	}
6350	/* remove the associated SCSI host */
6351	scsi_remove_host(ap->scsi_host);
6352	ata_tport_delete(ap);
6353}
6354
6355/**
6356 *	ata_host_detach - Detach all ports of an ATA host
6357 *	@host: Host to detach
6358 *
6359 *	Detach all ports of @host.
6360 *
6361 *	LOCKING:
6362 *	Kernel thread context (may sleep).
6363 */
6364void ata_host_detach(struct ata_host *host)
6365{
6366	int i;
6367
6368	for (i = 0; i < host->n_ports; i++)
6369		ata_port_detach(host->ports[i]);
6370
6371	/* the host is dead now, dissociate ACPI */
6372	ata_acpi_dissociate(host);
6373}
6374
6375#ifdef CONFIG_PCI
6376
6377/**
6378 *	ata_pci_remove_one - PCI layer callback for device removal
6379 *	@pdev: PCI device that was removed
6380 *
6381 *	PCI layer indicates to libata via this hook that hot-unplug or
6382 *	module unload event has occurred.  Detach all ports.  Resource
6383 *	release is handled via devres.
6384 *
6385 *	LOCKING:
6386 *	Inherited from PCI layer (may sleep).
6387 */
6388void ata_pci_remove_one(struct pci_dev *pdev)
6389{
6390	struct ata_host *host = pci_get_drvdata(pdev);
6391
6392	ata_host_detach(host);
6393}
6394
6395/* move to PCI subsystem */
6396int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6397{
6398	unsigned long tmp = 0;
6399
6400	switch (bits->width) {
6401	case 1: {
6402		u8 tmp8 = 0;
6403		pci_read_config_byte(pdev, bits->reg, &tmp8);
6404		tmp = tmp8;
6405		break;
6406	}
6407	case 2: {
6408		u16 tmp16 = 0;
6409		pci_read_config_word(pdev, bits->reg, &tmp16);
6410		tmp = tmp16;
6411		break;
6412	}
6413	case 4: {
6414		u32 tmp32 = 0;
6415		pci_read_config_dword(pdev, bits->reg, &tmp32);
6416		tmp = tmp32;
6417		break;
6418	}
6419
6420	default:
6421		return -EINVAL;
6422	}
6423
6424	tmp &= bits->mask;
6425
6426	return (tmp == bits->val) ? 1 : 0;
6427}
6428
6429#ifdef CONFIG_PM
6430void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6431{
6432	pci_save_state(pdev);
6433	pci_disable_device(pdev);
6434
6435	if (mesg.event & PM_EVENT_SLEEP)
6436		pci_set_power_state(pdev, PCI_D3hot);
6437}
6438
6439int ata_pci_device_do_resume(struct pci_dev *pdev)
6440{
6441	int rc;
6442
6443	pci_set_power_state(pdev, PCI_D0);
6444	pci_restore_state(pdev);
6445
6446	rc = pcim_enable_device(pdev);
6447	if (rc) {
6448		dev_err(&pdev->dev,
6449			"failed to enable device after resume (%d)\n", rc);
6450		return rc;
6451	}
6452
6453	pci_set_master(pdev);
6454	return 0;
6455}
6456
6457int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6458{
6459	struct ata_host *host = pci_get_drvdata(pdev);
6460	int rc = 0;
6461
6462	rc = ata_host_suspend(host, mesg);
6463	if (rc)
6464		return rc;
6465
6466	ata_pci_device_do_suspend(pdev, mesg);
6467
6468	return 0;
6469}
6470
6471int ata_pci_device_resume(struct pci_dev *pdev)
6472{
6473	struct ata_host *host = pci_get_drvdata(pdev);
6474	int rc;
6475
6476	rc = ata_pci_device_do_resume(pdev);
6477	if (rc == 0)
6478		ata_host_resume(host);
6479	return rc;
6480}
6481#endif /* CONFIG_PM */
6482
6483#endif /* CONFIG_PCI */
6484
6485/**
6486 *	ata_platform_remove_one - Platform layer callback for device removal
6487 *	@pdev: Platform device that was removed
6488 *
6489 *	Platform layer indicates to libata via this hook that hot-unplug or
6490 *	module unload event has occurred.  Detach all ports.  Resource
6491 *	release is handled via devres.
6492 *
6493 *	LOCKING:
6494 *	Inherited from platform layer (may sleep).
6495 */
6496int ata_platform_remove_one(struct platform_device *pdev)
6497{
6498	struct ata_host *host = platform_get_drvdata(pdev);
6499
6500	ata_host_detach(host);
6501
6502	return 0;
6503}
6504
6505static int __init ata_parse_force_one(char **cur,
6506				      struct ata_force_ent *force_ent,
6507				      const char **reason)
6508{
6509	/* FIXME: Currently, there's no way to tag init const data and
6510	 * using __initdata causes build failure on some versions of
6511	 * gcc.  Once __initdataconst is implemented, add const to the
6512	 * following structure.
6513	 */
6514	static struct ata_force_param force_tbl[] __initdata = {
6515		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6516		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6517		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6518		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6519		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6520		{ "sata",	.cbl		= ATA_CBL_SATA },
6521		{ "1.5Gbps",	.spd_limit	= 1 },
6522		{ "3.0Gbps",	.spd_limit	= 2 },
6523		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6524		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
 
 
6525		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6526		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6527		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6528		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6529		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6530		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6531		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6532		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6533		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6534		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6535		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6536		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6537		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6538		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6539		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6540		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6541		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6542		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6543		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6544		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6545		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6546		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6547		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6548		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6549		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6550		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6551		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6552		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6553		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6554		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6555		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6556		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6557		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6558		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6559		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6560		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6561		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6562		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6563		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6564		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6565		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6566	};
6567	char *start = *cur, *p = *cur;
6568	char *id, *val, *endp;
6569	const struct ata_force_param *match_fp = NULL;
6570	int nr_matches = 0, i;
6571
6572	/* find where this param ends and update *cur */
6573	while (*p != '\0' && *p != ',')
6574		p++;
6575
6576	if (*p == '\0')
6577		*cur = p;
6578	else
6579		*cur = p + 1;
6580
6581	*p = '\0';
6582
6583	/* parse */
6584	p = strchr(start, ':');
6585	if (!p) {
6586		val = strstrip(start);
6587		goto parse_val;
6588	}
6589	*p = '\0';
6590
6591	id = strstrip(start);
6592	val = strstrip(p + 1);
6593
6594	/* parse id */
6595	p = strchr(id, '.');
6596	if (p) {
6597		*p++ = '\0';
6598		force_ent->device = simple_strtoul(p, &endp, 10);
6599		if (p == endp || *endp != '\0') {
6600			*reason = "invalid device";
6601			return -EINVAL;
6602		}
6603	}
6604
6605	force_ent->port = simple_strtoul(id, &endp, 10);
6606	if (p == endp || *endp != '\0') {
6607		*reason = "invalid port/link";
6608		return -EINVAL;
6609	}
6610
6611 parse_val:
6612	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6613	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6614		const struct ata_force_param *fp = &force_tbl[i];
6615
6616		if (strncasecmp(val, fp->name, strlen(val)))
6617			continue;
6618
6619		nr_matches++;
6620		match_fp = fp;
6621
6622		if (strcasecmp(val, fp->name) == 0) {
6623			nr_matches = 1;
6624			break;
6625		}
6626	}
6627
6628	if (!nr_matches) {
6629		*reason = "unknown value";
6630		return -EINVAL;
6631	}
6632	if (nr_matches > 1) {
6633		*reason = "ambigious value";
6634		return -EINVAL;
6635	}
6636
6637	force_ent->param = *match_fp;
6638
6639	return 0;
6640}
6641
6642static void __init ata_parse_force_param(void)
6643{
6644	int idx = 0, size = 1;
6645	int last_port = -1, last_device = -1;
6646	char *p, *cur, *next;
6647
6648	/* calculate maximum number of params and allocate force_tbl */
6649	for (p = ata_force_param_buf; *p; p++)
6650		if (*p == ',')
6651			size++;
6652
6653	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6654	if (!ata_force_tbl) {
6655		printk(KERN_WARNING "ata: failed to extend force table, "
6656		       "libata.force ignored\n");
6657		return;
6658	}
6659
6660	/* parse and populate the table */
6661	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6662		const char *reason = "";
6663		struct ata_force_ent te = { .port = -1, .device = -1 };
6664
6665		next = cur;
6666		if (ata_parse_force_one(&next, &te, &reason)) {
6667			printk(KERN_WARNING "ata: failed to parse force "
6668			       "parameter \"%s\" (%s)\n",
6669			       cur, reason);
6670			continue;
6671		}
6672
6673		if (te.port == -1) {
6674			te.port = last_port;
6675			te.device = last_device;
6676		}
6677
6678		ata_force_tbl[idx++] = te;
6679
6680		last_port = te.port;
6681		last_device = te.device;
6682	}
6683
6684	ata_force_tbl_size = idx;
6685}
6686
6687static int __init ata_init(void)
6688{
6689	int rc;
6690
6691	ata_parse_force_param();
6692
6693	rc = ata_sff_init();
6694	if (rc) {
6695		kfree(ata_force_tbl);
6696		return rc;
6697	}
6698
6699	libata_transport_init();
6700	ata_scsi_transport_template = ata_attach_transport();
6701	if (!ata_scsi_transport_template) {
6702		ata_sff_exit();
6703		rc = -ENOMEM;
6704		goto err_out;
6705	}
6706
6707	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6708	return 0;
6709
6710err_out:
6711	return rc;
6712}
6713
6714static void __exit ata_exit(void)
6715{
6716	ata_release_transport(ata_scsi_transport_template);
6717	libata_transport_exit();
6718	ata_sff_exit();
6719	kfree(ata_force_tbl);
6720}
6721
6722subsys_initcall(ata_init);
6723module_exit(ata_exit);
6724
6725static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6726
6727int ata_ratelimit(void)
6728{
6729	return __ratelimit(&ratelimit);
6730}
6731
6732/**
6733 *	ata_msleep - ATA EH owner aware msleep
6734 *	@ap: ATA port to attribute the sleep to
6735 *	@msecs: duration to sleep in milliseconds
6736 *
6737 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6738 *	ownership is released before going to sleep and reacquired
6739 *	after the sleep is complete.  IOW, other ports sharing the
6740 *	@ap->host will be allowed to own the EH while this task is
6741 *	sleeping.
6742 *
6743 *	LOCKING:
6744 *	Might sleep.
6745 */
6746void ata_msleep(struct ata_port *ap, unsigned int msecs)
6747{
6748	bool owns_eh = ap && ap->host->eh_owner == current;
6749
6750	if (owns_eh)
6751		ata_eh_release(ap);
6752
6753	msleep(msecs);
 
 
 
 
 
6754
6755	if (owns_eh)
6756		ata_eh_acquire(ap);
6757}
6758
6759/**
6760 *	ata_wait_register - wait until register value changes
6761 *	@ap: ATA port to wait register for, can be NULL
6762 *	@reg: IO-mapped register
6763 *	@mask: Mask to apply to read register value
6764 *	@val: Wait condition
6765 *	@interval: polling interval in milliseconds
6766 *	@timeout: timeout in milliseconds
6767 *
6768 *	Waiting for some bits of register to change is a common
6769 *	operation for ATA controllers.  This function reads 32bit LE
6770 *	IO-mapped register @reg and tests for the following condition.
6771 *
6772 *	(*@reg & mask) != val
6773 *
6774 *	If the condition is met, it returns; otherwise, the process is
6775 *	repeated after @interval_msec until timeout.
6776 *
6777 *	LOCKING:
6778 *	Kernel thread context (may sleep)
6779 *
6780 *	RETURNS:
6781 *	The final register value.
6782 */
6783u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6784		      unsigned long interval, unsigned long timeout)
6785{
6786	unsigned long deadline;
6787	u32 tmp;
6788
6789	tmp = ioread32(reg);
6790
6791	/* Calculate timeout _after_ the first read to make sure
6792	 * preceding writes reach the controller before starting to
6793	 * eat away the timeout.
6794	 */
6795	deadline = ata_deadline(jiffies, timeout);
6796
6797	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6798		ata_msleep(ap, interval);
6799		tmp = ioread32(reg);
6800	}
6801
6802	return tmp;
6803}
6804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6805/*
6806 * Dummy port_ops
6807 */
6808static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6809{
6810	return AC_ERR_SYSTEM;
6811}
6812
6813static void ata_dummy_error_handler(struct ata_port *ap)
6814{
6815	/* truly dummy */
6816}
6817
6818struct ata_port_operations ata_dummy_port_ops = {
6819	.qc_prep		= ata_noop_qc_prep,
6820	.qc_issue		= ata_dummy_qc_issue,
6821	.error_handler		= ata_dummy_error_handler,
6822	.sched_eh		= ata_std_sched_eh,
6823	.end_eh			= ata_std_end_eh,
6824};
6825
6826const struct ata_port_info ata_dummy_port_info = {
6827	.port_ops		= &ata_dummy_port_ops,
6828};
6829
6830/*
6831 * Utility print functions
6832 */
6833int ata_port_printk(const struct ata_port *ap, const char *level,
6834		    const char *fmt, ...)
6835{
6836	struct va_format vaf;
6837	va_list args;
6838	int r;
6839
6840	va_start(args, fmt);
6841
6842	vaf.fmt = fmt;
6843	vaf.va = &args;
6844
6845	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6846
6847	va_end(args);
6848
6849	return r;
6850}
6851EXPORT_SYMBOL(ata_port_printk);
6852
6853int ata_link_printk(const struct ata_link *link, const char *level,
6854		    const char *fmt, ...)
6855{
6856	struct va_format vaf;
6857	va_list args;
6858	int r;
6859
6860	va_start(args, fmt);
6861
6862	vaf.fmt = fmt;
6863	vaf.va = &args;
6864
6865	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6866		r = printk("%sata%u.%02u: %pV",
6867			   level, link->ap->print_id, link->pmp, &vaf);
6868	else
6869		r = printk("%sata%u: %pV",
6870			   level, link->ap->print_id, &vaf);
6871
6872	va_end(args);
6873
6874	return r;
6875}
6876EXPORT_SYMBOL(ata_link_printk);
6877
6878int ata_dev_printk(const struct ata_device *dev, const char *level,
6879		    const char *fmt, ...)
6880{
6881	struct va_format vaf;
6882	va_list args;
6883	int r;
6884
6885	va_start(args, fmt);
6886
6887	vaf.fmt = fmt;
6888	vaf.va = &args;
6889
6890	r = printk("%sata%u.%02u: %pV",
6891		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6892		   &vaf);
6893
6894	va_end(args);
6895
6896	return r;
6897}
6898EXPORT_SYMBOL(ata_dev_printk);
6899
6900void ata_print_version(const struct device *dev, const char *version)
6901{
6902	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6903}
6904EXPORT_SYMBOL(ata_print_version);
6905
6906/*
6907 * libata is essentially a library of internal helper functions for
6908 * low-level ATA host controller drivers.  As such, the API/ABI is
6909 * likely to change as new drivers are added and updated.
6910 * Do not depend on ABI/API stability.
6911 */
6912EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6913EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6914EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6915EXPORT_SYMBOL_GPL(ata_base_port_ops);
6916EXPORT_SYMBOL_GPL(sata_port_ops);
6917EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6918EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6919EXPORT_SYMBOL_GPL(ata_link_next);
6920EXPORT_SYMBOL_GPL(ata_dev_next);
6921EXPORT_SYMBOL_GPL(ata_std_bios_param);
6922EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6923EXPORT_SYMBOL_GPL(ata_host_init);
6924EXPORT_SYMBOL_GPL(ata_host_alloc);
6925EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6926EXPORT_SYMBOL_GPL(ata_slave_link_init);
6927EXPORT_SYMBOL_GPL(ata_host_start);
6928EXPORT_SYMBOL_GPL(ata_host_register);
6929EXPORT_SYMBOL_GPL(ata_host_activate);
6930EXPORT_SYMBOL_GPL(ata_host_detach);
6931EXPORT_SYMBOL_GPL(ata_sg_init);
6932EXPORT_SYMBOL_GPL(ata_qc_complete);
6933EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6934EXPORT_SYMBOL_GPL(atapi_cmd_type);
6935EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6936EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6937EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6938EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6939EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6940EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6941EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6942EXPORT_SYMBOL_GPL(ata_mode_string);
6943EXPORT_SYMBOL_GPL(ata_id_xfermask);
6944EXPORT_SYMBOL_GPL(ata_do_set_mode);
6945EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6946EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6947EXPORT_SYMBOL_GPL(ata_dev_disable);
6948EXPORT_SYMBOL_GPL(sata_set_spd);
6949EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6950EXPORT_SYMBOL_GPL(sata_link_debounce);
6951EXPORT_SYMBOL_GPL(sata_link_resume);
6952EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6953EXPORT_SYMBOL_GPL(ata_std_prereset);
6954EXPORT_SYMBOL_GPL(sata_link_hardreset);
6955EXPORT_SYMBOL_GPL(sata_std_hardreset);
6956EXPORT_SYMBOL_GPL(ata_std_postreset);
6957EXPORT_SYMBOL_GPL(ata_dev_classify);
6958EXPORT_SYMBOL_GPL(ata_dev_pair);
6959EXPORT_SYMBOL_GPL(ata_ratelimit);
6960EXPORT_SYMBOL_GPL(ata_msleep);
6961EXPORT_SYMBOL_GPL(ata_wait_register);
6962EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6963EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6964EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6965EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6966EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6967EXPORT_SYMBOL_GPL(sata_scr_valid);
6968EXPORT_SYMBOL_GPL(sata_scr_read);
6969EXPORT_SYMBOL_GPL(sata_scr_write);
6970EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6971EXPORT_SYMBOL_GPL(ata_link_online);
6972EXPORT_SYMBOL_GPL(ata_link_offline);
6973#ifdef CONFIG_PM
6974EXPORT_SYMBOL_GPL(ata_host_suspend);
6975EXPORT_SYMBOL_GPL(ata_host_resume);
6976#endif /* CONFIG_PM */
6977EXPORT_SYMBOL_GPL(ata_id_string);
6978EXPORT_SYMBOL_GPL(ata_id_c_string);
6979EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6980EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6981
6982EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6983EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6984EXPORT_SYMBOL_GPL(ata_timing_compute);
6985EXPORT_SYMBOL_GPL(ata_timing_merge);
6986EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6987
6988#ifdef CONFIG_PCI
6989EXPORT_SYMBOL_GPL(pci_test_config_bits);
6990EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6991#ifdef CONFIG_PM
6992EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6993EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6994EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6995EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6996#endif /* CONFIG_PM */
6997#endif /* CONFIG_PCI */
6998
6999EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7000
7001EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7002EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7003EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7004EXPORT_SYMBOL_GPL(ata_port_desc);
7005#ifdef CONFIG_PCI
7006EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7007#endif /* CONFIG_PCI */
7008EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7009EXPORT_SYMBOL_GPL(ata_link_abort);
7010EXPORT_SYMBOL_GPL(ata_port_abort);
7011EXPORT_SYMBOL_GPL(ata_port_freeze);
7012EXPORT_SYMBOL_GPL(sata_async_notification);
7013EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7014EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7015EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7016EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7017EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7018EXPORT_SYMBOL_GPL(ata_do_eh);
7019EXPORT_SYMBOL_GPL(ata_std_error_handler);
7020
7021EXPORT_SYMBOL_GPL(ata_cable_40wire);
7022EXPORT_SYMBOL_GPL(ata_cable_80wire);
7023EXPORT_SYMBOL_GPL(ata_cable_unknown);
7024EXPORT_SYMBOL_GPL(ata_cable_ignore);
7025EXPORT_SYMBOL_GPL(ata_cable_sata);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   7 *		    on emails.
   8 *
   9 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2004 Jeff Garzik
  11 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 *
  18 *  Standards documents from:
  19 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  20 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  21 *	http://www.sata-io.org (SATA)
  22 *	http://www.compactflash.org (CF)
  23 *	http://www.qic.org (QIC157 - Tape and DSC)
  24 *	http://www.ce-ata.org (CE-ATA: not supported)
 
