Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
  3 *
  4 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU Lesser General Public
  7 * License as published by the Free Software Foundation;
  8 * version 2.1 of the License (not later!)
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU Lesser General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU Lesser General Public
 16 * License along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 18 *
 19 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 20 */
 21#include <stdio.h>
 22#include <stdlib.h>
 23#include <string.h>
 24
 25#include "kbuffer.h"
 26
 27#define MISSING_EVENTS (1 << 31)
 28#define MISSING_STORED (1 << 30)
 29
 30#define COMMIT_MASK ((1 << 27) - 1)
 31
 32enum {
 33	KBUFFER_FL_HOST_BIG_ENDIAN	= (1<<0),
 34	KBUFFER_FL_BIG_ENDIAN		= (1<<1),
 35	KBUFFER_FL_LONG_8		= (1<<2),
 36	KBUFFER_FL_OLD_FORMAT		= (1<<3),
 37};
 38
 39#define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
 40
 41/** kbuffer
 42 * @timestamp		- timestamp of current event
 43 * @lost_events		- # of lost events between this subbuffer and previous
 44 * @flags		- special flags of the kbuffer
 45 * @subbuffer		- pointer to the sub-buffer page
 46 * @data		- pointer to the start of data on the sub-buffer page
 47 * @index		- index from @data to the @curr event data
 48 * @curr		- offset from @data to the start of current event
 49 *			   (includes metadata)
 50 * @next		- offset from @data to the start of next event
 51 * @size		- The size of data on @data
 52 * @start		- The offset from @subbuffer where @data lives
 53 *
 54 * @read_4		- Function to read 4 raw bytes (may swap)
 55 * @read_8		- Function to read 8 raw bytes (may swap)
 56 * @read_long		- Function to read a long word (4 or 8 bytes with needed swap)
 57 */
 58struct kbuffer {
 59	unsigned long long 	timestamp;
 60	long long		lost_events;
 61	unsigned long		flags;
 62	void			*subbuffer;
 63	void			*data;
 64	unsigned int		index;
 65	unsigned int		curr;
 66	unsigned int		next;
 67	unsigned int		size;
 68	unsigned int		start;
 69
 70	unsigned int (*read_4)(void *ptr);
 71	unsigned long long (*read_8)(void *ptr);
 72	unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
 73	int (*next_event)(struct kbuffer *kbuf);
 74};
 75
 76static void *zmalloc(size_t size)
 77{
 78	return calloc(1, size);
 79}
 80
 81static int host_is_bigendian(void)
 82{
 83	unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
 84	unsigned int *ptr;
 85
 86	ptr = (unsigned int *)str;
 87	return *ptr == 0x01020304;
 88}
 89
 90static int do_swap(struct kbuffer *kbuf)
 91{
 92	return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
 93		ENDIAN_MASK;
 94}
 95
 96static unsigned long long __read_8(void *ptr)
 97{
 98	unsigned long long data = *(unsigned long long *)ptr;
 99
100	return data;
101}
102
103static unsigned long long __read_8_sw(void *ptr)
104{
105	unsigned long long data = *(unsigned long long *)ptr;
106	unsigned long long swap;
107
108	swap = ((data & 0xffULL) << 56) |
109		((data & (0xffULL << 8)) << 40) |
110		((data & (0xffULL << 16)) << 24) |
111		((data & (0xffULL << 24)) << 8) |
112		((data & (0xffULL << 32)) >> 8) |
113		((data & (0xffULL << 40)) >> 24) |
114		((data & (0xffULL << 48)) >> 40) |
115		((data & (0xffULL << 56)) >> 56);
116
117	return swap;
118}
119
120static unsigned int __read_4(void *ptr)
121{
122	unsigned int data = *(unsigned int *)ptr;
123
124	return data;
125}
126
127static unsigned int __read_4_sw(void *ptr)
128{
129	unsigned int data = *(unsigned int *)ptr;
130	unsigned int swap;
131
132	swap = ((data & 0xffULL) << 24) |
133		((data & (0xffULL << 8)) << 8) |
134		((data & (0xffULL << 16)) >> 8) |
135		((data & (0xffULL << 24)) >> 24);
136
137	return swap;
138}
139
140static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
141{
142	return kbuf->read_8(ptr);
143}
144
145static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
146{
147	return kbuf->read_4(ptr);
148}
149
150static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
151{
152	return kbuf->read_8(ptr);
153}
154
155static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
156{
157	return kbuf->read_4(ptr);
158}
159
160static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
161{
162	return kbuf->read_long(kbuf, ptr);
163}
164
165static int calc_index(struct kbuffer *kbuf, void *ptr)
166{
167	return (unsigned long)ptr - (unsigned long)kbuf->data;
168}
169
170static int __next_event(struct kbuffer *kbuf);
171
172/**
173 * kbuffer_alloc - allocat a new kbuffer
174 * @size;	enum to denote size of word
175 * @endian:	enum to denote endianness
176 *
177 * Allocates and returns a new kbuffer.
