Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155 int i;
156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
161 }
162 seq_puts(m, "\n");
163
164 return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199 int i;
200 int neg = 0;
201
202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1;
204 cmp += 3;
205 }
206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i);
212 } else {
213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i);
215 }
216 break;
217 }
218 }
219
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL;
243
244 *ppos += cnt;
245
246 return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305{
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325{
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337}
338
339static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341{
342 raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349{
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359{
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413 struct rq *rq = arg;
414
415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431 hrtimer_set_expires(timer, time);
432
433 if (rq == this_rq()) {
434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1;
438 }
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
485
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
493}
494#else /* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif /* CONFIG_SCHED_HRTICK */
507
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515void resched_task(struct task_struct *p)
516{
517 int cpu;
518
519 lockdep_assert_held(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
529 return;
530 }
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return;
545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_SMP
550#ifdef CONFIG_NO_HZ_COMMON
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559int get_nohz_timer_target(int pinned)
560{
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
568 rcu_read_lock();
569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577unlock:
578 rcu_read_unlock();
579 return cpu;
580}
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591static void wake_up_idle_cpu(int cpu)
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
607
608 /*
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
612 */
613 set_tsk_need_resched(rq->idle);
614
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
619}
620
621static bool wake_up_full_nohz_cpu(int cpu)
622{
623 if (tick_nohz_full_cpu(cpu)) {
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
635 if (!wake_up_full_nohz_cpu(cpu))
636 wake_up_idle_cpu(cpu);
637}
638
639static inline bool got_nohz_idle_kick(void)
640{
641 int cpu = smp_processor_id();
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
655}
656
657#else /* CONFIG_NO_HZ_COMMON */
658
659static inline bool got_nohz_idle_kick(void)
660{
661 return false;
662}
663
664#endif /* CONFIG_NO_HZ_COMMON */
665
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
683
684void sched_avg_update(struct rq *rq)
685{
686 s64 period = sched_avg_period();
687
688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
698}
699
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712{
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737out:
738 return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743 return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767 update_rq_clock(rq);
768 sched_info_queued(rq, p);
769 p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774 update_rq_clock(rq);
775 sched_info_dequeued(rq, p);
776 p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((¶virt_steal_rq_enabled))) {
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 rq->prev_steal_time_rq += steal;
837 delta -= steal;
838 }
839#endif
840
841 rq->clock_task += delta;
842
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846#endif
847}
848
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877}
878
879/*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882static inline int __normal_prio(struct task_struct *p)
883{
884 return p->static_prio;
885}
886
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894static inline int normal_prio(struct task_struct *p)
895{
896 int prio;
897
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935 return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
940 int oldprio)
941{
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
992 * see task_group().
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002 trace_sched_migrate_task(p, new_cpu);
1003
1004 if (task_cpu(p) != new_cpu) {
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
1007 p->se.nr_migrations++;
1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 }
1010
1011 __set_task_cpu(p, new_cpu);
1012}
1013
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034}
1035
1036struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075 return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113 return ret;
1114}
1115
1116struct migration_arg {
1117 struct task_struct *task;
1118 int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141 unsigned long flags;
1142 int running, on_rq;
1143 unsigned long ncsw;
1144 struct rq *rq;
1145
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
1154
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
1169 cpu_relax();
1170 }
1171
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
1178 trace_sched_wait_task(p);
1179 running = task_running(rq, p);
1180 on_rq = p->on_rq;
1181 ncsw = 0;
1182 if (!match_state || p->state == match_state)
1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 task_rq_unlock(rq, p, &flags);
1185
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
1202
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
1208 * So if it was still runnable (but just not actively
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 continue;
1218 }
1219
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
1227
1228 return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
1267
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
1285 }
1286
1287 for (;;) {
1288 /* Any allowed, online CPU? */
1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
1296
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
1326 }
1327
1328 return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 !cpu_online(cpu)))
1351 cpu = select_fallback_rq(task_cpu(p), p);
1352
1353 return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367 struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 rcu_read_lock();
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
1395 schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397 if (wake_flags & WF_SYNC)
1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405 activate_task(rq, p, en_flags);
1406 p->on_rq = 1;
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419 check_preempt_curr(rq, p, wake_flags);
1420 trace_sched_wakeup(p, true);
1421
1422 p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
1427 if (rq->idle_stamp) {
1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 u64 max = 2*rq->max_idle_balance_cost;
1430
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
1434 rq->avg_idle = max;
1435
1436 rq->idle_stamp = 0;
1437 }
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447#endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479 struct rq *rq = this_rq();
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
1482
1483 raw_spin_lock(&rq->lock);
1484
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
1501 preempt_fold_need_resched();
1502
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
1522 tick_nohz_full_check();
1523 sched_ttwu_pending();
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
1528 if (unlikely(got_nohz_idle_kick())) {
1529 this_rq()->idle_balance = 1;
1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 }
1532 irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 smp_send_reschedule(cpu);
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549 struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557#endif
1558
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582 unsigned long flags;
1583 int cpu, success = 0;
1584
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 if (!(p->state & state))
1594 goto out;
1595
1596 success = 1; /* we're going to change ->state */
1597 cpu = task_cpu(p);
1598
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1601
1602#ifdef CONFIG_SMP
1603 /*
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
1606 */
1607 while (p->on_cpu)
1608 cpu_relax();
1609 /*
1610 * Pairs with the smp_wmb() in finish_lock_switch().
1611 */
1612 smp_rmb();
1613
1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 p->state = TASK_WAKING;
1616
1617 if (p->sched_class->task_waking)
1618 p->sched_class->task_waking(p);
1619
1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
1623 set_task_cpu(p, cpu);
1624 }
1625#endif /* CONFIG_SMP */
1626
1627 ttwu_queue(p, cpu);
1628stat:
1629 ttwu_stat(p, cpu, wake_flags);
1630out:
1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633 return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646 struct rq *rq = task_rq(p);
1647
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
1652 lockdep_assert_held(&rq->lock);
1653
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
1660 if (!(p->state & TASK_NORMAL))
1661 goto out;
1662
1663 if (!p->on_rq)
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666 ttwu_do_wakeup(rq, p, 0);
1667 ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669 raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693 return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
1709 p->se.prev_sum_exec_runtime = 0;
1710 p->se.nr_migrations = 0;
1711 p->se.vruntime = 0;
1712 INIT_LIST_HEAD(&p->se.group_node);
1713
1714#ifdef CONFIG_SCHEDSTATS
1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
1722 p->dl.dl_period = 0;
1723 p->dl.flags = 0;
1724
1725 INIT_LIST_HEAD(&p->rt.run_list);
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 p->numa_work.next = &p->numa_work;
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868#endif
1869 init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875 put_cpu();
1876 return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022#endif
2023 task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(¬ifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098{
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124{
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
2158 */
2159 kprobe_flush_task(prev);
2160 put_task_struct(prev);
2161 }
2162
2163 tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
2174 raw_spin_lock_irqsave(&rq->lock, flags);
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179 rq->post_schedule = 0;
2180 }
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage __visible void schedule_tail(struct task_struct *prev)
2196 __releases(rq->lock)
2197{
2198 struct rq *rq = this_rq();
2199
2200 finish_task_switch(rq, prev);
2201
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211#endif
2212 if (current->set_child_tid)
2213 put_user(task_pid_vnr(current), current->set_child_tid);
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222 struct task_struct *next)
2223{
2224 struct mm_struct *mm, *oldmm;
2225
2226 prepare_task_switch(rq, prev, next);
2227
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
2235 arch_start_context_switch(prev);
2236
2237 if (!mm) {
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
2244 if (!prev->mm) {
2245 prev->active_mm = NULL;
2246 rq->prev_mm = oldmm;
2247 }
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
2257
2258 context_tracking_task_switch(prev, next);
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
2285}
2286
2287unsigned long long nr_context_switches(void)
2288{
2289 int i;
2290 unsigned long long sum = 0;
2291
2292 for_each_possible_cpu(i)
2293 sum += cpu_rq(i)->nr_switches;
2294
2295 return sum;
2296}
2297
2298unsigned long nr_iowait(void)
2299{
2300 unsigned long i, sum = 0;
2301
2302 for_each_possible_cpu(i)
2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305 return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310 struct rq *this = cpu_rq(cpu);
2311 return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322 struct task_struct *p = current;
2323 unsigned long flags;
2324 int dest_cpu;
2325
2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
2330
2331 if (likely(cpu_active(dest_cpu))) {
2332 struct migration_arg arg = { p, dest_cpu };
2333
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 return;
2337 }
2338unlock:
2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
2362 ns = rq_clock_task(rq) - p->se.exec_start;
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372 unsigned long flags;
2373 struct rq *rq;
2374 u64 ns = 0;
2375
2376 rq = task_rq_lock(p, &flags);
2377 ns = do_task_delta_exec(p, rq);
2378 task_rq_unlock(rq, p, &flags);
2379
2380 return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406#endif
2407
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 task_rq_unlock(rq, p, &flags);
2411
2412 return ns;
2413}
2414
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
2423 struct task_struct *curr = rq->curr;
2424
2425 sched_clock_tick();
2426
2427 raw_spin_lock(&rq->lock);
2428 update_rq_clock(rq);
2429 curr->sched_class->task_tick(rq, curr, 0);
2430 update_cpu_load_active(rq);
2431 raw_spin_unlock(&rq->lock);
2432
2433 perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436 rq->idle_balance = idle_cpu(cpu);
2437 trigger_load_balance(rq);
2438#endif
2439 rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
2466 return jiffies_to_nsecs(next - now);
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486 /*
2487 * Underflow?
