Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include "sched.h"
   6
   7DEFINE_MUTEX(sched_domains_mutex);
   8
   9/* Protected by sched_domains_mutex: */
  10static cpumask_var_t sched_domains_tmpmask;
  11static cpumask_var_t sched_domains_tmpmask2;
  12
  13#ifdef CONFIG_SCHED_DEBUG
  14
  15static int __init sched_debug_setup(char *str)
  16{
  17	sched_debug_verbose = true;
  18
  19	return 0;
  20}
  21early_param("sched_verbose", sched_debug_setup);
  22
  23static inline bool sched_debug(void)
  24{
  25	return sched_debug_verbose;
  26}
  27
  28#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  29const struct sd_flag_debug sd_flag_debug[] = {
  30#include <linux/sched/sd_flags.h>
  31};
  32#undef SD_FLAG
  33
  34static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  35				  struct cpumask *groupmask)
  36{
  37	struct sched_group *group = sd->groups;
  38	unsigned long flags = sd->flags;
  39	unsigned int idx;
  40
  41	cpumask_clear(groupmask);
  42
  43	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  44	printk(KERN_CONT "span=%*pbl level=%s\n",
  45	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  46
  47	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  48		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  49	}
  50	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  51		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  52	}
  53
  54	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  55		unsigned int flag = BIT(idx);
  56		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  57
  58		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  59		    !(sd->child->flags & flag))
  60			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  61			       sd_flag_debug[idx].name);
  62
  63		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  64		    !(sd->parent->flags & flag))
  65			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  66			       sd_flag_debug[idx].name);
  67	}
  68
  69	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  70	do {
  71		if (!group) {
  72			printk("\n");
  73			printk(KERN_ERR "ERROR: group is NULL\n");
  74			break;
  75		}
  76
  77		if (!cpumask_weight(sched_group_span(group))) {
  78			printk(KERN_CONT "\n");
  79			printk(KERN_ERR "ERROR: empty group\n");
  80			break;
  81		}
  82
  83		if (!(sd->flags & SD_OVERLAP) &&
  84		    cpumask_intersects(groupmask, sched_group_span(group))) {
  85			printk(KERN_CONT "\n");
  86			printk(KERN_ERR "ERROR: repeated CPUs\n");
  87			break;
  88		}
  89
  90		cpumask_or(groupmask, groupmask, sched_group_span(group));
  91
  92		printk(KERN_CONT " %d:{ span=%*pbl",
  93				group->sgc->id,
  94				cpumask_pr_args(sched_group_span(group)));
  95
  96		if ((sd->flags & SD_OVERLAP) &&
  97		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  98			printk(KERN_CONT " mask=%*pbl",
  99				cpumask_pr_args(group_balance_mask(group)));
 100		}
 101
 102		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 103			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 104
 105		if (group == sd->groups && sd->child &&
 106		    !cpumask_equal(sched_domain_span(sd->child),
 107				   sched_group_span(group))) {
 108			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 109		}
 110
 111		printk(KERN_CONT " }");
 112
 113		group = group->next;
 114
 115		if (group != sd->groups)
 116			printk(KERN_CONT ",");
 117
 118	} while (group != sd->groups);
 119	printk(KERN_CONT "\n");
 120
 121	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 122		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 123
 124	if (sd->parent &&
 125	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 126		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 127	return 0;
 128}
 129
 130static void sched_domain_debug(struct sched_domain *sd, int cpu)
 131{
 132	int level = 0;
 133
 134	if (!sched_debug_verbose)
 135		return;
 136
 137	if (!sd) {
 138		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 139		return;
 140	}
 141
 142	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 143
 144	for (;;) {
 145		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 146			break;
 147		level++;
 148		sd = sd->parent;
 149		if (!sd)
 150			break;
 151	}
 152}
 153#else /* !CONFIG_SCHED_DEBUG */
 154
 155# define sched_debug_verbose 0
 156# define sched_domain_debug(sd, cpu) do { } while (0)
 157static inline bool sched_debug(void)
 158{
 159	return false;
 160}
 161#endif /* CONFIG_SCHED_DEBUG */
 162
 163/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 164#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 165static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 166#include <linux/sched/sd_flags.h>
 1670;
 168#undef SD_FLAG
 169
 170static int sd_degenerate(struct sched_domain *sd)
 171{
 172	if (cpumask_weight(sched_domain_span(sd)) == 1)
 173		return 1;
 174
 175	/* Following flags need at least 2 groups */
 176	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 177	    (sd->groups != sd->groups->next))
 178		return 0;
 179
 180	/* Following flags don't use groups */
 181	if (sd->flags & (SD_WAKE_AFFINE))
 182		return 0;
 183
 184	return 1;
 185}
 186
 187static int
 188sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 189{
 190	unsigned long cflags = sd->flags, pflags = parent->flags;
 191
 192	if (sd_degenerate(parent))
 193		return 1;
 194
 195	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 196		return 0;
 197
 198	/* Flags needing groups don't count if only 1 group in parent */
 199	if (parent->groups == parent->groups->next)
 200		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 201
 202	if (~cflags & pflags)
 203		return 0;
 204
 205	return 1;
 206}
 207
 208#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 209DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 210unsigned int sysctl_sched_energy_aware = 1;
 211DEFINE_MUTEX(sched_energy_mutex);
 212bool sched_energy_update;
 213
 214void rebuild_sched_domains_energy(void)
 215{
 216	mutex_lock(&sched_energy_mutex);
 217	sched_energy_update = true;
 218	rebuild_sched_domains();
 219	sched_energy_update = false;
 220	mutex_unlock(&sched_energy_mutex);
 221}
 222
 223#ifdef CONFIG_PROC_SYSCTL
 224int sched_energy_aware_handler(struct ctl_table *table, int write,
 225		void *buffer, size_t *lenp, loff_t *ppos)
 226{
 227	int ret, state;
 228
 229	if (write && !capable(CAP_SYS_ADMIN))
 230		return -EPERM;
 231
 232	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 233	if (!ret && write) {
 234		state = static_branch_unlikely(&sched_energy_present);
 235		if (state != sysctl_sched_energy_aware)
 236			rebuild_sched_domains_energy();
 237	}
 238
 239	return ret;
 240}
 241#endif
 242
 243static void free_pd(struct perf_domain *pd)
 244{
 245	struct perf_domain *tmp;
 246
 247	while (pd) {
 248		tmp = pd->next;
 249		kfree(pd);
 250		pd = tmp;
 251	}
 252}
 253
 254static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 255{
 256	while (pd) {
 257		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 258			return pd;
 259		pd = pd->next;
 260	}
 261
 262	return NULL;
 263}
 264
 265static struct perf_domain *pd_init(int cpu)
 266{
 267	struct em_perf_domain *obj = em_cpu_get(cpu);
 268	struct perf_domain *pd;
 269
 270	if (!obj) {
 271		if (sched_debug())
 272			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 273		return NULL;
 274	}
 275
 276	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 277	if (!pd)
 278		return NULL;
 279	pd->em_pd = obj;
 280
 281	return pd;
 282}
 283
 284static void perf_domain_debug(const struct cpumask *cpu_map,
 285						struct perf_domain *pd)
 286{
 287	if (!sched_debug() || !pd)
 288		return;
 289
 290	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 291
 292	while (pd) {
 293		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 294				cpumask_first(perf_domain_span(pd)),
 295				cpumask_pr_args(perf_domain_span(pd)),
 296				em_pd_nr_perf_states(pd->em_pd));
 297		pd = pd->next;
 298	}
 299
 300	printk(KERN_CONT "\n");
 301}
 302
 303static void destroy_perf_domain_rcu(struct rcu_head *rp)
 304{
 305	struct perf_domain *pd;
 306
 307	pd = container_of(rp, struct perf_domain, rcu);
 308	free_pd(pd);
 309}
 310
 311static void sched_energy_set(bool has_eas)
 312{
 313	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 314		if (sched_debug())
 315			pr_info("%s: stopping EAS\n", __func__);
 316		static_branch_disable_cpuslocked(&sched_energy_present);
 317	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 318		if (sched_debug())
 319			pr_info("%s: starting EAS\n", __func__);
 320		static_branch_enable_cpuslocked(&sched_energy_present);
 321	}
 322}
 323
 324/*
 325 * EAS can be used on a root domain if it meets all the following conditions:
 326 *    1. an Energy Model (EM) is available;
 327 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 328 *    3. no SMT is detected.
 329 *    4. the EM complexity is low enough to keep scheduling overheads low;
 330 *    5. schedutil is driving the frequency of all CPUs of the rd;
 331 *    6. frequency invariance support is present;
 332 *
 333 * The complexity of the Energy Model is defined as:
 334 *
 335 *              C = nr_pd * (nr_cpus + nr_ps)
 336 *
 337 * with parameters defined as:
 338 *  - nr_pd:    the number of performance domains
 339 *  - nr_cpus:  the number of CPUs
 340 *  - nr_ps:    the sum of the number of performance states of all performance
 341 *              domains (for example, on a system with 2 performance domains,
 342 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 343 *
 344 * It is generally not a good idea to use such a model in the wake-up path on
 345 * very complex platforms because of the associated scheduling overheads. The
 346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 347 * with per-CPU DVFS and less than 8 performance states each, for example.