178 */
179struct kbuffer *
180kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
181{
182	struct kbuffer *kbuf;
183	int flags = 0;
184
185	switch (size) {
186	case KBUFFER_LSIZE_4:
187		break;
188	case KBUFFER_LSIZE_8:
189		flags |= KBUFFER_FL_LONG_8;
190		break;
191	default:
192		return NULL;
193	}
194
195	switch (endian) {
196	case KBUFFER_ENDIAN_LITTLE:
197		break;
198	case KBUFFER_ENDIAN_BIG:
199		flags |= KBUFFER_FL_BIG_ENDIAN;
200		break;
201	default:
202		return NULL;
203	}
204
205	kbuf = zmalloc(sizeof(*kbuf));
206	if (!kbuf)
207		return NULL;
208
209	kbuf->flags = flags;
210
211	if (host_is_bigendian())
212		kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
213
214	if (do_swap(kbuf)) {
215		kbuf->read_8 = __read_8_sw;
216		kbuf->read_4 = __read_4_sw;
217	} else {
218		kbuf->read_8 = __read_8;
219		kbuf->read_4 = __read_4;
220	}
221
222	if (kbuf->flags & KBUFFER_FL_LONG_8)
223		kbuf->read_long = __read_long_8;
224	else
225		kbuf->read_long = __read_long_4;
226
227	/* May be changed by kbuffer_set_old_format() */
228	kbuf->next_event = __next_event;
229
230	return kbuf;
231}
232
233/** kbuffer_free - free an allocated kbuffer
234 * @kbuf:	The kbuffer to free
235 *
236 * Can take NULL as a parameter.
237 */
238void kbuffer_free(struct kbuffer *kbuf)
239{
240	free(kbuf);
241}
242
243static unsigned int type4host(struct kbuffer *kbuf,
244			      unsigned int type_len_ts)
245{
246	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
247		return (type_len_ts >> 29) & 3;
248	else
249		return type_len_ts & 3;
250}
251
252static unsigned int len4host(struct kbuffer *kbuf,
253			     unsigned int type_len_ts)
254{
255	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
256		return (type_len_ts >> 27) & 7;
257	else
258		return (type_len_ts >> 2) & 7;
259}
260
261static unsigned int type_len4host(struct kbuffer *kbuf,
262				  unsigned int type_len_ts)
263{
264	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
265		return (type_len_ts >> 27) & ((1 << 5) - 1);
266	else
267		return type_len_ts & ((1 << 5) - 1);
268}
269
270static unsigned int ts4host(struct kbuffer *kbuf,
271			    unsigned int type_len_ts)
272{
273	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
274		return type_len_ts & ((1 << 27) - 1);
275	else
276		return type_len_ts >> 5;
277}
278
279/*
280 * Linux 2.6.30 and earlier (not much ealier) had a different
281 * ring buffer format. It should be obsolete, but we handle it anyway.
282 */
283enum old_ring_buffer_type {
284	OLD_RINGBUF_TYPE_PADDING,
285	OLD_RINGBUF_TYPE_TIME_EXTEND,
286	OLD_RINGBUF_TYPE_TIME_STAMP,
287	OLD_RINGBUF_TYPE_DATA,
288};
289
290static unsigned int old_update_pointers(struct kbuffer *kbuf)
291{
292	unsigned long long extend;
293	unsigned int type_len_ts;
294	unsigned int type;
295	unsigned int len;
296	unsigned int delta;
297	unsigned int length;
298	void *ptr = kbuf->data + kbuf->curr;
299
300	type_len_ts = read_4(kbuf, ptr);
301	ptr += 4;
302
303	type = type4host(kbuf, type_len_ts);
304	len = len4host(kbuf, type_len_ts);
305	delta = ts4host(kbuf, type_len_ts);
306
307	switch (type) {
308	case OLD_RINGBUF_TYPE_PADDING:
309		kbuf->next = kbuf->size;
310		return 0;
311
312	case OLD_RINGBUF_TYPE_TIME_EXTEND:
313		extend = read_4(kbuf, ptr);
314		extend <<= TS_SHIFT;
315		extend += delta;
316		delta = extend;
317		ptr += 4;
 
318		break;
319
320	case OLD_RINGBUF_TYPE_TIME_STAMP:
321		/* should never happen! */
322		kbuf->curr = kbuf->size;
323		kbuf->next = kbuf->size;
324		kbuf->index = kbuf->size;
325		return -1;
326	default:
327		if (len)
328			length = len * 4;
329		else {
330			length = read_4(kbuf, ptr);
331			length -= 4;
332			ptr += 4;
333		}
334		break;
335	}
336
337	kbuf->timestamp += delta;
338	kbuf->index = calc_index(kbuf, ptr);
339	kbuf->next = kbuf->index + length;
340
341	return type;
342}
343
344static int __old_next_event(struct kbuffer *kbuf)
345{
346	int type;
347
348	do {
349		kbuf->curr = kbuf->next;
350		if (kbuf->next >= kbuf->size)
351			return -1;
352		type = old_update_pointers(kbuf);
353	} while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
354
355	return 0;
356}
357
358static unsigned int
359translate_data(struct kbuffer *kbuf, void *data, void **rptr,
360	       unsigned long long *delta, int *length)
361{
362	unsigned long long extend;
363	unsigned int type_len_ts;
364	unsigned int type_len;
365
366	type_len_ts = read_4(kbuf, data);
367	data += 4;
368
369	type_len = type_len4host(kbuf, type_len_ts);
370	*delta = ts4host(kbuf, type_len_ts);
371
372	switch (type_len) {
373	case KBUFFER_TYPE_PADDING:
374		*length = read_4(kbuf, data);
375		data += *length;
376		break;
377
378	case KBUFFER_TYPE_TIME_EXTEND:
379		extend = read_4(kbuf, data);
380		data += 4;
381		extend <<= TS_SHIFT;
382		extend += *delta;
383		*delta = extend;
384		*length = 0;
385		break;
386
387	case KBUFFER_TYPE_TIME_STAMP:
388		data += 12;
389		*length = 0;
390		break;
391	case 0:
392		*length = read_4(kbuf, data) - 4;
393		*length = (*length + 3) & ~3;
394		data += 4;
395		break;
396	default:
397		*length = type_len * 4;
398		break;
399	}
400
401	*rptr = data;
402
403	return type_len;
404}
405
406static unsigned int update_pointers(struct kbuffer *kbuf)
407{
408	unsigned long long delta;
409	unsigned int type_len;
410	int length;
411	void *ptr = kbuf->data + kbuf->curr;
412
413	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
414
415	kbuf->timestamp += delta;
416	kbuf->index = calc_index(kbuf, ptr);
417	kbuf->next = kbuf->index + length;
418
419	return type_len;
420}
421
422/**
423 * kbuffer_translate_data - read raw data to get a record
424 * @swap:	Set to 1 if bytes in words need to be swapped when read
425 * @data:	The raw data to read
426 * @size:	Address to store the size of the event data.
