Linux Audio

Check our new training course

Loading...
v3.15
 
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#ifndef EFX_IO_H
 12#define EFX_IO_H
 13
 14#include <linux/io.h>
 15#include <linux/spinlock.h>
 16
 17/**************************************************************************
 18 *
 19 * NIC register I/O
 20 *
 21 **************************************************************************
 22 *
 23 * Notes on locking strategy for the Falcon architecture:
 24 *
 25 * Many CSRs are very wide and cannot be read or written atomically.
 26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 27 * up to 128 bits.  Whenever the host writes part of such a register,
 28 * the BIU collects the written value and does not write to the
 29 * underlying register until all 4 dwords have been written.  A
 30 * similar buffering scheme applies to host access to the NIC's 64-bit
 31 * SRAM.
 32 *
 33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 34 * since interleaved access can result in lost writes.  We use
 35 * efx_nic::biu_lock for this.
 36 *
 37 * We also serialise reads from 128-bit CSRs and SRAM with the same
 38 * spinlock.  This may not be necessary, but it doesn't really matter
 39 * as there are no such reads on the fast path.
 40 *
 41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 42 * 128-bit but are special-cased in the BIU to avoid the need for
 43 * locking in the host:
 44 *
 45 * - They are write-only.
 46 * - The semantics of writing to these registers are such that
 47 *   replacing the low 96 bits with zero does not affect functionality.
 48 * - If the host writes to the last dword address of such a register
 49 *   (i.e. the high 32 bits) the underlying register will always be
 50 *   written.  If the collector and the current write together do not
 51 *   provide values for all 128 bits of the register, the low 96 bits
 52 *   will be written as zero.
 53 * - If the host writes to the address of any other part of such a
 54 *   register while the collector already holds values for some other
 55 *   register, the write is discarded and the collector maintains its
 56 *   current state.
 57 *
 58 * The EF10 architecture exposes very few registers to the host and
 59 * most of them are only 32 bits wide.  The only exceptions are the MC
 60 * doorbell register pair, which has its own latching, and
 61 * TX_DESC_UPD, which works in a similar way to the Falcon
 62 * architecture.
 63 */
 64
 65#if BITS_PER_LONG == 64
 66#define EFX_USE_QWORD_IO 1
 67#endif
 68
 
 
 
 
 
 
 69/* PIO is a win only if write-combining is possible */
 70#ifdef ARCH_HAS_IOREMAP_WC
 71#define EFX_USE_PIO 1
 72#endif
 