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/init.h>
  31#include <linux/list.h>
  32#include <linux/mm.h>
  33#include <linux/spinlock.h>
  34#include <linux/blkdev.h>
  35#include <linux/delay.h>
  36#include <linux/timer.h>
  37#include <linux/time.h>
  38#include <linux/interrupt.h>
  39#include <linux/completion.h>
  40#include <linux/suspend.h>
  41#include <linux/workqueue.h>
  42#include <linux/scatterlist.h>
  43#include <linux/io.h>
  44#include <linux/async.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/libata.h>
  62
  63#include "libata.h"
  64#include "libata-transport.h"
  65
  66/* debounce timing parameters in msecs { interval, duration, timeout } */
  67const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  68const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  69const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  70
  71const struct ata_port_operations ata_base_port_ops = {
  72	.prereset		= ata_std_prereset,
  73	.postreset		= ata_std_postreset,
  74	.error_handler		= ata_std_error_handler,
  75	.sched_eh		= ata_std_sched_eh,
  76	.end_eh			= ata_std_end_eh,
  77};
  78
  79const struct ata_port_operations sata_port_ops = {
  80	.inherits		= &ata_base_port_ops,
  81
  82	.qc_defer		= ata_std_qc_defer,
  83	.hardreset		= sata_std_hardreset,
  84};
  85
  86static unsigned int ata_dev_init_params(struct ata_device *dev,
  87					u16 heads, u16 sectors);
  88static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  89static void ata_dev_xfermask(struct ata_device *dev);
  90static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  91
  92atomic_t ata_print_id = ATOMIC_INIT(0);
  93
  94struct ata_force_param {
  95	const char	*name;
  96	unsigned int	cbl;
  97	int		spd_limit;
  98	unsigned long	xfer_mask;
  99	unsigned int	horkage_on;
 100	unsigned int	horkage_off;
 101	unsigned int	lflags;
 102};
 103
 104struct ata_force_ent {
 105	int			port;
 106	int			device;
 107	struct ata_force_param	param;
 108};
 109
 110static struct ata_force_ent *ata_force_tbl;
 111static int ata_force_tbl_size;
 112
 113static char ata_force_param_buf[PAGE_SIZE] __initdata;
 114/* param_buf is thrown away after initialization, disallow read */
 115module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 116MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 117
 118static int atapi_enabled = 1;
 119module_param(atapi_enabled, int, 0444);
 120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 121
 122static int atapi_dmadir = 0;
 123module_param(atapi_dmadir, int, 0444);
 124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 125
 126int atapi_passthru16 = 1;
 127module_param(atapi_passthru16, int, 0444);
 128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 129
 130int libata_fua = 0;
 131module_param_named(fua, libata_fua, int, 0444);
 132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 133
 134static int ata_ignore_hpa;
 135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 137
 138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 139module_param_named(dma, libata_dma_mask, int, 0444);
 140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 141
 142static int ata_probe_timeout;
 143module_param(ata_probe_timeout, int, 0444);
 144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 145
 146int libata_noacpi = 0;
 147module_param_named(noacpi, libata_noacpi, int, 0444);
 148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 149
 150int libata_allow_tpm = 0;
 151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 153
 154static int atapi_an;
 155module_param(atapi_an, int, 0444);
 156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 157
 158MODULE_AUTHOR("Jeff Garzik");
 159MODULE_DESCRIPTION("Library module for ATA devices");
 160MODULE_LICENSE("GPL");
 161MODULE_VERSION(DRV_VERSION);
 162
 163
 164static bool ata_sstatus_online(u32 sstatus)
 165{
 166	return (sstatus & 0xf) == 0x3;
 167}
 168
 169/**
 170 *	ata_link_next - link iteration helper
 171 *	@link: the previous link, NULL to start
 172 *	@ap: ATA port containing links to iterate
 173 *	@mode: iteration mode, one of ATA_LITER_*
 174 *
 175 *	LOCKING:
 176 *	Host lock or EH context.
 177 *
 178 *	RETURNS:
 179 *	Pointer to the next link.
 180 */
 181struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 182			       enum ata_link_iter_mode mode)
 183{
 184	BUG_ON(mode != ATA_LITER_EDGE &&
 185	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 186
 187	/* NULL link indicates start of iteration */
 188	if (!link)
 189		switch (mode) {
 190		case ATA_LITER_EDGE:
 191		case ATA_LITER_PMP_FIRST:
 192			if (sata_pmp_attached(ap))
 193				return ap->pmp_link;
 194			/* fall through */
 195		case ATA_LITER_HOST_FIRST:
 196			return &ap->link;
 197		}
 198
 199	/* we just iterated over the host link, what's next? */
 200	if (link == &ap->link)
 201		switch (mode) {
 202		case ATA_LITER_HOST_FIRST:
 203			if (sata_pmp_attached(ap))
 204				return ap->pmp_link;
 205			/* fall through */
 206		case ATA_LITER_PMP_FIRST:
 207			if (unlikely(ap->slave_link))
 208				return ap->slave_link;
 209			/* fall through */
 210		case ATA_LITER_EDGE:
 211			return NULL;
 212		}
 213
 214	/* slave_link excludes PMP */
 215	if (unlikely(link == ap->slave_link))
 216		return NULL;
 217
 218	/* we were over a PMP link */
 219	if (++link < ap->pmp_link + ap->nr_pmp_links)
 220		return link;
 221
 222	if (mode == ATA_LITER_PMP_FIRST)
 223		return &ap->link;
 224
 225	return NULL;
 226}
 227
 228/**
 229 *	ata_dev_next - device iteration helper
 230 *	@dev: the previous device, NULL to start
 231 *	@link: ATA link containing devices to iterate
 232 *	@mode: iteration mode, one of ATA_DITER_*
 233 *
 234 *	LOCKING:
 235 *	Host lock or EH context.
 236 *
 237 *	RETURNS:
 238 *	Pointer to the next device.
 239 */
 240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 241				enum ata_dev_iter_mode mode)
 242{
 243	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 244	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 245
 246	/* NULL dev indicates start of iteration */
 247	if (!dev)
 248		switch (mode) {
 249		case ATA_DITER_ENABLED:
 250		case ATA_DITER_ALL:
 251			dev = link->device;
 252			goto check;
 253		case ATA_DITER_ENABLED_REVERSE:
 254		case ATA_DITER_ALL_REVERSE:
 255			dev = link->device + ata_link_max_devices(link) - 1;
 256			goto check;
 257		}
 258
 259 next:
 260	/* move to the next one */
 261	switch (mode) {
 262	case ATA_DITER_ENABLED:
 263	case ATA_DITER_ALL:
 264		if (++dev < link->device + ata_link_max_devices(link))
 265			goto check;
 266		return NULL;
 267	case ATA_DITER_ENABLED_REVERSE:
 268	case ATA_DITER_ALL_REVERSE:
 269		if (--dev >= link->device)
 270			goto check;
 271		return NULL;
 272	}
 273
 274 check:
 275	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 276	    !ata_dev_enabled(dev))
 277		goto next;
 278	return dev;
 279}
 280
 281/**
 282 *	ata_dev_phys_link - find physical link for a device
 283 *	@dev: ATA device to look up physical link for
 284 *
 285 *	Look up physical link which @dev is attached to.  Note that
 286 *	this is different from @dev->link only when @dev is on slave
 287 *	link.  For all other cases, it's the same as @dev->link.
 288 *
 289 *	LOCKING:
 290 *	Don't care.
 291 *
 292 *	RETURNS:
 293 *	Pointer to the found physical link.
 294 */
 295struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 296{
 297	struct ata_port *ap = dev->link->ap;
 298
 299	if (!ap->slave_link)
 300		return dev->link;
 301	if (!dev->devno)
 302		return &ap->link;
 303	return ap->slave_link;
 304}
 305
 306/**
 307 *	ata_force_cbl - force cable type according to libata.force
 308 *	@ap: ATA port of interest
 309 *
 310 *	Force cable type according to libata.force and whine about it.
 311 *	The last entry which has matching port number is used, so it
 312 *	can be specified as part of device force parameters.  For
 313 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 314 *	same effect.
 315 *
 316 *	LOCKING:
 317 *	EH context.
 318 */
 319void ata_force_cbl(struct ata_port *ap)
 320{
 321	int i;
 322
 323	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 324		const struct ata_force_ent *fe = &ata_force_tbl[i];
 325
 326		if (fe->port != -1 && fe->port != ap->print_id)
 327			continue;
 328
 329		if (fe->param.cbl == ATA_CBL_NONE)
 330			continue;
 331
 332		ap->cbl = fe->param.cbl;
 333		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 334		return;
 335	}
 336}
 337
 338/**
 339 *	ata_force_link_limits - force link limits according to libata.force
 340 *	@link: ATA link of interest
 341 *
 342 *	Force link flags and SATA spd limit according to libata.force
 343 *	and whine about it.  When only the port part is specified
 344 *	(e.g. 1:), the limit applies to all links connected to both
 345 *	the host link and all fan-out ports connected via PMP.  If the
 346 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 347 *	first fan-out link not the host link.  Device number 15 always
 348 *	points to the host link whether PMP is attached or not.  If the
 349 *	controller has slave link, device number 16 points to it.
 350 *
 351 *	LOCKING:
 352 *	EH context.
 353 */
 354static void ata_force_link_limits(struct ata_link *link)
 355{
 356	bool did_spd = false;
 357	int linkno = link->pmp;
 358	int i;
 359
 360	if (ata_is_host_link(link))
 361		linkno += 15;
 362
 363	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 364		const struct ata_force_ent *fe = &ata_force_tbl[i];
 365
 366		if (fe->port != -1 && fe->port != link->ap->print_id)
 367			continue;
 368
 369		if (fe->device != -1 && fe->device != linkno)
 370			continue;
 371
 372		/* only honor the first spd limit */
 373		if (!did_spd && fe->param.spd_limit) {
 374			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 375			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 376					fe->param.name);
 377			did_spd = true;
 378		}
 379
 380		/* let lflags stack */
 381		if (fe->param.lflags) {
 382			link->flags |= fe->param.lflags;
 383			ata_link_notice(link,
 384					"FORCE: link flag 0x%x forced -> 0x%x\n",
 385					fe->param.lflags, link->flags);
 386		}
 387	}
 388}
 389
 390/**
 391 *	ata_force_xfermask - force xfermask according to libata.force
 392 *	@dev: ATA device of interest
 393 *
 394 *	Force xfer_mask according to libata.force and whine about it.
 395 *	For consistency with link selection, device number 15 selects
 396 *	the first device connected to the host link.
 397 *
 398 *	LOCKING:
 399 *	EH context.
 400 */
 401static void ata_force_xfermask(struct ata_device *dev)
 402{
 403	int devno = dev->link->pmp + dev->devno;
 404	int alt_devno = devno;
 405	int i;
 406
 407	/* allow n.15/16 for devices attached to host port */
 408	if (ata_is_host_link(dev->link))
 409		alt_devno += 15;
 410
 411	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 412		const struct ata_force_ent *fe = &ata_force_tbl[i];
 413		unsigned long pio_mask, mwdma_mask, udma_mask;
 414
 415		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 416			continue;
 417
 418		if (fe->device != -1 && fe->device != devno &&
 419		    fe->device != alt_devno)
 420			continue;
 421
 422		if (!fe->param.xfer_mask)
 423			continue;
 424
 425		ata_unpack_xfermask(fe->param.xfer_mask,
 426				    &pio_mask, &mwdma_mask, &udma_mask);
 427		if (udma_mask)
 428			dev->udma_mask = udma_mask;
 429		else if (mwdma_mask) {
 430			dev->udma_mask = 0;
 431			dev->mwdma_mask = mwdma_mask;
 432		} else {
 433			dev->udma_mask = 0;
 434			dev->mwdma_mask = 0;
 435			dev->pio_mask = pio_mask;
 436		}
 437
 438		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 439			       fe->param.name);
 440		return;
 441	}
 442}
 443
 444/**
 445 *	ata_force_horkage - force horkage according to libata.force
 446 *	@dev: ATA device of interest
 447 *
 448 *	Force horkage according to libata.force and whine about it.
 449 *	For consistency with link selection, device number 15 selects
 450 *	the first device connected to the host link.
 451 *
 452 *	LOCKING:
 453 *	EH context.
 454 */
 455static void ata_force_horkage(struct ata_device *dev)
 456{
 457	int devno = dev->link->pmp + dev->devno;
 458	int alt_devno = devno;
 459	int i;
 460
 461	/* allow n.15/16 for devices attached to host port */
 462	if (ata_is_host_link(dev->link))
 463		alt_devno += 15;
 464
 465	for (i = 0; i < ata_force_tbl_size; i++) {
 466		const struct ata_force_ent *fe = &ata_force_tbl[i];
 467
 468		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 469			continue;
 470
 471		if (fe->device != -1 && fe->device != devno &&
 472		    fe->device != alt_devno)
 473			continue;
 474
 475		if (!(~dev->horkage & fe->param.horkage_on) &&
 476		    !(dev->horkage & fe->param.horkage_off))
 477			continue;
 478
 479		dev->horkage |= fe->param.horkage_on;
 480		dev->horkage &= ~fe->param.horkage_off;
 481
 482		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 483			       fe->param.name);
 484	}
 485}
 486
 487/**
 488 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 489 *	@opcode: SCSI opcode
 490 *
 491 *	Determine ATAPI command type from @opcode.
 492 *
 493 *	LOCKING:
 494 *	None.
 495 *
 496 *	RETURNS:
 497 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 498 */
 499int atapi_cmd_type(u8 opcode)
 500{
 501	switch (opcode) {
 502	case GPCMD_READ_10:
 503	case GPCMD_READ_12:
 504		return ATAPI_READ;
 505
 506	case GPCMD_WRITE_10:
 507	case GPCMD_WRITE_12:
 508	case GPCMD_WRITE_AND_VERIFY_10:
 509		return ATAPI_WRITE;
 510
 511	case GPCMD_READ_CD:
 512	case GPCMD_READ_CD_MSF:
 513		return ATAPI_READ_CD;
 514
 515	case ATA_16:
 516	case ATA_12:
 517		if (atapi_passthru16)
 518			return ATAPI_PASS_THRU;
 519		/* fall thru */
 520	default:
 521		return ATAPI_MISC;
 522	}
 523}
 524
 525/**
 526 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 527 *	@tf: Taskfile to convert
 528 *	@pmp: Port multiplier port
 529 *	@is_cmd: This FIS is for command
 530 *	@fis: Buffer into which data will output
 531 *
 532 *	Converts a standard ATA taskfile to a Serial ATA
 533 *	FIS structure (Register - Host to Device).
 534 *
 535 *	LOCKING:
 536 *	Inherited from caller.
 537 */
 538void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 539{
 540	fis[0] = 0x27;			/* Register - Host to Device FIS */
 541	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 542	if (is_cmd)
 543		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 544
 545	fis[2] = tf->command;
 546	fis[3] = tf->feature;
 547
 548	fis[4] = tf->lbal;
 549	fis[5] = tf->lbam;
 550	fis[6] = tf->lbah;
 551	fis[7] = tf->device;
 552
 553	fis[8] = tf->hob_lbal;
 554	fis[9] = tf->hob_lbam;
 555	fis[10] = tf->hob_lbah;
 556	fis[11] = tf->hob_feature;
 557
 558	fis[12] = tf->nsect;
 559	fis[13] = tf->hob_nsect;
 560	fis[14] = 0;
 561	fis[15] = tf->ctl;
 562
 563	fis[16] = tf->auxiliary & 0xff;
 564	fis[17] = (tf->auxiliary >> 8) & 0xff;
 565	fis[18] = (tf->auxiliary >> 16) & 0xff;
 566	fis[19] = (tf->auxiliary >> 24) & 0xff;
 567}
 568
 569/**
 570 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 571 *	@fis: Buffer from which data will be input
 572 *	@tf: Taskfile to output
 573 *
 574 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 575 *
 576 *	LOCKING:
 577 *	Inherited from caller.
 578 */
 579
 580void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 581{
 582	tf->command	= fis[2];	/* status */
 583	tf->feature	= fis[3];	/* error */
 584
 585	tf->lbal	= fis[4];
 586	tf->lbam	= fis[5];
 587	tf->lbah	= fis[6];
 588	tf->device	= fis[7];
 589
 590	tf->hob_lbal	= fis[8];
 591	tf->hob_lbam	= fis[9];
 592	tf->hob_lbah	= fis[10];
 593
 594	tf->nsect	= fis[12];
 595	tf->hob_nsect	= fis[13];
 596}
 597
 598static const u8 ata_rw_cmds[] = {
 599	/* pio multi */
 600	ATA_CMD_READ_MULTI,
 601	ATA_CMD_WRITE_MULTI,
 602	ATA_CMD_READ_MULTI_EXT,
 603	ATA_CMD_WRITE_MULTI_EXT,
 604	0,
 605	0,
 606	0,
 607	ATA_CMD_WRITE_MULTI_FUA_EXT,
 608	/* pio */
 609	ATA_CMD_PIO_READ,
 610	ATA_CMD_PIO_WRITE,
 611	ATA_CMD_PIO_READ_EXT,
 612	ATA_CMD_PIO_WRITE_EXT,
 613	0,
 614	0,
 615	0,
 616	0,
 617	/* dma */
 618	ATA_CMD_READ,
 619	ATA_CMD_WRITE,
 620	ATA_CMD_READ_EXT,
 621	ATA_CMD_WRITE_EXT,
 622	0,
 623	0,
 624	0,
 625	ATA_CMD_WRITE_FUA_EXT
 626};
 627
 628/**
 629 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 630 *	@tf: command to examine and configure
 631 *	@dev: device tf belongs to
 632 *
 633 *	Examine the device configuration and tf->flags to calculate
 634 *	the proper read/write commands and protocol to use.
 635 *
 636 *	LOCKING:
 637 *	caller.
 638 */
 639static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 640{
 641	u8 cmd;
 642
 643	int index, fua, lba48, write;
 644
 645	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 646	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 647	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 648
 649	if (dev->flags & ATA_DFLAG_PIO) {
 650		tf->protocol = ATA_PROT_PIO;
 651		index = dev->multi_count ? 0 : 8;
 652	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 653		/* Unable to use DMA due to host limitation */
 654		tf->protocol = ATA_PROT_PIO;
 655		index = dev->multi_count ? 0 : 8;
 656	} else {
 657		tf->protocol = ATA_PROT_DMA;
 658		index = 16;
 659	}
 660
 661	cmd = ata_rw_cmds[index + fua + lba48 + write];
 662	if (cmd) {
 663		tf->command = cmd;
 664		return 0;
 665	}
 666	return -1;
 667}
 668
 669/**
 670 *	ata_tf_read_block - Read block address from ATA taskfile
 671 *	@tf: ATA taskfile of interest
 672 *	@dev: ATA device @tf belongs to
 673 *
 674 *	LOCKING:
 675 *	None.
 676 *
 677 *	Read block address from @tf.  This function can handle all
 678 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 679 *	flags select the address format to use.
 680 *
 681 *	RETURNS:
 682 *	Block address read from @tf.
 683 */
 684u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 685{
 686	u64 block = 0;
 687
 688	if (tf->flags & ATA_TFLAG_LBA) {
 689		if (tf->flags & ATA_TFLAG_LBA48) {
 690			block |= (u64)tf->hob_lbah << 40;
 691			block |= (u64)tf->hob_lbam << 32;
 692			block |= (u64)tf->hob_lbal << 24;
 693		} else
 694			block |= (tf->device & 0xf) << 24;
 695
 696		block |= tf->lbah << 16;
 697		block |= tf->lbam << 8;
 698		block |= tf->lbal;
 699	} else {
 700		u32 cyl, head, sect;
 701
 702		cyl = tf->lbam | (tf->lbah << 8);
 703		head = tf->device & 0xf;
 704		sect = tf->lbal;
 705
 706		if (!sect) {
 707			ata_dev_warn(dev,
 708				     "device reported invalid CHS sector 0\n");
 709			return U64_MAX;
 710		}
 711
 712		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 713	}
 714
 715	return block;
 716}
 717
 718/**
 719 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 720 *	@tf: Target ATA taskfile
 721 *	@dev: ATA device @tf belongs to
 722 *	@block: Block address
 723 *	@n_block: Number of blocks
 724 *	@tf_flags: RW/FUA etc...
 725 *	@tag: tag
 726 *	@class: IO priority class
 727 *
 728 *	LOCKING:
 729 *	None.
 730 *
 731 *	Build ATA taskfile @tf for read/write request described by
 732 *	@block, @n_block, @tf_flags and @tag on @dev.
 733 *
 734 *	RETURNS:
 735 *
 736 *	0 on success, -ERANGE if the request is too large for @dev,
 737 *	-EINVAL if the request is invalid.
 738 */
 739int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 740		    u64 block, u32 n_block, unsigned int tf_flags,
 741		    unsigned int tag, int class)
 742{
 743	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 744	tf->flags |= tf_flags;
 745
 746	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 747		/* yay, NCQ */
 748		if (!lba_48_ok(block, n_block))
 749			return -ERANGE;
 750
 751		tf->protocol = ATA_PROT_NCQ;
 752		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 753
 754		if (tf->flags & ATA_TFLAG_WRITE)
 755			tf->command = ATA_CMD_FPDMA_WRITE;
 756		else
 757			tf->command = ATA_CMD_FPDMA_READ;
 758
 759		tf->nsect = tag << 3;
 760		tf->hob_feature = (n_block >> 8) & 0xff;
 761		tf->feature = n_block & 0xff;
 762
 763		tf->hob_lbah = (block >> 40) & 0xff;
 764		tf->hob_lbam = (block >> 32) & 0xff;
 765		tf->hob_lbal = (block >> 24) & 0xff;
 766		tf->lbah = (block >> 16) & 0xff;
 767		tf->lbam = (block >> 8) & 0xff;
 768		tf->lbal = block & 0xff;
 769
 770		tf->device = ATA_LBA;
 771		if (tf->flags & ATA_TFLAG_FUA)
 772			tf->device |= 1 << 7;
 773
 774		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 775			if (class == IOPRIO_CLASS_RT)
 776				tf->hob_nsect |= ATA_PRIO_HIGH <<
 777						 ATA_SHIFT_PRIO;
 778		}
 779	} else if (dev->flags & ATA_DFLAG_LBA) {
 780		tf->flags |= ATA_TFLAG_LBA;
 781
 782		if (lba_28_ok(block, n_block)) {
 783			/* use LBA28 */
 784			tf->device |= (block >> 24) & 0xf;
 785		} else if (lba_48_ok(block, n_block)) {
 786			if (!(dev->flags & ATA_DFLAG_LBA48))
 787				return -ERANGE;
 788
 789			/* use LBA48 */
 790			tf->flags |= ATA_TFLAG_LBA48;
 791
 792			tf->hob_nsect = (n_block >> 8) & 0xff;
 793
 794			tf->hob_lbah = (block >> 40) & 0xff;
 795			tf->hob_lbam = (block >> 32) & 0xff;
 796			tf->hob_lbal = (block >> 24) & 0xff;
 797		} else
 798			/* request too large even for LBA48 */
 799			return -ERANGE;
 800
 801		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 802			return -EINVAL;
 803
 804		tf->nsect = n_block & 0xff;
 805
 806		tf->lbah = (block >> 16) & 0xff;
 807		tf->lbam = (block >> 8) & 0xff;
 808		tf->lbal = block & 0xff;
 809
 810		tf->device |= ATA_LBA;
 811	} else {
 812		/* CHS */
 813		u32 sect, head, cyl, track;
 814
 815		/* The request -may- be too large for CHS addressing. */
 816		if (!lba_28_ok(block, n_block))
 817			return -ERANGE;
 818
 819		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 820			return -EINVAL;
 821
 822		/* Convert LBA to CHS */
 823		track = (u32)block / dev->sectors;
 824		cyl   = track / dev->heads;
 825		head  = track % dev->heads;
 826		sect  = (u32)block % dev->sectors + 1;
 827
 828		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 829			(u32)block, track, cyl, head, sect);
 830
 831		/* Check whether the converted CHS can fit.
 832		   Cylinder: 0-65535
 833		   Head: 0-15
 834		   Sector: 1-255*/
 835		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 836			return -ERANGE;
 837
 838		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 839		tf->lbal = sect;
 840		tf->lbam = cyl;
 841		tf->lbah = cyl >> 8;
 842		tf->device |= head;
 843	}
 844
 845	return 0;
 846}
 847
 848/**
 849 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 850 *	@pio_mask: pio_mask
 851 *	@mwdma_mask: mwdma_mask
 852 *	@udma_mask: udma_mask
 853 *
 854 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 855 *	unsigned int xfer_mask.
 856 *
 857 *	LOCKING:
 858 *	None.
 859 *
 860 *	RETURNS:
 861 *	Packed xfer_mask.
 862 */
 863unsigned long ata_pack_xfermask(unsigned long pio_mask,
 864				unsigned long mwdma_mask,
 865				unsigned long udma_mask)
 866{
 867	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 868		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 869		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 870}
 871
 872/**
 873 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 874 *	@xfer_mask: xfer_mask to unpack
 875 *	@pio_mask: resulting pio_mask
 876 *	@mwdma_mask: resulting mwdma_mask
 877 *	@udma_mask: resulting udma_mask
 878 *
 879 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 880 *	Any NULL destination masks will be ignored.
 881 */
 882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 883			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 884{
 885	if (pio_mask)
 886		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 887	if (mwdma_mask)
 888		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 889	if (udma_mask)
 890		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 891}
 892
 893static const struct ata_xfer_ent {
 894	int shift, bits;
 895	u8 base;
 896} ata_xfer_tbl[] = {
 897	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 898	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 899	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 900	{ -1, },
 901};
 902
 903/**
 904 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 905 *	@xfer_mask: xfer_mask of interest
 906 *
 907 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 908 *	bit of @xfer_mask is considered.
 909 *
 910 *	LOCKING:
 911 *	None.
 912 *
 913 *	RETURNS:
 914 *	Matching XFER_* value, 0xff if no match found.
 915 */
 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 917{
 918	int highbit = fls(xfer_mask) - 1;
 919	const struct ata_xfer_ent *ent;
 920
 921	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 922		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 923			return ent->base + highbit - ent->shift;
 924	return 0xff;
 925}
 926
 927/**
 928 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 929 *	@xfer_mode: XFER_* of interest
 930 *
 931 *	Return matching xfer_mask for @xfer_mode.
 932 *
 933 *	LOCKING:
 934 *	None.
 935 *
 936 *	RETURNS:
 937 *	Matching xfer_mask, 0 if no match found.
 938 */
 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 940{
 941	const struct ata_xfer_ent *ent;
 942
 943	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 944		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 945			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 946				& ~((1 << ent->shift) - 1);
 947	return 0;
 948}
 949
 950/**
 951 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 952 *	@xfer_mode: XFER_* of interest
 953 *
 954 *	Return matching xfer_shift for @xfer_mode.
 955 *
 956 *	LOCKING:
 957 *	None.
 958 *
 959 *	RETURNS:
 960 *	Matching xfer_shift, -1 if no match found.
 961 */
 962int ata_xfer_mode2shift(unsigned long xfer_mode)
 963{
 964	const struct ata_xfer_ent *ent;
 965
 966	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 967		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 968			return ent->shift;
 969	return -1;
 970}
 971
 972/**
 973 *	ata_mode_string - convert xfer_mask to string
 974 *	@xfer_mask: mask of bits supported; only highest bit counts.
 975 *
 976 *	Determine string which represents the highest speed
 977 *	(highest bit in @modemask).
 978 *
 979 *	LOCKING:
 980 *	None.
 981 *
 982 *	RETURNS:
 983 *	Constant C string representing highest speed listed in
 984 *	@mode_mask, or the constant C string "<n/a>".
 985 */
 986const char *ata_mode_string(unsigned long xfer_mask)
 987{
 988	static const char * const xfer_mode_str[] = {
 989		"PIO0",
 990		"PIO1",
 991		"PIO2",
 992		"PIO3",
 993		"PIO4",
 994		"PIO5",
 995		"PIO6",
 996		"MWDMA0",
 997		"MWDMA1",
 998		"MWDMA2",
 999		"MWDMA3",
1000		"MWDMA4",
1001		"UDMA/16",
1002		"UDMA/25",
1003		"UDMA/33",
1004		"UDMA/44",
1005		"UDMA/66",
1006		"UDMA/100",
1007		"UDMA/133",
1008		"UDMA7",
1009	};
1010	int highbit;
1011
1012	highbit = fls(xfer_mask) - 1;
1013	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014		return xfer_mode_str[highbit];
1015	return "<n/a>";
1016}
1017
1018const char *sata_spd_string(unsigned int spd)
1019{
1020	static const char * const spd_str[] = {
1021		"1.5 Gbps",
1022		"3.0 Gbps",
1023		"6.0 Gbps",
1024	};
1025
1026	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027		return "<unknown>";
1028	return spd_str[spd - 1];
1029}
1030
1031/**
1032 *	ata_dev_classify - determine device type based on ATA-spec signature
1033 *	@tf: ATA taskfile register set for device to be identified
1034 *
1035 *	Determine from taskfile register contents whether a device is
1036 *	ATA or ATAPI, as per "Signature and persistence" section
1037 *	of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 *	LOCKING:
1040 *	None.
1041 *
1042 *	RETURNS:
1043 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047{
1048	/* Apple's open source Darwin code hints that some devices only
1049	 * put a proper signature into the LBA mid/high registers,
1050	 * So, we only check those.  It's sufficient for uniqueness.
1051	 *
1052	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053	 * signatures for ATA and ATAPI devices attached on SerialATA,
1054	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055	 * spec has never mentioned about using different signatures
1056	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057	 * Multiplier specification began to use 0x69/0x96 to identify
1058	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060	 * 0x69/0x96 shortly and described them as reserved for
1061	 * SerialATA.
1062	 *
1063	 * We follow the current spec and consider that 0x69/0x96
1064	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066	 * SEMB signature.  This is worked around in
1067	 * ata_dev_read_id().
1068	 */
1069	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1070		DPRINTK("found ATA device by sig\n");
1071		return ATA_DEV_ATA;
1072	}
1073
1074	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1075		DPRINTK("found ATAPI device by sig\n");
1076		return ATA_DEV_ATAPI;
1077	}
1078
1079	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080		DPRINTK("found PMP device by sig\n");
1081		return ATA_DEV_PMP;
1082	}
1083
1084	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1085		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086		return ATA_DEV_SEMB;
1087	}
1088
1089	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1090		DPRINTK("found ZAC device by sig\n");
1091		return ATA_DEV_ZAC;
1092	}
1093
1094	DPRINTK("unknown device\n");
1095	return ATA_DEV_UNKNOWN;
1096}
1097
1098/**
1099 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1100 *	@id: IDENTIFY DEVICE results we will examine
1101 *	@s: string into which data is output
1102 *	@ofs: offset into identify device page
1103 *	@len: length of string to return. must be an even number.
1104 *
1105 *	The strings in the IDENTIFY DEVICE page are broken up into
1106 *	16-bit chunks.  Run through the string, and output each
1107 *	8-bit chunk linearly, regardless of platform.
1108 *
1109 *	LOCKING:
1110 *	caller.
1111 */
1112
1113void ata_id_string(const u16 *id, unsigned char *s,
1114		   unsigned int ofs, unsigned int len)
1115{
1116	unsigned int c;
1117
1118	BUG_ON(len & 1);
1119
1120	while (len > 0) {
1121		c = id[ofs] >> 8;
1122		*s = c;
1123		s++;
1124
1125		c = id[ofs] & 0xff;
1126		*s = c;
1127		s++;
1128
1129		ofs++;
1130		len -= 2;
1131	}
1132}
1133
1134/**
1135 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1136 *	@id: IDENTIFY DEVICE results we will examine
1137 *	@s: string into which data is output
1138 *	@ofs: offset into identify device page
1139 *	@len: length of string to return. must be an odd number.
1140 *
1141 *	This function is identical to ata_id_string except that it
1142 *	trims trailing spaces and terminates the resulting string with
1143 *	null.  @len must be actual maximum length (even number) + 1.
1144 *
1145 *	LOCKING:
1146 *	caller.
1147 */
1148void ata_id_c_string(const u16 *id, unsigned char *s,
1149		     unsigned int ofs, unsigned int len)
1150{
1151	unsigned char *p;
1152
1153	ata_id_string(id, s, ofs, len - 1);
1154
1155	p = s + strnlen(s, len - 1);
1156	while (p > s && p[-1] == ' ')
1157		p--;
1158	*p = '\0';
1159}
1160
1161static u64 ata_id_n_sectors(const u16 *id)
1162{
1163	if (ata_id_has_lba(id)) {
1164		if (ata_id_has_lba48(id))
1165			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1166		else
1167			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1168	} else {
1169		if (ata_id_current_chs_valid(id))
1170			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1171			       id[ATA_ID_CUR_SECTORS];
1172		else
1173			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1174			       id[ATA_ID_SECTORS];
1175	}
1176}
1177
1178u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1179{
1180	u64 sectors = 0;
1181
1182	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1183	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1184	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1185	sectors |= (tf->lbah & 0xff) << 16;
1186	sectors |= (tf->lbam & 0xff) << 8;
1187	sectors |= (tf->lbal & 0xff);
1188
1189	return sectors;
1190}
1191
1192u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1193{
1194	u64 sectors = 0;
1195
1196	sectors |= (tf->device & 0x0f) << 24;
1197	sectors |= (tf->lbah & 0xff) << 16;
1198	sectors |= (tf->lbam & 0xff) << 8;
1199	sectors |= (tf->lbal & 0xff);
1200
1201	return sectors;
1202}
1203
1204/**
1205 *	ata_read_native_max_address - Read native max address
1206 *	@dev: target device