427 *
428 * Returns a pointer to the event data. To determine the entire
429 * record size (record metadata + data) just add the difference between
430 * @data and the returned value to @size.
431 */
432void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
433{
434	unsigned long long delta;
435	struct kbuffer kbuf;
436	int type_len;
437	int length;
438	void *ptr;
439
440	if (swap) {
441		kbuf.read_8 = __read_8_sw;
442		kbuf.read_4 = __read_4_sw;
443		kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
444	} else {
445		kbuf.read_8 = __read_8;
446		kbuf.read_4 = __read_4;
447		kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
448	}
449
450	type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
451	switch (type_len) {
452	case KBUFFER_TYPE_PADDING:
453	case KBUFFER_TYPE_TIME_EXTEND:
454	case KBUFFER_TYPE_TIME_STAMP:
455		return NULL;
456	};
457
458	*size = length;
459
460	return ptr;
461}
462
463static int __next_event(struct kbuffer *kbuf)
464{
465	int type;
466
467	do {
468		kbuf->curr = kbuf->next;
469		if (kbuf->next >= kbuf->size)
470			return -1;
471		type = update_pointers(kbuf);
472	} while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_PADDING);
473
474	return 0;
475}
476
477static int next_event(struct kbuffer *kbuf)
478{
479	return kbuf->next_event(kbuf);
480}
481
482/**
483 * kbuffer_next_event - increment the current pointer
484 * @kbuf:	The kbuffer to read
485 * @ts:		Address to store the next record's timestamp (may be NULL to ignore)
486 *
487 * Increments the pointers into the subbuffer of the kbuffer to point to the
488 * next event so that the next kbuffer_read_event() will return a
489 * new event.
490 *
491 * Returns the data of the next event if a new event exists on the subbuffer,
492 * NULL otherwise.
493 */
494void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
495{
496	int ret;
497
498	if (!kbuf || !kbuf->subbuffer)
499		return NULL;
500
501	ret = next_event(kbuf);
502	if (ret < 0)
503		return NULL;
504
505	if (ts)
506		*ts = kbuf->timestamp;
507
508	return kbuf->data + kbuf->index;
509}
510
511/**
512 * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
513 * @kbuf:	The kbuffer to load
514 * @subbuffer:	The subbuffer to load into @kbuf.
515 *
516 * Load a new subbuffer (page) into @kbuf. This will reset all
517 * the pointers and update the @kbuf timestamp. The next read will
518 * return the first event on @subbuffer.
519 *
520 * Returns 0 on succes, -1 otherwise.
521 */
522int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
523{
524	unsigned long long flags;
525	void *ptr = subbuffer;
526
527	if (!kbuf || !subbuffer)
528		return -1;
529
530	kbuf->subbuffer = subbuffer;
531
532	kbuf->timestamp = read_8(kbuf, ptr);
533	ptr += 8;
534
535	kbuf->curr = 0;
536
537	if (kbuf->flags & KBUFFER_FL_LONG_8)
538		kbuf->start = 16;
539	else
540		kbuf->start = 12;
541
542	kbuf->data = subbuffer + kbuf->start;
543
544	flags = read_long(kbuf, ptr);
545	kbuf->size = (unsigned int)flags & COMMIT_MASK;
546
547	if (flags & MISSING_EVENTS) {
548		if (flags & MISSING_STORED) {
549			ptr = kbuf->data + kbuf->size;
550			kbuf->lost_events = read_long(kbuf, ptr);
551		} else
552			kbuf->lost_events = -1;
553	} else
554		kbuf->lost_events = 0;
555
556	kbuf->index = 0;
557	kbuf->next = 0;
558
559	next_event(kbuf);
560
561	return 0;
562}
563
564/**
565 * kbuffer_read_event - read the next event in the kbuffer subbuffer
566 * @kbuf:	The kbuffer to read from
567 * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
568 *
569 * Returns a pointer to the data part of the current event.
570 * NULL if no event is left on the subbuffer.
