Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * kernel/sched/debug.c
  3 *
  4 * Print the CFS rbtree
  5 *
  6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/proc_fs.h>
 14#include <linux/sched.h>
 15#include <linux/seq_file.h>
 16#include <linux/kallsyms.h>
 17#include <linux/utsname.h>
 18#include <linux/mempolicy.h>
 19
 20#include "sched.h"
 21
 22static DEFINE_SPINLOCK(sched_debug_lock);
 23
 24/*
 25 * This allows printing both to /proc/sched_debug and
 26 * to the console
 27 */
 28#define SEQ_printf(m, x...)			\
 29 do {						\
 30	if (m)					\
 31		seq_printf(m, x);		\
 32	else					\
 33		printk(x);			\
 34 } while (0)
 35
 36/*
 37 * Ease the printing of nsec fields:
 38 */
 39static long long nsec_high(unsigned long long nsec)
 40{
 41	if ((long long)nsec < 0) {
 42		nsec = -nsec;
 43		do_div(nsec, 1000000);
 44		return -nsec;
 45	}
 46	do_div(nsec, 1000000);
 47
 48	return nsec;
 49}
 50
 51static unsigned long nsec_low(unsigned long long nsec)
 52{
 53	if ((long long)nsec < 0)
 54		nsec = -nsec;
 55
 56	return do_div(nsec, 1000000);
 57}
 58
 59#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61#ifdef CONFIG_FAIR_GROUP_SCHED
 62static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 63{
 64	struct sched_entity *se = tg->se[cpu];
 65
 66#define P(F) \
 67	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
 68#define PN(F) \
 69	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 70
 71	if (!se) {
 72		struct sched_avg *avg = &cpu_rq(cpu)->avg;
 73		P(avg->runnable_avg_sum);
 74		P(avg->runnable_avg_period);
 75		return;
 76	}
 77
 
 
 78
 79	PN(se->exec_start);
 80	PN(se->vruntime);
 81	PN(se->sum_exec_runtime);
 82#ifdef CONFIG_SCHEDSTATS
 83	PN(se->statistics.wait_start);
 84	PN(se->statistics.sleep_start);
 85	PN(se->statistics.block_start);
 86	PN(se->statistics.sleep_max);
 87	PN(se->statistics.block_max);
 88	PN(se->statistics.exec_max);
 89	PN(se->statistics.slice_max);
 90	PN(se->statistics.wait_max);
 91	PN(se->statistics.wait_sum);
 92	P(se->statistics.wait_count);
 93#endif
 
 
 94	P(se->load.weight);
 95#ifdef CONFIG_SMP
 96	P(se->avg.runnable_avg_sum);
 97	P(se->avg.runnable_avg_period);
 98	P(se->avg.load_avg_contrib);
 99	P(se->avg.decay_count);
100#endif
 
 
101#undef PN
 
102#undef P
103}
104#endif
105
106#ifdef CONFIG_CGROUP_SCHED
 
107static char group_path[PATH_MAX];
108
109static char *task_group_path(struct task_group *tg)
110{
111	if (autogroup_path(tg, group_path, PATH_MAX))
112		return group_path;
113
114	return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115}
116#endif
117
118static void
119print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
120{
121	if (rq->curr == p)
122		SEQ_printf(m, "R");
123	else
124		SEQ_printf(m, " ");
125
126	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
127		p->comm, task_pid_nr(p),
128		SPLIT_NS(p->se.vruntime),
129		(long long)(p->nvcsw + p->nivcsw),
130		p->prio);
131#ifdef CONFIG_SCHEDSTATS
132	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
133		SPLIT_NS(p->se.vruntime),
134		SPLIT_NS(p->se.sum_exec_runtime),
135		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
136#else
137	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
138		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
139#endif
140#ifdef CONFIG_NUMA_BALANCING
141	SEQ_printf(m, " %d", task_node(p));
142#endif
143#ifdef CONFIG_CGROUP_SCHED
144	SEQ_printf(m, " %s", task_group_path(task_group(p)));
145#endif
146
147	SEQ_printf(m, "\n");
148}
149
150static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
151{
152	struct task_struct *g, *p;
153	unsigned long flags;
154
155	SEQ_printf(m,
156	"\nrunnable tasks:\n"
157	"            task   PID         tree-key  switches  prio"
158	"     exec-runtime         sum-exec        sum-sleep\n"
159	"------------------------------------------------------"
160	"----------------------------------------------------\n");
161
162	read_lock_irqsave(&tasklist_lock, flags);
163
164	do_each_thread(g, p) {
 
165		if (task_cpu(p) != rq_cpu)
166			continue;
167
168		print_task(m, rq, p);
169	} while_each_thread(g, p);
170
171	read_unlock_irqrestore(&tasklist_lock, flags);
172}
173
174void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
175{
176	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
177		spread, rq0_min_vruntime, spread0;
178	struct rq *rq = cpu_rq(cpu);
179	struct sched_entity *last;
180	unsigned long flags;
181
182#ifdef CONFIG_FAIR_GROUP_SCHED
183	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
 
184#else
185	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
 
186#endif
187	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
188			SPLIT_NS(cfs_rq->exec_clock));
189
190	raw_spin_lock_irqsave(&rq->lock, flags);
191	if (cfs_rq->rb_leftmost)
192		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
193	last = __pick_last_entity(cfs_rq);
194	if (last)
195		max_vruntime = last->vruntime;
196	min_vruntime = cfs_rq->min_vruntime;
197	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
198	raw_spin_unlock_irqrestore(&rq->lock, flags);
199	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
200			SPLIT_NS(MIN_vruntime));
201	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
202			SPLIT_NS(min_vruntime));
203	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
204			SPLIT_NS(max_vruntime));
205	spread = max_vruntime - MIN_vruntime;
206	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
207			SPLIT_NS(spread));
208	spread0 = min_vruntime - rq0_min_vruntime;
209	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
210			SPLIT_NS(spread0));
211	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
212			cfs_rq->nr_spread_over);
213	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
214	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
215#ifdef CONFIG_SMP
216	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
217			cfs_rq->runnable_load_avg);
218	SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
219			cfs_rq->blocked_load_avg);
 
 
 
 
 
 
 
 
 