2488 */
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
2491#endif
2492 __preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
2499#endif
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504#endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
2507}
2508EXPORT_SYMBOL(preempt_count_add);
2509
2510void __kprobes preempt_count_sub(int val)
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513 /*
2514 * Underflow?
2515 */
2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 return;
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
2524#endif
2525
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 __preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
2531
2532#endif
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
2539 if (oops_in_progress)
2540 return;
2541
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
2544
2545 debug_show_held_locks(prev);
2546 print_modules();
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555#endif
2556 dump_stack();
2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565 /*
2566 * Test if we are atomic. Since do_exit() needs to call into
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
2569 */
2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 __schedule_bug(prev);
2572 rcu_sleep_check();
2573
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576 schedstat_inc(this_rq(), sched_count);
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585 const struct sched_class *class = &fair_sched_class;
2586 struct task_struct *p;
2587
2588 /*
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
2591 */
2592 if (likely(prev->sched_class == class &&
2593 rq->nr_running == rq->cfs.h_nr_running)) {
2594 p = fair_sched_class.pick_next_task(rq, prev);
2595 if (unlikely(p == RETRY_TASK))
2596 goto again;
2597
2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev);
2601
2602 return p;
2603 }
2604
2605again:
2606 for_each_class(class) {
2607 p = class->pick_next_task(rq, prev);
2608 if (p) {
2609 if (unlikely(p == RETRY_TASK))
2610 goto again;
2611 return p;
2612 }
2613 }
2614
2615 BUG(); /* the idle class will always have a runnable task */
2616}
2617
2618/*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S.
2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick().
2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it.
2633 *
2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion:
2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!)
2643 *
2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context
2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next:
2649 *
2650 * - cond_resched() call
2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space
2654 */
2655static void __sched __schedule(void)
2656{
2657 struct task_struct *prev, *next;
2658 unsigned long *switch_count;
2659 struct rq *rq;
2660 int cpu;
2661
2662need_resched:
2663 preempt_disable();
2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu);
2666 rcu_note_context_switch(cpu);
2667 prev = rq->curr;
2668
2669 schedule_debug(prev);
2670
2671 if (sched_feat(HRTICK))
2672 hrtick_clear(rq);
2673
2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up().
2678 */
2679 smp_mb__before_spinlock();
2680 raw_spin_lock_irq(&rq->lock);
2681
2682 switch_count = &prev->nivcsw;
2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684 if (unlikely(signal_pending_state(prev->state, prev))) {
2685 prev->state = TASK_RUNNING;
2686 } else {
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0;
2689
2690 /*
2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain
2693 * concurrency.
2694 */
2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup;
2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup);
2701 }
2702 }
2703 switch_count = &prev->nvcsw;
2704 }
2705
2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq);
2708
2709 next = pick_next_task(rq, prev);
2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0;
2713
2714 if (likely(prev != next)) {
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /*
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
2728 } else
2729 raw_spin_unlock_irq(&rq->lock);
2730
2731 post_schedule(rq);
2732
2733 sched_preempt_enable_no_resched();
2734 if (need_resched())
2735 goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage __visible void __sched schedule(void)
2751{
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
2755 __schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage __visible void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
2768 user_exit();
2769 schedule();
2770 user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781 sched_preempt_enable_no_resched();
2782 schedule();
2783 preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage __visible void __sched notrace preempt_schedule(void)
2793{
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2797 */
2798 if (likely(!preemptible()))
2799 return;
2800
2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
2811 } while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage __visible void __sched preempt_schedule_irq(void)
2823{
2824 enum ctx_state prev_state;
2825
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2828
2829 prev_state = exception_enter();
2830
2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable();
2834 __schedule();
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
2843 } while (need_resched());
2844
2845 exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key)
2850{
2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868void rt_mutex_setprio(struct task_struct *p, int prio)
2869{
2870 int oldprio, on_rq, running, enqueue_flag = 0;
2871 struct rq *rq;
2872 const struct sched_class *prev_class;
2873
2874 BUG_ON(prio > MAX_PRIO);
2875
2876 rq = __task_rq_lock(p);
2877
2878 /*
2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no
2888 * real need to boost.
2889 */
2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock;
2894 }
2895
2896 trace_sched_pi_setprio(p, prio);
2897 p->pi_top_task = rt_mutex_get_top_task(p);
2898 oldprio = p->prio;
2899 prev_class = p->sched_class;
2900 on_rq = p->on_rq;
2901 running = task_current(rq, p);
2902 if (on_rq)
2903 dequeue_task(rq, p, 0);
2904 if (running)
2905 p->sched_class->put_prev_task(rq, p);
2906
2907 /*
2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A
2911 *
2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task
2915 */
2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else
2923 p->dl.dl_boosted = 0;
2924 p->sched_class = &dl_sched_class;
2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD;
2930 p->sched_class = &rt_sched_class;
2931 } else {
2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0;
2934 p->sched_class = &fair_sched_class;
2935 }
2936
2937 p->prio = prio;
2938
2939 if (running)
2940 p->sched_class->set_curr_task(rq);
2941 if (on_rq)
2942 enqueue_task(rq, p, enqueue_flag);
2943
2944 check_class_changed(rq, p, prev_class, oldprio);
2945out_unlock:
2946 __task_rq_unlock(rq);
2947}
2948#endif
2949
2950void set_user_nice(struct task_struct *p, long nice)
2951{
2952 int old_prio, delta, on_rq;
2953 unsigned long flags;
2954 struct rq *rq;
2955
2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957 return;
2958 /*
2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU.
2961 */
2962 rq = task_rq_lock(p, &flags);
2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is
2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968 */
2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock;
2972 }
2973 on_rq = p->on_rq;
2974 if (on_rq)
2975 dequeue_task(rq, p, 0);
2976
2977 p->static_prio = NICE_TO_PRIO(nice);
2978 set_load_weight(p);
2979 old_prio = p->prio;
2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio;
2982
2983 if (on_rq) {
2984 enqueue_task(rq, p, 0);
2985 /*
2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU:
2988 */
2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990 resched_task(rq->curr);
2991 }
2992out_unlock:
2993 task_rq_unlock(rq, p, &flags);
2994}
2995EXPORT_SYMBOL(set_user_nice);
2996
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002int can_nice(const struct task_struct *p, const int nice)
3003{
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice;
3006
3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008 capable(CAP_SYS_NICE));
3009}
3010
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020SYSCALL_DEFINE1(nice, int, increment)
3021{
3022 long nice, retval;
3023
3024 /*
3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner.
3028 */
3029 if (increment < -40)
3030 increment = -40;
3031 if (increment > 40)
3032 increment = 40;
3033
3034 nice = task_nice(current) + increment;
3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE;
3039
3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM;
3042
3043 retval = security_task_setnice(current, nice);
3044 if (retval)
3045 return retval;
3046
3047 set_user_nice(current, nice);
3048 return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
3061int task_prio(const struct task_struct *p)
3062{
3063 return p->prio - MAX_RT_PRIO;
3064}
3065
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072int idle_cpu(int cpu)
3073{
3074 struct rq *rq = cpu_rq(cpu);
3075
3076 if (rq->curr != rq->idle)
3077 return 0;
3078
3079 if (rq->nr_running)
3080 return 0;
3081
3082#ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list))
3084 return 0;
3085#endif
3086
3087 return 1;
3088}
3089
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096struct task_struct *idle_task(int cpu)
3097{
3098 return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107static struct task_struct *find_process_by_pid(pid_t pid)
3108{
3109 return pid ? find_task_by_vpid(pid) : current;
3110}
3111
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline;
3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129 dl_se->flags = attr->sched_flags;
3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1;
3133 dl_se->dl_yielded = 0;
3134}
3135
3136static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr)
3138{
3139 int policy = attr->sched_policy;
3140
3141 if (policy == -1) /* setparam */
3142 policy = p->policy;
3143
3144 p->policy = policy;
3145
3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr);
3148 else if (fair_policy(policy))
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */
3156 p->rt_priority = attr->sched_priority;
3157 p->normal_prio = normal_prio(p);
3158 set_load_weight(p);
3159}
3160
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr)
3164{
3165 __setscheduler_params(p, attr);
3166
3167 /*
3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio.
3170 */
3171 p->prio = normal_prio(p);
3172
3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio))
3176 p->sched_class = &rt_sched_class;
3177 else
3178 p->sched_class = &fair_sched_class;
3179}
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184 struct sched_dl_entity *dl_se = &p->dl;
3185
3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline;
3189 attr->sched_period = dl_se->dl_period;
3190 attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero).