571 */
572void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
573{
574	if (!kbuf || !kbuf->subbuffer)
575		return NULL;
576
577	if (kbuf->curr >= kbuf->size)
578		return NULL;
579
580	if (ts)
581		*ts = kbuf->timestamp;
582	return kbuf->data + kbuf->index;
583}
584
585/**
586 * kbuffer_timestamp - Return the timestamp of the current event
587 * @kbuf:	The kbuffer to read from
588 *
589 * Returns the timestamp of the current (next) event.
590 */
591unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
592{
593	return kbuf->timestamp;
594}
595
596/**
597 * kbuffer_read_at_offset - read the event that is at offset
598 * @kbuf:	The kbuffer to read from
599 * @offset:	The offset into the subbuffer
600 * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
601 *
602 * The @offset must be an index from the @kbuf subbuffer beginning.
603 * If @offset is bigger than the stored subbuffer, NULL will be returned.
604 *
605 * Returns the data of the record that is at @offset. Note, @offset does
606 * not need to be the start of the record, the offset just needs to be
607 * in the record (or beginning of it).
608 *
609 * Note, the kbuf timestamp and pointers are updated to the
610 * returned record. That is, kbuffer_read_event() will return the same
611 * data and timestamp, and kbuffer_next_event() will increment from
612 * this record.
613 */
614void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
615			     unsigned long long *ts)
616{
617	void *data;
618
619	if (offset < kbuf->start)
620		offset = 0;
621	else
622		offset -= kbuf->start;
623
624	/* Reset the buffer */
625	kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
 
626
627	while (kbuf->curr < offset) {
628		data = kbuffer_next_event(kbuf, ts);
629		if (!data)
630			break;
631	}
632
633	return data;
634}
635
636/**
637 * kbuffer_subbuffer_size - the size of the loaded subbuffer
638 * @kbuf:	The kbuffer to read from
639 *
640 * Returns the size of the subbuffer. Note, this size is
641 * where the last event resides. The stored subbuffer may actually be
642 * bigger due to padding and such.
643 */
644int kbuffer_subbuffer_size(struct kbuffer *kbuf)
645{
646	return kbuf->size;
647}
648
649/**
650 * kbuffer_curr_index - Return the index of the record
651 * @kbuf:	The kbuffer to read from
652 *
653 * Returns the index from the start of the data part of
654 * the subbuffer to the current location. Note this is not
655 * from the start of the subbuffer. An index of zero will
656 * point to the first record. Use kbuffer_curr_offset() for
657 * the actually offset (that can be used by kbuffer_read_at_offset())
658 */
659int kbuffer_curr_index(struct kbuffer *kbuf)
660{
661	return kbuf->curr;
662}
663
664/**
665 * kbuffer_curr_offset - Return the offset of the record
666 * @kbuf:	The kbuffer to read from
667 *
668 * Returns the offset from the start of the subbuffer to the
669 * current location.
670 */
671int kbuffer_curr_offset(struct kbuffer *kbuf)
672{
673	return kbuf->curr + kbuf->start;
674}
675
676/**
677 * kbuffer_event_size - return the size of the event data
678 * @kbuf:	The kbuffer to read
679 *
680 * Returns the size of the event data (the payload not counting
681 * the meta data of the record) of the current event.
682 */
683int kbuffer_event_size(struct kbuffer *kbuf)
684{
685	return kbuf->next - kbuf->index;
686}
687
688/**
689 * kbuffer_curr_size - return the size of the entire record
690 * @kbuf:	The kbuffer to read
691 *
692 * Returns the size of the entire record (meta data and payload)
693 * of the current event.
694 */
695int kbuffer_curr_size(struct kbuffer *kbuf)
696{
697	return kbuf->next - kbuf->curr;
698}
699
700/**
701 * kbuffer_missed_events - return the # of missed events from last event.
702 * @kbuf: 	The kbuffer to read from
703 *
704 * Returns the # of missed events (if recorded) before the current
705 * event. Note, only events on the beginning of a subbuffer can
706 * have missed events, all other events within the buffer will be
707 * zero.
708 */
709int kbuffer_missed_events(struct kbuffer *kbuf)
710{
711	/* Only the first event can have missed events */
712	if (kbuf->curr)
713		return 0;
714
715	return kbuf->lost_events;
716}
717
718/**
719 * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
720 * @kbuf:	The kbuffer to set
721 *
722 * This is obsolete (or should be). The first kernels to use the
723 * new ring buffer had a slightly different ring buffer format
724 * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
725 * but should not be counted on in the future.
