Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
  4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
  5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
  6 */
  7
  8#define pr_fmt(fmt)	"LOGIC PIO: " fmt
  9
 10#include <linux/of.h>
 11#include <linux/io.h>
 12#include <linux/logic_pio.h>
 13#include <linux/mm.h>
 14#include <linux/rculist.h>
 15#include <linux/sizes.h>
 16#include <linux/slab.h>
 17
 18/* The unique hardware address list */
 19static LIST_HEAD(io_range_list);
 20static DEFINE_MUTEX(io_range_mutex);
 21
 22/* Consider a kernel general helper for this */
 23#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
 24
 25/**
 26 * logic_pio_register_range - register logical PIO range for a host
 27 * @new_range: pointer to the IO range to be registered.
 28 *
 29 * Returns 0 on success, the error code in case of failure.
 30 *
 31 * Register a new IO range node in the IO range list.
 32 */
 33int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
 34{
 35	struct logic_pio_hwaddr *range;
 36	resource_size_t start;
 37	resource_size_t end;
 38	resource_size_t mmio_end = 0;
 39	resource_size_t iio_sz = MMIO_UPPER_LIMIT;
 40	int ret = 0;
 41
 42	if (!new_range || !new_range->fwnode || !new_range->size)
 43		return -EINVAL;
 44
 45	start = new_range->hw_start;
 46	end = new_range->hw_start + new_range->size;
 47
 48	mutex_lock(&io_range_mutex);
 49	list_for_each_entry(range, &io_range_list, list) {
 50		if (range->fwnode == new_range->fwnode) {
 51			/* range already there */
 52			goto end_register;
 53		}
 54		if (range->flags == LOGIC_PIO_CPU_MMIO &&
 55		    new_range->flags == LOGIC_PIO_CPU_MMIO) {
 56			/* for MMIO ranges we need to check for overlap */
 57			if (start >= range->hw_start + range->size ||
 58			    end < range->hw_start) {
 59				mmio_end = range->io_start + range->size;
 60			} else {
 61				ret = -EFAULT;
 62				goto end_register;
 63			}
 64		} else if (range->flags == LOGIC_PIO_INDIRECT &&
 65			   new_range->flags == LOGIC_PIO_INDIRECT) {
 66			iio_sz += range->size;
 67		}
 68	}
 69
 70	/* range not registered yet, check for available space */
 71	if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
 72		if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) {
 73			/* if it's too big check if 64K space can be reserved */
 74			if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
 75				ret = -E2BIG;
 76				goto end_register;
 77			}
 78			new_range->size = SZ_64K;
 79			pr_warn("Requested IO range too big, new size set to 64K\n");
 80		}
 81		new_range->io_start = mmio_end;
 82	} else if (new_range->flags == LOGIC_PIO_INDIRECT) {
 83		if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
 84			ret = -E2BIG;
 85			goto end_register;
 86		}
 87		new_range->io_start = iio_sz;
 88	} else {
 89		/* invalid flag */
 90		ret = -EINVAL;
 91		goto end_register;
 92	}
 93
 94	list_add_tail_rcu(&new_range->list, &io_range_list);
 95
 96end_register:
 97	mutex_unlock(&io_range_mutex);
 98	return ret;
 99}
100
101/**
102 * logic_pio_unregister_range - unregister a logical PIO range for a host
103 * @range: pointer to the IO range which has been already registered.
104 *
105 * Unregister a previously-registered IO range node.
106 */
107void logic_pio_unregister_range(struct logic_pio_hwaddr *range)
108{
109	mutex_lock(&io_range_mutex);
110	list_del_rcu(&range->list);
111	mutex_unlock(&io_range_mutex);
112	synchronize_rcu();
113}
114
115/**
116 * find_io_range_by_fwnode - find logical PIO range for given FW node
117 * @fwnode: FW node handle associated with logical PIO range
118 *
119 * Returns pointer to node on success, NULL otherwise.
120 *
121 * Traverse the io_range_list to find the registered node for @fwnode.
122 */
123struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
124{
125	struct logic_pio_hwaddr *range, *found_range = NULL;
126
127	rcu_read_lock();
128	list_for_each_entry_rcu(range, &io_range_list, list) {
129		if (range->fwnode == fwnode) {
130			found_range = range;
131			break;
132		}
133	}
134	rcu_read_unlock();
135
136	return found_range;
137}
138
139/* Return a registered range given an input PIO token */
140static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
141{
142	struct logic_pio_hwaddr *range, *found_range = NULL;
143
144	rcu_read_lock();
145	list_for_each_entry_rcu(range, &io_range_list, list) {
146		if (in_range(pio, range->io_start, range->size)) {
147			found_range = range;
148			break;
149		}
150	}
151	rcu_read_unlock();
152
153	if (!found_range)
154		pr_err("PIO entry token 0x%lx invalid\n", pio);
155
156	return found_range;
157}
158
159/**
160 * logic_pio_to_hwaddr - translate logical PIO to HW address
161 * @pio: logical PIO value
162 *
163 * Returns HW address if valid, ~0 otherwise.