3202 */
3203static bool
3204__checkparam_dl(const struct sched_attr *attr)
3205{
3206 /* deadline != 0 */
3207 if (attr->sched_deadline == 0)
3208 return false;
3209
3210 /*
3211 * Since we truncate DL_SCALE bits, make sure we're at least
3212 * that big.
3213 */
3214 if (attr->sched_runtime < (1ULL << DL_SCALE))
3215 return false;
3216
3217 /*
3218 * Since we use the MSB for wrap-around and sign issues, make
3219 * sure it's not set (mind that period can be equal to zero).
3220 */
3221 if (attr->sched_deadline & (1ULL << 63) ||
3222 attr->sched_period & (1ULL << 63))
3223 return false;
3224
3225 /* runtime <= deadline <= period (if period != 0) */
3226 if ((attr->sched_period != 0 &&
3227 attr->sched_period < attr->sched_deadline) ||
3228 attr->sched_deadline < attr->sched_runtime)
3229 return false;
3230
3231 return true;
3232}
3233
3234/*
3235 * check the target process has a UID that matches the current process's
3236 */
3237static bool check_same_owner(struct task_struct *p)
3238{
3239 const struct cred *cred = current_cred(), *pcred;
3240 bool match;
3241
3242 rcu_read_lock();
3243 pcred = __task_cred(p);
3244 match = (uid_eq(cred->euid, pcred->euid) ||
3245 uid_eq(cred->euid, pcred->uid));
3246 rcu_read_unlock();
3247 return match;
3248}
3249
3250static int __sched_setscheduler(struct task_struct *p,
3251 const struct sched_attr *attr,
3252 bool user)
3253{
3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255 MAX_RT_PRIO - 1 - attr->sched_priority;
3256 int retval, oldprio, oldpolicy = -1, on_rq, running;
3257 int policy = attr->sched_policy;
3258 unsigned long flags;
3259 const struct sched_class *prev_class;
3260 struct rq *rq;
3261 int reset_on_fork;
3262
3263 /* may grab non-irq protected spin_locks */
3264 BUG_ON(in_interrupt());
3265recheck:
3266 /* double check policy once rq lock held */
3267 if (policy < 0) {
3268 reset_on_fork = p->sched_reset_on_fork;
3269 policy = oldpolicy = p->policy;
3270 } else {
3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3272
3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR &&
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE)
3277 return -EINVAL;
3278 }
3279
3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281 return -EINVAL;
3282
3283 /*
3284 * Valid priorities for SCHED_FIFO and SCHED_RR are
3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286 * SCHED_BATCH and SCHED_IDLE is 0.
3287 */
3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3290 return -EINVAL;
3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292 (rt_policy(policy) != (attr->sched_priority != 0)))
3293 return -EINVAL;
3294
3295 /*
3296 * Allow unprivileged RT tasks to decrease priority:
3297 */
3298 if (user && !capable(CAP_SYS_NICE)) {
3299 if (fair_policy(policy)) {
3300 if (attr->sched_nice < task_nice(p) &&
3301 !can_nice(p, attr->sched_nice))
3302 return -EPERM;
3303 }
3304
3305 if (rt_policy(policy)) {
3306 unsigned long rlim_rtprio =
3307 task_rlimit(p, RLIMIT_RTPRIO);
3308
3309 /* can't set/change the rt policy */
3310 if (policy != p->policy && !rlim_rtprio)
3311 return -EPERM;
3312
3313 /* can't increase priority */
3314 if (attr->sched_priority > p->rt_priority &&
3315 attr->sched_priority > rlim_rtprio)
3316 return -EPERM;
3317 }
3318
3319 /*
3320 * Can't set/change SCHED_DEADLINE policy at all for now
3321 * (safest behavior); in the future we would like to allow
3322 * unprivileged DL tasks to increase their relative deadline
3323 * or reduce their runtime (both ways reducing utilization)
3324 */
3325 if (dl_policy(policy))
3326 return -EPERM;
3327
3328 /*
3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3331 */
3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3333 if (!can_nice(p, task_nice(p)))
3334 return -EPERM;
3335 }
3336
3337 /* can't change other user's priorities */
3338 if (!check_same_owner(p))
3339 return -EPERM;
3340
3341 /* Normal users shall not reset the sched_reset_on_fork flag */
3342 if (p->sched_reset_on_fork && !reset_on_fork)
3343 return -EPERM;
3344 }
3345
3346 if (user) {
3347 retval = security_task_setscheduler(p);
3348 if (retval)
3349 return retval;
3350 }
3351
3352 /*
3353 * make sure no PI-waiters arrive (or leave) while we are
3354 * changing the priority of the task:
3355 *
3356 * To be able to change p->policy safely, the appropriate
3357 * runqueue lock must be held.
3358 */
3359 rq = task_rq_lock(p, &flags);
3360
3361 /*
3362 * Changing the policy of the stop threads its a very bad idea
3363 */
3364 if (p == rq->stop) {
3365 task_rq_unlock(rq, p, &flags);
3366 return -EINVAL;
3367 }
3368
3369 /*
3370 * If not changing anything there's no need to proceed further,
3371 * but store a possible modification of reset_on_fork.
3372 */
3373 if (unlikely(policy == p->policy)) {
3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3375 goto change;
3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377 goto change;
3378 if (dl_policy(policy))
3379 goto change;
3380
3381 p->sched_reset_on_fork = reset_on_fork;
3382 task_rq_unlock(rq, p, &flags);
3383 return 0;
3384 }
3385change:
3386
3387 if (user) {
3388#ifdef CONFIG_RT_GROUP_SCHED
3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned.
3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) {
3396 task_rq_unlock(rq, p, &flags);
3397 return -EPERM;
3398 }
3399#endif
3400#ifdef CONFIG_SMP
3401 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3402 cpumask_t *span = rq->rd->span;
3403
3404 /*
3405 * Don't allow tasks with an affinity mask smaller than
3406 * the entire root_domain to become SCHED_DEADLINE. We
3407 * will also fail if there's no bandwidth available.
3408 */
3409 if (!cpumask_subset(span, &p->cpus_allowed) ||
3410 rq->rd->dl_bw.bw == 0) {
3411 task_rq_unlock(rq, p, &flags);
3412 return -EPERM;
3413 }
3414 }
3415#endif
3416 }
3417
3418 /* recheck policy now with rq lock held */
3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420 policy = oldpolicy = -1;
3421 task_rq_unlock(rq, p, &flags);
3422 goto recheck;
3423 }
3424
3425 /*
3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428 * is available.
3429 */
3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3431 task_rq_unlock(rq, p, &flags);
3432 return -EBUSY;
3433 }
3434
3435 p->sched_reset_on_fork = reset_on_fork;
3436 oldprio = p->prio;
3437
3438 /*
3439 * Special case for priority boosted tasks.
3440 *
3441 * If the new priority is lower or equal (user space view)
3442 * than the current (boosted) priority, we just store the new
3443 * normal parameters and do not touch the scheduler class and
3444 * the runqueue. This will be done when the task deboost
3445 * itself.
3446 */
3447 if (rt_mutex_check_prio(p, newprio)) {
3448 __setscheduler_params(p, attr);
3449 task_rq_unlock(rq, p, &flags);
3450 return 0;
3451 }
3452
3453 on_rq = p->on_rq;
3454 running = task_current(rq, p);
3455 if (on_rq)
3456 dequeue_task(rq, p, 0);
3457 if (running)
3458 p->sched_class->put_prev_task(rq, p);
3459
3460 prev_class = p->sched_class;
3461 __setscheduler(rq, p, attr);
3462
3463 if (running)
3464 p->sched_class->set_curr_task(rq);
3465 if (on_rq) {
3466 /*
3467 * We enqueue to tail when the priority of a task is
3468 * increased (user space view).
3469 */
3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3471 }
3472
3473 check_class_changed(rq, p, prev_class, oldprio);
3474 task_rq_unlock(rq, p, &flags);
3475
3476 rt_mutex_adjust_pi(p);
3477
3478 return 0;
3479}
3480
3481static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check)
3483{
3484 struct sched_attr attr = {
3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 };
3489
3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */
3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy;
3497 }
3498
3499 return __sched_setscheduler(p, &attr, check);
3500}
3501/**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511int sched_setscheduler(struct task_struct *p, int policy,
3512 const struct sched_param *param)
3513{
3514 return _sched_setscheduler(p, policy, param, true);
3515}
3516EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519{
3520 return __sched_setscheduler(p, attr, true);
3521}
3522EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524/**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538 const struct sched_param *param)
3539{
3540 return _sched_setscheduler(p, policy, param, false);
3541}
3542
3543static int
3544do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545{
3546 struct sched_param lparam;
3547 struct task_struct *p;
3548 int retval;
3549
3550 if (!param || pid < 0)
3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT;
3554
3555 rcu_read_lock();
3556 retval = -ESRCH;
3557 p = find_process_by_pid(pid);
3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock();
3561
3562 return retval;
3563}
3564
3565/*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr)
3570{
3571 u32 size;
3572 int ret;
3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT;
3576
3577 /*
3578 * zero the full structure, so that a short copy will be nice.