726 */
727void kbuffer_set_old_format(struct kbuffer *kbuf)
728{
729	kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
730
731	kbuf->next_event = __old_next_event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732}
v5.4
  1// SPDX-License-Identifier: LGPL-2.1
  2/*
  3 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include <stdio.h>
  7#include <stdlib.h>
  8#include <string.h>
  9
 10#include "kbuffer.h"
 11
 12#define MISSING_EVENTS (1UL << 31)
 13#define MISSING_STORED (1UL << 30)
 14
 15#define COMMIT_MASK ((1 << 27) - 1)
 16
 17enum {
 18	KBUFFER_FL_HOST_BIG_ENDIAN	= (1<<0),
 19	KBUFFER_FL_BIG_ENDIAN		= (1<<1),
 20	KBUFFER_FL_LONG_8		= (1<<2),
 21	KBUFFER_FL_OLD_FORMAT		= (1<<3),
 22};
 23
 24#define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
 25
 26/** kbuffer
 27 * @timestamp		- timestamp of current event
 28 * @lost_events		- # of lost events between this subbuffer and previous
 29 * @flags		- special flags of the kbuffer
 30 * @subbuffer		- pointer to the sub-buffer page
 31 * @data		- pointer to the start of data on the sub-buffer page
 32 * @index		- index from @data to the @curr event data
 33 * @curr		- offset from @data to the start of current event
 34 *			   (includes metadata)
 35 * @next		- offset from @data to the start of next event
 36 * @size		- The size of data on @data
 37 * @start		- The offset from @subbuffer where @data lives
 38 *
 39 * @read_4		- Function to read 4 raw bytes (may swap)
 40 * @read_8		- Function to read 8 raw bytes (may swap)
 41 * @read_long		- Function to read a long word (4 or 8 bytes with needed swap)
 42 */
 43struct kbuffer {
 44	unsigned long long 	timestamp;
 45	long long		lost_events;
 46	unsigned long		flags;
 47	void			*subbuffer;
 48	void			*data;
 49	unsigned int		index;
 50	unsigned int		curr;
 51	unsigned int		next;
 52	unsigned int		size;
 53	unsigned int		start;
 54
 55	unsigned int (*read_4)(void *ptr);
 56	unsigned long long (*read_8)(void *ptr);
 57	unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
 58	int (*next_event)(struct kbuffer *kbuf);
 59};
 60
 61static void *zmalloc(size_t size)
 62{
 63	return calloc(1, size);
 64}
 65
 66static int host_is_bigendian(void)
 67{
 68	unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
 69	unsigned int *ptr;
 70
 71	ptr = (unsigned int *)str;
 72	return *ptr == 0x01020304;
 73}
 74
 75static int do_swap(struct kbuffer *kbuf)
 76{
 77	return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
 78		ENDIAN_MASK;
 79}
 80
 81static unsigned long long __read_8(void *ptr)
 82{
 83	unsigned long long data = *(unsigned long long *)ptr;
 84
 85	return data;
 86}
 87
 88static unsigned long long __read_8_sw(void *ptr)
 89{
 90	unsigned long long data = *(unsigned long long *)ptr;
 91	unsigned long long swap;
 92
 93	swap = ((data & 0xffULL) << 56) |
 94		((data & (0xffULL << 8)) << 40) |
 95		((data & (0xffULL << 16)) << 24) |
 96		((data & (0xffULL << 24)) << 8) |
 97		((data & (0xffULL << 32)) >> 8) |
 98		((data & (0xffULL << 40)) >> 24) |
 99		((data & (0xffULL << 48)) >> 40) |
100		((data & (0xffULL << 56)) >> 56);
101
102	return swap;
103}
104
105static unsigned int __read_4(void *ptr)
106{
107	unsigned int data = *(unsigned int *)ptr;
108
109	return data;
110}
111
112static unsigned int __read_4_sw(void *ptr)
113{
114	unsigned int data = *(unsigned int *)ptr;
115	unsigned int swap;
116
117	swap = ((data & 0xffULL) << 24) |
118		((data & (0xffULL << 8)) << 8) |
119		((data & (0xffULL << 16)) >> 8) |
120		((data & (0xffULL << 24)) >> 24);
121
122	return swap;
123}
124
125static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
126{
127	return kbuf->read_8(ptr);
128}
129
130static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
131{
132	return kbuf->read_4(ptr);
133}
134
135static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
136{
137	return kbuf->read_8(ptr);
138}
139
140static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
141{
142	return kbuf->read_4(ptr);
143}
144
145static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
146{
147	return kbuf->read_long(kbuf, ptr);
148}
149
150static int calc_index(struct kbuffer *kbuf, void *ptr)
151{
152	return (unsigned long)ptr - (unsigned long)kbuf->data;
153}
154
155static int __next_event(struct kbuffer *kbuf);
156
157/**
158 * kbuffer_alloc - allocat a new kbuffer
159 * @size;	enum to denote size of word
160 * @endian:	enum to denote endianness
161 *
162 * Allocates and returns a new kbuffer.
163 */
164struct kbuffer *
165kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
166{
167	struct kbuffer *kbuf;
168	int flags = 0;
169
170	switch (size) {
171	case KBUFFER_LSIZE_4:
172		break;
173	case KBUFFER_LSIZE_8:
174		flags |= KBUFFER_FL_LONG_8;
175		break;
176	default:
177		return NULL;
178	}
179
180	switch (endian) {
181	case KBUFFER_ENDIAN_LITTLE:
182		break;
183	case KBUFFER_ENDIAN_BIG:
184		flags |= KBUFFER_FL_BIG_ENDIAN;
185		break;
186	default:
187		return NULL;
188	}
189
190	kbuf = zmalloc(sizeof(*kbuf));
191	if (!kbuf)
192		return NULL;
193
194	kbuf->flags = flags;
195
196	if (host_is_bigendian())
197		kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
198
199	if (do_swap(kbuf)) {
200		kbuf->read_8 = __read_8_sw;
201		kbuf->read_4 = __read_4_sw;
202	} else {
203		kbuf->read_8 = __read_8;
204		kbuf->read_4 = __read_4;
205	}
206
207	if (kbuf->flags & KBUFFER_FL_LONG_8)
208		kbuf->read_long = __read_long_8;
209	else
210		kbuf->read_long = __read_long_4;
211
212	/* May be changed by kbuffer_set_old_format() */
213	kbuf->next_event = __next_event;
214
215	return kbuf;
216}
217
218/** kbuffer_free - free an allocated kbuffer
219 * @kbuf:	The kbuffer to free
220 *
221 * Can take NULL as a parameter.