 73
 74#ifdef EFX_USE_QWORD_IO
 75static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 76				  unsigned int reg)
 77{
 78	__raw_writeq((__force u64)value, efx->membase + reg);
 79}
 80static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 81{
 82	return (__force __le64)__raw_readq(efx->membase + reg);
 83}
 84#endif
 85
 86static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 87				  unsigned int reg)
 88{
 89	__raw_writel((__force u32)value, efx->membase + reg);
 90}
 91static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 92{
 93	return (__force __le32)__raw_readl(efx->membase + reg);
 94}
 95
 96/* Write a normal 128-bit CSR, locking as appropriate. */
 97static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
 98			      unsigned int reg)
 99{
100	unsigned long flags __attribute__ ((unused));
101
102	netif_vdbg(efx, hw, efx->net_dev,
103		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
104		   EFX_OWORD_VAL(*value));
105
106	spin_lock_irqsave(&efx->biu_lock, flags);
107#ifdef EFX_USE_QWORD_IO
108	_efx_writeq(efx, value->u64[0], reg + 0);
109	_efx_writeq(efx, value->u64[1], reg + 8);
110#else
111	_efx_writed(efx, value->u32[0], reg + 0);
112	_efx_writed(efx, value->u32[1], reg + 4);
113	_efx_writed(efx, value->u32[2], reg + 8);
114	_efx_writed(efx, value->u32[3], reg + 12);
115#endif
116	mmiowb();
117	spin_unlock_irqrestore(&efx->biu_lock, flags);
118}
119
120/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
121static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
122				   const efx_qword_t *value, unsigned int index)
123{
124	unsigned int addr = index * sizeof(*value);
125	unsigned long flags __attribute__ ((unused));
126
127	netif_vdbg(efx, hw, efx->net_dev,
128		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
129		   addr, EFX_QWORD_VAL(*value));
130
131	spin_lock_irqsave(&efx->biu_lock, flags);
132#ifdef EFX_USE_QWORD_IO
133	__raw_writeq((__force u64)value->u64[0], membase + addr);
134#else
135	__raw_writel((__force u32)value->u32[0], membase + addr);
136	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
137#endif
138	mmiowb();
139	spin_unlock_irqrestore(&efx->biu_lock, flags);
140}
141
142/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
143static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
144			      unsigned int reg)
145{
146	netif_vdbg(efx, hw, efx->net_dev,
147		   "writing register %x with "EFX_DWORD_FMT"\n",
148		   reg, EFX_DWORD_VAL(*value));
149
150	/* No lock required */
151	_efx_writed(efx, value->u32[0], reg);
152}
153
154/* Read a 128-bit CSR, locking as appropriate. */
155static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
156			     unsigned int reg)
157{
158	unsigned long flags __attribute__ ((unused));
159
160	spin_lock_irqsave(&efx->biu_lock, flags);
161	value->u32[0] = _efx_readd(efx, reg + 0);
162	value->u32[1] = _efx_readd(efx, reg + 4);
163	value->u32[2] = _efx_readd(efx, reg + 8);
164	value->u32[3] = _efx_readd(efx, reg + 12);
165	spin_unlock_irqrestore(&efx->biu_lock, flags);
166
167	netif_vdbg(efx, hw, efx->net_dev,
168		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
169		   EFX_OWORD_VAL(*value));
170}
171
172/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
173static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
174				  efx_qword_t *value, unsigned int index)
175{
176	unsigned int addr = index * sizeof(*value);
177	unsigned long flags __attribute__ ((unused));
178
179	spin_lock_irqsave(&efx->biu_lock, flags);
180#ifdef EFX_USE_QWORD_IO
181	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
182#else
183	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
184	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
185#endif
186	spin_unlock_irqrestore(&efx->biu_lock, flags);
187
188	netif_vdbg(efx, hw, efx->net_dev,
189		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
190		   addr, EFX_QWORD_VAL(*value));
191}
192
193/* Read a 32-bit CSR or SRAM */
194static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
195				unsigned int reg)
196{
197	value->u32[0] = _efx_readd(efx, reg);
198	netif_vdbg(efx, hw, efx->net_dev,
199		   "read from register %x, got "EFX_DWORD_FMT"\n",
200		   reg, EFX_DWORD_VAL(*value));
201}
202
203/* Write a 128-bit CSR forming part of a table */
204static inline void
205efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
206		 unsigned int reg, unsigned int index)
207{
208	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
209}
210
211/* Read a 128-bit CSR forming part of a table */
212static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
213				     unsigned int reg, unsigned int index)
214{
215	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
216}
217
218/* Page size used as step between per-VI registers */
219#define EFX_VI_PAGE_SIZE 0x2000
220
221/* Calculate offset to page-mapped register */
222#define EFX_PAGED_REG(page, reg) \
223	((page) * EFX_VI_PAGE_SIZE + (reg))
 
 
 