 
220#ifdef CONFIG_FAIR_GROUP_SCHED
221	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
222			cfs_rq->tg_load_contrib);
223	SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
224			cfs_rq->tg_runnable_contrib);
225	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
226			atomic_long_read(&cfs_rq->tg->load_avg));
227	SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
228			atomic_read(&cfs_rq->tg->runnable_avg));
229#endif
230#endif
231#ifdef CONFIG_CFS_BANDWIDTH
232	SEQ_printf(m, "  .%-30s: %d\n", "tg->cfs_bandwidth.timer_active",
233			cfs_rq->tg->cfs_bandwidth.timer_active);
234	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
235			cfs_rq->throttled);
236	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
237			cfs_rq->throttle_count);
238#endif
239
240#ifdef CONFIG_FAIR_GROUP_SCHED
241	print_cfs_group_stats(m, cpu, cfs_rq->tg);
242#endif
243}
244
245void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
246{
247#ifdef CONFIG_RT_GROUP_SCHED
248	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
 
249#else
250	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
 
251#endif
252
253#define P(x) \
254	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 
 
255#define PN(x) \
256	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
257
258	P(rt_nr_running);
 
 
 
259	P(rt_throttled);
260	PN(rt_time);
261	PN(rt_runtime);
262
263#undef PN
 
264#undef P
265}
266
267extern __read_mostly int sched_clock_running;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
269static void print_cpu(struct seq_file *m, int cpu)
270{
271	struct rq *rq = cpu_rq(cpu);
272	unsigned long flags;
273
274#ifdef CONFIG_X86
275	{
276		unsigned int freq = cpu_khz ? : 1;
277
278		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
279			   cpu, freq / 1000, (freq % 1000));
280	}
281#else
282	SEQ_printf(m, "cpu#%d\n", cpu);
283#endif
284
285#define P(x)								\
286do {									\
287	if (sizeof(rq->x) == 4)						\
288		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
289	else								\
290		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
291} while (0)
292
293#define PN(x) \
294	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
295
296	P(nr_running);
297	SEQ_printf(m, "  .%-30s: %lu\n", "load",
298		   rq->load.weight);
299	P(nr_switches);
300	P(nr_load_updates);
301	P(nr_uninterruptible);
302	PN(next_balance);
303	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
304	PN(clock);
305	P(cpu_load[0]);
306	P(cpu_load[1]);
307	P(cpu_load[2]);
308	P(cpu_load[3]);
309	P(cpu_load[4]);
310#undef P
311#undef PN
312
313#ifdef CONFIG_SCHEDSTATS
314#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
315#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
316
317	P(yld_count);
318
319	P(sched_count);
320	P(sched_goidle);
321#ifdef CONFIG_SMP
 
322	P64(avg_idle);
323	P64(max_idle_balance_cost);
 
324#endif
325
326	P(ttwu_count);
327	P(ttwu_local);
328
 
 
 
 
 
329#undef P
330#undef P64
331#endif
332	spin_lock_irqsave(&sched_debug_lock, flags);
333	print_cfs_stats(m, cpu);
334	print_rt_stats(m, cpu);
 
335
336	rcu_read_lock();
337	print_rq(m, rq, cpu);
338	rcu_read_unlock();
339	spin_unlock_irqrestore(&sched_debug_lock, flags);
340	SEQ_printf(m, "\n");
341}
342
343static const char *sched_tunable_scaling_names[] = {
344	"none",
345	"logaritmic",
346	"linear"
347};
348
349static void sched_debug_header(struct seq_file *m)
350{
351	u64 ktime, sched_clk, cpu_clk;
352	unsigned long flags;
353
354	local_irq_save(flags);
355	ktime = ktime_to_ns(ktime_get());
356	sched_clk = sched_clock();
357	cpu_clk = local_clock();
358	local_irq_restore(flags);
359
360	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
361		init_utsname()->release,
362		(int)strcspn(init_utsname()->version, " "),
363		init_utsname()->version);
364
365#define P(x) \
366	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
367#define PN(x) \
368	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
369	PN(ktime);
370	PN(sched_clk);
371	PN(cpu_clk);
372	P(jiffies);
373#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
374	P(sched_clock_stable());
375#endif
376#undef PN
377#undef P
378
379	SEQ_printf(m, "\n");
380	SEQ_printf(m, "sysctl_sched\n");
381
382#define P(x) \
383	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
384#define PN(x) \
385	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
386	PN(sysctl_sched_latency);
387	PN(sysctl_sched_min_granularity);
388	PN(sysctl_sched_wakeup_granularity);
389	P(sysctl_sched_child_runs_first);
390	P(sysctl_sched_features);
391#undef PN
392#undef P
393
394	SEQ_printf(m, "  .%-40s: %d (%s)\n",
395		"sysctl_sched_tunable_scaling",
396		sysctl_sched_tunable_scaling,
397		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
398	SEQ_printf(m, "\n");
399}
400
401static int sched_debug_show(struct seq_file *m, void *v)
402{
403	int cpu = (unsigned long)(v - 2);
404
405	if (cpu != -1)
406		print_cpu(m, cpu);
407	else
408		sched_debug_header(m);
409
410	return 0;
411}
412
413void sysrq_sched_debug_show(void)
414{
415	int cpu;
416
417	sched_debug_header(NULL);
418	for_each_online_cpu(cpu)
 
 
 
 
 
 
 
419		print_cpu(NULL, cpu);
420
421}
422
423/*
424 * This itererator needs some explanation.
425 * It returns 1 for the header position.
426 * This means 2 is cpu 0.
427 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
428 * to use cpumask_* to iterate over the cpus.
429 */
430static void *sched_debug_start(struct seq_file *file, loff_t *offset)
431{
432	unsigned long n = *offset;
433
434	if (n == 0)
435		return (void *) 1;
436
437	n--;
438
439	if (n > 0)
440		n = cpumask_next(n - 1, cpu_online_mask);
441	else
442		n = cpumask_first(cpu_online_mask);
443
444	*offset = n + 1;
445
446	if (n < nr_cpu_ids)
447		return (void *)(unsigned long)(n + 2);
 
448	return NULL;
449}
450
451static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
452{
453	(*offset)++;
454	return sched_debug_start(file, offset);
455}
456
457static void sched_debug_stop(struct seq_file *file, void *data)
458{
459}
460
461static const struct seq_operations sched_debug_sops = {
462	.start = sched_debug_start,
463	.next = sched_debug_next,
464	.stop = sched_debug_stop,
465	.show = sched_debug_show,
466};
467
468static int sched_debug_release(struct inode *inode, struct file *file)
469{
470	seq_release(inode, file);
 
