Linux Audio

Check our new training course

Loading...
v3.15
 
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
 
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 16
 17DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
 18			= { &init_mm, 0, };
 19
 20/*
 21 *	Smarter SMP flushing macros.
 22 *		c/o Linus Torvalds.
 23 *
 24 *	These mean you can really definitely utterly forget about
 25 *	writing to user space from interrupts. (Its not allowed anyway).
 26 *
 27 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 28 *
 29 *	More scalable flush, from Andi Kleen
 30 *
 31 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 32 */
 33
 34struct flush_tlb_info {
 35	struct mm_struct *flush_mm;
 36	unsigned long flush_start;
 37	unsigned long flush_end;
 38};
 39
 40/*
 41 * We cannot call mmdrop() because we are in interrupt context,
 42 * instead update mm->cpu_vm_mask.
 
 
 43 */
 44void leave_mm(int cpu)
 45{
 46	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 47	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 48		BUG();
 49	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 50		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 51		load_cr3(swapper_pg_dir);
 
 
 
 52	}
 
 
 
 
 
 
 
 
 
 
 
 
 53}
 54EXPORT_SYMBOL_GPL(leave_mm);
 55
 56/*
 57 * The flush IPI assumes that a thread switch happens in this order:
 58 * [cpu0: the cpu that switches]
 59 * 1) switch_mm() either 1a) or 1b)
 60 * 1a) thread switch to a different mm
 61 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 62 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 63 *	if cpu0 was in lazy tlb mode.
 64 * 1a2) update cpu active_mm
 65 *	Now cpu0 accepts tlb flushes for the new mm.
 66 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 67 *	Now the other cpus will send tlb flush ipis.
 68 * 1a4) change cr3.
 69 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 70 *	Stop ipi delivery for the old mm. This is not synchronized with
 71 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 72 *	mm, and in the worst case we perform a superfluous tlb flush.
 73 * 1b) thread switch without mm change
 74 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 75 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 76 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 77 *	Atomically set the bit [other cpus will start sending flush ipis],
 78 *	and test the bit.
 79 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 80 * 2) switch %%esp, ie current
 81 *
 82 * The interrupt must handle 2 special cases:
 83 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 84 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 85 *   runs in kernel space, the cpu could load tlb entries for user space
 86 *   pages.
 87 *
 88 * The good news is that cpu_tlbstate is local to each cpu, no
 89 * write/read ordering problems.
 90 */
 91
 92/*
 93 * TLB flush funcation:
 94 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 95 * 2) Leave the mm if we are in the lazy tlb mode.
 96 */
 97static void flush_tlb_func(void *info)
 98{
 99	struct flush_tlb_info *f = info;
100
101	inc_irq_stat(irq_tlb_count);
 
 
 
 
102
103	if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
 
 
 
 
 
 
 
 
 
 
104		return;
 
105
106	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
107	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
108		if (f->flush_end == TLB_FLUSH_ALL)
109			local_flush_tlb();
110		else if (!f->flush_end)
111			__flush_tlb_single(f->flush_start);
112		else {
113			unsigned long addr;
114			addr = f->flush_start;
115			while (addr < f->flush_end) {
116				__flush_tlb_single(addr);
117				addr += PAGE_SIZE;
118			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119		}
120	} else
121		leave_mm(smp_processor_id());
 
 
 
 
 
 
 
 
 
122
 
 
 
123}
124
125void native_flush_tlb_others(const struct cpumask *cpumask,
126				 struct mm_struct *mm, unsigned long start,
127				 unsigned long end)
128{
129	struct flush_tlb_info info;
130	info.flush_mm = mm;
131	info.flush_start = start;
132	info.flush_end = end;
133
134	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
135	if (is_uv_system()) {
136		unsigned int cpu;
137
138		cpu = smp_processor_id();
139		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
140		if (cpumask)
141			smp_call_function_many(cpumask, flush_tlb_func,
142								&info, 1);
143		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144	}
145	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
146}
147
148void flush_tlb_current_task(void)
 
149{
150	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
152	preempt_disable();
 
153
154	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
155	local_flush_tlb();
156	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
157		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
158	preempt_enable();
159}
160
161void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
162				unsigned long end, unsigned long vmflag)
 
 
 
 
 
 
 
 
 
 
 
 
163{
164	unsigned long addr;
165	unsigned act_entries, tlb_entries = 0;
166	unsigned long nr_base_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168	preempt_disable();
169	if (current->active_mm != mm)
170		goto flush_all;
171
172	if (!current->mm) {
173		leave_mm(smp_processor_id());
174		goto flush_all;
 
