Loading...
1/*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20/* Does not work. Warning may block system in capture mode */
21/* #define USE_VAR48KRATE */
22
23#include <asm/io.h>
24#include <linux/delay.h>
25#include <linux/interrupt.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/gameport.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <sound/core.h>
33#include <sound/info.h>
34#include <sound/control.h>
35#include <sound/pcm.h>
36#include <sound/rawmidi.h>
37#include <sound/mpu401.h>
38#include <sound/opl3.h>
39#include <sound/sb.h>
40#include <sound/asoundef.h>
41#include <sound/initval.h>
42
43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 "{C-Media,CMI8738B},"
48 "{C-Media,CMI8338A},"
49 "{C-Media,CMI8338B}}");
50
51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52#define SUPPORT_JOYSTICK 1
53#endif
54
55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58static long mpu_port[SNDRV_CARDS];
59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61#ifdef SUPPORT_JOYSTICK
62static int joystick_port[SNDRV_CARDS];
63#endif
64
65module_param_array(index, int, NULL, 0444);
66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67module_param_array(id, charp, NULL, 0444);
68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69module_param_array(enable, bool, NULL, 0444);
70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71module_param_array(mpu_port, long, NULL, 0444);
72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73module_param_array(fm_port, long, NULL, 0444);
74MODULE_PARM_DESC(fm_port, "FM port.");
75module_param_array(soft_ac3, bool, NULL, 0444);
76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77#ifdef SUPPORT_JOYSTICK
78module_param_array(joystick_port, int, NULL, 0444);
79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80#endif
81
82/*
83 * CM8x38 registers definition
84 */
85
86#define CM_REG_FUNCTRL0 0x00
87#define CM_RST_CH1 0x00080000
88#define CM_RST_CH0 0x00040000
89#define CM_CHEN1 0x00020000 /* ch1: enable */
90#define CM_CHEN0 0x00010000 /* ch0: enable */
91#define CM_PAUSE1 0x00000008 /* ch1: pause */
92#define CM_PAUSE0 0x00000004 /* ch0: pause */
93#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
95
96#define CM_REG_FUNCTRL1 0x04
97#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98#define CM_DSFC_SHIFT 13
99#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100#define CM_ASFC_SHIFT 10
101#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106#define CM_BREQ 0x00000010 /* bus master enabled */
107#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108#define CM_UART_EN 0x00000004 /* legacy UART */
109#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110#define CM_ZVPORT 0x00000001 /* ZVPORT */
111
112#define CM_REG_CHFORMAT 0x08
113
114#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116#define CM_CHB3D 0x20000000 /* 4 channels */
117
118#define CM_CHIP_MASK1 0x1f000000
119#define CM_CHIP_037 0x01000000
120#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
127
128#define CM_ADCBITLEN_MASK 0x0000C000
129#define CM_ADCBITLEN_16 0x00000000
130#define CM_ADCBITLEN_15 0x00004000
131#define CM_ADCBITLEN_14 0x00008000
132#define CM_ADCBITLEN_13 0x0000C000
133
134#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135#define CM_ADCDACLEN_060 0x00000000
136#define CM_ADCDACLEN_066 0x00001000
137#define CM_ADCDACLEN_130 0x00002000
138#define CM_ADCDACLEN_280 0x00003000
139
140#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141#define CM_ADCDLEN_ORIGINAL 0x00000000
142#define CM_ADCDLEN_EXTRA 0x00001000
143#define CM_ADCDLEN_24K 0x00002000
144#define CM_ADCDLEN_WEIGHT 0x00003000
145
146#define CM_CH1_SRATE_176K 0x00000800
147#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148#define CM_CH1_SRATE_88K 0x00000400
149#define CM_CH0_SRATE_176K 0x00000200
150#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151#define CM_CH0_SRATE_88K 0x00000100
152#define CM_CH0_SRATE_128K 0x00000300
153#define CM_CH0_SRATE_MASK 0x00000300
154
155#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158#define CM_SPDLOCKED 0x00000010
159
160#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161#define CM_CH1FMT_SHIFT 2
162#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163#define CM_CH0FMT_SHIFT 0
164
165#define CM_REG_INT_HLDCLR 0x0C
166#define CM_CHIP_MASK2 0xff000000
167#define CM_CHIP_8768 0x20000000
168#define CM_CHIP_055 0x08000000
169#define CM_CHIP_039 0x04000000
170#define CM_CHIP_039_6CH 0x01000000
171#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172#define CM_TDMA_INT_EN 0x00040000
173#define CM_CH1_INT_EN 0x00020000
174#define CM_CH0_INT_EN 0x00010000
175
176#define CM_REG_INT_STATUS 0x10
177#define CM_INTR 0x80000000
178#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180#define CM_UARTINT 0x00010000
181#define CM_LTDMAINT 0x00008000
182#define CM_HTDMAINT 0x00004000
183#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187#define CM_CH1BUSY 0x00000008
188#define CM_CH0BUSY 0x00000004
189#define CM_CHINT1 0x00000002
190#define CM_CHINT0 0x00000001
191
192#define CM_REG_LEGACY_CTRL 0x14
193#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195#define CM_VMPU_330 0x00000000
196#define CM_VMPU_320 0x20000000
197#define CM_VMPU_310 0x40000000
198#define CM_VMPU_300 0x60000000
199#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201#define CM_VSBSEL_220 0x00000000
202#define CM_VSBSEL_240 0x04000000
203#define CM_VSBSEL_260 0x08000000
204#define CM_VSBSEL_280 0x0C000000
205#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206#define CM_FMSEL_388 0x00000000
207#define CM_FMSEL_3C8 0x01000000
208#define CM_FMSEL_3E0 0x02000000
209#define CM_FMSEL_3E8 0x03000000
210#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216#define CM_C_EECS 0x00040000
217#define CM_C_EEDI46 0x00020000
218#define CM_C_EECK46 0x00010000
219#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222#define CM_EXBASEN 0x00001000 /* external bass input enable */
223
224#define CM_REG_MISC_CTRL 0x18
225#define CM_PWD 0x80000000 /* power down */
226#define CM_RESET 0x40000000
227#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229#define CM_TXVX 0x08000000 /* model 037? */
230#define CM_N4SPK3D 0x04000000 /* copy front to rear */
231#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232#define CM_SPDIF48K 0x01000000 /* write */
233#define CM_SPATUS48K 0x01000000 /* read */
234#define CM_ENDBDAC 0x00800000 /* enable double dac */
235#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238#define CM_FM_EN 0x00080000 /* enable legacy FM */
239#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241#define CM_VIDWPDSB 0x00010000 /* model 037? */
242#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245#define CM_VIDWPPRT 0x00002000 /* model 037? */
246#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249#define CM_ENCENTER 0x00000080
250#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255#define CM_UPDDMA_2048 0x00000000
256#define CM_UPDDMA_1024 0x00000004
257#define CM_UPDDMA_512 0x00000008
258#define CM_UPDDMA_256 0x0000000C
259#define CM_TWAIT_MASK 0x00000003 /* model 037 */
260#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263#define CM_REG_TDMA_POSITION 0x1C
264#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
266
267 /* byte */
268#define CM_REG_MIXER0 0x20
269#define CM_REG_SBVR 0x20 /* write: sb16 version */
270#define CM_REG_DEV 0x20 /* read: hardware device version */
271
272#define CM_REG_MIXER21 0x21
273#define CM_UNKNOWN_21_MASK 0x78 /* ? */
274#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275#define CM_PROINV 0x02 /* SBPro left/right channel switching */
276#define CM_X_SB16 0x01 /* SB16 compatible */
277
278#define CM_REG_SB16_DATA 0x22
279#define CM_REG_SB16_ADDR 0x23
280
281#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
285
286#define CM_REG_MIXER1 0x24
287#define CM_FMMUTE 0x80 /* mute FM */
288#define CM_FMMUTE_SHIFT 7
289#define CM_WSMUTE 0x40 /* mute PCM */
290#define CM_WSMUTE_SHIFT 6
291#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292#define CM_REAR2LIN_SHIFT 5
293#define CM_REAR2FRONT 0x10 /* exchange rear/front */
294#define CM_REAR2FRONT_SHIFT 4
295#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296#define CM_WAVEINL_SHIFT 3
297#define CM_WAVEINR 0x04 /* digical wave rec. right */
298#define CM_WAVEINR_SHIFT 2
299#define CM_X3DEN 0x02 /* 3D surround enable */
300#define CM_X3DEN_SHIFT 1
301#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302#define CM_CDPLAY_SHIFT 0
303
304#define CM_REG_MIXER2 0x25
305#define CM_RAUXREN 0x80 /* AUX right capture */
306#define CM_RAUXREN_SHIFT 7
307#define CM_RAUXLEN 0x40 /* AUX left capture */
308#define CM_RAUXLEN_SHIFT 6
309#define CM_VAUXRM 0x20 /* AUX right mute */
310#define CM_VAUXRM_SHIFT 5
311#define CM_VAUXLM 0x10 /* AUX left mute */
312#define CM_VAUXLM_SHIFT 4
313#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314#define CM_VADMIC_SHIFT 1
315#define CM_MICGAINZ 0x01 /* mic boost */
316#define CM_MICGAINZ_SHIFT 0
317
318#define CM_REG_MIXER3 0x24
319#define CM_REG_AUX_VOL 0x26
320#define CM_VAUXL_MASK 0xf0
321#define CM_VAUXR_MASK 0x0f
322
323#define CM_REG_MISC 0x27
324#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325#define CM_XGPO1 0x20
326// #define CM_XGPBIO 0x04
327#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329#define CM_SPDVALID 0x02 /* spdif input valid check */
330#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
331
332#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
333/*
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
336 */
337#define CM_REG_EXTERN_CODEC CM_REG_AC97
338
339/*
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341 */
342#define CM_REG_MPU_PCI 0x40
343
344/*
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346 */
347#define CM_REG_FM_PCI 0x50
348
349/*
350 * access from SB-mixer port
351 */
352#define CM_REG_EXTENT_IND 0xf0
353#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354#define CM_VPHONE_SHIFT 5
355#define CM_VPHOM 0x10 /* Phone mute control */
356#define CM_VSPKM 0x08 /* Speaker mute control, default high */
357#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359#define CM_VADMIC3 0x01 /* Mic record boost */
360
361/*
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
365 */
366#define CM_REG_PLL 0xf8
367
368/*
369 * extended registers
370 */
371#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
375
376#define CM_REG_EXT_MISC 0x90
377#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
385
386/*
387 * size of i/o region
388 */
389#define CM_EXTENT_CODEC 0x100
390#define CM_EXTENT_MIDI 0x2
391#define CM_EXTENT_SYNTH 0x4
392
393
394/*
395 * channels for playback / capture
396 */
397#define CM_CH_PLAY 0
398#define CM_CH_CAPT 1
399
400/*
401 * flags to check device open/close
402 */
403#define CM_OPEN_NONE 0
404#define CM_OPEN_CH_MASK 0x01
405#define CM_OPEN_DAC 0x10
406#define CM_OPEN_ADC 0x20
407#define CM_OPEN_SPDIF 0x40
408#define CM_OPEN_MCHAN 0x80
409#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417#if CM_CH_PLAY == 1
418#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419#define CM_PLAYBACK_SPDF CM_SPDF_1
420#define CM_CAPTURE_SPDF CM_SPDF_0
421#else
422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423#define CM_PLAYBACK_SPDF CM_SPDF_0
424#define CM_CAPTURE_SPDF CM_SPDF_1
425#endif
426
427
428/*
429 * driver data
430 */
431
432struct cmipci_pcm {
433 struct snd_pcm_substream *substream;
434 u8 running; /* dac/adc running? */
435 u8 fmt; /* format bits */
436 u8 is_dac;
437 u8 needs_silencing;
438 unsigned int dma_size; /* in frames */
439 unsigned int shift;
440 unsigned int ch; /* channel (0/1) */
441 unsigned int offset; /* physical address of the buffer */
442};
443
444/* mixer elements toggled/resumed during ac3 playback */
445struct cmipci_mixer_auto_switches {
446 const char *name; /* switch to toggle */
447 int toggle_on; /* value to change when ac3 mode */
448};
449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 {"PCM Playback Switch", 0},
451 {"IEC958 Output Switch", 1},
452 {"IEC958 Mix Analog", 0},
453 // {"IEC958 Out To DAC", 1}, // no longer used
454 {"IEC958 Loop", 0},
455};
456#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
457
458struct cmipci {
459 struct snd_card *card;
460
461 struct pci_dev *pci;
462 unsigned int device; /* device ID */
463 int irq;
464
465 unsigned long iobase;
466 unsigned int ctrl; /* FUNCTRL0 current value */
467
468 struct snd_pcm *pcm; /* DAC/ADC PCM */
469 struct snd_pcm *pcm2; /* 2nd DAC */
470 struct snd_pcm *pcm_spdif; /* SPDIF */
471
472 int chip_version;
473 int max_channels;
474 unsigned int can_ac3_sw: 1;
475 unsigned int can_ac3_hw: 1;
476 unsigned int can_multi_ch: 1;
477 unsigned int can_96k: 1; /* samplerate above 48k */
478 unsigned int do_soft_ac3: 1;
479
480 unsigned int spdif_playback_avail: 1; /* spdif ready? */
481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482 int spdif_counter; /* for software AC3 */
483
484 unsigned int dig_status;
485 unsigned int dig_pcm_status;
486
487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489 int opened[2]; /* open mode */
490 struct mutex open_mutex;
491
492 unsigned int mixer_insensitive: 1;
493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 int mixer_res_status[CM_SAVED_MIXERS];
495
496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498 /* external MIDI */
499 struct snd_rawmidi *rmidi;
500
501#ifdef SUPPORT_JOYSTICK
502 struct gameport *gameport;
503#endif
504
505 spinlock_t reg_lock;
506
507#ifdef CONFIG_PM_SLEEP
508 unsigned int saved_regs[0x20];
509 unsigned char saved_mixers[0x20];
510#endif
511};
512
513
514/* read/write operations for dword register */
515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516{
517 outl(data, cm->iobase + cmd);
518}
519
520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521{
522 return inl(cm->iobase + cmd);
523}
524
525/* read/write operations for word register */
526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527{
528 outw(data, cm->iobase + cmd);
529}
530
531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532{
533 return inw(cm->iobase + cmd);
534}
535
536/* read/write operations for byte register */
537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538{
539 outb(data, cm->iobase + cmd);
540}
541
542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543{
544 return inb(cm->iobase + cmd);
545}
546
547/* bit operations for dword register */
548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549{
550 unsigned int val, oval;
551 val = oval = inl(cm->iobase + cmd);
552 val |= flag;
553 if (val == oval)
554 return 0;
555 outl(val, cm->iobase + cmd);
556 return 1;
557}
558
559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560{
561 unsigned int val, oval;
562 val = oval = inl(cm->iobase + cmd);
563 val &= ~flag;
564 if (val == oval)
565 return 0;
566 outl(val, cm->iobase + cmd);
567 return 1;
568}
569
570/* bit operations for byte register */
571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572{
573 unsigned char val, oval;
574 val = oval = inb(cm->iobase + cmd);
575 val |= flag;
576 if (val == oval)
577 return 0;
578 outb(val, cm->iobase + cmd);
579 return 1;
580}
581
582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583{
584 unsigned char val, oval;
585 val = oval = inb(cm->iobase + cmd);
586 val &= ~flag;
587 if (val == oval)
588 return 0;
589 outb(val, cm->iobase + cmd);
590 return 1;
591}
592
593
594/*
595 * PCM interface
596 */
597
598/*
599 * calculate frequency
600 */
601
602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605{
606 unsigned int i;
607
608 for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 if (rates[i] == rate)
610 return i;
611 }
612 snd_BUG();
613 return 0;
614}
615
616#ifdef USE_VAR48KRATE
617/*
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not. Never get any information from C-Media about
620 * that <werner@suse.de>.
621 */
622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623{
624 unsigned int delta, tolerance;
625 int xm, xn, xr;
626
627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 rate <<= 1;
629 *n = -1;
630 if (*r > 0xff)
631 goto out;
632 tolerance = rate*CM_TOLERANCE_RATE;
633
634 for (xn = (1+2); xn < (0x1f+2); xn++) {
635 for (xm = (1+2); xm < (0xff+2); xm++) {
636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638 if (xr < rate)
639 delta = rate - xr;
640 else
641 delta = xr - rate;
642
643 /*
644 * If we found one, remember this,
645 * and try to find a closer one
646 */
647 if (delta < tolerance) {
648 tolerance = delta;
649 *m = xm - 2;
650 *n = xn - 2;
651 }
652 }
653 }
654out:
655 return (*n > -1);
656}
657
658/*
659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
663 */
664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665{
666 unsigned int reg = CM_REG_PLL + slot;
667 /*
668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 * for DSFC/ASFC (000 up to 111).
670 */
671
672 /* FIXME: Init (Do we've to set an other register first before programming?) */
673
674 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675 snd_cmipci_write_b(cm, reg, rate>>8);
676 snd_cmipci_write_b(cm, reg, rate&0xff);
677
678 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
679}
680#endif /* USE_VAR48KRATE */
681
682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683 struct snd_pcm_hw_params *hw_params)
684{
685 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686}
687
688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689 struct snd_pcm_hw_params *hw_params)
690{
691 struct cmipci *cm = snd_pcm_substream_chip(substream);
692 if (params_channels(hw_params) > 2) {
693 mutex_lock(&cm->open_mutex);
694 if (cm->opened[CM_CH_PLAY]) {
695 mutex_unlock(&cm->open_mutex);
696 return -EBUSY;
697 }
698 /* reserve the channel A */
699 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700 mutex_unlock(&cm->open_mutex);
701 }
702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703}
704
705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706{
707 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710 udelay(10);
711}
712
713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714{
715 return snd_pcm_lib_free_pages(substream);
716}
717
718
719/*
720 */
721
722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724 .count = 3,
725 .list = hw_channels,
726 .mask = 0,
727};
728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729 .count = 4,
730 .list = hw_channels,
731 .mask = 0,
732};
733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734 .count = 5,
735 .list = hw_channels,
736 .mask = 0,
737};
738
739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740{
741 if (channels > 2) {
742 if (!cm->can_multi_ch || !rec->ch)
743 return -EINVAL;
744 if (rec->fmt != 0x03) /* stereo 16bit only */
745 return -EINVAL;
746 }
747
748 if (cm->can_multi_ch) {
749 spin_lock_irq(&cm->reg_lock);
750 if (channels > 2) {
751 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753 } else {
754 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756 }
757 if (channels == 8)
758 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759 else
760 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761 if (channels == 6) {
762 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764 } else {
765 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767 }
768 if (channels == 4)
769 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770 else
771 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772 spin_unlock_irq(&cm->reg_lock);
773 }
774 return 0;
775}
776
777
778/*
779 * prepare playback/capture channel
780 * channel to be used must have been set in rec->ch.