 
 
 
471
472	return 0;
473}
474
475static int sched_debug_open(struct inode *inode, struct file *filp)
476{
477	int ret = 0;
478
479	ret = seq_open(filp, &sched_debug_sops);
480
481	return ret;
482}
483
484static const struct file_operations sched_debug_fops = {
485	.open		= sched_debug_open,
486	.read		= seq_read,
487	.llseek		= seq_lseek,
488	.release	= sched_debug_release,
489};
490
491static int __init init_sched_debug_procfs(void)
492{
493	struct proc_dir_entry *pe;
494
495	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
496	if (!pe)
497		return -ENOMEM;
498	return 0;
499}
500
501__initcall(init_sched_debug_procfs);
502
503#define __P(F) \
504	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
505#define P(F) \
506	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
507#define __PN(F) \
508	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
509#define PN(F) \
510	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
511
512
513static void sched_show_numa(struct task_struct *p, struct seq_file *m)
514{
515#ifdef CONFIG_NUMA_BALANCING
516	struct mempolicy *pol;
517	int node, i;
518
519	if (p->mm)
520		P(mm->numa_scan_seq);
521
522	task_lock(p);
523	pol = p->mempolicy;
524	if (pol && !(pol->flags & MPOL_F_MORON))
525		pol = NULL;
526	mpol_get(pol);
527	task_unlock(p);
528
529	SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
530
531	for_each_online_node(node) {
532		for (i = 0; i < 2; i++) {
533			unsigned long nr_faults = -1;
534			int cpu_current, home_node;
535
536			if (p->numa_faults_memory)
537				nr_faults = p->numa_faults_memory[2*node + i];
538
539			cpu_current = !i ? (task_node(p) == node) :
540				(pol && node_isset(node, pol->v.nodes));
541
542			home_node = (p->numa_preferred_nid == node);
543
544			SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n",
545				i, node, cpu_current, home_node, nr_faults);
546		}
547	}
548
549	mpol_put(pol);
550#endif
551}
552
553void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 
554{
555	unsigned long nr_switches;
556
557	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
558						get_nr_threads(p));
559	SEQ_printf(m,
560		"---------------------------------------------------------"
561		"----------\n");
562#define __P(F) \
563	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
564#define P(F) \
565	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
566#define __PN(F) \
567	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
568#define PN(F) \
569	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
570
571	PN(se.exec_start);
572	PN(se.vruntime);
573	PN(se.sum_exec_runtime);
574
575	nr_switches = p->nvcsw + p->nivcsw;
576
577#ifdef CONFIG_SCHEDSTATS
578	PN(se.statistics.wait_start);
579	PN(se.statistics.sleep_start);
580	PN(se.statistics.block_start);
581	PN(se.statistics.sleep_max);
582	PN(se.statistics.block_max);
583	PN(se.statistics.exec_max);
584	PN(se.statistics.slice_max);
585	PN(se.statistics.wait_max);
586	PN(se.statistics.wait_sum);
587	P(se.statistics.wait_count);
588	PN(se.statistics.iowait_sum);
589	P(se.statistics.iowait_count);
590	P(se.nr_migrations);
591	P(se.statistics.nr_migrations_cold);
592	P(se.statistics.nr_failed_migrations_affine);
593	P(se.statistics.nr_failed_migrations_running);
594	P(se.statistics.nr_failed_migrations_hot);
595	P(se.statistics.nr_forced_migrations);
596	P(se.statistics.nr_wakeups);
597	P(se.statistics.nr_wakeups_sync);
598	P(se.statistics.nr_wakeups_migrate);
599	P(se.statistics.nr_wakeups_local);
600	P(se.statistics.nr_wakeups_remote);
601	P(se.statistics.nr_wakeups_affine);
602	P(se.statistics.nr_wakeups_affine_attempts);
603	P(se.statistics.nr_wakeups_passive);
604	P(se.statistics.nr_wakeups_idle);
605
606	{
607		u64 avg_atom, avg_per_cpu;
608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609		avg_atom = p->se.sum_exec_runtime;
610		if (nr_switches)
611			do_div(avg_atom, nr_switches);
612		else
613			avg_atom = -1LL;
614
615		avg_per_cpu = p->se.sum_exec_runtime;
616		if (p->se.nr_migrations) {
617			avg_per_cpu = div64_u64(avg_per_cpu,
618						p->se.nr_migrations);
619		} else {
620			avg_per_cpu = -1LL;
621		}
622
623		__PN(avg_atom);
624		__PN(avg_per_cpu);
625	}
626#endif
627	__P(nr_switches);
628	SEQ_printf(m, "%-45s:%21Ld\n",
629		   "nr_voluntary_switches", (long long)p->nvcsw);
630	SEQ_printf(m, "%-45s:%21Ld\n",
631		   "nr_involuntary_switches", (long long)p->nivcsw);
632
633	P(se.load.weight);
634#ifdef CONFIG_SMP
635	P(se.avg.runnable_avg_sum);
636	P(se.avg.runnable_avg_period);
637	P(se.avg.load_avg_contrib);
638	P(se.avg.decay_count);
 
 
 
 
 
 
 
 
 
 
 
639#endif
640	P(policy);
641	P(prio);
642#undef PN
643#undef __PN
644#undef P
645#undef __P
 
 
646
647	{
648		unsigned int this_cpu = raw_smp_processor_id();
649		u64 t0, t1;
650
651		t0 = cpu_clock(this_cpu);
652		t1 = cpu_clock(this_cpu);
653		SEQ_printf(m, "%-45s:%21Ld\n",
654			   "clock-delta", (long long)(t1-t0));
655	}
656
657	sched_show_numa(p, m);
658}
659
660void proc_sched_set_task(struct task_struct *p)
661{
662#ifdef CONFIG_SCHEDSTATS
663	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
664#endif
 
 
 
 
 
 
 
 
 
 
665}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/sched/debug.c
   4 *
   5 * Print the CFS rbtree and other debugging details
   6 *
   7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
 
 
 
 
   8 */
 
 
 
 
 
 
 