222 */
223void kbuffer_free(struct kbuffer *kbuf)
224{
225	free(kbuf);
226}
227
228static unsigned int type4host(struct kbuffer *kbuf,
229			      unsigned int type_len_ts)
230{
231	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
232		return (type_len_ts >> 29) & 3;
233	else
234		return type_len_ts & 3;
235}
236
237static unsigned int len4host(struct kbuffer *kbuf,
238			     unsigned int type_len_ts)
239{
240	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
241		return (type_len_ts >> 27) & 7;
242	else
243		return (type_len_ts >> 2) & 7;
244}
245
246static unsigned int type_len4host(struct kbuffer *kbuf,
247				  unsigned int type_len_ts)
248{
249	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
250		return (type_len_ts >> 27) & ((1 << 5) - 1);
251	else
252		return type_len_ts & ((1 << 5) - 1);
253}
254
255static unsigned int ts4host(struct kbuffer *kbuf,
256			    unsigned int type_len_ts)
257{
258	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
259		return type_len_ts & ((1 << 27) - 1);
260	else
261		return type_len_ts >> 5;
262}
263
264/*
265 * Linux 2.6.30 and earlier (not much ealier) had a different
266 * ring buffer format. It should be obsolete, but we handle it anyway.
267 */
268enum old_ring_buffer_type {
269	OLD_RINGBUF_TYPE_PADDING,
270	OLD_RINGBUF_TYPE_TIME_EXTEND,
271	OLD_RINGBUF_TYPE_TIME_STAMP,
272	OLD_RINGBUF_TYPE_DATA,
273};
274
275static unsigned int old_update_pointers(struct kbuffer *kbuf)
276{
277	unsigned long long extend;
278	unsigned int type_len_ts;
279	unsigned int type;
280	unsigned int len;
281	unsigned int delta;
282	unsigned int length;
283	void *ptr = kbuf->data + kbuf->curr;
284
285	type_len_ts = read_4(kbuf, ptr);
286	ptr += 4;
287
288	type = type4host(kbuf, type_len_ts);
289	len = len4host(kbuf, type_len_ts);
290	delta = ts4host(kbuf, type_len_ts);
291
292	switch (type) {
293	case OLD_RINGBUF_TYPE_PADDING:
294		kbuf->next = kbuf->size;
295		return 0;
296
297	case OLD_RINGBUF_TYPE_TIME_EXTEND:
298		extend = read_4(kbuf, ptr);
299		extend <<= TS_SHIFT;
300		extend += delta;
301		delta = extend;
302		ptr += 4;
303		length = 0;
304		break;
305
306	case OLD_RINGBUF_TYPE_TIME_STAMP:
307		/* should never happen! */
308		kbuf->curr = kbuf->size;
309		kbuf->next = kbuf->size;
310		kbuf->index = kbuf->size;
311		return -1;
312	default:
313		if (len)
314			length = len * 4;
315		else {
316			length = read_4(kbuf, ptr);
317			length -= 4;
318			ptr += 4;
319		}
320		break;
321	}
322
323	kbuf->timestamp += delta;
324	kbuf->index = calc_index(kbuf, ptr);
325	kbuf->next = kbuf->index + length;
326
327	return type;
328}
329
330static int __old_next_event(struct kbuffer *kbuf)
331{
332	int type;
333
334	do {
335		kbuf->curr = kbuf->next;
336		if (kbuf->next >= kbuf->size)
337			return -1;
338		type = old_update_pointers(kbuf);
339	} while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
340
341	return 0;
342}
343
344static unsigned int
345translate_data(struct kbuffer *kbuf, void *data, void **rptr,
346	       unsigned long long *delta, int *length)
347{
348	unsigned long long extend;
349	unsigned int type_len_ts;
350	unsigned int type_len;
351
352	type_len_ts = read_4(kbuf, data);
353	data += 4;
354
355	type_len = type_len4host(kbuf, type_len_ts);
356	*delta = ts4host(kbuf, type_len_ts);
357
358	switch (type_len) {
359	case KBUFFER_TYPE_PADDING:
360		*length = read_4(kbuf, data);
 
361		break;
362
363	case KBUFFER_TYPE_TIME_EXTEND:
364		extend = read_4(kbuf, data);
365		data += 4;
366		extend <<= TS_SHIFT;
367		extend += *delta;
368		*delta = extend;
369		*length = 0;
370		break;
371
372	case KBUFFER_TYPE_TIME_STAMP:
373		data += 12;
374		*length = 0;
375		break;
376	case 0:
377		*length = read_4(kbuf, data) - 4;
378		*length = (*length + 3) & ~3;
379		data += 4;
380		break;
381	default:
382		*length = type_len * 4;
383		break;
384	}
385
386	*rptr = data;
387
388	return type_len;
389}
390
391static unsigned int update_pointers(struct kbuffer *kbuf)
392{
393	unsigned long long delta;
394	unsigned int type_len;
395	int length;
396	void *ptr = kbuf->data + kbuf->curr;
397
398	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
399
400	kbuf->timestamp += delta;
401	kbuf->index = calc_index(kbuf, ptr);
402	kbuf->next = kbuf->index + length;
403
404	return type_len;
405}
406
407/**
408 * kbuffer_translate_data - read raw data to get a record
409 * @swap:	Set to 1 if bytes in words need to be swapped when read
410 * @data:	The raw data to read
411 * @size:	Address to store the size of the event data.