 348 */
 349#define EM_MAX_COMPLEXITY 2048
 350
 351extern struct cpufreq_governor schedutil_gov;
 352static bool build_perf_domains(const struct cpumask *cpu_map)
 353{
 354	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 355	struct perf_domain *pd = NULL, *tmp;
 356	int cpu = cpumask_first(cpu_map);
 357	struct root_domain *rd = cpu_rq(cpu)->rd;
 358	struct cpufreq_policy *policy;
 359	struct cpufreq_governor *gov;
 360
 361	if (!sysctl_sched_energy_aware)
 362		goto free;
 363
 364	/* EAS is enabled for asymmetric CPU capacity topologies. */
 365	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 366		if (sched_debug()) {
 367			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 368					cpumask_pr_args(cpu_map));
 369		}
 370		goto free;
 371	}
 372
 373	/* EAS definitely does *not* handle SMT */
 374	if (sched_smt_active()) {
 375		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 376			cpumask_pr_args(cpu_map));
 377		goto free;
 378	}
 379
 380	if (!arch_scale_freq_invariant()) {
 381		if (sched_debug()) {
 382			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
 383				cpumask_pr_args(cpu_map));
 384		}
 385		goto free;
 386	}
 387
 388	for_each_cpu(i, cpu_map) {
 389		/* Skip already covered CPUs. */
 390		if (find_pd(pd, i))
 391			continue;
 392
 393		/* Do not attempt EAS if schedutil is not being used. */
 394		policy = cpufreq_cpu_get(i);
 395		if (!policy)
 396			goto free;
 397		gov = policy->governor;
 398		cpufreq_cpu_put(policy);
 399		if (gov != &schedutil_gov) {
 400			if (rd->pd)
 401				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 402						cpumask_pr_args(cpu_map));
 403			goto free;
 404		}
 405
 406		/* Create the new pd and add it to the local list. */
 407		tmp = pd_init(i);
 408		if (!tmp)
 409			goto free;
 410		tmp->next = pd;
 411		pd = tmp;
 412
 413		/*
 414		 * Count performance domains and performance states for the
 415		 * complexity check.
 416		 */
 417		nr_pd++;
 418		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 419	}
 420
 421	/* Bail out if the Energy Model complexity is too high. */
 422	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 423		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 424						cpumask_pr_args(cpu_map));
 425		goto free;
 426	}
 427
 428	perf_domain_debug(cpu_map, pd);
 429
 430	/* Attach the new list of performance domains to the root domain. */
 431	tmp = rd->pd;
 432	rcu_assign_pointer(rd->pd, pd);
 433	if (tmp)
 434		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 435
 436	return !!pd;
 437
 438free:
 439	free_pd(pd);
 440	tmp = rd->pd;
 441	rcu_assign_pointer(rd->pd, NULL);
 442	if (tmp)
 443		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 444
 445	return false;
 446}
 447#else
 448static void free_pd(struct perf_domain *pd) { }
 449#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 450
 451static void free_rootdomain(struct rcu_head *rcu)
 452{
 453	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 454
 455	cpupri_cleanup(&rd->cpupri);
 456	cpudl_cleanup(&rd->cpudl);
 457	free_cpumask_var(rd->dlo_mask);
 458	free_cpumask_var(rd->rto_mask);
 459	free_cpumask_var(rd->online);
 460	free_cpumask_var(rd->span);
 461	free_pd(rd->pd);
 462	kfree(rd);
 463}
 464
 465void rq_attach_root(struct rq *rq, struct root_domain *rd)
 466{
 467	struct root_domain *old_rd = NULL;
 468	unsigned long flags;
 469
 470	raw_spin_rq_lock_irqsave(rq, flags);
 471
 472	if (rq->rd) {
 473		old_rd = rq->rd;
 474
 475		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 476			set_rq_offline(rq);
 477
 478		cpumask_clear_cpu(rq->cpu, old_rd->span);
 479
 480		/*
 481		 * If we dont want to free the old_rd yet then
 482		 * set old_rd to NULL to skip the freeing later
 483		 * in this function:
 484		 */
 485		if (!atomic_dec_and_test(&old_rd->refcount))
 486			old_rd = NULL;
 487	}
 488
 489	atomic_inc(&rd->refcount);
 490	rq->rd = rd;
 491
 492	cpumask_set_cpu(rq->cpu, rd->span);
 493	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 494		set_rq_online(rq);
 495
 496	raw_spin_rq_unlock_irqrestore(rq, flags);
 497
 498	if (old_rd)
 499		call_rcu(&old_rd->rcu, free_rootdomain);
 500}
 501
 502void sched_get_rd(struct root_domain *rd)
 503{
 504	atomic_inc(&rd->refcount);
 505}
 506
 507void sched_put_rd(struct root_domain *rd)
 508{
 509	if (!atomic_dec_and_test(&rd->refcount))
 510		return;
 511
 512	call_rcu(&rd->rcu, free_rootdomain);
 513}
 514
 515static int init_rootdomain(struct root_domain *rd)
 516{
 517	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 518		goto out;
 519	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 520		goto free_span;
 521	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 522		goto free_online;
 523	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 524		goto free_dlo_mask;
 525
 526#ifdef HAVE_RT_PUSH_IPI
 527	rd->rto_cpu = -1;
 528	raw_spin_lock_init(&rd->rto_lock);
 529	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 530#endif
 531
 532	rd->visit_gen = 0;
 533	init_dl_bw(&rd->dl_bw);
 534	if (cpudl_init(&rd->cpudl) != 0)
 535		goto free_rto_mask;
 536
 537	if (cpupri_init(&rd->cpupri) != 0)
 538		goto free_cpudl;
 539	return 0;
 540
 541free_cpudl:
 542	cpudl_cleanup(&rd->cpudl);
 543free_rto_mask:
 544	free_cpumask_var(rd->rto_mask);
 545free_dlo_mask:
 546	free_cpumask_var(rd->dlo_mask);
 547free_online:
 548	free_cpumask_var(rd->online);
 549free_span:
 550	free_cpumask_var(rd->span);
 551out:
 552	return -ENOMEM;
 553}
 554
 555/*
 556 * By default the system creates a single root-domain with all CPUs as
 557 * members (mimicking the global state we have today).
 558 */
 559struct root_domain def_root_domain;
 560
 561void init_defrootdomain(void)
 562{
 563	init_rootdomain(&def_root_domain);
 564
 565	atomic_set(&def_root_domain.refcount, 1);
 566}
 567
 568static struct root_domain *alloc_rootdomain(void)
 569{
 570	struct root_domain *rd;
 571
 572	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 573	if (!rd)
 574		return NULL;
 575
 576	if (init_rootdomain(rd) != 0) {
 577		kfree(rd);
 578		return NULL;
 579	}
 580
 581	return rd;
 582}
 583
 584static void free_sched_groups(struct sched_group *sg, int free_sgc)
 585{
 586	struct sched_group *tmp, *first;
 587
 588	if (!sg)
 589		return;
 590
 591	first = sg;
 592	do {
 593		tmp = sg->next;
 594
 595		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 596			kfree(sg->sgc);
 597
 598		if (atomic_dec_and_test(&sg->ref))
 599			kfree(sg);
 600		sg = tmp;
 601	} while (sg != first);
 602}
 603
 604static void destroy_sched_domain(struct sched_domain *sd)
 605{
 606	/*
 607	 * A normal sched domain may have multiple group references, an
 608	 * overlapping domain, having private groups, only one.  Iterate,
 609	 * dropping group/capacity references, freeing where none remain.
 610	 */
 611	free_sched_groups(sd->groups, 1);
 612
 613	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 614		kfree(sd->shared);
 615	kfree(sd);
 616}
 617
 618static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 619{
 620	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 621
 622	while (sd) {
 623		struct sched_domain *parent = sd->parent;
 624		destroy_sched_domain(sd);
 625		sd = parent;
 626	}
 627}
 628
 629static void destroy_sched_domains(struct sched_domain *sd)
 630{
 631	if (sd)
 632		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 633}
 634
 635/*
 636 * Keep a special pointer to the highest sched_domain that has
 637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 638 * allows us to avoid some pointer chasing select_idle_sibling().
 639 *
 640 * Also keep a unique ID per domain (we use the first CPU number in
 641 * the cpumask of the domain), this allows us to quickly tell if
 642 * two CPUs are in the same cache domain, see cpus_share_cache().
 643 */
 644DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 645DEFINE_PER_CPU(int, sd_llc_size);
 646DEFINE_PER_CPU(int, sd_llc_id);
 647DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 648DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 649DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 650DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 651DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 652
 653static void update_top_cache_domain(int cpu)
 654{
 655	struct sched_domain_shared *sds = NULL;
 656	struct sched_domain *sd;
 657	int id = cpu;
 658	int size = 1;
 659
 660	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 661	if (sd) {
 662		id = cpumask_first(sched_domain_span(sd));
 663		size = cpumask_weight(sched_domain_span(sd));
 664		sds = sd->shared;
 665	}
 666
 667	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 668	per_cpu(sd_llc_size, cpu) = size;
 669	per_cpu(sd_llc_id, cpu) = id;
 670	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 671
 672	sd = lowest_flag_domain(cpu, SD_NUMA);
 673	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 674
 675	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 676	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 677
 678	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 679	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 680}
 681
 682/*
 683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 684 * hold the hotplug lock.