 
   9#include "sched.h"
  10
 
 
  11/*
  12 * This allows printing both to /proc/sched_debug and
  13 * to the console
  14 */
  15#define SEQ_printf(m, x...)			\
  16 do {						\
  17	if (m)					\
  18		seq_printf(m, x);		\
  19	else					\
  20		pr_cont(x);			\
  21 } while (0)
  22
  23/*
  24 * Ease the printing of nsec fields:
  25 */
  26static long long nsec_high(unsigned long long nsec)
  27{
  28	if ((long long)nsec < 0) {
  29		nsec = -nsec;
  30		do_div(nsec, 1000000);
  31		return -nsec;
  32	}
  33	do_div(nsec, 1000000);
  34
  35	return nsec;
  36}
  37
  38static unsigned long nsec_low(unsigned long long nsec)
  39{
  40	if ((long long)nsec < 0)
  41		nsec = -nsec;
  42
  43	return do_div(nsec, 1000000);
  44}
  45
  46#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  47
  48#define SCHED_FEAT(name, enabled)	\
  49	#name ,
  50
  51static const char * const sched_feat_names[] = {
  52#include "features.h"
  53};
  54
  55#undef SCHED_FEAT
  56
  57static int sched_feat_show(struct seq_file *m, void *v)
  58{
  59	int i;
  60
  61	for (i = 0; i < __SCHED_FEAT_NR; i++) {
  62		if (!(sysctl_sched_features & (1UL << i)))
  63			seq_puts(m, "NO_");
  64		seq_printf(m, "%s ", sched_feat_names[i]);
  65	}
  66	seq_puts(m, "\n");
  67
  68	return 0;
  69}
  70
  71#ifdef CONFIG_JUMP_LABEL
  72
  73#define jump_label_key__true  STATIC_KEY_INIT_TRUE
  74#define jump_label_key__false STATIC_KEY_INIT_FALSE
  75
  76#define SCHED_FEAT(name, enabled)	\
  77	jump_label_key__##enabled ,
  78
  79struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  80#include "features.h"
  81};
  82
  83#undef SCHED_FEAT
  84
  85static void sched_feat_disable(int i)
  86{
  87	static_key_disable_cpuslocked(&sched_feat_keys[i]);
  88}
  89
  90static void sched_feat_enable(int i)
  91{
  92	static_key_enable_cpuslocked(&sched_feat_keys[i]);
  93}
  94#else
  95static void sched_feat_disable(int i) { };
  96static void sched_feat_enable(int i) { };
  97#endif /* CONFIG_JUMP_LABEL */
  98
  99static int sched_feat_set(char *cmp)
 100{
 101	int i;
 102	int neg = 0;
 103
 104	if (strncmp(cmp, "NO_", 3) == 0) {
 105		neg = 1;
 106		cmp += 3;
 107	}
 108
 109	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
 110	if (i < 0)
 111		return i;
 112
 113	if (neg) {
 114		sysctl_sched_features &= ~(1UL << i);
 115		sched_feat_disable(i);
 116	} else {
 117		sysctl_sched_features |= (1UL << i);
 118		sched_feat_enable(i);
 119	}
 120
 121	return 0;
 122}
 123
 124static ssize_t
 125sched_feat_write(struct file *filp, const char __user *ubuf,
 126		size_t cnt, loff_t *ppos)
 127{
 128	char buf[64];
 129	char *cmp;
 130	int ret;
 131	struct inode *inode;
 132
 133	if (cnt > 63)
 134		cnt = 63;
 135
 136	if (copy_from_user(&buf, ubuf, cnt))
 137		return -EFAULT;
 138
 139	buf[cnt] = 0;
 140	cmp = strstrip(buf);
 141
 142	/* Ensure the static_key remains in a consistent state */
 143	inode = file_inode(filp);
 144	cpus_read_lock();
 145	inode_lock(inode);
 146	ret = sched_feat_set(cmp);
 147	inode_unlock(inode);
 148	cpus_read_unlock();
 149	if (ret < 0)
 150		return ret;
 151
 152	*ppos += cnt;
 153
 154	return cnt;
 155}
 156
 157static int sched_feat_open(struct inode *inode, struct file *filp)
 158{
 159	return single_open(filp, sched_feat_show, NULL);
 160}
 161
 162static const struct file_operations sched_feat_fops = {
 163	.open		= sched_feat_open,
 164	.write		= sched_feat_write,
 165	.read		= seq_read,
 166	.llseek		= seq_lseek,
 167	.release	= single_release,
 168};
 169
 170#ifdef CONFIG_SMP
 171
 172static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
 173				   size_t cnt, loff_t *ppos)
 174{
 175	char buf[16];
 176	unsigned int scaling;
 177
 178	if (cnt > 15)
 179		cnt = 15;
 180
 181	if (copy_from_user(&buf, ubuf, cnt))
 182		return -EFAULT;
 183	buf[cnt] = '\0';
 184
 185	if (kstrtouint(buf, 10, &scaling))
 186		return -EINVAL;
 187
 188	if (scaling >= SCHED_TUNABLESCALING_END)
 189		return -EINVAL;
 190
 191	sysctl_sched_tunable_scaling = scaling;
 192	if (sched_update_scaling())
 193		return -EINVAL;
 194
 195	*ppos += cnt;
 196	return cnt;
 197}
 198
 199static int sched_scaling_show(struct seq_file *m, void *v)
 200{
 201	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
 202	return 0;
 203}
 204
 205static int sched_scaling_open(struct inode *inode, struct file *filp)
 206{
 207	return single_open(filp, sched_scaling_show, NULL);
 208}
 209
 210static const struct file_operations sched_scaling_fops = {
 211	.open		= sched_scaling_open,
 212	.write		= sched_scaling_write,
 213	.read		= seq_read,
 214	.llseek		= seq_lseek,
 215	.release	= single_release,
 216};
 217
 218#endif /* SMP */
 219
 220#ifdef CONFIG_PREEMPT_DYNAMIC
 221
 222static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
 223				   size_t cnt, loff_t *ppos)
 224{
 225	char buf[16];
 226	int mode;
 227
 228	if (cnt > 15)
 229		cnt = 15;
 230
 231	if (copy_from_user(&buf, ubuf, cnt))
 232		return -EFAULT;
 233
 234	buf[cnt] = 0;
 235	mode = sched_dynamic_mode(strstrip(buf));
 236	if (mode < 0)
 237		return mode;
 238
 239	sched_dynamic_update(mode);
 240
 241	*ppos += cnt;
 242
 243	return cnt;
 244}
 245
 246static int sched_dynamic_show(struct seq_file *m, void *v)
 247{
 248	static const char * preempt_modes[] = {
 249		"none", "voluntary", "full"
 250	};
 251	int i;
 252
 253	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
 254		if (preempt_dynamic_mode == i)
 255			seq_puts(m, "(");
 256		seq_puts(m, preempt_modes[i]);
 257		if (preempt_dynamic_mode == i)
 258			seq_puts(m, ")");