224
225/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
226static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
227				    unsigned int reg, unsigned int page)
228{
229	reg = EFX_PAGED_REG(page, reg);
230
231	netif_vdbg(efx, hw, efx->net_dev,
232		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
233		   EFX_OWORD_VAL(*value));
234
235#ifdef EFX_USE_QWORD_IO
236	_efx_writeq(efx, value->u64[0], reg + 0);
237	_efx_writeq(efx, value->u64[1], reg + 8);
238#else
239	_efx_writed(efx, value->u32[0], reg + 0);
240	_efx_writed(efx, value->u32[1], reg + 4);
241	_efx_writed(efx, value->u32[2], reg + 8);
242	_efx_writed(efx, value->u32[3], reg + 12);
243#endif
244}
245#define efx_writeo_page(efx, value, reg, page)				\
246	_efx_writeo_page(efx, value,					\
247			 reg +						\
248			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
249			 page)
250
251/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
252 * high bits of RX_DESC_UPD or TX_DESC_UPD)
253 */
254static inline void
255_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
256		 unsigned int reg, unsigned int page)
257{
258	efx_writed(efx, value, EFX_PAGED_REG(page, reg));
259}
260#define efx_writed_page(efx, value, reg, page)				\
261	_efx_writed_page(efx, value,					\
262			 reg +						\
263			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
264					   (reg) != 0x420 &&		\
265					   (reg) != 0x830 &&		\
266					   (reg) != 0x83c &&		\
267					   (reg) != 0xa18 &&		\
268					   (reg) != 0xa1c),		\
269			 page)
270
271/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
272 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
273 * collector register.
274 */
275static inline void _efx_writed_page_locked(struct efx_nic *efx,
276					   const efx_dword_t *value,
277					   unsigned int reg,
278					   unsigned int page)
279{
280	unsigned long flags __attribute__ ((unused));
281
282	if (page == 0) {
283		spin_lock_irqsave(&efx->biu_lock, flags);
284		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
285		spin_unlock_irqrestore(&efx->biu_lock, flags);
286	} else {
287		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
288	}
289}
290#define efx_writed_page_locked(efx, value, reg, page)			\
291	_efx_writed_page_locked(efx, value,				\
292				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
293				page)
294
295#endif /* EFX_IO_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
 
 
 