 
 
 
 
 
 
 
 
175	}
176
177	if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1
178					|| vmflag & VM_HUGETLB) {
179		local_flush_tlb();
180		goto flush_all;
 
 
 
 
 
181	}
182
183	/* In modern CPU, last level tlb used for both data/ins */
184	if (vmflag & VM_EXEC)
185		tlb_entries = tlb_lli_4k[ENTRIES];
186	else
187		tlb_entries = tlb_lld_4k[ENTRIES];
188
189	/* Assume all of TLB entries was occupied by this task */
190	act_entries = tlb_entries >> tlb_flushall_shift;
191	act_entries = mm->total_vm > act_entries ? act_entries : mm->total_vm;
192	nr_base_pages = (end - start) >> PAGE_SHIFT;
193
194	/* tlb_flushall_shift is on balance point, details in commit log */
195	if (nr_base_pages > act_entries) {
196		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
197		local_flush_tlb();
198	} else {
199		/* flush range by one by one 'invlpg' */
200		for (addr = start; addr < end;	addr += PAGE_SIZE) {
201			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
202			__flush_tlb_single(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203		}
 
 
 
 
 
 
 
 
 
 
204
205		if (cpumask_any_but(mm_cpumask(mm),
206				smp_processor_id()) < nr_cpu_ids)
207			flush_tlb_others(mm_cpumask(mm), mm, start, end);
208		preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209		return;
210	}
211
212flush_all:
213	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
214		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
215	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216}
217
218void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
 
 
219{
220	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	preempt_disable();
 
223
224	if (current->active_mm == mm) {
225		if (current->mm)
226			__flush_tlb_one(start);
227		else
228			leave_mm(smp_processor_id());
229	}
230
231	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
232		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
233
234	preempt_enable();
 
235}
236
 
237static void do_flush_tlb_all(void *info)
238{
239	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240	__flush_tlb_all();
241	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
242		leave_mm(smp_processor_id());
243}
244
245void flush_tlb_all(void)
246{
247	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
248	on_each_cpu(do_flush_tlb_all, NULL, 1);
249}
250
251static void do_kernel_range_flush(void *info)
252{
253	struct flush_tlb_info *f = info;
254	unsigned long addr;
255
256	/* flush range by one by one 'invlpg' */
257	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
258		__flush_tlb_single(addr);
259}
260
261void flush_tlb_kernel_range(unsigned long start, unsigned long end)
262{
263	unsigned act_entries;
264	struct flush_tlb_info info;
 
 
 
 
265
266	/* In modern CPU, last level tlb used for both data/ins */
267	act_entries = tlb_lld_4k[ENTRIES];
268
269	/* Balance as user space task's flush, a bit conservative */
270	if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 ||
271		(end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
272
273		on_each_cpu(do_flush_tlb_all, NULL, 1);
274	else {
275		info.flush_start = start;
276		info.flush_end = end;
277		on_each_cpu(do_kernel_range_flush, &info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278	}
 
 
 
 
 
 
 
279}
280
281#ifdef CONFIG_DEBUG_TLBFLUSH
282static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
283			     size_t count, loff_t *ppos)
284{
285	char buf[32];
286	unsigned int len;
287
288	len = sprintf(buf, "%hd\n", tlb_flushall_shift);
289	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
290}
291
292static ssize_t tlbflush_write_file(struct file *file,
293		 const char __user *user_buf, size_t count, loff_t *ppos)
294{
295	char buf[32];
296	ssize_t len;
297	s8 shift;
298
299	len = min(count, sizeof(buf) - 1);
300	if (copy_from_user(buf, user_buf, len))
301		return -EFAULT;
302
303	buf[len] = '\0';
304	if (kstrtos8(buf, 0, &shift))
305		return -EINVAL;
306
307	if (shift < -1 || shift >= BITS_PER_LONG)
308		return -EINVAL;
309
310	tlb_flushall_shift = shift;
311	return count;
312}
313
314static const struct file_operations fops_tlbflush = {
315	.read = tlbflush_read_file,
316	.write = tlbflush_write_file,
317	.llseek = default_llseek,
318};
319
320static int __init create_tlb_flushall_shift(void)
321{
322	debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR,
323			    arch_debugfs_dir, NULL, &fops_tlbflush);
324	return 0;
325}
326late_initcall(create_tlb_flushall_shift);
327#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/init.h>
  3
  4#include <linux/mm.h>
  5#include <linux/spinlock.h>
  6#include <linux/smp.h>
  7#include <linux/interrupt.h>
  8#include <linux/export.h>
  9#include <linux/cpu.h>
 10#include <linux/debugfs.h>
 11
 12#include <asm/tlbflush.h>
 13#include <asm/mmu_context.h>
 14#include <asm/nospec-branch.h>
 15#include <asm/cache.h>
 16#include <asm/apic.h>
 17#include <asm/uv/uv.h>
 