1207 *	@max_sectors: out parameter for the result native max address
1208 *
1209 *	Perform an LBA48 or LBA28 native size query upon the device in
1210 *	question.
1211 *
1212 *	RETURNS:
1213 *	0 on success, -EACCES if command is aborted by the drive.
1214 *	-EIO on other errors.
1215 */
1216static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1217{
1218	unsigned int err_mask;
1219	struct ata_taskfile tf;
1220	int lba48 = ata_id_has_lba48(dev->id);
1221
1222	ata_tf_init(dev, &tf);
1223
1224	/* always clear all address registers */
1225	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1226
1227	if (lba48) {
1228		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1229		tf.flags |= ATA_TFLAG_LBA48;
1230	} else
1231		tf.command = ATA_CMD_READ_NATIVE_MAX;
1232
1233	tf.protocol = ATA_PROT_NODATA;
1234	tf.device |= ATA_LBA;
1235
1236	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1237	if (err_mask) {
1238		ata_dev_warn(dev,
1239			     "failed to read native max address (err_mask=0x%x)\n",
1240			     err_mask);
1241		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1242			return -EACCES;
1243		return -EIO;
1244	}
1245
1246	if (lba48)
1247		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1248	else
1249		*max_sectors = ata_tf_to_lba(&tf) + 1;
1250	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1251		(*max_sectors)--;
1252	return 0;
1253}
1254
1255/**
1256 *	ata_set_max_sectors - Set max sectors
1257 *	@dev: target device
1258 *	@new_sectors: new max sectors value to set for the device
1259 *
1260 *	Set max sectors of @dev to @new_sectors.
1261 *
1262 *	RETURNS:
1263 *	0 on success, -EACCES if command is aborted or denied (due to
1264 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1265 *	errors.
1266 */
1267static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1268{
1269	unsigned int err_mask;
1270	struct ata_taskfile tf;
1271	int lba48 = ata_id_has_lba48(dev->id);
1272
1273	new_sectors--;
1274
1275	ata_tf_init(dev, &tf);
1276
1277	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1278
1279	if (lba48) {
1280		tf.command = ATA_CMD_SET_MAX_EXT;
1281		tf.flags |= ATA_TFLAG_LBA48;
1282
1283		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1284		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1285		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1286	} else {
1287		tf.command = ATA_CMD_SET_MAX;
1288
1289		tf.device |= (new_sectors >> 24) & 0xf;
1290	}
1291
1292	tf.protocol = ATA_PROT_NODATA;
1293	tf.device |= ATA_LBA;
1294
1295	tf.lbal = (new_sectors >> 0) & 0xff;
1296	tf.lbam = (new_sectors >> 8) & 0xff;
1297	tf.lbah = (new_sectors >> 16) & 0xff;
1298
1299	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1300	if (err_mask) {
1301		ata_dev_warn(dev,
1302			     "failed to set max address (err_mask=0x%x)\n",
1303			     err_mask);
1304		if (err_mask == AC_ERR_DEV &&
1305		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1306			return -EACCES;
1307		return -EIO;
1308	}
1309
1310	return 0;
1311}
1312
1313/**
1314 *	ata_hpa_resize		-	Resize a device with an HPA set
1315 *	@dev: Device to resize
1316 *
1317 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1318 *	it if required to the full size of the media. The caller must check
1319 *	the drive has the HPA feature set enabled.
1320 *
1321 *	RETURNS:
1322 *	0 on success, -errno on failure.
1323 */
1324static int ata_hpa_resize(struct ata_device *dev)
1325{
1326	struct ata_eh_context *ehc = &dev->link->eh_context;
1327	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1328	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1329	u64 sectors = ata_id_n_sectors(dev->id);
1330	u64 native_sectors;
1331	int rc;
1332
1333	/* do we need to do it? */
1334	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1335	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1336	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1337		return 0;
1338
1339	/* read native max address */
1340	rc = ata_read_native_max_address(dev, &native_sectors);
1341	if (rc) {
1342		/* If device aborted the command or HPA isn't going to
1343		 * be unlocked, skip HPA resizing.
1344		 */
1345		if (rc == -EACCES || !unlock_hpa) {
1346			ata_dev_warn(dev,
1347				     "HPA support seems broken, skipping HPA handling\n");
1348			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1349
1350			/* we can continue if device aborted the command */
1351			if (rc == -EACCES)
1352				rc = 0;
1353		}
1354
1355		return rc;
1356	}
1357	dev->n_native_sectors = native_sectors;
1358
1359	/* nothing to do? */
1360	if (native_sectors <= sectors || !unlock_hpa) {
1361		if (!print_info || native_sectors == sectors)
1362			return 0;
1363
1364		if (native_sectors > sectors)
1365			ata_dev_info(dev,
1366				"HPA detected: current %llu, native %llu\n",
1367				(unsigned long long)sectors,
1368				(unsigned long long)native_sectors);
1369		else if (native_sectors < sectors)
1370			ata_dev_warn(dev,
1371				"native sectors (%llu) is smaller than sectors (%llu)\n",
1372				(unsigned long long)native_sectors,
1373				(unsigned long long)sectors);
1374		return 0;
1375	}
1376
1377	/* let's unlock HPA */
1378	rc = ata_set_max_sectors(dev, native_sectors);
1379	if (rc == -EACCES) {
1380		/* if device aborted the command, skip HPA resizing */
1381		ata_dev_warn(dev,
1382			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1383			     (unsigned long long)sectors,
1384			     (unsigned long long)native_sectors);
1385		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1386		return 0;
1387	} else if (rc)
1388		return rc;
1389
1390	/* re-read IDENTIFY data */
1391	rc = ata_dev_reread_id(dev, 0);
1392	if (rc) {
1393		ata_dev_err(dev,
1394			    "failed to re-read IDENTIFY data after HPA resizing\n");
1395		return rc;
1396	}
1397
1398	if (print_info) {
1399		u64 new_sectors = ata_id_n_sectors(dev->id);
1400		ata_dev_info(dev,
1401			"HPA unlocked: %llu -> %llu, native %llu\n",
1402			(unsigned long long)sectors,
1403			(unsigned long long)new_sectors,
1404			(unsigned long long)native_sectors);
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1412 *	@id: IDENTIFY DEVICE page to dump
1413 *
1414 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1415 *	page.
1416 *
1417 *	LOCKING:
1418 *	caller.
1419 */
1420
1421static inline void ata_dump_id(const u16 *id)
1422{
1423	DPRINTK("49==0x%04x  "
1424		"53==0x%04x  "
1425		"63==0x%04x  "
1426		"64==0x%04x  "
1427		"75==0x%04x  \n",
1428		id[49],
1429		id[53],
1430		id[63],
1431		id[64],
1432		id[75]);
1433	DPRINTK("80==0x%04x  "
1434		"81==0x%04x  "
1435		"82==0x%04x  "
1436		"83==0x%04x  "
1437		"84==0x%04x  \n",
1438		id[80],
1439		id[81],
1440		id[82],
1441		id[83],
1442		id[84]);
1443	DPRINTK("88==0x%04x  "
1444		"93==0x%04x\n",
1445		id[88],
1446		id[93]);
1447}
1448
1449/**
1450 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1451 *	@id: IDENTIFY data to compute xfer mask from
1452 *
1453 *	Compute the xfermask for this device. This is not as trivial
1454 *	as it seems if we must consider early devices correctly.
1455 *
1456 *	FIXME: pre IDE drive timing (do we care ?).
1457 *
1458 *	LOCKING:
1459 *	None.
1460 *
1461 *	RETURNS:
1462 *	Computed xfermask
1463 */
1464unsigned long ata_id_xfermask(const u16 *id)
1465{
1466	unsigned long pio_mask, mwdma_mask, udma_mask;
1467
1468	/* Usual case. Word 53 indicates word 64 is valid */
1469	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1470		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1471		pio_mask <<= 3;
1472		pio_mask |= 0x7;
1473	} else {
1474		/* If word 64 isn't valid then Word 51 high byte holds
1475		 * the PIO timing number for the maximum. Turn it into
1476		 * a mask.
1477		 */
1478		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1479		if (mode < 5)	/* Valid PIO range */
1480			pio_mask = (2 << mode) - 1;
1481		else
1482			pio_mask = 1;
1483
1484		/* But wait.. there's more. Design your standards by
1485		 * committee and you too can get a free iordy field to
1486		 * process. However its the speeds not the modes that
1487		 * are supported... Note drivers using the timing API
1488		 * will get this right anyway
1489		 */
1490	}
1491
1492	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1493
1494	if (ata_id_is_cfa(id)) {
1495		/*
1496		 *	Process compact flash extended modes
1497		 */
1498		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1499		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1500
1501		if (pio)
1502			pio_mask |= (1 << 5);
1503		if (pio > 1)
1504			pio_mask |= (1 << 6);
1505		if (dma)
1506			mwdma_mask |= (1 << 3);
1507		if (dma > 1)
1508			mwdma_mask |= (1 << 4);
1509	}
1510
1511	udma_mask = 0;
1512	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1513		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1514
1515	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1516}
1517
1518static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1519{
1520	struct completion *waiting = qc->private_data;
1521
1522	complete(waiting);
1523}
1524
1525/**
1526 *	ata_exec_internal_sg - execute libata internal command
1527 *	@dev: Device to which the command is sent
1528 *	@tf: Taskfile registers for the command and the result
1529 *	@cdb: CDB for packet command
1530 *	@dma_dir: Data transfer direction of the command
1531 *	@sgl: sg list for the data buffer of the command
1532 *	@n_elem: Number of sg entries
1533 *	@timeout: Timeout in msecs (0 for default)
1534 *
1535 *	Executes libata internal command with timeout.  @tf contains
1536 *	command on entry and result on return.  Timeout and error
1537 *	conditions are reported via return value.  No recovery action
1538 *	is taken after a command times out.  It's caller's duty to
1539 *	clean up after timeout.
1540 *
1541 *	LOCKING:
1542 *	None.  Should be called with kernel context, might sleep.
1543 *
1544 *	RETURNS:
1545 *	Zero on success, AC_ERR_* mask on failure
1546 */
1547unsigned ata_exec_internal_sg(struct ata_device *dev,
1548			      struct ata_taskfile *tf, const u8 *cdb,
1549			      int dma_dir, struct scatterlist *sgl,
1550			      unsigned int n_elem, unsigned long timeout)
1551{
1552	struct ata_link *link = dev->link;
1553	struct ata_port *ap = link->ap;
1554	u8 command = tf->command;
1555	int auto_timeout = 0;
1556	struct ata_queued_cmd *qc;
1557	unsigned int preempted_tag;
1558	u32 preempted_sactive;
1559	u64 preempted_qc_active;
1560	int preempted_nr_active_links;
1561	DECLARE_COMPLETION_ONSTACK(wait);
1562	unsigned long flags;
1563	unsigned int err_mask;
1564	int rc;
1565
1566	spin_lock_irqsave(ap->lock, flags);
1567
1568	/* no internal command while frozen */
1569	if (ap->pflags & ATA_PFLAG_FROZEN) {
1570		spin_unlock_irqrestore(ap->lock, flags);
1571		return AC_ERR_SYSTEM;
1572	}
1573
1574	/* initialize internal qc */
1575	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1576
1577	qc->tag = ATA_TAG_INTERNAL;
1578	qc->hw_tag = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1579	qc->scsicmd = NULL;
1580	qc->ap = ap;
1581	qc->dev = dev;
1582	ata_qc_reinit(qc);
1583
1584	preempted_tag = link->active_tag;
1585	preempted_sactive = link->sactive;
1586	preempted_qc_active = ap->qc_active;
1587	preempted_nr_active_links = ap->nr_active_links;
1588	link->active_tag = ATA_TAG_POISON;
1589	link->sactive = 0;
1590	ap->qc_active = 0;
1591	ap->nr_active_links = 0;
1592
1593	/* prepare & issue qc */
1594	qc->tf = *tf;
1595	if (cdb)
1596		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1597
1598	/* some SATA bridges need us to indicate data xfer direction */
1599	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1600	    dma_dir == DMA_FROM_DEVICE)
1601		qc->tf.feature |= ATAPI_DMADIR;
1602
1603	qc->flags |= ATA_QCFLAG_RESULT_TF;
1604	qc->dma_dir = dma_dir;
1605	if (dma_dir != DMA_NONE) {
1606		unsigned int i, buflen = 0;
1607		struct scatterlist *sg;
1608
1609		for_each_sg(sgl, sg, n_elem, i)
1610			buflen += sg->length;
1611
1612		ata_sg_init(qc, sgl, n_elem);
1613		qc->nbytes = buflen;
1614	}
1615
1616	qc->private_data = &wait;
1617	qc->complete_fn = ata_qc_complete_internal;
1618
1619	ata_qc_issue(qc);
1620
1621	spin_unlock_irqrestore(ap->lock, flags);
1622
1623	if (!timeout) {
1624		if (ata_probe_timeout)
1625			timeout = ata_probe_timeout * 1000;
1626		else {
1627			timeout = ata_internal_cmd_timeout(dev, command);
1628			auto_timeout = 1;
1629		}
1630	}
1631
1632	if (ap->ops->error_handler)
1633		ata_eh_release(ap);
1634
1635	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636
1637	if (ap->ops->error_handler)
1638		ata_eh_acquire(ap);
1639
1640	ata_sff_flush_pio_task(ap);
1641
1642	if (!rc) {
1643		spin_lock_irqsave(ap->lock, flags);
1644
1645		/* We're racing with irq here.  If we lose, the
1646		 * following test prevents us from completing the qc
1647		 * twice.  If we win, the port is frozen and will be
1648		 * cleaned up by ->post_internal_cmd().
1649		 */
1650		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1651			qc->err_mask |= AC_ERR_TIMEOUT;
1652
1653			if (ap->ops->error_handler)
1654				ata_port_freeze(ap);
1655			else
1656				ata_qc_complete(qc);
1657
1658			if (ata_msg_warn(ap))
1659				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1660					     command);
1661		}
1662
1663		spin_unlock_irqrestore(ap->lock, flags);
1664	}
1665
1666	/* do post_internal_cmd */
1667	if (ap->ops->post_internal_cmd)
1668		ap->ops->post_internal_cmd(qc);
1669
1670	/* perform minimal error analysis */
1671	if (qc->flags & ATA_QCFLAG_FAILED) {
1672		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1673			qc->err_mask |= AC_ERR_DEV;
1674
1675		if (!qc->err_mask)
1676			qc->err_mask |= AC_ERR_OTHER;
1677
1678		if (qc->err_mask & ~AC_ERR_OTHER)
1679			qc->err_mask &= ~AC_ERR_OTHER;
1680	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1681		qc->result_tf.command |= ATA_SENSE;
1682	}
1683
1684	/* finish up */
1685	spin_lock_irqsave(ap->lock, flags);
1686
1687	*tf = qc->result_tf;
1688	err_mask = qc->err_mask;
1689
1690	ata_qc_free(qc);
1691	link->active_tag = preempted_tag;
1692	link->sactive = preempted_sactive;
1693	ap->qc_active = preempted_qc_active;
1694	ap->nr_active_links = preempted_nr_active_links;
1695
1696	spin_unlock_irqrestore(ap->lock, flags);
1697
1698	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699		ata_internal_cmd_timed_out(dev, command);
1700
1701	return err_mask;
1702}
1703
1704/**
1705 *	ata_exec_internal - execute libata internal command
1706 *	@dev: Device to which the command is sent
1707 *	@tf: Taskfile registers for the command and the result
1708 *	@cdb: CDB for packet command
1709 *	@dma_dir: Data transfer direction of the command
1710 *	@buf: Data buffer of the command
1711 *	@buflen: Length of data buffer
1712 *	@timeout: Timeout in msecs (0 for default)
1713 *
1714 *	Wrapper around ata_exec_internal_sg() which takes simple
1715 *	buffer instead of sg list.
1716 *
1717 *	LOCKING:
1718 *	None.  Should be called with kernel context, might sleep.
1719 *
1720 *	RETURNS:
1721 *	Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724			   struct ata_taskfile *tf, const u8 *cdb,
1725			   int dma_dir, void *buf, unsigned int buflen,
1726			   unsigned long timeout)
1727{
1728	struct scatterlist *psg = NULL, sg;
1729	unsigned int n_elem = 0;
1730
1731	if (dma_dir != DMA_NONE) {
1732		WARN_ON(!buf);
1733		sg_init_one(&sg, buf, buflen);
1734		psg = &sg;
1735		n_elem++;
1736	}
1737
1738	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739				    timeout);
1740}
1741
1742/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743 *	ata_pio_need_iordy	-	check if iordy needed
1744 *	@adev: ATA device
1745 *
1746 *	Check if the current speed of the device requires IORDY. Used
1747 *	by various controllers for chip configuration.
1748 */
1749unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1750{
1751	/* Don't set IORDY if we're preparing for reset.  IORDY may
1752	 * lead to controller lock up on certain controllers if the
1753	 * port is not occupied.  See bko#11703 for details.
1754	 */
1755	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1756		return 0;
1757	/* Controller doesn't support IORDY.  Probably a pointless
1758	 * check as the caller should know this.
1759	 */
1760	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1761		return 0;
1762	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1763	if (ata_id_is_cfa(adev->id)
1764	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1765		return 0;
1766	/* PIO3 and higher it is mandatory */
1767	if (adev->pio_mode > XFER_PIO_2)
1768		return 1;
1769	/* We turn it on when possible */
1770	if (ata_id_has_iordy(adev->id))
1771		return 1;
1772	return 0;
1773}
1774
1775/**
1776 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1777 *	@adev: ATA device
1778 *
1779 *	Compute the highest mode possible if we are not using iordy. Return
1780 *	-1 if no iordy mode is available.
1781 */
1782static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1783{
1784	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1785	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1786		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1787		/* Is the speed faster than the drive allows non IORDY ? */
1788		if (pio) {
1789			/* This is cycle times not frequency - watch the logic! */
1790			if (pio > 240)	/* PIO2 is 240nS per cycle */
1791				return 3 << ATA_SHIFT_PIO;
1792			return 7 << ATA_SHIFT_PIO;
1793		}
1794	}
1795	return 3 << ATA_SHIFT_PIO;
1796}
1797
1798/**
1799 *	ata_do_dev_read_id		-	default ID read method
1800 *	@dev: device
1801 *	@tf: proposed taskfile
1802 *	@id: data buffer
1803 *
1804 *	Issue the identify taskfile and hand back the buffer containing
1805 *	identify data. For some RAID controllers and for pre ATA devices
1806 *	this function is wrapped or replaced by the driver
1807 */
1808unsigned int ata_do_dev_read_id(struct ata_device *dev,
1809					struct ata_taskfile *tf, u16 *id)
1810{
1811	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1812				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1813}
1814
1815/**
1816 *	ata_dev_read_id - Read ID data from the specified device
1817 *	@dev: target device
1818 *	@p_class: pointer to class of the target device (may be changed)
1819 *	@flags: ATA_READID_* flags
1820 *	@id: buffer to read IDENTIFY data into
1821 *
1822 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1823 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1824 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1825 *	for pre-ATA4 drives.
1826 *
1827 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1828 *	now we abort if we hit that case.
1829 *
1830 *	LOCKING:
1831 *	Kernel thread context (may sleep)
1832 *
1833 *	RETURNS:
1834 *	0 on success, -errno otherwise.
1835 */
1836int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1837		    unsigned int flags, u16 *id)
1838{
1839	struct ata_port *ap = dev->link->ap;
1840	unsigned int class = *p_class;
1841	struct ata_taskfile tf;
1842	unsigned int err_mask = 0;
1843	const char *reason;
1844	bool is_semb = class == ATA_DEV_SEMB;
1845	int may_fallback = 1, tried_spinup = 0;
1846	int rc;
1847
1848	if (ata_msg_ctl(ap))
1849		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1850
1851retry:
1852	ata_tf_init(dev, &tf);
1853
1854	switch (class) {
1855	case ATA_DEV_SEMB:
1856		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1857		/* fall through */
1858	case ATA_DEV_ATA:
1859	case ATA_DEV_ZAC:
1860		tf.command = ATA_CMD_ID_ATA;
1861		break;
1862	case ATA_DEV_ATAPI:
1863		tf.command = ATA_CMD_ID_ATAPI;
1864		break;
1865	default:
1866		rc = -ENODEV;
1867		reason = "unsupported class";
1868		goto err_out;
1869	}
1870
1871	tf.protocol = ATA_PROT_PIO;
1872
1873	/* Some devices choke if TF registers contain garbage.  Make
1874	 * sure those are properly initialized.
1875	 */
1876	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1877
1878	/* Device presence detection is unreliable on some
1879	 * controllers.  Always poll IDENTIFY if available.
1880	 */
1881	tf.flags |= ATA_TFLAG_POLLING;
1882
1883	if (ap->ops->read_id)
1884		err_mask = ap->ops->read_id(dev, &tf, id);
1885	else
1886		err_mask = ata_do_dev_read_id(dev, &tf, id);
1887
1888	if (err_mask) {
1889		if (err_mask & AC_ERR_NODEV_HINT) {
1890			ata_dev_dbg(dev, "NODEV after polling detection\n");
1891			return -ENOENT;
1892		}
1893
1894		if (is_semb) {
1895			ata_dev_info(dev,
1896		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1897			/* SEMB is not supported yet */
1898			*p_class = ATA_DEV_SEMB_UNSUP;
1899			return 0;
1900		}
1901
1902		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1903			/* Device or controller might have reported
1904			 * the wrong device class.  Give a shot at the
1905			 * other IDENTIFY if the current one is
1906			 * aborted by the device.
1907			 */
1908			if (may_fallback) {
1909				may_fallback = 0;
1910
1911				if (class == ATA_DEV_ATA)
1912					class = ATA_DEV_ATAPI;
1913				else
1914					class = ATA_DEV_ATA;
1915				goto retry;
1916			}
1917
1918			/* Control reaches here iff the device aborted
1919			 * both flavors of IDENTIFYs which happens
1920			 * sometimes with phantom devices.
1921			 */
1922			ata_dev_dbg(dev,
1923				    "both IDENTIFYs aborted, assuming NODEV\n");
1924			return -ENOENT;
1925		}
1926
1927		rc = -EIO;
1928		reason = "I/O error";
1929		goto err_out;
1930	}
1931
1932	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1933		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1934			    "class=%d may_fallback=%d tried_spinup=%d\n",
1935			    class, may_fallback, tried_spinup);
1936		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1937			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1938	}
1939
1940	/* Falling back doesn't make sense if ID data was read
1941	 * successfully at least once.
1942	 */
1943	may_fallback = 0;
1944
1945	swap_buf_le16(id, ATA_ID_WORDS);
1946
1947	/* sanity check */
1948	rc = -EINVAL;
1949	reason = "device reports invalid type";
1950
1951	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1952		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1953			goto err_out;
1954		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1955							ata_id_is_ata(id)) {
1956			ata_dev_dbg(dev,
1957				"host indicates ignore ATA devices, ignored\n");
1958			return -ENOENT;
1959		}
1960	} else {
1961		if (ata_id_is_ata(id))
1962			goto err_out;
1963	}
1964
1965	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1966		tried_spinup = 1;
1967		/*
1968		 * Drive powered-up in standby mode, and requires a specific
1969		 * SET_FEATURES spin-up subcommand before it will accept
1970		 * anything other than the original IDENTIFY command.
1971		 */
1972		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1973		if (err_mask && id[2] != 0x738c) {
1974			rc = -EIO;
1975			reason = "SPINUP failed";
1976			goto err_out;
1977		}
1978		/*
1979		 * If the drive initially returned incomplete IDENTIFY info,
1980		 * we now must reissue the IDENTIFY command.
1981		 */
1982		if (id[2] == 0x37c8)
1983			goto retry;
1984	}
1985
1986	if ((flags & ATA_READID_POSTRESET) &&
1987	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1988		/*
1989		 * The exact sequence expected by certain pre-ATA4 drives is:
1990		 * SRST RESET
1991		 * IDENTIFY (optional in early ATA)
1992		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1993		 * anything else..
1994		 * Some drives were very specific about that exact sequence.
1995		 *
1996		 * Note that ATA4 says lba is mandatory so the second check
1997		 * should never trigger.
1998		 */
1999		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2000			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2001			if (err_mask) {
2002				rc = -EIO;
2003				reason = "INIT_DEV_PARAMS failed";
2004				goto err_out;
2005			}
2006
2007			/* current CHS translation info (id[53-58]) might be
2008			 * changed. reread the identify device info.
2009			 */
2010			flags &= ~ATA_READID_POSTRESET;
2011			goto retry;
2012		}
2013	}
2014
2015	*p_class = class;
2016
2017	return 0;
2018
2019 err_out:
2020	if (ata_msg_warn(ap))
2021		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2022			     reason, err_mask);
2023	return rc;
2024}
2025
2026/**
2027 *	ata_read_log_page - read a specific log page
2028 *	@dev: target device
2029 *	@log: log to read
2030 *	@page: page to read
2031 *	@buf: buffer to store read page
2032 *	@sectors: number of sectors to read
2033 *
2034 *	Read log page using READ_LOG_EXT command.
2035 *
2036 *	LOCKING:
2037 *	Kernel thread context (may sleep).
2038 *
2039 *	RETURNS:
2040 *	0 on success, AC_ERR_* mask otherwise.
2041 */
2042unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2043			       u8 page, void *buf, unsigned int sectors)
2044{
2045	unsigned long ap_flags = dev->link->ap->flags;
2046	struct ata_taskfile tf;
2047	unsigned int err_mask;
2048	bool dma = false;
2049
2050	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2051
2052	/*
2053	 * Return error without actually issuing the command on controllers
2054	 * which e.g. lockup on a read log page.
2055	 */
2056	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2057		return AC_ERR_DEV;
2058
2059retry:
2060	ata_tf_init(dev, &tf);
2061	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2062	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2063		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2064		tf.protocol = ATA_PROT_DMA;
2065		dma = true;
2066	} else {
2067		tf.command = ATA_CMD_READ_LOG_EXT;
2068		tf.protocol = ATA_PROT_PIO;
2069		dma = false;
2070	}
2071	tf.lbal = log;
2072	tf.lbam = page;
2073	tf.nsect = sectors;
2074	tf.hob_nsect = sectors >> 8;
2075	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2076
2077	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2078				     buf, sectors * ATA_SECT_SIZE, 0);
2079
2080	if (err_mask && dma) {
2081		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2082		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2083		goto retry;
2084	}
2085
2086	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2087	return err_mask;
2088}
2089
2090static bool ata_log_supported(struct ata_device *dev, u8 log)
2091{
2092	struct ata_port *ap = dev->link->ap;
2093
2094	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2095		return false;
2096	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2097}
2098
2099static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2100{
2101	struct ata_port *ap = dev->link->ap;
2102	unsigned int err, i;
2103
2104	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2105		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2106		return false;
2107	}
2108
2109	/*
2110	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2111	 * supported.
2112	 */
2113	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2114				1);
2115	if (err) {
2116		ata_dev_info(dev,
2117			     "failed to get Device Identify Log Emask 0x%x\n",
2118			     err);
2119		return false;
2120	}
2121
2122	for (i = 0; i < ap->sector_buf[8]; i++) {
2123		if (ap->sector_buf[9 + i] == page)
2124			return true;
2125	}
2126
2127	return false;
2128}
2129
2130static int ata_do_link_spd_horkage(struct ata_device *dev)
2131{
2132	struct ata_link *plink = ata_dev_phys_link(dev);
2133	u32 target, target_limit;
2134
2135	if (!sata_scr_valid(plink))
2136		return 0;
2137
2138	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2139		target = 1;
2140	else
2141		return 0;
2142
2143	target_limit = (1 << target) - 1;
2144
2145	/* if already on stricter limit, no need to push further */
2146	if (plink->sata_spd_limit <= target_limit)
2147		return 0;
2148
2149	plink->sata_spd_limit = target_limit;
2150
2151	/* Request another EH round by returning -EAGAIN if link is
2152	 * going faster than the target speed.  Forward progress is
2153	 * guaranteed by setting sata_spd_limit to target_limit above.
2154	 */
2155	if (plink->sata_spd > target) {
2156		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2157			     sata_spd_string(target));
2158		return -EAGAIN;
2159	}
2160	return 0;
2161}
2162
2163static inline u8 ata_dev_knobble(struct ata_device *dev)
2164{
2165	struct ata_port *ap = dev->link->ap;
2166
2167	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2168		return 0;
2169
2170	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2171}
2172
2173static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2174{
2175	struct ata_port *ap = dev->link->ap;
2176	unsigned int err_mask;
2177
2178	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2179		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2180		return;
2181	}
2182	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2183				     0, ap->sector_buf, 1);
2184	if (err_mask) {
2185		ata_dev_dbg(dev,
2186			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2187			    err_mask);
2188	} else {
2189		u8 *cmds = dev->ncq_send_recv_cmds;
2190
2191		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2192		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2193
2194		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2195			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2196			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2197				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2198		}
2199	}
2200}
2201
2202static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2203{
2204	struct ata_port *ap = dev->link->ap;
2205	unsigned int err_mask;
2206
2207	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2208		ata_dev_warn(dev,
2209			     "NCQ Send/Recv Log not supported\n");
2210		return;
2211	}
2212	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2213				     0, ap->sector_buf, 1);
2214	if (err_mask) {
2215		ata_dev_dbg(dev,
2216			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2217			    err_mask);
2218	} else {
2219		u8 *cmds = dev->ncq_non_data_cmds;
2220
2221		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2222	}
2223}
2224
2225static void ata_dev_config_ncq_prio(struct ata_device *dev)
2226{
2227	struct ata_port *ap = dev->link->ap;
2228	unsigned int err_mask;
2229
2230	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2231		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2232		return;
2233	}
2234
2235	err_mask = ata_read_log_page(dev,
2236				     ATA_LOG_IDENTIFY_DEVICE,
2237				     ATA_LOG_SATA_SETTINGS,
2238				     ap->sector_buf,
2239				     1);
2240	if (err_mask) {
2241		ata_dev_dbg(dev,
2242			    "failed to get Identify Device data, Emask 0x%x\n",
2243			    err_mask);
2244		return;
2245	}
2246
2247	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2248		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2249	} else {
2250		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2251		ata_dev_dbg(dev, "SATA page does not support priority\n");
2252	}
2253
2254}
2255
2256static int ata_dev_config_ncq(struct ata_device *dev,
2257			       char *desc, size_t desc_sz)
2258{
2259	struct ata_port *ap = dev->link->ap;
2260	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2261	unsigned int err_mask;
2262	char *aa_desc = "";
2263
2264	if (!ata_id_has_ncq(dev->id)) {
2265		desc[0] = '\0';
2266		return 0;
2267	}
2268	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2269		snprintf(desc, desc_sz, "NCQ (not used)");
2270		return 0;
2271	}
2272	if (ap->flags & ATA_FLAG_NCQ) {
2273		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2274		dev->flags |= ATA_DFLAG_NCQ;
2275	}
2276
2277	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2278		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2279		ata_id_has_fpdma_aa(dev->id)) {
2280		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2281			SATA_FPDMA_AA);
2282		if (err_mask) {
2283			ata_dev_err(dev,
2284				    "failed to enable AA (error_mask=0x%x)\n",
2285				    err_mask);
2286			if (err_mask != AC_ERR_DEV) {
2287				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2288				return -EIO;
2289			}
2290		} else
2291			aa_desc = ", AA";
2292	}
2293
2294	if (hdepth >= ddepth)
2295		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2296	else
2297		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2298			ddepth, aa_desc);
2299
2300	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2301		if (ata_id_has_ncq_send_and_recv(dev->id))
2302			ata_dev_config_ncq_send_recv(dev);
2303		if (ata_id_has_ncq_non_data(dev->id))
2304			ata_dev_config_ncq_non_data(dev);
2305		if (ata_id_has_ncq_prio(dev->id))
2306			ata_dev_config_ncq_prio(dev);
2307	}
 