3579 */
3580 memset(attr, 0, sizeof(*attr));
3581
3582 ret = get_user(size, &uattr->size);
3583 if (ret)
3584 return ret;
3585
3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size;
3588
3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0;
3591
3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size;
3594
3595 /*
3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet.
3600 */
3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr;
3603 unsigned char __user *end;
3604 unsigned char val;
3605
3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size;
3608
3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr);
3611 if (ret)
3612 return ret;
3613 if (val)
3614 goto err_size;
3615 }
3616 size = sizeof(*attr);
3617 }
3618
3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret)
3621 return -EFAULT;
3622
3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values?
3626 */
3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3628
3629out:
3630 return ret;
3631
3632err_size:
3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG;
3635 goto out;
3636}
3637
3638/**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param)
3648{
3649 /* negative values for policy are not valid */
3650 if (policy < 0)
3651 return -EINVAL;
3652
3653 return do_sched_setscheduler(pid, policy, param);
3654}
3655
3656/**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664{
3665 return do_sched_setscheduler(pid, -1, param);
3666}
3667
3668/**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 * @flags: for future extension.
3673 */
3674SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675 unsigned int, flags)
3676{
3677 struct sched_attr attr;
3678 struct task_struct *p;
3679 int retval;
3680
3681 if (!uattr || pid < 0 || flags)
3682 return -EINVAL;
3683
3684 retval = sched_copy_attr(uattr, &attr);
3685 if (retval)
3686 return retval;
3687
3688 if ((int)attr.sched_policy < 0)
3689 return -EINVAL;
3690
3691 rcu_read_lock();
3692 retval = -ESRCH;
3693 p = find_process_by_pid(pid);
3694 if (p != NULL)
3695 retval = sched_setattr(p, &attr);
3696 rcu_read_unlock();
3697
3698 return retval;
3699}
3700
3701/**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question.
3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code.
3707 */
3708SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3709{
3710 struct task_struct *p;
3711 int retval;
3712
3713 if (pid < 0)
3714 return -EINVAL;
3715
3716 retval = -ESRCH;
3717 rcu_read_lock();
3718 p = find_process_by_pid(pid);
3719 if (p) {
3720 retval = security_task_getscheduler(p);
3721 if (!retval)
3722 retval = p->policy
3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3724 }
3725 rcu_read_unlock();
3726 return retval;
3727}
3728
3729/**
3730 * sys_sched_getparam - get the RT priority of a thread
3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority.
3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code.
3736 */
3737SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3738{
3739 struct sched_param lp = { .sched_priority = 0 };
3740 struct task_struct *p;
3741 int retval;
3742
3743 if (!param || pid < 0)
3744 return -EINVAL;
3745
3746 rcu_read_lock();
3747 p = find_process_by_pid(pid);
3748 retval = -ESRCH;
3749 if (!p)
3750 goto out_unlock;
3751
3752 retval = security_task_getscheduler(p);
3753 if (retval)
3754 goto out_unlock;
3755
3756 if (task_has_rt_policy(p))
3757 lp.sched_priority = p->rt_priority;
3758 rcu_read_unlock();
3759
3760 /*
3761 * This one might sleep, we cannot do it with a spinlock held ...
3762 */
3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
3765 return retval;
3766
3767out_unlock:
3768 rcu_read_unlock();
3769 return retval;
3770}
3771
3772static int sched_read_attr(struct sched_attr __user *uattr,
3773 struct sched_attr *attr,
3774 unsigned int usize)
3775{
3776 int ret;
3777
3778 if (!access_ok(VERIFY_WRITE, uattr, usize))
3779 return -EFAULT;
3780
3781 /*
3782 * If we're handed a smaller struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. old
3784 * user-space does not get uncomplete information.
3785 */
3786 if (usize < sizeof(*attr)) {
3787 unsigned char *addr;
3788 unsigned char *end;
3789
3790 addr = (void *)attr + usize;
3791 end = (void *)attr + sizeof(*attr);
3792
3793 for (; addr < end; addr++) {
3794 if (*addr)
3795 goto err_size;
3796 }
3797
3798 attr->size = usize;
3799 }
3800
3801 ret = copy_to_user(uattr, attr, attr->size);
3802 if (ret)
3803 return -EFAULT;
3804
3805out:
3806 return ret;
3807
3808err_size:
3809 ret = -E2BIG;
3810 goto out;
3811}
3812
3813/**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 * @flags: for future extension.
3819 */
3820SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821 unsigned int, size, unsigned int, flags)
3822{
3823 struct sched_attr attr = {
3824 .size = sizeof(struct sched_attr),
3825 };
3826 struct task_struct *p;
3827 int retval;
3828
3829 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3830 size < SCHED_ATTR_SIZE_VER0 || flags)
3831 return -EINVAL;
3832
3833 rcu_read_lock();
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
3843 attr.sched_policy = p->policy;
3844 if (p->sched_reset_on_fork)
3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3846 if (task_has_dl_policy(p))
3847 __getparam_dl(p, &attr);
3848 else if (task_has_rt_policy(p))
3849 attr.sched_priority = p->rt_priority;
3850 else
3851 attr.sched_nice = task_nice(p);
3852
3853 rcu_read_unlock();
3854
3855 retval = sched_read_attr(uattr, &attr, size);
3856 return retval;
3857
3858out_unlock:
3859 rcu_read_unlock();
3860 return retval;
3861}
3862
3863long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3864{
3865 cpumask_var_t cpus_allowed, new_mask;
3866 struct task_struct *p;
3867 int retval;
3868
3869 rcu_read_lock();
3870
3871 p = find_process_by_pid(pid);
3872 if (!p) {
3873 rcu_read_unlock();
3874 return -ESRCH;
3875 }
3876
3877 /* Prevent p going away */
3878 get_task_struct(p);
3879 rcu_read_unlock();
3880
3881 if (p->flags & PF_NO_SETAFFINITY) {
3882 retval = -EINVAL;
3883 goto out_put_task;
3884 }
3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886 retval = -ENOMEM;
3887 goto out_put_task;
3888 }
3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890 retval = -ENOMEM;
3891 goto out_free_cpus_allowed;
3892 }
3893 retval = -EPERM;
3894 if (!check_same_owner(p)) {
3895 rcu_read_lock();
3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897 rcu_read_unlock();
3898 goto out_unlock;
3899 }
3900 rcu_read_unlock();
3901 }
3902
3903 retval = security_task_setscheduler(p);
3904 if (retval)
3905 goto out_unlock;
3906
3907
3908 cpuset_cpus_allowed(p, cpus_allowed);
3909 cpumask_and(new_mask, in_mask, cpus_allowed);
3910
3911 /*
3912 * Since bandwidth control happens on root_domain basis,
3913 * if admission test is enabled, we only admit -deadline
3914 * tasks allowed to run on all the CPUs in the task's
3915 * root_domain.
3916 */
3917#ifdef CONFIG_SMP
3918 if (task_has_dl_policy(p)) {
3919 const struct cpumask *span = task_rq(p)->rd->span;
3920
3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3922 retval = -EBUSY;
3923 goto out_unlock;
3924 }
3925 }
3926#endif
3927again:
3928 retval = set_cpus_allowed_ptr(p, new_mask);
3929
3930 if (!retval) {
3931 cpuset_cpus_allowed(p, cpus_allowed);
3932 if (!cpumask_subset(new_mask, cpus_allowed)) {
3933 /*
3934 * We must have raced with a concurrent cpuset
3935 * update. Just reset the cpus_allowed to the
3936 * cpuset's cpus_allowed
3937 */
3938 cpumask_copy(new_mask, cpus_allowed);
3939 goto again;
3940 }
3941 }
3942out_unlock:
3943 free_cpumask_var(new_mask);
3944out_free_cpus_allowed:
3945 free_cpumask_var(cpus_allowed);
3946out_put_task:
3947 put_task_struct(p);
3948 return retval;
3949}
3950
3951static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3952 struct cpumask *new_mask)
3953{
3954 if (len < cpumask_size())
3955 cpumask_clear(new_mask);
3956 else if (len > cpumask_size())
3957 len = cpumask_size();
3958
3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960}
3961
3962/**
3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask
3967 *
3968 * Return: 0 on success. An error code otherwise.
3969 */
3970SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971 unsigned long __user *, user_mask_ptr)
3972{
3973 cpumask_var_t new_mask;
3974 int retval;
3975
3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977 return -ENOMEM;
3978
3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980 if (retval == 0)
3981 retval = sched_setaffinity(pid, new_mask);
3982 free_cpumask_var(new_mask);
3983 return retval;
3984}
3985
3986long sched_getaffinity(pid_t pid, struct cpumask *mask)
3987{
3988 struct task_struct *p;
3989 unsigned long flags;
3990 int retval;
3991
3992 rcu_read_lock();
3993
3994 retval = -ESRCH;
3995 p = find_process_by_pid(pid);
3996 if (!p)
3997 goto out_unlock;
3998
3999 retval = security_task_getscheduler(p);
4000 if (retval)
4001 goto out_unlock;
4002
4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4006
4007out_unlock:
4008 rcu_read_unlock();
4009
4010 return retval;
4011}
4012
4013/**
4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4018 *
4019 * Return: 0 on success. An error code otherwise.