 18
 19#include "mm_internal.h"
 
 20
 21/*
 22 *	TLB flushing, formerly SMP-only
 23 *		c/o Linus Torvalds.
 24 *
 25 *	These mean you can really definitely utterly forget about
 26 *	writing to user space from interrupts. (Its not allowed anyway).
 27 *
 28 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 29 *
 30 *	More scalable flush, from Andi Kleen
 31 *
 32 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 33 */
 34
 35/*
 36 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
 37 * stored in cpu_tlb_state.last_user_mm_ibpb.
 38 */
 39#define LAST_USER_MM_IBPB	0x1UL
 40
 41/*
 42 * We get here when we do something requiring a TLB invalidation
 43 * but could not go invalidate all of the contexts.  We do the
 44 * necessary invalidation by clearing out the 'ctx_id' which
 45 * forces a TLB flush when the context is loaded.
 46 */
 47static void clear_asid_other(void)
 48{
 49	u16 asid;
 50
 51	/*
 52	 * This is only expected to be set if we have disabled
 53	 * kernel _PAGE_GLOBAL pages.
 54	 */
 55	if (!static_cpu_has(X86_FEATURE_PTI)) {
 56		WARN_ON_ONCE(1);
 57		return;
 58	}
 59
 60	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 61		/* Do not need to flush the current asid */
 62		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 63			continue;
 64		/*
 65		 * Make sure the next time we go to switch to
 66		 * this asid, we do a flush:
 67		 */
 68		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 69	}
 70	this_cpu_write(cpu_tlbstate.invalidate_other, false);
 71}
 
 72
 73atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75
 76static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 77			    u16 *new_asid, bool *need_flush)
 
 
 
 78{
 79	u16 asid;
 80
 81	if (!static_cpu_has(X86_FEATURE_PCID)) {
 82		*new_asid = 0;
 83		*need_flush = true;
 84		return;
 85	}
 86
 87	if (this_cpu_read(cpu_tlbstate.invalidate_other))
 88		clear_asid_other();
 89
 90	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 91		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 92		    next->context.ctx_id)
 93			continue;
 94
 95		*new_asid = asid;
 96		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 97			       next_tlb_gen);
 98		return;
 99	}
100
101	/*
102	 * We don't currently own an ASID slot on this CPU.
103	 * Allocate a slot.
104	 */
105	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106	if (*new_asid >= TLB_NR_DYN_ASIDS) {
107		*new_asid = 0;
108		this_cpu_write(cpu_tlbstate.next_asid, 1);
109	}
110	*need_flush = true;
111}
112
113static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114{
115	unsigned long new_mm_cr3;
116
117	if (need_flush) {
118		invalidate_user_asid(new_asid);
119		new_mm_cr3 = build_cr3(pgdir, new_asid);
120	} else {
121		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122	}
123
124	/*
125	 * Caution: many callers of this function expect
126	 * that load_cr3() is serializing and orders TLB
127	 * fills with respect to the mm_cpumask writes.
128	 */
129	write_cr3(new_mm_cr3);
130}
131
132void leave_mm(int cpu)
133{
134	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135
136	/*
137	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138	 * If so, our callers still expect us to flush the TLB, but there
139	 * aren't any user TLB entries in init_mm to worry about.
140	 *
141	 * This needs to happen before any other sanity checks due to
142	 * intel_idle's shenanigans.
143	 */
144	if (loaded_mm == &init_mm)
145		return;
146
147	/* Warn if we're not lazy. */
148	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149
150	switch_mm(NULL, &init_mm, NULL);
151}
152EXPORT_SYMBOL_GPL(leave_mm);
153
154void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155	       struct task_struct *tsk)
156{
157	unsigned long flags;
158
159	local_irq_save(flags);
160	switch_mm_irqs_off(prev, next, tsk);
161	local_irq_restore(flags);
162}
163
164static void sync_current_stack_to_mm(struct mm_struct *mm)
165{
166	unsigned long sp = current_stack_pointer;
167	pgd_t *pgd = pgd_offset(mm, sp);
168
169	if (pgtable_l5_enabled()) {
170		if (unlikely(pgd_none(*pgd))) {
171			pgd_t *pgd_ref = pgd_offset_k(sp);
172
173			set_pgd(pgd, *pgd_ref);
174		}
175	} else {
176		/*
177		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
178		 * the p4d.  This compiles to approximately the same code as
179		 * the 5-level case.
180		 */
181		p4d_t *p4d = p4d_offset(pgd, sp);
182
183		if (unlikely(p4d_none(*p4d))) {
184			pgd_t *pgd_ref = pgd_offset_k(sp);
185			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
186
187			set_p4d(p4d, *p4d_ref);
188		}
189	}
190}
191
192static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 
 