 
2308
2309	return 0;
2310}
2311
2312static void ata_dev_config_sense_reporting(struct ata_device *dev)
2313{
2314	unsigned int err_mask;
2315
2316	if (!ata_id_has_sense_reporting(dev->id))
2317		return;
2318
2319	if (ata_id_sense_reporting_enabled(dev->id))
2320		return;
2321
2322	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2323	if (err_mask) {
2324		ata_dev_dbg(dev,
2325			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2326			    err_mask);
2327	}
2328}
2329
2330static void ata_dev_config_zac(struct ata_device *dev)
2331{
2332	struct ata_port *ap = dev->link->ap;
2333	unsigned int err_mask;
2334	u8 *identify_buf = ap->sector_buf;
2335
2336	dev->zac_zones_optimal_open = U32_MAX;
2337	dev->zac_zones_optimal_nonseq = U32_MAX;
2338	dev->zac_zones_max_open = U32_MAX;
2339
2340	/*
2341	 * Always set the 'ZAC' flag for Host-managed devices.
2342	 */
2343	if (dev->class == ATA_DEV_ZAC)
2344		dev->flags |= ATA_DFLAG_ZAC;
2345	else if (ata_id_zoned_cap(dev->id) == 0x01)
2346		/*
2347		 * Check for host-aware devices.
2348		 */
2349		dev->flags |= ATA_DFLAG_ZAC;
2350
2351	if (!(dev->flags & ATA_DFLAG_ZAC))
2352		return;
2353
2354	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2355		ata_dev_warn(dev,
2356			     "ATA Zoned Information Log not supported\n");
2357		return;
2358	}
2359
2360	/*
2361	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2362	 */
2363	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2364				     ATA_LOG_ZONED_INFORMATION,
2365				     identify_buf, 1);
2366	if (!err_mask) {
2367		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2368
2369		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2370		if ((zoned_cap >> 63))
2371			dev->zac_zoned_cap = (zoned_cap & 1);
2372		opt_open = get_unaligned_le64(&identify_buf[24]);
2373		if ((opt_open >> 63))
2374			dev->zac_zones_optimal_open = (u32)opt_open;
2375		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2376		if ((opt_nonseq >> 63))
2377			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2378		max_open = get_unaligned_le64(&identify_buf[40]);
2379		if ((max_open >> 63))
2380			dev->zac_zones_max_open = (u32)max_open;
2381	}
2382}
2383
2384static void ata_dev_config_trusted(struct ata_device *dev)
2385{
2386	struct ata_port *ap = dev->link->ap;
2387	u64 trusted_cap;
2388	unsigned int err;
2389
2390	if (!ata_id_has_trusted(dev->id))
2391		return;
2392
2393	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2394		ata_dev_warn(dev,
2395			     "Security Log not supported\n");
2396		return;
2397	}
2398
2399	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2400			ap->sector_buf, 1);
2401	if (err) {
2402		ata_dev_dbg(dev,
2403			    "failed to read Security Log, Emask 0x%x\n", err);
2404		return;
2405	}
2406
2407	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2408	if (!(trusted_cap & (1ULL << 63))) {
2409		ata_dev_dbg(dev,
2410			    "Trusted Computing capability qword not valid!\n");
2411		return;
2412	}
2413
2414	if (trusted_cap & (1 << 0))
2415		dev->flags |= ATA_DFLAG_TRUSTED;
2416}
2417
2418/**
2419 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2420 *	@dev: Target device to configure
2421 *
2422 *	Configure @dev according to @dev->id.  Generic and low-level
2423 *	driver specific fixups are also applied.
2424 *
2425 *	LOCKING:
2426 *	Kernel thread context (may sleep)
2427 *
2428 *	RETURNS:
2429 *	0 on success, -errno otherwise
2430 */
2431int ata_dev_configure(struct ata_device *dev)
2432{
2433	struct ata_port *ap = dev->link->ap;
2434	struct ata_eh_context *ehc = &dev->link->eh_context;
2435	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2436	const u16 *id = dev->id;
2437	unsigned long xfer_mask;
2438	unsigned int err_mask;
2439	char revbuf[7];		/* XYZ-99\0 */
2440	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2441	char modelbuf[ATA_ID_PROD_LEN+1];
2442	int rc;
2443
2444	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2445		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2446		return 0;
2447	}
2448
2449	if (ata_msg_probe(ap))
2450		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2451
2452	/* set horkage */
2453	dev->horkage |= ata_dev_blacklisted(dev);
2454	ata_force_horkage(dev);
2455
2456	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2457		ata_dev_info(dev, "unsupported device, disabling\n");
2458		ata_dev_disable(dev);
2459		return 0;
2460	}
2461
2462	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2463	    dev->class == ATA_DEV_ATAPI) {
2464		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2465			     atapi_enabled ? "not supported with this driver"
2466			     : "disabled");
2467		ata_dev_disable(dev);
2468		return 0;
2469	}
2470
2471	rc = ata_do_link_spd_horkage(dev);
2472	if (rc)
2473		return rc;
2474
2475	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2476	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2477	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2478		dev->horkage |= ATA_HORKAGE_NOLPM;
2479
2480	if (ap->flags & ATA_FLAG_NO_LPM)
2481		dev->horkage |= ATA_HORKAGE_NOLPM;
2482
2483	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2484		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2485		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2486	}
2487
2488	/* let ACPI work its magic */
2489	rc = ata_acpi_on_devcfg(dev);
2490	if (rc)
2491		return rc;
2492
2493	/* massage HPA, do it early as it might change IDENTIFY data */
2494	rc = ata_hpa_resize(dev);
2495	if (rc)
2496		return rc;
2497
2498	/* print device capabilities */
2499	if (ata_msg_probe(ap))
2500		ata_dev_dbg(dev,
2501			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2502			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2503			    __func__,
2504			    id[49], id[82], id[83], id[84],
2505			    id[85], id[86], id[87], id[88]);
2506
2507	/* initialize to-be-configured parameters */
2508	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2509	dev->max_sectors = 0;
2510	dev->cdb_len = 0;
2511	dev->n_sectors = 0;
2512	dev->cylinders = 0;
2513	dev->heads = 0;
2514	dev->sectors = 0;
2515	dev->multi_count = 0;
2516
2517	/*
2518	 * common ATA, ATAPI feature tests
2519	 */
2520
2521	/* find max transfer mode; for printk only */
2522	xfer_mask = ata_id_xfermask(id);
2523
2524	if (ata_msg_probe(ap))
2525		ata_dump_id(id);
2526
2527	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2528	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2529			sizeof(fwrevbuf));
2530
2531	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2532			sizeof(modelbuf));
2533
2534	/* ATA-specific feature tests */
2535	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2536		if (ata_id_is_cfa(id)) {
2537			/* CPRM may make this media unusable */
2538			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2539				ata_dev_warn(dev,
2540	"supports DRM functions and may not be fully accessible\n");
2541			snprintf(revbuf, 7, "CFA");
2542		} else {
2543			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2544			/* Warn the user if the device has TPM extensions */
2545			if (ata_id_has_tpm(id))
2546				ata_dev_warn(dev,
2547	"supports DRM functions and may not be fully accessible\n");
2548		}
2549
2550		dev->n_sectors = ata_id_n_sectors(id);
2551
2552		/* get current R/W Multiple count setting */
2553		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2554			unsigned int max = dev->id[47] & 0xff;
2555			unsigned int cnt = dev->id[59] & 0xff;
2556			/* only recognize/allow powers of two here */
2557			if (is_power_of_2(max) && is_power_of_2(cnt))
2558				if (cnt <= max)
2559					dev->multi_count = cnt;
2560		}
2561
2562		if (ata_id_has_lba(id)) {
2563			const char *lba_desc;
2564			char ncq_desc[24];
2565
2566			lba_desc = "LBA";
2567			dev->flags |= ATA_DFLAG_LBA;
2568			if (ata_id_has_lba48(id)) {
2569				dev->flags |= ATA_DFLAG_LBA48;
2570				lba_desc = "LBA48";
2571
2572				if (dev->n_sectors >= (1UL << 28) &&
2573				    ata_id_has_flush_ext(id))
2574					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2575			}
2576
2577			/* config NCQ */
2578			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2579			if (rc)
2580				return rc;
2581
2582			/* print device info to dmesg */
2583			if (ata_msg_drv(ap) && print_info) {
2584				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2585					     revbuf, modelbuf, fwrevbuf,
2586					     ata_mode_string(xfer_mask));
2587				ata_dev_info(dev,
2588					     "%llu sectors, multi %u: %s %s\n",
2589					(unsigned long long)dev->n_sectors,
2590					dev->multi_count, lba_desc, ncq_desc);
2591			}
2592		} else {
2593			/* CHS */
2594
2595			/* Default translation */
2596			dev->cylinders	= id[1];
2597			dev->heads	= id[3];
2598			dev->sectors	= id[6];
2599
2600			if (ata_id_current_chs_valid(id)) {
2601				/* Current CHS translation is valid. */
2602				dev->cylinders = id[54];
2603				dev->heads     = id[55];
2604				dev->sectors   = id[56];
2605			}
2606
2607			/* print device info to dmesg */
2608			if (ata_msg_drv(ap) && print_info) {
2609				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610					     revbuf,	modelbuf, fwrevbuf,
2611					     ata_mode_string(xfer_mask));
2612				ata_dev_info(dev,
2613					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2614					     (unsigned long long)dev->n_sectors,
2615					     dev->multi_count, dev->cylinders,
2616					     dev->heads, dev->sectors);
2617			}
2618		}
2619
2620		/* Check and mark DevSlp capability. Get DevSlp timing variables
2621		 * from SATA Settings page of Identify Device Data Log.
2622		 */
2623		if (ata_id_has_devslp(dev->id)) {
2624			u8 *sata_setting = ap->sector_buf;
2625			int i, j;
2626
2627			dev->flags |= ATA_DFLAG_DEVSLP;
2628			err_mask = ata_read_log_page(dev,
2629						     ATA_LOG_IDENTIFY_DEVICE,
2630						     ATA_LOG_SATA_SETTINGS,
2631						     sata_setting,
2632						     1);
2633			if (err_mask)
2634				ata_dev_dbg(dev,
2635					    "failed to get Identify Device Data, Emask 0x%x\n",
2636					    err_mask);
2637			else
2638				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2639					j = ATA_LOG_DEVSLP_OFFSET + i;
2640					dev->devslp_timing[i] = sata_setting[j];
2641				}
2642		}
2643		ata_dev_config_sense_reporting(dev);
2644		ata_dev_config_zac(dev);
2645		ata_dev_config_trusted(dev);
2646		dev->cdb_len = 32;
2647	}
2648
2649	/* ATAPI-specific feature tests */
2650	else if (dev->class == ATA_DEV_ATAPI) {
2651		const char *cdb_intr_string = "";
2652		const char *atapi_an_string = "";
2653		const char *dma_dir_string = "";
2654		u32 sntf;
2655
2656		rc = atapi_cdb_len(id);
2657		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2658			if (ata_msg_warn(ap))
2659				ata_dev_warn(dev, "unsupported CDB len\n");
2660			rc = -EINVAL;
2661			goto err_out_nosup;
2662		}
2663		dev->cdb_len = (unsigned int) rc;
2664
2665		/* Enable ATAPI AN if both the host and device have
2666		 * the support.  If PMP is attached, SNTF is required
2667		 * to enable ATAPI AN to discern between PHY status
2668		 * changed notifications and ATAPI ANs.
2669		 */
2670		if (atapi_an &&
2671		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2672		    (!sata_pmp_attached(ap) ||
2673		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2674			/* issue SET feature command to turn this on */
2675			err_mask = ata_dev_set_feature(dev,
2676					SETFEATURES_SATA_ENABLE, SATA_AN);
2677			if (err_mask)
2678				ata_dev_err(dev,
2679					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2680					    err_mask);
2681			else {
2682				dev->flags |= ATA_DFLAG_AN;
2683				atapi_an_string = ", ATAPI AN";
2684			}
2685		}
2686
2687		if (ata_id_cdb_intr(dev->id)) {
2688			dev->flags |= ATA_DFLAG_CDB_INTR;
2689			cdb_intr_string = ", CDB intr";
2690		}
2691
2692		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2693			dev->flags |= ATA_DFLAG_DMADIR;
2694			dma_dir_string = ", DMADIR";
2695		}
2696
2697		if (ata_id_has_da(dev->id)) {
2698			dev->flags |= ATA_DFLAG_DA;
2699			zpodd_init(dev);
2700		}
2701
2702		/* print device info to dmesg */
2703		if (ata_msg_drv(ap) && print_info)
2704			ata_dev_info(dev,
2705				     "ATAPI: %s, %s, max %s%s%s%s\n",
2706				     modelbuf, fwrevbuf,
2707				     ata_mode_string(xfer_mask),
2708				     cdb_intr_string, atapi_an_string,
2709				     dma_dir_string);
2710	}
2711
2712	/* determine max_sectors */
2713	dev->max_sectors = ATA_MAX_SECTORS;
2714	if (dev->flags & ATA_DFLAG_LBA48)
2715		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2718	   200 sectors */
2719	if (ata_dev_knobble(dev)) {
2720		if (ata_msg_drv(ap) && print_info)
2721			ata_dev_info(dev, "applying bridge limits\n");
2722		dev->udma_mask &= ATA_UDMA5;
2723		dev->max_sectors = ATA_MAX_SECTORS;
2724	}
2725
2726	if ((dev->class == ATA_DEV_ATAPI) &&
2727	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2728		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2729		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2730	}
2731
2732	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2733		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2734					 dev->max_sectors);
2735
2736	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2737		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2738					 dev->max_sectors);
2739
2740	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2741		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2742
2743	if (ap->ops->dev_config)
2744		ap->ops->dev_config(dev);
2745
2746	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2747		/* Let the user know. We don't want to disallow opens for
2748		   rescue purposes, or in case the vendor is just a blithering
2749		   idiot. Do this after the dev_config call as some controllers
2750		   with buggy firmware may want to avoid reporting false device
2751		   bugs */
2752
2753		if (print_info) {
2754			ata_dev_warn(dev,
2755"Drive reports diagnostics failure. This may indicate a drive\n");
2756			ata_dev_warn(dev,
2757"fault or invalid emulation. Contact drive vendor for information.\n");
2758		}
2759	}
2760
2761	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2762		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2763		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2764	}
2765
2766	return 0;
2767
2768err_out_nosup:
2769	if (ata_msg_probe(ap))
2770		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2771	return rc;
2772}
2773
2774/**
2775 *	ata_cable_40wire	-	return 40 wire cable type
2776 *	@ap: port
2777 *
2778 *	Helper method for drivers which want to hardwire 40 wire cable
2779 *	detection.
2780 */
2781
2782int ata_cable_40wire(struct ata_port *ap)
2783{
2784	return ATA_CBL_PATA40;
2785}
2786
2787/**
2788 *	ata_cable_80wire	-	return 80 wire cable type
2789 *	@ap: port
2790 *
2791 *	Helper method for drivers which want to hardwire 80 wire cable
2792 *	detection.
2793 */
2794
2795int ata_cable_80wire(struct ata_port *ap)
2796{
2797	return ATA_CBL_PATA80;
2798}
2799
2800/**
2801 *	ata_cable_unknown	-	return unknown PATA cable.
2802 *	@ap: port
2803 *
2804 *	Helper method for drivers which have no PATA cable detection.
2805 */
2806
2807int ata_cable_unknown(struct ata_port *ap)
2808{
2809	return ATA_CBL_PATA_UNK;
2810}
2811
2812/**
2813 *	ata_cable_ignore	-	return ignored PATA cable.
2814 *	@ap: port
2815 *
2816 *	Helper method for drivers which don't use cable type to limit
2817 *	transfer mode.
2818 */
2819int ata_cable_ignore(struct ata_port *ap)
2820{
2821	return ATA_CBL_PATA_IGN;
2822}
2823
2824/**
2825 *	ata_cable_sata	-	return SATA cable type
2826 *	@ap: port
2827 *
2828 *	Helper method for drivers which have SATA cables
2829 */
2830
2831int ata_cable_sata(struct ata_port *ap)
2832{
2833	return ATA_CBL_SATA;
2834}
2835
2836/**
2837 *	ata_bus_probe - Reset and probe ATA bus
2838 *	@ap: Bus to probe
2839 *
2840 *	Master ATA bus probing function.  Initiates a hardware-dependent
2841 *	bus reset, then attempts to identify any devices found on
2842 *	the bus.
2843 *
2844 *	LOCKING:
2845 *	PCI/etc. bus probe sem.
2846 *
2847 *	RETURNS:
2848 *	Zero on success, negative errno otherwise.
2849 */
2850
2851int ata_bus_probe(struct ata_port *ap)
2852{
2853	unsigned int classes[ATA_MAX_DEVICES];
2854	int tries[ATA_MAX_DEVICES];
2855	int rc;
2856	struct ata_device *dev;
2857
2858	ata_for_each_dev(dev, &ap->link, ALL)
2859		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2860
2861 retry:
2862	ata_for_each_dev(dev, &ap->link, ALL) {
2863		/* If we issue an SRST then an ATA drive (not ATAPI)
2864		 * may change configuration and be in PIO0 timing. If
2865		 * we do a hard reset (or are coming from power on)
2866		 * this is true for ATA or ATAPI. Until we've set a
2867		 * suitable controller mode we should not touch the
2868		 * bus as we may be talking too fast.
2869		 */
2870		dev->pio_mode = XFER_PIO_0;
2871		dev->dma_mode = 0xff;
2872
2873		/* If the controller has a pio mode setup function
2874		 * then use it to set the chipset to rights. Don't
2875		 * touch the DMA setup as that will be dealt with when
2876		 * configuring devices.
2877		 */
2878		if (ap->ops->set_piomode)
2879			ap->ops->set_piomode(ap, dev);
2880	}
2881
2882	/* reset and determine device classes */
2883	ap->ops->phy_reset(ap);
2884
2885	ata_for_each_dev(dev, &ap->link, ALL) {
2886		if (dev->class != ATA_DEV_UNKNOWN)
2887			classes[dev->devno] = dev->class;
2888		else
2889			classes[dev->devno] = ATA_DEV_NONE;
2890
2891		dev->class = ATA_DEV_UNKNOWN;
2892	}
2893
2894	/* read IDENTIFY page and configure devices. We have to do the identify
2895	   specific sequence bass-ackwards so that PDIAG- is released by
2896	   the slave device */
2897
2898	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2899		if (tries[dev->devno])
2900			dev->class = classes[dev->devno];
2901
2902		if (!ata_dev_enabled(dev))
2903			continue;
2904
2905		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2906				     dev->id);
2907		if (rc)
2908			goto fail;
2909	}
2910
2911	/* Now ask for the cable type as PDIAG- should have been released */
2912	if (ap->ops->cable_detect)
2913		ap->cbl = ap->ops->cable_detect(ap);
2914
2915	/* We may have SATA bridge glue hiding here irrespective of
2916	 * the reported cable types and sensed types.  When SATA
2917	 * drives indicate we have a bridge, we don't know which end
2918	 * of the link the bridge is which is a problem.
2919	 */
2920	ata_for_each_dev(dev, &ap->link, ENABLED)
2921		if (ata_id_is_sata(dev->id))
2922			ap->cbl = ATA_CBL_SATA;
2923
2924	/* After the identify sequence we can now set up the devices. We do
2925	   this in the normal order so that the user doesn't get confused */
2926
2927	ata_for_each_dev(dev, &ap->link, ENABLED) {
2928		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2929		rc = ata_dev_configure(dev);
2930		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2931		if (rc)
2932			goto fail;
2933	}
2934
2935	/* configure transfer mode */
2936	rc = ata_set_mode(&ap->link, &dev);
2937	if (rc)
2938		goto fail;
2939
2940	ata_for_each_dev(dev, &ap->link, ENABLED)
2941		return 0;
2942
2943	return -ENODEV;
2944
2945 fail:
2946	tries[dev->devno]--;
2947
2948	switch (rc) {
2949	case -EINVAL:
2950		/* eeek, something went very wrong, give up */
2951		tries[dev->devno] = 0;
2952		break;
2953
2954	case -ENODEV:
2955		/* give it just one more chance */
2956		tries[dev->devno] = min(tries[dev->devno], 1);
2957		/* fall through */
2958	case -EIO:
2959		if (tries[dev->devno] == 1) {
2960			/* This is the last chance, better to slow
2961			 * down than lose it.
2962			 */
2963			sata_down_spd_limit(&ap->link, 0);
2964			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2965		}
2966	}
2967
2968	if (!tries[dev->devno])
2969		ata_dev_disable(dev);
2970
2971	goto retry;
2972}
2973
2974/**
2975 *	sata_print_link_status - Print SATA link status
2976 *	@link: SATA link to printk link status about
2977 *
2978 *	This function prints link speed and status of a SATA link.
2979 *
2980 *	LOCKING:
2981 *	None.
2982 */
2983static void sata_print_link_status(struct ata_link *link)
2984{
2985	u32 sstatus, scontrol, tmp;
2986
2987	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2988		return;
2989	sata_scr_read(link, SCR_CONTROL, &scontrol);
2990
2991	if (ata_phys_link_online(link)) {
2992		tmp = (sstatus >> 4) & 0xf;
2993		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2994			      sata_spd_string(tmp), sstatus, scontrol);
2995	} else {
2996		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2997			      sstatus, scontrol);
2998	}
2999}
3000
3001/**
3002 *	ata_dev_pair		-	return other device on cable
3003 *	@adev: device
3004 *
3005 *	Obtain the other device on the same cable, or if none is
3006 *	present NULL is returned
3007 */
3008
3009struct ata_device *ata_dev_pair(struct ata_device *adev)
3010{
3011	struct ata_link *link = adev->link;
3012	struct ata_device *pair = &link->device[1 - adev->devno];
3013	if (!ata_dev_enabled(pair))
3014		return NULL;
3015	return pair;
3016}
3017
3018/**
3019 *	sata_down_spd_limit - adjust SATA spd limit downward
3020 *	@link: Link to adjust SATA spd limit for
3021 *	@spd_limit: Additional limit
3022 *
3023 *	Adjust SATA spd limit of @link downward.  Note that this
3024 *	function only adjusts the limit.  The change must be applied
3025 *	using sata_set_spd().
3026 *
3027 *	If @spd_limit is non-zero, the speed is limited to equal to or
3028 *	lower than @spd_limit if such speed is supported.  If
3029 *	@spd_limit is slower than any supported speed, only the lowest
3030 *	supported speed is allowed.
3031 *
3032 *	LOCKING:
3033 *	Inherited from caller.
3034 *
3035 *	RETURNS:
3036 *	0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040	u32 sstatus, spd, mask;
3041	int rc, bit;
3042
3043	if (!sata_scr_valid(link))
3044		return -EOPNOTSUPP;
3045
3046	/* If SCR can be read, use it to determine the current SPD.
3047	 * If not, use cached value in link->sata_spd.
3048	 */
3049	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050	if (rc == 0 && ata_sstatus_online(sstatus))
3051		spd = (sstatus >> 4) & 0xf;
3052	else
3053		spd = link->sata_spd;
3054
3055	mask = link->sata_spd_limit;
3056	if (mask <= 1)
3057		return -EINVAL;
3058
3059	/* unconditionally mask off the highest bit */
3060	bit = fls(mask) - 1;
3061	mask &= ~(1 << bit);
3062
3063	/*
3064	 * Mask off all speeds higher than or equal to the current one.  At
3065	 * this point, if current SPD is not available and we previously
3066	 * recorded the link speed from SStatus, the driver has already
3067	 * masked off the highest bit so mask should already be 1 or 0.
3068	 * Otherwise, we should not force 1.5Gbps on a link where we have
3069	 * not previously recorded speed from SStatus.  Just return in this
3070	 * case.
3071	 */
3072	if (spd > 1)
3073		mask &= (1 << (spd - 1)) - 1;
3074	else
3075		return -EINVAL;
3076
3077	/* were we already at the bottom? */
3078	if (!mask)
3079		return -EINVAL;
3080
3081	if (spd_limit) {
3082		if (mask & ((1 << spd_limit) - 1))
3083			mask &= (1 << spd_limit) - 1;
3084		else {
3085			bit = ffs(mask) - 1;
3086			mask = 1 << bit;
3087		}
3088	}
3089
3090	link->sata_spd_limit = mask;
3091
3092	ata_link_warn(link, "limiting SATA link speed to %s\n",
3093		      sata_spd_string(fls(mask)));
3094
3095	return 0;
3096}
3097
3098static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3099{
3100	struct ata_link *host_link = &link->ap->link;
3101	u32 limit, target, spd;
3102
3103	limit = link->sata_spd_limit;
3104
3105	/* Don't configure downstream link faster than upstream link.
3106	 * It doesn't speed up anything and some PMPs choke on such
3107	 * configuration.
3108	 */
3109	if (!ata_is_host_link(link) && host_link->sata_spd)
3110		limit &= (1 << host_link->sata_spd) - 1;
3111
3112	if (limit == UINT_MAX)
3113		target = 0;
3114	else
3115		target = fls(limit);
3116
3117	spd = (*scontrol >> 4) & 0xf;
3118	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3119
3120	return spd != target;
3121}
3122
3123/**
3124 *	sata_set_spd_needed - is SATA spd configuration needed
3125 *	@link: Link in question
3126 *
3127 *	Test whether the spd limit in SControl matches
3128 *	@link->sata_spd_limit.  This function is used to determine
3129 *	whether hardreset is necessary to apply SATA spd
3130 *	configuration.
3131 *
3132 *	LOCKING:
3133 *	Inherited from caller.
3134 *
3135 *	RETURNS:
3136 *	1 if SATA spd configuration is needed, 0 otherwise.
3137 */
3138static int sata_set_spd_needed(struct ata_link *link)
3139{
3140	u32 scontrol;
3141
3142	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3143		return 1;
3144
3145	return __sata_set_spd_needed(link, &scontrol);
3146}
3147
3148/**
3149 *	sata_set_spd - set SATA spd according to spd limit
3150 *	@link: Link to set SATA spd for
3151 *
3152 *	Set SATA spd of @link according to sata_spd_limit.
3153 *
3154 *	LOCKING:
3155 *	Inherited from caller.
3156 *
3157 *	RETURNS:
3158 *	0 if spd doesn't need to be changed, 1 if spd has been
3159 *	changed.  Negative errno if SCR registers are inaccessible.
3160 */
3161int sata_set_spd(struct ata_link *link)
3162{
3163	u32 scontrol;
3164	int rc;
3165
3166	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3167		return rc;
3168
3169	if (!__sata_set_spd_needed(link, &scontrol))
3170		return 0;
3171
3172	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3173		return rc;
3174
3175	return 1;
3176}
3177
3178/*
3179 * This mode timing computation functionality is ported over from
3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3181 */
3182/*
3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3185 * for UDMA6, which is currently supported only by Maxtor drives.
3186 *
3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3188 */
3189
3190static const struct ata_timing ata_timing[] = {
3191/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3192	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3193	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3194	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3195	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3196	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3197	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3198	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3199
3200	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3201	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3202	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3203
3204	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3205	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3206	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3207	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3208	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3209
3210/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3211	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3212	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3213	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3214	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3215	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3216	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3217	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3218
3219	{ 0xFF }
3220};
3221
3222#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3223#define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
3224
3225static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3226{
3227	q->setup	= EZ(t->setup,       T);
3228	q->act8b	= EZ(t->act8b,       T);
3229	q->rec8b	= EZ(t->rec8b,       T);
3230	q->cyc8b	= EZ(t->cyc8b,       T);
3231	q->active	= EZ(t->active,      T);
3232	q->recover	= EZ(t->recover,     T);
3233	q->dmack_hold	= EZ(t->dmack_hold,  T);
3234	q->cycle	= EZ(t->cycle,       T);
3235	q->udma		= EZ(t->udma,       UT);
3236}
3237
3238void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3239		      struct ata_timing *m, unsigned int what)
3240{
3241	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3242	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3243	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3244	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3245	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3246	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3247	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3248	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3249	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3250}
3251
3252const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3253{
3254	const struct ata_timing *t = ata_timing;
3255
3256	while (xfer_mode > t->mode)
3257		t++;
3258
3259	if (xfer_mode == t->mode)
3260		return t;
3261
3262	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3263			__func__, xfer_mode);
3264
3265	return NULL;
3266}
3267
3268int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3269		       struct ata_timing *t, int T, int UT)
3270{
3271	const u16 *id = adev->id;
3272	const struct ata_timing *s;
3273	struct ata_timing p;
3274
3275	/*
3276	 * Find the mode.
3277	 */
3278
3279	if (!(s = ata_timing_find_mode(speed)))
3280		return -EINVAL;
3281
3282	memcpy(t, s, sizeof(*s));
3283
3284	/*
3285	 * If the drive is an EIDE drive, it can tell us it needs extended
3286	 * PIO/MW_DMA cycle timing.
3287	 */
3288
3289	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3290		memset(&p, 0, sizeof(p));
3291
3292		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3293			if (speed <= XFER_PIO_2)
3294				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3295			else if ((speed <= XFER_PIO_4) ||
3296				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3297				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3298		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3299			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3300
3301		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3302	}
3303
3304	/*
3305	 * Convert the timing to bus clock counts.
3306	 */
3307
3308	ata_timing_quantize(t, t, T, UT);
3309
3310	/*
3311	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3312	 * S.M.A.R.T * and some other commands. We have to ensure that the
3313	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3314	 */
3315
3316	if (speed > XFER_PIO_6) {
3317		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3318		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3319	}
3320
3321	/*
3322	 * Lengthen active & recovery time so that cycle time is correct.
3323	 */
3324
3325	if (t->act8b + t->rec8b < t->cyc8b) {
3326		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3327		t->rec8b = t->cyc8b - t->act8b;
3328	}
3329
3330	if (t->active + t->recover < t->cycle) {
3331		t->active += (t->cycle - (t->active + t->recover)) / 2;
3332		t->recover = t->cycle - t->active;
3333	}
3334
3335	/* In a few cases quantisation may produce enough errors to
3336	   leave t->cycle too low for the sum of active and recovery
3337	   if so we must correct this */
3338	if (t->active + t->recover > t->cycle)
3339		t->cycle = t->active + t->recover;
3340
3341	return 0;
3342}
3343
3344/**
3345 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3346 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3347 *	@cycle: cycle duration in ns
3348 *
3349 *	Return matching xfer mode for @cycle.  The returned mode is of
3350 *	the transfer type specified by @xfer_shift.  If @cycle is too
3351 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3352 *	than the fastest known mode, the fasted mode is returned.
3353 *
3354 *	LOCKING:
3355 *	None.
3356 *
3357 *	RETURNS:
3358 *	Matching xfer_mode, 0xff if no match found.
3359 */
3360u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3361{
3362	u8 base_mode = 0xff, last_mode = 0xff;
3363	const struct ata_xfer_ent *ent;
3364	const struct ata_timing *t;
3365
3366	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3367		if (ent->shift == xfer_shift)
3368			base_mode = ent->base;
3369
3370	for (t = ata_timing_find_mode(base_mode);
3371	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3372		unsigned short this_cycle;
3373
3374		switch (xfer_shift) {
3375		case ATA_SHIFT_PIO:
3376		case ATA_SHIFT_MWDMA:
3377			this_cycle = t->cycle;
3378			break;
3379		case ATA_SHIFT_UDMA:
3380			this_cycle = t->udma;
3381			break;
3382		default:
3383			return 0xff;
3384		}
3385
3386		if (cycle > this_cycle)
3387			break;
3388
3389		last_mode = t->mode;
3390	}
3391
3392	return last_mode;
3393}
3394
3395/**
3396 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3397 *	@dev: Device to adjust xfer masks
3398 *	@sel: ATA_DNXFER_* selector
3399 *
3400 *	Adjust xfer masks of @dev downward.  Note that this function
3401 *	does not apply the change.  Invoking ata_set_mode() afterwards
3402 *	will apply the limit.
3403 *
3404 *	LOCKING:
3405 *	Inherited from caller.
3406 *
3407 *	RETURNS:
3408 *	0 on success, negative errno on failure
3409 */
3410int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3411{
3412	char buf[32];
3413	unsigned long orig_mask, xfer_mask;
3414	unsigned long pio_mask, mwdma_mask, udma_mask;
3415	int quiet, highbit;
3416
3417	quiet = !!(sel & ATA_DNXFER_QUIET);
3418	sel &= ~ATA_DNXFER_QUIET;
3419
3420	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3421						  dev->mwdma_mask,
3422						  dev->udma_mask);
3423	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3424
3425	switch (sel) {
3426	case ATA_DNXFER_PIO:
3427		highbit = fls(pio_mask) - 1;
3428		pio_mask &= ~(1 << highbit);
3429		break;
3430
3431	case ATA_DNXFER_DMA:
3432		if (udma_mask) {
3433			highbit = fls(udma_mask) - 1;
3434			udma_mask &= ~(1 << highbit);
3435			if (!udma_mask)
3436				return -ENOENT;
3437		} else if (mwdma_mask) {
3438			highbit = fls(mwdma_mask) - 1;
3439			mwdma_mask &= ~(1 << highbit);
3440			if (!mwdma_mask)
3441				return -ENOENT;
3442		}
3443		break;
3444
3445	case ATA_DNXFER_40C:
3446		udma_mask &= ATA_UDMA_MASK_40C;
3447		break;
3448
3449	case ATA_DNXFER_FORCE_PIO0:
3450		pio_mask &= 1;
3451		/* fall through */
3452	case ATA_DNXFER_FORCE_PIO:
3453		mwdma_mask = 0;
3454		udma_mask = 0;
3455		break;
3456
3457	default:
3458		BUG();
3459	}
3460
3461	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3462
3463	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3464		return -ENOENT;
3465
3466	if (!quiet) {
3467		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3468			snprintf(buf, sizeof(buf), "%s:%s",
3469				 ata_mode_string(xfer_mask),
3470				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3471		else
3472			snprintf(buf, sizeof(buf), "%s",
3473				 ata_mode_string(xfer_mask));
3474
3475		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3476	}
3477
3478	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3479			    &dev->udma_mask);
3480
3481	return 0;
3482}
3483
3484static int ata_dev_set_mode(struct ata_device *dev)
3485{
3486	struct ata_port *ap = dev->link->ap;
3487	struct ata_eh_context *ehc = &dev->link->eh_context;
3488	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3489	const char *dev_err_whine = "";
3490	int ign_dev_err = 0;
3491	unsigned int err_mask = 0;
3492	int rc;
3493
3494	dev->flags &= ~ATA_DFLAG_PIO;
3495	if (dev->xfer_shift == ATA_SHIFT_PIO)
3496		dev->flags |= ATA_DFLAG_PIO;
3497
3498	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3499		dev_err_whine = " (SET_XFERMODE skipped)";
3500	else {
3501		if (nosetxfer)
3502			ata_dev_warn(dev,
3503				     "NOSETXFER but PATA detected - can't "
3504				     "skip SETXFER, might malfunction\n");
3505		err_mask = ata_dev_set_xfermode(dev);
3506	}
3507
3508	if (err_mask & ~AC_ERR_DEV)
3509		goto fail;
3510
3511	/* revalidate */
3512	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3513	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3514	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3515	if (rc)
3516		return rc;
3517
3518	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3519		/* Old CFA may refuse this command, which is just fine */
3520		if (ata_id_is_cfa(dev->id))
3521			ign_dev_err = 1;
3522		/* Catch several broken garbage emulations plus some pre
3523		   ATA devices */
3524		if (ata_id_major_version(dev->id) == 0 &&
3525					dev->pio_mode <= XFER_PIO_2)
3526			ign_dev_err = 1;
3527		/* Some very old devices and some bad newer ones fail
3528		   any kind of SET_XFERMODE request but support PIO0-2
3529		   timings and no IORDY */
3530		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3531			ign_dev_err = 1;
3532	}
3533	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3534	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3535	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3536	    dev->dma_mode == XFER_MW_DMA_0 &&
3537	    (dev->id[63] >> 8) & 1)
3538		ign_dev_err = 1;
3539
3540	/* if the device is actually configured correctly, ignore dev err */
3541	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3542		ign_dev_err = 1;
3543
3544	if (err_mask & AC_ERR_DEV) {
3545		if (!ign_dev_err)
3546			goto fail;
3547		else
3548			dev_err_whine = " (device error ignored)";
3549	}
3550
3551	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3552		dev->xfer_shift, (int)dev->xfer_mode);
3553
3554	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3555	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3556		ata_dev_info(dev, "configured for %s%s\n",
3557			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3558			     dev_err_whine);
3559
3560	return 0;
3561
3562 fail:
3563	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3564	return -EIO;
3565}
3566
3567/**
3568 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3569 *	@link: link on which timings will be programmed
3570 *	@r_failed_dev: out parameter for failed device
3571 *
3572 *	Standard implementation of the function used to tune and set
3573 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3574 *	ata_dev_set_mode() fails, pointer to the failing device is
3575 *	returned in @r_failed_dev.
3576 *
3577 *	LOCKING:
3578 *	PCI/etc. bus probe sem.
3579 *
3580 *	RETURNS:
3581 *	0 on success, negative errno otherwise
3582 */
3583
3584int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3585{
3586	struct ata_port *ap = link->ap;
3587	struct ata_device *dev;
3588	int rc = 0, used_dma = 0, found = 0;
3589
3590	/* step 1: calculate xfer_mask */
3591	ata_for_each_dev(dev, link, ENABLED) {
3592		unsigned long pio_mask, dma_mask;
3593		unsigned int mode_mask;
3594
3595		mode_mask = ATA_DMA_MASK_ATA;
3596		if (dev->class == ATA_DEV_ATAPI)
3597			mode_mask = ATA_DMA_MASK_ATAPI;
3598		else if (ata_id_is_cfa(dev->id))
3599			mode_mask = ATA_DMA_MASK_CFA;
3600
3601		ata_dev_xfermask(dev);
3602		ata_force_xfermask(dev);
3603
3604		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3605
3606		if (libata_dma_mask & mode_mask)
3607			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3608						     dev->udma_mask);
3609		else
3610			dma_mask = 0;
3611
3612		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3613		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3614
3615		found = 1;
3616		if (ata_dma_enabled(dev))
3617			used_dma = 1;
3618	}
3619	if (!found)
3620		goto out;
3621
3622	/* step 2: always set host PIO timings */
3623	ata_for_each_dev(dev, link, ENABLED) {
3624		if (dev->pio_mode == 0xff) {
3625			ata_dev_warn(dev, "no PIO support\n");
3626			rc = -EINVAL;
3627			goto out;
3628		}
3629
3630		dev->xfer_mode = dev->pio_mode;
3631		dev->xfer_shift = ATA_SHIFT_PIO;
3632		if (ap->ops->set_piomode)
3633			ap->ops->set_piomode(ap, dev);
3634	}
3635
3636	/* step 3: set host DMA timings */
3637	ata_for_each_dev(dev, link, ENABLED) {
3638		if (!ata_dma_enabled(dev))
3639			continue;
3640
3641		dev->xfer_mode = dev->dma_mode;
3642		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3643		if (ap->ops->set_dmamode)
3644			ap->ops->set_dmamode(ap, dev);
3645	}
3646
3647	/* step 4: update devices' xfer mode */
3648	ata_for_each_dev(dev, link, ENABLED) {
3649		rc = ata_dev_set_mode(dev);
3650		if (rc)
3651			goto out;
3652	}
3653
3654	/* Record simplex status. If we selected DMA then the other
3655	 * host channels are not permitted to do so.
3656	 */
3657	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3658		ap->host->simplex_claimed = ap;
3659
3660 out:
3661	if (rc)
3662		*r_failed_dev = dev;
3663	return rc;
3664}
3665
3666/**
3667 *	ata_wait_ready - wait for link to become ready
3668 *	@link: link to be waited on
3669 *	@deadline: deadline jiffies for the operation
3670 *	@check_ready: callback to check link readiness
3671 *
3672 *	Wait for @link to become ready.  @check_ready should return
3673 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3674 *	link doesn't seem to be occupied, other errno for other error
3675 *	conditions.
3676 *
3677 *	Transient -ENODEV conditions are allowed for
3678 *	ATA_TMOUT_FF_WAIT.
3679 *
3680 *	LOCKING:
3681 *	EH context.
3682 *
3683 *	RETURNS:
3684 *	0 if @link is ready before @deadline; otherwise, -errno.
3685 */
3686int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3687		   int (*check_ready)(struct ata_link *link))
3688{
3689	unsigned long start = jiffies;
3690	unsigned long nodev_deadline;
3691	int warned = 0;
3692
3693	/* choose which 0xff timeout to use, read comment in libata.h */
3694	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3695		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3696	else
3697		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3698
3699	/* Slave readiness can't be tested separately from master.  On
3700	 * M/S emulation configuration, this function should be called
3701	 * only on the master and it will handle both master and slave.
3702	 */
3703	WARN_ON(link == link->ap->slave_link);
3704
3705	if (time_after(nodev_deadline, deadline))
3706		nodev_deadline = deadline;
3707
3708	while (1) {
3709		unsigned long now = jiffies;
3710		int ready, tmp;
3711
3712		ready = tmp = check_ready(link);
3713		if (ready > 0)
3714			return 0;
3715
3716		/*
3717		 * -ENODEV could be transient.  Ignore -ENODEV if link
3718		 * is online.  Also, some SATA devices take a long
3719		 * time to clear 0xff after reset.  Wait for
3720		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3721		 * offline.
3722		 *
3723		 * Note that some PATA controllers (pata_ali) explode
3724		 * if status register is read more than once when
3725		 * there's no device attached.
3726		 */
3727		if (ready == -ENODEV) {
3728			if (ata_link_online(link))
3729				ready = 0;
3730			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3731				 !ata_link_offline(link) &&
3732				 time_before(now, nodev_deadline))
3733				ready = 0;
3734		}
3735
3736		if (ready)
3737			return ready;
3738		if (time_after(now, deadline))
3739			return -EBUSY;
3740
3741		if (!warned && time_after(now, start + 5 * HZ) &&
3742		    (deadline - now > 3 * HZ)) {
3743			ata_link_warn(link,
3744				"link is slow to respond, please be patient "
3745				"(ready=%d)\n", tmp);
3746			warned = 1;
3747		}
3748
3749		ata_msleep(link->ap, 50);
3750	}
3751}
3752
3753/**
3754 *	ata_wait_after_reset - wait for link to become ready after reset
3755 *	@link: link to be waited on
3756 *	@deadline: deadline jiffies for the operation
3757 *	@check_ready: callback to check link readiness
3758 *
3759 *	Wait for @link to become ready after reset.
3760 *
3761 *	LOCKING:
3762 *	EH context.
3763 *
3764 *	RETURNS:
3765 *	0 if @link is ready before @deadline; otherwise, -errno.
3766 */
3767int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3768				int (*check_ready)(struct ata_link *link))
3769{
3770	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3771
3772	return ata_wait_ready(link, deadline, check_ready);
3773}
3774
3775/**
3776 *	sata_link_debounce - debounce SATA phy status
3777 *	@link: ATA link to debounce SATA phy status for