4020 */
4021SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022 unsigned long __user *, user_mask_ptr)
4023{
4024 int ret;
4025 cpumask_var_t mask;
4026
4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4028 return -EINVAL;
4029 if (len & (sizeof(unsigned long)-1))
4030 return -EINVAL;
4031
4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033 return -ENOMEM;
4034
4035 ret = sched_getaffinity(pid, mask);
4036 if (ret == 0) {
4037 size_t retlen = min_t(size_t, len, cpumask_size());
4038
4039 if (copy_to_user(user_mask_ptr, mask, retlen))
4040 ret = -EFAULT;
4041 else
4042 ret = retlen;
4043 }
4044 free_cpumask_var(mask);
4045
4046 return ret;
4047}
4048
4049/**
4050 * sys_sched_yield - yield the current processor to other threads.
4051 *
4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return.
4054 *
4055 * Return: 0.
4056 */
4057SYSCALL_DEFINE0(sched_yield)
4058{
4059 struct rq *rq = this_rq_lock();
4060
4061 schedstat_inc(rq, yld_count);
4062 current->sched_class->yield_task(rq);
4063
4064 /*
4065 * Since we are going to call schedule() anyway, there's
4066 * no need to preempt or enable interrupts:
4067 */
4068 __release(rq->lock);
4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4070 do_raw_spin_unlock(&rq->lock);
4071 sched_preempt_enable_no_resched();
4072
4073 schedule();
4074
4075 return 0;
4076}
4077
4078static void __cond_resched(void)
4079{
4080 __preempt_count_add(PREEMPT_ACTIVE);
4081 __schedule();
4082 __preempt_count_sub(PREEMPT_ACTIVE);
4083}
4084
4085int __sched _cond_resched(void)
4086{
4087 if (should_resched()) {
4088 __cond_resched();
4089 return 1;
4090 }
4091 return 0;
4092}
4093EXPORT_SYMBOL(_cond_resched);
4094
4095/*
4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4097 * call schedule, and on return reacquire the lock.
4098 *
4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand).
4102 */
4103int __cond_resched_lock(spinlock_t *lock)
4104{
4105 int resched = should_resched();
4106 int ret = 0;
4107
4108 lockdep_assert_held(lock);
4109
4110 if (spin_needbreak(lock) || resched) {
4111 spin_unlock(lock);
4112 if (resched)
4113 __cond_resched();
4114 else
4115 cpu_relax();
4116 ret = 1;
4117 spin_lock(lock);
4118 }
4119 return ret;
4120}
4121EXPORT_SYMBOL(__cond_resched_lock);
4122
4123int __sched __cond_resched_softirq(void)
4124{
4125 BUG_ON(!in_softirq());
4126
4127 if (should_resched()) {
4128 local_bh_enable();
4129 __cond_resched();
4130 local_bh_disable();
4131 return 1;
4132 }
4133 return 0;
4134}
4135EXPORT_SYMBOL(__cond_resched_softirq);
4136
4137/**
4138 * yield - yield the current processor to other threads.
4139 *
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 *
4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken.
4145 *
4146 * Typical broken usage is:
4147 *
4148 * while (!event)
4149 * yield();
4150 *
4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!!
4154 *
4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not!
4158 */
4159void __sched yield(void)
4160{
4161 set_current_state(TASK_RUNNING);
4162 sys_sched_yield();
4163}
4164EXPORT_SYMBOL(yield);
4165
4166/**
4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on.
4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not
4172 *
4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks.
4175 *
4176 * Return:
4177 * true (>0) if we indeed boosted the target task.
4178 * false (0) if we failed to boost the target.
4179 * -ESRCH if there's no task to yield to.
4180 */
4181bool __sched yield_to(struct task_struct *p, bool preempt)
4182{
4183 struct task_struct *curr = current;
4184 struct rq *rq, *p_rq;
4185 unsigned long flags;
4186 int yielded = 0;
4187
4188 local_irq_save(flags);
4189 rq = this_rq();
4190
4191again:
4192 p_rq = task_rq(p);
4193 /*
4194 * If we're the only runnable task on the rq and target rq also
4195 * has only one task, there's absolutely no point in yielding.
4196 */
4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198 yielded = -ESRCH;
4199 goto out_irq;
4200 }
4201
4202 double_rq_lock(rq, p_rq);
4203 if (task_rq(p) != p_rq) {
4204 double_rq_unlock(rq, p_rq);
4205 goto again;
4206 }
4207
4208 if (!curr->sched_class->yield_to_task)
4209 goto out_unlock;
4210
4211 if (curr->sched_class != p->sched_class)
4212 goto out_unlock;
4213
4214 if (task_running(p_rq, p) || p->state)
4215 goto out_unlock;
4216
4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4218 if (yielded) {
4219 schedstat_inc(rq, yld_count);
4220 /*
4221 * Make p's CPU reschedule; pick_next_entity takes care of
4222 * fairness.
4223 */
4224 if (preempt && rq != p_rq)
4225 resched_task(p_rq->curr);
4226 }
4227
4228out_unlock:
4229 double_rq_unlock(rq, p_rq);
4230out_irq:
4231 local_irq_restore(flags);
4232
4233 if (yielded > 0)
4234 schedule();
4235
4236 return yielded;
4237}
4238EXPORT_SYMBOL_GPL(yield_to);
4239
4240/*
4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4242 * that process accounting knows that this is a task in IO wait state.
4243 */
4244void __sched io_schedule(void)
4245{
4246 struct rq *rq = raw_rq();
4247
4248 delayacct_blkio_start();
4249 atomic_inc(&rq->nr_iowait);
4250 blk_flush_plug(current);
4251 current->in_iowait = 1;
4252 schedule();
4253 current->in_iowait = 0;
4254 atomic_dec(&rq->nr_iowait);
4255 delayacct_blkio_end();
4256}
4257EXPORT_SYMBOL(io_schedule);
4258
4259long __sched io_schedule_timeout(long timeout)
4260{
4261 struct rq *rq = raw_rq();
4262 long ret;
4263
4264 delayacct_blkio_start();
4265 atomic_inc(&rq->nr_iowait);
4266 blk_flush_plug(current);
4267 current->in_iowait = 1;
4268 ret = schedule_timeout(timeout);
4269 current->in_iowait = 0;
4270 atomic_dec(&rq->nr_iowait);
4271 delayacct_blkio_end();
4272 return ret;
4273}
4274
4275/**
4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class.
4278 *
4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned.
4282 */
4283SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4284{
4285 int ret = -EINVAL;
4286
4287 switch (policy) {
4288 case SCHED_FIFO:
4289 case SCHED_RR:
4290 ret = MAX_USER_RT_PRIO-1;
4291 break;
4292 case SCHED_DEADLINE:
4293 case SCHED_NORMAL:
4294 case SCHED_BATCH:
4295 case SCHED_IDLE:
4296 ret = 0;
4297 break;
4298 }
4299 return ret;
4300}
4301
4302/**
4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class.
4305 *
4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned.
4309 */
4310SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4311{
4312 int ret = -EINVAL;
4313
4314 switch (policy) {
4315 case SCHED_FIFO:
4316 case SCHED_RR:
4317 ret = 1;
4318 break;
4319 case SCHED_DEADLINE:
4320 case SCHED_NORMAL:
4321 case SCHED_BATCH:
4322 case SCHED_IDLE:
4323 ret = 0;
4324 }
4325 return ret;
4326}
4327
4328/**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value.
4332 *
4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity.
4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code.