193{
194	unsigned long next_tif = task_thread_info(next)->flags;
195	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 
 
196
197	return (unsigned long)next->mm | ibpb;
198}
 
199
200static void cond_ibpb(struct task_struct *next)
201{
202	if (!next || !next->mm)
 
 
203		return;
204
205	/*
206	 * Both, the conditional and the always IBPB mode use the mm
207	 * pointer to avoid the IBPB when switching between tasks of the
208	 * same process. Using the mm pointer instead of mm->context.ctx_id
209	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
210	 * less impossible to control by an attacker. Aside of that it
211	 * would only affect the first schedule so the theoretically
212	 * exposed data is not really interesting.
213	 */
214	if (static_branch_likely(&switch_mm_cond_ibpb)) {
215		unsigned long prev_mm, next_mm;
216
217		/*
218		 * This is a bit more complex than the always mode because
219		 * it has to handle two cases:
220		 *
221		 * 1) Switch from a user space task (potential attacker)
222		 *    which has TIF_SPEC_IB set to a user space task
223		 *    (potential victim) which has TIF_SPEC_IB not set.
224		 *
225		 * 2) Switch from a user space task (potential attacker)
226		 *    which has TIF_SPEC_IB not set to a user space task
227		 *    (potential victim) which has TIF_SPEC_IB set.
228		 *
229		 * This could be done by unconditionally issuing IBPB when
230		 * a task which has TIF_SPEC_IB set is either scheduled in
231		 * or out. Though that results in two flushes when:
232		 *
233		 * - the same user space task is scheduled out and later
234		 *   scheduled in again and only a kernel thread ran in
235		 *   between.
236		 *
237		 * - a user space task belonging to the same process is
238		 *   scheduled in after a kernel thread ran in between
239		 *
240		 * - a user space task belonging to the same process is
241		 *   scheduled in immediately.
242		 *
243		 * Optimize this with reasonably small overhead for the
244		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
245		 * pointer of the incoming task which is stored in
246		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
247		 */
248		next_mm = mm_mangle_tif_spec_ib(next);
249		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
250
251		/*
252		 * Issue IBPB only if the mm's are different and one or
253		 * both have the IBPB bit set.
254		 */
255		if (next_mm != prev_mm &&
256		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
257			indirect_branch_prediction_barrier();
258
259		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
260	}
261
262	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
263		/*
264		 * Only flush when switching to a user space task with a
265		 * different context than the user space task which ran
266		 * last on this CPU.
267		 */
268		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
269			indirect_branch_prediction_barrier();
270			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
271		}
272	}
 