 259
 260		seq_puts(m, " ");
 261	}
 262
 263	seq_puts(m, "\n");
 264	return 0;
 265}
 266
 267static int sched_dynamic_open(struct inode *inode, struct file *filp)
 268{
 269	return single_open(filp, sched_dynamic_show, NULL);
 270}
 271
 272static const struct file_operations sched_dynamic_fops = {
 273	.open		= sched_dynamic_open,
 274	.write		= sched_dynamic_write,
 275	.read		= seq_read,
 276	.llseek		= seq_lseek,
 277	.release	= single_release,
 278};
 279
 280#endif /* CONFIG_PREEMPT_DYNAMIC */
 281
 282__read_mostly bool sched_debug_verbose;
 283
 284static const struct seq_operations sched_debug_sops;
 285
 286static int sched_debug_open(struct inode *inode, struct file *filp)
 287{
 288	return seq_open(filp, &sched_debug_sops);
 289}
 290
 291static const struct file_operations sched_debug_fops = {
 292	.open		= sched_debug_open,
 293	.read		= seq_read,
 294	.llseek		= seq_lseek,
 295	.release	= seq_release,
 296};
 297
 298static struct dentry *debugfs_sched;
 299
 300static __init int sched_init_debug(void)
 301{
 302	struct dentry __maybe_unused *numa;
 303
 304	debugfs_sched = debugfs_create_dir("sched", NULL);
 305
 306	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
 307	debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
 308#ifdef CONFIG_PREEMPT_DYNAMIC
 309	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
 310#endif
 311
 312	debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
 313	debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
 314	debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
 315
 316	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
 317	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
 318
 319#ifdef CONFIG_SMP
 320	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
 321	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
 322	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
 323
 324	mutex_lock(&sched_domains_mutex);
 325	update_sched_domain_debugfs();
 326	mutex_unlock(&sched_domains_mutex);
 327#endif
 328
 329#ifdef CONFIG_NUMA_BALANCING
 330	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
 331
 332	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
 333	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
 334	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
 335	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
 336#endif
 337
 338	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
 339
 340	return 0;
 341}
 342late_initcall(sched_init_debug);
 343
 344#ifdef CONFIG_SMP
 345
 346static cpumask_var_t		sd_sysctl_cpus;
 347static struct dentry		*sd_dentry;
 348
 349static int sd_flags_show(struct seq_file *m, void *v)
 350{
 351	unsigned long flags = *(unsigned int *)m->private;
 352	int idx;
 353
 354	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
 355		seq_puts(m, sd_flag_debug[idx].name);
 356		seq_puts(m, " ");
 357	}
 358	seq_puts(m, "\n");
 359
 360	return 0;
 361}
 362
 363static int sd_flags_open(struct inode *inode, struct file *file)
 364{
 365	return single_open(file, sd_flags_show, inode->i_private);
 366}
 367
 368static const struct file_operations sd_flags_fops = {
 369	.open		= sd_flags_open,
 370	.read		= seq_read,
 371	.llseek		= seq_lseek,
 372	.release	= single_release,
 373};
 374
 375static void register_sd(struct sched_domain *sd, struct dentry *parent)
 376{
 377#define SDM(type, mode, member)	\
 378	debugfs_create_##type(#member, mode, parent, &sd->member)
 379
 380	SDM(ulong, 0644, min_interval);
 381	SDM(ulong, 0644, max_interval);
 382	SDM(u64,   0644, max_newidle_lb_cost);
 383	SDM(u32,   0644, busy_factor);
 384	SDM(u32,   0644, imbalance_pct);
 385	SDM(u32,   0644, cache_nice_tries);
 386	SDM(str,   0444, name);
 387
 388#undef SDM
 389
 390	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
 391}
 392
 393void update_sched_domain_debugfs(void)
 394{
 395	int cpu, i;
 396
 397	/*
 398	 * This can unfortunately be invoked before sched_debug_init() creates
 399	 * the debug directory. Don't touch sd_sysctl_cpus until then.
 400	 */
 401	if (!debugfs_sched)
 402		return;
 403
 404	if (!cpumask_available(sd_sysctl_cpus)) {
 405		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
 406			return;
 407		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
 408	}
 409
 410	if (!sd_dentry)
 411		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
 412
 413	for_each_cpu(cpu, sd_sysctl_cpus) {
 414		struct sched_domain *sd;
 415		struct dentry *d_cpu;
 416		char buf[32];
 417
 418		snprintf(buf, sizeof(buf), "cpu%d", cpu);
 419		debugfs_remove(debugfs_lookup(buf, sd_dentry));
 420		d_cpu = debugfs_create_dir(buf, sd_dentry);
 421
 422		i = 0;
 423		for_each_domain(cpu, sd) {
 424			struct dentry *d_sd;
 425
 426			snprintf(buf, sizeof(buf), "domain%d", i);
 427			d_sd = debugfs_create_dir(buf, d_cpu);
 428
 429			register_sd(sd, d_sd);
 430			i++;
 431		}
 432
 433		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
 434	}
 435}
 436
 437void dirty_sched_domain_sysctl(int cpu)
 438{
 439	if (cpumask_available(sd_sysctl_cpus))
 440		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
 441}
 442
 443#endif /* CONFIG_SMP */
 444
 445#ifdef CONFIG_FAIR_GROUP_SCHED
 446static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 447{
 448	struct sched_entity *se = tg->se[cpu];
 449
 450#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
 451#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
 452#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 453#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 
 