 685 */
 686static void
 687cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 688{
 689	struct rq *rq = cpu_rq(cpu);
 690	struct sched_domain *tmp;
 691	int numa_distance = 0;
 692
 693	/* Remove the sched domains which do not contribute to scheduling. */
 694	for (tmp = sd; tmp; ) {
 695		struct sched_domain *parent = tmp->parent;
 696		if (!parent)
 697			break;
 698
 699		if (sd_parent_degenerate(tmp, parent)) {
 700			tmp->parent = parent->parent;
 701			if (parent->parent)
 702				parent->parent->child = tmp;
 703			/*
 704			 * Transfer SD_PREFER_SIBLING down in case of a
 705			 * degenerate parent; the spans match for this
 706			 * so the property transfers.
 707			 */
 708			if (parent->flags & SD_PREFER_SIBLING)
 709				tmp->flags |= SD_PREFER_SIBLING;
 710			destroy_sched_domain(parent);
 711		} else
 712			tmp = tmp->parent;
 713	}
 714
 715	if (sd && sd_degenerate(sd)) {
 716		tmp = sd;
 717		sd = sd->parent;
 718		destroy_sched_domain(tmp);
 719		if (sd)
 720			sd->child = NULL;
 721	}
 722
 723	for (tmp = sd; tmp; tmp = tmp->parent)
 724		numa_distance += !!(tmp->flags & SD_NUMA);
 725
 726	sched_domain_debug(sd, cpu);
 727
 728	rq_attach_root(rq, rd);
 729	tmp = rq->sd;
 730	rcu_assign_pointer(rq->sd, sd);
 731	dirty_sched_domain_sysctl(cpu);
 732	destroy_sched_domains(tmp);
 733
 734	update_top_cache_domain(cpu);
 735}
 736
 737struct s_data {
 738	struct sched_domain * __percpu *sd;
 739	struct root_domain	*rd;
 740};
 741
 742enum s_alloc {
 743	sa_rootdomain,
 744	sa_sd,
 745	sa_sd_storage,
 746	sa_none,
 747};
 748
 749/*
 750 * Return the canonical balance CPU for this group, this is the first CPU
 751 * of this group that's also in the balance mask.
 752 *
 753 * The balance mask are all those CPUs that could actually end up at this
 754 * group. See build_balance_mask().
 755 *
 756 * Also see should_we_balance().
 757 */
 758int group_balance_cpu(struct sched_group *sg)
 759{
 760	return cpumask_first(group_balance_mask(sg));
 761}
 762
 763
 764/*
 765 * NUMA topology (first read the regular topology blurb below)
 766 *
 767 * Given a node-distance table, for example:
 768 *
 769 *   node   0   1   2   3
 770 *     0:  10  20  30  20
 771 *     1:  20  10  20  30
 772 *     2:  30  20  10  20
 773 *     3:  20  30  20  10
 774 *
 775 * which represents a 4 node ring topology like:
 776 *
 777 *   0 ----- 1
 778 *   |       |
 779 *   |       |
 780 *   |       |
 781 *   3 ----- 2
 782 *
 783 * We want to construct domains and groups to represent this. The way we go
 784 * about doing this is to build the domains on 'hops'. For each NUMA level we
 785 * construct the mask of all nodes reachable in @level hops.
 786 *
 787 * For the above NUMA topology that gives 3 levels:
 788 *
 789 * NUMA-2	0-3		0-3		0-3		0-3
 790 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 791 *
 792 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 793 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 794 *
 795 * NUMA-0	0		1		2		3
 796 *
 797 *
 798 * As can be seen; things don't nicely line up as with the regular topology.
 799 * When we iterate a domain in child domain chunks some nodes can be
 800 * represented multiple times -- hence the "overlap" naming for this part of
 801 * the topology.
 802 *
 803 * In order to minimize this overlap, we only build enough groups to cover the
 804 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 805 *
 806 * Because:
 807 *
 808 *  - the first group of each domain is its child domain; this
 809 *    gets us the first 0-1,3
 810 *  - the only uncovered node is 2, who's child domain is 1-3.
 811 *
 812 * However, because of the overlap, computing a unique CPU for each group is
 813 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 814 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 815 * end up at those groups (they would end up in group: 0-1,3).
 816 *
 817 * To correct this we have to introduce the group balance mask. This mask
 818 * will contain those CPUs in the group that can reach this group given the
 819 * (child) domain tree.
 820 *
 821 * With this we can once again compute balance_cpu and sched_group_capacity
 822 * relations.
 823 *
 824 * XXX include words on how balance_cpu is unique and therefore can be
 825 * used for sched_group_capacity links.
 826 *
 827 *
 828 * Another 'interesting' topology is:
 829 *
 830 *   node   0   1   2   3
 831 *     0:  10  20  20  30
 832 *     1:  20  10  20  20
 833 *     2:  20  20  10  20
 834 *     3:  30  20  20  10
 835 *
 836 * Which looks a little like:
 837 *
 838 *   0 ----- 1
 839 *   |     / |
 840 *   |   /   |
 841 *   | /     |
 842 *   2 ----- 3
 843 *
 844 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 845 * are not.
 846 *
 847 * This leads to a few particularly weird cases where the sched_domain's are
 848 * not of the same number for each CPU. Consider:
 849 *
 850 * NUMA-2	0-3						0-3
 851 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 852 *
 853 * NUMA-1	0-2		0-3		0-3		1-3
 854 *
 855 * NUMA-0	0		1		2		3
 856 *
 857 */
 858
 859
 860/*
 861 * Build the balance mask; it contains only those CPUs that can arrive at this
 862 * group and should be considered to continue balancing.
 863 *
 864 * We do this during the group creation pass, therefore the group information
 865 * isn't complete yet, however since each group represents a (child) domain we
 866 * can fully construct this using the sched_domain bits (which are already
 867 * complete).
 868 */
 869static void
 870build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 871{
 872	const struct cpumask *sg_span = sched_group_span(sg);
 873	struct sd_data *sdd = sd->private;
 874	struct sched_domain *sibling;
 875	int i;
 876
 877	cpumask_clear(mask);
 878
 879	for_each_cpu(i, sg_span) {
 880		sibling = *per_cpu_ptr(sdd->sd, i);
 881
 882		/*
 883		 * Can happen in the asymmetric case, where these siblings are
 884		 * unused. The mask will not be empty because those CPUs that
 885		 * do have the top domain _should_ span the domain.
 886		 */
 887		if (!sibling->child)
 888			continue;
 889
 890		/* If we would not end up here, we can't continue from here */
 891		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 892			continue;
 893
 894		cpumask_set_cpu(i, mask);
 895	}
 896
 897	/* We must not have empty masks here */
 898	WARN_ON_ONCE(cpumask_empty(mask));
 899}
 900
 901/*
 902 * XXX: This creates per-node group entries; since the load-balancer will
 903 * immediately access remote memory to construct this group's load-balance
 904 * statistics having the groups node local is of dubious benefit.
 905 */
 906static struct sched_group *
 907build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 908{
 909	struct sched_group *sg;
 910	struct cpumask *sg_span;
 911
 912	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 913			GFP_KERNEL, cpu_to_node(cpu));
 914
 915	if (!sg)
 916		return NULL;
 917
 918	sg_span = sched_group_span(sg);
 919	if (sd->child)
 920		cpumask_copy(sg_span, sched_domain_span(sd->child));
 921	else
 922		cpumask_copy(sg_span, sched_domain_span(sd));
 923
 924	atomic_inc(&sg->ref);
 925	return sg;
 926}
 927
 928static void init_overlap_sched_group(struct sched_domain *sd,
 929				     struct sched_group *sg)
 930{
 931	struct cpumask *mask = sched_domains_tmpmask2;
 932	struct sd_data *sdd = sd->private;
 933	struct cpumask *sg_span;
 934	int cpu;
 935
 936	build_balance_mask(sd, sg, mask);
 937	cpu = cpumask_first(mask);
 938
 939	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 940	if (atomic_inc_return(&sg->sgc->ref) == 1)
 941		cpumask_copy(group_balance_mask(sg), mask);
 942	else
 943		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 944
 945	/*
 946	 * Initialize sgc->capacity such that even if we mess up the
 947	 * domains and no possible iteration will get us here, we won't
 948	 * die on a /0 trap.