4338 */
4339SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4340 struct timespec __user *, interval)
4341{
4342 struct task_struct *p;
4343 unsigned int time_slice;
4344 unsigned long flags;
4345 struct rq *rq;
4346 int retval;
4347 struct timespec t;
4348
4349 if (pid < 0)
4350 return -EINVAL;
4351
4352 retval = -ESRCH;
4353 rcu_read_lock();
4354 p = find_process_by_pid(pid);
4355 if (!p)
4356 goto out_unlock;
4357
4358 retval = security_task_getscheduler(p);
4359 if (retval)
4360 goto out_unlock;
4361
4362 rq = task_rq_lock(p, &flags);
4363 time_slice = 0;
4364 if (p->sched_class->get_rr_interval)
4365 time_slice = p->sched_class->get_rr_interval(rq, p);
4366 task_rq_unlock(rq, p, &flags);
4367
4368 rcu_read_unlock();
4369 jiffies_to_timespec(time_slice, &t);
4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4371 return retval;
4372
4373out_unlock:
4374 rcu_read_unlock();
4375 return retval;
4376}
4377
4378static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4379
4380void sched_show_task(struct task_struct *p)
4381{
4382 unsigned long free = 0;
4383 int ppid;
4384 unsigned state;
4385
4386 state = p->state ? __ffs(p->state) + 1 : 0;
4387 printk(KERN_INFO "%-15.15s %c", p->comm,
4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4389#if BITS_PER_LONG == 32
4390 if (state == TASK_RUNNING)
4391 printk(KERN_CONT " running ");
4392 else
4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4394#else
4395 if (state == TASK_RUNNING)
4396 printk(KERN_CONT " running task ");
4397 else
4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4399#endif
4400#ifdef CONFIG_DEBUG_STACK_USAGE
4401 free = stack_not_used(p);
4402#endif
4403 rcu_read_lock();
4404 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4405 rcu_read_unlock();
4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4407 task_pid_nr(p), ppid,
4408 (unsigned long)task_thread_info(p)->flags);
4409
4410 print_worker_info(KERN_INFO, p);
4411 show_stack(p, NULL);
4412}
4413
4414void show_state_filter(unsigned long state_filter)
4415{
4416 struct task_struct *g, *p;
4417
4418#if BITS_PER_LONG == 32
4419 printk(KERN_INFO
4420 " task PC stack pid father\n");
4421#else
4422 printk(KERN_INFO
4423 " task PC stack pid father\n");
4424#endif
4425 rcu_read_lock();
4426 do_each_thread(g, p) {
4427 /*
4428 * reset the NMI-timeout, listing all files on a slow
4429 * console might take a lot of time:
4430 */
4431 touch_nmi_watchdog();
4432 if (!state_filter || (p->state & state_filter))
4433 sched_show_task(p);
4434 } while_each_thread(g, p);
4435
4436 touch_all_softlockup_watchdogs();
4437
4438#ifdef CONFIG_SCHED_DEBUG
4439 sysrq_sched_debug_show();
4440#endif
4441 rcu_read_unlock();
4442 /*
4443 * Only show locks if all tasks are dumped:
4444 */
4445 if (!state_filter)
4446 debug_show_all_locks();
4447}
4448
4449void init_idle_bootup_task(struct task_struct *idle)
4450{
4451 idle->sched_class = &idle_sched_class;
4452}
4453
4454/**
4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to
4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust.
4461 */
4462void init_idle(struct task_struct *idle, int cpu)
4463{
4464 struct rq *rq = cpu_rq(cpu);
4465 unsigned long flags;
4466
4467 raw_spin_lock_irqsave(&rq->lock, flags);
4468
4469 __sched_fork(0, idle);
4470 idle->state = TASK_RUNNING;
4471 idle->se.exec_start = sched_clock();
4472
4473 do_set_cpus_allowed(idle, cpumask_of(cpu));
4474 /*
4475 * We're having a chicken and egg problem, even though we are
4476 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477 * lockdep check in task_group() will fail.
4478 *
4479 * Similar case to sched_fork(). / Alternatively we could
4480 * use task_rq_lock() here and obtain the other rq->lock.
4481 *
4482 * Silence PROVE_RCU
4483 */
4484 rcu_read_lock();
4485 __set_task_cpu(idle, cpu);
4486 rcu_read_unlock();
4487
4488 rq->curr = rq->idle = idle;
4489 idle->on_rq = 1;
4490#if defined(CONFIG_SMP)
4491 idle->on_cpu = 1;
4492#endif
4493 raw_spin_unlock_irqrestore(&rq->lock, flags);
4494
4495 /* Set the preempt count _outside_ the spinlocks! */
4496 init_idle_preempt_count(idle, cpu);
4497
4498 /*
4499 * The idle tasks have their own, simple scheduling class:
4500 */
4501 idle->sched_class = &idle_sched_class;
4502 ftrace_graph_init_idle_task(idle, cpu);
4503 vtime_init_idle(idle, cpu);
4504#if defined(CONFIG_SMP)
4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506#endif
4507}
4508
4509#ifdef CONFIG_SMP
4510void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511{
4512 if (p->sched_class && p->sched_class->set_cpus_allowed)
4513 p->sched_class->set_cpus_allowed(p, new_mask);
4514
4515 cpumask_copy(&p->cpus_allowed, new_mask);
4516 p->nr_cpus_allowed = cpumask_weight(new_mask);
4517}
4518
4519/*
4520 * This is how migration works:
4521 *
4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 * stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 * off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes
4528 * it and puts it into the right queue.
4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 * is done.
4531 */
4532
4533/*
4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask.
4537 *
4538 * NOTE: the caller must have a valid reference to the task, the
4539 * task must not exit() & deallocate itself prematurely. The
4540 * call is not atomic; no spinlocks may be held.
4541 */
4542int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4543{
4544 unsigned long flags;
4545 struct rq *rq;
4546 unsigned int dest_cpu;
4547 int ret = 0;
4548
4549 rq = task_rq_lock(p, &flags);
4550
4551 if (cpumask_equal(&p->cpus_allowed, new_mask))
4552 goto out;
4553
4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558
4559 do_set_cpus_allowed(p, new_mask);
4560
4561 /* Can the task run on the task's current CPU? If so, we're done */
4562 if (cpumask_test_cpu(task_cpu(p), new_mask))
4563 goto out;
4564
4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4566 if (p->on_rq) {
4567 struct migration_arg arg = { p, dest_cpu };
4568 /* Need help from migration thread: drop lock and wait. */
4569 task_rq_unlock(rq, p, &flags);
4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4571 tlb_migrate_finish(p->mm);
4572 return 0;
4573 }
4574out:
4575 task_rq_unlock(rq, p, &flags);
4576
4577 return ret;
4578}
4579EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4580
4581/*
4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec).
4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU.
4589 *
4590 * Returns non-zero if task was successfully migrated.
4591 */
4592static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4593{
4594 struct rq *rq_dest, *rq_src;
4595 int ret = 0;
4596
4597 if (unlikely(!cpu_active(dest_cpu)))
4598 return ret;
4599
4600 rq_src = cpu_rq(src_cpu);
4601 rq_dest = cpu_rq(dest_cpu);
4602
4603 raw_spin_lock(&p->pi_lock);
4604 double_rq_lock(rq_src, rq_dest);
4605 /* Already moved. */
4606 if (task_cpu(p) != src_cpu)
4607 goto done;
4608 /* Affinity changed (again). */
4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4610 goto fail;
4611
4612 /*
4613 * If we're not on a rq, the next wake-up will ensure we're
4614 * placed properly.
4615 */
4616 if (p->on_rq) {
4617 dequeue_task(rq_src, p, 0);
4618 set_task_cpu(p, dest_cpu);
4619 enqueue_task(rq_dest, p, 0);
4620 check_preempt_curr(rq_dest, p, 0);
4621 }
4622done:
4623 ret = 1;
4624fail:
4625 double_rq_unlock(rq_src, rq_dest);
4626 raw_spin_unlock(&p->pi_lock);
4627 return ret;
4628}
4629
4630#ifdef CONFIG_NUMA_BALANCING
4631/* Migrate current task p to target_cpu */
4632int migrate_task_to(struct task_struct *p, int target_cpu)
4633{
4634 struct migration_arg arg = { p, target_cpu };
4635 int curr_cpu = task_cpu(p);
4636
4637 if (curr_cpu == target_cpu)
4638 return 0;
4639
4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641 return -EINVAL;
4642
4643 /* TODO: This is not properly updating schedstats */
4644
4645 trace_sched_move_numa(p, curr_cpu, target_cpu);
4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647}
4648
4649/*
4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues
4652 */
4653void sched_setnuma(struct task_struct *p, int nid)
4654{
4655 struct rq *rq;
4656 unsigned long flags;
4657 bool on_rq, running;
4658
4659 rq = task_rq_lock(p, &flags);
4660 on_rq = p->on_rq;
4661 running = task_current(rq, p);
4662
4663 if (on_rq)
4664 dequeue_task(rq, p, 0);
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
4667
4668 p->numa_preferred_nid = nid;
4669
4670 if (running)
4671 p->sched_class->set_curr_task(rq);
4672 if (on_rq)
4673 enqueue_task(rq, p, 0);
4674 task_rq_unlock(rq, p, &flags);
4675}
4676#endif
4677
4678/*
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue.
4682 */
4683static int migration_cpu_stop(void *data)
4684{
4685 struct migration_arg *arg = data;
4686
4687 /*
4688 * The original target cpu might have gone down and we might
4689 * be on another cpu but it doesn't matter.
4690 */
4691 local_irq_disable();
4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4693 local_irq_enable();
4694 return 0;
4695}
4696
4697#ifdef CONFIG_HOTPLUG_CPU
4698
4699/*
4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline.
4702 */
4703void idle_task_exit(void)
4704{
4705 struct mm_struct *mm = current->active_mm;
4706
4707 BUG_ON(cpu_online(smp_processor_id()));
4708
4709 if (mm != &init_mm) {
4710 switch_mm(mm, &init_mm, current);
4711 finish_arch_post_lock_switch();
4712 }
4713 mmdrop(mm);
4714}
4715
4716/*
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable.
4720 *
4721 * Also see the comment "Global load-average calculations".