 
 
 
 
 
 454
 455	if (!se)
 456		return;
 457
 458	PN(se->exec_start);
 459	PN(se->vruntime);
 460	PN(se->sum_exec_runtime);
 461
 462	if (schedstat_enabled()) {
 463		PN_SCHEDSTAT(se->statistics.wait_start);
 464		PN_SCHEDSTAT(se->statistics.sleep_start);
 465		PN_SCHEDSTAT(se->statistics.block_start);
 466		PN_SCHEDSTAT(se->statistics.sleep_max);
 467		PN_SCHEDSTAT(se->statistics.block_max);
 468		PN_SCHEDSTAT(se->statistics.exec_max);
 469		PN_SCHEDSTAT(se->statistics.slice_max);
 470		PN_SCHEDSTAT(se->statistics.wait_max);
 471		PN_SCHEDSTAT(se->statistics.wait_sum);
 472		P_SCHEDSTAT(se->statistics.wait_count);
 473	}
 474
 475	P(se->load.weight);
 476#ifdef CONFIG_SMP
 477	P(se->avg.load_avg);
 478	P(se->avg.util_avg);
 479	P(se->avg.runnable_avg);
 
 480#endif
 481
 482#undef PN_SCHEDSTAT
 483#undef PN
 484#undef P_SCHEDSTAT
 485#undef P
 486}
 487#endif
 488
 489#ifdef CONFIG_CGROUP_SCHED
 490static DEFINE_SPINLOCK(sched_debug_lock);
 491static char group_path[PATH_MAX];
 492
 493static void task_group_path(struct task_group *tg, char *path, int plen)
 494{
 495	if (autogroup_path(tg, path, plen))
 496		return;
 497
 498	cgroup_path(tg->css.cgroup, path, plen);
 499}
 500
 501/*
 502 * Only 1 SEQ_printf_task_group_path() caller can use the full length
 503 * group_path[] for cgroup path. Other simultaneous callers will have
 504 * to use a shorter stack buffer. A "..." suffix is appended at the end
 505 * of the stack buffer so that it will show up in case the output length
 506 * matches the given buffer size to indicate possible path name truncation.
 507 */
 508#define SEQ_printf_task_group_path(m, tg, fmt...)			\
 509{									\
 510	if (spin_trylock(&sched_debug_lock)) {				\
 511		task_group_path(tg, group_path, sizeof(group_path));	\
 512		SEQ_printf(m, fmt, group_path);				\
 513		spin_unlock(&sched_debug_lock);				\
 514	} else {							\
 515		char buf[128];						\
 516		char *bufend = buf + sizeof(buf) - 3;			\
 517		task_group_path(tg, buf, bufend - buf);			\
 518		strcpy(bufend - 1, "...");				\
 519		SEQ_printf(m, fmt, buf);				\
 520	}								\
 521}
 522#endif
 523
 524static void
 525print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 526{
 527	if (task_current(rq, p))
 528		SEQ_printf(m, ">R");
 529	else
 530		SEQ_printf(m, " %c", task_state_to_char(p));
 531
 532	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
 533		p->comm, task_pid_nr(p),
 534		SPLIT_NS(p->se.vruntime),
 535		(long long)(p->nvcsw + p->nivcsw),
 536		p->prio);
 537
 538	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
 539		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
 540		SPLIT_NS(p->se.sum_exec_runtime),
 541		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
 542
 
 
 
 543#ifdef CONFIG_NUMA_BALANCING
 544	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
 545#endif
 546#ifdef CONFIG_CGROUP_SCHED
 547	SEQ_printf_task_group_path(m, task_group(p), " %s")
 548#endif
 549
 550	SEQ_printf(m, "\n");
 551}
 552
 553static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 554{
 555	struct task_struct *g, *p;
 
 556
 557	SEQ_printf(m, "\n");
 558	SEQ_printf(m, "runnable tasks:\n");
 559	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
 560		   "     wait-time             sum-exec        sum-sleep\n");
 561	SEQ_printf(m, "-------------------------------------------------------"
 562		   "------------------------------------------------------\n");
 
 
 563
 564	rcu_read_lock();
 565	for_each_process_thread(g, p) {
 566		if (task_cpu(p) != rq_cpu)
 567			continue;
 568
 569		print_task(m, rq, p);
 570	}
 571	rcu_read_unlock();
 
 572}
 573
 574void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 575{
 576	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
 577		spread, rq0_min_vruntime, spread0;
 578	struct rq *rq = cpu_rq(cpu);
 579	struct sched_entity *last;
 580	unsigned long flags;
 581
 582#ifdef CONFIG_FAIR_GROUP_SCHED
 583	SEQ_printf(m, "\n");
 584	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
 585#else
 586	SEQ_printf(m, "\n");
 587	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
 588#endif
 589	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
 590			SPLIT_NS(cfs_rq->exec_clock));
 591
 592	raw_spin_rq_lock_irqsave(rq, flags);
 593	if (rb_first_cached(&cfs_rq->tasks_timeline))
 594		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
 595	last = __pick_last_entity(cfs_rq);
 596	if (last)
 597		max_vruntime = last->vruntime;
 598	min_vruntime = cfs_rq->min_vruntime;
 599	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
 600	raw_spin_rq_unlock_irqrestore(rq, flags);
 601	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
 602			SPLIT_NS(MIN_vruntime));
 603	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
 604			SPLIT_NS(min_vruntime));
 605	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
 606			SPLIT_NS(max_vruntime));
 607	spread = max_vruntime - MIN_vruntime;
 608	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
 609			SPLIT_NS(spread));
 610	spread0 = min_vruntime - rq0_min_vruntime;
 611	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
 612			SPLIT_NS(spread0));
 613	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
 614			cfs_rq->nr_spread_over);
 615	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
 616	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 617#ifdef CONFIG_SMP
 618	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
 619			cfs_rq->avg.load_avg);
 620	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
 621			cfs_rq->avg.runnable_avg);
 622	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
 623			cfs_rq->avg.util_avg);
 624	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
 625			cfs_rq->avg.util_est.enqueued);
 626	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
 627			cfs_rq->removed.load_avg);
 628	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
 629			cfs_rq->removed.util_avg);
 630	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
 631			cfs_rq->removed.runnable_avg);
 632#ifdef CONFIG_FAIR_GROUP_SCHED
 633	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
 634			cfs_rq->tg_load_avg_contrib);
 
 
 635	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
 636			atomic_long_read(&cfs_rq->tg->load_avg));
 