 949	 */
 950	sg_span = sched_group_span(sg);
 951	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 952	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 953	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 954}
 955
 956static struct sched_domain *
 957find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
 958{
 959	/*
 960	 * The proper descendant would be the one whose child won't span out
 961	 * of sd
 962	 */
 963	while (sibling->child &&
 964	       !cpumask_subset(sched_domain_span(sibling->child),
 965			       sched_domain_span(sd)))
 966		sibling = sibling->child;
 967
 968	/*
 969	 * As we are referencing sgc across different topology level, we need
 970	 * to go down to skip those sched_domains which don't contribute to
 971	 * scheduling because they will be degenerated in cpu_attach_domain
 972	 */
 973	while (sibling->child &&
 974	       cpumask_equal(sched_domain_span(sibling->child),
 975			     sched_domain_span(sibling)))
 976		sibling = sibling->child;
 977
 978	return sibling;
 979}
 980
 981static int
 982build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 983{
 984	struct sched_group *first = NULL, *last = NULL, *sg;
 985	const struct cpumask *span = sched_domain_span(sd);
 986	struct cpumask *covered = sched_domains_tmpmask;
 987	struct sd_data *sdd = sd->private;
 988	struct sched_domain *sibling;
 989	int i;
 990
 991	cpumask_clear(covered);
 992
 993	for_each_cpu_wrap(i, span, cpu) {
 994		struct cpumask *sg_span;
 995
 996		if (cpumask_test_cpu(i, covered))
 997			continue;
 998
 999		sibling = *per_cpu_ptr(sdd->sd, i);
1000
1001		/*
1002		 * Asymmetric node setups can result in situations where the
1003		 * domain tree is of unequal depth, make sure to skip domains
1004		 * that already cover the entire range.
1005		 *
1006		 * In that case build_sched_domains() will have terminated the
1007		 * iteration early and our sibling sd spans will be empty.
1008		 * Domains should always include the CPU they're built on, so
1009		 * check that.
1010		 */
1011		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1012			continue;
1013
1014		/*
1015		 * Usually we build sched_group by sibling's child sched_domain
1016		 * But for machines whose NUMA diameter are 3 or above, we move
1017		 * to build sched_group by sibling's proper descendant's child
1018		 * domain because sibling's child sched_domain will span out of
1019		 * the sched_domain being built as below.
1020		 *
1021		 * Smallest diameter=3 topology is:
1022		 *
1023		 *   node   0   1   2   3
1024		 *     0:  10  20  30  40
1025		 *     1:  20  10  20  30
1026		 *     2:  30  20  10  20
1027		 *     3:  40  30  20  10
1028		 *
1029		 *   0 --- 1 --- 2 --- 3
1030		 *
1031		 * NUMA-3       0-3             N/A             N/A             0-3
1032		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1033		 *
1034		 * NUMA-2       0-2             0-3             0-3             1-3
1035		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1036		 *
1037		 * NUMA-1       0-1             0-2             1-3             2-3
1038		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1039		 *
1040		 * NUMA-0       0               1               2               3
1041		 *
1042		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1043		 * group span isn't a subset of the domain span.
1044		 */
1045		if (sibling->child &&
1046		    !cpumask_subset(sched_domain_span(sibling->child), span))
1047			sibling = find_descended_sibling(sd, sibling);
1048
1049		sg = build_group_from_child_sched_domain(sibling, cpu);
1050		if (!sg)
1051			goto fail;
1052
1053		sg_span = sched_group_span(sg);
1054		cpumask_or(covered, covered, sg_span);
1055
1056		init_overlap_sched_group(sibling, sg);
1057
1058		if (!first)
1059			first = sg;
1060		if (last)
1061			last->next = sg;
1062		last = sg;
1063		last->next = first;
1064	}
1065	sd->groups = first;
1066
1067	return 0;
1068
1069fail:
1070	free_sched_groups(first, 0);
1071
1072	return -ENOMEM;
1073}
1074
1075
1076/*
1077 * Package topology (also see the load-balance blurb in fair.c)
1078 *
1079 * The scheduler builds a tree structure to represent a number of important
1080 * topology features. By default (default_topology[]) these include:
1081 *
1082 *  - Simultaneous multithreading (SMT)
1083 *  - Multi-Core Cache (MC)
1084 *  - Package (DIE)
1085 *
1086 * Where the last one more or less denotes everything up to a NUMA node.
1087 *
1088 * The tree consists of 3 primary data structures:
1089 *
1090 *	sched_domain -> sched_group -> sched_group_capacity
1091 *	    ^ ^             ^ ^
1092 *          `-'             `-'
1093 *
1094 * The sched_domains are per-CPU and have a two way link (parent & child) and
1095 * denote the ever growing mask of CPUs belonging to that level of topology.
1096 *
1097 * Each sched_domain has a circular (double) linked list of sched_group's, each
1098 * denoting the domains of the level below (or individual CPUs in case of the
1099 * first domain level). The sched_group linked by a sched_domain includes the
1100 * CPU of that sched_domain [*].
1101 *
1102 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1103 *
1104 * CPU   0   1   2   3   4   5   6   7
1105 *
1106 * DIE  [                             ]
1107 * MC   [             ] [             ]
1108 * SMT  [     ] [     ] [     ] [     ]
1109 *
1110 *  - or -
1111 *
1112 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1113 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1114 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1115 *
1116 * CPU   0   1   2   3   4   5   6   7
1117 *
1118 * One way to think about it is: sched_domain moves you up and down among these
1119 * topology levels, while sched_group moves you sideways through it, at child
1120 * domain granularity.
1121 *
1122 * sched_group_capacity ensures each unique sched_group has shared storage.
1123 *
1124 * There are two related construction problems, both require a CPU that
1125 * uniquely identify each group (for a given domain):
1126 *
1127 *  - The first is the balance_cpu (see should_we_balance() and the
1128 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1129 *    continue balancing at a higher domain.
1130 *
1131 *  - The second is the sched_group_capacity; we want all identical groups
1132 *    to share a single sched_group_capacity.
1133 *
1134 * Since these topologies are exclusive by construction. That is, its
1135 * impossible for an SMT thread to belong to multiple cores, and cores to
1136 * be part of multiple caches. There is a very clear and unique location
1137 * for each CPU in the hierarchy.
1138 *
1139 * Therefore computing a unique CPU for each group is trivial (the iteration
1140 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1141 * group), we can simply pick the first CPU in each group.
1142 *
1143 *
1144 * [*] in other words, the first group of each domain is its child domain.
1145 */
1146
1147static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1148{
1149	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1150	struct sched_domain *child = sd->child;
1151	struct sched_group *sg;
1152	bool already_visited;
1153
1154	if (child)
1155		cpu = cpumask_first(sched_domain_span(child));
1156
1157	sg = *per_cpu_ptr(sdd->sg, cpu);
1158	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1159
1160	/* Increase refcounts for claim_allocations: */
1161	already_visited = atomic_inc_return(&sg->ref) > 1;
1162	/* sgc visits should follow a similar trend as sg */
1163	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1164
1165	/* If we have already visited that group, it's already initialized. */
1166	if (already_visited)
1167		return sg;
1168
1169	if (child) {
1170		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1171		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1172	} else {
1173		cpumask_set_cpu(cpu, sched_group_span(sg));
1174		cpumask_set_cpu(cpu, group_balance_mask(sg));
1175	}
1176
1177	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1178	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1179	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1180
1181	return sg;
1182}
1183
1184/*
1185 * build_sched_groups will build a circular linked list of the groups
1186 * covered by the given span, will set each group's ->cpumask correctly,
1187 * and will initialize their ->sgc.
1188 *
1189 * Assumes the sched_domain tree is fully constructed
1190 */
1191static int
1192build_sched_groups(struct sched_domain *sd, int cpu)
1193{
1194	struct sched_group *first = NULL, *last = NULL;
1195	struct sd_data *sdd = sd->private;
1196	const struct cpumask *span = sched_domain_span(sd);
1197	struct cpumask *covered;
1198	int i;
1199
1200	lockdep_assert_held(&sched_domains_mutex);
1201	covered = sched_domains_tmpmask;
1202
1203	cpumask_clear(covered);
1204
1205	for_each_cpu_wrap(i, span, cpu) {
1206		struct sched_group *sg;
1207
1208		if (cpumask_test_cpu(i, covered))
1209			continue;
1210
1211		sg = get_group(i, sdd);
1212
1213		cpumask_or(covered, covered, sched_group_span(sg));
1214
1215		if (!first)
1216			first = sg;
1217		if (last)
1218			last->next = sg;
1219		last = sg;
1220	}
1221	last->next = first;
1222	sd->groups = first;
1223
1224	return 0;
1225}
1226
1227/*
1228 * Initialize sched groups cpu_capacity.
1229 *
1230 * cpu_capacity indicates the capacity of sched group, which is used while
1231 * distributing the load between different sched groups in a sched domain.
1232 * Typically cpu_capacity for all the groups in a sched domain will be same
1233 * unless there are asymmetries in the topology. If there are asymmetries,
1234 * group having more cpu_capacity will pickup more load compared to the
1235 * group having less cpu_capacity.
1236 */
1237static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1238{
1239	struct sched_group *sg = sd->groups;
1240
1241	WARN_ON(!sg);
1242
1243	do {
1244		int cpu, max_cpu = -1;
1245
1246		sg->group_weight = cpumask_weight(sched_group_span(sg));
1247
1248		if (!(sd->flags & SD_ASYM_PACKING))
1249			goto next;
1250
1251		for_each_cpu(cpu, sched_group_span(sg)) {
1252			if (max_cpu < 0)
1253				max_cpu = cpu;
1254			else if (sched_asym_prefer(cpu, max_cpu))
1255				max_cpu = cpu;
1256		}
1257		sg->asym_prefer_cpu = max_cpu;
1258
1259next:
1260		sg = sg->next;
1261	} while (sg != sd->groups);
1262
1263	if (cpu != group_balance_cpu(sg))
1264		return;
1265
1266	update_group_capacity(sd, cpu);
1267}
1268
1269/*
1270 * Asymmetric CPU capacity bits
1271 */
1272struct asym_cap_data {
1273	struct list_head link;
1274	unsigned long capacity;
1275	unsigned long cpus[];
1276};
1277
1278/*
1279 * Set of available CPUs grouped by their corresponding capacities
1280 * Each list entry contains a CPU mask reflecting CPUs that share the same
1281 * capacity.