 
  6 */
  7
  8#ifndef EFX_IO_H
  9#define EFX_IO_H
 10
 11#include <linux/io.h>
 12#include <linux/spinlock.h>
 13
 14/**************************************************************************
 15 *
 16 * NIC register I/O
 17 *
 18 **************************************************************************
 19 *
 20 * Notes on locking strategy for the Falcon architecture:
 21 *
 22 * Many CSRs are very wide and cannot be read or written atomically.
 23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 24 * up to 128 bits.  Whenever the host writes part of such a register,
 25 * the BIU collects the written value and does not write to the
 26 * underlying register until all 4 dwords have been written.  A
 27 * similar buffering scheme applies to host access to the NIC's 64-bit
 28 * SRAM.
 29 *
 30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 31 * since interleaved access can result in lost writes.  We use
 32 * efx_nic::biu_lock for this.
 33 *
 34 * We also serialise reads from 128-bit CSRs and SRAM with the same
 35 * spinlock.  This may not be necessary, but it doesn't really matter
 36 * as there are no such reads on the fast path.
 37 *
 38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 39 * 128-bit but are special-cased in the BIU to avoid the need for
 40 * locking in the host:
 41 *
 42 * - They are write-only.
 43 * - The semantics of writing to these registers are such that
 44 *   replacing the low 96 bits with zero does not affect functionality.
 45 * - If the host writes to the last dword address of such a register
 46 *   (i.e. the high 32 bits) the underlying register will always be
 47 *   written.  If the collector and the current write together do not
 48 *   provide values for all 128 bits of the register, the low 96 bits
 49 *   will be written as zero.
 50 * - If the host writes to the address of any other part of such a
 51 *   register while the collector already holds values for some other
 52 *   register, the write is discarded and the collector maintains its
 53 *   current state.
 54 *
 55 * The EF10 architecture exposes very few registers to the host and
 56 * most of them are only 32 bits wide.  The only exceptions are the MC
 57 * doorbell register pair, which has its own latching, and
 58 * TX_DESC_UPD, which works in a similar way to the Falcon
 59 * architecture.
 60 */
 61
 62#if BITS_PER_LONG == 64
 63#define EFX_USE_QWORD_IO 1
 64#endif
 65
 66/* Hardware issue requires that only 64-bit naturally aligned writes
 67 * are seen by hardware. Its not strictly necessary to restrict to
 68 * x86_64 arch, but done for safety since unusual write combining behaviour
 69 * can break PIO.
 70 */
 71#ifdef CONFIG_X86_64
 72/* PIO is a win only if write-combining is possible */
 73#ifdef ARCH_HAS_IOREMAP_WC
 74#define EFX_USE_PIO 1
 75#endif
 76#endif
 77
 78#ifdef EFX_USE_QWORD_IO
 79static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 80				  unsigned int reg)
 81{
 82	__raw_writeq((__force u64)value, efx->membase + reg);
 83}
 84static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 85{
 86	return (__force __le64)__raw_readq(efx->membase + reg);
 87}
 88#endif
 89
 90static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 91				  unsigned int reg)
 92{
 93	__raw_writel((__force u32)value, efx->membase + reg);
 94}
 95static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 96{
 97	return (__force __le32)__raw_readl(efx->membase + reg);
 98}
 99
100/* Write a normal 128-bit CSR, locking as appropriate. */
101static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
102			      unsigned int reg)
103{
104	unsigned long flags __attribute__ ((unused));
105
106	netif_vdbg(efx, hw, efx->net_dev,
107		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
108		   EFX_OWORD_VAL(*value));
109
110	spin_lock_irqsave(&efx->biu_lock, flags);
111#ifdef EFX_USE_QWORD_IO
112	_efx_writeq(efx, value->u64[0], reg + 0);
113	_efx_writeq(efx, value->u64[1], reg + 8);
114#else
115	_efx_writed(efx, value->u32[0], reg + 0);
116	_efx_writed(efx, value->u32[1], reg + 4);
117	_efx_writed(efx, value->u32[2], reg + 8);
118	_efx_writed(efx, value->u32[3], reg + 12);
119#endif
 
120	spin_unlock_irqrestore(&efx->biu_lock, flags);
121}
122
123/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
124static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
125				   const efx_qword_t *value, unsigned int index)
126{
127	unsigned int addr = index * sizeof(*value);
128	unsigned long flags __attribute__ ((unused));
129
130	netif_vdbg(efx, hw, efx->net_dev,
131		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
132		   addr, EFX_QWORD_VAL(*value));
133
134	spin_lock_irqsave(&efx->biu_lock, flags);
135#ifdef EFX_USE_QWORD_IO
136	__raw_writeq((__force u64)value->u64[0], membase + addr);
137#else
138	__raw_writel((__force u32)value->u32[0], membase + addr);
139	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
140#endif
 