273}
274
275void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
276			struct task_struct *tsk)
277{
278	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
279	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
280	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
281	unsigned cpu = smp_processor_id();
282	u64 next_tlb_gen;
283	bool need_flush;
284	u16 new_asid;
285
286	/*
287	 * NB: The scheduler will call us with prev == next when switching
288	 * from lazy TLB mode to normal mode if active_mm isn't changing.
289	 * When this happens, we don't assume that CR3 (and hence
290	 * cpu_tlbstate.loaded_mm) matches next.
291	 *
292	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
293	 */
294
295	/* We don't want flush_tlb_func_* to run concurrently with us. */
296	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
297		WARN_ON_ONCE(!irqs_disabled());
298
299	/*
300	 * Verify that CR3 is what we think it is.  This will catch
301	 * hypothetical buggy code that directly switches to swapper_pg_dir
302	 * without going through leave_mm() / switch_mm_irqs_off() or that
303	 * does something like write_cr3(read_cr3_pa()).
304	 *
305	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
306	 * isn't free.
307	 */
308#ifdef CONFIG_DEBUG_VM
309	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
310		/*
311		 * If we were to BUG here, we'd be very likely to kill
312		 * the system so hard that we don't see the call trace.
313		 * Try to recover instead by ignoring the error and doing
314		 * a global flush to minimize the chance of corruption.
315		 *
316		 * (This is far from being a fully correct recovery.
317		 *  Architecturally, the CPU could prefetch something
318		 *  back into an incorrect ASID slot and leave it there
319		 *  to cause trouble down the road.  It's better than
320		 *  nothing, though.)
321		 */
322		__flush_tlb_all();
323	}
324#endif
325	this_cpu_write(cpu_tlbstate.is_lazy, false);
326
327	/*
328	 * The membarrier system call requires a full memory barrier and
329	 * core serialization before returning to user-space, after
330	 * storing to rq->curr. Writing to CR3 provides that full
331	 * memory barrier and core serializing instruction.
332	 */
333	if (real_prev == next) {
334		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
335			   next->context.ctx_id);
336
337		/*
338		 * Even in lazy TLB mode, the CPU should stay set in the
339		 * mm_cpumask. The TLB shootdown code can figure out from
340		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
341		 */
342		if (WARN_ON_ONCE(real_prev != &init_mm &&
343				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
344			cpumask_set_cpu(cpu, mm_cpumask(next));
345
346		/*
347		 * If the CPU is not in lazy TLB mode, we are just switching
348		 * from one thread in a process to another thread in the same
349		 * process. No TLB flush required.
350		 */
351		if (!was_lazy)
352			return;
353
354		/*
355		 * Read the tlb_gen to check whether a flush is needed.
356		 * If the TLB is up to date, just use it.
357		 * The barrier synchronizes with the tlb_gen increment in
358		 * the TLB shootdown code.
359		 */
360		smp_mb();
361		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
362		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
363				next_tlb_gen)
364			return;
365
366		/*
367		 * TLB contents went out of date while we were in lazy
368		 * mode. Fall through to the TLB switching code below.
369		 */
370		new_asid = prev_asid;
371		need_flush = true;
372	} else {
373		/*
374		 * Avoid user/user BTB poisoning by flushing the branch
375		 * predictor when switching between processes. This stops
376		 * one process from doing Spectre-v2 attacks on another.
377		 */
378		cond_ibpb(tsk);
379
380		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
381			/*
382			 * If our current stack is in vmalloc space and isn't
383			 * mapped in the new pgd, we'll double-fault.  Forcibly
384			 * map it.
385			 */
386			sync_current_stack_to_mm(next);
387		}
388
389		/*
390		 * Stop remote flushes for the previous mm.
391		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
392		 * but the bitmap manipulation can cause cache line contention.
393		 */
394		if (real_prev != &init_mm) {
395			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
396						mm_cpumask(real_prev)));
397			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
398		}
399
400		/*
401		 * Start remote flushes and then read tlb_gen.
402		 */
403		if (next != &init_mm)
404			cpumask_set_cpu(cpu, mm_cpumask(next));
405		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
406
407		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
408
409		/* Let nmi_uaccess_okay() know that we're changing CR3. */
410		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
411		barrier();
412	}
413
414	if (need_flush) {
415		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
416		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
417		load_new_mm_cr3(next->pgd, new_asid, true);
418
419		/*
420		 * NB: This gets called via leave_mm() in the idle path
421		 * where RCU functions differently.  Tracing normally
422		 * uses RCU, so we need to use the _rcuidle variant.
423		 *
424		 * (There is no good reason for this.  The idle code should
425		 *  be rearranged to call this before rcu_idle_enter().)
426		 */
427		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
428	} else {
429		/* The new ASID is already up to date. */
430		load_new_mm_cr3(next->pgd, new_asid, false);
431
432		/* See above wrt _rcuidle. */
433		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
434	}
435
436	/* Make sure we write CR3 before loaded_mm. */
437	barrier();
438
439	this_cpu_write(cpu_tlbstate.loaded_mm, next);
440	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
441
442	if (next != real_prev) {
443		load_mm_cr4_irqsoff(next);
444		switch_ldt(real_prev, next);
445	}
 