3778 *	@params: timing parameters { interval, duration, timeout } in msec
3779 *	@deadline: deadline jiffies for the operation
3780 *
3781 *	Make sure SStatus of @link reaches stable state, determined by
3782 *	holding the same value where DET is not 1 for @duration polled
3783 *	every @interval, before @timeout.  Timeout constraints the
3784 *	beginning of the stable state.  Because DET gets stuck at 1 on
3785 *	some controllers after hot unplugging, this functions waits
3786 *	until timeout then returns 0 if DET is stable at 1.
3787 *
3788 *	@timeout is further limited by @deadline.  The sooner of the
3789 *	two is used.
3790 *
3791 *	LOCKING:
3792 *	Kernel thread context (may sleep)
3793 *
3794 *	RETURNS:
3795 *	0 on success, -errno on failure.
3796 */
3797int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3798		       unsigned long deadline)
3799{
3800	unsigned long interval = params[0];
3801	unsigned long duration = params[1];
3802	unsigned long last_jiffies, t;
3803	u32 last, cur;
3804	int rc;
3805
3806	t = ata_deadline(jiffies, params[2]);
3807	if (time_before(t, deadline))
3808		deadline = t;
3809
3810	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3811		return rc;
3812	cur &= 0xf;
3813
3814	last = cur;
3815	last_jiffies = jiffies;
3816
3817	while (1) {
3818		ata_msleep(link->ap, interval);
3819		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3820			return rc;
3821		cur &= 0xf;
3822
3823		/* DET stable? */
3824		if (cur == last) {
3825			if (cur == 1 && time_before(jiffies, deadline))
3826				continue;
3827			if (time_after(jiffies,
3828				       ata_deadline(last_jiffies, duration)))
3829				return 0;
3830			continue;
3831		}
3832
3833		/* unstable, start over */
3834		last = cur;
3835		last_jiffies = jiffies;
3836
3837		/* Check deadline.  If debouncing failed, return
3838		 * -EPIPE to tell upper layer to lower link speed.
3839		 */
3840		if (time_after(jiffies, deadline))
3841			return -EPIPE;
3842	}
3843}
3844
3845/**
3846 *	sata_link_resume - resume SATA link
3847 *	@link: ATA link to resume SATA
3848 *	@params: timing parameters { interval, duration, timeout } in msec
3849 *	@deadline: deadline jiffies for the operation
3850 *
3851 *	Resume SATA phy @link and debounce it.
3852 *
3853 *	LOCKING:
3854 *	Kernel thread context (may sleep)
3855 *
3856 *	RETURNS:
3857 *	0 on success, -errno on failure.
3858 */
3859int sata_link_resume(struct ata_link *link, const unsigned long *params,
3860		     unsigned long deadline)
3861{
3862	int tries = ATA_LINK_RESUME_TRIES;
3863	u32 scontrol, serror;
3864	int rc;
3865
3866	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3867		return rc;
3868
3869	/*
3870	 * Writes to SControl sometimes get ignored under certain
3871	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3872	 * cleared.
3873	 */
3874	do {
3875		scontrol = (scontrol & 0x0f0) | 0x300;
3876		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3877			return rc;
3878		/*
3879		 * Some PHYs react badly if SStatus is pounded
3880		 * immediately after resuming.  Delay 200ms before
3881		 * debouncing.
3882		 */
3883		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3884			ata_msleep(link->ap, 200);
3885
3886		/* is SControl restored correctly? */
3887		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3888			return rc;
3889	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3890
3891	if ((scontrol & 0xf0f) != 0x300) {
3892		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3893			     scontrol);
3894		return 0;
3895	}
3896
3897	if (tries < ATA_LINK_RESUME_TRIES)
3898		ata_link_warn(link, "link resume succeeded after %d retries\n",
3899			      ATA_LINK_RESUME_TRIES - tries);
3900
3901	if ((rc = sata_link_debounce(link, params, deadline)))
3902		return rc;
3903
3904	/* clear SError, some PHYs require this even for SRST to work */
3905	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3906		rc = sata_scr_write(link, SCR_ERROR, serror);
3907
3908	return rc != -EINVAL ? rc : 0;
3909}
3910
3911/**
3912 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3913 *	@link: ATA link to manipulate SControl for
3914 *	@policy: LPM policy to configure
3915 *	@spm_wakeup: initiate LPM transition to active state
3916 *
3917 *	Manipulate the IPM field of the SControl register of @link
3918 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3919 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3920 *	the link.  This function also clears PHYRDY_CHG before
3921 *	returning.
3922 *
3923 *	LOCKING:
3924 *	EH context.
3925 *
3926 *	RETURNS:
3927 *	0 on success, -errno otherwise.
3928 */
3929int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3930		      bool spm_wakeup)
3931{
3932	struct ata_eh_context *ehc = &link->eh_context;
3933	bool woken_up = false;
3934	u32 scontrol;
3935	int rc;
3936
3937	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3938	if (rc)
3939		return rc;
3940
3941	switch (policy) {
3942	case ATA_LPM_MAX_POWER:
3943		/* disable all LPM transitions */
3944		scontrol |= (0x7 << 8);
3945		/* initiate transition to active state */
3946		if (spm_wakeup) {
3947			scontrol |= (0x4 << 12);
3948			woken_up = true;
3949		}
3950		break;
3951	case ATA_LPM_MED_POWER:
3952		/* allow LPM to PARTIAL */
3953		scontrol &= ~(0x1 << 8);
3954		scontrol |= (0x6 << 8);
3955		break;
3956	case ATA_LPM_MED_POWER_WITH_DIPM:
3957	case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3958	case ATA_LPM_MIN_POWER:
3959		if (ata_link_nr_enabled(link) > 0)
3960			/* no restrictions on LPM transitions */
3961			scontrol &= ~(0x7 << 8);
3962		else {
3963			/* empty port, power off */
3964			scontrol &= ~0xf;
3965			scontrol |= (0x1 << 2);
3966		}
3967		break;
3968	default:
3969		WARN_ON(1);
3970	}
3971
3972	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3973	if (rc)
3974		return rc;
3975
3976	/* give the link time to transit out of LPM state */
3977	if (woken_up)
3978		msleep(10);
3979
3980	/* clear PHYRDY_CHG from SError */
3981	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3982	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3983}
3984
3985/**
3986 *	ata_std_prereset - prepare for reset
3987 *	@link: ATA link to be reset
3988 *	@deadline: deadline jiffies for the operation
3989 *
3990 *	@link is about to be reset.  Initialize it.  Failure from
3991 *	prereset makes libata abort whole reset sequence and give up
3992 *	that port, so prereset should be best-effort.  It does its
3993 *	best to prepare for reset sequence but if things go wrong, it
3994 *	should just whine, not fail.
3995 *
3996 *	LOCKING:
3997 *	Kernel thread context (may sleep)
3998 *
3999 *	RETURNS:
4000 *	0 on success, -errno otherwise.
4001 */
4002int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4003{
4004	struct ata_port *ap = link->ap;
4005	struct ata_eh_context *ehc = &link->eh_context;
4006	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4007	int rc;
4008
4009	/* if we're about to do hardreset, nothing more to do */
4010	if (ehc->i.action & ATA_EH_HARDRESET)
4011		return 0;
4012
4013	/* if SATA, resume link */
4014	if (ap->flags & ATA_FLAG_SATA) {
4015		rc = sata_link_resume(link, timing, deadline);
4016		/* whine about phy resume failure but proceed */
4017		if (rc && rc != -EOPNOTSUPP)
4018			ata_link_warn(link,
4019				      "failed to resume link for reset (errno=%d)\n",
4020				      rc);
4021	}
4022
4023	/* no point in trying softreset on offline link */
4024	if (ata_phys_link_offline(link))
4025		ehc->i.action &= ~ATA_EH_SOFTRESET;
4026
4027	return 0;
4028}
4029
4030/**
4031 *	sata_link_hardreset - reset link via SATA phy reset
4032 *	@link: link to reset
4033 *	@timing: timing parameters { interval, duration, timeout } in msec
4034 *	@deadline: deadline jiffies for the operation
4035 *	@online: optional out parameter indicating link onlineness
4036 *	@check_ready: optional callback to check link readiness
4037 *
4038 *	SATA phy-reset @link using DET bits of SControl register.
4039 *	After hardreset, link readiness is waited upon using
4040 *	ata_wait_ready() if @check_ready is specified.  LLDs are
4041 *	allowed to not specify @check_ready and wait itself after this
4042 *	function returns.  Device classification is LLD's
4043 *	responsibility.
4044 *
4045 *	*@online is set to one iff reset succeeded and @link is online
4046 *	after reset.
4047 *
4048 *	LOCKING:
4049 *	Kernel thread context (may sleep)
4050 *
4051 *	RETURNS:
4052 *	0 on success, -errno otherwise.
4053 */
4054int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4055			unsigned long deadline,
4056			bool *online, int (*check_ready)(struct ata_link *))
4057{
4058	u32 scontrol;
4059	int rc;
4060
4061	DPRINTK("ENTER\n");
4062
4063	if (online)
4064		*online = false;
4065
4066	if (sata_set_spd_needed(link)) {
4067		/* SATA spec says nothing about how to reconfigure
4068		 * spd.  To be on the safe side, turn off phy during
4069		 * reconfiguration.  This works for at least ICH7 AHCI
4070		 * and Sil3124.
4071		 */
4072		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4073			goto out;
4074
4075		scontrol = (scontrol & 0x0f0) | 0x304;
4076
4077		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4078			goto out;
4079
4080		sata_set_spd(link);
4081	}
4082
4083	/* issue phy wake/reset */
4084	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085		goto out;
4086
4087	scontrol = (scontrol & 0x0f0) | 0x301;
4088
4089	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4090		goto out;
4091
4092	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4093	 * 10.4.2 says at least 1 ms.
4094	 */
4095	ata_msleep(link->ap, 1);
4096
4097	/* bring link back */
4098	rc = sata_link_resume(link, timing, deadline);
4099	if (rc)
4100		goto out;
4101	/* if link is offline nothing more to do */
4102	if (ata_phys_link_offline(link))
4103		goto out;
4104
4105	/* Link is online.  From this point, -ENODEV too is an error. */
4106	if (online)
4107		*online = true;
4108
4109	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4110		/* If PMP is supported, we have to do follow-up SRST.
4111		 * Some PMPs don't send D2H Reg FIS after hardreset if
4112		 * the first port is empty.  Wait only for
4113		 * ATA_TMOUT_PMP_SRST_WAIT.
4114		 */
4115		if (check_ready) {
4116			unsigned long pmp_deadline;
4117
4118			pmp_deadline = ata_deadline(jiffies,
4119						    ATA_TMOUT_PMP_SRST_WAIT);
4120			if (time_after(pmp_deadline, deadline))
4121				pmp_deadline = deadline;
4122			ata_wait_ready(link, pmp_deadline, check_ready);
4123		}
4124		rc = -EAGAIN;
4125		goto out;
4126	}
4127
4128	rc = 0;
4129	if (check_ready)
4130		rc = ata_wait_ready(link, deadline, check_ready);
4131 out:
4132	if (rc && rc != -EAGAIN) {
4133		/* online is set iff link is online && reset succeeded */
4134		if (online)
4135			*online = false;
4136		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4137	}
4138	DPRINTK("EXIT, rc=%d\n", rc);
4139	return rc;
4140}
4141
4142/**
4143 *	sata_std_hardreset - COMRESET w/o waiting or classification
4144 *	@link: link to reset
4145 *	@class: resulting class of attached device
4146 *	@deadline: deadline jiffies for the operation
4147 *
4148 *	Standard SATA COMRESET w/o waiting or classification.
4149 *
4150 *	LOCKING:
4151 *	Kernel thread context (may sleep)
4152 *
4153 *	RETURNS:
4154 *	0 if link offline, -EAGAIN if link online, -errno on errors.
4155 */
4156int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4157		       unsigned long deadline)
4158{
4159	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4160	bool online;
4161	int rc;
4162
4163	/* do hardreset */
4164	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4165	return online ? -EAGAIN : rc;
4166}
4167
4168/**
4169 *	ata_std_postreset - standard postreset callback
4170 *	@link: the target ata_link
4171 *	@classes: classes of attached devices
4172 *
4173 *	This function is invoked after a successful reset.  Note that
4174 *	the device might have been reset more than once using
4175 *	different reset methods before postreset is invoked.
4176 *
4177 *	LOCKING:
4178 *	Kernel thread context (may sleep)
4179 */
4180void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4181{
4182	u32 serror;
4183
4184	DPRINTK("ENTER\n");
4185
4186	/* reset complete, clear SError */
4187	if (!sata_scr_read(link, SCR_ERROR, &serror))
4188		sata_scr_write(link, SCR_ERROR, serror);
4189
4190	/* print link status */
4191	sata_print_link_status(link);
4192
4193	DPRINTK("EXIT\n");
4194}
4195
4196/**
4197 *	ata_dev_same_device - Determine whether new ID matches configured device
4198 *	@dev: device to compare against
4199 *	@new_class: class of the new device
4200 *	@new_id: IDENTIFY page of the new device
4201 *
4202 *	Compare @new_class and @new_id against @dev and determine
4203 *	whether @dev is the device indicated by @new_class and
4204 *	@new_id.
4205 *
4206 *	LOCKING:
4207 *	None.
4208 *
4209 *	RETURNS:
4210 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4211 */
4212static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4213			       const u16 *new_id)
4214{
4215	const u16 *old_id = dev->id;
4216	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4217	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4218
4219	if (dev->class != new_class) {
4220		ata_dev_info(dev, "class mismatch %d != %d\n",
4221			     dev->class, new_class);
4222		return 0;
4223	}
4224
4225	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4226	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4227	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4228	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4229
4230	if (strcmp(model[0], model[1])) {
4231		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4232			     model[0], model[1]);
4233		return 0;
4234	}
4235
4236	if (strcmp(serial[0], serial[1])) {
4237		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4238			     serial[0], serial[1]);
4239		return 0;
4240	}
4241
4242	return 1;
4243}
4244
4245/**
4246 *	ata_dev_reread_id - Re-read IDENTIFY data
4247 *	@dev: target ATA device
4248 *	@readid_flags: read ID flags
4249 *
4250 *	Re-read IDENTIFY page and make sure @dev is still attached to
4251 *	the port.
4252 *
4253 *	LOCKING:
4254 *	Kernel thread context (may sleep)
4255 *
4256 *	RETURNS:
4257 *	0 on success, negative errno otherwise
4258 */
4259int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4260{
4261	unsigned int class = dev->class;
4262	u16 *id = (void *)dev->link->ap->sector_buf;
4263	int rc;
4264
4265	/* read ID data */
4266	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4267	if (rc)
4268		return rc;
4269
4270	/* is the device still there? */
4271	if (!ata_dev_same_device(dev, class, id))
4272		return -ENODEV;
4273
4274	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4275	return 0;
4276}
4277
4278/**
4279 *	ata_dev_revalidate - Revalidate ATA device
4280 *	@dev: device to revalidate
4281 *	@new_class: new class code
4282 *	@readid_flags: read ID flags
4283 *
4284 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4285 *	port and reconfigure it according to the new IDENTIFY page.
4286 *
4287 *	LOCKING:
4288 *	Kernel thread context (may sleep)
4289 *
4290 *	RETURNS:
4291 *	0 on success, negative errno otherwise
4292 */
4293int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4294		       unsigned int readid_flags)
4295{
4296	u64 n_sectors = dev->n_sectors;
4297	u64 n_native_sectors = dev->n_native_sectors;
4298	int rc;
4299
4300	if (!ata_dev_enabled(dev))
4301		return -ENODEV;
4302
4303	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4304	if (ata_class_enabled(new_class) &&
4305	    new_class != ATA_DEV_ATA &&
4306	    new_class != ATA_DEV_ATAPI &&
4307	    new_class != ATA_DEV_ZAC &&
4308	    new_class != ATA_DEV_SEMB) {
4309		ata_dev_info(dev, "class mismatch %u != %u\n",
4310			     dev->class, new_class);
4311		rc = -ENODEV;
4312		goto fail;
4313	}
4314
4315	/* re-read ID */
4316	rc = ata_dev_reread_id(dev, readid_flags);
4317	if (rc)
4318		goto fail;
4319
4320	/* configure device according to the new ID */
4321	rc = ata_dev_configure(dev);
4322	if (rc)
4323		goto fail;
4324
4325	/* verify n_sectors hasn't changed */
4326	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4327	    dev->n_sectors == n_sectors)
4328		return 0;
4329
4330	/* n_sectors has changed */
4331	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4332		     (unsigned long long)n_sectors,
4333		     (unsigned long long)dev->n_sectors);
4334
4335	/*
4336	 * Something could have caused HPA to be unlocked
4337	 * involuntarily.  If n_native_sectors hasn't changed and the
4338	 * new size matches it, keep the device.
4339	 */
4340	if (dev->n_native_sectors == n_native_sectors &&
4341	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4342		ata_dev_warn(dev,
4343			     "new n_sectors matches native, probably "
4344			     "late HPA unlock, n_sectors updated\n");
4345		/* use the larger n_sectors */
4346		return 0;
4347	}
4348
4349	/*
4350	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4351	 * unlocking HPA in those cases.
4352	 *
4353	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4354	 */
4355	if (dev->n_native_sectors == n_native_sectors &&
4356	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4357	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4358		ata_dev_warn(dev,
4359			     "old n_sectors matches native, probably "
4360			     "late HPA lock, will try to unlock HPA\n");
4361		/* try unlocking HPA */
4362		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4363		rc = -EIO;
4364	} else
4365		rc = -ENODEV;
4366
4367	/* restore original n_[native_]sectors and fail */
4368	dev->n_native_sectors = n_native_sectors;
4369	dev->n_sectors = n_sectors;
4370 fail:
4371	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4372	return rc;
4373}
4374
4375struct ata_blacklist_entry {
4376	const char *model_num;
4377	const char *model_rev;
4378	unsigned long horkage;
4379};
4380
4381static const struct ata_blacklist_entry ata_device_blacklist [] = {
4382	/* Devices with DMA related problems under Linux */
4383	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4384	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4385	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4386	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4387	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4388	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4389	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4390	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4391	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4392	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4393	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4394	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4395	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4396	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4397	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4398	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4399	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4400	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4401	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4402	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4403	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4404	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4405	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4406	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4407	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4408	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4409	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4410	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4411	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4412	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4413	/* Odd clown on sil3726/4726 PMPs */
4414	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4415
4416	/* Weird ATAPI devices */
4417	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4418	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4419	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4420	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4421
4422	/*
4423	 * Causes silent data corruption with higher max sects.
4424	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4425	 */
4426	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4427
4428	/*
4429	 * These devices time out with higher max sects.
4430	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4431	 */
4432	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4433	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4434
4435	/* Devices we expect to fail diagnostics */
4436
4437	/* Devices where NCQ should be avoided */
4438	/* NCQ is slow */
4439	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4440	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4441	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4442	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4443	/* NCQ is broken */
4444	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4445	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4446	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4447	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4448	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4449
4450	/* Seagate NCQ + FLUSH CACHE firmware bug */
4451	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4452						ATA_HORKAGE_FIRMWARE_WARN },
4453
4454	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4455						ATA_HORKAGE_FIRMWARE_WARN },
4456
4457	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4458						ATA_HORKAGE_FIRMWARE_WARN },
4459
4460	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4461						ATA_HORKAGE_FIRMWARE_WARN },
4462
4463	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4464	   the ST disks also have LPM issues */
4465	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4466						ATA_HORKAGE_NOLPM, },
4467	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4468
4469	/* Blacklist entries taken from Silicon Image 3124/3132
4470	   Windows driver .inf file - also several Linux problem reports */
4471	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4472	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4473	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4474
4475	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4476	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4477
4478	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on
4479	   SD7SN6S256G and SD8SN8U256G */
4480	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, },
4481
4482	/* devices which puke on READ_NATIVE_MAX */
4483	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4484	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4487
4488	/* this one allows HPA unlocking but fails IOs on the area */
4489	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4490
4491	/* Devices which report 1 sector over size HPA */
4492	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4493	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4494	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4495
4496	/* Devices which get the IVB wrong */
4497	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498	/* Maybe we should just blacklist TSSTcorp... */
4499	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4500
4501	/* Devices that do not need bridging limits applied */
4502	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4503	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4504
4505	/* Devices which aren't very happy with higher link speeds */
4506	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4507	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4508
4509	/*
4510	 * Devices which choke on SETXFER.  Applies only if both the
4511	 * device and controller are SATA.
4512	 */
4513	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4514	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4515	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4516	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4517	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4518
4519	/* Crucial BX100 SSD 500GB has broken LPM support */
4520	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4521
4522	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4523	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4524						ATA_HORKAGE_ZERO_AFTER_TRIM |
4525						ATA_HORKAGE_NOLPM, },
4526	/* 512GB MX100 with newer firmware has only LPM issues */
4527	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4528						ATA_HORKAGE_NOLPM, },
4529
4530	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4531	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4532						ATA_HORKAGE_ZERO_AFTER_TRIM |
4533						ATA_HORKAGE_NOLPM, },
4534	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4535						ATA_HORKAGE_ZERO_AFTER_TRIM |
4536						ATA_HORKAGE_NOLPM, },
4537
4538	/* These specific Samsung models/firmware-revs do not handle LPM well */
4539	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4540	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4541	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4542	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4543
4544	/* devices that don't properly handle queued TRIM commands */
4545	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4546						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4547	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4548						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4549	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4550						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4551	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4552						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4553	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4554						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4556						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4558						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4560						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4562						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563
4564	/* devices that don't properly handle TRIM commands */
4565	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4566
4567	/*
4568	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4569	 * (Return Zero After Trim) flags in the ATA Command Set are
4570	 * unreliable in the sense that they only define what happens if
4571	 * the device successfully executed the DSM TRIM command. TRIM
4572	 * is only advisory, however, and the device is free to silently
4573	 * ignore all or parts of the request.
4574	 *
4575	 * Whitelist drives that are known to reliably return zeroes
4576	 * after TRIM.
4577	 */
4578
4579	/*
4580	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4581	 * that model before whitelisting all other intel SSDs.
4582	 */
4583	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4584
4585	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4586	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4587	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4588	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4589	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4590	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4591	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593
4594	/*
4595	 * Some WD SATA-I drives spin up and down erratically when the link
4596	 * is put into the slumber mode.  We don't have full list of the
4597	 * affected devices.  Disable LPM if the device matches one of the
4598	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4599	 * lost too.
4600	 *
4601	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4602	 */
4603	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4604	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4605	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4606	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4607	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4608	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4609	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4610
4611	/* End Marker */
4612	{ }
4613};
4614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4615static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4616{
4617	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4618	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4619	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4620
4621	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4622	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4623
4624	while (ad->model_num) {
4625		if (glob_match(ad->model_num, model_num)) {
4626			if (ad->model_rev == NULL)
4627				return ad->horkage;
4628			if (glob_match(ad->model_rev, model_rev))
4629				return ad->horkage;
4630		}
4631		ad++;
4632	}
4633	return 0;
4634}
4635
4636static int ata_dma_blacklisted(const struct ata_device *dev)
4637{
4638	/* We don't support polling DMA.
4639	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4640	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4641	 */
4642	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4643	    (dev->flags & ATA_DFLAG_CDB_INTR))
4644		return 1;
4645	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4646}
4647
4648/**
4649 *	ata_is_40wire		-	check drive side detection
4650 *	@dev: device
4651 *
4652 *	Perform drive side detection decoding, allowing for device vendors
4653 *	who can't follow the documentation.
4654 */
4655
4656static int ata_is_40wire(struct ata_device *dev)
4657{
4658	if (dev->horkage & ATA_HORKAGE_IVB)
4659		return ata_drive_40wire_relaxed(dev->id);
4660	return ata_drive_40wire(dev->id);
4661}
4662
4663/**
4664 *	cable_is_40wire		-	40/80/SATA decider
4665 *	@ap: port to consider
4666 *
4667 *	This function encapsulates the policy for speed management
4668 *	in one place. At the moment we don't cache the result but
4669 *	there is a good case for setting ap->cbl to the result when
4670 *	we are called with unknown cables (and figuring out if it
4671 *	impacts hotplug at all).
4672 *
4673 *	Return 1 if the cable appears to be 40 wire.
4674 */
4675
4676static int cable_is_40wire(struct ata_port *ap)
4677{
4678	struct ata_link *link;
4679	struct ata_device *dev;
4680
4681	/* If the controller thinks we are 40 wire, we are. */
4682	if (ap->cbl == ATA_CBL_PATA40)
4683		return 1;
4684
4685	/* If the controller thinks we are 80 wire, we are. */
4686	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4687		return 0;
4688
4689	/* If the system is known to be 40 wire short cable (eg
4690	 * laptop), then we allow 80 wire modes even if the drive
4691	 * isn't sure.
4692	 */
4693	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4694		return 0;
4695
4696	/* If the controller doesn't know, we scan.
4697	 *
4698	 * Note: We look for all 40 wire detects at this point.  Any
4699	 *       80 wire detect is taken to be 80 wire cable because
4700	 * - in many setups only the one drive (slave if present) will
4701	 *   give a valid detect
4702	 * - if you have a non detect capable drive you don't want it
4703	 *   to colour the choice
4704	 */
4705	ata_for_each_link(link, ap, EDGE) {
4706		ata_for_each_dev(dev, link, ENABLED) {
4707			if (!ata_is_40wire(dev))
4708				return 0;
4709		}
4710	}
4711	return 1;
4712}
4713
4714/**
4715 *	ata_dev_xfermask - Compute supported xfermask of the given device
4716 *	@dev: Device to compute xfermask for
4717 *
4718 *	Compute supported xfermask of @dev and store it in
4719 *	dev->*_mask.  This function is responsible for applying all
4720 *	known limits including host controller limits, device
4721 *	blacklist, etc...
4722 *
4723 *	LOCKING:
4724 *	None.
4725 */
4726static void ata_dev_xfermask(struct ata_device *dev)
4727{
4728	struct ata_link *link = dev->link;
4729	struct ata_port *ap = link->ap;
4730	struct ata_host *host = ap->host;
4731	unsigned long xfer_mask;
4732
4733	/* controller modes available */
4734	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4735				      ap->mwdma_mask, ap->udma_mask);
4736
4737	/* drive modes available */
4738	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4739				       dev->mwdma_mask, dev->udma_mask);
4740	xfer_mask &= ata_id_xfermask(dev->id);
4741
4742	/*
4743	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4744	 *	cable
4745	 */
4746	if (ata_dev_pair(dev)) {
4747		/* No PIO5 or PIO6 */
4748		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4749		/* No MWDMA3 or MWDMA 4 */
4750		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4751	}
4752
4753	if (ata_dma_blacklisted(dev)) {
4754		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4755		ata_dev_warn(dev,
4756			     "device is on DMA blacklist, disabling DMA\n");
4757	}
4758
4759	if ((host->flags & ATA_HOST_SIMPLEX) &&
4760	    host->simplex_claimed && host->simplex_claimed != ap) {
4761		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4762		ata_dev_warn(dev,
4763			     "simplex DMA is claimed by other device, disabling DMA\n");
4764	}
4765
4766	if (ap->flags & ATA_FLAG_NO_IORDY)
4767		xfer_mask &= ata_pio_mask_no_iordy(dev);
4768
4769	if (ap->ops->mode_filter)
4770		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4771
4772	/* Apply cable rule here.  Don't apply it early because when
4773	 * we handle hot plug the cable type can itself change.
4774	 * Check this last so that we know if the transfer rate was
4775	 * solely limited by the cable.
4776	 * Unknown or 80 wire cables reported host side are checked
4777	 * drive side as well. Cases where we know a 40wire cable
4778	 * is used safely for 80 are not checked here.
4779	 */
4780	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4781		/* UDMA/44 or higher would be available */
4782		if (cable_is_40wire(ap)) {
4783			ata_dev_warn(dev,
4784				     "limited to UDMA/33 due to 40-wire cable\n");
4785			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4786		}
4787
4788	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4789			    &dev->mwdma_mask, &dev->udma_mask);
4790}
4791
4792/**
4793 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4794 *	@dev: Device to which command will be sent
4795 *
4796 *	Issue SET FEATURES - XFER MODE command to device @dev
4797 *	on port @ap.
4798 *
4799 *	LOCKING:
4800 *	PCI/etc. bus probe sem.
4801 *
4802 *	RETURNS:
4803 *	0 on success, AC_ERR_* mask otherwise.
4804 */
4805
4806static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4807{
4808	struct ata_taskfile tf;
4809	unsigned int err_mask;
4810
4811	/* set up set-features taskfile */
4812	DPRINTK("set features - xfer mode\n");
4813
4814	/* Some controllers and ATAPI devices show flaky interrupt
4815	 * behavior after setting xfer mode.  Use polling instead.
4816	 */
4817	ata_tf_init(dev, &tf);
4818	tf.command = ATA_CMD_SET_FEATURES;
4819	tf.feature = SETFEATURES_XFER;
4820	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4821	tf.protocol = ATA_PROT_NODATA;
4822	/* If we are using IORDY we must send the mode setting command */
4823	if (ata_pio_need_iordy(dev))
4824		tf.nsect = dev->xfer_mode;
4825	/* If the device has IORDY and the controller does not - turn it off */
4826 	else if (ata_id_has_iordy(dev->id))
4827		tf.nsect = 0x01;
4828	else /* In the ancient relic department - skip all of this */
4829		return 0;
4830
4831	/* On some disks, this command causes spin-up, so we need longer timeout */
4832	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4833
4834	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4835	return err_mask;
4836}
4837
4838/**
4839 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4840 *	@dev: Device to which command will be sent
4841 *	@enable: Whether to enable or disable the feature
4842 *	@feature: The sector count represents the feature to set
4843 *
4844 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4845 *	on port @ap with sector count
4846 *
4847 *	LOCKING:
4848 *	PCI/etc. bus probe sem.
4849 *
4850 *	RETURNS:
4851 *	0 on success, AC_ERR_* mask otherwise.
4852 */
4853unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4854{
4855	struct ata_taskfile tf;
4856	unsigned int err_mask;
4857	unsigned long timeout = 0;
4858
4859	/* set up set-features taskfile */
4860	DPRINTK("set features - SATA features\n");
4861
4862	ata_tf_init(dev, &tf);
4863	tf.command = ATA_CMD_SET_FEATURES;
4864	tf.feature = enable;
4865	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4866	tf.protocol = ATA_PROT_NODATA;
4867	tf.nsect = feature;
4868
4869	if (enable == SETFEATURES_SPINUP)
4870		timeout = ata_probe_timeout ?
4871			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4872	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4873
4874	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4875	return err_mask;
4876}
4877EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4878
4879/**
4880 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4881 *	@dev: Device to which command will be sent
4882 *	@heads: Number of heads (taskfile parameter)
4883 *	@sectors: Number of sectors (taskfile parameter)
4884 *
4885 *	LOCKING:
4886 *	Kernel thread context (may sleep)
4887 *
4888 *	RETURNS:
4889 *	0 on success, AC_ERR_* mask otherwise.
4890 */
4891static unsigned int ata_dev_init_params(struct ata_device *dev,
4892					u16 heads, u16 sectors)
4893{
4894	struct ata_taskfile tf;
4895	unsigned int err_mask;
4896
4897	/* Number of sectors per track 1-255. Number of heads 1-16 */
4898	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4899		return AC_ERR_INVALID;
4900
4901	/* set up init dev params taskfile */
4902	DPRINTK("init dev params \n");
4903
4904	ata_tf_init(dev, &tf);
4905	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4906	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4907	tf.protocol = ATA_PROT_NODATA;
4908	tf.nsect = sectors;
4909	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4910
4911	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4912	/* A clean abort indicates an original or just out of spec drive
4913	   and we should continue as we issue the setup based on the
4914	   drive reported working geometry */
4915	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4916		err_mask = 0;
4917
4918	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4919	return err_mask;
4920}
4921
4922/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4923 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4924 *	@qc: Metadata associated with taskfile to check
4925 *
4926 *	Allow low-level driver to filter ATA PACKET commands, returning
4927 *	a status indicating whether or not it is OK to use DMA for the
4928 *	supplied PACKET command.
4929 *
4930 *	LOCKING:
4931 *	spin_lock_irqsave(host lock)
4932 *
4933 *	RETURNS: 0 when ATAPI DMA can be used
4934 *               nonzero otherwise
4935 */
4936int atapi_check_dma(struct ata_queued_cmd *qc)
4937{
4938	struct ata_port *ap = qc->ap;
4939
4940	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4941	 * few ATAPI devices choke on such DMA requests.
4942	 */
4943	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4944	    unlikely(qc->nbytes & 15))
4945		return 1;
4946
4947	if (ap->ops->check_atapi_dma)
4948		return ap->ops->check_atapi_dma(qc);
4949
4950	return 0;
4951}
4952
4953/**
4954 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4955 *	@qc: ATA command in question
4956 *
4957 *	Non-NCQ commands cannot run with any other command, NCQ or
4958 *	not.  As upper layer only knows the queue depth, we are
4959 *	responsible for maintaining exclusion.  This function checks
4960 *	whether a new command @qc can be issued.
4961 *
4962 *	LOCKING:
4963 *	spin_lock_irqsave(host lock)
4964 *
4965 *	RETURNS:
4966 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4967 */
4968int ata_std_qc_defer(struct ata_queued_cmd *qc)
4969{
4970	struct ata_link *link = qc->dev->link;
4971
4972	if (ata_is_ncq(qc->tf.protocol)) {
4973		if (!ata_tag_valid(link->active_tag))
4974			return 0;
4975	} else {
4976		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4977			return 0;
4978	}
4979
4980	return ATA_DEFER_LINK;
4981}
4982
4983void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4984
4985/**
4986 *	ata_sg_init - Associate command with scatter-gather table.
4987 *	@qc: Command to be associated
4988 *	@sg: Scatter-gather table.
4989 *	@n_elem: Number of elements in s/g table.
4990 *
4991 *	Initialize the data-related elements of queued_cmd @qc
4992 *	to point to a scatter-gather table @sg, containing @n_elem
4993 *	elements.
4994 *
4995 *	LOCKING:
4996 *	spin_lock_irqsave(host lock)
4997 */
4998void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4999		 unsigned int n_elem)
5000{
5001	qc->sg = sg;
5002	qc->n_elem = n_elem;
5003	qc->cursg = qc->sg;
5004}
5005
5006#ifdef CONFIG_HAS_DMA
5007
5008/**
5009 *	ata_sg_clean - Unmap DMA memory associated with command
5010 *	@qc: Command containing DMA memory to be released
5011 *
5012 *	Unmap all mapped DMA memory associated with this command.
5013 *
5014 *	LOCKING:
5015 *	spin_lock_irqsave(host lock)
5016 */
5017static void ata_sg_clean(struct ata_queued_cmd *qc)
5018{
5019	struct ata_port *ap = qc->ap;
5020	struct scatterlist *sg = qc->sg;
5021	int dir = qc->dma_dir;
5022
5023	WARN_ON_ONCE(sg == NULL);
5024
5025	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5026
5027	if (qc->n_elem)
5028		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5029
5030	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5031	qc->sg = NULL;
5032}
5033
5034/**
5035 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5036 *	@qc: Command with scatter-gather table to be mapped.
5037 *
5038 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5039 *
5040 *	LOCKING:
5041 *	spin_lock_irqsave(host lock)
5042 *
5043 *	RETURNS:
5044 *	Zero on success, negative on error.
5045 *
5046 */
5047static int ata_sg_setup(struct ata_queued_cmd *qc)
5048{
5049	struct ata_port *ap = qc->ap;
5050	unsigned int n_elem;
5051
5052	VPRINTK("ENTER, ata%u\n", ap->print_id);
5053
5054	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5055	if (n_elem < 1)
5056		return -1;
5057
5058	VPRINTK("%d sg elements mapped\n", n_elem);
5059	qc->orig_n_elem = qc->n_elem;
5060	qc->n_elem = n_elem;
5061	qc->flags |= ATA_QCFLAG_DMAMAP;
5062
5063	return 0;
5064}
5065
5066#else /* !CONFIG_HAS_DMA */
5067
5068static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5069static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5070
5071#endif /* !CONFIG_HAS_DMA */
5072
5073/**
5074 *	swap_buf_le16 - swap halves of 16-bit words in place
5075 *	@buf:  Buffer to swap
5076 *	@buf_words:  Number of 16-bit words in buffer.
5077 *
5078 *	Swap halves of 16-bit words if needed to convert from
5079 *	little-endian byte order to native cpu byte order, or
5080 *	vice-versa.
5081 *
5082 *	LOCKING:
5083 *	Inherited from caller.
5084 */
5085void swap_buf_le16(u16 *buf, unsigned int buf_words)
5086{
5087#ifdef __BIG_ENDIAN
5088	unsigned int i;
5089
5090	for (i = 0; i < buf_words; i++)
5091		buf[i] = le16_to_cpu(buf[i]);
5092#endif /* __BIG_ENDIAN */
5093}
5094
5095/**
5096 *	ata_qc_new_init - Request an available ATA command, and initialize it
5097 *	@dev: Device from whom we request an available command structure
5098 *	@tag: tag
5099 *
5100 *	LOCKING:
5101 *	None.
5102 */
5103
5104struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5105{
5106	struct ata_port *ap = dev->link->ap;
5107	struct ata_queued_cmd *qc;
5108
5109	/* no command while frozen */
5110	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5111		return NULL;
5112
5113	/* libsas case */
5114	if (ap->flags & ATA_FLAG_SAS_HOST) {
5115		tag = ata_sas_allocate_tag(ap);
5116		if (tag < 0)
5117			return NULL;
 
