Loading...
1#ifndef __ASM_SPINLOCK_H
2#define __ASM_SPINLOCK_H
3
4#if __LINUX_ARM_ARCH__ < 6
5#error SMP not supported on pre-ARMv6 CPUs
6#endif
7
8#include <linux/prefetch.h>
9
10/*
11 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
12 * extensions, so when running on UP, we have to patch these instructions away.
13 */
14#ifdef CONFIG_THUMB2_KERNEL
15/*
16 * For Thumb-2, special care is needed to ensure that the conditional WFE
17 * instruction really does assemble to exactly 4 bytes (as required by
18 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
19 * assembler to insert a extra (16-bit) IT instruction, depending on the
20 * presence or absence of neighbouring conditional instructions.
21 *
22 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
23 * the assembler won't change IT instructions which are explicitly present
24 * in the input.
25 */
26#define WFE(cond) __ALT_SMP_ASM( \
27 "it " cond "\n\t" \
28 "wfe" cond ".n", \
29 \
30 "nop.w" \
31)
32#else
33#define WFE(cond) __ALT_SMP_ASM("wfe" cond, "nop")
34#endif
35
36#define SEV __ALT_SMP_ASM(WASM(sev), WASM(nop))
37
38static inline void dsb_sev(void)
39{
40
41 dsb(ishst);
42 __asm__(SEV);
43}
44
45/*
46 * ARMv6 ticket-based spin-locking.
47 *
48 * A memory barrier is required after we get a lock, and before we
49 * release it, because V6 CPUs are assumed to have weakly ordered
50 * memory.
51 */
52
53#define arch_spin_unlock_wait(lock) \
54 do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
55
56#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
57
58static inline void arch_spin_lock(arch_spinlock_t *lock)
59{
60 unsigned long tmp;
61 u32 newval;
62 arch_spinlock_t lockval;
63
64 prefetchw(&lock->slock);
65 __asm__ __volatile__(
66"1: ldrex %0, [%3]\n"
67" add %1, %0, %4\n"
68" strex %2, %1, [%3]\n"
69" teq %2, #0\n"
70" bne 1b"
71 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
72 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
73 : "cc");
74
75 while (lockval.tickets.next != lockval.tickets.owner) {
76 wfe();
77 lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
78 }
79
80 smp_mb();
81}
82
83static inline int arch_spin_trylock(arch_spinlock_t *lock)
84{
85 unsigned long contended, res;
86 u32 slock;
87
88 prefetchw(&lock->slock);
89 do {
90 __asm__ __volatile__(
91 " ldrex %0, [%3]\n"
92 " mov %2, #0\n"
93 " subs %1, %0, %0, ror #16\n"
94 " addeq %0, %0, %4\n"
95 " strexeq %2, %0, [%3]"
96 : "=&r" (slock), "=&r" (contended), "=&r" (res)
97 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
98 : "cc");
99 } while (res);
100
101 if (!contended) {
102 smp_mb();
103 return 1;
104 } else {
105 return 0;
106 }
107}
108
109static inline void arch_spin_unlock(arch_spinlock_t *lock)
110{
111 smp_mb();
112 lock->tickets.owner++;
113 dsb_sev();
114}
115
116static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
117{
118 return lock.tickets.owner == lock.tickets.next;
119}
120
121static inline int arch_spin_is_locked(arch_spinlock_t *lock)
122{
123 return !arch_spin_value_unlocked(ACCESS_ONCE(*lock));
124}
125
126static inline int arch_spin_is_contended(arch_spinlock_t *lock)
127{
128 struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
129 return (tickets.next - tickets.owner) > 1;
130}
131#define arch_spin_is_contended arch_spin_is_contended
132
133/*
134 * RWLOCKS
135 *
136 *
137 * Write locks are easy - we just set bit 31. When unlocking, we can
138 * just write zero since the lock is exclusively held.