412 *
413 * Returns a pointer to the event data. To determine the entire
414 * record size (record metadata + data) just add the difference between
415 * @data and the returned value to @size.
416 */
417void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
418{
419	unsigned long long delta;
420	struct kbuffer kbuf;
421	int type_len;
422	int length;
423	void *ptr;
424
425	if (swap) {
426		kbuf.read_8 = __read_8_sw;
427		kbuf.read_4 = __read_4_sw;
428		kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
429	} else {
430		kbuf.read_8 = __read_8;
431		kbuf.read_4 = __read_4;
432		kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
433	}
434
435	type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
436	switch (type_len) {
437	case KBUFFER_TYPE_PADDING:
438	case KBUFFER_TYPE_TIME_EXTEND:
439	case KBUFFER_TYPE_TIME_STAMP:
440		return NULL;
441	};
442
443	*size = length;
444
445	return ptr;
446}
447
448static int __next_event(struct kbuffer *kbuf)
449{
450	int type;
451
452	do {
453		kbuf->curr = kbuf->next;
454		if (kbuf->next >= kbuf->size)
455			return -1;
456		type = update_pointers(kbuf);
457	} while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_PADDING);
458
459	return 0;
460}
461
462static int next_event(struct kbuffer *kbuf)
463{
464	return kbuf->next_event(kbuf);
465}
466
467/**
468 * kbuffer_next_event - increment the current pointer
469 * @kbuf:	The kbuffer to read
470 * @ts:		Address to store the next record's timestamp (may be NULL to ignore)
471 *
472 * Increments the pointers into the subbuffer of the kbuffer to point to the
473 * next event so that the next kbuffer_read_event() will return a
474 * new event.
475 *
476 * Returns the data of the next event if a new event exists on the subbuffer,
477 * NULL otherwise.
478 */
479void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
480{
481	int ret;
482
483	if (!kbuf || !kbuf->subbuffer)
484		return NULL;
485
486	ret = next_event(kbuf);
487	if (ret < 0)
488		return NULL;
489
490	if (ts)
491		*ts = kbuf->timestamp;
492
493	return kbuf->data + kbuf->index;
494}
495
496/**
497 * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
498 * @kbuf:	The kbuffer to load
499 * @subbuffer:	The subbuffer to load into @kbuf.
500 *
501 * Load a new subbuffer (page) into @kbuf. This will reset all
502 * the pointers and update the @kbuf timestamp. The next read will
503 * return the first event on @subbuffer.
504 *
505 * Returns 0 on succes, -1 otherwise.
506 */
507int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
508{
509	unsigned long long flags;
510	void *ptr = subbuffer;
511
512	if (!kbuf || !subbuffer)
513		return -1;
514
515	kbuf->subbuffer = subbuffer;
516
517	kbuf->timestamp = read_8(kbuf, ptr);
518	ptr += 8;
519
520	kbuf->curr = 0;
521
522	if (kbuf->flags & KBUFFER_FL_LONG_8)
523		kbuf->start = 16;
524	else
525		kbuf->start = 12;
526
527	kbuf->data = subbuffer + kbuf->start;
528
529	flags = read_long(kbuf, ptr);
530	kbuf->size = (unsigned int)flags & COMMIT_MASK;
531
532	if (flags & MISSING_EVENTS) {
533		if (flags & MISSING_STORED) {
534			ptr = kbuf->data + kbuf->size;
535			kbuf->lost_events = read_long(kbuf, ptr);
536		} else
537			kbuf->lost_events = -1;
538	} else
539		kbuf->lost_events = 0;
540
541	kbuf->index = 0;
542	kbuf->next = 0;
543
544	next_event(kbuf);
545
546	return 0;
547}
548
549/**
550 * kbuffer_read_event - read the next event in the kbuffer subbuffer
551 * @kbuf:	The kbuffer to read from
552 * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
553 *
554 * Returns a pointer to the data part of the current event.
555 * NULL if no event is left on the subbuffer.
556 */
557void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
558{
559	if (!kbuf || !kbuf->subbuffer)
560		return NULL;
561
562	if (kbuf->curr >= kbuf->size)
563		return NULL;
564
565	if (ts)
566		*ts = kbuf->timestamp;
567	return kbuf->data + kbuf->index;
568}
569
570/**
571 * kbuffer_timestamp - Return the timestamp of the current event
572 * @kbuf:	The kbuffer to read from
573 *
574 * Returns the timestamp of the current (next) event.
575 */
576unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
577{
578	return kbuf->timestamp;
579}
580
581/**
582 * kbuffer_read_at_offset - read the event that is at offset
583 * @kbuf:	The kbuffer to read from
584 * @offset:	The offset into the subbuffer
585 * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
586 *
587 * The @offset must be an index from the @kbuf subbuffer beginning.
588 * If @offset is bigger than the stored subbuffer, NULL will be returned.
589 *
590 * Returns the data of the record that is at @offset. Note, @offset does
591 * not need to be the start of the record, the offset just needs to be
592 * in the record (or beginning of it).