 
 
 
 
 
 
 
5118	}
5119
5120	qc = __ata_qc_from_tag(ap, tag);
5121	qc->tag = qc->hw_tag = tag;
5122	qc->scsicmd = NULL;
5123	qc->ap = ap;
5124	qc->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5125
5126	ata_qc_reinit(qc);
 
5127
5128	return qc;
5129}
5130
5131/**
5132 *	ata_qc_free - free unused ata_queued_cmd
5133 *	@qc: Command to complete
5134 *
5135 *	Designed to free unused ata_queued_cmd object
5136 *	in case something prevents using it.
5137 *
5138 *	LOCKING:
5139 *	spin_lock_irqsave(host lock)
5140 */
5141void ata_qc_free(struct ata_queued_cmd *qc)
5142{
5143	struct ata_port *ap;
5144	unsigned int tag;
5145
5146	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5147	ap = qc->ap;
5148
5149	qc->flags = 0;
5150	tag = qc->tag;
5151	if (ata_tag_valid(tag)) {
5152		qc->tag = ATA_TAG_POISON;
5153		if (ap->flags & ATA_FLAG_SAS_HOST)
5154			ata_sas_free_tag(tag, ap);
5155	}
5156}
5157
5158void __ata_qc_complete(struct ata_queued_cmd *qc)
5159{
5160	struct ata_port *ap;
5161	struct ata_link *link;
5162
5163	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5164	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5165	ap = qc->ap;
5166	link = qc->dev->link;
5167
5168	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5169		ata_sg_clean(qc);
5170
5171	/* command should be marked inactive atomically with qc completion */
5172	if (ata_is_ncq(qc->tf.protocol)) {
5173		link->sactive &= ~(1 << qc->hw_tag);
5174		if (!link->sactive)
5175			ap->nr_active_links--;
5176	} else {
5177		link->active_tag = ATA_TAG_POISON;
5178		ap->nr_active_links--;
5179	}
5180
5181	/* clear exclusive status */
5182	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5183		     ap->excl_link == link))
5184		ap->excl_link = NULL;
5185
5186	/* atapi: mark qc as inactive to prevent the interrupt handler
5187	 * from completing the command twice later, before the error handler
5188	 * is called. (when rc != 0 and atapi request sense is needed)
5189	 */
5190	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5191	ap->qc_active &= ~(1ULL << qc->tag);
5192
5193	/* call completion callback */
5194	qc->complete_fn(qc);
5195}
5196
5197static void fill_result_tf(struct ata_queued_cmd *qc)
5198{
5199	struct ata_port *ap = qc->ap;
5200
5201	qc->result_tf.flags = qc->tf.flags;
5202	ap->ops->qc_fill_rtf(qc);
5203}
5204
5205static void ata_verify_xfer(struct ata_queued_cmd *qc)
5206{
5207	struct ata_device *dev = qc->dev;
5208
5209	if (!ata_is_data(qc->tf.protocol))
5210		return;
5211
5212	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5213		return;
5214
5215	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5216}
5217
5218/**
5219 *	ata_qc_complete - Complete an active ATA command
5220 *	@qc: Command to complete
5221 *
5222 *	Indicate to the mid and upper layers that an ATA command has
5223 *	completed, with either an ok or not-ok status.
5224 *
5225 *	Refrain from calling this function multiple times when
5226 *	successfully completing multiple NCQ commands.
5227 *	ata_qc_complete_multiple() should be used instead, which will
5228 *	properly update IRQ expect state.
5229 *
5230 *	LOCKING:
5231 *	spin_lock_irqsave(host lock)
5232 */
5233void ata_qc_complete(struct ata_queued_cmd *qc)
5234{
5235	struct ata_port *ap = qc->ap;
5236
5237	/* Trigger the LED (if available) */
5238	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5239
5240	/* XXX: New EH and old EH use different mechanisms to
5241	 * synchronize EH with regular execution path.
5242	 *
5243	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5244	 * Normal execution path is responsible for not accessing a
5245	 * failed qc.  libata core enforces the rule by returning NULL
5246	 * from ata_qc_from_tag() for failed qcs.
5247	 *
5248	 * Old EH depends on ata_qc_complete() nullifying completion
5249	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5250	 * not synchronize with interrupt handler.  Only PIO task is
5251	 * taken care of.
5252	 */
5253	if (ap->ops->error_handler) {
5254		struct ata_device *dev = qc->dev;
5255		struct ata_eh_info *ehi = &dev->link->eh_info;
5256
5257		if (unlikely(qc->err_mask))
5258			qc->flags |= ATA_QCFLAG_FAILED;
5259
5260		/*
5261		 * Finish internal commands without any further processing
5262		 * and always with the result TF filled.
5263		 */
5264		if (unlikely(ata_tag_internal(qc->tag))) {
5265			fill_result_tf(qc);
5266			trace_ata_qc_complete_internal(qc);
5267			__ata_qc_complete(qc);
5268			return;
5269		}
5270
5271		/*
5272		 * Non-internal qc has failed.  Fill the result TF and
5273		 * summon EH.
5274		 */
5275		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5276			fill_result_tf(qc);
5277			trace_ata_qc_complete_failed(qc);
5278			ata_qc_schedule_eh(qc);
5279			return;
5280		}
5281
5282		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5283
5284		/* read result TF if requested */
5285		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5286			fill_result_tf(qc);
5287
5288		trace_ata_qc_complete_done(qc);
5289		/* Some commands need post-processing after successful
5290		 * completion.
5291		 */
5292		switch (qc->tf.command) {
5293		case ATA_CMD_SET_FEATURES:
5294			if (qc->tf.feature != SETFEATURES_WC_ON &&
5295			    qc->tf.feature != SETFEATURES_WC_OFF &&
5296			    qc->tf.feature != SETFEATURES_RA_ON &&
5297			    qc->tf.feature != SETFEATURES_RA_OFF)
5298				break;
5299			/* fall through */
5300		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5301		case ATA_CMD_SET_MULTI: /* multi_count changed */
5302			/* revalidate device */
5303			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5304			ata_port_schedule_eh(ap);
5305			break;
5306
5307		case ATA_CMD_SLEEP:
5308			dev->flags |= ATA_DFLAG_SLEEPING;
5309			break;
5310		}
5311
5312		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5313			ata_verify_xfer(qc);
5314
5315		__ata_qc_complete(qc);
5316	} else {
5317		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5318			return;
5319
5320		/* read result TF if failed or requested */
5321		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5322			fill_result_tf(qc);
5323
5324		__ata_qc_complete(qc);
5325	}
5326}
5327
5328/**
5329 *	ata_qc_complete_multiple - Complete multiple qcs successfully
5330 *	@ap: port in question
5331 *	@qc_active: new qc_active mask
5332 *
5333 *	Complete in-flight commands.  This functions is meant to be
5334 *	called from low-level driver's interrupt routine to complete
5335 *	requests normally.  ap->qc_active and @qc_active is compared
5336 *	and commands are completed accordingly.
5337 *
5338 *	Always use this function when completing multiple NCQ commands
5339 *	from IRQ handlers instead of calling ata_qc_complete()
5340 *	multiple times to keep IRQ expect status properly in sync.
5341 *
5342 *	LOCKING:
5343 *	spin_lock_irqsave(host lock)
5344 *
5345 *	RETURNS:
5346 *	Number of completed commands on success, -errno otherwise.
5347 */
5348int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5349{
5350	u64 done_mask, ap_qc_active = ap->qc_active;
5351	int nr_done = 0;
 
5352
5353	/*
5354	 * If the internal tag is set on ap->qc_active, then we care about
5355	 * bit0 on the passed in qc_active mask. Move that bit up to match
5356	 * the internal tag.
5357	 */
5358	if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5359		qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5360		qc_active ^= qc_active & 0x01;
5361	}
5362
5363	done_mask = ap_qc_active ^ qc_active;
5364
5365	if (unlikely(done_mask & qc_active)) {
5366		ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5367			     ap->qc_active, qc_active);
5368		return -EINVAL;
5369	}
5370
5371	while (done_mask) {
5372		struct ata_queued_cmd *qc;
5373		unsigned int tag = __ffs64(done_mask);
5374
5375		qc = ata_qc_from_tag(ap, tag);
5376		if (qc) {
5377			ata_qc_complete(qc);
5378			nr_done++;
5379		}
5380		done_mask &= ~(1ULL << tag);
5381	}
5382
5383	return nr_done;
5384}
5385
5386/**
5387 *	ata_qc_issue - issue taskfile to device
5388 *	@qc: command to issue to device
5389 *
5390 *	Prepare an ATA command to submission to device.
5391 *	This includes mapping the data into a DMA-able
5392 *	area, filling in the S/G table, and finally
5393 *	writing the taskfile to hardware, starting the command.
5394 *
5395 *	LOCKING:
5396 *	spin_lock_irqsave(host lock)
5397 */
5398void ata_qc_issue(struct ata_queued_cmd *qc)
5399{
5400	struct ata_port *ap = qc->ap;
5401	struct ata_link *link = qc->dev->link;
5402	u8 prot = qc->tf.protocol;
5403
5404	/* Make sure only one non-NCQ command is outstanding.  The
5405	 * check is skipped for old EH because it reuses active qc to
5406	 * request ATAPI sense.
5407	 */
5408	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5409
5410	if (ata_is_ncq(prot)) {
5411		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5412
5413		if (!link->sactive)
5414			ap->nr_active_links++;
5415		link->sactive |= 1 << qc->hw_tag;
5416	} else {
5417		WARN_ON_ONCE(link->sactive);
5418
5419		ap->nr_active_links++;
5420		link->active_tag = qc->tag;
5421	}
5422
5423	qc->flags |= ATA_QCFLAG_ACTIVE;
5424	ap->qc_active |= 1ULL << qc->tag;
5425
5426	/*
5427	 * We guarantee to LLDs that they will have at least one
5428	 * non-zero sg if the command is a data command.
5429	 */
5430	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
 