781 */
782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783 struct snd_pcm_substream *substream)
784{
785 unsigned int reg, freq, freq_ext, val;
786 unsigned int period_size;
787 struct snd_pcm_runtime *runtime = substream->runtime;
788
789 rec->fmt = 0;
790 rec->shift = 0;
791 if (snd_pcm_format_width(runtime->format) >= 16) {
792 rec->fmt |= 0x02;
793 if (snd_pcm_format_width(runtime->format) > 16)
794 rec->shift++; /* 24/32bit */
795 }
796 if (runtime->channels > 1)
797 rec->fmt |= 0x01;
798 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799 dev_dbg(cm->card->dev, "cannot set dac channels\n");
800 return -EINVAL;
801 }
802
803 rec->offset = runtime->dma_addr;
804 /* buffer and period sizes in frame */
805 rec->dma_size = runtime->buffer_size << rec->shift;
806 period_size = runtime->period_size << rec->shift;
807 if (runtime->channels > 2) {
808 /* multi-channels */
809 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810 period_size = (period_size * runtime->channels) / 2;
811 }
812
813 spin_lock_irq(&cm->reg_lock);
814
815 /* set buffer address */
816 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817 snd_cmipci_write(cm, reg, rec->offset);
818 /* program sample counts */
819 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823 /* set adc/dac flag */
824 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825 if (rec->is_dac)
826 cm->ctrl &= ~val;
827 else
828 cm->ctrl |= val;
829 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
831
832 /* set sample rate */
833 freq = 0;
834 freq_ext = 0;
835 if (runtime->rate > 48000)
836 switch (runtime->rate) {
837 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
838 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
839 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840 default: snd_BUG(); break;
841 }
842 else
843 freq = snd_cmipci_rate_freq(runtime->rate);
844 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845 if (rec->ch) {
846 val &= ~CM_DSFC_MASK;
847 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848 } else {
849 val &= ~CM_ASFC_MASK;
850 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851 }
852 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
854
855 /* set format */
856 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857 if (rec->ch) {
858 val &= ~CM_CH1FMT_MASK;
859 val |= rec->fmt << CM_CH1FMT_SHIFT;
860 } else {
861 val &= ~CM_CH0FMT_MASK;
862 val |= rec->fmt << CM_CH0FMT_SHIFT;
863 }
864 if (cm->can_96k) {
865 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866 val |= freq_ext << (rec->ch * 2);
867 }
868 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
870
871 if (!rec->is_dac && cm->chip_version) {
872 if (runtime->rate > 44100)
873 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874 else
875 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876 }
877
878 rec->running = 0;
879 spin_unlock_irq(&cm->reg_lock);
880
881 return 0;
882}
883
884/*
885 * PCM trigger/stop
886 */
887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888 int cmd)
889{
890 unsigned int inthld, chen, reset, pause;
891 int result = 0;
892
893 inthld = CM_CH0_INT_EN << rec->ch;
894 chen = CM_CHEN0 << rec->ch;
895 reset = CM_RST_CH0 << rec->ch;
896 pause = CM_PAUSE0 << rec->ch;
897
898 spin_lock(&cm->reg_lock);
899 switch (cmd) {
900 case SNDRV_PCM_TRIGGER_START:
901 rec->running = 1;
902 /* set interrupt */
903 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904 cm->ctrl |= chen;
905 /* enable channel */
906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
908 break;
909 case SNDRV_PCM_TRIGGER_STOP:
910 rec->running = 0;
911 /* disable interrupt */
912 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913 /* reset */
914 cm->ctrl &= ~chen;
915 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917 rec->needs_silencing = rec->is_dac;
918 break;
919 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920 case SNDRV_PCM_TRIGGER_SUSPEND:
921 cm->ctrl |= pause;
922 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923 break;
924 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925 case SNDRV_PCM_TRIGGER_RESUME:
926 cm->ctrl &= ~pause;
927 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928 break;
929 default:
930 result = -EINVAL;
931 break;
932 }
933 spin_unlock(&cm->reg_lock);
934 return result;
935}
936
937/*
938 * return the current pointer
939 */
940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941 struct snd_pcm_substream *substream)
942{
943 size_t ptr;
944 unsigned int reg, rem, tries;
945
946 if (!rec->running)
947 return 0;
948#if 1 // this seems better..
949 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950 for (tries = 0; tries < 3; tries++) {
951 rem = snd_cmipci_read_w(cm, reg);
952 if (rem < rec->dma_size)
953 goto ok;
954 }
955 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
956 return SNDRV_PCM_POS_XRUN;
957ok:
958 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959#else
960 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961 ptr = snd_cmipci_read(cm, reg) - rec->offset;
962 ptr = bytes_to_frames(substream->runtime, ptr);
963#endif
964 if (substream->runtime->channels > 2)
965 ptr = (ptr * 2) / substream->runtime->channels;
966 return ptr;
967}
968
969/*
970 * playback
971 */
972
973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974 int cmd)
975{
976 struct cmipci *cm = snd_pcm_substream_chip(substream);
977 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978}
979
980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981{
982 struct cmipci *cm = snd_pcm_substream_chip(substream);
983 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984}
985
986
987
988/*
989 * capture
990 */
991
992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993 int cmd)
994{
995 struct cmipci *cm = snd_pcm_substream_chip(substream);
996 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997}
998
999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001 struct cmipci *cm = snd_pcm_substream_chip(substream);
1002 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011 struct snd_ctl_elem_info *uinfo)
1012{
1013 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014 uinfo->count = 1;
1015 return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019 struct snd_ctl_elem_value *ucontrol)
1020{
1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 int i;
1023
1024 spin_lock_irq(&chip->reg_lock);
1025 for (i = 0; i < 4; i++)
1026 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027 spin_unlock_irq(&chip->reg_lock);
1028 return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032 struct snd_ctl_elem_value *ucontrol)
1033{
1034 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035 int i, change;
1036 unsigned int val;
1037
1038 val = 0;
1039 spin_lock_irq(&chip->reg_lock);
1040 for (i = 0; i < 4; i++)
1041 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042 change = val != chip->dig_status;
1043 chip->dig_status = val;
1044 spin_unlock_irq(&chip->reg_lock);
1045 return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049{
1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052 .info = snd_cmipci_spdif_default_info,
1053 .get = snd_cmipci_spdif_default_get,
1054 .put = snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058 struct snd_ctl_elem_info *uinfo)
1059{
1060 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061 uinfo->count = 1;
1062 return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066 struct snd_ctl_elem_value *ucontrol)
1067{
1068 ucontrol->value.iec958.status[0] = 0xff;
1069 ucontrol->value.iec958.status[1] = 0xff;
1070 ucontrol->value.iec958.status[2] = 0xff;
1071 ucontrol->value.iec958.status[3] = 0xff;
1072 return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076{
1077 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1078 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1079 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080 .info = snd_cmipci_spdif_mask_info,
1081 .get = snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085 struct snd_ctl_elem_info *uinfo)
1086{
1087 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088 uinfo->count = 1;
1089 return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093 struct snd_ctl_elem_value *ucontrol)
1094{
1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 int i;
1097
1098 spin_lock_irq(&chip->reg_lock);
1099 for (i = 0; i < 4; i++)
1100 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101 spin_unlock_irq(&chip->reg_lock);
1102 return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106 struct snd_ctl_elem_value *ucontrol)
1107{
1108 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109 int i, change;
1110 unsigned int val;
1111
1112 val = 0;
1113 spin_lock_irq(&chip->reg_lock);
1114 for (i = 0; i < 4; i++)
1115 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116 change = val != chip->dig_pcm_status;
1117 chip->dig_pcm_status = val;
1118 spin_unlock_irq(&chip->reg_lock);
1119 return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123{
1124 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1126 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127 .info = snd_cmipci_spdif_stream_info,
1128 .get = snd_cmipci_spdif_stream_get,
1129 .put = snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138 if (! cm->mixer_insensitive) {
1139 struct snd_ctl_elem_value *val;
1140 unsigned int i;
1141
1142 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143 if (!val)
1144 return -ENOMEM;
1145 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147 if (ctl) {
1148 int event;
1149 memset(val, 0, sizeof(*val));
1150 ctl->get(ctl, val);
1151 cm->mixer_res_status[i] = val->value.integer.value[0];
1152 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153 event = SNDRV_CTL_EVENT_MASK_INFO;
1154 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155 ctl->put(ctl, val); /* toggle */
1156 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157 }
1158 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159 snd_ctl_notify(cm->card, event, &ctl->id);
1160 }
1161 }
1162 kfree(val);
1163 cm->mixer_insensitive = 1;
1164 }
1165 return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172 if (cm->mixer_insensitive) {
1173 struct snd_ctl_elem_value *val;
1174 unsigned int i;
1175
1176 val = kmalloc(sizeof(*val), GFP_KERNEL);
1177 if (!val)
1178 return;
1179 cm->mixer_insensitive = 0; /* at first clear this;
1180 otherwise the changes will be ignored */
1181 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183 if (ctl) {
1184 int event;
1185
1186 memset(val, 0, sizeof(*val));
1187 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188 ctl->get(ctl, val);
1189 event = SNDRV_CTL_EVENT_MASK_INFO;
1190 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191 val->value.integer.value[0] = cm->mixer_res_status[i];
1192 ctl->put(ctl, val);
1193 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194 }
1195 snd_ctl_notify(cm->card, event, &ctl->id);
1196 }
1197 }
1198 kfree(val);
1199 }
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205 if (do_ac3) {
1206 /* AC3EN for 037 */
1207 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208 /* AC3EN for 039 */
1209 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210
1211 if (cm->can_ac3_hw) {
1212 /* SPD24SEL for 037, 0x02 */
1213 /* SPD24SEL for 039, 0x20, but cannot be set */
1214 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 } else { /* can_ac3_sw */
1217 /* SPD32SEL for 037 & 039, 0x20 */
1218 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 /* set 176K sample rate to fix 033 HW bug */
1220 if (cm->chip_version == 33) {
1221 if (rate >= 48000) {
1222 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223 } else {
1224 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225 }
1226 }
1227 }
1228
1229 } else {
1230 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233 if (cm->can_ac3_hw) {
1234 /* chip model >= 37 */
1235 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238 } else {
1239 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241 }
1242 } else {
1243 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246 }
1247 }
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252 int rate, err;
1253
1254 rate = subs->runtime->rate;
1255
1256 if (up && do_ac3)
1257 if ((err = save_mixer_state(cm)) < 0)
1258 return err;
1259
1260 spin_lock_irq(&cm->reg_lock);
1261 cm->spdif_playback_avail = up;
1262 if (up) {
1263 /* they are controlled via "IEC958 Output Switch" */
1264 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266 if (cm->spdif_playback_enabled)
1267 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268 setup_ac3(cm, subs, do_ac3, rate);
1269
1270 if (rate == 48000 || rate == 96000)
1271 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272 else
1273 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274 if (rate > 48000)
1275 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276 else
1277 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278 } else {
1279 /* they are controlled via "IEC958 Output Switch" */
1280 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284 setup_ac3(cm, subs, 0, 0);
1285 }
1286 spin_unlock_irq(&cm->reg_lock);
1287 return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298 struct cmipci *cm = snd_pcm_substream_chip(substream);
1299 int rate = substream->runtime->rate;
1300 int err, do_spdif, do_ac3 = 0;
1301
1302 do_spdif = (rate >= 44100 && rate <= 96000 &&
1303 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304 substream->runtime->channels == 2);
1305 if (do_spdif && cm->can_ac3_hw)
1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308 return err;
1309 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315 struct cmipci *cm = snd_pcm_substream_chip(substream);
1316 int err, do_ac3;
1317
1318 if (cm->can_ac3_hw)
1319 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320 else
1321 do_ac3 = 1; /* doesn't matter */
1322 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323 return err;
1324 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B. This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338 unsigned int reg, val;
1339
1340 if (rec->needs_silencing && runtime && runtime->dma_area) {
1341 /* set up a small silence buffer */
1342 memset(runtime->dma_area, 0, PAGE_SIZE);
1343 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345 snd_cmipci_write(cm, reg, val);
1346
1347 /* configure for 16 bits, 2 channels, 8 kHz */
1348 if (runtime->channels > 2)
1349 set_dac_channels(cm, rec, 2);
1350 spin_lock_irq(&cm->reg_lock);
1351 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358 if (cm->can_96k)
1359 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361
1362 /* start stream (we don't need interrupts) */
1363 cm->ctrl |= CM_CHEN0 << rec->ch;
1364 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365 spin_unlock_irq(&cm->reg_lock);
1366
1367 msleep(1);
1368
1369 /* stop and reset stream */
1370 spin_lock_irq(&cm->reg_lock);
1371 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372 val = CM_RST_CH0 << rec->ch;
1373 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375 spin_unlock_irq(&cm->reg_lock);
1376
1377 rec->needs_silencing = 0;
1378 }
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383 struct cmipci *cm = snd_pcm_substream_chip(substream);
1384 setup_spdif_playback(cm, substream, 0, 0);
1385 restore_mixer_state(cm);
1386 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387 return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392 struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394 return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400 struct cmipci *cm = snd_pcm_substream_chip(substream);
1401 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407 struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409 spin_lock_irq(&cm->reg_lock);
1410 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411 if (cm->can_96k) {
1412 if (substream->runtime->rate > 48000)
1413 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414 else
1415 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416 }
1417 if (snd_pcm_format_width(substream->runtime->format) > 16)
1418 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419 else
1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422 spin_unlock_irq(&cm->reg_lock);
1423
1424 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429 struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431 spin_lock_irq(&cm->reg_lock);
1432 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434 spin_unlock_irq(&cm->reg_lock);
1435
1436 return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445 struct cmipci *cm = dev_id;
1446 unsigned int status, mask = 0;
1447
1448 /* fastpath out, to ease interrupt sharing */
1449 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450 if (!(status & CM_INTR))
1451 return IRQ_NONE;
1452
1453 /* acknowledge interrupt */
1454 spin_lock(&cm->reg_lock);
1455 if (status & CM_CHINT0)
1456 mask |= CM_CH0_INT_EN;
1457 if (status & CM_CHINT1)
1458 mask |= CM_CH1_INT_EN;
1459 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461 spin_unlock(&cm->reg_lock);
1462
1463 if (cm->rmidi && (status & CM_UARTINT))
1464 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466 if (cm->pcm) {
1467 if ((status & CM_CHINT0) && cm->channel[0].running)
1468 snd_pcm_period_elapsed(cm->channel[0].substream);
1469 if ((status & CM_CHINT1) && cm->channel[1].running)
1470 snd_pcm_period_elapsed(cm->channel[1].substream);
1471 }
1472 return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487 .rate_min = 5512,
1488 .rate_max = 48000,
1489 .channels_min = 1,
1490 .channels_max = 2,
1491 .buffer_bytes_max = (128*1024),
1492 .period_bytes_min = 64,
1493 .period_bytes_max = (128*1024),
1494 .periods_min = 2,
1495 .periods_max = 1024,
1496 .fifo_size = 0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507 .rate_min = 5512,
1508 .rate_max = 48000,
1509 .channels_min = 1,
1510 .channels_max = 2,
1511 .buffer_bytes_max = (128*1024),
1512 .period_bytes_min = 64,
1513 .period_bytes_max = (128*1024),
1514 .periods_min = 2,
1515 .periods_max = 1024,
1516 .fifo_size = 0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1526 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527 .rate_min = 5512,
1528 .rate_max = 48000,
1529 .channels_min = 2,
1530 .channels_max = 2,
1531 .buffer_bytes_max = (128*1024),
1532 .period_bytes_min = 64,
1533 .period_bytes_max = (128*1024),
1534 .periods_min = 2,
1535 .periods_max = 1024,
1536 .fifo_size = 0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1546 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547 .rate_min = 44100,
1548 .rate_max = 48000,
1549 .channels_min = 2,
1550 .channels_max = 2,
1551 .buffer_bytes_max = (128*1024),
1552 .period_bytes_min = 64,
1553 .period_bytes_max = (128*1024),
1554 .periods_min = 2,
1555 .periods_max = 1024,
1556 .fifo_size = 0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567 .rate_min = 44100,
1568 .rate_max = 48000,
1569 .channels_min = 2,
1570 .channels_max = 2,
1571 .buffer_bytes_max = (128*1024),
1572 .period_bytes_min = 64,
1573 .period_bytes_max = (128*1024),
1574 .periods_min = 2,
1575 .periods_max = 1024,
1576 .fifo_size = 0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1586 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588 .rate_min = 44100,
1589 .rate_max = 48000,
1590 .channels_min = 2,
1591 .channels_max = 2,
1592 .buffer_bytes_max = (128*1024),
1593 .period_bytes_min = 64,
1594 .period_bytes_max = (128*1024),
1595 .periods_min = 2,
1596 .periods_max = 1024,
1597 .fifo_size = 0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601 32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603 .count = ARRAY_SIZE(rate_constraints),
1604 .list = rate_constraints,
1605 .mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613 int ch = mode & CM_OPEN_CH_MASK;
1614
1615 /* FIXME: a file should wait until the device becomes free
1616 * when it's opened on blocking mode. however, since the current
1617 * pcm framework doesn't pass file pointer before actually opened,
1618 * we can't know whether blocking mode or not in open callback..
1619 */
1620 mutex_lock(&cm->open_mutex);
1621 if (cm->opened[ch]) {
1622 mutex_unlock(&cm->open_mutex);
1623 return -EBUSY;
1624 }
1625 cm->opened[ch] = mode;
1626 cm->channel[ch].substream = subs;
1627 if (! (mode & CM_OPEN_DAC)) {
1628 /* disable dual DAC mode */
1629 cm->channel[ch].is_dac = 0;
1630 spin_lock_irq(&cm->reg_lock);
1631 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632 spin_unlock_irq(&cm->reg_lock);
1633 }
1634 mutex_unlock(&cm->open_mutex);
1635 return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640 int ch = mode & CM_OPEN_CH_MASK;
1641
1642 mutex_lock(&cm->open_mutex);
1643 if (cm->opened[ch] == mode) {
1644 if (cm->channel[ch].substream) {
1645 snd_cmipci_ch_reset(cm, ch);
1646 cm->channel[ch].running = 0;
1647 cm->channel[ch].substream = NULL;
1648 }
1649 cm->opened[ch] = 0;
1650 if (! cm->channel[ch].is_dac) {
1651 /* enable dual DAC mode again */
1652 cm->channel[ch].is_dac = 1;
1653 spin_lock_irq(&cm->reg_lock);
1654 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655 spin_unlock_irq(&cm->reg_lock);
1656 }
1657 }
1658 mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666 struct cmipci *cm = snd_pcm_substream_chip(substream);
1667 struct snd_pcm_runtime *runtime = substream->runtime;
1668 int err;
1669
1670 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671 return err;
1672 runtime->hw = snd_cmipci_playback;
1673 if (cm->chip_version == 68) {
1674 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675 SNDRV_PCM_RATE_96000;
1676 runtime->hw.rate_max = 96000;
1677 } else if (cm->chip_version == 55) {
1678 err = snd_pcm_hw_constraint_list(runtime, 0,
1679 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680 if (err < 0)
1681 return err;
1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 runtime->hw.rate_max = 128000;
1684 }
1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686 cm->dig_pcm_status = cm->dig_status;
1687 return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692 struct cmipci *cm = snd_pcm_substream_chip(substream);
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int err;
1695
1696 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697 return err;
1698 runtime->hw = snd_cmipci_capture;
1699 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1700 runtime->hw.rate_min = 41000;
1701 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702 } else if (cm->chip_version == 55) {
1703 err = snd_pcm_hw_constraint_list(runtime, 0,
1704 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705 if (err < 0)
1706 return err;
1707 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708 runtime->hw.rate_max = 128000;
1709 }
1710 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711 return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716 struct cmipci *cm = snd_pcm_substream_chip(substream);
1717 struct snd_pcm_runtime *runtime = substream->runtime;
1718 int err;
1719
1720 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721 return err;
1722 runtime->hw = snd_cmipci_playback2;
1723 mutex_lock(&cm->open_mutex);
1724 if (! cm->opened[CM_CH_PLAY]) {
1725 if (cm->can_multi_ch) {
1726 runtime->hw.channels_max = cm->max_channels;
1727 if (cm->max_channels == 4)
1728 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729 else if (cm->max_channels == 6)
1730 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731 else if (cm->max_channels == 8)
1732 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733 }
1734 }
1735 mutex_unlock(&cm->open_mutex);
1736 if (cm->chip_version == 68) {
1737 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738 SNDRV_PCM_RATE_96000;
1739 runtime->hw.rate_max = 96000;
1740 } else if (cm->chip_version == 55) {
1741 err = snd_pcm_hw_constraint_list(runtime, 0,
1742 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743 if (err < 0)
1744 return err;
1745 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746 runtime->hw.rate_max = 128000;
1747 }
1748 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749 return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754 struct cmipci *cm = snd_pcm_substream_chip(substream);
1755 struct snd_pcm_runtime *runtime = substream->runtime;
1756 int err;
1757
1758 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759 return err;
1760 if (cm->can_ac3_hw) {
1761 runtime->hw = snd_cmipci_playback_spdif;
1762 if (cm->chip_version >= 37) {
1763 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765 }
1766 if (cm->can_96k) {
1767 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768 SNDRV_PCM_RATE_96000;
1769 runtime->hw.rate_max = 96000;
1770 }
1771 } else {
1772 runtime->hw = snd_cmipci_playback_iec958_subframe;
1773 }
1774 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775 cm->dig_pcm_status = cm->dig_status;
1776 return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781 struct cmipci *cm = snd_pcm_substream_chip(substream);
1782 struct snd_pcm_runtime *runtime = substream->runtime;
1783 int err;
1784
1785 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786 return err;
1787 runtime->hw = snd_cmipci_capture_spdif;
1788 if (cm->can_96k && !(cm->chip_version == 68)) {
1789 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790 SNDRV_PCM_RATE_96000;
1791 runtime->hw.rate_max = 96000;
1792 }
1793 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794 return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803 struct cmipci *cm = snd_pcm_substream_chip(substream);
1804 close_device_check(cm, CM_OPEN_PLAYBACK);
1805 return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810 struct cmipci *cm = snd_pcm_substream_chip(substream);
1811 close_device_check(cm, CM_OPEN_CAPTURE);
1812 return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817 struct cmipci *cm = snd_pcm_substream_chip(substream);
1818 close_device_check(cm, CM_OPEN_PLAYBACK2);
1819 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820 return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825 struct cmipci *cm = snd_pcm_substream_chip(substream);
1826 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827 return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832 struct cmipci *cm = snd_pcm_substream_chip(substream);
1833 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834 return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842 .open = snd_cmipci_playback_open,
1843 .close = snd_cmipci_playback_close,
1844 .ioctl = snd_pcm_lib_ioctl,
1845 .hw_params = snd_cmipci_hw_params,
1846 .hw_free = snd_cmipci_playback_hw_free,
1847 .prepare = snd_cmipci_playback_prepare,
1848 .trigger = snd_cmipci_playback_trigger,
1849 .pointer = snd_cmipci_playback_pointer,
1850};
1851
1852static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853 .open = snd_cmipci_capture_open,
1854 .close = snd_cmipci_capture_close,
1855 .ioctl = snd_pcm_lib_ioctl,
1856 .hw_params = snd_cmipci_hw_params,
1857 .hw_free = snd_cmipci_hw_free,
1858 .prepare = snd_cmipci_capture_prepare,
1859 .trigger = snd_cmipci_capture_trigger,
1860 .pointer = snd_cmipci_capture_pointer,
1861};
1862
1863static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864 .open = snd_cmipci_playback2_open,
1865 .close = snd_cmipci_playback2_close,
1866 .ioctl = snd_pcm_lib_ioctl,
1867 .hw_params = snd_cmipci_playback2_hw_params,
1868 .hw_free = snd_cmipci_playback2_hw_free,
1869 .prepare = snd_cmipci_capture_prepare, /* channel B */
1870 .trigger = snd_cmipci_capture_trigger, /* channel B */
1871 .pointer = snd_cmipci_capture_pointer, /* channel B */
1872};
1873
1874static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875 .open = snd_cmipci_playback_spdif_open,
1876 .close = snd_cmipci_playback_spdif_close,
1877 .ioctl = snd_pcm_lib_ioctl,
1878 .hw_params = snd_cmipci_hw_params,
1879 .hw_free = snd_cmipci_playback_hw_free,
1880 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1881 .trigger = snd_cmipci_playback_trigger,
1882 .pointer = snd_cmipci_playback_pointer,
1883};
1884
1885static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886 .open = snd_cmipci_capture_spdif_open,
1887 .close = snd_cmipci_capture_spdif_close,
1888 .ioctl = snd_pcm_lib_ioctl,
1889 .hw_params = snd_cmipci_hw_params,
1890 .hw_free = snd_cmipci_capture_spdif_hw_free,
1891 .prepare = snd_cmipci_capture_spdif_prepare,
1892 .trigger = snd_cmipci_capture_trigger,
1893 .pointer = snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902 struct snd_pcm *pcm;
1903 int err;
1904
1905 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906 if (err < 0)
1907 return err;
1908
1909 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912 pcm->private_data = cm;
1913 pcm->info_flags = 0;
1914 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915 cm->pcm = pcm;
1916
1917 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920 return 0;
1921}
1922
1923static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925 struct snd_pcm *pcm;
1926 int err;
1927
1928 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929 if (err < 0)
1930 return err;
1931
1932 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934 pcm->private_data = cm;
1935 pcm->info_flags = 0;
1936 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937 cm->pcm2 = pcm;
1938
1939 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942 return 0;
1943}
1944
1945static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947 struct snd_pcm *pcm;
1948 int err;
1949
1950 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951 if (err < 0)
1952 return err;
1953
1954 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957 pcm->private_data = cm;
1958 pcm->info_flags = 0;
1959 strcpy(pcm->name, "C-Media PCI IEC958");
1960 cm->pcm_spdif = pcm;
1961
1962 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966 snd_pcm_alt_chmaps, cm->max_channels, 0,
1967 NULL);
1968 if (err < 0)
1969 return err;
1970
1971 return 0;
1972}
1973
1974/*
1975 * mixer interface:
1976 * - CM8338/8738 has a compatible mixer interface with SB16, but
1977 * lack of some elements like tone control, i/o gain and AGC.
1978 * - Access to native registers:
1979 * - A 3D switch
1980 * - Output mute switches
1981 */
1982
1983static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984{
1985 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986 outb(data, s->iobase + CM_REG_SB16_DATA);
1987}
1988
1989static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990{
1991 unsigned char v;
1992
1993 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994 v = inb(s->iobase + CM_REG_SB16_DATA);
1995 return v;
1996}
1997
1998/*
1999 * general mixer element
2000 */
2001struct cmipci_sb_reg {
2002 unsigned int left_reg, right_reg;
2003 unsigned int left_shift, right_shift;
2004 unsigned int mask;
2005 unsigned int invert: 1;
2006 unsigned int stereo: 1;
2007};
2008
2009#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014 .info = snd_cmipci_info_volume, \
2015 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017}
2018
2019#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025{
2026 r->left_reg = val & 0xff;
2027 r->right_reg = (val >> 8) & 0xff;
2028 r->left_shift = (val >> 16) & 0x07;
2029 r->right_shift = (val >> 19) & 0x07;
2030 r->invert = (val >> 22) & 1;
2031 r->stereo = (val >> 23) & 1;
2032 r->mask = (val >> 24) & 0xff;
2033}
2034
2035static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_info *uinfo)
2037{
2038 struct cmipci_sb_reg reg;
2039
2040 cmipci_sb_reg_decode(®, kcontrol->private_value);
2041 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042 uinfo->count = reg.stereo + 1;
2043 uinfo->value.integer.min = 0;
2044 uinfo->value.integer.max = reg.mask;
2045 return 0;
2046}
2047
2048static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049 struct snd_ctl_elem_value *ucontrol)
2050{
2051 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052 struct cmipci_sb_reg reg;
2053 int val;
2054
2055 cmipci_sb_reg_decode(®, kcontrol->private_value);
2056 spin_lock_irq(&cm->reg_lock);
2057 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058 if (reg.invert)
2059 val = reg.mask - val;
2060 ucontrol->value.integer.value[0] = val;
2061 if (reg.stereo) {
2062 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063 if (reg.invert)
2064 val = reg.mask - val;
2065 ucontrol->value.integer.value[1] = val;
2066 }
2067 spin_unlock_irq(&cm->reg_lock);
2068 return 0;
2069}
2070
2071static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072 struct snd_ctl_elem_value *ucontrol)
2073{
2074 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075 struct cmipci_sb_reg reg;
2076 int change;
2077 int left, right, oleft, oright;
2078
2079 cmipci_sb_reg_decode(®, kcontrol->private_value);
2080 left = ucontrol->value.integer.value[0] & reg.mask;
2081 if (reg.invert)
2082 left = reg.mask - left;
2083 left <<= reg.left_shift;
2084 if (reg.stereo) {
2085 right = ucontrol->value.integer.value[1] & reg.mask;
2086 if (reg.invert)
2087 right = reg.mask - right;
2088 right <<= reg.right_shift;
2089 } else
2090 right = 0;
2091 spin_lock_irq(&cm->reg_lock);
2092 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093 left |= oleft & ~(reg.mask << reg.left_shift);
2094 change = left != oleft;
2095 if (reg.stereo) {
2096 if (reg.left_reg != reg.right_reg) {
2097 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099 } else
2100 oright = left;
2101 right |= oright & ~(reg.mask << reg.right_shift);
2102 change |= right != oright;
2103 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104 } else
2105 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106 spin_unlock_irq(&cm->reg_lock);
2107 return change;
2108}
2109
2110/*
2111 * input route (left,right) -> (left,right)
2112 */
2113#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115 .info = snd_cmipci_info_input_sw, \
2116 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118}
2119
2120static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121 struct snd_ctl_elem_info *uinfo)
2122{
2123 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124 uinfo->count = 4;
2125 uinfo->value.integer.min = 0;
2126 uinfo->value.integer.max = 1;
2127 return 0;
2128}
2129
2130static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131 struct snd_ctl_elem_value *ucontrol)
2132{
2133 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134 struct cmipci_sb_reg reg;
2135 int val1, val2;
2136
2137 cmipci_sb_reg_decode(®, kcontrol->private_value);
2138 spin_lock_irq(&cm->reg_lock);
2139 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141 spin_unlock_irq(&cm->reg_lock);
2142 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146 return 0;
2147}
2148
2149static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150 struct snd_ctl_elem_value *ucontrol)
2151{
2152 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153 struct cmipci_sb_reg reg;
2154 int change;
2155 int val1, val2, oval1, oval2;
2156
2157 cmipci_sb_reg_decode(®, kcontrol->private_value);
2158 spin_lock_irq(&cm->reg_lock);
2159 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167 change = val1 != oval1 || val2 != oval2;
2168 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170 spin_unlock_irq(&cm->reg_lock);
2171 return change;
2172}
2173
2174/*
2175 * native mixer switches/volumes
2176 */
2177
2178#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180 .info = snd_cmipci_info_native_mixer, \
2181 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183}
2184
2185#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187 .info = snd_cmipci_info_native_mixer, \
2188 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190}
2191
2192#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194 .info = snd_cmipci_info_native_mixer, \
2195 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197}
2198
2199#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201 .info = snd_cmipci_info_native_mixer, \
2202 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204}
2205
2206static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207 struct snd_ctl_elem_info *uinfo)
2208{
2209 struct cmipci_sb_reg reg;
2210
2211 cmipci_sb_reg_decode(®, kcontrol->private_value);
2212 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213 uinfo->count = reg.stereo + 1;
2214 uinfo->value.integer.min = 0;
2215 uinfo->value.integer.max = reg.mask;
2216 return 0;
2217
2218}
2219
2220static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221 struct snd_ctl_elem_value *ucontrol)
2222{
2223 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224 struct cmipci_sb_reg reg;
2225 unsigned char oreg, val;
2226
2227 cmipci_sb_reg_decode(®, kcontrol->private_value);
2228 spin_lock_irq(&cm->reg_lock);
2229 oreg = inb(cm->iobase + reg.left_reg);
2230 val = (oreg >> reg.left_shift) & reg.mask;
2231 if (reg.invert)
2232 val = reg.mask - val;
2233 ucontrol->value.integer.value[0] = val;
2234 if (reg.stereo) {
2235 val = (oreg >> reg.right_shift) & reg.mask;
2236 if (reg.invert)
2237 val = reg.mask - val;
2238 ucontrol->value.integer.value[1] = val;
2239 }
2240 spin_unlock_irq(&cm->reg_lock);
2241 return 0;
2242}
2243
2244static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245 struct snd_ctl_elem_value *ucontrol)
2246{
2247 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248 struct cmipci_sb_reg reg;
2249 unsigned char oreg, nreg, val;
2250
2251 cmipci_sb_reg_decode(®, kcontrol->private_value);
2252 spin_lock_irq(&cm->reg_lock);
2253 oreg = inb(cm->iobase + reg.left_reg);
2254 val = ucontrol->value.integer.value[0] & reg.mask;
2255 if (reg.invert)
2256 val = reg.mask - val;
2257 nreg = oreg & ~(reg.mask << reg.left_shift);
2258 nreg |= (val << reg.left_shift);
2259 if (reg.stereo) {
2260 val = ucontrol->value.integer.value[1] & reg.mask;
2261 if (reg.invert)
2262 val = reg.mask - val;
2263 nreg &= ~(reg.mask << reg.right_shift);
2264 nreg |= (val << reg.right_shift);
2265 }
2266 outb(nreg, cm->iobase + reg.left_reg);
2267 spin_unlock_irq(&cm->reg_lock);
2268 return (nreg != oreg);
2269}
2270
2271/*
2272 * special case - check mixer sensitivity
2273 */
2274static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275 struct snd_ctl_elem_value *ucontrol)
2276{
2277 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279}
2280
2281static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_value *ucontrol)
2283{
2284 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285 if (cm->mixer_insensitive) {
2286 /* ignored */
2287 return 0;
2288 }
2289 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290}
2291
2292
2293static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298 { /* switch with sensitivity */
2299 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300 .name = "PCM Playback Switch",
2301 .info = snd_cmipci_info_native_mixer,
2302 .get = snd_cmipci_get_native_mixer_sensitive,
2303 .put = snd_cmipci_put_native_mixer_sensitive,
2304 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305 },
2306 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329};
2330
2331/*
2332 * other switches
2333 */
2334
2335struct cmipci_switch_args {
2336 int reg; /* register index */
2337 unsigned int mask; /* mask bits */
2338 unsigned int mask_on; /* mask bits to turn on */
2339 unsigned int is_byte: 1; /* byte access? */
2340 unsigned int ac3_sensitive: 1; /* access forbidden during
2341 * non-audio operation?
2342 */
2343};
2344
2345#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2346
2347static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348 struct snd_ctl_elem_value *ucontrol,
2349 struct cmipci_switch_args *args)
2350{
2351 unsigned int val;
2352 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354 spin_lock_irq(&cm->reg_lock);
2355 if (args->ac3_sensitive && cm->mixer_insensitive) {
2356 ucontrol->value.integer.value[0] = 0;
2357 spin_unlock_irq(&cm->reg_lock);
2358 return 0;
2359 }
2360 if (args->is_byte)
2361 val = inb(cm->iobase + args->reg);
2362 else
2363 val = snd_cmipci_read(cm, args->reg);
2364 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365 spin_unlock_irq(&cm->reg_lock);
2366 return 0;
2367}
2368
2369static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370 struct snd_ctl_elem_value *ucontrol)
2371{
2372 struct cmipci_switch_args *args;
2373 args = (struct cmipci_switch_args *)kcontrol->private_value;
2374 if (snd_BUG_ON(!args))
2375 return -EINVAL;
2376 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377}
2378
2379static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380 struct snd_ctl_elem_value *ucontrol,
2381 struct cmipci_switch_args *args)
2382{
2383 unsigned int val;
2384 int change;
2385 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387 spin_lock_irq(&cm->reg_lock);
2388 if (args->ac3_sensitive && cm->mixer_insensitive) {
2389 /* ignored */
2390 spin_unlock_irq(&cm->reg_lock);
2391 return 0;
2392 }
2393 if (args->is_byte)
2394 val = inb(cm->iobase + args->reg);
2395 else
2396 val = snd_cmipci_read(cm, args->reg);
2397 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2398 args->mask_on : (args->mask & ~args->mask_on));
2399 if (change) {
2400 val &= ~args->mask;
2401 if (ucontrol->value.integer.value[0])
2402 val |= args->mask_on;
2403 else
2404 val |= (args->mask & ~args->mask_on);
2405 if (args->is_byte)
2406 outb((unsigned char)val, cm->iobase + args->reg);
2407 else
2408 snd_cmipci_write(cm, args->reg, val);
2409 }
2410 spin_unlock_irq(&cm->reg_lock);
2411 return change;
2412}
2413
2414static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415 struct snd_ctl_elem_value *ucontrol)
2416{
2417 struct cmipci_switch_args *args;
2418 args = (struct cmipci_switch_args *)kcontrol->private_value;
2419 if (snd_BUG_ON(!args))
2420 return -EINVAL;
2421 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422}
2423
2424#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426 .reg = xreg, \
2427 .mask = xmask, \
2428 .mask_on = xmask_on, \
2429 .is_byte = xis_byte, \
2430 .ac3_sensitive = xac3, \
2431}
2432
2433#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436#if 0 /* these will be controlled in pcm device */
2437DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439#endif
2440DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454#if CM_CH_PLAY == 1
2455DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456#else
2457DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458#endif
2459DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465#define DEFINE_SWITCH(sname, stype, sarg) \
2466{ .name = sname, \
2467 .iface = stype, \
2468 .info = snd_cmipci_uswitch_info, \
2469 .get = snd_cmipci_uswitch_get, \
2470 .put = snd_cmipci_uswitch_put, \
2471 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472}
2473
2474#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478/*
2479 * callbacks for spdif output switch
2480 * needs toggle two registers..
2481 */
2482static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483 struct snd_ctl_elem_value *ucontrol)
2484{
2485 int changed;
2486 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488 return changed;
2489}
2490
2491static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492 struct snd_ctl_elem_value *ucontrol)
2493{
2494 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495 int changed;
2496 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498 if (changed) {
2499 if (ucontrol->value.integer.value[0]) {
2500 if (chip->spdif_playback_avail)
2501 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502 } else {
2503 if (chip->spdif_playback_avail)
2504 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505 }
2506 }
2507 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508 return changed;
2509}
2510
2511
2512static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513 struct snd_ctl_elem_info *uinfo)
2514{
2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516 static const char *const texts[3] = {
2517 "Line-In", "Rear Output", "Bass Output"
2518 };
2519
2520 return snd_ctl_enum_info(uinfo, 1,
2521 cm->chip_version >= 39 ? 3 : 2, texts);
2522}
2523
2524static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525{
2526 unsigned int val;
2527 if (cm->chip_version >= 39) {
2528 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530 return 2;
2531 }
2532 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533 if (val & CM_REAR2LIN)
2534 return 1;
2535 return 0;
2536}
2537
2538static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539 struct snd_ctl_elem_value *ucontrol)
2540{
2541 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543 spin_lock_irq(&cm->reg_lock);
2544 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545 spin_unlock_irq(&cm->reg_lock);
2546 return 0;
2547}
2548
2549static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550 struct snd_ctl_elem_value *ucontrol)
2551{
2552 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553 int change;
2554
2555 spin_lock_irq(&cm->reg_lock);
2556 if (ucontrol->value.enumerated.item[0] == 2)
2557 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558 else
2559 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560 if (ucontrol->value.enumerated.item[0] == 1)
2561 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562 else
2563 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564 spin_unlock_irq(&cm->reg_lock);
2565 return change;
2566}
2567
2568static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569 struct snd_ctl_elem_info *uinfo)
2570{
2571 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574}
2575
2576static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577 struct snd_ctl_elem_value *ucontrol)
2578{
2579 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580 /* same bit as spdi_phase */
2581 spin_lock_irq(&cm->reg_lock);
2582 ucontrol->value.enumerated.item[0] =
2583 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584 spin_unlock_irq(&cm->reg_lock);
2585 return 0;
2586}
2587
2588static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589 struct snd_ctl_elem_value *ucontrol)
2590{
2591 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592 int change;
2593
2594 spin_lock_irq(&cm->reg_lock);
2595 if (ucontrol->value.enumerated.item[0])
2596 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597 else
2598 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599 spin_unlock_irq(&cm->reg_lock);
2600 return change;
2601}
2602
2603/* both for CM8338/8738 */
2604static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606 {
2607 .name = "Line-In Mode",
2608 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609 .info = snd_cmipci_line_in_mode_info,
2610 .get = snd_cmipci_line_in_mode_get,
2611 .put = snd_cmipci_line_in_mode_put,
2612 },
2613};
2614
2615/* for non-multichannel chips */
2616static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619/* only for CM8738 */
2620static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621#if 0 /* controlled in pcm device */
2622 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625#endif
2626 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627 { .name = "IEC958 Output Switch",
2628 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629 .info = snd_cmipci_uswitch_info,
2630 .get = snd_cmipci_spdout_enable_get,
2631 .put = snd_cmipci_spdout_enable_put,
2632 },
2633 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639};
2640
2641/* only for model 033/037 */
2642static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646};
2647
2648/* only for model 039 or later */
2649static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652 {
2653 .name = "Mic-In Mode",
2654 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655 .info = snd_cmipci_mic_in_mode_info,
2656 .get = snd_cmipci_mic_in_mode_get,
2657 .put = snd_cmipci_mic_in_mode_put,
2658 }
2659};
2660
2661/* card control switches */
2662static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667{
2668 struct snd_card *card;
2669 struct snd_kcontrol_new *sw;
2670 struct snd_kcontrol *kctl;
2671 unsigned int idx;
2672 int err;
2673
2674 if (snd_BUG_ON(!cm || !cm->card))
2675 return -EINVAL;
2676
2677 card = cm->card;
2678
2679 strcpy(card->mixername, "CMedia PCI");
2680
2681 spin_lock_irq(&cm->reg_lock);
2682 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2683 spin_unlock_irq(&cm->reg_lock);
2684
2685 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686 if (cm->chip_version == 68) { // 8768 has no PCM volume
2687 if (!strcmp(snd_cmipci_mixers[idx].name,
2688 "PCM Playback Volume"))
2689 continue;
2690 }
2691 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692 return err;
2693 }
2694
2695 /* mixer switches */
2696 sw = snd_cmipci_mixer_switches;
2697 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699 if (err < 0)
2700 return err;
2701 }
2702 if (! cm->can_multi_ch) {
2703 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704 if (err < 0)
2705 return err;
2706 }
2707 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709 sw = snd_cmipci_8738_mixer_switches;
2710 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712 if (err < 0)
2713 return err;
2714 }
2715 if (cm->can_ac3_hw) {
2716 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717 return err;
2718 kctl->id.device = pcm_spdif_device;
2719 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720 return err;
2721 kctl->id.device = pcm_spdif_device;
2722 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723 return err;
2724 kctl->id.device = pcm_spdif_device;
2725 }
2726 if (cm->chip_version <= 37) {
2727 sw = snd_cmipci_old_mixer_switches;
2728 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730 if (err < 0)
2731 return err;
2732 }
2733 }
2734 }
2735 if (cm->chip_version >= 39) {
2736 sw = snd_cmipci_extra_mixer_switches;
2737 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739 if (err < 0)
2740 return err;
2741 }
2742 }
2743
2744 /* card switches */
2745 /*
2746 * newer chips don't have the register bits to force modem link
2747 * detection; the bit that was FLINKON now mutes CH1
2748 */
2749 if (cm->chip_version < 39) {
2750 err = snd_ctl_add(cm->card,
2751 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752 if (err < 0)
2753 return err;
2754 }
2755
2756 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757 struct snd_ctl_elem_id elem_id;
2758 struct snd_kcontrol *ctl;
2759 memset(&elem_id, 0, sizeof(elem_id));
2760 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762 ctl = snd_ctl_find_id(cm->card, &elem_id);
2763 if (ctl)
2764 cm->mixer_res_ctl[idx] = ctl;
2765 }
2766
2767 return 0;
2768}
2769
2770
2771/*
2772 * proc interface
2773 */
2774
2775#ifdef CONFIG_PROC_FS
2776static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2777 struct snd_info_buffer *buffer)
2778{
2779 struct cmipci *cm = entry->private_data;
2780 int i, v;
2781
2782 snd_iprintf(buffer, "%s\n", cm->card->longname);
2783 for (i = 0; i < 0x94; i++) {
2784 if (i == 0x28)
2785 i = 0x90;
2786 v = inb(cm->iobase + i);
2787 if (i % 4 == 0)
2788 snd_iprintf(buffer, "\n%02x:", i);
2789 snd_iprintf(buffer, " %02x", v);
2790 }
2791 snd_iprintf(buffer, "\n");
2792}
2793
2794static void snd_cmipci_proc_init(struct cmipci *cm)
2795{
2796 struct snd_info_entry *entry;
2797
2798 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2799 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2800}
2801#else /* !CONFIG_PROC_FS */
2802static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2803#endif
2804
2805
2806static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2807 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2808 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2809 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2810 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2811 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2812 {0,},
2813};
2814
2815
2816/*
2817 * check chip version and capabilities
2818 * driver name is modified according to the chip model
2819 */
2820static void query_chip(struct cmipci *cm)
2821{
2822 unsigned int detect;
2823
2824 /* check reg 0Ch, bit 24-31 */
2825 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2826 if (! detect) {
2827 /* check reg 08h, bit 24-28 */
2828 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2829 switch (detect) {
2830 case 0:
2831 cm->chip_version = 33;
2832 if (cm->do_soft_ac3)
2833 cm->can_ac3_sw = 1;
2834 else
2835 cm->can_ac3_hw = 1;
2836 break;
2837 case CM_CHIP_037:
2838 cm->chip_version = 37;
2839 cm->can_ac3_hw = 1;
2840 break;
2841 default:
2842 cm->chip_version = 39;
2843 cm->can_ac3_hw = 1;
2844 break;
2845 }
2846 cm->max_channels = 2;
2847 } else {
2848 if (detect & CM_CHIP_039) {
2849 cm->chip_version = 39;
2850 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2851 cm->max_channels = 6;
2852 else
2853 cm->max_channels = 4;
2854 } else if (detect & CM_CHIP_8768) {
2855 cm->chip_version = 68;
2856 cm->max_channels = 8;
2857 cm->can_96k = 1;
2858 } else {
2859 cm->chip_version = 55;
2860 cm->max_channels = 6;
2861 cm->can_96k = 1;
2862 }
2863 cm->can_ac3_hw = 1;
2864 cm->can_multi_ch = 1;
2865 }
2866}
2867
2868#ifdef SUPPORT_JOYSTICK
2869static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2870{
2871 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2872 struct gameport *gp;
2873 struct resource *r = NULL;
2874 int i, io_port = 0;
2875
2876 if (joystick_port[dev] == 0)
2877 return -ENODEV;
2878
2879 if (joystick_port[dev] == 1) { /* auto-detect */
2880 for (i = 0; ports[i]; i++) {
2881 io_port = ports[i];
2882 r = request_region(io_port, 1, "CMIPCI gameport");
2883 if (r)
2884 break;
2885 }
2886 } else {
2887 io_port = joystick_port[dev];
2888 r = request_region(io_port, 1, "CMIPCI gameport");
2889 }
2890
2891 if (!r) {
2892 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2893 return -EBUSY;
2894 }
2895
2896 cm->gameport = gp = gameport_allocate_port();
2897 if (!gp) {
2898 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2899 release_and_free_resource(r);
2900 return -ENOMEM;
2901 }
2902 gameport_set_name(gp, "C-Media Gameport");
2903 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2904 gameport_set_dev_parent(gp, &cm->pci->dev);
2905 gp->io = io_port;
2906 gameport_set_port_data(gp, r);
2907
2908 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2909
2910 gameport_register_port(cm->gameport);
2911
2912 return 0;
2913}
2914
2915static void snd_cmipci_free_gameport(struct cmipci *cm)
2916{
2917 if (cm->gameport) {
2918 struct resource *r = gameport_get_port_data(cm->gameport);
2919
2920 gameport_unregister_port(cm->gameport);
2921 cm->gameport = NULL;
2922
2923 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2924 release_and_free_resource(r);
2925 }
2926}
2927#else
2928static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2929static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2930#endif
2931
2932static int snd_cmipci_free(struct cmipci *cm)
2933{
2934 if (cm->irq >= 0) {
2935 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2937 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2938 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2939 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2940 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2941 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2942
2943 /* reset mixer */
2944 snd_cmipci_mixer_write(cm, 0, 0);
2945
2946 free_irq(cm->irq, cm);
2947 }
2948
2949 snd_cmipci_free_gameport(cm);
2950 pci_release_regions(cm->pci);
2951 pci_disable_device(cm->pci);
2952 kfree(cm);
2953 return 0;
2954}
2955
2956static int snd_cmipci_dev_free(struct snd_device *device)
2957{
2958 struct cmipci *cm = device->device_data;
2959 return snd_cmipci_free(cm);
2960}
2961
2962static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2963{
2964 long iosynth;
2965 unsigned int val;
2966 struct snd_opl3 *opl3;
2967 int err;
2968
2969 if (!fm_port)
2970 goto disable_fm;
2971
2972 if (cm->chip_version >= 39) {
2973 /* first try FM regs in PCI port range */
2974 iosynth = cm->iobase + CM_REG_FM_PCI;
2975 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976 OPL3_HW_OPL3, 1, &opl3);
2977 } else {
2978 err = -EIO;
2979 }
2980 if (err < 0) {
2981 /* then try legacy ports */
2982 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2983 iosynth = fm_port;
2984 switch (iosynth) {
2985 case 0x3E8: val |= CM_FMSEL_3E8; break;
2986 case 0x3E0: val |= CM_FMSEL_3E0; break;
2987 case 0x3C8: val |= CM_FMSEL_3C8; break;
2988 case 0x388: val |= CM_FMSEL_388; break;
2989 default:
2990 goto disable_fm;
2991 }
2992 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2993 /* enable FM */
2994 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2995
2996 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2997 OPL3_HW_OPL3, 0, &opl3) < 0) {
2998 dev_err(cm->card->dev,
2999 "no OPL device at %#lx, skipping...\n",
3000 iosynth);
3001 goto disable_fm;
3002 }
3003 }
3004 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3005 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3006 return err;
3007 }
3008 return 0;
3009
3010 disable_fm:
3011 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3012 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3013 return 0;
3014}
3015
3016static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3017 int dev, struct cmipci **rcmipci)
3018{
3019 struct cmipci *cm;
3020 int err;
3021 static struct snd_device_ops ops = {
3022 .dev_free = snd_cmipci_dev_free,
3023 };
3024 unsigned int val;
3025 long iomidi = 0;
3026 int integrated_midi = 0;
3027 char modelstr[16];
3028 int pcm_index, pcm_spdif_index;
3029 static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3030 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3031 { },
3032 };
3033
3034 *rcmipci = NULL;
3035
3036 if ((err = pci_enable_device(pci)) < 0)
3037 return err;
3038
3039 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3040 if (cm == NULL) {
3041 pci_disable_device(pci);
3042 return -ENOMEM;
3043 }
3044
3045 spin_lock_init(&cm->reg_lock);
3046 mutex_init(&cm->open_mutex);
3047 cm->device = pci->device;
3048 cm->card = card;
3049 cm->pci = pci;
3050 cm->irq = -1;
3051 cm->channel[0].ch = 0;
3052 cm->channel[1].ch = 1;
3053 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3054
3055 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3056 kfree(cm);
3057 pci_disable_device(pci);
3058 return err;
3059 }
3060 cm->iobase = pci_resource_start(pci, 0);
3061
3062 if (request_irq(pci->irq, snd_cmipci_interrupt,
3063 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3064 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3065 snd_cmipci_free(cm);
3066 return -EBUSY;
3067 }
3068 cm->irq = pci->irq;
3069
3070 pci_set_master(cm->pci);
3071
3072 /*
3073 * check chip version, max channels and capabilities
3074 */
3075
3076 cm->chip_version = 0;
3077 cm->max_channels = 2;
3078 cm->do_soft_ac3 = soft_ac3[dev];
3079
3080 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3081 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3082 query_chip(cm);
3083 /* added -MCx suffix for chip supporting multi-channels */
3084 if (cm->can_multi_ch)
3085 sprintf(cm->card->driver + strlen(cm->card->driver),
3086 "-MC%d", cm->max_channels);
3087 else if (cm->can_ac3_sw)
3088 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3089
3090 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3091 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3092
3093#if CM_CH_PLAY == 1
3094 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3095#else
3096 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3097#endif
3098
3099 /* initialize codec registers */
3100 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3101 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3102 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3103 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3104 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3105 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3106 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3107
3108 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3109 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3110#if CM_CH_PLAY == 1
3111 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3112#else
3113 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3114#endif
3115 if (cm->chip_version) {
3116 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3117 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3118 }
3119 /* Set Bus Master Request */
3120 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3121
3122 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3123 switch (pci->device) {
3124 case PCI_DEVICE_ID_CMEDIA_CM8738:
3125 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3126 if (!pci_dev_present(intel_82437vx))
3127 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3128 break;
3129 default:
3130 break;
3131 }
3132
3133 if (cm->chip_version < 68) {
3134 val = pci->device < 0x110 ? 8338 : 8738;
3135 } else {
3136 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3137 case 0:
3138 val = 8769;
3139 break;
3140 case 2:
3141 val = 8762;
3142 break;
3143 default:
3144 switch ((pci->subsystem_vendor << 16) |
3145 pci->subsystem_device) {
3146 case 0x13f69761:
3147 case 0x584d3741:
3148 case 0x584d3751:
3149 case 0x584d3761:
3150 case 0x584d3771:
3151 case 0x72848384:
3152 val = 8770;
3153 break;
3154 default:
3155 val = 8768;
3156 break;
3157 }
3158 }
3159 }
3160 sprintf(card->shortname, "C-Media CMI%d", val);
3161 if (cm->chip_version < 68)
3162 sprintf(modelstr, " (model %d)", cm->chip_version);
3163 else
3164 modelstr[0] = '\0';
3165 sprintf(card->longname, "%s%s at %#lx, irq %i",
3166 card->shortname, modelstr, cm->iobase, cm->irq);
3167
3168 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3169 snd_cmipci_free(cm);
3170 return err;
3171 }
3172
3173 if (cm->chip_version >= 39) {
3174 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3175 if (val != 0x00 && val != 0xff) {
3176 iomidi = cm->iobase + CM_REG_MPU_PCI;
3177 integrated_midi = 1;
3178 }
3179 }
3180 if (!integrated_midi) {
3181 val = 0;
3182 iomidi = mpu_port[dev];
3183 switch (iomidi) {
3184 case 0x320: val = CM_VMPU_320; break;
3185 case 0x310: val = CM_VMPU_310; break;
3186 case 0x300: val = CM_VMPU_300; break;
3187 case 0x330: val = CM_VMPU_330; break;
3188 default:
3189 iomidi = 0; break;
3190 }
3191 if (iomidi > 0) {
3192 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3193 /* enable UART */
3194 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3195 if (inb(iomidi + 1) == 0xff) {
3196 dev_err(cm->card->dev,
3197 "cannot enable MPU-401 port at %#lx\n",
3198 iomidi);
3199 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3200 CM_UART_EN);
3201 iomidi = 0;
3202 }
3203 }
3204 }
3205
3206 if (cm->chip_version < 68) {
3207 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3208 if (err < 0)
3209 return err;
3210 }
3211
3212 /* reset mixer */
3213 snd_cmipci_mixer_write(cm, 0, 0);
3214
3215 snd_cmipci_proc_init(cm);
3216
3217 /* create pcm devices */
3218 pcm_index = pcm_spdif_index = 0;
3219 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3220 return err;
3221 pcm_index++;
3222 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3223 return err;
3224 pcm_index++;
3225 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3226 pcm_spdif_index = pcm_index;
3227 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3228 return err;
3229 }
3230
3231 /* create mixer interface & switches */
3232 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3233 return err;
3234
3235 if (iomidi > 0) {
3236 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3237 iomidi,
3238 (integrated_midi ?
3239 MPU401_INFO_INTEGRATED : 0) |
3240 MPU401_INFO_IRQ_HOOK,
3241 -1, &cm->rmidi)) < 0) {
3242 dev_err(cm->card->dev,
3243 "no UART401 device at 0x%lx\n", iomidi);
3244 }
3245 }
3246
3247#ifdef USE_VAR48KRATE
3248 for (val = 0; val < ARRAY_SIZE(rates); val++)
3249 snd_cmipci_set_pll(cm, rates[val], val);
3250
3251 /*
3252 * (Re-)Enable external switch spdo_48k
3253 */
3254 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3255#endif /* USE_VAR48KRATE */
3256
3257 if (snd_cmipci_create_gameport(cm, dev) < 0)
3258 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3259
3260 *rcmipci = cm;
3261 return 0;
3262}
3263
3264/*
3265 */
3266
3267MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3268
3269static int snd_cmipci_probe(struct pci_dev *pci,
3270 const struct pci_device_id *pci_id)
3271{
3272 static int dev;
3273 struct snd_card *card;
3274 struct cmipci *cm;
3275 int err;
3276
3277 if (dev >= SNDRV_CARDS)
3278 return -ENODEV;
3279 if (! enable[dev]) {
3280 dev++;
3281 return -ENOENT;
3282 }
3283
3284 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3285 0, &card);
3286 if (err < 0)
3287 return err;
3288
3289 switch (pci->device) {
3290 case PCI_DEVICE_ID_CMEDIA_CM8738:
3291 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3292 strcpy(card->driver, "CMI8738");
3293 break;
3294 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3295 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3296 strcpy(card->driver, "CMI8338");
3297 break;
3298 default:
3299 strcpy(card->driver, "CMIPCI");
3300 break;
3301 }
3302
3303 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3304 snd_card_free(card);
3305 return err;
3306 }
3307 card->private_data = cm;
3308
3309 if ((err = snd_card_register(card)) < 0) {
3310 snd_card_free(card);
3311 return err;
3312 }
3313 pci_set_drvdata(pci, card);
3314 dev++;
3315 return 0;
3316
3317}
3318
3319static void snd_cmipci_remove(struct pci_dev *pci)
3320{
3321 snd_card_free(pci_get_drvdata(pci));
3322}
3323
3324
3325#ifdef CONFIG_PM_SLEEP
3326/*
3327 * power management
3328 */
3329static unsigned char saved_regs[] = {
3330 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3331 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3332 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3333 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3334 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3335};
3336
3337static unsigned char saved_mixers[] = {
3338 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3339 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3340 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3341 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3342 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3343 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3344 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3345 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3346};
3347
3348static int snd_cmipci_suspend(struct device *dev)
3349{
3350 struct pci_dev *pci = to_pci_dev(dev);
3351 struct snd_card *card = dev_get_drvdata(dev);
3352 struct cmipci *cm = card->private_data;
3353 int i;
3354
3355 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3356
3357 snd_pcm_suspend_all(cm->pcm);
3358 snd_pcm_suspend_all(cm->pcm2);
3359 snd_pcm_suspend_all(cm->pcm_spdif);
3360
3361 /* save registers */
3362 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3364 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3366
3367 /* disable ints */
3368 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3369
3370 pci_disable_device(pci);
3371 pci_save_state(pci);
3372 pci_set_power_state(pci, PCI_D3hot);
3373 return 0;
3374}
3375
3376static int snd_cmipci_resume(struct device *dev)
3377{
3378 struct pci_dev *pci = to_pci_dev(dev);
3379 struct snd_card *card = dev_get_drvdata(dev);
3380 struct cmipci *cm = card->private_data;
3381 int i;
3382
3383 pci_set_power_state(pci, PCI_D0);
3384 pci_restore_state(pci);
3385 if (pci_enable_device(pci) < 0) {
3386 dev_err(dev, "pci_enable_device failed, disabling device\n");
3387 snd_card_disconnect(card);
3388 return -EIO;
3389 }
3390 pci_set_master(pci);
3391
3392 /* reset / initialize to a sane state */
3393 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3394 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3395 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3396 snd_cmipci_mixer_write(cm, 0, 0);
3397
3398 /* restore registers */
3399 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3400 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3401 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3402 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3403
3404 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3405 return 0;
3406}
3407
3408static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3409#define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3410#else
3411#define SND_CMIPCI_PM_OPS NULL
3412#endif /* CONFIG_PM_SLEEP */
3413
3414static struct pci_driver cmipci_driver = {
3415 .name = KBUILD_MODNAME,
3416 .id_table = snd_cmipci_ids,
3417 .probe = snd_cmipci_probe,
3418 .remove = snd_cmipci_remove,
3419 .driver = {
3420 .pm = SND_CMIPCI_PM_OPS,
3421 },
3422};
3423
3424module_pci_driver(cmipci_driver);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7/* Does not work. Warning may block system in capture mode */
8/* #define USE_VAR48KRATE */
9
10#include <linux/io.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/slab.h>
16#include <linux/gameport.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <sound/core.h>
20#include <sound/info.h>
21#include <sound/control.h>
22#include <sound/pcm.h>
23#include <sound/rawmidi.h>
24#include <sound/mpu401.h>
25#include <sound/opl3.h>
26#include <sound/sb.h>
27#include <sound/asoundef.h>
28#include <sound/initval.h>
29
30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32MODULE_LICENSE("GPL");
33
34#if IS_REACHABLE(CONFIG_GAMEPORT)
35#define SUPPORT_JOYSTICK 1
36#endif
37
38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44#ifdef SUPPORT_JOYSTICK
45static int joystick_port[SNDRV_CARDS];
46#endif
47
48module_param_array(index, int, NULL, 0444);
49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50module_param_array(id, charp, NULL, 0444);
51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52module_param_array(enable, bool, NULL, 0444);
53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57MODULE_PARM_DESC(fm_port, "FM port.");
58module_param_array(soft_ac3, bool, NULL, 0444);
59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60#ifdef SUPPORT_JOYSTICK
61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63#endif
64
65/*
66 * CM8x38 registers definition
67 */
68
69#define CM_REG_FUNCTRL0 0x00
70#define CM_RST_CH1 0x00080000
71#define CM_RST_CH0 0x00040000
72#define CM_CHEN1 0x00020000 /* ch1: enable */
73#define CM_CHEN0 0x00010000 /* ch0: enable */
74#define CM_PAUSE1 0x00000008 /* ch1: pause */
75#define CM_PAUSE0 0x00000004 /* ch0: pause */
76#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
77#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
78
79#define CM_REG_FUNCTRL1 0x04
80#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
81#define CM_DSFC_SHIFT 13
82#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
83#define CM_ASFC_SHIFT 10
84#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
85#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
86#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
87#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
88#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
89#define CM_BREQ 0x00000010 /* bus master enabled */
90#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
91#define CM_UART_EN 0x00000004 /* legacy UART */
92#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
93#define CM_ZVPORT 0x00000001 /* ZVPORT */
94
95#define CM_REG_CHFORMAT 0x08
96
97#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
98#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
99#define CM_CHB3D 0x20000000 /* 4 channels */
100
101#define CM_CHIP_MASK1 0x1f000000
102#define CM_CHIP_037 0x01000000
103#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
104#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
105#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
106#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
107#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
108#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
109/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
110
111#define CM_ADCBITLEN_MASK 0x0000C000
112#define CM_ADCBITLEN_16 0x00000000
113#define CM_ADCBITLEN_15 0x00004000
114#define CM_ADCBITLEN_14 0x00008000
115#define CM_ADCBITLEN_13 0x0000C000
116
117#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
118#define CM_ADCDACLEN_060 0x00000000
119#define CM_ADCDACLEN_066 0x00001000
120#define CM_ADCDACLEN_130 0x00002000
121#define CM_ADCDACLEN_280 0x00003000
122
123#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
124#define CM_ADCDLEN_ORIGINAL 0x00000000
125#define CM_ADCDLEN_EXTRA 0x00001000
126#define CM_ADCDLEN_24K 0x00002000
127#define CM_ADCDLEN_WEIGHT 0x00003000
128
129#define CM_CH1_SRATE_176K 0x00000800
130#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
131#define CM_CH1_SRATE_88K 0x00000400
132#define CM_CH0_SRATE_176K 0x00000200
133#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
134#define CM_CH0_SRATE_88K 0x00000100
135#define CM_CH0_SRATE_128K 0x00000300
136#define CM_CH0_SRATE_MASK 0x00000300
137
138#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
139#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
140#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
141#define CM_SPDLOCKED 0x00000010
142
143#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
144#define CM_CH1FMT_SHIFT 2
145#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
146#define CM_CH0FMT_SHIFT 0
147
148#define CM_REG_INT_HLDCLR 0x0C
149#define CM_CHIP_MASK2 0xff000000
150#define CM_CHIP_8768 0x20000000
151#define CM_CHIP_055 0x08000000
152#define CM_CHIP_039 0x04000000
153#define CM_CHIP_039_6CH 0x01000000
154#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
155#define CM_TDMA_INT_EN 0x00040000
156#define CM_CH1_INT_EN 0x00020000
157#define CM_CH0_INT_EN 0x00010000
158
159#define CM_REG_INT_STATUS 0x10
160#define CM_INTR 0x80000000
161#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
162#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
163#define CM_UARTINT 0x00010000
164#define CM_LTDMAINT 0x00008000
165#define CM_HTDMAINT 0x00004000
166#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
167#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
168#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
169#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
170#define CM_CH1BUSY 0x00000008
171#define CM_CH0BUSY 0x00000004
172#define CM_CHINT1 0x00000002
173#define CM_CHINT0 0x00000001
174
175#define CM_REG_LEGACY_CTRL 0x14
176#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
177#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
178#define CM_VMPU_330 0x00000000
179#define CM_VMPU_320 0x20000000
180#define CM_VMPU_310 0x40000000
181#define CM_VMPU_300 0x60000000
182#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
183#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
184#define CM_VSBSEL_220 0x00000000
185#define CM_VSBSEL_240 0x04000000
186#define CM_VSBSEL_260 0x08000000
187#define CM_VSBSEL_280 0x0C000000
188#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
189#define CM_FMSEL_388 0x00000000
190#define CM_FMSEL_3C8 0x01000000
191#define CM_FMSEL_3E0 0x02000000
192#define CM_FMSEL_3E8 0x03000000
193#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
194#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
195#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
196#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
197#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
199#define CM_C_EECS 0x00040000
200#define CM_C_EEDI46 0x00020000
201#define CM_C_EECK46 0x00010000
202#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
203#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
204#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
205#define CM_EXBASEN 0x00001000 /* external bass input enable */
206
207#define CM_REG_MISC_CTRL 0x18
208#define CM_PWD 0x80000000 /* power down */
209#define CM_RESET 0x40000000
210#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
211#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
212#define CM_TXVX 0x08000000 /* model 037? */
213#define CM_N4SPK3D 0x04000000 /* copy front to rear */
214#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
215#define CM_SPDIF48K 0x01000000 /* write */
216#define CM_SPATUS48K 0x01000000 /* read */
217#define CM_ENDBDAC 0x00800000 /* enable double dac */
218#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
219#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
220#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
221#define CM_FM_EN 0x00080000 /* enable legacy FM */
222#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
223#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
224#define CM_VIDWPDSB 0x00010000 /* model 037? */
225#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
226#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
227#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
228#define CM_VIDWPPRT 0x00002000 /* model 037? */
229#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
230#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
231#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
232#define CM_ENCENTER 0x00000080
233#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
234#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
235#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
236#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
237#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
238#define CM_UPDDMA_2048 0x00000000
239#define CM_UPDDMA_1024 0x00000004
240#define CM_UPDDMA_512 0x00000008
241#define CM_UPDDMA_256 0x0000000C
242#define CM_TWAIT_MASK 0x00000003 /* model 037 */
243#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
245
246#define CM_REG_TDMA_POSITION 0x1C
247#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
248#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
249
250 /* byte */
251#define CM_REG_MIXER0 0x20
252#define CM_REG_SBVR 0x20 /* write: sb16 version */
253#define CM_REG_DEV 0x20 /* read: hardware device version */
254
255#define CM_REG_MIXER21 0x21
256#define CM_UNKNOWN_21_MASK 0x78 /* ? */
257#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
258#define CM_PROINV 0x02 /* SBPro left/right channel switching */
259#define CM_X_SB16 0x01 /* SB16 compatible */
260
261#define CM_REG_SB16_DATA 0x22
262#define CM_REG_SB16_ADDR 0x23
263
264#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
265#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
267#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
268
269#define CM_REG_MIXER1 0x24
270#define CM_FMMUTE 0x80 /* mute FM */
271#define CM_FMMUTE_SHIFT 7
272#define CM_WSMUTE 0x40 /* mute PCM */
273#define CM_WSMUTE_SHIFT 6
274#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
275#define CM_REAR2LIN_SHIFT 5
276#define CM_REAR2FRONT 0x10 /* exchange rear/front */
277#define CM_REAR2FRONT_SHIFT 4
278#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
279#define CM_WAVEINL_SHIFT 3
280#define CM_WAVEINR 0x04 /* digical wave rec. right */
281#define CM_WAVEINR_SHIFT 2
282#define CM_X3DEN 0x02 /* 3D surround enable */
283#define CM_X3DEN_SHIFT 1
284#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
285#define CM_CDPLAY_SHIFT 0
286
287#define CM_REG_MIXER2 0x25
288#define CM_RAUXREN 0x80 /* AUX right capture */
289#define CM_RAUXREN_SHIFT 7
290#define CM_RAUXLEN 0x40 /* AUX left capture */
291#define CM_RAUXLEN_SHIFT 6
292#define CM_VAUXRM 0x20 /* AUX right mute */
293#define CM_VAUXRM_SHIFT 5
294#define CM_VAUXLM 0x10 /* AUX left mute */
295#define CM_VAUXLM_SHIFT 4
296#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
297#define CM_VADMIC_SHIFT 1
298#define CM_MICGAINZ 0x01 /* mic boost */
299#define CM_MICGAINZ_SHIFT 0
300
301#define CM_REG_MIXER3 0x24
302#define CM_REG_AUX_VOL 0x26
303#define CM_VAUXL_MASK 0xf0
304#define CM_VAUXR_MASK 0x0f
305
306#define CM_REG_MISC 0x27
307#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
308#define CM_XGPO1 0x20
309// #define CM_XGPBIO 0x04
310#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
311#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
312#define CM_SPDVALID 0x02 /* spdif input valid check */
313#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
314
315#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
316/*
317 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
318 * or identical with AC97 codec?
319 */
320#define CM_REG_EXTERN_CODEC CM_REG_AC97
321
322/*
323 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
324 */
325#define CM_REG_MPU_PCI 0x40
326
327/*
328 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
329 */
330#define CM_REG_FM_PCI 0x50
331
332/*
333 * access from SB-mixer port
334 */
335#define CM_REG_EXTENT_IND 0xf0
336#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
337#define CM_VPHONE_SHIFT 5
338#define CM_VPHOM 0x10 /* Phone mute control */
339#define CM_VSPKM 0x08 /* Speaker mute control, default high */
340#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
341#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
342#define CM_VADMIC3 0x01 /* Mic record boost */
343
344/*
345 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
346 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
347 * unit (readonly?).
348 */
349#define CM_REG_PLL 0xf8
350
351/*
352 * extended registers
353 */
354#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
355#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
356#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
357#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
358
359#define CM_REG_EXT_MISC 0x90
360#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
361#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
362#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
363#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
364#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
365#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
366#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
367#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
368
369/*
370 * size of i/o region
371 */
372#define CM_EXTENT_CODEC 0x100
373#define CM_EXTENT_MIDI 0x2
374#define CM_EXTENT_SYNTH 0x4
375
376
377/*
378 * channels for playback / capture
379 */
380#define CM_CH_PLAY 0
381#define CM_CH_CAPT 1
382
383/*
384 * flags to check device open/close
385 */
386#define CM_OPEN_NONE 0
387#define CM_OPEN_CH_MASK 0x01
388#define CM_OPEN_DAC 0x10
389#define CM_OPEN_ADC 0x20
390#define CM_OPEN_SPDIF 0x40
391#define CM_OPEN_MCHAN 0x80
392#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
393#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
394#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
395#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
396#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
397#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
398
399
400#if CM_CH_PLAY == 1
401#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
402#define CM_PLAYBACK_SPDF CM_SPDF_1
403#define CM_CAPTURE_SPDF CM_SPDF_0
404#else
405#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
406#define CM_PLAYBACK_SPDF CM_SPDF_0
407#define CM_CAPTURE_SPDF CM_SPDF_1
408#endif
409
410
411/*
412 * driver data
413 */
414
415struct cmipci_pcm {
416 struct snd_pcm_substream *substream;
417 u8 running; /* dac/adc running? */
418 u8 fmt; /* format bits */
419 u8 is_dac;
420 u8 needs_silencing;
421 unsigned int dma_size; /* in frames */
422 unsigned int shift;
423 unsigned int ch; /* channel (0/1) */
424 unsigned int offset; /* physical address of the buffer */
425};
426
427/* mixer elements toggled/resumed during ac3 playback */
428struct cmipci_mixer_auto_switches {
429 const char *name; /* switch to toggle */
430 int toggle_on; /* value to change when ac3 mode */
431};
432static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
433 {"PCM Playback Switch", 0},
434 {"IEC958 Output Switch", 1},
435 {"IEC958 Mix Analog", 0},
436 // {"IEC958 Out To DAC", 1}, // no longer used
437 {"IEC958 Loop", 0},
438};
439#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
440
441struct cmipci {
442 struct snd_card *card;
443
444 struct pci_dev *pci;
445 unsigned int device; /* device ID */
446 int irq;
447
448 unsigned long iobase;
449 unsigned int ctrl; /* FUNCTRL0 current value */
450
451 struct snd_pcm *pcm; /* DAC/ADC PCM */
452 struct snd_pcm *pcm2; /* 2nd DAC */
453 struct snd_pcm *pcm_spdif; /* SPDIF */
454
455 int chip_version;
456 int max_channels;
457 unsigned int can_ac3_sw: 1;
458 unsigned int can_ac3_hw: 1;
459 unsigned int can_multi_ch: 1;
460 unsigned int can_96k: 1; /* samplerate above 48k */
461 unsigned int do_soft_ac3: 1;
462
463 unsigned int spdif_playback_avail: 1; /* spdif ready? */
464 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
465 int spdif_counter; /* for software AC3 */
466
467 unsigned int dig_status;
468 unsigned int dig_pcm_status;
469
470 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
471
472 int opened[2]; /* open mode */
473 struct mutex open_mutex;
474
475 unsigned int mixer_insensitive: 1;
476 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
477 int mixer_res_status[CM_SAVED_MIXERS];
478
479 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
480
481 /* external MIDI */
482 struct snd_rawmidi *rmidi;
483
484#ifdef SUPPORT_JOYSTICK
485 struct gameport *gameport;
486#endif
487
488 spinlock_t reg_lock;
489
490#ifdef CONFIG_PM_SLEEP
491 unsigned int saved_regs[0x20];
492 unsigned char saved_mixers[0x20];
493#endif
494};
495
496
497/* read/write operations for dword register */
498static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
499{
500 outl(data, cm->iobase + cmd);
501}
502
503static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
504{
505 return inl(cm->iobase + cmd);
506}
507
508/* read/write operations for word register */
509static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
510{
511 outw(data, cm->iobase + cmd);
512}
513
514static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
515{
516 return inw(cm->iobase + cmd);
517}
518
519/* read/write operations for byte register */
520static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
521{
522 outb(data, cm->iobase + cmd);
523}
524
525static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
526{
527 return inb(cm->iobase + cmd);
528}
529
530/* bit operations for dword register */
531static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
532{
533 unsigned int val, oval;
534 val = oval = inl(cm->iobase + cmd);
535 val |= flag;
536 if (val == oval)
537 return 0;
538 outl(val, cm->iobase + cmd);
539 return 1;
540}
541
542static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
543{
544 unsigned int val, oval;
545 val = oval = inl(cm->iobase + cmd);
546 val &= ~flag;
547 if (val == oval)
548 return 0;
549 outl(val, cm->iobase + cmd);
550 return 1;
551}
552
553/* bit operations for byte register */
554static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
555{
556 unsigned char val, oval;
557 val = oval = inb(cm->iobase + cmd);
558 val |= flag;
559 if (val == oval)
560 return 0;
561 outb(val, cm->iobase + cmd);
562 return 1;
563}
564
565static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
566{
567 unsigned char val, oval;
568 val = oval = inb(cm->iobase + cmd);
569 val &= ~flag;
570 if (val == oval)
571 return 0;
572 outb(val, cm->iobase + cmd);
573 return 1;
574}
575
576
577/*
578 * PCM interface
579 */
580
581/*
582 * calculate frequency
583 */
584
585static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
586
587static unsigned int snd_cmipci_rate_freq(unsigned int rate)
588{
589 unsigned int i;
590
591 for (i = 0; i < ARRAY_SIZE(rates); i++) {
592 if (rates[i] == rate)
593 return i;
594 }
595 snd_BUG();
596 return 0;
597}
598
599#ifdef USE_VAR48KRATE
600/*
601 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
602 * does it this way .. maybe not. Never get any information from C-Media about
603 * that <werner@suse.de>.
604 */
605static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
606{
607 unsigned int delta, tolerance;
608 int xm, xn, xr;
609
610 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
611 rate <<= 1;
612 *n = -1;
613 if (*r > 0xff)
614 goto out;
615 tolerance = rate*CM_TOLERANCE_RATE;
616
617 for (xn = (1+2); xn < (0x1f+2); xn++) {
618 for (xm = (1+2); xm < (0xff+2); xm++) {
619 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
620
621 if (xr < rate)
622 delta = rate - xr;
623 else
624 delta = xr - rate;
625
626 /*
627 * If we found one, remember this,
628 * and try to find a closer one
629 */
630 if (delta < tolerance) {
631 tolerance = delta;
632 *m = xm - 2;
633 *n = xn - 2;
634 }
635 }
636 }
637out:
638 return (*n > -1);
639}
640
641/*
642 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
643 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
644 * at the register CM_REG_FUNCTRL1 (0x04).
645 * Problem: other ways are also possible (any information about that?)
646 */
647static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
648{
649 unsigned int reg = CM_REG_PLL + slot;
650 /*
651 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
652 * for DSFC/ASFC (000 up to 111).
653 */
654
655 /* FIXME: Init (Do we've to set an other register first before programming?) */
656
657 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
658 snd_cmipci_write_b(cm, reg, rate>>8);
659 snd_cmipci_write_b(cm, reg, rate&0xff);
660
661 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
662}
663#endif /* USE_VAR48KRATE */
664
665static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
666 struct snd_pcm_hw_params *hw_params)
667{
668 struct cmipci *cm = snd_pcm_substream_chip(substream);
669 if (params_channels(hw_params) > 2) {
670 mutex_lock(&cm->open_mutex);
671 if (cm->opened[CM_CH_PLAY]) {
672 mutex_unlock(&cm->open_mutex);
673 return -EBUSY;
674 }
675 /* reserve the channel A */
676 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
677 mutex_unlock(&cm->open_mutex);
678 }
679 return 0;
680}
681
682static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
683{
684 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
685 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
686 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
687 udelay(10);
688}
689
690
691/*
692 */
693
694static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
695static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
696 .count = 3,
697 .list = hw_channels,
698 .mask = 0,
699};
700static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
701 .count = 4,
702 .list = hw_channels,
703 .mask = 0,
704};
705static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
706 .count = 5,
707 .list = hw_channels,
708 .mask = 0,
709};
710
711static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
712{
713 if (channels > 2) {
714 if (!cm->can_multi_ch || !rec->ch)
715 return -EINVAL;
716 if (rec->fmt != 0x03) /* stereo 16bit only */
717 return -EINVAL;
718 }
719
720 if (cm->can_multi_ch) {
721 spin_lock_irq(&cm->reg_lock);
722 if (channels > 2) {
723 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725 } else {
726 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
727 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
728 }
729 if (channels == 8)
730 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
731 else
732 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
733 if (channels == 6) {
734 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736 } else {
737 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
738 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
739 }
740 if (channels == 4)
741 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
742 else
743 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
744 spin_unlock_irq(&cm->reg_lock);
745 }
746 return 0;
747}
748
749
750/*
751 * prepare playback/capture channel
752 * channel to be used must have been set in rec->ch.
753 */
754static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
755 struct snd_pcm_substream *substream)
756{
757 unsigned int reg, freq, freq_ext, val;
758 unsigned int period_size;
759 struct snd_pcm_runtime *runtime = substream->runtime;
760
761 rec->fmt = 0;
762 rec->shift = 0;
763 if (snd_pcm_format_width(runtime->format) >= 16) {
764 rec->fmt |= 0x02;
765 if (snd_pcm_format_width(runtime->format) > 16)
766 rec->shift++; /* 24/32bit */
767 }
768 if (runtime->channels > 1)
769 rec->fmt |= 0x01;
770 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
771 dev_dbg(cm->card->dev, "cannot set dac channels\n");
772 return -EINVAL;
773 }
774
775 rec->offset = runtime->dma_addr;
776 /* buffer and period sizes in frame */
777 rec->dma_size = runtime->buffer_size << rec->shift;
778 period_size = runtime->period_size << rec->shift;
779 if (runtime->channels > 2) {
780 /* multi-channels */
781 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
782 period_size = (period_size * runtime->channels) / 2;
783 }
784
785 spin_lock_irq(&cm->reg_lock);
786
787 /* set buffer address */
788 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
789 snd_cmipci_write(cm, reg, rec->offset);
790 /* program sample counts */
791 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
792 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
793 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
794
795 /* set adc/dac flag */
796 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
797 if (rec->is_dac)
798 cm->ctrl &= ~val;
799 else
800 cm->ctrl |= val;
801 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
802 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
803
804 /* set sample rate */
805 freq = 0;
806 freq_ext = 0;
807 if (runtime->rate > 48000)
808 switch (runtime->rate) {
809 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
810 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
811 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
812 default: snd_BUG(); break;
813 }
814 else
815 freq = snd_cmipci_rate_freq(runtime->rate);
816 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
817 if (rec->ch) {
818 val &= ~CM_DSFC_MASK;
819 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
820 } else {
821 val &= ~CM_ASFC_MASK;
822 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
823 }
824 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
825 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
826
827 /* set format */
828 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
829 if (rec->ch) {
830 val &= ~CM_CH1FMT_MASK;
831 val |= rec->fmt << CM_CH1FMT_SHIFT;
832 } else {
833 val &= ~CM_CH0FMT_MASK;
834 val |= rec->fmt << CM_CH0FMT_SHIFT;
835 }
836 if (cm->can_96k) {
837 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
838 val |= freq_ext << (rec->ch * 2);
839 }
840 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
841 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
842
843 if (!rec->is_dac && cm->chip_version) {
844 if (runtime->rate > 44100)
845 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
846 else
847 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
848 }
849
850 rec->running = 0;
851 spin_unlock_irq(&cm->reg_lock);
852
853 return 0;
854}
855
856/*
857 * PCM trigger/stop
858 */
859static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
860 int cmd)
861{
862 unsigned int inthld, chen, reset, pause;
863 int result = 0;
864
865 inthld = CM_CH0_INT_EN << rec->ch;
866 chen = CM_CHEN0 << rec->ch;
867 reset = CM_RST_CH0 << rec->ch;
868 pause = CM_PAUSE0 << rec->ch;
869
870 spin_lock(&cm->reg_lock);
871 switch (cmd) {
872 case SNDRV_PCM_TRIGGER_START:
873 rec->running = 1;
874 /* set interrupt */
875 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
876 cm->ctrl |= chen;
877 /* enable channel */
878 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
879 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
880 break;
881 case SNDRV_PCM_TRIGGER_STOP:
882 rec->running = 0;
883 /* disable interrupt */
884 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
885 /* reset */
886 cm->ctrl &= ~chen;
887 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
888 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
889 rec->needs_silencing = rec->is_dac;
890 break;
891 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
892 case SNDRV_PCM_TRIGGER_SUSPEND:
893 cm->ctrl |= pause;
894 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
895 break;
896 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
897 case SNDRV_PCM_TRIGGER_RESUME:
898 cm->ctrl &= ~pause;
899 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
900 break;
901 default:
902 result = -EINVAL;
903 break;
904 }
905 spin_unlock(&cm->reg_lock);
906 return result;
907}
908
909/*
910 * return the current pointer
911 */
912static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
913 struct snd_pcm_substream *substream)
914{
915 size_t ptr;
916 unsigned int reg, rem, tries;
917
918 if (!rec->running)
919 return 0;
920#if 1 // this seems better..
921 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
922 for (tries = 0; tries < 3; tries++) {
923 rem = snd_cmipci_read_w(cm, reg);
924 if (rem < rec->dma_size)
925 goto ok;
926 }
927 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
928 return SNDRV_PCM_POS_XRUN;
929ok:
930 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
931#else
932 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
933 ptr = snd_cmipci_read(cm, reg) - rec->offset;
934 ptr = bytes_to_frames(substream->runtime, ptr);
935#endif
936 if (substream->runtime->channels > 2)
937 ptr = (ptr * 2) / substream->runtime->channels;
938 return ptr;
939}
940
941/*
942 * playback
943 */
944
945static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
946 int cmd)
947{
948 struct cmipci *cm = snd_pcm_substream_chip(substream);
949 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
950}
951
952static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
953{
954 struct cmipci *cm = snd_pcm_substream_chip(substream);
955 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
956}
957
958
959
960/*
961 * capture
962 */
963
964static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
965 int cmd)
966{
967 struct cmipci *cm = snd_pcm_substream_chip(substream);
968 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
969}
970
971static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
972{
973 struct cmipci *cm = snd_pcm_substream_chip(substream);
974 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
975}
976
977
978/*
979 * hw preparation for spdif
980 */
981
982static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
983 struct snd_ctl_elem_info *uinfo)
984{
985 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
986 uinfo->count = 1;
987 return 0;
988}
989
990static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
991 struct snd_ctl_elem_value *ucontrol)
992{
993 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
994 int i;
995
996 spin_lock_irq(&chip->reg_lock);
997 for (i = 0; i < 4; i++)
998 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
999 spin_unlock_irq(&chip->reg_lock);
1000 return 0;
1001}
1002
1003static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1004 struct snd_ctl_elem_value *ucontrol)
1005{
1006 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1007 int i, change;
1008 unsigned int val;
1009
1010 val = 0;
1011 spin_lock_irq(&chip->reg_lock);
1012 for (i = 0; i < 4; i++)
1013 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1014 change = val != chip->dig_status;
1015 chip->dig_status = val;
1016 spin_unlock_irq(&chip->reg_lock);
1017 return change;
1018}
1019
1020static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1021{
1022 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1023 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1024 .info = snd_cmipci_spdif_default_info,
1025 .get = snd_cmipci_spdif_default_get,
1026 .put = snd_cmipci_spdif_default_put
1027};
1028
1029static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1030 struct snd_ctl_elem_info *uinfo)
1031{
1032 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1033 uinfo->count = 1;
1034 return 0;
1035}
1036
1037static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1038 struct snd_ctl_elem_value *ucontrol)
1039{
1040 ucontrol->value.iec958.status[0] = 0xff;
1041 ucontrol->value.iec958.status[1] = 0xff;
1042 ucontrol->value.iec958.status[2] = 0xff;
1043 ucontrol->value.iec958.status[3] = 0xff;
1044 return 0;
1045}
1046
1047static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1048{
1049 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1052 .info = snd_cmipci_spdif_mask_info,
1053 .get = snd_cmipci_spdif_mask_get,
1054};
1055
1056static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1057 struct snd_ctl_elem_info *uinfo)
1058{
1059 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1060 uinfo->count = 1;
1061 return 0;
1062}
1063
1064static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1065 struct snd_ctl_elem_value *ucontrol)
1066{
1067 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1068 int i;
1069
1070 spin_lock_irq(&chip->reg_lock);
1071 for (i = 0; i < 4; i++)
1072 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1073 spin_unlock_irq(&chip->reg_lock);
1074 return 0;
1075}
1076
1077static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1078 struct snd_ctl_elem_value *ucontrol)
1079{
1080 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1081 int i, change;
1082 unsigned int val;
1083
1084 val = 0;
1085 spin_lock_irq(&chip->reg_lock);
1086 for (i = 0; i < 4; i++)
1087 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1088 change = val != chip->dig_pcm_status;
1089 chip->dig_pcm_status = val;
1090 spin_unlock_irq(&chip->reg_lock);
1091 return change;
1092}
1093
1094static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1095{
1096 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1097 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1098 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1099 .info = snd_cmipci_spdif_stream_info,
1100 .get = snd_cmipci_spdif_stream_get,
1101 .put = snd_cmipci_spdif_stream_put
1102};
1103
1104/*
1105 */
1106
1107/* save mixer setting and mute for AC3 playback */
1108static int save_mixer_state(struct cmipci *cm)
1109{
1110 if (! cm->mixer_insensitive) {
1111 struct snd_ctl_elem_value *val;
1112 unsigned int i;
1113
1114 val = kmalloc(sizeof(*val), GFP_KERNEL);
1115 if (!val)
1116 return -ENOMEM;
1117 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1118 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1119 if (ctl) {
1120 int event;
1121 memset(val, 0, sizeof(*val));
1122 ctl->get(ctl, val);
1123 cm->mixer_res_status[i] = val->value.integer.value[0];
1124 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1125 event = SNDRV_CTL_EVENT_MASK_INFO;
1126 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1127 ctl->put(ctl, val); /* toggle */
1128 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1129 }
1130 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1131 snd_ctl_notify(cm->card, event, &ctl->id);
1132 }
1133 }
1134 kfree(val);
1135 cm->mixer_insensitive = 1;
1136 }
1137 return 0;
1138}
1139
1140
1141/* restore the previously saved mixer status */
1142static void restore_mixer_state(struct cmipci *cm)
1143{
1144 if (cm->mixer_insensitive) {
1145 struct snd_ctl_elem_value *val;
1146 unsigned int i;
1147
1148 val = kmalloc(sizeof(*val), GFP_KERNEL);
1149 if (!val)
1150 return;
1151 cm->mixer_insensitive = 0; /* at first clear this;
1152 otherwise the changes will be ignored */
1153 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1154 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1155 if (ctl) {
1156 int event;
1157
1158 memset(val, 0, sizeof(*val));
1159 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1160 ctl->get(ctl, val);
1161 event = SNDRV_CTL_EVENT_MASK_INFO;
1162 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1163 val->value.integer.value[0] = cm->mixer_res_status[i];
1164 ctl->put(ctl, val);
1165 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1166 }
1167 snd_ctl_notify(cm->card, event, &ctl->id);
1168 }
1169 }
1170 kfree(val);
1171 }
1172}
1173
1174/* spinlock held! */
1175static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1176{
1177 if (do_ac3) {
1178 /* AC3EN for 037 */
1179 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1180 /* AC3EN for 039 */
1181 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1182
1183 if (cm->can_ac3_hw) {
1184 /* SPD24SEL for 037, 0x02 */
1185 /* SPD24SEL for 039, 0x20, but cannot be set */
1186 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1187 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188 } else { /* can_ac3_sw */
1189 /* SPD32SEL for 037 & 039, 0x20 */
1190 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191 /* set 176K sample rate to fix 033 HW bug */
1192 if (cm->chip_version == 33) {
1193 if (rate >= 48000) {
1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1195 } else {
1196 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1197 }
1198 }
1199 }
1200
1201 } else {
1202 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1203 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1204
1205 if (cm->can_ac3_hw) {
1206 /* chip model >= 37 */
1207 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1208 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210 } else {
1211 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213 }
1214 } else {
1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1218 }
1219 }
1220}
1221
1222static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1223{
1224 int rate, err;
1225
1226 rate = subs->runtime->rate;
1227
1228 if (up && do_ac3) {
1229 err = save_mixer_state(cm);
1230 if (err < 0)
1231 return err;
1232 }
1233
1234 spin_lock_irq(&cm->reg_lock);
1235 cm->spdif_playback_avail = up;
1236 if (up) {
1237 /* they are controlled via "IEC958 Output Switch" */
1238 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1239 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1240 if (cm->spdif_playback_enabled)
1241 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1242 setup_ac3(cm, subs, do_ac3, rate);
1243
1244 if (rate == 48000 || rate == 96000)
1245 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1246 else
1247 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248 if (rate > 48000)
1249 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1250 else
1251 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252 } else {
1253 /* they are controlled via "IEC958 Output Switch" */
1254 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1255 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1256 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1257 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1258 setup_ac3(cm, subs, 0, 0);
1259 }
1260 spin_unlock_irq(&cm->reg_lock);
1261 return 0;
1262}
1263
1264
1265/*
1266 * preparation
1267 */
1268
1269/* playback - enable spdif only on the certain condition */
1270static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1271{
1272 struct cmipci *cm = snd_pcm_substream_chip(substream);
1273 int rate = substream->runtime->rate;
1274 int err, do_spdif, do_ac3 = 0;
1275
1276 do_spdif = (rate >= 44100 && rate <= 96000 &&
1277 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1278 substream->runtime->channels == 2);
1279 if (do_spdif && cm->can_ac3_hw)
1280 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1281 err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1282 if (err < 0)
1283 return err;
1284 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285}
1286
1287/* playback (via device #2) - enable spdif always */
1288static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289{
1290 struct cmipci *cm = snd_pcm_substream_chip(substream);
1291 int err, do_ac3;
1292
1293 if (cm->can_ac3_hw)
1294 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295 else
1296 do_ac3 = 1; /* doesn't matter */
1297 err = setup_spdif_playback(cm, substream, 1, do_ac3);
1298 if (err < 0)
1299 return err;
1300 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/*
1304 * Apparently, the samples last played on channel A stay in some buffer, even
1305 * after the channel is reset, and get added to the data for the rear DACs when
1306 * playing a multichannel stream on channel B. This is likely to generate
1307 * wraparounds and thus distortions.
1308 * To avoid this, we play at least one zero sample after the actual stream has
1309 * stopped.
1310 */
1311static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312{
1313 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314 unsigned int reg, val;
1315
1316 if (rec->needs_silencing && runtime && runtime->dma_area) {
1317 /* set up a small silence buffer */
1318 memset(runtime->dma_area, 0, PAGE_SIZE);
1319 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321 snd_cmipci_write(cm, reg, val);
1322
1323 /* configure for 16 bits, 2 channels, 8 kHz */
1324 if (runtime->channels > 2)
1325 set_dac_channels(cm, rec, 2);
1326 spin_lock_irq(&cm->reg_lock);
1327 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334 if (cm->can_96k)
1335 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337
1338 /* start stream (we don't need interrupts) */
1339 cm->ctrl |= CM_CHEN0 << rec->ch;
1340 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341 spin_unlock_irq(&cm->reg_lock);
1342
1343 msleep(1);
1344
1345 /* stop and reset stream */
1346 spin_lock_irq(&cm->reg_lock);
1347 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348 val = CM_RST_CH0 << rec->ch;
1349 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351 spin_unlock_irq(&cm->reg_lock);
1352
1353 rec->needs_silencing = 0;
1354 }
1355}
1356
1357static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358{
1359 struct cmipci *cm = snd_pcm_substream_chip(substream);
1360 setup_spdif_playback(cm, substream, 0, 0);
1361 restore_mixer_state(cm);
1362 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363 return 0;
1364}
1365
1366static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367{
1368 struct cmipci *cm = snd_pcm_substream_chip(substream);
1369 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370 return 0;
1371}
1372
1373/* capture */
1374static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375{
1376 struct cmipci *cm = snd_pcm_substream_chip(substream);
1377 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378}
1379
1380/* capture with spdif (via device #2) */
1381static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382{
1383 struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385 spin_lock_irq(&cm->reg_lock);
1386 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387 if (cm->can_96k) {
1388 if (substream->runtime->rate > 48000)
1389 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390 else
1391 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392 }
1393 if (snd_pcm_format_width(substream->runtime->format) > 16)
1394 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395 else
1396 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398 spin_unlock_irq(&cm->reg_lock);
1399
1400 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401}
1402
1403static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404{
1405 struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407 spin_lock_irq(&cm->reg_lock);
1408 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410 spin_unlock_irq(&cm->reg_lock);
1411
1412 return 0;
1413}
1414
1415
1416/*
1417 * interrupt handler
1418 */
1419static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420{
1421 struct cmipci *cm = dev_id;
1422 unsigned int status, mask = 0;
1423
1424 /* fastpath out, to ease interrupt sharing */
1425 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426 if (!(status & CM_INTR))
1427 return IRQ_NONE;
1428
1429 /* acknowledge interrupt */
1430 spin_lock(&cm->reg_lock);
1431 if (status & CM_CHINT0)
1432 mask |= CM_CH0_INT_EN;
1433 if (status & CM_CHINT1)
1434 mask |= CM_CH1_INT_EN;
1435 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437 spin_unlock(&cm->reg_lock);
1438
1439 if (cm->rmidi && (status & CM_UARTINT))
1440 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442 if (cm->pcm) {
1443 if ((status & CM_CHINT0) && cm->channel[0].running)
1444 snd_pcm_period_elapsed(cm->channel[0].substream);
1445 if ((status & CM_CHINT1) && cm->channel[1].running)
1446 snd_pcm_period_elapsed(cm->channel[1].substream);
1447 }
1448 return IRQ_HANDLED;
1449}
1450
1451/*
1452 * h/w infos
1453 */
1454
1455/* playback on channel A */
1456static const struct snd_pcm_hardware snd_cmipci_playback =
1457{
1458 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463 .rate_min = 5512,
1464 .rate_max = 48000,
1465 .channels_min = 1,
1466 .channels_max = 2,
1467 .buffer_bytes_max = (128*1024),
1468 .period_bytes_min = 64,
1469 .period_bytes_max = (128*1024),
1470 .periods_min = 2,
1471 .periods_max = 1024,
1472 .fifo_size = 0,
1473};
1474
1475/* capture on channel B */
1476static const struct snd_pcm_hardware snd_cmipci_capture =
1477{
1478 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483 .rate_min = 5512,
1484 .rate_max = 48000,
1485 .channels_min = 1,
1486 .channels_max = 2,
1487 .buffer_bytes_max = (128*1024),
1488 .period_bytes_min = 64,
1489 .period_bytes_max = (128*1024),
1490 .periods_min = 2,
1491 .periods_max = 1024,
1492 .fifo_size = 0,
1493};
1494
1495/* playback on channel B - stereo 16bit only? */
1496static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497{
1498 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1502 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503 .rate_min = 5512,
1504 .rate_max = 48000,
1505 .channels_min = 2,
1506 .channels_max = 2,
1507 .buffer_bytes_max = (128*1024),
1508 .period_bytes_min = 64,
1509 .period_bytes_max = (128*1024),
1510 .periods_min = 2,
1511 .periods_max = 1024,
1512 .fifo_size = 0,
1513};
1514
1515/* spdif playback on channel A */
1516static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517{
1518 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1522 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523 .rate_min = 44100,
1524 .rate_max = 48000,
1525 .channels_min = 2,
1526 .channels_max = 2,
1527 .buffer_bytes_max = (128*1024),
1528 .period_bytes_min = 64,
1529 .period_bytes_max = (128*1024),
1530 .periods_min = 2,
1531 .periods_max = 1024,
1532 .fifo_size = 0,
1533};
1534
1535/* spdif playback on channel A (32bit, IEC958 subframes) */
1536static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537{
1538 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543 .rate_min = 44100,
1544 .rate_max = 48000,
1545 .channels_min = 2,
1546 .channels_max = 2,
1547 .buffer_bytes_max = (128*1024),
1548 .period_bytes_min = 64,
1549 .period_bytes_max = (128*1024),
1550 .periods_min = 2,
1551 .periods_max = 1024,
1552 .fifo_size = 0,
1553};
1554
1555/* spdif capture on channel B */
1556static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557{
1558 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1562 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564 .rate_min = 44100,
1565 .rate_max = 48000,
1566 .channels_min = 2,
1567 .channels_max = 2,
1568 .buffer_bytes_max = (128*1024),
1569 .period_bytes_min = 64,
1570 .period_bytes_max = (128*1024),
1571 .periods_min = 2,
1572 .periods_max = 1024,
1573 .fifo_size = 0,
1574};
1575
1576static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577 32000, 44100, 48000, 88200, 96000, 128000 };
1578static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579 .count = ARRAY_SIZE(rate_constraints),
1580 .list = rate_constraints,
1581 .mask = 0,
1582};
1583
1584/*
1585 * check device open/close
1586 */
1587static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588{
1589 int ch = mode & CM_OPEN_CH_MASK;
1590
1591 /* FIXME: a file should wait until the device becomes free
1592 * when it's opened on blocking mode. however, since the current
1593 * pcm framework doesn't pass file pointer before actually opened,
1594 * we can't know whether blocking mode or not in open callback..
1595 */
1596 mutex_lock(&cm->open_mutex);
1597 if (cm->opened[ch]) {
1598 mutex_unlock(&cm->open_mutex);
1599 return -EBUSY;
1600 }
1601 cm->opened[ch] = mode;
1602 cm->channel[ch].substream = subs;
1603 if (! (mode & CM_OPEN_DAC)) {
1604 /* disable dual DAC mode */
1605 cm->channel[ch].is_dac = 0;
1606 spin_lock_irq(&cm->reg_lock);
1607 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608 spin_unlock_irq(&cm->reg_lock);
1609 }
1610 mutex_unlock(&cm->open_mutex);
1611 return 0;
1612}
1613
1614static void close_device_check(struct cmipci *cm, int mode)
1615{
1616 int ch = mode & CM_OPEN_CH_MASK;
1617
1618 mutex_lock(&cm->open_mutex);
1619 if (cm->opened[ch] == mode) {
1620 if (cm->channel[ch].substream) {
1621 snd_cmipci_ch_reset(cm, ch);
1622 cm->channel[ch].running = 0;
1623 cm->channel[ch].substream = NULL;
1624 }
1625 cm->opened[ch] = 0;
1626 if (! cm->channel[ch].is_dac) {
1627 /* enable dual DAC mode again */
1628 cm->channel[ch].is_dac = 1;
1629 spin_lock_irq(&cm->reg_lock);
1630 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631 spin_unlock_irq(&cm->reg_lock);
1632 }
1633 }
1634 mutex_unlock(&cm->open_mutex);
1635}
1636
1637/*
1638 */
1639
1640static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641{
1642 struct cmipci *cm = snd_pcm_substream_chip(substream);
1643 struct snd_pcm_runtime *runtime = substream->runtime;
1644 int err;
1645
1646 err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1647 if (err < 0)
1648 return err;
1649 runtime->hw = snd_cmipci_playback;
1650 if (cm->chip_version == 68) {
1651 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1652 SNDRV_PCM_RATE_96000;
1653 runtime->hw.rate_max = 96000;
1654 } else if (cm->chip_version == 55) {
1655 err = snd_pcm_hw_constraint_list(runtime, 0,
1656 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1657 if (err < 0)
1658 return err;
1659 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1660 runtime->hw.rate_max = 128000;
1661 }
1662 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1663 cm->dig_pcm_status = cm->dig_status;
1664 return 0;
1665}
1666
1667static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1668{
1669 struct cmipci *cm = snd_pcm_substream_chip(substream);
1670 struct snd_pcm_runtime *runtime = substream->runtime;
1671 int err;
1672
1673 err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1674 if (err < 0)
1675 return err;
1676 runtime->hw = snd_cmipci_capture;
1677 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1678 runtime->hw.rate_min = 41000;
1679 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1680 } else if (cm->chip_version == 55) {
1681 err = snd_pcm_hw_constraint_list(runtime, 0,
1682 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1683 if (err < 0)
1684 return err;
1685 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1686 runtime->hw.rate_max = 128000;
1687 }
1688 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1689 return 0;
1690}
1691
1692static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1693{
1694 struct cmipci *cm = snd_pcm_substream_chip(substream);
1695 struct snd_pcm_runtime *runtime = substream->runtime;
1696 int err;
1697
1698 /* use channel B */
1699 err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1700 if (err < 0)
1701 return err;
1702 runtime->hw = snd_cmipci_playback2;
1703 mutex_lock(&cm->open_mutex);
1704 if (! cm->opened[CM_CH_PLAY]) {
1705 if (cm->can_multi_ch) {
1706 runtime->hw.channels_max = cm->max_channels;
1707 if (cm->max_channels == 4)
1708 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1709 else if (cm->max_channels == 6)
1710 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1711 else if (cm->max_channels == 8)
1712 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1713 }
1714 }
1715 mutex_unlock(&cm->open_mutex);
1716 if (cm->chip_version == 68) {
1717 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1718 SNDRV_PCM_RATE_96000;
1719 runtime->hw.rate_max = 96000;
1720 } else if (cm->chip_version == 55) {
1721 err = snd_pcm_hw_constraint_list(runtime, 0,
1722 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1723 if (err < 0)
1724 return err;
1725 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1726 runtime->hw.rate_max = 128000;
1727 }
1728 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1729 return 0;
1730}
1731
1732static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1733{
1734 struct cmipci *cm = snd_pcm_substream_chip(substream);
1735 struct snd_pcm_runtime *runtime = substream->runtime;
1736 int err;
1737
1738 /* use channel A */
1739 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1740 if (err < 0)
1741 return err;
1742 if (cm->can_ac3_hw) {
1743 runtime->hw = snd_cmipci_playback_spdif;
1744 if (cm->chip_version >= 37) {
1745 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1746 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1747 }
1748 if (cm->can_96k) {
1749 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1750 SNDRV_PCM_RATE_96000;
1751 runtime->hw.rate_max = 96000;
1752 }
1753 } else {
1754 runtime->hw = snd_cmipci_playback_iec958_subframe;
1755 }
1756 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1757 cm->dig_pcm_status = cm->dig_status;
1758 return 0;
1759}
1760
1761static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1762{
1763 struct cmipci *cm = snd_pcm_substream_chip(substream);
1764 struct snd_pcm_runtime *runtime = substream->runtime;
1765 int err;
1766
1767 /* use channel B */
1768 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1769 if (err < 0)
1770 return err;
1771 runtime->hw = snd_cmipci_capture_spdif;
1772 if (cm->can_96k && !(cm->chip_version == 68)) {
1773 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1774 SNDRV_PCM_RATE_96000;
1775 runtime->hw.rate_max = 96000;
1776 }
1777 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1778 return 0;
1779}
1780
1781
1782/*
1783 */
1784
1785static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1786{
1787 struct cmipci *cm = snd_pcm_substream_chip(substream);
1788 close_device_check(cm, CM_OPEN_PLAYBACK);
1789 return 0;
1790}
1791
1792static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1793{
1794 struct cmipci *cm = snd_pcm_substream_chip(substream);
1795 close_device_check(cm, CM_OPEN_CAPTURE);
1796 return 0;
1797}
1798
1799static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1800{
1801 struct cmipci *cm = snd_pcm_substream_chip(substream);
1802 close_device_check(cm, CM_OPEN_PLAYBACK2);
1803 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1804 return 0;
1805}
1806
1807static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1808{
1809 struct cmipci *cm = snd_pcm_substream_chip(substream);
1810 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1811 return 0;
1812}
1813
1814static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1815{
1816 struct cmipci *cm = snd_pcm_substream_chip(substream);
1817 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1818 return 0;
1819}
1820
1821
1822/*
1823 */
1824
1825static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1826 .open = snd_cmipci_playback_open,
1827 .close = snd_cmipci_playback_close,
1828 .hw_free = snd_cmipci_playback_hw_free,
1829 .prepare = snd_cmipci_playback_prepare,
1830 .trigger = snd_cmipci_playback_trigger,
1831 .pointer = snd_cmipci_playback_pointer,
1832};
1833
1834static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1835 .open = snd_cmipci_capture_open,
1836 .close = snd_cmipci_capture_close,
1837 .prepare = snd_cmipci_capture_prepare,
1838 .trigger = snd_cmipci_capture_trigger,
1839 .pointer = snd_cmipci_capture_pointer,
1840};
1841
1842static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1843 .open = snd_cmipci_playback2_open,
1844 .close = snd_cmipci_playback2_close,
1845 .hw_params = snd_cmipci_playback2_hw_params,
1846 .hw_free = snd_cmipci_playback2_hw_free,
1847 .prepare = snd_cmipci_capture_prepare, /* channel B */
1848 .trigger = snd_cmipci_capture_trigger, /* channel B */
1849 .pointer = snd_cmipci_capture_pointer, /* channel B */
1850};
1851
1852static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1853 .open = snd_cmipci_playback_spdif_open,
1854 .close = snd_cmipci_playback_spdif_close,
1855 .hw_free = snd_cmipci_playback_hw_free,
1856 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1857 .trigger = snd_cmipci_playback_trigger,
1858 .pointer = snd_cmipci_playback_pointer,
1859};
1860
1861static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1862 .open = snd_cmipci_capture_spdif_open,
1863 .close = snd_cmipci_capture_spdif_close,
1864 .hw_free = snd_cmipci_capture_spdif_hw_free,
1865 .prepare = snd_cmipci_capture_spdif_prepare,
1866 .trigger = snd_cmipci_capture_trigger,
1867 .pointer = snd_cmipci_capture_pointer,
1868};
1869
1870
1871/*
1872 */
1873
1874static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1875{
1876 struct snd_pcm *pcm;
1877 int err;
1878
1879 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1880 if (err < 0)
1881 return err;
1882
1883 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1884 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1885
1886 pcm->private_data = cm;
1887 pcm->info_flags = 0;
1888 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1889 cm->pcm = pcm;
1890
1891 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1892 &cm->pci->dev, 64*1024, 128*1024);
1893
1894 return 0;
1895}
1896
1897static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1898{
1899 struct snd_pcm *pcm;
1900 int err;
1901
1902 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1903 if (err < 0)
1904 return err;
1905
1906 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1907
1908 pcm->private_data = cm;
1909 pcm->info_flags = 0;
1910 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1911 cm->pcm2 = pcm;
1912
1913 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1914 &cm->pci->dev, 64*1024, 128*1024);
1915
1916 return 0;
1917}
1918
1919static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1920{
1921 struct snd_pcm *pcm;
1922 int err;
1923
1924 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1925 if (err < 0)
1926 return err;
1927
1928 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1929 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1930
1931 pcm->private_data = cm;
1932 pcm->info_flags = 0;
1933 strcpy(pcm->name, "C-Media PCI IEC958");
1934 cm->pcm_spdif = pcm;
1935
1936 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1937 &cm->pci->dev, 64*1024, 128*1024);
1938
1939 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1940 snd_pcm_alt_chmaps, cm->max_channels, 0,
1941 NULL);
1942 if (err < 0)
1943 return err;
1944
1945 return 0;
1946}
1947
1948/*
1949 * mixer interface:
1950 * - CM8338/8738 has a compatible mixer interface with SB16, but
1951 * lack of some elements like tone control, i/o gain and AGC.
1952 * - Access to native registers:
1953 * - A 3D switch
1954 * - Output mute switches
1955 */
1956
1957static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1958{
1959 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960 outb(data, s->iobase + CM_REG_SB16_DATA);
1961}
1962
1963static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1964{
1965 unsigned char v;
1966
1967 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1968 v = inb(s->iobase + CM_REG_SB16_DATA);
1969 return v;
1970}
1971
1972/*
1973 * general mixer element
1974 */
1975struct cmipci_sb_reg {
1976 unsigned int left_reg, right_reg;
1977 unsigned int left_shift, right_shift;
1978 unsigned int mask;
1979 unsigned int invert: 1;
1980 unsigned int stereo: 1;
1981};
1982
1983#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1984 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1985
1986#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1987{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1988 .info = snd_cmipci_info_volume, \
1989 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1990 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1991}
1992
1993#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1994#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1995#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1996#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1997
1998static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1999{
2000 r->left_reg = val & 0xff;
2001 r->right_reg = (val >> 8) & 0xff;
2002 r->left_shift = (val >> 16) & 0x07;
2003 r->right_shift = (val >> 19) & 0x07;
2004 r->invert = (val >> 22) & 1;
2005 r->stereo = (val >> 23) & 1;
2006 r->mask = (val >> 24) & 0xff;
2007}
2008
2009static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2010 struct snd_ctl_elem_info *uinfo)
2011{
2012 struct cmipci_sb_reg reg;
2013
2014 cmipci_sb_reg_decode(®, kcontrol->private_value);
2015 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2016 uinfo->count = reg.stereo + 1;
2017 uinfo->value.integer.min = 0;
2018 uinfo->value.integer.max = reg.mask;
2019 return 0;
2020}
2021
2022static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_value *ucontrol)
2024{
2025 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2026 struct cmipci_sb_reg reg;
2027 int val;
2028
2029 cmipci_sb_reg_decode(®, kcontrol->private_value);
2030 spin_lock_irq(&cm->reg_lock);
2031 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2032 if (reg.invert)
2033 val = reg.mask - val;
2034 ucontrol->value.integer.value[0] = val;
2035 if (reg.stereo) {
2036 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2037 if (reg.invert)
2038 val = reg.mask - val;
2039 ucontrol->value.integer.value[1] = val;
2040 }
2041 spin_unlock_irq(&cm->reg_lock);
2042 return 0;
2043}
2044
2045static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2046 struct snd_ctl_elem_value *ucontrol)
2047{
2048 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2049 struct cmipci_sb_reg reg;
2050 int change;
2051 int left, right, oleft, oright;
2052
2053 cmipci_sb_reg_decode(®, kcontrol->private_value);
2054 left = ucontrol->value.integer.value[0] & reg.mask;
2055 if (reg.invert)
2056 left = reg.mask - left;
2057 left <<= reg.left_shift;
2058 if (reg.stereo) {
2059 right = ucontrol->value.integer.value[1] & reg.mask;
2060 if (reg.invert)
2061 right = reg.mask - right;
2062 right <<= reg.right_shift;
2063 } else
2064 right = 0;
2065 spin_lock_irq(&cm->reg_lock);
2066 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2067 left |= oleft & ~(reg.mask << reg.left_shift);
2068 change = left != oleft;
2069 if (reg.stereo) {
2070 if (reg.left_reg != reg.right_reg) {
2071 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2073 } else
2074 oright = left;
2075 right |= oright & ~(reg.mask << reg.right_shift);
2076 change |= right != oright;
2077 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2078 } else
2079 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2080 spin_unlock_irq(&cm->reg_lock);
2081 return change;
2082}
2083
2084/*
2085 * input route (left,right) -> (left,right)
2086 */
2087#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2088{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2089 .info = snd_cmipci_info_input_sw, \
2090 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2091 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2092}
2093
2094static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2095 struct snd_ctl_elem_info *uinfo)
2096{
2097 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2098 uinfo->count = 4;
2099 uinfo->value.integer.min = 0;
2100 uinfo->value.integer.max = 1;
2101 return 0;
2102}
2103
2104static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2105 struct snd_ctl_elem_value *ucontrol)
2106{
2107 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2108 struct cmipci_sb_reg reg;
2109 int val1, val2;
2110
2111 cmipci_sb_reg_decode(®, kcontrol->private_value);
2112 spin_lock_irq(&cm->reg_lock);
2113 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2114 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2115 spin_unlock_irq(&cm->reg_lock);
2116 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2117 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2118 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2119 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2120 return 0;
2121}
2122
2123static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2124 struct snd_ctl_elem_value *ucontrol)
2125{
2126 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2127 struct cmipci_sb_reg reg;
2128 int change;
2129 int val1, val2, oval1, oval2;
2130
2131 cmipci_sb_reg_decode(®, kcontrol->private_value);
2132 spin_lock_irq(&cm->reg_lock);
2133 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2137 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2138 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2139 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2140 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2141 change = val1 != oval1 || val2 != oval2;
2142 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2143 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2144 spin_unlock_irq(&cm->reg_lock);
2145 return change;
2146}
2147
2148/*
2149 * native mixer switches/volumes
2150 */
2151
2152#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2153{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2154 .info = snd_cmipci_info_native_mixer, \
2155 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2156 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2157}
2158
2159#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2160{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2161 .info = snd_cmipci_info_native_mixer, \
2162 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2163 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2164}
2165
2166#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2167{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2168 .info = snd_cmipci_info_native_mixer, \
2169 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2170 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2171}
2172
2173#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2174{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2175 .info = snd_cmipci_info_native_mixer, \
2176 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2177 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2178}
2179
2180static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2181 struct snd_ctl_elem_info *uinfo)
2182{
2183 struct cmipci_sb_reg reg;
2184
2185 cmipci_sb_reg_decode(®, kcontrol->private_value);
2186 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2187 uinfo->count = reg.stereo + 1;
2188 uinfo->value.integer.min = 0;
2189 uinfo->value.integer.max = reg.mask;
2190 return 0;
2191
2192}
2193
2194static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2195 struct snd_ctl_elem_value *ucontrol)
2196{
2197 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2198 struct cmipci_sb_reg reg;
2199 unsigned char oreg, val;
2200
2201 cmipci_sb_reg_decode(®, kcontrol->private_value);
2202 spin_lock_irq(&cm->reg_lock);
2203 oreg = inb(cm->iobase + reg.left_reg);
2204 val = (oreg >> reg.left_shift) & reg.mask;
2205 if (reg.invert)
2206 val = reg.mask - val;
2207 ucontrol->value.integer.value[0] = val;
2208 if (reg.stereo) {
2209 val = (oreg >> reg.right_shift) & reg.mask;
2210 if (reg.invert)
2211 val = reg.mask - val;
2212 ucontrol->value.integer.value[1] = val;
2213 }
2214 spin_unlock_irq(&cm->reg_lock);
2215 return 0;
2216}
2217
2218static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2219 struct snd_ctl_elem_value *ucontrol)
2220{
2221 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2222 struct cmipci_sb_reg reg;
2223 unsigned char oreg, nreg, val;
2224
2225 cmipci_sb_reg_decode(®, kcontrol->private_value);
2226 spin_lock_irq(&cm->reg_lock);
2227 oreg = inb(cm->iobase + reg.left_reg);
2228 val = ucontrol->value.integer.value[0] & reg.mask;
2229 if (reg.invert)
2230 val = reg.mask - val;
2231 nreg = oreg & ~(reg.mask << reg.left_shift);
2232 nreg |= (val << reg.left_shift);
2233 if (reg.stereo) {
2234 val = ucontrol->value.integer.value[1] & reg.mask;
2235 if (reg.invert)
2236 val = reg.mask - val;
2237 nreg &= ~(reg.mask << reg.right_shift);
2238 nreg |= (val << reg.right_shift);
2239 }
2240 outb(nreg, cm->iobase + reg.left_reg);
2241 spin_unlock_irq(&cm->reg_lock);
2242 return (nreg != oreg);
2243}
2244
2245/*
2246 * special case - check mixer sensitivity
2247 */
2248static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2249 struct snd_ctl_elem_value *ucontrol)
2250{
2251 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2252 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2253}
2254
2255static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2256 struct snd_ctl_elem_value *ucontrol)
2257{
2258 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2259 if (cm->mixer_insensitive) {
2260 /* ignored */
2261 return 0;
2262 }
2263 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2264}
2265
2266
2267static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2268 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2269 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2270 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2271 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2272 { /* switch with sensitivity */
2273 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2274 .name = "PCM Playback Switch",
2275 .info = snd_cmipci_info_native_mixer,
2276 .get = snd_cmipci_get_native_mixer_sensitive,
2277 .put = snd_cmipci_put_native_mixer_sensitive,
2278 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2279 },
2280 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2281 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2282 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2283 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2284 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2285 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2286 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2287 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2288 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2289 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2290 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2291 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2292 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2293 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2294 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2295 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2296 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2297 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2298 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2299 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2300 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2301 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2302 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2303};
2304
2305/*
2306 * other switches
2307 */
2308
2309struct cmipci_switch_args {
2310 int reg; /* register index */
2311 unsigned int mask; /* mask bits */
2312 unsigned int mask_on; /* mask bits to turn on */
2313 unsigned int is_byte: 1; /* byte access? */
2314 unsigned int ac3_sensitive: 1; /* access forbidden during
2315 * non-audio operation?
2316 */
2317};
2318
2319#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2320
2321static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2322 struct snd_ctl_elem_value *ucontrol,
2323 struct cmipci_switch_args *args)
2324{
2325 unsigned int val;
2326 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2327
2328 spin_lock_irq(&cm->reg_lock);
2329 if (args->ac3_sensitive && cm->mixer_insensitive) {
2330 ucontrol->value.integer.value[0] = 0;
2331 spin_unlock_irq(&cm->reg_lock);
2332 return 0;
2333 }
2334 if (args->is_byte)
2335 val = inb(cm->iobase + args->reg);
2336 else
2337 val = snd_cmipci_read(cm, args->reg);
2338 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2339 spin_unlock_irq(&cm->reg_lock);
2340 return 0;
2341}
2342
2343static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2344 struct snd_ctl_elem_value *ucontrol)
2345{
2346 struct cmipci_switch_args *args;
2347 args = (struct cmipci_switch_args *)kcontrol->private_value;
2348 if (snd_BUG_ON(!args))
2349 return -EINVAL;
2350 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2351}
2352
2353static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2354 struct snd_ctl_elem_value *ucontrol,
2355 struct cmipci_switch_args *args)
2356{
2357 unsigned int val;
2358 int change;
2359 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2360
2361 spin_lock_irq(&cm->reg_lock);
2362 if (args->ac3_sensitive && cm->mixer_insensitive) {
2363 /* ignored */
2364 spin_unlock_irq(&cm->reg_lock);
2365 return 0;
2366 }
2367 if (args->is_byte)
2368 val = inb(cm->iobase + args->reg);
2369 else
2370 val = snd_cmipci_read(cm, args->reg);
2371 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2372 args->mask_on : (args->mask & ~args->mask_on));
2373 if (change) {
2374 val &= ~args->mask;
2375 if (ucontrol->value.integer.value[0])
2376 val |= args->mask_on;
2377 else
2378 val |= (args->mask & ~args->mask_on);
2379 if (args->is_byte)
2380 outb((unsigned char)val, cm->iobase + args->reg);
2381 else
2382 snd_cmipci_write(cm, args->reg, val);
2383 }
2384 spin_unlock_irq(&cm->reg_lock);
2385 return change;
2386}
2387
2388static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2389 struct snd_ctl_elem_value *ucontrol)
2390{
2391 struct cmipci_switch_args *args;
2392 args = (struct cmipci_switch_args *)kcontrol->private_value;
2393 if (snd_BUG_ON(!args))
2394 return -EINVAL;
2395 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2396}
2397
2398#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2399static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2400 .reg = xreg, \
2401 .mask = xmask, \
2402 .mask_on = xmask_on, \
2403 .is_byte = xis_byte, \
2404 .ac3_sensitive = xac3, \
2405}
2406
2407#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2408 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2409
2410#if 0 /* these will be controlled in pcm device */
2411DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2413#endif
2414DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2415DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2416DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2418DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2419DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2420DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2421DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2422// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2423DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2424DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2425/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2426DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2427DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2428#if CM_CH_PLAY == 1
2429DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2430#else
2431DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2432#endif
2433DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2434// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2435// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2436// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2437DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2438
2439#define DEFINE_SWITCH(sname, stype, sarg) \
2440{ .name = sname, \
2441 .iface = stype, \
2442 .info = snd_cmipci_uswitch_info, \
2443 .get = snd_cmipci_uswitch_get, \
2444 .put = snd_cmipci_uswitch_put, \
2445 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2446}
2447
2448#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2449#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2450
2451
2452/*
2453 * callbacks for spdif output switch
2454 * needs toggle two registers..
2455 */
2456static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2457 struct snd_ctl_elem_value *ucontrol)
2458{
2459 int changed;
2460 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2461 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2462 return changed;
2463}
2464
2465static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2466 struct snd_ctl_elem_value *ucontrol)
2467{
2468 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2469 int changed;
2470 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2471 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2472 if (changed) {
2473 if (ucontrol->value.integer.value[0]) {
2474 if (chip->spdif_playback_avail)
2475 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2476 } else {
2477 if (chip->spdif_playback_avail)
2478 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2479 }
2480 }
2481 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2482 return changed;
2483}
2484
2485
2486static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2487 struct snd_ctl_elem_info *uinfo)
2488{
2489 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2490 static const char *const texts[3] = {
2491 "Line-In", "Rear Output", "Bass Output"
2492 };
2493
2494 return snd_ctl_enum_info(uinfo, 1,
2495 cm->chip_version >= 39 ? 3 : 2, texts);
2496}
2497
2498static inline unsigned int get_line_in_mode(struct cmipci *cm)
2499{
2500 unsigned int val;
2501 if (cm->chip_version >= 39) {
2502 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2503 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2504 return 2;
2505 }
2506 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2507 if (val & CM_REAR2LIN)
2508 return 1;
2509 return 0;
2510}
2511
2512static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2513 struct snd_ctl_elem_value *ucontrol)
2514{
2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516
2517 spin_lock_irq(&cm->reg_lock);
2518 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2519 spin_unlock_irq(&cm->reg_lock);
2520 return 0;
2521}
2522
2523static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2524 struct snd_ctl_elem_value *ucontrol)
2525{
2526 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2527 int change;
2528
2529 spin_lock_irq(&cm->reg_lock);
2530 if (ucontrol->value.enumerated.item[0] == 2)
2531 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2532 else
2533 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2534 if (ucontrol->value.enumerated.item[0] == 1)
2535 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2536 else
2537 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2538 spin_unlock_irq(&cm->reg_lock);
2539 return change;
2540}
2541
2542static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2543 struct snd_ctl_elem_info *uinfo)
2544{
2545 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2546
2547 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2548}
2549
2550static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2551 struct snd_ctl_elem_value *ucontrol)
2552{
2553 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2554 /* same bit as spdi_phase */
2555 spin_lock_irq(&cm->reg_lock);
2556 ucontrol->value.enumerated.item[0] =
2557 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2558 spin_unlock_irq(&cm->reg_lock);
2559 return 0;
2560}
2561
2562static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2563 struct snd_ctl_elem_value *ucontrol)
2564{
2565 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2566 int change;
2567
2568 spin_lock_irq(&cm->reg_lock);
2569 if (ucontrol->value.enumerated.item[0])
2570 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2571 else
2572 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2573 spin_unlock_irq(&cm->reg_lock);
2574 return change;
2575}
2576
2577/* both for CM8338/8738 */
2578static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2579 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2580 {
2581 .name = "Line-In Mode",
2582 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2583 .info = snd_cmipci_line_in_mode_info,
2584 .get = snd_cmipci_line_in_mode_get,
2585 .put = snd_cmipci_line_in_mode_put,
2586 },
2587};
2588
2589/* for non-multichannel chips */
2590static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2591DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2592
2593/* only for CM8738 */
2594static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2595#if 0 /* controlled in pcm device */
2596 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2597 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2598 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2599#endif
2600 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2601 { .name = "IEC958 Output Switch",
2602 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603 .info = snd_cmipci_uswitch_info,
2604 .get = snd_cmipci_spdout_enable_get,
2605 .put = snd_cmipci_spdout_enable_put,
2606 },
2607 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2608 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2609 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2610// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2611 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2612 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2613};
2614
2615/* only for model 033/037 */
2616static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2617 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2618 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2619 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2620};
2621
2622/* only for model 039 or later */
2623static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2624 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2625 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2626 {
2627 .name = "Mic-In Mode",
2628 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629 .info = snd_cmipci_mic_in_mode_info,
2630 .get = snd_cmipci_mic_in_mode_get,
2631 .put = snd_cmipci_mic_in_mode_put,
2632 }
2633};
2634
2635/* card control switches */
2636static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2637DEFINE_CARD_SWITCH("Modem", modem);
2638
2639
2640static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2641{
2642 struct snd_card *card;
2643 const struct snd_kcontrol_new *sw;
2644 struct snd_kcontrol *kctl;
2645 unsigned int idx;
2646 int err;
2647
2648 if (snd_BUG_ON(!cm || !cm->card))
2649 return -EINVAL;
2650
2651 card = cm->card;
2652
2653 strcpy(card->mixername, "CMedia PCI");
2654
2655 spin_lock_irq(&cm->reg_lock);
2656 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2657 spin_unlock_irq(&cm->reg_lock);
2658
2659 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2660 if (cm->chip_version == 68) { // 8768 has no PCM volume
2661 if (!strcmp(snd_cmipci_mixers[idx].name,
2662 "PCM Playback Volume"))
2663 continue;
2664 }
2665 err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2666 if (err < 0)
2667 return err;
2668 }
2669
2670 /* mixer switches */
2671 sw = snd_cmipci_mixer_switches;
2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2673 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2674 if (err < 0)
2675 return err;
2676 }
2677 if (! cm->can_multi_ch) {
2678 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2679 if (err < 0)
2680 return err;
2681 }
2682 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2683 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2684 sw = snd_cmipci_8738_mixer_switches;
2685 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2686 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2687 if (err < 0)
2688 return err;
2689 }
2690 if (cm->can_ac3_hw) {
2691 kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2692 err = snd_ctl_add(card, kctl);
2693 if (err < 0)
2694 return err;
2695 kctl->id.device = pcm_spdif_device;
2696 kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2697 err = snd_ctl_add(card, kctl);
2698 if (err < 0)
2699 return err;
2700 kctl->id.device = pcm_spdif_device;
2701 kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2702 err = snd_ctl_add(card, kctl);
2703 if (err < 0)
2704 return err;
2705 kctl->id.device = pcm_spdif_device;
2706 }
2707 if (cm->chip_version <= 37) {
2708 sw = snd_cmipci_old_mixer_switches;
2709 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2710 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2711 if (err < 0)
2712 return err;
2713 }
2714 }
2715 }
2716 if (cm->chip_version >= 39) {
2717 sw = snd_cmipci_extra_mixer_switches;
2718 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2719 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2720 if (err < 0)
2721 return err;
2722 }
2723 }
2724
2725 /* card switches */
2726 /*
2727 * newer chips don't have the register bits to force modem link
2728 * detection; the bit that was FLINKON now mutes CH1
2729 */
2730 if (cm->chip_version < 39) {
2731 err = snd_ctl_add(cm->card,
2732 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2733 if (err < 0)
2734 return err;
2735 }
2736
2737 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2738 struct snd_ctl_elem_id elem_id;
2739 struct snd_kcontrol *ctl;
2740 memset(&elem_id, 0, sizeof(elem_id));
2741 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2742 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2743 ctl = snd_ctl_find_id(cm->card, &elem_id);
2744 if (ctl)
2745 cm->mixer_res_ctl[idx] = ctl;
2746 }
2747
2748 return 0;
2749}
2750
2751
2752/*
2753 * proc interface
2754 */
2755
2756static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2757 struct snd_info_buffer *buffer)
2758{
2759 struct cmipci *cm = entry->private_data;
2760 int i, v;
2761
2762 snd_iprintf(buffer, "%s\n", cm->card->longname);
2763 for (i = 0; i < 0x94; i++) {
2764 if (i == 0x28)
2765 i = 0x90;
2766 v = inb(cm->iobase + i);
2767 if (i % 4 == 0)
2768 snd_iprintf(buffer, "\n%02x:", i);
2769 snd_iprintf(buffer, " %02x", v);
2770 }
2771 snd_iprintf(buffer, "\n");
2772}
2773
2774static void snd_cmipci_proc_init(struct cmipci *cm)
2775{
2776 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2777}
2778
2779static const struct pci_device_id snd_cmipci_ids[] = {
2780 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2781 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2782 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2783 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2784 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2785 {0,},
2786};
2787
2788
2789/*
2790 * check chip version and capabilities
2791 * driver name is modified according to the chip model
2792 */
2793static void query_chip(struct cmipci *cm)
2794{
2795 unsigned int detect;
2796
2797 /* check reg 0Ch, bit 24-31 */
2798 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2799 if (! detect) {
2800 /* check reg 08h, bit 24-28 */
2801 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2802 switch (detect) {
2803 case 0:
2804 cm->chip_version = 33;
2805 if (cm->do_soft_ac3)
2806 cm->can_ac3_sw = 1;
2807 else
2808 cm->can_ac3_hw = 1;
2809 break;
2810 case CM_CHIP_037:
2811 cm->chip_version = 37;
2812 cm->can_ac3_hw = 1;
2813 break;
2814 default:
2815 cm->chip_version = 39;
2816 cm->can_ac3_hw = 1;
2817 break;
2818 }
2819 cm->max_channels = 2;
2820 } else {
2821 if (detect & CM_CHIP_039) {
2822 cm->chip_version = 39;
2823 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2824 cm->max_channels = 6;
2825 else
2826 cm->max_channels = 4;
2827 } else if (detect & CM_CHIP_8768) {
2828 cm->chip_version = 68;
2829 cm->max_channels = 8;
2830 cm->can_96k = 1;
2831 } else {
2832 cm->chip_version = 55;
2833 cm->max_channels = 6;
2834 cm->can_96k = 1;
2835 }
2836 cm->can_ac3_hw = 1;
2837 cm->can_multi_ch = 1;
2838 }
2839}
2840
2841#ifdef SUPPORT_JOYSTICK
2842static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2843{
2844 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2845 struct gameport *gp;
2846 struct resource *r = NULL;
2847 int i, io_port = 0;
2848
2849 if (joystick_port[dev] == 0)
2850 return -ENODEV;
2851
2852 if (joystick_port[dev] == 1) { /* auto-detect */
2853 for (i = 0; ports[i]; i++) {
2854 io_port = ports[i];
2855 r = request_region(io_port, 1, "CMIPCI gameport");
2856 if (r)
2857 break;
2858 }
2859 } else {
2860 io_port = joystick_port[dev];
2861 r = request_region(io_port, 1, "CMIPCI gameport");
2862 }
2863
2864 if (!r) {
2865 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2866 return -EBUSY;
2867 }
2868
2869 cm->gameport = gp = gameport_allocate_port();
2870 if (!gp) {
2871 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2872 release_and_free_resource(r);
2873 return -ENOMEM;
2874 }
2875 gameport_set_name(gp, "C-Media Gameport");
2876 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2877 gameport_set_dev_parent(gp, &cm->pci->dev);
2878 gp->io = io_port;
2879 gameport_set_port_data(gp, r);
2880
2881 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882
2883 gameport_register_port(cm->gameport);
2884
2885 return 0;
2886}
2887
2888static void snd_cmipci_free_gameport(struct cmipci *cm)
2889{
2890 if (cm->gameport) {
2891 struct resource *r = gameport_get_port_data(cm->gameport);
2892
2893 gameport_unregister_port(cm->gameport);
2894 cm->gameport = NULL;
2895
2896 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2897 release_and_free_resource(r);
2898 }
2899}
2900#else
2901static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2902static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2903#endif
2904
2905static int snd_cmipci_free(struct cmipci *cm)
2906{
2907 if (cm->irq >= 0) {
2908 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2909 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2910 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2911 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2912 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2913 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2914 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2915
2916 /* reset mixer */
2917 snd_cmipci_mixer_write(cm, 0, 0);
2918
2919 free_irq(cm->irq, cm);
2920 }
2921
2922 snd_cmipci_free_gameport(cm);
2923 pci_release_regions(cm->pci);
2924 pci_disable_device(cm->pci);
2925 kfree(cm);
2926 return 0;
2927}
2928
2929static int snd_cmipci_dev_free(struct snd_device *device)
2930{
2931 struct cmipci *cm = device->device_data;
2932 return snd_cmipci_free(cm);
2933}
2934
2935static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2936{
2937 long iosynth;
2938 unsigned int val;
2939 struct snd_opl3 *opl3;
2940 int err;
2941
2942 if (!fm_port)
2943 goto disable_fm;
2944
2945 if (cm->chip_version >= 39) {
2946 /* first try FM regs in PCI port range */
2947 iosynth = cm->iobase + CM_REG_FM_PCI;
2948 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2949 OPL3_HW_OPL3, 1, &opl3);
2950 } else {
2951 err = -EIO;
2952 }
2953 if (err < 0) {
2954 /* then try legacy ports */
2955 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2956 iosynth = fm_port;
2957 switch (iosynth) {
2958 case 0x3E8: val |= CM_FMSEL_3E8; break;
2959 case 0x3E0: val |= CM_FMSEL_3E0; break;
2960 case 0x3C8: val |= CM_FMSEL_3C8; break;
2961 case 0x388: val |= CM_FMSEL_388; break;
2962 default:
2963 goto disable_fm;
2964 }
2965 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2966 /* enable FM */
2967 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2968
2969 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970 OPL3_HW_OPL3, 0, &opl3) < 0) {
2971 dev_err(cm->card->dev,
2972 "no OPL device at %#lx, skipping...\n",
2973 iosynth);
2974 goto disable_fm;
2975 }
2976 }
2977 err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2978 if (err < 0) {
2979 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2980 return err;
2981 }
2982 return 0;
2983
2984 disable_fm:
2985 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2986 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2987 return 0;
2988}
2989
2990static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2991 int dev, struct cmipci **rcmipci)
2992{
2993 struct cmipci *cm;
2994 int err;
2995 static const struct snd_device_ops ops = {
2996 .dev_free = snd_cmipci_dev_free,
2997 };
2998 unsigned int val;
2999 long iomidi = 0;
3000 int integrated_midi = 0;
3001 char modelstr[16];
3002 int pcm_index, pcm_spdif_index;
3003 static const struct pci_device_id intel_82437vx[] = {
3004 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3005 { },
3006 };
3007
3008 *rcmipci = NULL;
3009
3010 err = pci_enable_device(pci);
3011 if (err < 0)
3012 return err;
3013
3014 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3015 if (cm == NULL) {
3016 pci_disable_device(pci);
3017 return -ENOMEM;
3018 }
3019
3020 spin_lock_init(&cm->reg_lock);
3021 mutex_init(&cm->open_mutex);
3022 cm->device = pci->device;
3023 cm->card = card;
3024 cm->pci = pci;
3025 cm->irq = -1;
3026 cm->channel[0].ch = 0;
3027 cm->channel[1].ch = 1;
3028 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3029
3030 err = pci_request_regions(pci, card->driver);
3031 if (err < 0) {
3032 kfree(cm);
3033 pci_disable_device(pci);
3034 return err;
3035 }
3036 cm->iobase = pci_resource_start(pci, 0);
3037
3038 if (request_irq(pci->irq, snd_cmipci_interrupt,
3039 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3040 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3041 snd_cmipci_free(cm);
3042 return -EBUSY;
3043 }
3044 cm->irq = pci->irq;
3045 card->sync_irq = cm->irq;
3046
3047 pci_set_master(cm->pci);
3048
3049 /*
3050 * check chip version, max channels and capabilities
3051 */
3052
3053 cm->chip_version = 0;
3054 cm->max_channels = 2;
3055 cm->do_soft_ac3 = soft_ac3[dev];
3056
3057 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3058 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3059 query_chip(cm);
3060 /* added -MCx suffix for chip supporting multi-channels */
3061 if (cm->can_multi_ch)
3062 sprintf(cm->card->driver + strlen(cm->card->driver),
3063 "-MC%d", cm->max_channels);
3064 else if (cm->can_ac3_sw)
3065 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3066
3067 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3068 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3069
3070#if CM_CH_PLAY == 1
3071 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3072#else
3073 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3074#endif
3075
3076 /* initialize codec registers */
3077 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3078 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3079 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3080 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3081 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3082 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3083 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3084
3085 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3086 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3087#if CM_CH_PLAY == 1
3088 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3089#else
3090 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#endif
3092 if (cm->chip_version) {
3093 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3094 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3095 }
3096 /* Set Bus Master Request */
3097 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3098
3099 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3100 switch (pci->device) {
3101 case PCI_DEVICE_ID_CMEDIA_CM8738:
3102 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103 if (!pci_dev_present(intel_82437vx))
3104 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3105 break;
3106 default:
3107 break;
3108 }
3109
3110 if (cm->chip_version < 68) {
3111 val = pci->device < 0x110 ? 8338 : 8738;
3112 } else {
3113 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3114 case 0:
3115 val = 8769;
3116 break;
3117 case 2:
3118 val = 8762;
3119 break;
3120 default:
3121 switch ((pci->subsystem_vendor << 16) |
3122 pci->subsystem_device) {
3123 case 0x13f69761:
3124 case 0x584d3741:
3125 case 0x584d3751:
3126 case 0x584d3761:
3127 case 0x584d3771:
3128 case 0x72848384:
3129 val = 8770;
3130 break;
3131 default:
3132 val = 8768;
3133 break;
3134 }
3135 }
3136 }
3137 sprintf(card->shortname, "C-Media CMI%d", val);
3138 if (cm->chip_version < 68)
3139 sprintf(modelstr, " (model %d)", cm->chip_version);
3140 else
3141 modelstr[0] = '\0';
3142 sprintf(card->longname, "%s%s at %#lx, irq %i",
3143 card->shortname, modelstr, cm->iobase, cm->irq);
3144
3145 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops);
3146 if (err < 0) {
3147 snd_cmipci_free(cm);
3148 return err;
3149 }
3150
3151 if (cm->chip_version >= 39) {
3152 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3153 if (val != 0x00 && val != 0xff) {
3154 if (mpu_port[dev])
3155 iomidi = cm->iobase + CM_REG_MPU_PCI;
3156 integrated_midi = 1;
3157 }
3158 }
3159 if (!integrated_midi) {
3160 val = 0;
3161 iomidi = mpu_port[dev];
3162 switch (iomidi) {
3163 case 0x320: val = CM_VMPU_320; break;
3164 case 0x310: val = CM_VMPU_310; break;
3165 case 0x300: val = CM_VMPU_300; break;
3166 case 0x330: val = CM_VMPU_330; break;
3167 default:
3168 iomidi = 0; break;
3169 }
3170 if (iomidi > 0) {
3171 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172 /* enable UART */
3173 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174 if (inb(iomidi + 1) == 0xff) {
3175 dev_err(cm->card->dev,
3176 "cannot enable MPU-401 port at %#lx\n",
3177 iomidi);
3178 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179 CM_UART_EN);
3180 iomidi = 0;
3181 }
3182 }
3183 }
3184
3185 if (cm->chip_version < 68) {
3186 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187 if (err < 0)
3188 return err;
3189 }
3190
3191 /* reset mixer */
3192 snd_cmipci_mixer_write(cm, 0, 0);
3193
3194 snd_cmipci_proc_init(cm);
3195
3196 /* create pcm devices */
3197 pcm_index = pcm_spdif_index = 0;
3198 err = snd_cmipci_pcm_new(cm, pcm_index);
3199 if (err < 0)
3200 return err;
3201 pcm_index++;
3202 err = snd_cmipci_pcm2_new(cm, pcm_index);
3203 if (err < 0)
3204 return err;
3205 pcm_index++;
3206 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3207 pcm_spdif_index = pcm_index;
3208 err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3209 if (err < 0)
3210 return err;
3211 }
3212
3213 /* create mixer interface & switches */
3214 err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3215 if (err < 0)
3216 return err;
3217
3218 if (iomidi > 0) {
3219 err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3220 iomidi,
3221 (integrated_midi ?
3222 MPU401_INFO_INTEGRATED : 0) |
3223 MPU401_INFO_IRQ_HOOK,
3224 -1, &cm->rmidi);
3225 if (err < 0)
3226 dev_err(cm->card->dev,
3227 "no UART401 device at 0x%lx\n", iomidi);
3228 }
3229
3230#ifdef USE_VAR48KRATE
3231 for (val = 0; val < ARRAY_SIZE(rates); val++)
3232 snd_cmipci_set_pll(cm, rates[val], val);
3233
3234 /*
3235 * (Re-)Enable external switch spdo_48k
3236 */
3237 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3238#endif /* USE_VAR48KRATE */
3239
3240 if (snd_cmipci_create_gameport(cm, dev) < 0)
3241 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3242
3243 *rcmipci = cm;
3244 return 0;
3245}
3246
3247/*
3248 */
3249
3250MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3251
3252static int snd_cmipci_probe(struct pci_dev *pci,
3253 const struct pci_device_id *pci_id)
3254{
3255 static int dev;
3256 struct snd_card *card;
3257 struct cmipci *cm;
3258 int err;
3259
3260 if (dev >= SNDRV_CARDS)
3261 return -ENODEV;
3262 if (! enable[dev]) {
3263 dev++;
3264 return -ENOENT;
3265 }
3266
3267 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3268 0, &card);
3269 if (err < 0)
3270 return err;
3271
3272 switch (pci->device) {
3273 case PCI_DEVICE_ID_CMEDIA_CM8738:
3274 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3275 strcpy(card->driver, "CMI8738");
3276 break;
3277 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3278 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3279 strcpy(card->driver, "CMI8338");
3280 break;
3281 default:
3282 strcpy(card->driver, "CMIPCI");
3283 break;
3284 }
3285
3286 err = snd_cmipci_create(card, pci, dev, &cm);
3287 if (err < 0)
3288 goto free_card;
3289
3290 card->private_data = cm;
3291
3292 err = snd_card_register(card);
3293 if (err < 0)
3294 goto free_card;
3295
3296 pci_set_drvdata(pci, card);
3297 dev++;
3298 return 0;
3299
3300free_card:
3301 snd_card_free(card);
3302 return err;
3303}
3304
3305static void snd_cmipci_remove(struct pci_dev *pci)
3306{
3307 snd_card_free(pci_get_drvdata(pci));
3308}
3309
3310
3311#ifdef CONFIG_PM_SLEEP
3312/*
3313 * power management
3314 */
3315static const unsigned char saved_regs[] = {
3316 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3317 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3318 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3319 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3320 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3321};
3322
3323static const unsigned char saved_mixers[] = {
3324 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3325 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3326 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3327 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3328 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3329 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3330 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3331 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3332};
3333
3334static int snd_cmipci_suspend(struct device *dev)
3335{
3336 struct snd_card *card = dev_get_drvdata(dev);
3337 struct cmipci *cm = card->private_data;
3338 int i;
3339
3340 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3341
3342 /* save registers */
3343 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3345 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3347
3348 /* disable ints */
3349 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3350 return 0;
3351}
3352
3353static int snd_cmipci_resume(struct device *dev)
3354{
3355 struct snd_card *card = dev_get_drvdata(dev);
3356 struct cmipci *cm = card->private_data;
3357 int i;
3358
3359 /* reset / initialize to a sane state */
3360 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3361 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3362 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3363 snd_cmipci_mixer_write(cm, 0, 0);
3364
3365 /* restore registers */
3366 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3367 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3368 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3369 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3370
3371 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3372 return 0;
3373}
3374
3375static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3376#define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3377#else
3378#define SND_CMIPCI_PM_OPS NULL
3379#endif /* CONFIG_PM_SLEEP */
3380
3381static struct pci_driver cmipci_driver = {
3382 .name = KBUILD_MODNAME,
3383 .id_table = snd_cmipci_ids,
3384 .probe = snd_cmipci_probe,
3385 .remove = snd_cmipci_remove,
3386 .driver = {
3387 .pm = SND_CMIPCI_PM_OPS,
3388 },
3389};
3390
3391module_pci_driver(cmipci_driver);