4722 */
4723static void calc_load_migrate(struct rq *rq)
4724{
4725 long delta = calc_load_fold_active(rq);
4726 if (delta)
4727 atomic_long_add(delta, &calc_load_tasks);
4728}
4729
4730static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731{
4732}
4733
4734static const struct sched_class fake_sched_class = {
4735 .put_prev_task = put_prev_task_fake,
4736};
4737
4738static struct task_struct fake_task = {
4739 /*
4740 * Avoid pull_{rt,dl}_task()
4741 */
4742 .prio = MAX_PRIO + 1,
4743 .sched_class = &fake_sched_class,
4744};
4745
4746/*
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq().
4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts.
4753 */
4754static void migrate_tasks(unsigned int dead_cpu)
4755{
4756 struct rq *rq = cpu_rq(dead_cpu);
4757 struct task_struct *next, *stop = rq->stop;
4758 int dest_cpu;
4759
4760 /*
4761 * Fudge the rq selection such that the below task selection loop
4762 * doesn't get stuck on the currently eligible stop task.
4763 *
4764 * We're currently inside stop_machine() and the rq is either stuck
4765 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766 * either way we should never end up calling schedule() until we're
4767 * done here.
4768 */
4769 rq->stop = NULL;
4770
4771 /*
4772 * put_prev_task() and pick_next_task() sched
4773 * class method both need to have an up-to-date
4774 * value of rq->clock[_task]
4775 */
4776 update_rq_clock(rq);
4777
4778 for ( ; ; ) {
4779 /*
4780 * There's this thread running, bail when that's the only
4781 * remaining thread.
4782 */
4783 if (rq->nr_running == 1)
4784 break;
4785
4786 next = pick_next_task(rq, &fake_task);
4787 BUG_ON(!next);
4788 next->sched_class->put_prev_task(rq, next);
4789
4790 /* Find suitable destination for @next, with force if needed. */
4791 dest_cpu = select_fallback_rq(dead_cpu, next);
4792 raw_spin_unlock(&rq->lock);
4793
4794 __migrate_task(next, dead_cpu, dest_cpu);
4795
4796 raw_spin_lock(&rq->lock);
4797 }
4798
4799 rq->stop = stop;
4800}
4801
4802#endif /* CONFIG_HOTPLUG_CPU */
4803
4804#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805
4806static struct ctl_table sd_ctl_dir[] = {
4807 {
4808 .procname = "sched_domain",
4809 .mode = 0555,
4810 },
4811 {}
4812};
4813
4814static struct ctl_table sd_ctl_root[] = {
4815 {
4816 .procname = "kernel",
4817 .mode = 0555,
4818 .child = sd_ctl_dir,
4819 },
4820 {}
4821};
4822
4823static struct ctl_table *sd_alloc_ctl_entry(int n)
4824{
4825 struct ctl_table *entry =
4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4827
4828 return entry;
4829}
4830
4831static void sd_free_ctl_entry(struct ctl_table **tablep)
4832{
4833 struct ctl_table *entry;
4834
4835 /*
4836 * In the intermediate directories, both the child directory and
4837 * procname are dynamically allocated and could fail but the mode
4838 * will always be set. In the lowest directory the names are
4839 * static strings and all have proc handlers.
4840 */
4841 for (entry = *tablep; entry->mode; entry++) {
4842 if (entry->child)
4843 sd_free_ctl_entry(&entry->child);
4844 if (entry->proc_handler == NULL)
4845 kfree(entry->procname);
4846 }
4847
4848 kfree(*tablep);
4849 *tablep = NULL;
4850}
4851
4852static int min_load_idx = 0;
4853static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4854
4855static void
4856set_table_entry(struct ctl_table *entry,
4857 const char *procname, void *data, int maxlen,
4858 umode_t mode, proc_handler *proc_handler,
4859 bool load_idx)
4860{
4861 entry->procname = procname;
4862 entry->data = data;
4863 entry->maxlen = maxlen;
4864 entry->mode = mode;
4865 entry->proc_handler = proc_handler;
4866
4867 if (load_idx) {
4868 entry->extra1 = &min_load_idx;
4869 entry->extra2 = &max_load_idx;
4870 }
4871}
4872
4873static struct ctl_table *
4874sd_alloc_ctl_domain_table(struct sched_domain *sd)
4875{
4876 struct ctl_table *table = sd_alloc_ctl_entry(14);
4877
4878 if (table == NULL)
4879 return NULL;
4880
4881 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
4883 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4886 sizeof(int), 0644, proc_dointvec_minmax, true);
4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4888 sizeof(int), 0644, proc_dointvec_minmax, true);
4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4890 sizeof(int), 0644, proc_dointvec_minmax, true);
4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4892 sizeof(int), 0644, proc_dointvec_minmax, true);
4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4894 sizeof(int), 0644, proc_dointvec_minmax, true);
4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4896 sizeof(int), 0644, proc_dointvec_minmax, false);
4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4898 sizeof(int), 0644, proc_dointvec_minmax, false);
4899 set_table_entry(&table[9], "cache_nice_tries",
4900 &sd->cache_nice_tries,
4901 sizeof(int), 0644, proc_dointvec_minmax, false);
4902 set_table_entry(&table[10], "flags", &sd->flags,
4903 sizeof(int), 0644, proc_dointvec_minmax, false);
4904 set_table_entry(&table[11], "max_newidle_lb_cost",
4905 &sd->max_newidle_lb_cost,
4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
4907 set_table_entry(&table[12], "name", sd->name,
4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4909 /* &table[13] is terminator */
4910
4911 return table;
4912}
4913
4914static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4915{
4916 struct ctl_table *entry, *table;
4917 struct sched_domain *sd;
4918 int domain_num = 0, i;
4919 char buf[32];
4920
4921 for_each_domain(cpu, sd)
4922 domain_num++;
4923 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4924 if (table == NULL)
4925 return NULL;
4926
4927 i = 0;
4928 for_each_domain(cpu, sd) {
4929 snprintf(buf, 32, "domain%d", i);
4930 entry->procname = kstrdup(buf, GFP_KERNEL);
4931 entry->mode = 0555;
4932 entry->child = sd_alloc_ctl_domain_table(sd);
4933 entry++;
4934 i++;
4935 }
4936 return table;
4937}
4938
4939static struct ctl_table_header *sd_sysctl_header;
4940static void register_sched_domain_sysctl(void)
4941{
4942 int i, cpu_num = num_possible_cpus();
4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944 char buf[32];
4945
4946 WARN_ON(sd_ctl_dir[0].child);
4947 sd_ctl_dir[0].child = entry;
4948
4949 if (entry == NULL)
4950 return;
4951
4952 for_each_possible_cpu(i) {
4953 snprintf(buf, 32, "cpu%d", i);
4954 entry->procname = kstrdup(buf, GFP_KERNEL);
4955 entry->mode = 0555;
4956 entry->child = sd_alloc_ctl_cpu_table(i);
4957 entry++;
4958 }
4959
4960 WARN_ON(sd_sysctl_header);
4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962}
4963
4964/* may be called multiple times per register */
4965static void unregister_sched_domain_sysctl(void)
4966{
4967 if (sd_sysctl_header)
4968 unregister_sysctl_table(sd_sysctl_header);
4969 sd_sysctl_header = NULL;
4970 if (sd_ctl_dir[0].child)
4971 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4972}
4973#else
4974static void register_sched_domain_sysctl(void)
4975{
4976}
4977static void unregister_sched_domain_sysctl(void)
4978{
4979}
4980#endif
4981
4982static void set_rq_online(struct rq *rq)
4983{
4984 if (!rq->online) {
4985 const struct sched_class *class;
4986
4987 cpumask_set_cpu(rq->cpu, rq->rd->online);
4988 rq->online = 1;
4989
4990 for_each_class(class) {
4991 if (class->rq_online)
4992 class->rq_online(rq);
4993 }
4994 }
4995}
4996
4997static void set_rq_offline(struct rq *rq)
4998{
4999 if (rq->online) {
5000 const struct sched_class *class;
5001
5002 for_each_class(class) {
5003 if (class->rq_offline)
5004 class->rq_offline(rq);
5005 }
5006
5007 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5008 rq->online = 0;
5009 }
5010}
5011
5012/*
5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */
5016static int
5017migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5018{
5019 int cpu = (long)hcpu;
5020 unsigned long flags;
5021 struct rq *rq = cpu_rq(cpu);
5022
5023 switch (action & ~CPU_TASKS_FROZEN) {
5024
5025 case CPU_UP_PREPARE:
5026 rq->calc_load_update = calc_load_update;
5027 break;
5028
5029 case CPU_ONLINE:
5030 /* Update our root-domain */
5031 raw_spin_lock_irqsave(&rq->lock, flags);
5032 if (rq->rd) {
5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5034
5035 set_rq_online(rq);
5036 }
5037 raw_spin_unlock_irqrestore(&rq->lock, flags);
5038 break;
5039
5040#ifdef CONFIG_HOTPLUG_CPU
5041 case CPU_DYING:
5042 sched_ttwu_pending();
5043 /* Update our root-domain */
5044 raw_spin_lock_irqsave(&rq->lock, flags);
5045 if (rq->rd) {
5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047 set_rq_offline(rq);
5048 }
5049 migrate_tasks(cpu);
5050 BUG_ON(rq->nr_running != 1); /* the migration thread */
5051 raw_spin_unlock_irqrestore(&rq->lock, flags);
5052 break;
5053
5054 case CPU_DEAD:
5055 calc_load_migrate(rq);
5056 break;
5057#endif
5058 }
5059
5060 update_max_interval();
5061
5062 return NOTIFY_OK;
5063}
5064
5065/*
5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else. This has to be lower priority than
5068 * the notifier in the perf_event subsystem, though.