 
 637#endif
 638#endif
 639#ifdef CONFIG_CFS_BANDWIDTH
 
 
 640	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
 641			cfs_rq->throttled);
 642	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
 643			cfs_rq->throttle_count);
 644#endif
 645
 646#ifdef CONFIG_FAIR_GROUP_SCHED
 647	print_cfs_group_stats(m, cpu, cfs_rq->tg);
 648#endif
 649}
 650
 651void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
 652{
 653#ifdef CONFIG_RT_GROUP_SCHED
 654	SEQ_printf(m, "\n");
 655	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
 656#else
 657	SEQ_printf(m, "\n");
 658	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
 659#endif
 660
 661#define P(x) \
 662	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
 663#define PU(x) \
 664	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
 665#define PN(x) \
 666	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
 667
 668	PU(rt_nr_running);
 669#ifdef CONFIG_SMP
 670	PU(rt_nr_migratory);
 671#endif
 672	P(rt_throttled);
 673	PN(rt_time);
 674	PN(rt_runtime);
 675
 676#undef PN
 677#undef PU
 678#undef P
 679}
 680
 681void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
 682{
 683	struct dl_bw *dl_bw;
 684
 685	SEQ_printf(m, "\n");
 686	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
 687
 688#define PU(x) \
 689	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
 690
 691	PU(dl_nr_running);
 692#ifdef CONFIG_SMP
 693	PU(dl_nr_migratory);
 694	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
 695#else
 696	dl_bw = &dl_rq->dl_bw;
 697#endif
 698	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
 699	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
 700
 701#undef PU
 702}
 703
 704static void print_cpu(struct seq_file *m, int cpu)
 705{
 706	struct rq *rq = cpu_rq(cpu);
 
 707
 708#ifdef CONFIG_X86
 709	{
 710		unsigned int freq = cpu_khz ? : 1;
 711
 712		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
 713			   cpu, freq / 1000, (freq % 1000));
 714	}
 715#else
 716	SEQ_printf(m, "cpu#%d\n", cpu);
 717#endif
 718
 719#define P(x)								\
 720do {									\
 721	if (sizeof(rq->x) == 4)						\
 722		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
 723	else								\
 724		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
 725} while (0)
 726
 727#define PN(x) \
 728	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 729
 730	P(nr_running);
 
 
 731	P(nr_switches);
 
 732	P(nr_uninterruptible);
 733	PN(next_balance);
 734	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
 735	PN(clock);
 736	PN(clock_task);
 
 
 
 
 737#undef P
 738#undef PN
 739
 
 
 
 
 
 
 
 
 740#ifdef CONFIG_SMP
 741#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
 742	P64(avg_idle);
 743	P64(max_idle_balance_cost);
 744#undef P64
 745#endif
 746
 747#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
 748	if (schedstat_enabled()) {
 749		P(yld_count);
 750		P(sched_count);
 751		P(sched_goidle);
 752		P(ttwu_count);
 753		P(ttwu_local);
 754	}
 755#undef P
 756
 
 
 757	print_cfs_stats(m, cpu);
 758	print_rt_stats(m, cpu);
 759	print_dl_stats(m, cpu);
 760
 
 761	print_rq(m, rq, cpu);
 
 
 762	SEQ_printf(m, "\n");
 763}
 764
 765static const char *sched_tunable_scaling_names[] = {
 766	"none",
 767	"logarithmic",
 768	"linear"
 769};
 770
 771static void sched_debug_header(struct seq_file *m)
 772{
 773	u64 ktime, sched_clk, cpu_clk;
 774	unsigned long flags;
 775
 776	local_irq_save(flags);
 777	ktime = ktime_to_ns(ktime_get());
 778	sched_clk = sched_clock();
 779	cpu_clk = local_clock();
 780	local_irq_restore(flags);
 781
 782	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
 783		init_utsname()->release,
 784		(int)strcspn(init_utsname()->version, " "),
 785		init_utsname()->version);
 786
 787#define P(x) \
 788	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
 789#define PN(x) \
 790	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 791	PN(ktime);
 792	PN(sched_clk);
 793	PN(cpu_clk);
 794	P(jiffies);
 795#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 796	P(sched_clock_stable());
 797#endif
 798#undef PN
 799#undef P
 800
 801	SEQ_printf(m, "\n");
 802	SEQ_printf(m, "sysctl_sched\n");
 803
 804#define P(x) \
 805	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
 806#define PN(x) \
 807	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
 808	PN(sysctl_sched_latency);
 809	PN(sysctl_sched_min_granularity);
 810	PN(sysctl_sched_wakeup_granularity);
 811	P(sysctl_sched_child_runs_first);
 812	P(sysctl_sched_features);
 813#undef PN
 814#undef P
 815
 816	SEQ_printf(m, "  .%-40s: %d (%s)\n",
 817		"sysctl_sched_tunable_scaling",
 818		sysctl_sched_tunable_scaling,
 819		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 820	SEQ_printf(m, "\n");
 821}
 822
 823static int sched_debug_show(struct seq_file *m, void *v)
 824{
 825	int cpu = (unsigned long)(v - 2);
 826
 827	if (cpu != -1)
 828		print_cpu(m, cpu);
 829	else
 830		sched_debug_header(m);
 831
 832	return 0;
 833}
 834
 835void sysrq_sched_debug_show(void)
 836{
 837	int cpu;
 838
 839	sched_debug_header(NULL);
 840	for_each_online_cpu(cpu) {
 841		/*
 842		 * Need to reset softlockup watchdogs on all CPUs, because
 843		 * another CPU might be blocked waiting for us to process
 844		 * an IPI or stop_machine.
 845		 */
 846		touch_nmi_watchdog();
 847		touch_all_softlockup_watchdogs();
 848		print_cpu(NULL, cpu);
 849	}
 850}
 851
 852/*
 853 * This iterator needs some explanation.
 854 * It returns 1 for the header position.
 855 * This means 2 is CPU 0.
 856 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
 857 * to use cpumask_* to iterate over the CPUs.
 858 */
 859static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 860{
 861	unsigned long n = *offset;
 862
 863	if (n == 0)
 864		return (void *) 1;
 865
 866	n--;
 867
 868	if (n > 0)
 869		n = cpumask_next(n - 1, cpu_online_mask);
 870	else
 871		n = cpumask_first(cpu_online_mask);
 872
 873	*offset = n + 1;
 874
 875	if (n < nr_cpu_ids)
 876		return (void *)(unsigned long)(n + 2);
 877
 878	return NULL;
 879}
 880
 881static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
 882{
 883	(*offset)++;
 884	return sched_debug_start(file, offset);
 885}
 886
 887static void sched_debug_stop(struct seq_file *file, void *data)
 888{
 889}
 890
 891static const struct seq_operations sched_debug_sops = {
 892	.start		= sched_debug_start,
 893	.next		= sched_debug_next,
 894	.stop		= sched_debug_stop,
 895	.show		= sched_debug_show,
 896};
 897
 898#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
 899#define __P(F) __PS(#F, F)
 900#define   P(F) __PS(#F, p->F)
 901#define   PM(F, M) __PS(#F, p->F & (M))
 902#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
 903#define __PN(F) __PSN(#F, F)
 904#define   PN(F) __PSN(#F, p->F)
 905
 
 
 
 
 
 
 
 
 
 
 
 906
 907#ifdef CONFIG_NUMA_BALANCING
 908void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
 909		unsigned long tpf, unsigned long gsf, unsigned long gpf)
 
 
 
 
 
 910{
 911	SEQ_printf(m, "numa_faults node=%d ", node);
 912	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
 913	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
 
 
 
 914}
 915#endif
 
 
 
 
 
 
 
 
 
 
 916
 917
 918static void sched_show_numa(struct task_struct *p, struct seq_file *m)
 919{
 920#ifdef CONFIG_NUMA_BALANCING
 921	struct mempolicy *pol;
 
 922
 923	if (p->mm)
 924		P(mm->numa_scan_seq);
 925
 926	task_lock(p);
 927	pol = p->mempolicy;
 928	if (pol && !(pol->flags & MPOL_F_MORON))
 929		pol = NULL;
 930	mpol_get(pol);
 931	task_unlock(p);
 932
 933	P(numa_pages_migrated);
 934	P(numa_preferred_nid);
 935	P(total_numa_faults);
 936	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
 937			task_node(p), task_numa_group_id(p));
 938	show_numa_stats(p, m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	mpol_put(pol);
 940#endif
 941}
 942
 943void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
 944						  struct seq_file *m)
 945{
 946	unsigned long nr_switches;
 947
 948	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
 949						get_nr_threads(p));
 950	SEQ_printf(m,
 951		"---------------------------------------------------------"
 952		"----------\n");
 953
 954#define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
 955#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
 
 
 
 
 
 956
 957	PN(se.exec_start);
 958	PN(se.vruntime);
 959	PN(se.sum_exec_runtime);
 960
 961	nr_switches = p->nvcsw + p->nivcsw;
 962
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	P(se.nr_migrations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	if (schedstat_enabled()) {
 966		u64 avg_atom, avg_per_cpu;
 967
 968		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
 969		PN_SCHEDSTAT(se.statistics.wait_start);
 970		PN_SCHEDSTAT(se.statistics.sleep_start);
 971		PN_SCHEDSTAT(se.statistics.block_start);
 972		PN_SCHEDSTAT(se.statistics.sleep_max);
 973		PN_SCHEDSTAT(se.statistics.block_max);
 974		PN_SCHEDSTAT(se.statistics.exec_max);
 975		PN_SCHEDSTAT(se.statistics.slice_max);
 976		PN_SCHEDSTAT(se.statistics.wait_max);
 977		PN_SCHEDSTAT(se.statistics.wait_sum);
 978		P_SCHEDSTAT(se.statistics.wait_count);
 979		PN_SCHEDSTAT(se.statistics.iowait_sum);
 980		P_SCHEDSTAT(se.statistics.iowait_count);
 981		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
 982		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
 983		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
 984		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
 985		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
 986		P_SCHEDSTAT(se.statistics.nr_wakeups);
 987		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
 988		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
 989		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
 990		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
 991		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
 992		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
 993		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
 994		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
 995
 996		avg_atom = p->se.sum_exec_runtime;
 997		if (nr_switches)
 998			avg_atom = div64_ul(avg_atom, nr_switches);
 999		else
1000			avg_atom = -1LL;
1001
1002		avg_per_cpu = p->se.sum_exec_runtime;
1003		if (p->se.nr_migrations) {
1004			avg_per_cpu = div64_u64(avg_per_cpu,
1005						p->se.nr_migrations);
1006		} else {
1007			avg_per_cpu = -1LL;
1008		}
1009
1010		__PN(avg_atom);
1011		__PN(avg_per_cpu);
1012	}
1013
1014	__P(nr_switches);
1015	__PS("nr_voluntary_switches", p->nvcsw);
1016	__PS("nr_involuntary_switches", p->nivcsw);
 
 
1017
1018	P(se.load.weight);
1019#ifdef CONFIG_SMP
1020	P(se.avg.load_sum);
1021	P(se.avg.runnable_sum);
1022	P(se.avg.util_sum);
1023	P(se.avg.load_avg);
1024	P(se.avg.runnable_avg);
1025	P(se.avg.util_avg);
1026	P(se.avg.last_update_time);
1027	P(se.avg.util_est.ewma);
1028	PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1029#endif
1030#ifdef CONFIG_UCLAMP_TASK
1031	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1032	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1033	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1034	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1035#endif
1036	P(policy);
1037	P(prio);
1038	if (task_has_dl_policy(p)) {
1039		P(dl.runtime);
1040		P(dl.deadline);
1041	}
1042#undef PN_SCHEDSTAT
1043#undef P_SCHEDSTAT
1044
1045	{
1046		unsigned int this_cpu = raw_smp_processor_id();
1047		u64 t0, t1;
1048
1049		t0 = cpu_clock(this_cpu);
1050		t1 = cpu_clock(this_cpu);
1051		__PS("clock-delta", t1-t0);
 
1052	}
1053
1054	sched_show_numa(p, m);
1055}
1056
1057void proc_sched_set_task(struct task_struct *p)
1058{
1059#ifdef CONFIG_SCHEDSTATS
1060	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1061#endif
1062}
1063
1064void resched_latency_warn(int cpu, u64 latency)
1065{
1066	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1067
1068	WARN(__ratelimit(&latency_check_ratelimit),
1069	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1070	     "without schedule\n",
1071	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1072}