446}
447
448/*
449 * Please ignore the name of this function.  It should be called
450 * switch_to_kernel_thread().
451 *
452 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
453 * kernel thread or other context without an mm.  Acceptable implementations
454 * include doing nothing whatsoever, switching to init_mm, or various clever
455 * lazy tricks to try to minimize TLB flushes.
456 *
457 * The scheduler reserves the right to call enter_lazy_tlb() several times
458 * in a row.  It will notify us that we're going back to a real mm by
459 * calling switch_mm_irqs_off().
460 */
461void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
462{
463	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
464		return;
465
466	this_cpu_write(cpu_tlbstate.is_lazy, true);
467}
468
469/*
470 * Call this when reinitializing a CPU.  It fixes the following potential
471 * problems:
472 *
473 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
474 *   because the CPU was taken down and came back up with CR3's PCID
475 *   bits clear.  CPU hotplug can do this.
476 *
477 * - The TLB contains junk in slots corresponding to inactive ASIDs.
478 *
479 * - The CPU went so far out to lunch that it may have missed a TLB
480 *   flush.
481 */
482void initialize_tlbstate_and_flush(void)
483{
484	int i;
485	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
486	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
487	unsigned long cr3 = __read_cr3();
488
489	/* Assert that CR3 already references the right mm. */
490	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
491
492	/*
493	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
494	 * doesn't work like other CR4 bits because it can only be set from
495	 * long mode.)
496	 */
497	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
498		!(cr4_read_shadow() & X86_CR4_PCIDE));
499
500	/* Force ASID 0 and force a TLB flush. */
501	write_cr3(build_cr3(mm->pgd, 0));
502
503	/* Reinitialize tlbstate. */
504	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
505	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
506	this_cpu_write(cpu_tlbstate.next_asid, 1);
507	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
508	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
509
510	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
511		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
512}
513
514/*
515 * flush_tlb_func_common()'s memory ordering requirement is that any
516 * TLB fills that happen after we flush the TLB are ordered after we
517 * read active_mm's tlb_gen.  We don't need any explicit barriers
518 * because all x86 flush operations are serializing and the
519 * atomic64_read operation won't be reordered by the compiler.
520 */
521static void flush_tlb_func_common(const struct flush_tlb_info *f,
522				  bool local, enum tlb_flush_reason reason)
523{
524	/*
525	 * We have three different tlb_gen values in here.  They are:
526	 *
527	 * - mm_tlb_gen:     the latest generation.
528	 * - local_tlb_gen:  the generation that this CPU has already caught
529	 *                   up to.
530	 * - f->new_tlb_gen: the generation that the requester of the flush
531	 *                   wants us to catch up to.
532	 */
533	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
534	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
535	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
536	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
537
538	/* This code cannot presently handle being reentered. */
539	VM_WARN_ON(!irqs_disabled());
540
541	if (unlikely(loaded_mm == &init_mm))
542		return;
543
544	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
545		   loaded_mm->context.ctx_id);
 
546
547	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
548		/*
549		 * We're in lazy mode.  We need to at least flush our
550		 * paging-structure cache to avoid speculatively reading
551		 * garbage into our TLB.  Since switching to init_mm is barely
552		 * slower than a minimal flush, just switch to init_mm.
553		 *
554		 * This should be rare, with native_flush_tlb_others skipping
555		 * IPIs to lazy TLB mode CPUs.
556		 */
557		switch_mm_irqs_off(NULL, &init_mm, NULL);
558		return;
559	}
560
561	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
562		/*
563		 * There's nothing to do: we're already up to date.  This can
564		 * happen if two concurrent flushes happen -- the first flush to
565		 * be handled can catch us all the way up, leaving no work for
566		 * the second flush.
567		 */
568		trace_tlb_flush(reason, 0);
569		return;
570	}
571
572	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
573	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 
 
 
574
575	/*
576	 * If we get to this point, we know that our TLB is out of date.
577	 * This does not strictly imply that we need to flush (it's
578	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
579	 * going to need to flush in the very near future, so we might
580	 * as well get it over with.
581	 *
582	 * The only question is whether to do a full or partial flush.
583	 *
584	 * We do a partial flush if requested and two extra conditions
585	 * are met:
586	 *
587	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
588	 *    we've always done all needed flushes to catch up to
589	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
590	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
591	 *    us up to date for tlb_gen 3 is the partial flush we're
592	 *    processing.
593	 *
594	 *    As an example of why this check is needed, suppose that there
595	 *    are two concurrent flushes.  The first is a full flush that
596	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
597	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
598	 *    processed on this CPU in reverse order, we'll see
599	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
600	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
601	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
602	 *    1 without the full flush that's needed for tlb_gen 2.
603	 *
604	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
605	 *    Partial TLB flushes are not all that much cheaper than full TLB
606	 *    flushes, so it seems unlikely that it would be a performance win
607	 *    to do a partial flush if that won't bring our TLB fully up to
608	 *    date.  By doing a full flush instead, we can increase
609	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
610	 *    avoid another flush in the very near future.
611	 */
612	if (f->end != TLB_FLUSH_ALL &&
613	    f->new_tlb_gen == local_tlb_gen + 1 &&
614	    f->new_tlb_gen == mm_tlb_gen) {
615		/* Partial flush */
616		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
617		unsigned long addr = f->start;
618
619		while (addr < f->end) {
620			__flush_tlb_one_user(addr);
621			addr += 1UL << f->stride_shift;
622		}
623		if (local)
624			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
625		trace_tlb_flush(reason, nr_invalidate);
626	} else {
627		/* Full flush. */
628		local_flush_tlb();
629		if (local)
630			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
631		trace_tlb_flush(reason, TLB_FLUSH_ALL);
632	}
633
634	/* Both paths above update our state to mm_tlb_gen. */
635	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
636}
637
638static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
639{
640	const struct flush_tlb_info *f = info;
641
642	flush_tlb_func_common(f, true, reason);
643}
644
645static void flush_tlb_func_remote(void *info)
646{
647	const struct flush_tlb_info *f = info;
648
649	inc_irq_stat(irq_tlb_count);
650
651	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
652		return;
653
654	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
655	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
656}
657
658static bool tlb_is_not_lazy(int cpu, void *data)
659{
660	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
661}
662
663void native_flush_tlb_others(const struct cpumask *cpumask,
664			     const struct flush_tlb_info *info)
665{
666	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
667	if (info->end == TLB_FLUSH_ALL)
668		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
669	else
670		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
671				(info->end - info->start) >> PAGE_SHIFT);
672
673	if (is_uv_system()) {
674		/*
675		 * This whole special case is confused.  UV has a "Broadcast
676		 * Assist Unit", which seems to be a fancy way to send IPIs.
677		 * Back when x86 used an explicit TLB flush IPI, UV was
678		 * optimized to use its own mechanism.  These days, x86 uses
679		 * smp_call_function_many(), but UV still uses a manual IPI,
680		 * and that IPI's action is out of date -- it does a manual
681		 * flush instead of calling flush_tlb_func_remote().  This
682		 * means that the percpu tlb_gen variables won't be updated
683		 * and we'll do pointless flushes on future context switches.
684		 *
685		 * Rather than hooking native_flush_tlb_others() here, I think
686		 * that UV should be updated so that smp_call_function_many(),
687		 * etc, are optimal on UV.
688		 */
689		cpumask = uv_flush_tlb_others(cpumask, info);
690		if (cpumask)
691			smp_call_function_many(cpumask, flush_tlb_func_remote,
692					       (void *)info, 1);
693		return;
694	}
695
696	/*
697	 * If no page tables were freed, we can skip sending IPIs to
698	 * CPUs in lazy TLB mode. They will flush the CPU themselves
699	 * at the next context switch.
700	 *
701	 * However, if page tables are getting freed, we need to send the
702	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
703	 * up on the new contents of what used to be page tables, while
704	 * doing a speculative memory access.
705	 */
706	if (info->freed_tables)
707		smp_call_function_many(cpumask, flush_tlb_func_remote,
708			       (void *)info, 1);
709	else
710		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
711				(void *)info, 1, GFP_ATOMIC, cpumask);
712}
713
714/*
715 * See Documentation/x86/tlb.rst for details.  We choose 33
716 * because it is large enough to cover the vast majority (at
717 * least 95%) of allocations, and is small enough that we are
718 * confident it will not cause too much overhead.  Each single
719 * flush is about 100 ns, so this caps the maximum overhead at
720 * _about_ 3,000 ns.
721 *
722 * This is in units of pages.
723 */
724unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
725
726static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
727
728#ifdef CONFIG_DEBUG_VM
729static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
730#endif
731
732static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
733			unsigned long start, unsigned long end,
734			unsigned int stride_shift, bool freed_tables,
735			u64 new_tlb_gen)
736{
737	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
738
739#ifdef CONFIG_DEBUG_VM
740	/*
741	 * Ensure that the following code is non-reentrant and flush_tlb_info
742	 * is not overwritten. This means no TLB flushing is initiated by
743	 * interrupt handlers and machine-check exception handlers.
744	 */
745	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
746#endif
747
748	info->start		= start;
749	info->end		= end;
750	info->mm		= mm;
751	info->stride_shift	= stride_shift;
752	info->freed_tables	= freed_tables;
753	info->new_tlb_gen	= new_tlb_gen;
754
755	return info;
756}
757
758static inline void put_flush_tlb_info(void)
759{
760#ifdef CONFIG_DEBUG_VM
761	/* Complete reentrency prevention checks */
762	barrier();
763	this_cpu_dec(flush_tlb_info_idx);
764#endif
765}
766
767void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
768				unsigned long end, unsigned int stride_shift,
769				bool freed_tables)
770{
771	struct flush_tlb_info *info;
772	u64 new_tlb_gen;
773	int cpu;
774
775	cpu = get_cpu();
776
777	/* Should we flush just the requested range? */
778	if ((end == TLB_FLUSH_ALL) ||
779	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
780		start = 0;
781		end = TLB_FLUSH_ALL;
782	}
783
784	/* This is also a barrier that synchronizes with switch_mm(). */
785	new_tlb_gen = inc_mm_tlb_gen(mm);
786
787	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
788				  new_tlb_gen);
789
790	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
791		lockdep_assert_irqs_enabled();
792		local_irq_disable();
793		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
794		local_irq_enable();
795	}
796
797	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
798		flush_tlb_others(mm_cpumask(mm), info);
799
800	put_flush_tlb_info();
801	put_cpu();
802}
803
804
805static void do_flush_tlb_all(void *info)
806{
807	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
808	__flush_tlb_all();
 
 
809}
810
811void flush_tlb_all(void)
812{
813	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
814	on_each_cpu(do_flush_tlb_all, NULL, 1);
815}
816
817static void do_kernel_range_flush(void *info)
818{
819	struct flush_tlb_info *f = info;
820	unsigned long addr;
821
822	/* flush range by one by one 'invlpg' */
823	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
824		__flush_tlb_one_kernel(addr);
825}
826
827void flush_tlb_kernel_range(unsigned long start, unsigned long end)
828{
829	/* Balance as user space task's flush, a bit conservative */
830	if (end == TLB_FLUSH_ALL ||
831	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
832		on_each_cpu(do_flush_tlb_all, NULL, 1);
833	} else {
834		struct flush_tlb_info *info;
835
836		preempt_disable();
837		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
838
839		on_each_cpu(do_kernel_range_flush, info, 1);
 
 
840
841		put_flush_tlb_info();
842		preempt_enable();
843	}
844}
845
846/*
847 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
848 * This means that the 'struct flush_tlb_info' that describes which mappings to
849 * flush is actually fixed. We therefore set a single fixed struct and use it in
850 * arch_tlbbatch_flush().
851 */
852static const struct flush_tlb_info full_flush_tlb_info = {
853	.mm = NULL,
854	.start = 0,
855	.end = TLB_FLUSH_ALL,
856};
857
858void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
859{
860	int cpu = get_cpu();
861
862	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
863		lockdep_assert_irqs_enabled();
864		local_irq_disable();
865		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
866		local_irq_enable();
867	}
868
869	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
870		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
871
872	cpumask_clear(&batch->cpumask);
873
874	put_cpu();
875}
876
 
877static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
878			     size_t count, loff_t *ppos)
879{
880	char buf[32];
881	unsigned int len;
882
883	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
884	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
885}
886
887static ssize_t tlbflush_write_file(struct file *file,
888		 const char __user *user_buf, size_t count, loff_t *ppos)
889{
890	char buf[32];
891	ssize_t len;
892	int ceiling;
893
894	len = min(count, sizeof(buf) - 1);
895	if (copy_from_user(buf, user_buf, len))
896		return -EFAULT;
897
898	buf[len] = '\0';
899	if (kstrtoint(buf, 0, &ceiling))
900		return -EINVAL;
901
902	if (ceiling < 0)
903		return -EINVAL;
904
905	tlb_single_page_flush_ceiling = ceiling;
906	return count;
907}
908
909static const struct file_operations fops_tlbflush = {
910	.read = tlbflush_read_file,
911	.write = tlbflush_write_file,
912	.llseek = default_llseek,
913};
914
915static int __init create_tlb_single_page_flush_ceiling(void)
916{
917	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
918			    arch_debugfs_dir, NULL, &fops_tlbflush);
919	return 0;
920}
921late_initcall(create_tlb_single_page_flush_ceiling);