Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1#ifdef CONFIG_SMP
  2#include "sched-pelt.h"
  3
  4int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
  5int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
  6int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
  7int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
  8int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
  9
 10#ifdef CONFIG_SCHED_THERMAL_PRESSURE
 11int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
 12
 13static inline u64 thermal_load_avg(struct rq *rq)
 14{
 15	return READ_ONCE(rq->avg_thermal.load_avg);
 16}
 17#else
 18static inline int
 19update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
 20{
 21	return 0;
 22}
 23
 24static inline u64 thermal_load_avg(struct rq *rq)
 25{
 26	return 0;
 27}
 28#endif
 29
 30#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 31int update_irq_load_avg(struct rq *rq, u64 running);
 32#else
 33static inline int
 34update_irq_load_avg(struct rq *rq, u64 running)
 35{
 36	return 0;
 37}
 38#endif
 39
 40static inline u32 get_pelt_divider(struct sched_avg *avg)
 41{
 42	return LOAD_AVG_MAX - 1024 + avg->period_contrib;
 43}
 44
 45static inline void cfs_se_util_change(struct sched_avg *avg)
 46{
 47	unsigned int enqueued;
 48
 49	if (!sched_feat(UTIL_EST))
 50		return;
 51
 52	/* Avoid store if the flag has been already reset */
 53	enqueued = avg->util_est.enqueued;
 54	if (!(enqueued & UTIL_AVG_UNCHANGED))
 55		return;
 56
 57	/* Reset flag to report util_avg has been updated */
 58	enqueued &= ~UTIL_AVG_UNCHANGED;
 59	WRITE_ONCE(avg->util_est.enqueued, enqueued);
 60}
 61
 62/*
 63 * The clock_pelt scales the time to reflect the effective amount of
 64 * computation done during the running delta time but then sync back to
 65 * clock_task when rq is idle.
 66 *
 67 *
 68 * absolute time   | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
 69 * @ max capacity  ------******---------------******---------------
 70 * @ half capacity ------************---------************---------
 71 * clock pelt      | 1| 2|    3|    4| 7| 8| 9|   10|   11|14|15|16
 72 *
 73 */
 74static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
 75{
 76	if (unlikely(is_idle_task(rq->curr))) {
 77		/* The rq is idle, we can sync to clock_task */
 78		rq->clock_pelt  = rq_clock_task(rq);
 79		return;
 80	}
 81
 82	/*
 83	 * When a rq runs at a lower compute capacity, it will need
 84	 * more time to do the same amount of work than at max
 85	 * capacity. In order to be invariant, we scale the delta to
 86	 * reflect how much work has been really done.
 87	 * Running longer results in stealing idle time that will
 88	 * disturb the load signal compared to max capacity. This
 89	 * stolen idle time will be automatically reflected when the
 90	 * rq will be idle and the clock will be synced with
 91	 * rq_clock_task.
 92	 */
 93
 94	/*
 95	 * Scale the elapsed time to reflect the real amount of
 96	 * computation
 97	 */
 98	delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
 99	delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
100
101	rq->clock_pelt += delta;
102}
103
104/*
105 * When rq becomes idle, we have to check if it has lost idle time
106 * because it was fully busy. A rq is fully used when the /Sum util_sum
107 * is greater or equal to:
108 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
109 * For optimization and computing rounding purpose, we don't take into account
110 * the position in the current window (period_contrib) and we use the higher
111 * bound of util_sum to decide.
112 */
113static inline void update_idle_rq_clock_pelt(struct rq *rq)
114{
115	u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
116	u32 util_sum = rq->cfs.avg.util_sum;
117	util_sum += rq->avg_rt.util_sum;
118	util_sum += rq->avg_dl.util_sum;
119
120	/*
121	 * Reflecting stolen time makes sense only if the idle
122	 * phase would be present at max capacity. As soon as the
123	 * utilization of a rq has reached the maximum value, it is
124	 * considered as an always running rq without idle time to
125	 * steal. This potential idle time is considered as lost in
126	 * this case. We keep track of this lost idle time compare to
127	 * rq's clock_task.
128	 */
129	if (util_sum >= divider)
130		rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
131}
132
133static inline u64 rq_clock_pelt(struct rq *rq)
134{
135	lockdep_assert_rq_held(rq);
136	assert_clock_updated(rq);
137
138	return rq->clock_pelt - rq->lost_idle_time;
139}
140
141#ifdef CONFIG_CFS_BANDWIDTH
142/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
143static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
144{
145	if (unlikely(cfs_rq->throttle_count))
146		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
147
148	return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
149}
150#else
151static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
152{
153	return rq_clock_pelt(rq_of(cfs_rq));
154}
155#endif
156
157#else
158
159static inline int
160update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
161{
162	return 0;
163}
164
165static inline int
166update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
167{
168	return 0;
169}
170
171static inline int
172update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
173{
174	return 0;
175}
176
177static inline int
178update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
179{
180	return 0;
181}
182
183static inline u64 thermal_load_avg(struct rq *rq)
184{
185	return 0;
186}
187
188static inline int
189update_irq_load_avg(struct rq *rq, u64 running)
190{
191	return 0;
192}
193
194static inline u64 rq_clock_pelt(struct rq *rq)
195{
196	return rq_clock_task(rq);
197}
198
199static inline void
200update_rq_clock_pelt(struct rq *rq, s64 delta) { }
201
202static inline void
203update_idle_rq_clock_pelt(struct rq *rq) { }
204
205#endif
206
207