164 *
165 * Translate the input logical PIO to the corresponding hardware address.
166 * The input PIO should be unique in the whole logical PIO space.
167 */
168resource_size_t logic_pio_to_hwaddr(unsigned long pio)
169{
170	struct logic_pio_hwaddr *range;
171
172	range = find_io_range(pio);
173	if (range)
174		return range->hw_start + pio - range->io_start;
175
176	return (resource_size_t)~0;
177}
178
179/**
180 * logic_pio_trans_hwaddr - translate HW address to logical PIO
181 * @fwnode: FW node reference for the host
182 * @addr: Host-relative HW address
183 * @size: size to translate
184 *
185 * Returns Logical PIO value if successful, ~0UL otherwise
186 */
187unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
188				     resource_size_t addr, resource_size_t size)
189{
190	struct logic_pio_hwaddr *range;
191
192	range = find_io_range_by_fwnode(fwnode);
193	if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
194		pr_err("IO range not found or invalid\n");
195		return ~0UL;
196	}
197	if (range->size < size) {
198		pr_err("resource size %pa cannot fit in IO range size %pa\n",
199		       &size, &range->size);
200		return ~0UL;
201	}
202	return addr - range->hw_start + range->io_start;
203}
204
205unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
206{
207	struct logic_pio_hwaddr *range;
208
209	rcu_read_lock();
210	list_for_each_entry_rcu(range, &io_range_list, list) {
211		if (range->flags != LOGIC_PIO_CPU_MMIO)
212			continue;
213		if (in_range(addr, range->hw_start, range->size)) {
214			unsigned long cpuaddr;
215
216			cpuaddr = addr - range->hw_start + range->io_start;
217
218			rcu_read_unlock();
219			return cpuaddr;
220		}
221	}
222	rcu_read_unlock();
223
224	pr_err("addr %pa not registered in io_range_list\n", &addr);
225
226	return ~0UL;
227}
228
229#if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
230#define BUILD_LOGIC_IO(bw, type)					\
231type logic_in##bw(unsigned long addr)					\
232{									\
233	type ret = (type)~0;						\
234									\
235	if (addr < MMIO_UPPER_LIMIT) {					\
236		ret = read##bw(PCI_IOBASE + addr);			\
237	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
238		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
239									\
240		if (entry && entry->ops)				\
241			ret = entry->ops->in(entry->hostdata,		\
242					addr, sizeof(type));		\
243		else							\
244			WARN_ON_ONCE(1);				\
245	}								\
246	return ret;							\
247}									\
248									\
249void logic_out##bw(type value, unsigned long addr)			\
250{									\
251	if (addr < MMIO_UPPER_LIMIT) {					\
252		write##bw(value, PCI_IOBASE + addr);			\
253	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
254		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
255									\
256		if (entry && entry->ops)				\
257			entry->ops->out(entry->hostdata,		\
258					addr, value, sizeof(type));	\
259		else							\
260			WARN_ON_ONCE(1);				\
261	}								\
262}									\
263									\
264void logic_ins##bw(unsigned long addr, void *buffer,		\
265		   unsigned int count)					\
266{									\
267	if (addr < MMIO_UPPER_LIMIT) {					\
268		reads##bw(PCI_IOBASE + addr, buffer, count);		\
269	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
270		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
271									\
272		if (entry && entry->ops)				\
273			entry->ops->ins(entry->hostdata,		\
274				addr, buffer, sizeof(type), count);	\
275		else							\
276			WARN_ON_ONCE(1);				\
277	}								\
278									\
279}									\
280									\
281void logic_outs##bw(unsigned long addr, const void *buffer,		\
282		    unsigned int count)					\
283{									\
284	if (addr < MMIO_UPPER_LIMIT) {					\
285		writes##bw(PCI_IOBASE + addr, buffer, count);		\
286	} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) {	\
287		struct logic_pio_hwaddr *entry = find_io_range(addr);	\
288									\
289		if (entry && entry->ops)				\
290			entry->ops->outs(entry->hostdata,		\
291				addr, buffer, sizeof(type), count);	\
292		else							\
293			WARN_ON_ONCE(1);				\
294	}								\
295}
296
297BUILD_LOGIC_IO(b, u8)
298EXPORT_SYMBOL(logic_inb);
299EXPORT_SYMBOL(logic_insb);
300EXPORT_SYMBOL(logic_outb);
301EXPORT_SYMBOL(logic_outsb);
302
303BUILD_LOGIC_IO(w, u16)
304EXPORT_SYMBOL(logic_inw);
305EXPORT_SYMBOL(logic_insw);
306EXPORT_SYMBOL(logic_outw);
307EXPORT_SYMBOL(logic_outsw);
308
309BUILD_LOGIC_IO(l, u32)
310EXPORT_SYMBOL(logic_inl);
311EXPORT_SYMBOL(logic_insl);
312EXPORT_SYMBOL(logic_outl);
313EXPORT_SYMBOL(logic_outsl);
314
315#endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */