Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * CPPC (Collaborative Processor Performance Control) driver for
  4 * interfacing with the CPUfreq layer and governors. See
  5 * cppc_acpi.c for CPPC specific methods.
  6 *
  7 * (C) Copyright 2014, 2015 Linaro Ltd.
  8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
  9 */
 10
 11#define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/delay.h>
 16#include <linux/cpu.h>
 17#include <linux/cpufreq.h>
 18#include <linux/dmi.h>
 19#include <linux/time.h>
 20#include <linux/vmalloc.h>
 21
 22#include <asm/unaligned.h>
 23
 24#include <acpi/cppc_acpi.h>
 25
 26/* Minimum struct length needed for the DMI processor entry we want */
 27#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
 28
 29/* Offest in the DMI processor structure for the max frequency */
 30#define DMI_PROCESSOR_MAX_SPEED  0x14
 31
 32/*
 33 * These structs contain information parsed from per CPU
 34 * ACPI _CPC structures.
 35 * e.g. For each CPU the highest, lowest supported
 36 * performance capabilities, desired performance level
 37 * requested etc.
 38 */
 39static struct cppc_cpudata **all_cpu_data;
 40
 41struct cppc_workaround_oem_info {
 42	char oem_id[ACPI_OEM_ID_SIZE +1];
 43	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 44	u32 oem_revision;
 45};
 46
 47static bool apply_hisi_workaround;
 48
 49static struct cppc_workaround_oem_info wa_info[] = {
 50	{
 51		.oem_id		= "HISI  ",
 52		.oem_table_id	= "HIP07   ",
 53		.oem_revision	= 0,
 54	}, {
 55		.oem_id		= "HISI  ",
 56		.oem_table_id	= "HIP08   ",
 57		.oem_revision	= 0,
 58	}
 59};
 60
 61static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
 62					unsigned int perf);
 63
 64/*
 65 * HISI platform does not support delivered performance counter and
 66 * reference performance counter. It can calculate the performance using the
 67 * platform specific mechanism. We reuse the desired performance register to
 68 * store the real performance calculated by the platform.
 69 */
 70static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
 71{
 72	struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
 73	u64 desired_perf;
 74	int ret;
 75
 76	ret = cppc_get_desired_perf(cpunum, &desired_perf);
 77	if (ret < 0)
 78		return -EIO;
 79
 80	return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
 81}
 82
 83static void cppc_check_hisi_workaround(void)
 84{
 85	struct acpi_table_header *tbl;
 86	acpi_status status = AE_OK;
 87	int i;
 88
 89	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
 90	if (ACPI_FAILURE(status) || !tbl)
 91		return;
 92
 93	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
 94		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
 95		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 96		    wa_info[i].oem_revision == tbl->oem_revision)
 97			apply_hisi_workaround = true;
 98	}
 99}
100
101/* Callback function used to retrieve the max frequency from DMI */
102static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
103{
104	const u8 *dmi_data = (const u8 *)dm;
105	u16 *mhz = (u16 *)private;
106
107	if (dm->type == DMI_ENTRY_PROCESSOR &&
108	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
109		u16 val = (u16)get_unaligned((const u16 *)
110				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
111		*mhz = val > *mhz ? val : *mhz;
112	}
113}
114
115/* Look up the max frequency in DMI */
116static u64 cppc_get_dmi_max_khz(void)
117{
118	u16 mhz = 0;
119
120	dmi_walk(cppc_find_dmi_mhz, &mhz);
121
122	/*
123	 * Real stupid fallback value, just in case there is no
124	 * actual value set.
125	 */
126	mhz = mhz ? mhz : 1;
127
128	return (1000 * mhz);
129}
130
131/*
132 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
133 * use them to convert perf to freq and vice versa
134 *
135 * If the perf/freq point lies between Nominal and Lowest, we can treat
136 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
137 * and extrapolate the rest
138 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
139 */
140static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
141					unsigned int perf)
142{
143	static u64 max_khz;
144	struct cppc_perf_caps *caps = &cpu->perf_caps;
145	u64 mul, div;
146
147	if (caps->lowest_freq && caps->nominal_freq) {
148		if (perf >= caps->nominal_perf) {
149			mul = caps->nominal_freq;
150			div = caps->nominal_perf;
151		} else {
152			mul = caps->nominal_freq - caps->lowest_freq;
153			div = caps->nominal_perf - caps->lowest_perf;
154		}
155	} else {
156		if (!max_khz)
157			max_khz = cppc_get_dmi_max_khz();
158		mul = max_khz;
159		div = cpu->perf_caps.highest_perf;
160	}
161	return (u64)perf * mul / div;
162}
163
164static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
165					unsigned int freq)
166{
167	static u64 max_khz;
168	struct cppc_perf_caps *caps = &cpu->perf_caps;
169	u64  mul, div;
170
171	if (caps->lowest_freq && caps->nominal_freq) {
172		if (freq >= caps->nominal_freq) {
173			mul = caps->nominal_perf;
174			div = caps->nominal_freq;
175		} else {
176			mul = caps->lowest_perf;
177			div = caps->lowest_freq;
178		}
179	} else {
180		if (!max_khz)
181			max_khz = cppc_get_dmi_max_khz();
182		mul = cpu->perf_caps.highest_perf;
183		div = max_khz;
184	}
185
186	return (u64)freq * mul / div;
187}
188
189static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
190		unsigned int target_freq,
191		unsigned int relation)
192{
193	struct cppc_cpudata *cpu;
194	struct cpufreq_freqs freqs;
195	u32 desired_perf;
196	int ret = 0;
197
198	cpu = all_cpu_data[policy->cpu];
199
200	desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
201	/* Return if it is exactly the same perf */
202	if (desired_perf == cpu->perf_ctrls.desired_perf)
203		return ret;
204
205	cpu->perf_ctrls.desired_perf = desired_perf;
206	freqs.old = policy->cur;
207	freqs.new = target_freq;
208
209	cpufreq_freq_transition_begin(policy, &freqs);
210	ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
211	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
212
213	if (ret)
214		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
215				cpu->cpu, ret);
216
217	return ret;
218}
219
220static int cppc_verify_policy(struct cpufreq_policy *policy)
221{
222	cpufreq_verify_within_cpu_limits(policy);
223	return 0;
224}
225
226static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
227{
228	int cpu_num = policy->cpu;
229	struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
230	int ret;
231
232	cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
233
234	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
235	if (ret)
236		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
237				cpu->perf_caps.lowest_perf, cpu_num, ret);
238}
239
240/*
241 * The PCC subspace describes the rate at which platform can accept commands
242 * on the shared PCC channel (including READs which do not count towards freq
243 * trasition requests), so ideally we need to use the PCC values as a fallback
244 * if we don't have a platform specific transition_delay_us
245 */
246#ifdef CONFIG_ARM64
247#include <asm/cputype.h>
248
249static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
250{
251	unsigned long implementor = read_cpuid_implementor();
252	unsigned long part_num = read_cpuid_part_number();
253	unsigned int delay_us = 0;
254
255	switch (implementor) {
256	case ARM_CPU_IMP_QCOM:
257		switch (part_num) {
258		case QCOM_CPU_PART_FALKOR_V1:
259		case QCOM_CPU_PART_FALKOR:
260			delay_us = 10000;
261			break;
262		default:
263			delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
264			break;
265		}
266		break;
267	default:
268		delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269		break;
270	}
271
272	return delay_us;
273}
274
275#else
276
277static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
278{
279	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
280}
281#endif
282
283static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
284{
285	struct cppc_cpudata *cpu;
286	unsigned int cpu_num = policy->cpu;
287	int ret = 0;
288
289	cpu = all_cpu_data[policy->cpu];
290
291	cpu->cpu = cpu_num;
292	ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
293
294	if (ret) {
295		pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
296				cpu_num, ret);
297		return ret;
298	}
299
300	/* Convert the lowest and nominal freq from MHz to KHz */
301	cpu->perf_caps.lowest_freq *= 1000;
302	cpu->perf_caps.nominal_freq *= 1000;
303
304	/*
305	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
306	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
307	 */
308	policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