5431		goto sys_err;
5432
5433	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5434				 (ap->flags & ATA_FLAG_PIO_DMA)))
5435		if (ata_sg_setup(qc))
5436			goto sys_err;
5437
5438	/* if device is sleeping, schedule reset and abort the link */
5439	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5440		link->eh_info.action |= ATA_EH_RESET;
5441		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5442		ata_link_abort(link);
5443		return;
5444	}
5445
5446	ap->ops->qc_prep(qc);
5447	trace_ata_qc_issue(qc);
5448	qc->err_mask |= ap->ops->qc_issue(qc);
5449	if (unlikely(qc->err_mask))
5450		goto err;
5451	return;
5452
5453sys_err:
5454	qc->err_mask |= AC_ERR_SYSTEM;
5455err:
5456	ata_qc_complete(qc);
5457}
5458
5459/**
5460 *	sata_scr_valid - test whether SCRs are accessible
5461 *	@link: ATA link to test SCR accessibility for
5462 *
5463 *	Test whether SCRs are accessible for @link.
5464 *
5465 *	LOCKING:
5466 *	None.
5467 *
5468 *	RETURNS:
5469 *	1 if SCRs are accessible, 0 otherwise.
5470 */
5471int sata_scr_valid(struct ata_link *link)
5472{
5473	struct ata_port *ap = link->ap;
5474
5475	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5476}
5477
5478/**
5479 *	sata_scr_read - read SCR register of the specified port
5480 *	@link: ATA link to read SCR for
5481 *	@reg: SCR to read
5482 *	@val: Place to store read value
5483 *
5484 *	Read SCR register @reg of @link into *@val.  This function is
5485 *	guaranteed to succeed if @link is ap->link, the cable type of
5486 *	the port is SATA and the port implements ->scr_read.
5487 *
5488 *	LOCKING:
5489 *	None if @link is ap->link.  Kernel thread context otherwise.
5490 *
5491 *	RETURNS:
5492 *	0 on success, negative errno on failure.
5493 */
5494int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5495{
5496	if (ata_is_host_link(link)) {
5497		if (sata_scr_valid(link))
5498			return link->ap->ops->scr_read(link, reg, val);
5499		return -EOPNOTSUPP;
5500	}
5501
5502	return sata_pmp_scr_read(link, reg, val);
5503}
5504
5505/**
5506 *	sata_scr_write - write SCR register of the specified port
5507 *	@link: ATA link to write SCR for
5508 *	@reg: SCR to write
5509 *	@val: value to write
5510 *
5511 *	Write @val to SCR register @reg of @link.  This function is
5512 *	guaranteed to succeed if @link is ap->link, the cable type of
5513 *	the port is SATA and the port implements ->scr_read.
5514 *
5515 *	LOCKING:
5516 *	None if @link is ap->link.  Kernel thread context otherwise.
5517 *
5518 *	RETURNS:
5519 *	0 on success, negative errno on failure.
5520 */
5521int sata_scr_write(struct ata_link *link, int reg, u32 val)
5522{
5523	if (ata_is_host_link(link)) {
5524		if (sata_scr_valid(link))
5525			return link->ap->ops->scr_write(link, reg, val);
5526		return -EOPNOTSUPP;
5527	}
5528
5529	return sata_pmp_scr_write(link, reg, val);
5530}
5531
5532/**
5533 *	sata_scr_write_flush - write SCR register of the specified port and flush
5534 *	@link: ATA link to write SCR for
5535 *	@reg: SCR to write
5536 *	@val: value to write
5537 *
5538 *	This function is identical to sata_scr_write() except that this
5539 *	function performs flush after writing to the register.
5540 *
5541 *	LOCKING:
5542 *	None if @link is ap->link.  Kernel thread context otherwise.
5543 *
5544 *	RETURNS:
5545 *	0 on success, negative errno on failure.
5546 */
5547int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5548{
5549	if (ata_is_host_link(link)) {
5550		int rc;
5551
5552		if (sata_scr_valid(link)) {
5553			rc = link->ap->ops->scr_write(link, reg, val);
5554			if (rc == 0)
5555				rc = link->ap->ops->scr_read(link, reg, &val);
5556			return rc;
5557		}
5558		return -EOPNOTSUPP;
5559	}
5560
5561	return sata_pmp_scr_write(link, reg, val);
5562}
5563
5564/**
5565 *	ata_phys_link_online - test whether the given link is online
5566 *	@link: ATA link to test
5567 *
5568 *	Test whether @link is online.  Note that this function returns
5569 *	0 if online status of @link cannot be obtained, so
5570 *	ata_link_online(link) != !ata_link_offline(link).
5571 *
5572 *	LOCKING:
5573 *	None.
5574 *
5575 *	RETURNS:
5576 *	True if the port online status is available and online.
5577 */
5578bool ata_phys_link_online(struct ata_link *link)
5579{
5580	u32 sstatus;
5581
5582	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5583	    ata_sstatus_online(sstatus))
5584		return true;
5585	return false;
5586}
5587
5588/**
5589 *	ata_phys_link_offline - test whether the given link is offline
5590 *	@link: ATA link to test
5591 *
5592 *	Test whether @link is offline.  Note that this function
5593 *	returns 0 if offline status of @link cannot be obtained, so
5594 *	ata_link_online(link) != !ata_link_offline(link).
5595 *
5596 *	LOCKING:
5597 *	None.
5598 *
5599 *	RETURNS:
5600 *	True if the port offline status is available and offline.
5601 */
5602bool ata_phys_link_offline(struct ata_link *link)
5603{
5604	u32 sstatus;
5605
5606	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5607	    !ata_sstatus_online(sstatus))
5608		return true;
5609	return false;
5610}
5611
5612/**
5613 *	ata_link_online - test whether the given link is online
5614 *	@link: ATA link to test
5615 *
5616 *	Test whether @link is online.  This is identical to
5617 *	ata_phys_link_online() when there's no slave link.  When
5618 *	there's a slave link, this function should only be called on
5619 *	the master link and will return true if any of M/S links is
5620 *	online.
5621 *
5622 *	LOCKING:
5623 *	None.
5624 *
5625 *	RETURNS:
5626 *	True if the port online status is available and online.
5627 */
5628bool ata_link_online(struct ata_link *link)
5629{
5630	struct ata_link *slave = link->ap->slave_link;
5631
5632	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5633
5634	return ata_phys_link_online(link) ||
5635		(slave && ata_phys_link_online(slave));
5636}
5637
5638/**
5639 *	ata_link_offline - test whether the given link is offline
5640 *	@link: ATA link to test
5641 *
5642 *	Test whether @link is offline.  This is identical to
5643 *	ata_phys_link_offline() when there's no slave link.  When
5644 *	there's a slave link, this function should only be called on
5645 *	the master link and will return true if both M/S links are
5646 *	offline.
5647 *
5648 *	LOCKING:
5649 *	None.
5650 *
5651 *	RETURNS:
5652 *	True if the port offline status is available and offline.
5653 */
5654bool ata_link_offline(struct ata_link *link)
5655{
5656	struct ata_link *slave = link->ap->slave_link;
5657
5658	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5659
5660	return ata_phys_link_offline(link) &&
5661		(!slave || ata_phys_link_offline(slave));
5662}
5663
5664#ifdef CONFIG_PM
5665static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5666				unsigned int action, unsigned int ehi_flags,
5667				bool async)
5668{
5669	struct ata_link *link;
5670	unsigned long flags;
5671
5672	/* Previous resume operation might still be in
5673	 * progress.  Wait for PM_PENDING to clear.
5674	 */
5675	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5676		ata_port_wait_eh(ap);
5677		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5678	}
5679
5680	/* request PM ops to EH */
5681	spin_lock_irqsave(ap->lock, flags);
5682
5683	ap->pm_mesg = mesg;
5684	ap->pflags |= ATA_PFLAG_PM_PENDING;
5685	ata_for_each_link(link, ap, HOST_FIRST) {
5686		link->eh_info.action |= action;
5687		link->eh_info.flags |= ehi_flags;
5688	}
5689
5690	ata_port_schedule_eh(ap);
5691
5692	spin_unlock_irqrestore(ap->lock, flags);
5693
5694	if (!async) {
5695		ata_port_wait_eh(ap);
5696		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5697	}
5698}
5699
5700/*
5701 * On some hardware, device fails to respond after spun down for suspend.  As
5702 * the device won't be used before being resumed, we don't need to touch the
5703 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5704 *
5705 * http://thread.gmane.org/gmane.linux.ide/46764
5706 */
5707static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5708						 | ATA_EHI_NO_AUTOPSY
5709						 | ATA_EHI_NO_RECOVERY;
5710
5711static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5712{
5713	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5714}
5715
5716static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5717{
5718	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5719}
5720
5721static int ata_port_pm_suspend(struct device *dev)
5722{
5723	struct ata_port *ap = to_ata_port(dev);
5724
5725	if (pm_runtime_suspended(dev))
5726		return 0;
5727
5728	ata_port_suspend(ap, PMSG_SUSPEND);
5729	return 0;
5730}
5731
5732static int ata_port_pm_freeze(struct device *dev)
5733{
5734	struct ata_port *ap = to_ata_port(dev);
5735
5736	if (pm_runtime_suspended(dev))
5737		return 0;
5738
5739	ata_port_suspend(ap, PMSG_FREEZE);
5740	return 0;
5741}
5742
5743static int ata_port_pm_poweroff(struct device *dev)
5744{
5745	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5746	return 0;
5747}
5748
5749static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5750						| ATA_EHI_QUIET;
5751
5752static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5753{
5754	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5755}
5756
5757static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5758{
5759	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5760}
5761
5762static int ata_port_pm_resume(struct device *dev)
5763{
5764	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5765	pm_runtime_disable(dev);
5766	pm_runtime_set_active(dev);
5767	pm_runtime_enable(dev);
5768	return 0;
5769}
5770
5771/*
5772 * For ODDs, the upper layer will poll for media change every few seconds,
5773 * which will make it enter and leave suspend state every few seconds. And
5774 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5775 * is very little and the ODD may malfunction after constantly being reset.
5776 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5777 * ODD is attached to the port.
5778 */
5779static int ata_port_runtime_idle(struct device *dev)
5780{
5781	struct ata_port *ap = to_ata_port(dev);
5782	struct ata_link *link;
5783	struct ata_device *adev;
5784
5785	ata_for_each_link(link, ap, HOST_FIRST) {
5786		ata_for_each_dev(adev, link, ENABLED)
5787			if (adev->class == ATA_DEV_ATAPI &&
5788			    !zpodd_dev_enabled(adev))
5789				return -EBUSY;
5790	}
5791
5792	return 0;
5793}
5794
5795static int ata_port_runtime_suspend(struct device *dev)
5796{
5797	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5798	return 0;
5799}
5800
5801static int ata_port_runtime_resume(struct device *dev)
5802{
5803	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5804	return 0;
5805}
5806
5807static const struct dev_pm_ops ata_port_pm_ops = {
5808	.suspend = ata_port_pm_suspend,
5809	.resume = ata_port_pm_resume,
5810	.freeze = ata_port_pm_freeze,
5811	.thaw = ata_port_pm_resume,
5812	.poweroff = ata_port_pm_poweroff,
5813	.restore = ata_port_pm_resume,
5814
5815	.runtime_suspend = ata_port_runtime_suspend,
5816	.runtime_resume = ata_port_runtime_resume,
5817	.runtime_idle = ata_port_runtime_idle,
5818};
5819
5820/* sas ports don't participate in pm runtime management of ata_ports,
5821 * and need to resume ata devices at the domain level, not the per-port
5822 * level. sas suspend/resume is async to allow parallel port recovery
5823 * since sas has multiple ata_port instances per Scsi_Host.
5824 */
5825void ata_sas_port_suspend(struct ata_port *ap)
5826{
5827	ata_port_suspend_async(ap, PMSG_SUSPEND);
5828}
5829EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5830
5831void ata_sas_port_resume(struct ata_port *ap)
5832{
5833	ata_port_resume_async(ap, PMSG_RESUME);
5834}
5835EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5836
5837/**
5838 *	ata_host_suspend - suspend host
5839 *	@host: host to suspend
5840 *	@mesg: PM message
5841 *
5842 *	Suspend @host.  Actual operation is performed by port suspend.
5843 */
5844int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5845{
5846	host->dev->power.power_state = mesg;
5847	return 0;
5848}
5849
5850/**
5851 *	ata_host_resume - resume host
5852 *	@host: host to resume
5853 *
5854 *	Resume @host.  Actual operation is performed by port resume.
5855 */
5856void ata_host_resume(struct ata_host *host)
5857{
5858	host->dev->power.power_state = PMSG_ON;
5859}
5860#endif
5861
5862const struct device_type ata_port_type = {
5863	.name = "ata_port",
5864#ifdef CONFIG_PM
5865	.pm = &ata_port_pm_ops,
5866#endif
5867};
5868
5869/**
5870 *	ata_dev_init - Initialize an ata_device structure
5871 *	@dev: Device structure to initialize
5872 *
5873 *	Initialize @dev in preparation for probing.
5874 *
5875 *	LOCKING:
5876 *	Inherited from caller.
5877 */
5878void ata_dev_init(struct ata_device *dev)
5879{
5880	struct ata_link *link = ata_dev_phys_link(dev);
5881	struct ata_port *ap = link->ap;
5882	unsigned long flags;
5883
5884	/* SATA spd limit is bound to the attached device, reset together */
5885	link->sata_spd_limit = link->hw_sata_spd_limit;
5886	link->sata_spd = 0;
5887
5888	/* High bits of dev->flags are used to record warm plug
5889	 * requests which occur asynchronously.  Synchronize using
5890	 * host lock.
5891	 */
5892	spin_lock_irqsave(ap->lock, flags);
5893	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5894	dev->horkage = 0;
5895	spin_unlock_irqrestore(ap->lock, flags);
5896
5897	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5898	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5899	dev->pio_mask = UINT_MAX;
5900	dev->mwdma_mask = UINT_MAX;
5901	dev->udma_mask = UINT_MAX;
5902}
5903
5904/**
5905 *	ata_link_init - Initialize an ata_link structure
5906 *	@ap: ATA port link is attached to
5907 *	@link: Link structure to initialize
5908 *	@pmp: Port multiplier port number
5909 *
5910 *	Initialize @link.
5911 *
5912 *	LOCKING:
5913 *	Kernel thread context (may sleep)
5914 */
5915void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5916{
5917	int i;
5918
5919	/* clear everything except for devices */
5920	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5921	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5922
5923	link->ap = ap;
5924	link->pmp = pmp;
5925	link->active_tag = ATA_TAG_POISON;
5926	link->hw_sata_spd_limit = UINT_MAX;
5927
5928	/* can't use iterator, ap isn't initialized yet */
5929	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5930		struct ata_device *dev = &link->device[i];
5931
5932		dev->link = link;
5933		dev->devno = dev - link->device;
5934#ifdef CONFIG_ATA_ACPI
5935		dev->gtf_filter = ata_acpi_gtf_filter;
5936#endif
5937		ata_dev_init(dev);
5938	}
5939}
5940
5941/**
5942 *	sata_link_init_spd - Initialize link->sata_spd_limit
5943 *	@link: Link to configure sata_spd_limit for
5944 *
5945 *	Initialize @link->[hw_]sata_spd_limit to the currently
5946 *	configured value.
5947 *
5948 *	LOCKING:
5949 *	Kernel thread context (may sleep).
5950 *
5951 *	RETURNS:
5952 *	0 on success, -errno on failure.
5953 */
5954int sata_link_init_spd(struct ata_link *link)
5955{
5956	u8 spd;
5957	int rc;
5958
5959	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5960	if (rc)
5961		return rc;
5962
5963	spd = (link->saved_scontrol >> 4) & 0xf;
5964	if (spd)
5965		link->hw_sata_spd_limit &= (1 << spd) - 1;
5966
5967	ata_force_link_limits(link);
5968
5969	link->sata_spd_limit = link->hw_sata_spd_limit;
5970
5971	return 0;
5972}
5973
5974/**
5975 *	ata_port_alloc - allocate and initialize basic ATA port resources
5976 *	@host: ATA host this allocated port belongs to
5977 *
5978 *	Allocate and initialize basic ATA port resources.
5979 *
5980 *	RETURNS:
5981 *	Allocate ATA port on success, NULL on failure.
5982 *
5983 *	LOCKING:
5984 *	Inherited from calling layer (may sleep).
5985 */
5986struct ata_port *ata_port_alloc(struct ata_host *host)
5987{
5988	struct ata_port *ap;
5989
5990	DPRINTK("ENTER\n");
5991
5992	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5993	if (!ap)
5994		return NULL;
5995
5996	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5997	ap->lock = &host->lock;
5998	ap->print_id = -1;
5999	ap->local_port_no = -1;
6000	ap->host = host;
6001	ap->dev = host->dev;
6002
6003#if defined(ATA_VERBOSE_DEBUG)
6004	/* turn on all debugging levels */
6005	ap->msg_enable = 0x00FF;
6006#elif defined(ATA_DEBUG)
6007	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6008#else
6009	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6010#endif
6011
6012	mutex_init(&ap->scsi_scan_mutex);
6013	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6014	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6015	INIT_LIST_HEAD(&ap->eh_done_q);
6016	init_waitqueue_head(&ap->eh_wait_q);
6017	init_completion(&ap->park_req_pending);
6018	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6019		    TIMER_DEFERRABLE);
 
6020
6021	ap->cbl = ATA_CBL_NONE;
6022
6023	ata_link_init(ap, &ap->link, 0);
6024
6025#ifdef ATA_IRQ_TRAP
6026	ap->stats.unhandled_irq = 1;
6027	ap->stats.idle_irq = 1;
6028#endif
6029	ata_sff_port_init(ap);
6030
6031	return ap;
6032}
6033
6034static void ata_devres_release(struct device *gendev, void *res)
6035{
6036	struct ata_host *host = dev_get_drvdata(gendev);
6037	int i;
6038
6039	for (i = 0; i < host->n_ports; i++) {
6040		struct ata_port *ap = host->ports[i];
6041
6042		if (!ap)
6043			continue;
6044
6045		if (ap->scsi_host)
6046			scsi_host_put(ap->scsi_host);
6047
6048	}
6049
6050	dev_set_drvdata(gendev, NULL);
6051	ata_host_put(host);
6052}
6053
6054static void ata_host_release(struct kref *kref)
6055{
6056	struct ata_host *host = container_of(kref, struct ata_host, kref);
6057	int i;
6058
6059	for (i = 0; i < host->n_ports; i++) {
6060		struct ata_port *ap = host->ports[i];
6061
6062		kfree(ap->pmp_link);
6063		kfree(ap->slave_link);
6064		kfree(ap);
6065		host->ports[i] = NULL;
6066	}
6067	kfree(host);
6068}
6069
6070void ata_host_get(struct ata_host *host)
6071{
6072	kref_get(&host->kref);
6073}
6074
6075void ata_host_put(struct ata_host *host)
6076{
6077	kref_put(&host->kref, ata_host_release);
6078}
6079
6080/**
6081 *	ata_host_alloc - allocate and init basic ATA host resources
6082 *	@dev: generic device this host is associated with
6083 *	@max_ports: maximum number of ATA ports associated with this host
6084 *
6085 *	Allocate and initialize basic ATA host resources.  LLD calls
6086 *	this function to allocate a host, initializes it fully and
6087 *	attaches it using ata_host_register().
6088 *
6089 *	@max_ports ports are allocated and host->n_ports is
6090 *	initialized to @max_ports.  The caller is allowed to decrease
6091 *	host->n_ports before calling ata_host_register().  The unused
6092 *	ports will be automatically freed on registration.
6093 *
6094 *	RETURNS:
6095 *	Allocate ATA host on success, NULL on failure.
6096 *
6097 *	LOCKING:
6098 *	Inherited from calling layer (may sleep).
6099 */
6100struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6101{
6102	struct ata_host *host;
6103	size_t sz;
6104	int i;
6105	void *dr;
6106
6107	DPRINTK("ENTER\n");
6108
 
 
 
6109	/* alloc a container for our list of ATA ports (buses) */
6110	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6111	host = kzalloc(sz, GFP_KERNEL);
 