139 */
140
141static inline void arch_write_lock(arch_rwlock_t *rw)
142{
143 unsigned long tmp;
144
145 prefetchw(&rw->lock);
146 __asm__ __volatile__(
147"1: ldrex %0, [%1]\n"
148" teq %0, #0\n"
149 WFE("ne")
150" strexeq %0, %2, [%1]\n"
151" teq %0, #0\n"
152" bne 1b"
153 : "=&r" (tmp)
154 : "r" (&rw->lock), "r" (0x80000000)
155 : "cc");
156
157 smp_mb();
158}
159
160static inline int arch_write_trylock(arch_rwlock_t *rw)
161{
162 unsigned long contended, res;
163
164 prefetchw(&rw->lock);
165 do {
166 __asm__ __volatile__(
167 " ldrex %0, [%2]\n"
168 " mov %1, #0\n"
169 " teq %0, #0\n"
170 " strexeq %1, %3, [%2]"
171 : "=&r" (contended), "=&r" (res)
172 : "r" (&rw->lock), "r" (0x80000000)
173 : "cc");
174 } while (res);
175
176 if (!contended) {
177 smp_mb();
178 return 1;
179 } else {
180 return 0;
181 }
182}
183
184static inline void arch_write_unlock(arch_rwlock_t *rw)
185{
186 smp_mb();
187
188 __asm__ __volatile__(
189 "str %1, [%0]\n"
190 :
191 : "r" (&rw->lock), "r" (0)
192 : "cc");
193
194 dsb_sev();
195}
196
197/* write_can_lock - would write_trylock() succeed? */
198#define arch_write_can_lock(x) (ACCESS_ONCE((x)->lock) == 0)
199
200/*
201 * Read locks are a bit more hairy:
202 * - Exclusively load the lock value.
203 * - Increment it.
204 * - Store new lock value if positive, and we still own this location.
205 * If the value is negative, we've already failed.
206 * - If we failed to store the value, we want a negative result.
207 * - If we failed, try again.
208 * Unlocking is similarly hairy. We may have multiple read locks
209 * currently active. However, we know we won't have any write
210 * locks.
211 */
212static inline void arch_read_lock(arch_rwlock_t *rw)
213{
214 unsigned long tmp, tmp2;
215
216 prefetchw(&rw->lock);
217 __asm__ __volatile__(
218"1: ldrex %0, [%2]\n"
219" adds %0, %0, #1\n"
220" strexpl %1, %0, [%2]\n"
221 WFE("mi")
222" rsbpls %0, %1, #0\n"
223" bmi 1b"
224 : "=&r" (tmp), "=&r" (tmp2)
225 : "r" (&rw->lock)
226 : "cc");
227
228 smp_mb();
229}
230
231static inline void arch_read_unlock(arch_rwlock_t *rw)
232{
233 unsigned long tmp, tmp2;
234
235 smp_mb();
236
237 prefetchw(&rw->lock);
238 __asm__ __volatile__(
239"1: ldrex %0, [%2]\n"
240" sub %0, %0, #1\n"
241" strex %1, %0, [%2]\n"
242" teq %1, #0\n"
243" bne 1b"
244 : "=&r" (tmp), "=&r" (tmp2)
245 : "r" (&rw->lock)
246 : "cc");
247
248 if (tmp == 0)
249 dsb_sev();
250}
251
252static inline int arch_read_trylock(arch_rwlock_t *rw)
253{
254 unsigned long contended, res;
255
256 prefetchw(&rw->lock);
257 do {
258 __asm__ __volatile__(
259 " ldrex %0, [%2]\n"
260 " mov %1, #0\n"
261 " adds %0, %0, #1\n"
262 " strexpl %1, %0, [%2]"
263 : "=&r" (contended), "=&r" (res)
264 : "r" (&rw->lock)
265 : "cc");
266 } while (res);
267
268 /* If the lock is negative, then it is already held for write. */
269 if (contended < 0x80000000) {
270 smp_mb();
271 return 1;
272 } else {
273 return 0;
274 }
275}
276
277/* read_can_lock - would read_trylock() succeed? */
278#define arch_read_can_lock(x) (ACCESS_ONCE((x)->lock) < 0x80000000)
279
280#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
281#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
282
283#define arch_spin_relax(lock) cpu_relax()
284#define arch_read_relax(lock) cpu_relax()
285#define arch_write_relax(lock) cpu_relax()
286
287#endif /* __ASM_SPINLOCK_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __ASM_SPINLOCK_H
3#define __ASM_SPINLOCK_H
4
5#if __LINUX_ARM_ARCH__ < 6
6#error SMP not supported on pre-ARMv6 CPUs
7#endif
8
9#include <linux/prefetch.h>
10#include <asm/barrier.h>
11#include <asm/processor.h>
12
13/*
14 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
15 * extensions, so when running on UP, we have to patch these instructions away.