309	policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
310
311	/*
312	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
313	 * available if userspace wants to use any perf between lowest & lowest
314	 * nonlinear perf
315	 */
316	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
317	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
318
319	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
320	policy->shared_type = cpu->shared_type;
321
322	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
323		int i;
324
325		cpumask_copy(policy->cpus, cpu->shared_cpu_map);
326
327		for_each_cpu(i, policy->cpus) {
328			if (unlikely(i == policy->cpu))
329				continue;
330
331			memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
332			       sizeof(cpu->perf_caps));
333		}
334	} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
335		/* Support only SW_ANY for now. */
336		pr_debug("Unsupported CPU co-ord type\n");
337		return -EFAULT;
338	}
339
340	cpu->cur_policy = policy;
341
342	/* Set policy->cur to max now. The governors will adjust later. */
343	policy->cur = cppc_cpufreq_perf_to_khz(cpu,
344					cpu->perf_caps.highest_perf);
345	cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
346
347	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
348	if (ret)
349		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350				cpu->perf_caps.highest_perf, cpu_num, ret);
351
352	return ret;
353}
354
355static inline u64 get_delta(u64 t1, u64 t0)
356{
357	if (t1 > t0 || t0 > ~(u32)0)
358		return t1 - t0;
359
360	return (u32)t1 - (u32)t0;
361}
362
363static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
364				     struct cppc_perf_fb_ctrs fb_ctrs_t0,
365				     struct cppc_perf_fb_ctrs fb_ctrs_t1)
366{
367	u64 delta_reference, delta_delivered;
368	u64 reference_perf, delivered_perf;
369
370	reference_perf = fb_ctrs_t0.reference_perf;
371
372	delta_reference = get_delta(fb_ctrs_t1.reference,
373				    fb_ctrs_t0.reference);
374	delta_delivered = get_delta(fb_ctrs_t1.delivered,
375				    fb_ctrs_t0.delivered);
376
377	/* Check to avoid divide-by zero */
378	if (delta_reference || delta_delivered)
379		delivered_perf = (reference_perf * delta_delivered) /
380					delta_reference;
381	else
382		delivered_perf = cpu->perf_ctrls.desired_perf;
383
384	return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
385}
386
387static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
388{
389	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390	struct cppc_cpudata *cpu = all_cpu_data[cpunum];
391	int ret;
392
393	if (apply_hisi_workaround)
394		return hisi_cppc_cpufreq_get_rate(cpunum);
395
396	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
397	if (ret)
398		return ret;
399
400	udelay(2); /* 2usec delay between sampling */
401
402	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
403	if (ret)
404		return ret;
405
406	return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
407}
408
409static struct cpufreq_driver cppc_cpufreq_driver = {
410	.flags = CPUFREQ_CONST_LOOPS,
411	.verify = cppc_verify_policy,
412	.target = cppc_cpufreq_set_target,
413	.get = cppc_cpufreq_get_rate,
414	.init = cppc_cpufreq_cpu_init,
415	.stop_cpu = cppc_cpufreq_stop_cpu,
416	.name = "cppc_cpufreq",
417};
418
419static int __init cppc_cpufreq_init(void)
420{
421	int i, ret = 0;
422	struct cppc_cpudata *cpu;
423
424	if (acpi_disabled)
425		return -ENODEV;
426
427	all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
428			       GFP_KERNEL);
429	if (!all_cpu_data)
430		return -ENOMEM;
431
432	for_each_possible_cpu(i) {
433		all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
434		if (!all_cpu_data[i])
435			goto out;
436
437		cpu = all_cpu_data[i];
438		if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
439			goto out;
440	}
441
442	ret = acpi_get_psd_map(all_cpu_data);
443	if (ret) {
444		pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
445		goto out;
446	}
447
448	cppc_check_hisi_workaround();
449
450	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
451	if (ret)
452		goto out;
453
454	return ret;
455
456out:
457	for_each_possible_cpu(i) {
458		cpu = all_cpu_data[i];
459		if (!cpu)
460			break;
461		free_cpumask_var(cpu->shared_cpu_map);
462		kfree(cpu);
463	}
464
465	kfree(all_cpu_data);
466	return -ENODEV;
467}
468
469static void __exit cppc_cpufreq_exit(void)
470{
471	struct cppc_cpudata *cpu;
472	int i;
473
474	cpufreq_unregister_driver(&cppc_cpufreq_driver);
475
476	for_each_possible_cpu(i) {
477		cpu = all_cpu_data[i];
478		free_cpumask_var(cpu->shared_cpu_map);
479		kfree(cpu);
480	}
481
482	kfree(all_cpu_data);
483}
484
485module_exit(cppc_cpufreq_exit);
486MODULE_AUTHOR("Ashwin Chaugule");
487MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
488MODULE_LICENSE("GPL");
489
490late_initcall(cppc_cpufreq_init);
491
492static const struct acpi_device_id cppc_acpi_ids[] __used = {
493	{ACPI_PROCESSOR_DEVICE_HID, },
494	{}
495};
496
497MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);