6112	if (!host)
6113		return NULL;
6114
6115	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6116		goto err_free;
6117
6118	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6119	if (!dr)
6120		goto err_out;
6121
6122	devres_add(dev, dr);
6123	dev_set_drvdata(dev, host);
6124
6125	spin_lock_init(&host->lock);
6126	mutex_init(&host->eh_mutex);
6127	host->dev = dev;
6128	host->n_ports = max_ports;
6129	kref_init(&host->kref);
6130
6131	/* allocate ports bound to this host */
6132	for (i = 0; i < max_ports; i++) {
6133		struct ata_port *ap;
6134
6135		ap = ata_port_alloc(host);
6136		if (!ap)
6137			goto err_out;
6138
6139		ap->port_no = i;
6140		host->ports[i] = ap;
6141	}
6142
6143	devres_remove_group(dev, NULL);
6144	return host;
6145
6146 err_out:
6147	devres_release_group(dev, NULL);
6148 err_free:
6149	kfree(host);
6150	return NULL;
6151}
6152
6153/**
6154 *	ata_host_alloc_pinfo - alloc host and init with port_info array
6155 *	@dev: generic device this host is associated with
6156 *	@ppi: array of ATA port_info to initialize host with
6157 *	@n_ports: number of ATA ports attached to this host
6158 *
6159 *	Allocate ATA host and initialize with info from @ppi.  If NULL
6160 *	terminated, @ppi may contain fewer entries than @n_ports.  The
6161 *	last entry will be used for the remaining ports.
6162 *
6163 *	RETURNS:
6164 *	Allocate ATA host on success, NULL on failure.
6165 *
6166 *	LOCKING:
6167 *	Inherited from calling layer (may sleep).
6168 */
6169struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6170				      const struct ata_port_info * const * ppi,
6171				      int n_ports)
6172{
6173	const struct ata_port_info *pi;
6174	struct ata_host *host;
6175	int i, j;
6176
6177	host = ata_host_alloc(dev, n_ports);
6178	if (!host)
6179		return NULL;
6180
6181	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6182		struct ata_port *ap = host->ports[i];
6183
6184		if (ppi[j])
6185			pi = ppi[j++];
6186
6187		ap->pio_mask = pi->pio_mask;
6188		ap->mwdma_mask = pi->mwdma_mask;
6189		ap->udma_mask = pi->udma_mask;
6190		ap->flags |= pi->flags;
6191		ap->link.flags |= pi->link_flags;
6192		ap->ops = pi->port_ops;
6193
6194		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6195			host->ops = pi->port_ops;
6196	}
6197
6198	return host;
6199}
6200
6201/**
6202 *	ata_slave_link_init - initialize slave link
6203 *	@ap: port to initialize slave link for
6204 *
6205 *	Create and initialize slave link for @ap.  This enables slave
6206 *	link handling on the port.
6207 *
6208 *	In libata, a port contains links and a link contains devices.
6209 *	There is single host link but if a PMP is attached to it,
6210 *	there can be multiple fan-out links.  On SATA, there's usually
6211 *	a single device connected to a link but PATA and SATA
6212 *	controllers emulating TF based interface can have two - master
6213 *	and slave.
6214 *
6215 *	However, there are a few controllers which don't fit into this
6216 *	abstraction too well - SATA controllers which emulate TF
6217 *	interface with both master and slave devices but also have
6218 *	separate SCR register sets for each device.  These controllers
6219 *	need separate links for physical link handling
6220 *	(e.g. onlineness, link speed) but should be treated like a
6221 *	traditional M/S controller for everything else (e.g. command
6222 *	issue, softreset).
6223 *
6224 *	slave_link is libata's way of handling this class of
6225 *	controllers without impacting core layer too much.  For
6226 *	anything other than physical link handling, the default host
6227 *	link is used for both master and slave.  For physical link
6228 *	handling, separate @ap->slave_link is used.  All dirty details
6229 *	are implemented inside libata core layer.  From LLD's POV, the
6230 *	only difference is that prereset, hardreset and postreset are
6231 *	called once more for the slave link, so the reset sequence
6232 *	looks like the following.
6233 *
6234 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6235 *	softreset(M) -> postreset(M) -> postreset(S)
6236 *
6237 *	Note that softreset is called only for the master.  Softreset
6238 *	resets both M/S by definition, so SRST on master should handle
6239 *	both (the standard method will work just fine).
6240 *
6241 *	LOCKING:
6242 *	Should be called before host is registered.
6243 *
6244 *	RETURNS:
6245 *	0 on success, -errno on failure.
6246 */
6247int ata_slave_link_init(struct ata_port *ap)
6248{
6249	struct ata_link *link;
6250
6251	WARN_ON(ap->slave_link);
6252	WARN_ON(ap->flags & ATA_FLAG_PMP);
6253
6254	link = kzalloc(sizeof(*link), GFP_KERNEL);
6255	if (!link)
6256		return -ENOMEM;
6257
6258	ata_link_init(ap, link, 1);
6259	ap->slave_link = link;
6260	return 0;
6261}
6262
6263static void ata_host_stop(struct device *gendev, void *res)
6264{
6265	struct ata_host *host = dev_get_drvdata(gendev);
6266	int i;
6267
6268	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6269
6270	for (i = 0; i < host->n_ports; i++) {
6271		struct ata_port *ap = host->ports[i];
6272
6273		if (ap->ops->port_stop)
6274			ap->ops->port_stop(ap);
6275	}
6276
6277	if (host->ops->host_stop)
6278		host->ops->host_stop(host);
6279}
6280
6281/**
6282 *	ata_finalize_port_ops - finalize ata_port_operations
6283 *	@ops: ata_port_operations to finalize
6284 *
6285 *	An ata_port_operations can inherit from another ops and that
6286 *	ops can again inherit from another.  This can go on as many
6287 *	times as necessary as long as there is no loop in the
6288 *	inheritance chain.
6289 *
6290 *	Ops tables are finalized when the host is started.  NULL or
6291 *	unspecified entries are inherited from the closet ancestor
6292 *	which has the method and the entry is populated with it.
6293 *	After finalization, the ops table directly points to all the
6294 *	methods and ->inherits is no longer necessary and cleared.
6295 *
6296 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6297 *
6298 *	LOCKING:
6299 *	None.
6300 */
6301static void ata_finalize_port_ops(struct ata_port_operations *ops)
6302{
6303	static DEFINE_SPINLOCK(lock);
6304	const struct ata_port_operations *cur;
6305	void **begin = (void **)ops;
6306	void **end = (void **)&ops->inherits;
6307	void **pp;
6308
6309	if (!ops || !ops->inherits)
6310		return;
6311
6312	spin_lock(&lock);
6313
6314	for (cur = ops->inherits; cur; cur = cur->inherits) {
6315		void **inherit = (void **)cur;
6316
6317		for (pp = begin; pp < end; pp++, inherit++)
6318			if (!*pp)
6319				*pp = *inherit;
6320	}
6321
6322	for (pp = begin; pp < end; pp++)
6323		if (IS_ERR(*pp))
6324			*pp = NULL;
6325
6326	ops->inherits = NULL;
6327
6328	spin_unlock(&lock);
6329}
6330
6331/**
6332 *	ata_host_start - start and freeze ports of an ATA host
6333 *	@host: ATA host to start ports for
6334 *
6335 *	Start and then freeze ports of @host.  Started status is
6336 *	recorded in host->flags, so this function can be called
6337 *	multiple times.  Ports are guaranteed to get started only
6338 *	once.  If host->ops isn't initialized yet, its set to the
6339 *	first non-dummy port ops.
6340 *
6341 *	LOCKING:
6342 *	Inherited from calling layer (may sleep).
6343 *
6344 *	RETURNS:
6345 *	0 if all ports are started successfully, -errno otherwise.
6346 */
6347int ata_host_start(struct ata_host *host)
6348{
6349	int have_stop = 0;
6350	void *start_dr = NULL;
6351	int i, rc;
6352
6353	if (host->flags & ATA_HOST_STARTED)
6354		return 0;
6355
6356	ata_finalize_port_ops(host->ops);
6357
6358	for (i = 0; i < host->n_ports; i++) {
6359		struct ata_port *ap = host->ports[i];
6360
6361		ata_finalize_port_ops(ap->ops);
6362
6363		if (!host->ops && !ata_port_is_dummy(ap))
6364			host->ops = ap->ops;
6365
6366		if (ap->ops->port_stop)
6367			have_stop = 1;
6368	}
6369
6370	if (host->ops->host_stop)
6371		have_stop = 1;
6372
6373	if (have_stop) {
6374		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6375		if (!start_dr)
6376			return -ENOMEM;
6377	}
6378
6379	for (i = 0; i < host->n_ports; i++) {
6380		struct ata_port *ap = host->ports[i];
6381
6382		if (ap->ops->port_start) {
6383			rc = ap->ops->port_start(ap);
6384			if (rc) {
6385				if (rc != -ENODEV)
6386					dev_err(host->dev,
6387						"failed to start port %d (errno=%d)\n",
6388						i, rc);
6389				goto err_out;
6390			}
6391		}
6392		ata_eh_freeze_port(ap);
6393	}
6394
6395	if (start_dr)
6396		devres_add(host->dev, start_dr);
6397	host->flags |= ATA_HOST_STARTED;
6398	return 0;
6399
6400 err_out:
6401	while (--i >= 0) {
6402		struct ata_port *ap = host->ports[i];
6403
6404		if (ap->ops->port_stop)
6405			ap->ops->port_stop(ap);
6406	}
6407	devres_free(start_dr);
6408	return rc;
6409}
6410
6411/**
6412 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6413 *	@host:	host to initialize
6414 *	@dev:	device host is attached to
6415 *	@ops:	port_ops
6416 *
6417 */
6418void ata_host_init(struct ata_host *host, struct device *dev,
6419		   struct ata_port_operations *ops)
6420{
6421	spin_lock_init(&host->lock);
6422	mutex_init(&host->eh_mutex);
6423	host->n_tags = ATA_MAX_QUEUE;
6424	host->dev = dev;
6425	host->ops = ops;
6426	kref_init(&host->kref);
6427}
6428
6429void __ata_port_probe(struct ata_port *ap)
6430{
6431	struct ata_eh_info *ehi = &ap->link.eh_info;
6432	unsigned long flags;
6433
6434	/* kick EH for boot probing */
6435	spin_lock_irqsave(ap->lock, flags);
6436
6437	ehi->probe_mask |= ATA_ALL_DEVICES;
6438	ehi->action |= ATA_EH_RESET;
6439	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6440
6441	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6442	ap->pflags |= ATA_PFLAG_LOADING;
6443	ata_port_schedule_eh(ap);
6444
6445	spin_unlock_irqrestore(ap->lock, flags);
6446}
6447
6448int ata_port_probe(struct ata_port *ap)
6449{
6450	int rc = 0;
6451
6452	if (ap->ops->error_handler) {
6453		__ata_port_probe(ap);
6454		ata_port_wait_eh(ap);
6455	} else {
6456		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457		rc = ata_bus_probe(ap);
6458		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6459	}
6460	return rc;
6461}
6462
6463
6464static void async_port_probe(void *data, async_cookie_t cookie)
6465{
6466	struct ata_port *ap = data;
6467
6468	/*
6469	 * If we're not allowed to scan this host in parallel,
6470	 * we need to wait until all previous scans have completed
6471	 * before going further.
6472	 * Jeff Garzik says this is only within a controller, so we
6473	 * don't need to wait for port 0, only for later ports.
6474	 */
6475	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6476		async_synchronize_cookie(cookie);
6477
6478	(void)ata_port_probe(ap);
6479
6480	/* in order to keep device order, we need to synchronize at this point */
6481	async_synchronize_cookie(cookie);
6482
6483	ata_scsi_scan_host(ap, 1);
6484}
6485
6486/**
6487 *	ata_host_register - register initialized ATA host
6488 *	@host: ATA host to register
6489 *	@sht: template for SCSI host
6490 *
6491 *	Register initialized ATA host.  @host is allocated using
6492 *	ata_host_alloc() and fully initialized by LLD.  This function
6493 *	starts ports, registers @host with ATA and SCSI layers and
6494 *	probe registered devices.
6495 *
6496 *	LOCKING:
6497 *	Inherited from calling layer (may sleep).
6498 *
6499 *	RETURNS:
6500 *	0 on success, -errno otherwise.
6501 */
6502int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6503{
6504	int i, rc;
6505
6506	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6507
6508	/* host must have been started */
6509	if (!(host->flags & ATA_HOST_STARTED)) {
6510		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6511		WARN_ON(1);
6512		return -EINVAL;
6513	}
6514
6515	/* Blow away unused ports.  This happens when LLD can't
6516	 * determine the exact number of ports to allocate at
6517	 * allocation time.
6518	 */
6519	for (i = host->n_ports; host->ports[i]; i++)
6520		kfree(host->ports[i]);
6521
6522	/* give ports names and add SCSI hosts */
6523	for (i = 0; i < host->n_ports; i++) {
6524		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6525		host->ports[i]->local_port_no = i + 1;
6526	}
6527
6528	/* Create associated sysfs transport objects  */
6529	for (i = 0; i < host->n_ports; i++) {
6530		rc = ata_tport_add(host->dev,host->ports[i]);
6531		if (rc) {
6532			goto err_tadd;
6533		}
6534	}
6535
6536	rc = ata_scsi_add_hosts(host, sht);
6537	if (rc)
6538		goto err_tadd;
6539
6540	/* set cable, sata_spd_limit and report */
6541	for (i = 0; i < host->n_ports; i++) {
6542		struct ata_port *ap = host->ports[i];
6543		unsigned long xfer_mask;
6544
6545		/* set SATA cable type if still unset */
6546		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6547			ap->cbl = ATA_CBL_SATA;
6548
6549		/* init sata_spd_limit to the current value */
6550		sata_link_init_spd(&ap->link);
6551		if (ap->slave_link)
6552			sata_link_init_spd(ap->slave_link);
6553
6554		/* print per-port info to dmesg */
6555		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6556					      ap->udma_mask);
6557
6558		if (!ata_port_is_dummy(ap)) {
6559			ata_port_info(ap, "%cATA max %s %s\n",
6560				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561				      ata_mode_string(xfer_mask),
6562				      ap->link.eh_info.desc);
6563			ata_ehi_clear_desc(&ap->link.eh_info);
6564		} else
6565			ata_port_info(ap, "DUMMY\n");
6566	}
6567
6568	/* perform each probe asynchronously */
6569	for (i = 0; i < host->n_ports; i++) {
6570		struct ata_port *ap = host->ports[i];
6571		async_schedule(async_port_probe, ap);
6572	}
6573
6574	return 0;
6575
6576 err_tadd:
6577	while (--i >= 0) {
6578		ata_tport_delete(host->ports[i]);
6579	}
6580	return rc;
6581
6582}
6583
6584/**
6585 *	ata_host_activate - start host, request IRQ and register it
6586 *	@host: target ATA host
6587 *	@irq: IRQ to request
6588 *	@irq_handler: irq_handler used when requesting IRQ
6589 *	@irq_flags: irq_flags used when requesting IRQ
6590 *	@sht: scsi_host_template to use when registering the host
6591 *
6592 *	After allocating an ATA host and initializing it, most libata
6593 *	LLDs perform three steps to activate the host - start host,
6594 *	request IRQ and register it.  This helper takes necessary
6595 *	arguments and performs the three steps in one go.
6596 *
6597 *	An invalid IRQ skips the IRQ registration and expects the host to
6598 *	have set polling mode on the port. In this case, @irq_handler
6599 *	should be NULL.
6600 *
6601 *	LOCKING:
6602 *	Inherited from calling layer (may sleep).
6603 *
6604 *	RETURNS:
6605 *	0 on success, -errno otherwise.
6606 */
6607int ata_host_activate(struct ata_host *host, int irq,
6608		      irq_handler_t irq_handler, unsigned long irq_flags,
6609		      struct scsi_host_template *sht)
6610{
6611	int i, rc;
6612	char *irq_desc;
6613
6614	rc = ata_host_start(host);
6615	if (rc)
6616		return rc;
6617
6618	/* Special case for polling mode */
6619	if (!irq) {
6620		WARN_ON(irq_handler);
6621		return ata_host_register(host, sht);
6622	}
6623
6624	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6625				  dev_driver_string(host->dev),
6626				  dev_name(host->dev));
6627	if (!irq_desc)
6628		return -ENOMEM;
6629
6630	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6631			      irq_desc, host);
6632	if (rc)
6633		return rc;
6634
6635	for (i = 0; i < host->n_ports; i++)
6636		ata_port_desc(host->ports[i], "irq %d", irq);
6637
6638	rc = ata_host_register(host, sht);
6639	/* if failed, just free the IRQ and leave ports alone */
6640	if (rc)
6641		devm_free_irq(host->dev, irq, host);
6642
6643	return rc;
6644}
6645
6646/**
6647 *	ata_port_detach - Detach ATA port in preparation of device removal
6648 *	@ap: ATA port to be detached
6649 *
6650 *	Detach all ATA devices and the associated SCSI devices of @ap;
6651 *	then, remove the associated SCSI host.  @ap is guaranteed to
6652 *	be quiescent on return from this function.
6653 *
6654 *	LOCKING:
6655 *	Kernel thread context (may sleep).
6656 */
6657static void ata_port_detach(struct ata_port *ap)
6658{
6659	unsigned long flags;
6660	struct ata_link *link;
6661	struct ata_device *dev;
6662
6663	if (!ap->ops->error_handler)
6664		goto skip_eh;
6665
6666	/* tell EH we're leaving & flush EH */
6667	spin_lock_irqsave(ap->lock, flags);
6668	ap->pflags |= ATA_PFLAG_UNLOADING;
6669	ata_port_schedule_eh(ap);
6670	spin_unlock_irqrestore(ap->lock, flags);
6671
6672	/* wait till EH commits suicide */
6673	ata_port_wait_eh(ap);
6674
6675	/* it better be dead now */
6676	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6677
6678	cancel_delayed_work_sync(&ap->hotplug_task);
6679
6680 skip_eh:
6681	/* clean up zpodd on port removal */
6682	ata_for_each_link(link, ap, HOST_FIRST) {
6683		ata_for_each_dev(dev, link, ALL) {
6684			if (zpodd_dev_enabled(dev))
6685				zpodd_exit(dev);
6686		}
6687	}
6688	if (ap->pmp_link) {
6689		int i;
6690		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6691			ata_tlink_delete(&ap->pmp_link[i]);
6692	}
6693	/* remove the associated SCSI host */
6694	scsi_remove_host(ap->scsi_host);
6695	ata_tport_delete(ap);
6696}
6697
6698/**
6699 *	ata_host_detach - Detach all ports of an ATA host
6700 *	@host: Host to detach
6701 *
6702 *	Detach all ports of @host.
6703 *
6704 *	LOCKING:
6705 *	Kernel thread context (may sleep).
6706 */
6707void ata_host_detach(struct ata_host *host)
6708{
6709	int i;
6710
6711	for (i = 0; i < host->n_ports; i++)
6712		ata_port_detach(host->ports[i]);
6713
6714	/* the host is dead now, dissociate ACPI */
6715	ata_acpi_dissociate(host);
6716}
6717
6718#ifdef CONFIG_PCI
6719
6720/**
6721 *	ata_pci_remove_one - PCI layer callback for device removal
6722 *	@pdev: PCI device that was removed
6723 *
6724 *	PCI layer indicates to libata via this hook that hot-unplug or
6725 *	module unload event has occurred.  Detach all ports.  Resource
6726 *	release is handled via devres.
6727 *
6728 *	LOCKING:
6729 *	Inherited from PCI layer (may sleep).
6730 */
6731void ata_pci_remove_one(struct pci_dev *pdev)
6732{
6733	struct ata_host *host = pci_get_drvdata(pdev);
6734
6735	ata_host_detach(host);
6736}
6737
6738/* move to PCI subsystem */
6739int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6740{
6741	unsigned long tmp = 0;
6742
6743	switch (bits->width) {
6744	case 1: {
6745		u8 tmp8 = 0;
6746		pci_read_config_byte(pdev, bits->reg, &tmp8);
6747		tmp = tmp8;
6748		break;
6749	}
6750	case 2: {
6751		u16 tmp16 = 0;
6752		pci_read_config_word(pdev, bits->reg, &tmp16);
6753		tmp = tmp16;
6754		break;
6755	}
6756	case 4: {
6757		u32 tmp32 = 0;
6758		pci_read_config_dword(pdev, bits->reg, &tmp32);
6759		tmp = tmp32;
6760		break;
6761	}
6762
6763	default:
6764		return -EINVAL;
6765	}
6766
6767	tmp &= bits->mask;
6768
6769	return (tmp == bits->val) ? 1 : 0;
6770}
6771
6772#ifdef CONFIG_PM
6773void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6774{
6775	pci_save_state(pdev);
6776	pci_disable_device(pdev);
6777
6778	if (mesg.event & PM_EVENT_SLEEP)
6779		pci_set_power_state(pdev, PCI_D3hot);
6780}
6781
6782int ata_pci_device_do_resume(struct pci_dev *pdev)
6783{
6784	int rc;
6785
6786	pci_set_power_state(pdev, PCI_D0);
6787	pci_restore_state(pdev);
6788
6789	rc = pcim_enable_device(pdev);
6790	if (rc) {
6791		dev_err(&pdev->dev,
6792			"failed to enable device after resume (%d)\n", rc);
6793		return rc;
6794	}
6795
6796	pci_set_master(pdev);
6797	return 0;
6798}
6799
6800int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6801{
6802	struct ata_host *host = pci_get_drvdata(pdev);
6803	int rc = 0;
6804
6805	rc = ata_host_suspend(host, mesg);
6806	if (rc)
6807		return rc;
6808
6809	ata_pci_device_do_suspend(pdev, mesg);
6810
6811	return 0;
6812}
6813
6814int ata_pci_device_resume(struct pci_dev *pdev)
6815{
6816	struct ata_host *host = pci_get_drvdata(pdev);
6817	int rc;
6818
6819	rc = ata_pci_device_do_resume(pdev);
6820	if (rc == 0)
6821		ata_host_resume(host);
6822	return rc;
6823}
6824#endif /* CONFIG_PM */
6825
6826#endif /* CONFIG_PCI */
6827
6828/**
6829 *	ata_platform_remove_one - Platform layer callback for device removal
6830 *	@pdev: Platform device that was removed
6831 *
6832 *	Platform layer indicates to libata via this hook that hot-unplug or
6833 *	module unload event has occurred.  Detach all ports.  Resource
6834 *	release is handled via devres.
6835 *
6836 *	LOCKING:
6837 *	Inherited from platform layer (may sleep).
6838 */
6839int ata_platform_remove_one(struct platform_device *pdev)
6840{
6841	struct ata_host *host = platform_get_drvdata(pdev);
6842
6843	ata_host_detach(host);
6844
6845	return 0;
6846}
6847
6848static int __init ata_parse_force_one(char **cur,
6849				      struct ata_force_ent *force_ent,
6850				      const char **reason)
6851{
6852	static const struct ata_force_param force_tbl[] __initconst = {
 
 
 
 
 
6853		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6854		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6855		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6856		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6857		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6858		{ "sata",	.cbl		= ATA_CBL_SATA },
6859		{ "1.5Gbps",	.spd_limit	= 1 },
6860		{ "3.0Gbps",	.spd_limit	= 2 },
6861		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6862		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6863		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6864		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6865		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6866		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6867		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6868		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6869		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6870		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6871		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6872		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6873		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6874		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6875		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6876		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6877		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6878		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6879		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6880		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6881		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6882		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6883		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6884		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6885		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6886		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6887		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6888		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6889		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6890		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6891		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6892		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6893		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6894		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6895		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6896		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6897		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6898		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6899		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6900		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6901		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6902		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6903		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6904		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6905		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6906	};
6907	char *start = *cur, *p = *cur;
6908	char *id, *val, *endp;
6909	const struct ata_force_param *match_fp = NULL;
6910	int nr_matches = 0, i;
6911
6912	/* find where this param ends and update *cur */
6913	while (*p != '\0' && *p != ',')
6914		p++;
6915
6916	if (*p == '\0')
6917		*cur = p;
6918	else
6919		*cur = p + 1;
6920
6921	*p = '\0';
6922
6923	/* parse */
6924	p = strchr(start, ':');
6925	if (!p) {
6926		val = strstrip(start);
6927		goto parse_val;
6928	}
6929	*p = '\0';
6930
6931	id = strstrip(start);
6932	val = strstrip(p + 1);
6933
6934	/* parse id */
6935	p = strchr(id, '.');
6936	if (p) {
6937		*p++ = '\0';
6938		force_ent->device = simple_strtoul(p, &endp, 10);
6939		if (p == endp || *endp != '\0') {
6940			*reason = "invalid device";
6941			return -EINVAL;
6942		}
6943	}
6944
6945	force_ent->port = simple_strtoul(id, &endp, 10);
6946	if (id == endp || *endp != '\0') {
6947		*reason = "invalid port/link";
6948		return -EINVAL;
6949	}
6950
6951 parse_val:
6952	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6953	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6954		const struct ata_force_param *fp = &force_tbl[i];
6955
6956		if (strncasecmp(val, fp->name, strlen(val)))
6957			continue;
6958
6959		nr_matches++;
6960		match_fp = fp;
6961
6962		if (strcasecmp(val, fp->name) == 0) {
6963			nr_matches = 1;
6964			break;
6965		}
6966	}
6967
6968	if (!nr_matches) {
6969		*reason = "unknown value";
6970		return -EINVAL;
6971	}
6972	if (nr_matches > 1) {
6973		*reason = "ambiguous value";
6974		return -EINVAL;
6975	}
6976
6977	force_ent->param = *match_fp;
6978
6979	return 0;
6980}
6981
6982static void __init ata_parse_force_param(void)
6983{
6984	int idx = 0, size = 1;
6985	int last_port = -1, last_device = -1;
6986	char *p, *cur, *next;
6987
6988	/* calculate maximum number of params and allocate force_tbl */
6989	for (p = ata_force_param_buf; *p; p++)
6990		if (*p == ',')
6991			size++;
6992
6993	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6994	if (!ata_force_tbl) {
6995		printk(KERN_WARNING "ata: failed to extend force table, "
6996		       "libata.force ignored\n");
6997		return;
6998	}
6999
7000	/* parse and populate the table */
7001	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7002		const char *reason = "";
7003		struct ata_force_ent te = { .port = -1, .device = -1 };
7004
7005		next = cur;
7006		if (ata_parse_force_one(&next, &te, &reason)) {
7007			printk(KERN_WARNING "ata: failed to parse force "
7008			       "parameter \"%s\" (%s)\n",
7009			       cur, reason);
7010			continue;
7011		}
7012
7013		if (te.port == -1) {
7014			te.port = last_port;
7015			te.device = last_device;
7016		}
7017
7018		ata_force_tbl[idx++] = te;
7019
7020		last_port = te.port;
7021		last_device = te.device;
7022	}
7023
7024	ata_force_tbl_size = idx;
7025}
7026
7027static int __init ata_init(void)
7028{
7029	int rc;
7030
7031	ata_parse_force_param();
7032
7033	rc = ata_sff_init();
7034	if (rc) {
7035		kfree(ata_force_tbl);
7036		return rc;
7037	}
7038
7039	libata_transport_init();
7040	ata_scsi_transport_template = ata_attach_transport();
7041	if (!ata_scsi_transport_template) {
7042		ata_sff_exit();
7043		rc = -ENOMEM;
7044		goto err_out;
7045	}
7046
7047	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7048	return 0;
7049
7050err_out:
7051	return rc;
7052}
7053
7054static void __exit ata_exit(void)
7055{
7056	ata_release_transport(ata_scsi_transport_template);
7057	libata_transport_exit();
7058	ata_sff_exit();
7059	kfree(ata_force_tbl);
7060}
7061
7062subsys_initcall(ata_init);
7063module_exit(ata_exit);
7064
7065static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7066
7067int ata_ratelimit(void)
7068{
7069	return __ratelimit(&ratelimit);
7070}
7071
7072/**
7073 *	ata_msleep - ATA EH owner aware msleep
7074 *	@ap: ATA port to attribute the sleep to
7075 *	@msecs: duration to sleep in milliseconds
7076 *
7077 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7078 *	ownership is released before going to sleep and reacquired
7079 *	after the sleep is complete.  IOW, other ports sharing the
7080 *	@ap->host will be allowed to own the EH while this task is
7081 *	sleeping.
7082 *
7083 *	LOCKING:
7084 *	Might sleep.
7085 */
7086void ata_msleep(struct ata_port *ap, unsigned int msecs)
7087{
7088	bool owns_eh = ap && ap->host->eh_owner == current;
7089
7090	if (owns_eh)
7091		ata_eh_release(ap);
7092
7093	if (msecs < 20) {
7094		unsigned long usecs = msecs * USEC_PER_MSEC;
7095		usleep_range(usecs, usecs + 50);
7096	} else {
7097		msleep(msecs);
7098	}
7099
7100	if (owns_eh)
7101		ata_eh_acquire(ap);
7102}
7103
7104/**
7105 *	ata_wait_register - wait until register value changes
7106 *	@ap: ATA port to wait register for, can be NULL
7107 *	@reg: IO-mapped register
7108 *	@mask: Mask to apply to read register value
7109 *	@val: Wait condition
7110 *	@interval: polling interval in milliseconds
7111 *	@timeout: timeout in milliseconds
7112 *
7113 *	Waiting for some bits of register to change is a common
7114 *	operation for ATA controllers.  This function reads 32bit LE
7115 *	IO-mapped register @reg and tests for the following condition.
7116 *
7117 *	(*@reg & mask) != val
7118 *
7119 *	If the condition is met, it returns; otherwise, the process is
7120 *	repeated after @interval_msec until timeout.
7121 *
7122 *	LOCKING:
7123 *	Kernel thread context (may sleep)
7124 *
7125 *	RETURNS:
7126 *	The final register value.
7127 */
7128u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7129		      unsigned long interval, unsigned long timeout)
7130{
7131	unsigned long deadline;
7132	u32 tmp;
7133
7134	tmp = ioread32(reg);
7135
7136	/* Calculate timeout _after_ the first read to make sure
7137	 * preceding writes reach the controller before starting to
7138	 * eat away the timeout.
7139	 */
7140	deadline = ata_deadline(jiffies, timeout);
7141
7142	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7143		ata_msleep(ap, interval);
7144		tmp = ioread32(reg);
7145	}
7146
7147	return tmp;
7148}
7149
7150/**
7151 *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7152 *	@link: Link receiving the event
7153 *
7154 *	Test whether the received PHY event has to be ignored or not.
7155 *
7156 *	LOCKING:
7157 *	None:
7158 *
7159 *	RETURNS:
7160 *	True if the event has to be ignored.
7161 */
7162bool sata_lpm_ignore_phy_events(struct ata_link *link)
7163{
7164	unsigned long lpm_timeout = link->last_lpm_change +
7165				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7166
7167	/* if LPM is enabled, PHYRDY doesn't mean anything */
7168	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7169		return true;
7170
7171	/* ignore the first PHY event after the LPM policy changed
7172	 * as it is might be spurious
7173	 */
7174	if ((link->flags & ATA_LFLAG_CHANGED) &&
7175	    time_before(jiffies, lpm_timeout))
7176		return true;
7177
7178	return false;
7179}
7180EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7181
7182/*
7183 * Dummy port_ops
7184 */
7185static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7186{
7187	return AC_ERR_SYSTEM;
7188}
7189
7190static void ata_dummy_error_handler(struct ata_port *ap)
7191{
7192	/* truly dummy */
7193}
7194
7195struct ata_port_operations ata_dummy_port_ops = {
7196	.qc_prep		= ata_noop_qc_prep,
7197	.qc_issue		= ata_dummy_qc_issue,
7198	.error_handler		= ata_dummy_error_handler,
7199	.sched_eh		= ata_std_sched_eh,
7200	.end_eh			= ata_std_end_eh,
7201};
7202
7203const struct ata_port_info ata_dummy_port_info = {
7204	.port_ops		= &ata_dummy_port_ops,
7205};
7206
7207/*
7208 * Utility print functions
7209 */
7210void ata_port_printk(const struct ata_port *ap, const char *level,
7211		     const char *fmt, ...)
7212{
7213	struct va_format vaf;
7214	va_list args;
 
7215
7216	va_start(args, fmt);
7217
7218	vaf.fmt = fmt;
7219	vaf.va = &args;
7220
7221	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7222
7223	va_end(args);
 
 
7224}
7225EXPORT_SYMBOL(ata_port_printk);
7226
7227void ata_link_printk(const struct ata_link *link, const char *level,
7228		     const char *fmt, ...)
7229{
7230	struct va_format vaf;
7231	va_list args;
 
7232
7233	va_start(args, fmt);
7234
7235	vaf.fmt = fmt;
7236	vaf.va = &args;
7237
7238	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7239		printk("%sata%u.%02u: %pV",
7240		       level, link->ap->print_id, link->pmp, &vaf);
7241	else
7242		printk("%sata%u: %pV",
7243		       level, link->ap->print_id, &vaf);
7244
7245	va_end(args);
 
 
7246}
7247EXPORT_SYMBOL(ata_link_printk);
7248
7249void ata_dev_printk(const struct ata_device *dev, const char *level,
7250		    const char *fmt, ...)
7251{
7252	struct va_format vaf;
7253	va_list args;
 
7254
7255	va_start(args, fmt);
7256
7257	vaf.fmt = fmt;
7258	vaf.va = &args;
7259
7260	printk("%sata%u.%02u: %pV",
7261	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7262	       &vaf);
7263
7264	va_end(args);
 
 
7265}
7266EXPORT_SYMBOL(ata_dev_printk);
7267
7268void ata_print_version(const struct device *dev, const char *version)
7269{
7270	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7271}
7272EXPORT_SYMBOL(ata_print_version);
7273
7274/*
7275 * libata is essentially a library of internal helper functions for
7276 * low-level ATA host controller drivers.  As such, the API/ABI is
7277 * likely to change as new drivers are added and updated.
7278 * Do not depend on ABI/API stability.
7279 */
7280EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7281EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7282EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7283EXPORT_SYMBOL_GPL(ata_base_port_ops);
7284EXPORT_SYMBOL_GPL(sata_port_ops);
7285EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7286EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7287EXPORT_SYMBOL_GPL(ata_link_next);
7288EXPORT_SYMBOL_GPL(ata_dev_next);
7289EXPORT_SYMBOL_GPL(ata_std_bios_param);
7290EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7291EXPORT_SYMBOL_GPL(ata_host_init);
7292EXPORT_SYMBOL_GPL(ata_host_alloc);
7293EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7294EXPORT_SYMBOL_GPL(ata_slave_link_init);
7295EXPORT_SYMBOL_GPL(ata_host_start);
7296EXPORT_SYMBOL_GPL(ata_host_register);
7297EXPORT_SYMBOL_GPL(ata_host_activate);
7298EXPORT_SYMBOL_GPL(ata_host_detach);
7299EXPORT_SYMBOL_GPL(ata_sg_init);
7300EXPORT_SYMBOL_GPL(ata_qc_complete);
7301EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7302EXPORT_SYMBOL_GPL(atapi_cmd_type);
7303EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7304EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7305EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7306EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7307EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7308EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7309EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7310EXPORT_SYMBOL_GPL(ata_mode_string);
7311EXPORT_SYMBOL_GPL(ata_id_xfermask);
7312EXPORT_SYMBOL_GPL(ata_do_set_mode);
7313EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7314EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7315EXPORT_SYMBOL_GPL(ata_dev_disable);
7316EXPORT_SYMBOL_GPL(sata_set_spd);
7317EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7318EXPORT_SYMBOL_GPL(sata_link_debounce);
7319EXPORT_SYMBOL_GPL(sata_link_resume);
7320EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7321EXPORT_SYMBOL_GPL(ata_std_prereset);
7322EXPORT_SYMBOL_GPL(sata_link_hardreset);
7323EXPORT_SYMBOL_GPL(sata_std_hardreset);
7324EXPORT_SYMBOL_GPL(ata_std_postreset);
7325EXPORT_SYMBOL_GPL(ata_dev_classify);
7326EXPORT_SYMBOL_GPL(ata_dev_pair);
7327EXPORT_SYMBOL_GPL(ata_ratelimit);
7328EXPORT_SYMBOL_GPL(ata_msleep);
7329EXPORT_SYMBOL_GPL(ata_wait_register);
7330EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7331EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7332EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7333EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7334EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7335EXPORT_SYMBOL_GPL(sata_scr_valid);
7336EXPORT_SYMBOL_GPL(sata_scr_read);
7337EXPORT_SYMBOL_GPL(sata_scr_write);
7338EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7339EXPORT_SYMBOL_GPL(ata_link_online);
7340EXPORT_SYMBOL_GPL(ata_link_offline);
7341#ifdef CONFIG_PM
7342EXPORT_SYMBOL_GPL(ata_host_suspend);
7343EXPORT_SYMBOL_GPL(ata_host_resume);
7344#endif /* CONFIG_PM */
7345EXPORT_SYMBOL_GPL(ata_id_string);
7346EXPORT_SYMBOL_GPL(ata_id_c_string);
7347EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7348EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7349
7350EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7351EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7352EXPORT_SYMBOL_GPL(ata_timing_compute);
7353EXPORT_SYMBOL_GPL(ata_timing_merge);
7354EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7355
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
7358EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7359#ifdef CONFIG_PM
7360EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7361EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7362EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7363EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7364#endif /* CONFIG_PM */
7365#endif /* CONFIG_PCI */
7366
7367EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7368
7369EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7370EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7371EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7372EXPORT_SYMBOL_GPL(ata_port_desc);
7373#ifdef CONFIG_PCI
7374EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7375#endif /* CONFIG_PCI */
7376EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7377EXPORT_SYMBOL_GPL(ata_link_abort);
7378EXPORT_SYMBOL_GPL(ata_port_abort);
7379EXPORT_SYMBOL_GPL(ata_port_freeze);
7380EXPORT_SYMBOL_GPL(sata_async_notification);
7381EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7382EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7383EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7384EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7385EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7386EXPORT_SYMBOL_GPL(ata_do_eh);
7387EXPORT_SYMBOL_GPL(ata_std_error_handler);
7388
7389EXPORT_SYMBOL_GPL(ata_cable_40wire);
7390EXPORT_SYMBOL_GPL(ata_cable_80wire);
7391EXPORT_SYMBOL_GPL(ata_cable_unknown);
7392EXPORT_SYMBOL_GPL(ata_cable_ignore);
7393EXPORT_SYMBOL_GPL(ata_cable_sata);
7394EXPORT_SYMBOL_GPL(ata_host_get);
7395EXPORT_SYMBOL_GPL(ata_host_put);