16 */
17#ifdef CONFIG_THUMB2_KERNEL
18/*
19 * For Thumb-2, special care is needed to ensure that the conditional WFE
20 * instruction really does assemble to exactly 4 bytes (as required by
21 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
22 * assembler to insert a extra (16-bit) IT instruction, depending on the
23 * presence or absence of neighbouring conditional instructions.
24 *
25 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
26 * the assembler won't change IT instructions which are explicitly present
27 * in the input.
28 */
29#define WFE(cond) __ALT_SMP_ASM( \
30 "it " cond "\n\t" \
31 "wfe" cond ".n", \
32 \
33 "nop.w" \
34)
35#else
36#define WFE(cond) __ALT_SMP_ASM("wfe" cond, "nop")
37#endif
38
39#define SEV __ALT_SMP_ASM(WASM(sev), WASM(nop))
40
41static inline void dsb_sev(void)
42{
43
44 dsb(ishst);
45 __asm__(SEV);
46}
47
48/*
49 * ARMv6 ticket-based spin-locking.
50 *
51 * A memory barrier is required after we get a lock, and before we
52 * release it, because V6 CPUs are assumed to have weakly ordered
53 * memory.
54 */
55
56static inline void arch_spin_lock(arch_spinlock_t *lock)
57{
58 unsigned long tmp;
59 u32 newval;
60 arch_spinlock_t lockval;
61
62 prefetchw(&lock->slock);
63 __asm__ __volatile__(
64"1: ldrex %0, [%3]\n"
65" add %1, %0, %4\n"
66" strex %2, %1, [%3]\n"
67" teq %2, #0\n"
68" bne 1b"
69 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
70 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
71 : "cc");
72
73 while (lockval.tickets.next != lockval.tickets.owner) {
74 wfe();
75 lockval.tickets.owner = READ_ONCE(lock->tickets.owner);
76 }
77
78 smp_mb();
79}
80
81static inline int arch_spin_trylock(arch_spinlock_t *lock)
82{
83 unsigned long contended, res;
84 u32 slock;
85
86 prefetchw(&lock->slock);
87 do {
88 __asm__ __volatile__(
89 " ldrex %0, [%3]\n"
90 " mov %2, #0\n"
91 " subs %1, %0, %0, ror #16\n"
92 " addeq %0, %0, %4\n"
93 " strexeq %2, %0, [%3]"
94 : "=&r" (slock), "=&r" (contended), "=&r" (res)
95 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
96 : "cc");
97 } while (res);
98
99 if (!contended) {
100 smp_mb();
101 return 1;
102 } else {
103 return 0;
104 }
105}
106
107static inline void arch_spin_unlock(arch_spinlock_t *lock)
108{
109 smp_mb();
110 lock->tickets.owner++;
111 dsb_sev();
112}
113
114static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
115{
116 return lock.tickets.owner == lock.tickets.next;
117}
118
119static inline int arch_spin_is_locked(arch_spinlock_t *lock)
120{
121 return !arch_spin_value_unlocked(READ_ONCE(*lock));
122}
123
124static inline int arch_spin_is_contended(arch_spinlock_t *lock)
125{
126 struct __raw_tickets tickets = READ_ONCE(lock->tickets);
127 return (tickets.next - tickets.owner) > 1;
128}
129#define arch_spin_is_contended arch_spin_is_contended
130
131/*
132 * RWLOCKS
133 *
134 *
135 * Write locks are easy - we just set bit 31. When unlocking, we can
136 * just write zero since the lock is exclusively held.