1282 * The lifespan of data is unlimited.
1283 */
1284static LIST_HEAD(asym_cap_list);
1285
1286#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1287
1288/*
1289 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1290 * Provides sd_flags reflecting the asymmetry scope.
1291 */
1292static inline int
1293asym_cpu_capacity_classify(const struct cpumask *sd_span,
1294			   const struct cpumask *cpu_map)
1295{
1296	struct asym_cap_data *entry;
1297	int count = 0, miss = 0;
1298
1299	/*
1300	 * Count how many unique CPU capacities this domain spans across
1301	 * (compare sched_domain CPUs mask with ones representing  available
1302	 * CPUs capacities). Take into account CPUs that might be offline:
1303	 * skip those.
1304	 */
1305	list_for_each_entry(entry, &asym_cap_list, link) {
1306		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1307			++count;
1308		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1309			++miss;
1310	}
1311
1312	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1313
1314	/* No asymmetry detected */
1315	if (count < 2)
1316		return 0;
1317	/* Some of the available CPU capacity values have not been detected */
1318	if (miss)
1319		return SD_ASYM_CPUCAPACITY;
1320
1321	/* Full asymmetry */
1322	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1323
1324}
1325
1326static inline void asym_cpu_capacity_update_data(int cpu)
1327{
1328	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1329	struct asym_cap_data *entry = NULL;
1330
1331	list_for_each_entry(entry, &asym_cap_list, link) {
1332		if (capacity == entry->capacity)
1333			goto done;
1334	}
1335
1336	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1337	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1338		return;
1339	entry->capacity = capacity;
1340	list_add(&entry->link, &asym_cap_list);
1341done:
1342	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1343}
1344
1345/*
1346 * Build-up/update list of CPUs grouped by their capacities
1347 * An update requires explicit request to rebuild sched domains
1348 * with state indicating CPU topology changes.
1349 */
1350static void asym_cpu_capacity_scan(void)
1351{
1352	struct asym_cap_data *entry, *next;
1353	int cpu;
1354
1355	list_for_each_entry(entry, &asym_cap_list, link)
1356		cpumask_clear(cpu_capacity_span(entry));
1357
1358	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN))
1359		asym_cpu_capacity_update_data(cpu);
1360
1361	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1362		if (cpumask_empty(cpu_capacity_span(entry))) {
1363			list_del(&entry->link);
1364			kfree(entry);
1365		}
1366	}
1367
1368	/*
1369	 * Only one capacity value has been detected i.e. this system is symmetric.
1370	 * No need to keep this data around.
1371	 */
1372	if (list_is_singular(&asym_cap_list)) {
1373		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1374		list_del(&entry->link);
1375		kfree(entry);
1376	}
1377}
1378
1379/*
1380 * Initializers for schedule domains
1381 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1382 */
1383
1384static int default_relax_domain_level = -1;
1385int sched_domain_level_max;
1386
1387static int __init setup_relax_domain_level(char *str)
1388{
1389	if (kstrtoint(str, 0, &default_relax_domain_level))
1390		pr_warn("Unable to set relax_domain_level\n");
1391
1392	return 1;
1393}
1394__setup("relax_domain_level=", setup_relax_domain_level);
1395
1396static void set_domain_attribute(struct sched_domain *sd,
1397				 struct sched_domain_attr *attr)
1398{
1399	int request;
1400
1401	if (!attr || attr->relax_domain_level < 0) {
1402		if (default_relax_domain_level < 0)
1403			return;
1404		request = default_relax_domain_level;
1405	} else
1406		request = attr->relax_domain_level;
1407
1408	if (sd->level > request) {
1409		/* Turn off idle balance on this domain: */
1410		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1411	}
1412}
1413
1414static void __sdt_free(const struct cpumask *cpu_map);
1415static int __sdt_alloc(const struct cpumask *cpu_map);
1416
1417static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1418				 const struct cpumask *cpu_map)
1419{
1420	switch (what) {
1421	case sa_rootdomain:
1422		if (!atomic_read(&d->rd->refcount))
1423			free_rootdomain(&d->rd->rcu);
1424		fallthrough;
1425	case sa_sd:
1426		free_percpu(d->sd);
1427		fallthrough;
1428	case sa_sd_storage:
1429		__sdt_free(cpu_map);
1430		fallthrough;
1431	case sa_none:
1432		break;
1433	}
1434}
1435
1436static enum s_alloc
1437__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1438{
1439	memset(d, 0, sizeof(*d));
1440
1441	if (__sdt_alloc(cpu_map))
1442		return sa_sd_storage;
1443	d->sd = alloc_percpu(struct sched_domain *);
1444	if (!d->sd)
1445		return sa_sd_storage;
1446	d->rd = alloc_rootdomain();
1447	if (!d->rd)
1448		return sa_sd;
1449
1450	return sa_rootdomain;
1451}
1452
1453/*
1454 * NULL the sd_data elements we've used to build the sched_domain and
1455 * sched_group structure so that the subsequent __free_domain_allocs()
1456 * will not free the data we're using.
1457 */
1458static void claim_allocations(int cpu, struct sched_domain *sd)
1459{
1460	struct sd_data *sdd = sd->private;
1461
1462	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1463	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1464
1465	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1466		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1467
1468	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1469		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1470
1471	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1472		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1473}
1474
1475#ifdef CONFIG_NUMA
1476enum numa_topology_type sched_numa_topology_type;
1477
1478static int			sched_domains_numa_levels;
1479static int			sched_domains_curr_level;
1480
1481int				sched_max_numa_distance;
1482static int			*sched_domains_numa_distance;
1483static struct cpumask		***sched_domains_numa_masks;
1484int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1485
1486static unsigned long __read_mostly *sched_numa_onlined_nodes;
1487#endif
1488
1489/*
1490 * SD_flags allowed in topology descriptions.
1491 *
1492 * These flags are purely descriptive of the topology and do not prescribe
1493 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1494 * function:
1495 *
1496 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1497 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1498 *   SD_NUMA                - describes NUMA topologies
1499 *
1500 * Odd one out, which beside describing the topology has a quirk also
1501 * prescribes the desired behaviour that goes along with it:
1502 *
1503 *   SD_ASYM_PACKING        - describes SMT quirks
1504 */
1505#define TOPOLOGY_SD_FLAGS		\
1506	(SD_SHARE_CPUCAPACITY	|	\
1507	 SD_SHARE_PKG_RESOURCES |	\
1508	 SD_NUMA		|	\
1509	 SD_ASYM_PACKING)
1510
1511static struct sched_domain *
1512sd_init(struct sched_domain_topology_level *tl,
1513	const struct cpumask *cpu_map,
1514	struct sched_domain *child, int cpu)
1515{
1516	struct sd_data *sdd = &tl->data;
1517	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1518	int sd_id, sd_weight, sd_flags = 0;
1519	struct cpumask *sd_span;
1520
1521#ifdef CONFIG_NUMA
1522	/*
1523	 * Ugly hack to pass state to sd_numa_mask()...
1524	 */
1525	sched_domains_curr_level = tl->numa_level;
1526#endif
1527
1528	sd_weight = cpumask_weight(tl->mask(cpu));
1529
1530	if (tl->sd_flags)
1531		sd_flags = (*tl->sd_flags)();
1532	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1533			"wrong sd_flags in topology description\n"))
1534		sd_flags &= TOPOLOGY_SD_FLAGS;
1535
1536	*sd = (struct sched_domain){
1537		.min_interval		= sd_weight,
1538		.max_interval		= 2*sd_weight,
1539		.busy_factor		= 16,
1540		.imbalance_pct		= 117,
1541
1542		.cache_nice_tries	= 0,
1543
1544		.flags			= 1*SD_BALANCE_NEWIDLE
1545					| 1*SD_BALANCE_EXEC
1546					| 1*SD_BALANCE_FORK
1547					| 0*SD_BALANCE_WAKE
1548					| 1*SD_WAKE_AFFINE
1549					| 0*SD_SHARE_CPUCAPACITY
1550					| 0*SD_SHARE_PKG_RESOURCES
1551					| 0*SD_SERIALIZE
1552					| 1*SD_PREFER_SIBLING
1553					| 0*SD_NUMA
1554					| sd_flags
1555					,
1556
1557		.last_balance		= jiffies,
1558		.balance_interval	= sd_weight,
1559		.max_newidle_lb_cost	= 0,
1560		.next_decay_max_lb_cost	= jiffies,
1561		.child			= child,
1562#ifdef CONFIG_SCHED_DEBUG
1563		.name			= tl->name,
1564#endif
1565	};
1566
1567	sd_span = sched_domain_span(sd);
1568	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1569	sd_id = cpumask_first(sd_span);
1570
1571	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1572
1573	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1574		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1575		  "CPU capacity asymmetry not supported on SMT\n");
1576
1577	/*
1578	 * Convert topological properties into behaviour.
1579	 */
1580	/* Don't attempt to spread across CPUs of different capacities. */
1581	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1582		sd->child->flags &= ~SD_PREFER_SIBLING;
1583
1584	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1585		sd->imbalance_pct = 110;
1586
1587	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1588		sd->imbalance_pct = 117;
1589		sd->cache_nice_tries = 1;
1590
1591#ifdef CONFIG_NUMA
1592	} else if (sd->flags & SD_NUMA) {
1593		sd->cache_nice_tries = 2;
1594
1595		sd->flags &= ~SD_PREFER_SIBLING;
1596		sd->flags |= SD_SERIALIZE;
1597		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1598			sd->flags &= ~(SD_BALANCE_EXEC |
1599				       SD_BALANCE_FORK |
1600				       SD_WAKE_AFFINE);
1601		}
1602
1603#endif
1604	} else {
1605		sd->cache_nice_tries = 1;
1606	}
1607
1608	/*
1609	 * For all levels sharing cache; connect a sched_domain_shared
1610	 * instance.
1611	 */
1612	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1613		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1614		atomic_inc(&sd->shared->ref);
1615		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1616	}
1617
1618	sd->private = sdd;
1619
1620	return sd;
1621}
1622
1623/*
1624 * Topology list, bottom-up.
1625 */
1626static struct sched_domain_topology_level default_topology[] = {
1627#ifdef CONFIG_SCHED_SMT
1628	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1629#endif
1630#ifdef CONFIG_SCHED_MC
1631	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1632#endif
1633	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1634	{ NULL, },
1635};
1636
1637static struct sched_domain_topology_level *sched_domain_topology =
1638	default_topology;
1639
1640#define for_each_sd_topology(tl)			\
1641	for (tl = sched_domain_topology; tl->mask; tl++)
1642
1643void set_sched_topology(struct sched_domain_topology_level *tl)
1644{
1645	if (WARN_ON_ONCE(sched_smp_initialized))
1646		return;
1647
1648	sched_domain_topology = tl;
1649}
1650
1651#ifdef CONFIG_NUMA
1652
1653static const struct cpumask *sd_numa_mask(int cpu)
1654{
1655	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1656}
1657
1658static void sched_numa_warn(const char *str)
1659{
1660	static int done = false;
1661	int i,j;
1662
1663	if (done)
1664		return;
1665
1666	done = true;
1667
1668	printk(KERN_WARNING "ERROR: %s\n\n", str);
1669
1670	for (i = 0; i < nr_node_ids; i++) {
1671		printk(KERN_WARNING "  ");
1672		for (j = 0; j < nr_node_ids; j++)
1673			printk(KERN_CONT "%02d ", node_distance(i,j));
1674		printk(KERN_CONT "\n");
1675	}
1676	printk(KERN_WARNING "\n");
1677}
1678
1679bool find_numa_distance(int distance)
1680{
1681	int i;
1682
1683	if (distance == node_distance(0, 0))
1684		return true;
1685
1686	for (i = 0; i < sched_domains_numa_levels; i++) {
1687		if (sched_domains_numa_distance[i] == distance)
1688			return true;
1689	}
1690
1691	return false;
1692}
1693
1694/*
1695 * A system can have three types of NUMA topology:
1696 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1697 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1698 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1699 *
1700 * The difference between a glueless mesh topology and a backplane
1701 * topology lies in whether communication between not directly
1702 * connected nodes goes through intermediary nodes (where programs
1703 * could run), or through backplane controllers. This affects
1704 * placement of programs.
1705 *
1706 * The type of topology can be discerned with the following tests:
1707 * - If the maximum distance between any nodes is 1 hop, the system
1708 *   is directly connected.
1709 * - If for two nodes A and B, located N > 1 hops away from each other,
1710 *   there is an intermediary node C, which is < N hops away from both
1711 *   nodes A and B, the system is a glueless mesh.
1712 */
1713static void init_numa_topology_type(void)
1714{
1715	int a, b, c, n;
1716
1717	n = sched_max_numa_distance;
1718
1719	if (sched_domains_numa_levels <= 2) {
1720		sched_numa_topology_type = NUMA_DIRECT;
1721		return;
1722	}
1723
1724	for_each_online_node(a) {
1725		for_each_online_node(b) {
1726			/* Find two nodes furthest removed from each other. */
1727			if (node_distance(a, b) < n)
1728				continue;
1729
1730			/* Is there an intermediary node between a and b? */
1731			for_each_online_node(c) {
1732				if (node_distance(a, c) < n &&
1733				    node_distance(b, c) < n) {
1734					sched_numa_topology_type =
1735							NUMA_GLUELESS_MESH;
1736					return;
1737				}
1738			}
1739
1740			sched_numa_topology_type = NUMA_BACKPLANE;
1741			return;
1742		}
1743	}
1744}
1745
1746
1747#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1748
1749void sched_init_numa(void)
1750{
1751	struct sched_domain_topology_level *tl;
1752	unsigned long *distance_map;
1753	int nr_levels = 0;
1754	int i, j;
1755
1756	/*
1757	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1758	 * unique distances in the node_distance() table.
1759	 */
1760	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1761	if (!distance_map)
1762		return;
1763
1764	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1765	for (i = 0; i < nr_node_ids; i++) {
1766		for (j = 0; j < nr_node_ids; j++) {
1767			int distance = node_distance(i, j);
1768
1769			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1770				sched_numa_warn("Invalid distance value range");
1771				return;
1772			}
1773
1774			bitmap_set(distance_map, distance, 1);
1775		}
1776	}
1777	/*
1778	 * We can now figure out how many unique distance values there are and
1779	 * allocate memory accordingly.
1780	 */
1781	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1782
1783	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1784	if (!sched_domains_numa_distance) {
1785		bitmap_free(distance_map);
1786		return;
1787	}
1788
1789	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1790		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1791		sched_domains_numa_distance[i] = j;
1792	}
1793
1794	bitmap_free(distance_map);
1795
1796	/*
1797	 * 'nr_levels' contains the number of unique distances
1798	 *
1799	 * The sched_domains_numa_distance[] array includes the actual distance
1800	 * numbers.
1801	 */
1802
1803	/*
1804	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1805	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1806	 * the array will contain less then 'nr_levels' members. This could be
1807	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1808	 * in other functions.
1809	 *
1810	 * We reset it to 'nr_levels' at the end of this function.
1811	 */
1812	sched_domains_numa_levels = 0;
1813
1814	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1815	if (!sched_domains_numa_masks)
1816		return;
1817
1818	/*
1819	 * Now for each level, construct a mask per node which contains all
1820	 * CPUs of nodes that are that many hops away from us.
1821	 */
1822	for (i = 0; i < nr_levels; i++) {
1823		sched_domains_numa_masks[i] =
1824			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1825		if (!sched_domains_numa_masks[i])
1826			return;
1827
1828		for (j = 0; j < nr_node_ids; j++) {
1829			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1830			int k;
1831
1832			if (!mask)
1833				return;
1834
1835			sched_domains_numa_masks[i][j] = mask;
1836
1837			for_each_node(k) {
1838				/*
1839				 * Distance information can be unreliable for
1840				 * offline nodes, defer building the node
1841				 * masks to its bringup.
1842				 * This relies on all unique distance values
1843				 * still being visible at init time.
1844				 */
1845				if (!node_online(j))
1846					continue;
1847
1848				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1849					sched_numa_warn("Node-distance not symmetric");
1850
1851				if (node_distance(j, k) > sched_domains_numa_distance[i])
1852					continue;
1853
1854				cpumask_or(mask, mask, cpumask_of_node(k));
1855			}
1856		}
1857	}
1858
1859	/* Compute default topology size */
1860	for (i = 0; sched_domain_topology[i].mask; i++);
1861
1862	tl = kzalloc((i + nr_levels + 1) *
1863			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1864	if (!tl)
1865		return;
1866
1867	/*
1868	 * Copy the default topology bits..
1869	 */
1870	for (i = 0; sched_domain_topology[i].mask; i++)
1871		tl[i] = sched_domain_topology[i];
1872
1873	/*
1874	 * Add the NUMA identity distance, aka single NODE.
1875	 */
1876	tl[i++] = (struct sched_domain_topology_level){
1877		.mask = sd_numa_mask,
1878		.numa_level = 0,
1879		SD_INIT_NAME(NODE)
1880	};
1881
1882	/*
1883	 * .. and append 'j' levels of NUMA goodness.
1884	 */
1885	for (j = 1; j < nr_levels; i++, j++) {
1886		tl[i] = (struct sched_domain_topology_level){
1887			.mask = sd_numa_mask,
1888			.sd_flags = cpu_numa_flags,
1889			.flags = SDTL_OVERLAP,
1890			.numa_level = j,
1891			SD_INIT_NAME(NUMA)
1892		};
1893	}
1894
1895	sched_domain_topology = tl;
1896
1897	sched_domains_numa_levels = nr_levels;
1898	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1899
1900	init_numa_topology_type();
1901
1902	sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL);
1903	if (!sched_numa_onlined_nodes)
1904		return;
1905
1906	bitmap_zero(sched_numa_onlined_nodes, nr_node_ids);
1907	for_each_online_node(i)
1908		bitmap_set(sched_numa_onlined_nodes, i, 1);
1909}
1910
1911static void __sched_domains_numa_masks_set(unsigned int node)
1912{
1913	int i, j;
1914
1915	/*
1916	 * NUMA masks are not built for offline nodes in sched_init_numa().
1917	 * Thus, when a CPU of a never-onlined-before node gets plugged in,
1918	 * adding that new CPU to the right NUMA masks is not sufficient: the
1919	 * masks of that CPU's node must also be updated.
1920	 */
1921	if (test_bit(node, sched_numa_onlined_nodes))
1922		return;
1923
1924	bitmap_set(sched_numa_onlined_nodes, node, 1);
1925
1926	for (i = 0; i < sched_domains_numa_levels; i++) {
1927		for (j = 0; j < nr_node_ids; j++) {
1928			if (!node_online(j) || node == j)
1929				continue;
1930
1931			if (node_distance(j, node) > sched_domains_numa_distance[i])
1932				continue;
1933
1934			/* Add remote nodes in our masks */
1935			cpumask_or(sched_domains_numa_masks[i][node],
1936				   sched_domains_numa_masks[i][node],
1937				   sched_domains_numa_masks[0][j]);
1938		}
1939	}
1940
1941	/*
1942	 * A new node has been brought up, potentially changing the topology
1943	 * classification.
1944	 *
1945	 * Note that this is racy vs any use of sched_numa_topology_type :/
1946	 */
1947	init_numa_topology_type();
1948}
1949
1950void sched_domains_numa_masks_set(unsigned int cpu)
1951{
1952	int node = cpu_to_node(cpu);
1953	int i, j;
1954
1955	__sched_domains_numa_masks_set(node);
1956
1957	for (i = 0; i < sched_domains_numa_levels; i++) {
1958		for (j = 0; j < nr_node_ids; j++) {
1959			if (!node_online(j))
1960				continue;
1961
1962			/* Set ourselves in the remote node's masks */
1963			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1964				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1965		}
1966	}
1967}
1968
1969void sched_domains_numa_masks_clear(unsigned int cpu)
1970{
1971	int i, j;
1972
1973	for (i = 0; i < sched_domains_numa_levels; i++) {
1974		for (j = 0; j < nr_node_ids; j++)
1975			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1976	}
1977}
1978
1979/*
1980 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1981 *                             closest to @cpu from @cpumask.
1982 * cpumask: cpumask to find a cpu from
1983 * cpu: cpu to be close to
1984 *
1985 * returns: cpu, or nr_cpu_ids when nothing found.
1986 */
1987int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1988{
1989	int i, j = cpu_to_node(cpu);
1990
1991	for (i = 0; i < sched_domains_numa_levels; i++) {
1992		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1993		if (cpu < nr_cpu_ids)
1994			return cpu;
1995	}
1996	return nr_cpu_ids;
1997}
1998
1999#endif /* CONFIG_NUMA */
2000
2001static int __sdt_alloc(const struct cpumask *cpu_map)
2002{
2003	struct sched_domain_topology_level *tl;
2004	int j;
2005
2006	for_each_sd_topology(tl) {
2007		struct sd_data *sdd = &tl->data;
2008
2009		sdd->sd = alloc_percpu(struct sched_domain *);
2010		if (!sdd->sd)
2011			return -ENOMEM;
2012
2013		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2014		if (!sdd->sds)
2015			return -ENOMEM;
2016
2017		sdd->sg = alloc_percpu(struct sched_group *);
2018		if (!sdd->sg)
2019			return -ENOMEM;
2020
2021		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2022		if (!sdd->sgc)
2023			return -ENOMEM;
2024
2025		for_each_cpu(j, cpu_map) {
2026			struct sched_domain *sd;
2027			struct sched_domain_shared *sds;
2028			struct sched_group *sg;
2029			struct sched_group_capacity *sgc;
2030
2031			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2032					GFP_KERNEL, cpu_to_node(j));
2033			if (!sd)
2034				return -ENOMEM;
2035
2036			*per_cpu_ptr(sdd->sd, j) = sd;
2037
2038			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2039					GFP_KERNEL, cpu_to_node(j));
2040			if (!sds)
2041				return -ENOMEM;
2042
2043			*per_cpu_ptr(sdd->sds, j) = sds;
2044
2045			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2046					GFP_KERNEL, cpu_to_node(j));
2047			if (!sg)
2048				return -ENOMEM;
2049
2050			sg->next = sg;
2051
2052			*per_cpu_ptr(sdd->sg, j) = sg;
2053
2054			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2055					GFP_KERNEL, cpu_to_node(j));
2056			if (!sgc)
2057				return -ENOMEM;
2058
2059#ifdef CONFIG_SCHED_DEBUG
2060			sgc->id = j;
2061#endif
2062
2063			*per_cpu_ptr(sdd->sgc, j) = sgc;
2064		}
2065	}
2066
2067	return 0;
2068}
2069
2070static void __sdt_free(const struct cpumask *cpu_map)
2071{
2072	struct sched_domain_topology_level *tl;
2073	int j;
2074
2075	for_each_sd_topology(tl) {
2076		struct sd_data *sdd = &tl->data;
2077
2078		for_each_cpu(j, cpu_map) {
2079			struct sched_domain *sd;
2080
2081			if (sdd->sd) {
2082				sd = *per_cpu_ptr(sdd->sd, j);
2083				if (sd && (sd->flags & SD_OVERLAP))
2084					free_sched_groups(sd->groups, 0);
2085				kfree(*per_cpu_ptr(sdd->sd, j));
2086			}
2087
2088			if (sdd->sds)
2089				kfree(*per_cpu_ptr(sdd->sds, j));
2090			if (sdd->sg)
2091				kfree(*per_cpu_ptr(sdd->sg, j));
2092			if (sdd->sgc)
2093				kfree(*per_cpu_ptr(sdd->sgc, j));
2094		}
2095		free_percpu(sdd->sd);
2096		sdd->sd = NULL;
2097		free_percpu(sdd->sds);
2098		sdd->sds = NULL;
2099		free_percpu(sdd->sg);
2100		sdd->sg = NULL;
2101		free_percpu(sdd->sgc);
2102		sdd->sgc = NULL;
2103	}
2104}
2105
2106static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2107		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2108		struct sched_domain *child, int cpu)
2109{
2110	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2111
2112	if (child) {
2113		sd->level = child->level + 1;
2114		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2115		child->parent = sd;
2116
2117		if (!cpumask_subset(sched_domain_span(child),
2118				    sched_domain_span(sd))) {
2119			pr_err("BUG: arch topology borken\n");
2120#ifdef CONFIG_SCHED_DEBUG
2121			pr_err("     the %s domain not a subset of the %s domain\n",
2122					child->name, sd->name);
2123#endif
2124			/* Fixup, ensure @sd has at least @child CPUs. */
2125			cpumask_or(sched_domain_span(sd),
2126				   sched_domain_span(sd),
2127				   sched_domain_span(child));
2128		}
2129
2130	}
2131	set_domain_attribute(sd, attr);
2132
2133	return sd;
2134}
2135
2136/*
2137 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2138 * any two given CPUs at this (non-NUMA) topology level.
2139 */
2140static bool topology_span_sane(struct sched_domain_topology_level *tl,
2141			      const struct cpumask *cpu_map, int cpu)
2142{
2143	int i;
2144
2145	/* NUMA levels are allowed to overlap */
2146	if (tl->flags & SDTL_OVERLAP)
2147		return true;
2148
2149	/*
2150	 * Non-NUMA levels cannot partially overlap - they must be either
2151	 * completely equal or completely disjoint. Otherwise we can end up
2152	 * breaking the sched_group lists - i.e. a later get_group() pass
2153	 * breaks the linking done for an earlier span.
2154	 */
2155	for_each_cpu(i, cpu_map) {
2156		if (i == cpu)
2157			continue;
2158		/*
2159		 * We should 'and' all those masks with 'cpu_map' to exactly
2160		 * match the topology we're about to build, but that can only
2161		 * remove CPUs, which only lessens our ability to detect
2162		 * overlaps
2163		 */
2164		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2165		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2166			return false;
2167	}
2168
2169	return true;
2170}
2171
2172/*
2173 * Build sched domains for a given set of CPUs and attach the sched domains
2174 * to the individual CPUs
2175 */
2176static int
2177build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2178{
2179	enum s_alloc alloc_state = sa_none;
2180	struct sched_domain *sd;
2181	struct s_data d;
2182	struct rq *rq = NULL;
2183	int i, ret = -ENOMEM;
2184	bool has_asym = false;
2185
2186	if (WARN_ON(cpumask_empty(cpu_map)))
2187		goto error;
2188
2189	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2190	if (alloc_state != sa_rootdomain)
2191		goto error;
2192
2193	/* Set up domains for CPUs specified by the cpu_map: */
2194	for_each_cpu(i, cpu_map) {
2195		struct sched_domain_topology_level *tl;
2196
2197		sd = NULL;
2198		for_each_sd_topology(tl) {
2199
2200			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2201				goto error;
2202
2203			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2204
2205			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2206
2207			if (tl == sched_domain_topology)
2208				*per_cpu_ptr(d.sd, i) = sd;
2209			if (tl->flags & SDTL_OVERLAP)
2210				sd->flags |= SD_OVERLAP;
2211			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2212				break;
2213		}
2214	}
2215
2216	/* Build the groups for the domains */
2217	for_each_cpu(i, cpu_map) {
2218		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2219			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2220			if (sd->flags & SD_OVERLAP) {
2221				if (build_overlap_sched_groups(sd, i))
2222					goto error;
2223			} else {
2224				if (build_sched_groups(sd, i))
2225					goto error;
2226			}
2227		}
2228	}
2229
2230	/* Calculate CPU capacity for physical packages and nodes */
2231	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2232		if (!cpumask_test_cpu(i, cpu_map))
2233			continue;
2234
2235		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2236			claim_allocations(i, sd);
2237			init_sched_groups_capacity(i, sd);
2238		}
2239	}
2240
2241	/* Attach the domains */
2242	rcu_read_lock();
2243	for_each_cpu(i, cpu_map) {
2244		rq = cpu_rq(i);
2245		sd = *per_cpu_ptr(d.sd, i);
2246
2247		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2248		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2249			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2250
2251		cpu_attach_domain(sd, d.rd, i);
2252	}
2253	rcu_read_unlock();
2254
2255	if (has_asym)
2256		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2257
2258	if (rq && sched_debug_verbose) {
2259		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2260			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2261	}
2262
2263	ret = 0;
2264error:
2265	__free_domain_allocs(&d, alloc_state, cpu_map);
2266
2267	return ret;
2268}
2269
2270/* Current sched domains: */
2271static cpumask_var_t			*doms_cur;
2272
2273/* Number of sched domains in 'doms_cur': */
2274static int				ndoms_cur;
2275
2276/* Attributes of custom domains in 'doms_cur' */
2277static struct sched_domain_attr		*dattr_cur;
2278
2279/*
2280 * Special case: If a kmalloc() of a doms_cur partition (array of
2281 * cpumask) fails, then fallback to a single sched domain,
2282 * as determined by the single cpumask fallback_doms.
2283 */
2284static cpumask_var_t			fallback_doms;
2285
2286/*
2287 * arch_update_cpu_topology lets virtualized architectures update the
2288 * CPU core maps. It is supposed to return 1 if the topology changed
2289 * or 0 if it stayed the same.
2290 */
2291int __weak arch_update_cpu_topology(void)
2292{
2293	return 0;
2294}
2295
2296cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2297{
2298	int i;
2299	cpumask_var_t *doms;
2300
2301	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2302	if (!doms)
2303		return NULL;
2304	for (i = 0; i < ndoms; i++) {
2305		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2306			free_sched_domains(doms, i);
2307			return NULL;
2308		}
2309	}
2310	return doms;
2311}
2312
2313void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2314{
2315	unsigned int i;
2316	for (i = 0; i < ndoms; i++)
2317		free_cpumask_var(doms[i]);
2318	kfree(doms);
2319}
2320
2321/*
2322 * Set up scheduler domains and groups.  For now this just excludes isolated
2323 * CPUs, but could be used to exclude other special cases in the future.
2324 */
2325int sched_init_domains(const struct cpumask *cpu_map)
2326{
2327	int err;
2328
2329	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2330	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2331	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2332
2333	arch_update_cpu_topology();
2334	asym_cpu_capacity_scan();
2335	ndoms_cur = 1;
2336	doms_cur = alloc_sched_domains(ndoms_cur);
2337	if (!doms_cur)
2338		doms_cur = &fallback_doms;
2339	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2340	err = build_sched_domains(doms_cur[0], NULL);
2341
2342	return err;
2343}
2344
2345/*
2346 * Detach sched domains from a group of CPUs specified in cpu_map
2347 * These CPUs will now be attached to the NULL domain
2348 */
2349static void detach_destroy_domains(const struct cpumask *cpu_map)
2350{
2351	unsigned int cpu = cpumask_any(cpu_map);
2352	int i;
2353
2354	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2355		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2356
2357	rcu_read_lock();
2358	for_each_cpu(i, cpu_map)
2359		cpu_attach_domain(NULL, &def_root_domain, i);
2360	rcu_read_unlock();
2361}
2362
2363/* handle null as "default" */
2364static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2365			struct sched_domain_attr *new, int idx_new)
2366{
2367	struct sched_domain_attr tmp;
2368
2369	/* Fast path: */
2370	if (!new && !cur)
2371		return 1;
2372
2373	tmp = SD_ATTR_INIT;
2374
2375	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2376			new ? (new + idx_new) : &tmp,
2377			sizeof(struct sched_domain_attr));
2378}
2379
2380/*
2381 * Partition sched domains as specified by the 'ndoms_new'
2382 * cpumasks in the array doms_new[] of cpumasks. This compares
2383 * doms_new[] to the current sched domain partitioning, doms_cur[].
2384 * It destroys each deleted domain and builds each new domain.
2385 *
2386 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2387 * The masks don't intersect (don't overlap.) We should setup one
2388 * sched domain for each mask. CPUs not in any of the cpumasks will
2389 * not be load balanced. If the same cpumask appears both in the
2390 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2391 * it as it is.
2392 *
2393 * The passed in 'doms_new' should be allocated using
2394 * alloc_sched_domains.  This routine takes ownership of it and will
2395 * free_sched_domains it when done with it. If the caller failed the
2396 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2397 * and partition_sched_domains() will fallback to the single partition
2398 * 'fallback_doms', it also forces the domains to be rebuilt.
2399 *
2400 * If doms_new == NULL it will be replaced with cpu_online_mask.
2401 * ndoms_new == 0 is a special case for destroying existing domains,
2402 * and it will not create the default domain.
2403 *
2404 * Call with hotplug lock and sched_domains_mutex held
2405 */
2406void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2407				    struct sched_domain_attr *dattr_new)
2408{
2409	bool __maybe_unused has_eas = false;
2410	int i, j, n;
2411	int new_topology;
2412
2413	lockdep_assert_held(&sched_domains_mutex);
2414
2415	/* Let the architecture update CPU core mappings: */
2416	new_topology = arch_update_cpu_topology();
2417	/* Trigger rebuilding CPU capacity asymmetry data */
2418	if (new_topology)
2419		asym_cpu_capacity_scan();
2420
2421	if (!doms_new) {
2422		WARN_ON_ONCE(dattr_new);
2423		n = 0;
2424		doms_new = alloc_sched_domains(1);
2425		if (doms_new) {
2426			n = 1;
2427			cpumask_and(doms_new[0], cpu_active_mask,
2428				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2429		}
2430	} else {
2431		n = ndoms_new;
2432	}
2433
2434	/* Destroy deleted domains: */
2435	for (i = 0; i < ndoms_cur; i++) {
2436		for (j = 0; j < n && !new_topology; j++) {
2437			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2438			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2439				struct root_domain *rd;
2440
2441				/*
2442				 * This domain won't be destroyed and as such
2443				 * its dl_bw->total_bw needs to be cleared.  It
2444				 * will be recomputed in function
2445				 * update_tasks_root_domain().
2446				 */
2447				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2448				dl_clear_root_domain(rd);
2449				goto match1;
2450			}
2451		}
2452		/* No match - a current sched domain not in new doms_new[] */
2453		detach_destroy_domains(doms_cur[i]);
2454match1:
2455		;
2456	}
2457
2458	n = ndoms_cur;
2459	if (!doms_new) {
2460		n = 0;
2461		doms_new = &fallback_doms;
2462		cpumask_and(doms_new[0], cpu_active_mask,
2463			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2464	}
2465
2466	/* Build new domains: */
2467	for (i = 0; i < ndoms_new; i++) {
2468		for (j = 0; j < n && !new_topology; j++) {
2469			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2470			    dattrs_equal(dattr_new, i, dattr_cur, j))
2471				goto match2;
2472		}
2473		/* No match - add a new doms_new */
2474		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2475match2:
2476		;
2477	}
2478
2479#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2480	/* Build perf. domains: */
2481	for (i = 0; i < ndoms_new; i++) {
2482		for (j = 0; j < n && !sched_energy_update; j++) {
2483			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2484			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2485				has_eas = true;
2486				goto match3;
2487			}
2488		}
2489		/* No match - add perf. domains for a new rd */
2490		has_eas |= build_perf_domains(doms_new[i]);
2491match3:
2492		;
2493	}
2494	sched_energy_set(has_eas);
2495#endif
2496
2497	/* Remember the new sched domains: */
2498	if (doms_cur != &fallback_doms)
2499		free_sched_domains(doms_cur, ndoms_cur);
2500
2501	kfree(dattr_cur);
2502	doms_cur = doms_new;
2503	dattr_cur = dattr_new;
2504	ndoms_cur = ndoms_new;
2505
2506	update_sched_domain_debugfs();
2507}
2508
2509/*
2510 * Call with hotplug lock held
2511 */
2512void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2513			     struct sched_domain_attr *dattr_new)
2514{
2515	mutex_lock(&sched_domains_mutex);
2516	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2517	mutex_unlock(&sched_domains_mutex);
2518}