141	spin_unlock_irqrestore(&efx->biu_lock, flags);
142}
143
144/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
145static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
146			      unsigned int reg)
147{
148	netif_vdbg(efx, hw, efx->net_dev,
149		   "writing register %x with "EFX_DWORD_FMT"\n",
150		   reg, EFX_DWORD_VAL(*value));
151
152	/* No lock required */
153	_efx_writed(efx, value->u32[0], reg);
154}
155
156/* Read a 128-bit CSR, locking as appropriate. */
157static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
158			     unsigned int reg)
159{
160	unsigned long flags __attribute__ ((unused));
161
162	spin_lock_irqsave(&efx->biu_lock, flags);
163	value->u32[0] = _efx_readd(efx, reg + 0);
164	value->u32[1] = _efx_readd(efx, reg + 4);
165	value->u32[2] = _efx_readd(efx, reg + 8);
166	value->u32[3] = _efx_readd(efx, reg + 12);
167	spin_unlock_irqrestore(&efx->biu_lock, flags);
168
169	netif_vdbg(efx, hw, efx->net_dev,
170		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
171		   EFX_OWORD_VAL(*value));
172}
173
174/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
175static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
176				  efx_qword_t *value, unsigned int index)
177{
178	unsigned int addr = index * sizeof(*value);
179	unsigned long flags __attribute__ ((unused));
180
181	spin_lock_irqsave(&efx->biu_lock, flags);
182#ifdef EFX_USE_QWORD_IO
183	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
184#else
185	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
186	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
187#endif
188	spin_unlock_irqrestore(&efx->biu_lock, flags);
189
190	netif_vdbg(efx, hw, efx->net_dev,
191		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
192		   addr, EFX_QWORD_VAL(*value));
193}
194
195/* Read a 32-bit CSR or SRAM */
196static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
197				unsigned int reg)
198{
199	value->u32[0] = _efx_readd(efx, reg);
200	netif_vdbg(efx, hw, efx->net_dev,
201		   "read from register %x, got "EFX_DWORD_FMT"\n",
202		   reg, EFX_DWORD_VAL(*value));
203}
204
205/* Write a 128-bit CSR forming part of a table */
206static inline void
207efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
208		 unsigned int reg, unsigned int index)
209{
210	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
211}
212
213/* Read a 128-bit CSR forming part of a table */
214static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
215				     unsigned int reg, unsigned int index)
216{
217	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
218}
219
220/* default VI stride (step between per-VI registers) is 8K */
221#define EFX_DEFAULT_VI_STRIDE 0x2000
222
223/* Calculate offset to page-mapped register */
224static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
225					 unsigned int reg)
226{
227	return page * efx->vi_stride + reg;
228}
229
230/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
231static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
232				    unsigned int reg, unsigned int page)
233{
234	reg = efx_paged_reg(efx, page, reg);
235
236	netif_vdbg(efx, hw, efx->net_dev,
237		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
238		   EFX_OWORD_VAL(*value));
239
240#ifdef EFX_USE_QWORD_IO
241	_efx_writeq(efx, value->u64[0], reg + 0);
242	_efx_writeq(efx, value->u64[1], reg + 8);
243#else
244	_efx_writed(efx, value->u32[0], reg + 0);
245	_efx_writed(efx, value->u32[1], reg + 4);
246	_efx_writed(efx, value->u32[2], reg + 8);
247	_efx_writed(efx, value->u32[3], reg + 12);
248#endif
249}
250#define efx_writeo_page(efx, value, reg, page)				\
251	_efx_writeo_page(efx, value,					\
252			 reg +						\
253			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
254			 page)
255
256/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
257 * high bits of RX_DESC_UPD or TX_DESC_UPD)
258 */
259static inline void
260_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
261		 unsigned int reg, unsigned int page)
262{
263	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
264}
265#define efx_writed_page(efx, value, reg, page)				\
266	_efx_writed_page(efx, value,					\
267			 reg +						\
268			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
269					   (reg) != 0x420 &&		\
270					   (reg) != 0x830 &&		\
271					   (reg) != 0x83c &&		\
272					   (reg) != 0xa18 &&		\
273					   (reg) != 0xa1c),		\
274			 page)
275
276/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
277 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
278 * collector register.
279 */
280static inline void _efx_writed_page_locked(struct efx_nic *efx,
281					   const efx_dword_t *value,
282					   unsigned int reg,
283					   unsigned int page)
284{
285	unsigned long flags __attribute__ ((unused));
286
287	if (page == 0) {
288		spin_lock_irqsave(&efx->biu_lock, flags);
289		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
290		spin_unlock_irqrestore(&efx->biu_lock, flags);
291	} else {
292		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
293	}
294}
295#define efx_writed_page_locked(efx, value, reg, page)			\
296	_efx_writed_page_locked(efx, value,				\
297				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
298				page)
299
300#endif /* EFX_IO_H */