137 */
138
139static inline void arch_write_lock(arch_rwlock_t *rw)
140{
141 unsigned long tmp;
142
143 prefetchw(&rw->lock);
144 __asm__ __volatile__(
145"1: ldrex %0, [%1]\n"
146" teq %0, #0\n"
147 WFE("ne")
148" strexeq %0, %2, [%1]\n"
149" teq %0, #0\n"
150" bne 1b"
151 : "=&r" (tmp)
152 : "r" (&rw->lock), "r" (0x80000000)
153 : "cc");
154
155 smp_mb();
156}
157
158static inline int arch_write_trylock(arch_rwlock_t *rw)
159{
160 unsigned long contended, res;
161
162 prefetchw(&rw->lock);
163 do {
164 __asm__ __volatile__(
165 " ldrex %0, [%2]\n"
166 " mov %1, #0\n"
167 " teq %0, #0\n"
168 " strexeq %1, %3, [%2]"
169 : "=&r" (contended), "=&r" (res)
170 : "r" (&rw->lock), "r" (0x80000000)
171 : "cc");
172 } while (res);
173
174 if (!contended) {
175 smp_mb();
176 return 1;
177 } else {
178 return 0;
179 }
180}
181
182static inline void arch_write_unlock(arch_rwlock_t *rw)
183{
184 smp_mb();
185
186 __asm__ __volatile__(
187 "str %1, [%0]\n"
188 :
189 : "r" (&rw->lock), "r" (0)
190 : "cc");
191
192 dsb_sev();
193}
194
195/*
196 * Read locks are a bit more hairy:
197 * - Exclusively load the lock value.
198 * - Increment it.
199 * - Store new lock value if positive, and we still own this location.
200 * If the value is negative, we've already failed.
201 * - If we failed to store the value, we want a negative result.
202 * - If we failed, try again.
203 * Unlocking is similarly hairy. We may have multiple read locks
204 * currently active. However, we know we won't have any write
205 * locks.
206 */
207static inline void arch_read_lock(arch_rwlock_t *rw)
208{
209 unsigned long tmp, tmp2;
210
211 prefetchw(&rw->lock);
212 __asm__ __volatile__(
213" .syntax unified\n"
214"1: ldrex %0, [%2]\n"
215" adds %0, %0, #1\n"
216" strexpl %1, %0, [%2]\n"
217 WFE("mi")
218" rsbspl %0, %1, #0\n"
219" bmi 1b"
220 : "=&r" (tmp), "=&r" (tmp2)
221 : "r" (&rw->lock)
222 : "cc");
223
224 smp_mb();
225}
226
227static inline void arch_read_unlock(arch_rwlock_t *rw)
228{
229 unsigned long tmp, tmp2;
230
231 smp_mb();
232
233 prefetchw(&rw->lock);
234 __asm__ __volatile__(
235"1: ldrex %0, [%2]\n"
236" sub %0, %0, #1\n"
237" strex %1, %0, [%2]\n"
238" teq %1, #0\n"
239" bne 1b"
240 : "=&r" (tmp), "=&r" (tmp2)
241 : "r" (&rw->lock)
242 : "cc");
243
244 if (tmp == 0)
245 dsb_sev();
246}
247
248static inline int arch_read_trylock(arch_rwlock_t *rw)
249{
250 unsigned long contended, res;
251
252 prefetchw(&rw->lock);
253 do {
254 __asm__ __volatile__(
255 " ldrex %0, [%2]\n"
256 " mov %1, #0\n"
257 " adds %0, %0, #1\n"
258 " strexpl %1, %0, [%2]"
259 : "=&r" (contended), "=&r" (res)
260 : "r" (&rw->lock)
261 : "cc");
262 } while (res);
263
264 /* If the lock is negative, then it is already held for write. */
265 if (contended < 0x80000000) {
266 smp_mb();
267 return 1;
268 } else {
269 return 0;
270 }
271}
272
273#endif /* __ASM_SPINLOCK_H */