593 *
594 * Note, the kbuf timestamp and pointers are updated to the
595 * returned record. That is, kbuffer_read_event() will return the same
596 * data and timestamp, and kbuffer_next_event() will increment from
597 * this record.
598 */
599void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
600			     unsigned long long *ts)
601{
602	void *data;
603
604	if (offset < kbuf->start)
605		offset = 0;
606	else
607		offset -= kbuf->start;
608
609	/* Reset the buffer */
610	kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
611	data = kbuffer_read_event(kbuf, ts);
612
613	while (kbuf->curr < offset) {
614		data = kbuffer_next_event(kbuf, ts);
615		if (!data)
616			break;
617	}
618
619	return data;
620}
621
622/**
623 * kbuffer_subbuffer_size - the size of the loaded subbuffer
624 * @kbuf:	The kbuffer to read from
625 *
626 * Returns the size of the subbuffer. Note, this size is
627 * where the last event resides. The stored subbuffer may actually be
628 * bigger due to padding and such.
629 */
630int kbuffer_subbuffer_size(struct kbuffer *kbuf)
631{
632	return kbuf->size;
633}
634
635/**
636 * kbuffer_curr_index - Return the index of the record
637 * @kbuf:	The kbuffer to read from
638 *
639 * Returns the index from the start of the data part of
640 * the subbuffer to the current location. Note this is not
641 * from the start of the subbuffer. An index of zero will
642 * point to the first record. Use kbuffer_curr_offset() for
643 * the actually offset (that can be used by kbuffer_read_at_offset())
644 */
645int kbuffer_curr_index(struct kbuffer *kbuf)
646{
647	return kbuf->curr;
648}
649
650/**
651 * kbuffer_curr_offset - Return the offset of the record
652 * @kbuf:	The kbuffer to read from
653 *
654 * Returns the offset from the start of the subbuffer to the
655 * current location.
656 */
657int kbuffer_curr_offset(struct kbuffer *kbuf)
658{
659	return kbuf->curr + kbuf->start;
660}
661
662/**
663 * kbuffer_event_size - return the size of the event data
664 * @kbuf:	The kbuffer to read
665 *
666 * Returns the size of the event data (the payload not counting
667 * the meta data of the record) of the current event.
668 */
669int kbuffer_event_size(struct kbuffer *kbuf)
670{
671	return kbuf->next - kbuf->index;
672}
673
674/**
675 * kbuffer_curr_size - return the size of the entire record
676 * @kbuf:	The kbuffer to read
677 *
678 * Returns the size of the entire record (meta data and payload)
679 * of the current event.
680 */
681int kbuffer_curr_size(struct kbuffer *kbuf)
682{
683	return kbuf->next - kbuf->curr;
684}
685
686/**
687 * kbuffer_missed_events - return the # of missed events from last event.
688 * @kbuf: 	The kbuffer to read from
689 *
690 * Returns the # of missed events (if recorded) before the current
691 * event. Note, only events on the beginning of a subbuffer can
692 * have missed events, all other events within the buffer will be
693 * zero.
694 */
695int kbuffer_missed_events(struct kbuffer *kbuf)
696{
697	/* Only the first event can have missed events */
698	if (kbuf->curr)
699		return 0;
700
701	return kbuf->lost_events;
702}
703
704/**
705 * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
706 * @kbuf:	The kbuffer to set
707 *
708 * This is obsolete (or should be). The first kernels to use the
709 * new ring buffer had a slightly different ring buffer format
710 * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
711 * but should not be counted on in the future.
712 */
713void kbuffer_set_old_format(struct kbuffer *kbuf)
714{
715	kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
716
717	kbuf->next_event = __old_next_event;
718}
719
720/**
721 * kbuffer_start_of_data - return offset of where data starts on subbuffer
722 * @kbuf:	The kbuffer
723 *
724 * Returns the location on the subbuffer where the data starts.
725 */
726int kbuffer_start_of_data(struct kbuffer *kbuf)
727{
728	return kbuf->start;
729}
730
731/**
732 * kbuffer_raw_get - get raw buffer info
733 * @kbuf:	The kbuffer
734 * @subbuf:	Start of mapped subbuffer
735 * @info:	Info descriptor to fill in
736 *
737 * For debugging. This can return internals of the ring buffer.
738 * Expects to have info->next set to what it will read.
739 * The type, length and timestamp delta will be filled in, and
740 * @info->next will be updated to the next element.
741 * The @subbuf is used to know if the info is passed the end of
742 * data and NULL will be returned if it is.
743 */
744struct kbuffer_raw_info *
745kbuffer_raw_get(struct kbuffer *kbuf, void *subbuf, struct kbuffer_raw_info *info)
746{
747	unsigned long long flags;
748	unsigned long long delta;
749	unsigned int type_len;
750	unsigned int size;
751	int start;
752	int length;
753	void *ptr = info->next;
754
755	if (!kbuf || !subbuf)
756		return NULL;
757
758	if (kbuf->flags & KBUFFER_FL_LONG_8)
759		start = 16;
760	else
761		start = 12;
762
763	flags = read_long(kbuf, subbuf + 8);
764	size = (unsigned int)flags & COMMIT_MASK;
765
766	if (ptr < subbuf || ptr >= subbuf + start + size)
767		return NULL;
768
769	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
770
771	info->next = ptr + length;
772
773	info->type = type_len;
774	info->delta = delta;
775	info->length = length;
776
777	return info;
778}