5069 */
5070static struct notifier_block migration_notifier = {
5071 .notifier_call = migration_call,
5072 .priority = CPU_PRI_MIGRATION,
5073};
5074
5075static int sched_cpu_active(struct notifier_block *nfb,
5076 unsigned long action, void *hcpu)
5077{
5078 switch (action & ~CPU_TASKS_FROZEN) {
5079 case CPU_DOWN_FAILED:
5080 set_cpu_active((long)hcpu, true);
5081 return NOTIFY_OK;
5082 default:
5083 return NOTIFY_DONE;
5084 }
5085}
5086
5087static int sched_cpu_inactive(struct notifier_block *nfb,
5088 unsigned long action, void *hcpu)
5089{
5090 unsigned long flags;
5091 long cpu = (long)hcpu;
5092
5093 switch (action & ~CPU_TASKS_FROZEN) {
5094 case CPU_DOWN_PREPARE:
5095 set_cpu_active(cpu, false);
5096
5097 /* explicitly allow suspend */
5098 if (!(action & CPU_TASKS_FROZEN)) {
5099 struct dl_bw *dl_b = dl_bw_of(cpu);
5100 bool overflow;
5101 int cpus;
5102
5103 raw_spin_lock_irqsave(&dl_b->lock, flags);
5104 cpus = dl_bw_cpus(cpu);
5105 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5106 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5107
5108 if (overflow)
5109 return notifier_from_errno(-EBUSY);
5110 }
5111 return NOTIFY_OK;
5112 }
5113
5114 return NOTIFY_DONE;
5115}
5116
5117static int __init migration_init(void)
5118{
5119 void *cpu = (void *)(long)smp_processor_id();
5120 int err;
5121
5122 /* Initialize migration for the boot CPU */
5123 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5124 BUG_ON(err == NOTIFY_BAD);
5125 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5126 register_cpu_notifier(&migration_notifier);
5127
5128 /* Register cpu active notifiers */
5129 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5130 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5131
5132 return 0;
5133}
5134early_initcall(migration_init);
5135#endif
5136
5137#ifdef CONFIG_SMP
5138
5139static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5140
5141#ifdef CONFIG_SCHED_DEBUG
5142
5143static __read_mostly int sched_debug_enabled;
5144
5145static int __init sched_debug_setup(char *str)
5146{
5147 sched_debug_enabled = 1;
5148
5149 return 0;
5150}
5151early_param("sched_debug", sched_debug_setup);
5152
5153static inline bool sched_debug(void)
5154{
5155 return sched_debug_enabled;
5156}
5157
5158static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5159 struct cpumask *groupmask)
5160{
5161 struct sched_group *group = sd->groups;
5162 char str[256];
5163
5164 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5165 cpumask_clear(groupmask);
5166
5167 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5168
5169 if (!(sd->flags & SD_LOAD_BALANCE)) {
5170 printk("does not load-balance\n");
5171 if (sd->parent)
5172 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5173 " has parent");
5174 return -1;
5175 }
5176
5177 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5178
5179 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5180 printk(KERN_ERR "ERROR: domain->span does not contain "
5181 "CPU%d\n", cpu);
5182 }
5183 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5184 printk(KERN_ERR "ERROR: domain->groups does not contain"
5185 " CPU%d\n", cpu);
5186 }
5187
5188 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5189 do {
5190 if (!group) {
5191 printk("\n");
5192 printk(KERN_ERR "ERROR: group is NULL\n");
5193 break;
5194 }
5195
5196 /*
5197 * Even though we initialize ->power to something semi-sane,
5198 * we leave power_orig unset. This allows us to detect if
5199 * domain iteration is still funny without causing /0 traps.
5200 */
5201 if (!group->sgp->power_orig) {
5202 printk(KERN_CONT "\n");
5203 printk(KERN_ERR "ERROR: domain->cpu_power not "
5204 "set\n");
5205 break;
5206 }
5207
5208 if (!cpumask_weight(sched_group_cpus(group))) {
5209 printk(KERN_CONT "\n");
5210 printk(KERN_ERR "ERROR: empty group\n");
5211 break;
5212 }
5213
5214 if (!(sd->flags & SD_OVERLAP) &&
5215 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5216 printk(KERN_CONT "\n");
5217 printk(KERN_ERR "ERROR: repeated CPUs\n");
5218 break;
5219 }
5220
5221 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5222
5223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5224
5225 printk(KERN_CONT " %s", str);
5226 if (group->sgp->power != SCHED_POWER_SCALE) {
5227 printk(KERN_CONT " (cpu_power = %d)",
5228 group->sgp->power);
5229 }
5230
5231 group = group->next;
5232 } while (group != sd->groups);
5233 printk(KERN_CONT "\n");
5234
5235 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5236 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5237
5238 if (sd->parent &&
5239 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5240 printk(KERN_ERR "ERROR: parent span is not a superset "
5241 "of domain->span\n");
5242 return 0;
5243}
5244
5245static void sched_domain_debug(struct sched_domain *sd, int cpu)
5246{
5247 int level = 0;
5248
5249 if (!sched_debug_enabled)
5250 return;
5251
5252 if (!sd) {
5253 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5254 return;
5255 }
5256
5257 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5258
5259 for (;;) {
5260 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5261 break;
5262 level++;
5263 sd = sd->parent;
5264 if (!sd)
5265 break;
5266 }
5267}
5268#else /* !CONFIG_SCHED_DEBUG */
5269# define sched_domain_debug(sd, cpu) do { } while (0)
5270static inline bool sched_debug(void)
5271{
5272 return false;
5273}
5274#endif /* CONFIG_SCHED_DEBUG */
5275
5276static int sd_degenerate(struct sched_domain *sd)
5277{
5278 if (cpumask_weight(sched_domain_span(sd)) == 1)
5279 return 1;
5280
5281 /* Following flags need at least 2 groups */
5282 if (sd->flags & (SD_LOAD_BALANCE |
5283 SD_BALANCE_NEWIDLE |
5284 SD_BALANCE_FORK |
5285 SD_BALANCE_EXEC |
5286 SD_SHARE_CPUPOWER |
5287 SD_SHARE_PKG_RESOURCES)) {
5288 if (sd->groups != sd->groups->next)
5289 return 0;
5290 }
5291
5292 /* Following flags don't use groups */
5293 if (sd->flags & (SD_WAKE_AFFINE))
5294 return 0;
5295
5296 return 1;
5297}
5298
5299static int
5300sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5301{
5302 unsigned long cflags = sd->flags, pflags = parent->flags;
5303
5304 if (sd_degenerate(parent))
5305 return 1;
5306
5307 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5308 return 0;
5309
5310 /* Flags needing groups don't count if only 1 group in parent */
5311 if (parent->groups == parent->groups->next) {
5312 pflags &= ~(SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK |
5315 SD_BALANCE_EXEC |
5316 SD_SHARE_CPUPOWER |
5317 SD_SHARE_PKG_RESOURCES |
5318 SD_PREFER_SIBLING);
5319 if (nr_node_ids == 1)
5320 pflags &= ~SD_SERIALIZE;
5321 }
5322 if (~cflags & pflags)
5323 return 0;
5324
5325 return 1;
5326}
5327
5328static void free_rootdomain(struct rcu_head *rcu)
5329{
5330 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5331
5332 cpupri_cleanup(&rd->cpupri);
5333 cpudl_cleanup(&rd->cpudl);
5334 free_cpumask_var(rd->dlo_mask);
5335 free_cpumask_var(rd->rto_mask);
5336 free_cpumask_var(rd->online);
5337 free_cpumask_var(rd->span);
5338 kfree(rd);
5339}
5340
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
5343 struct root_domain *old_rd = NULL;
5344 unsigned long flags;
5345
5346 raw_spin_lock_irqsave(&rq->lock, flags);
5347
5348 if (rq->rd) {
5349 old_rd = rq->rd;
5350
5351 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352 set_rq_offline(rq);
5353
5354 cpumask_clear_cpu(rq->cpu, old_rd->span);
5355
5356 /*
5357 * If we dont want to free the old_rd yet then
5358 * set old_rd to NULL to skip the freeing later
5359 * in this function:
5360 */
5361 if (!atomic_dec_and_test(&old_rd->refcount))
5362 old_rd = NULL;
5363 }
5364
5365 atomic_inc(&rd->refcount);
5366 rq->rd = rd;
5367
5368 cpumask_set_cpu(rq->cpu, rd->span);
5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370 set_rq_online(rq);
5371
5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
5373
5374 if (old_rd)
5375 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5376}
5377
5378static int init_rootdomain(struct root_domain *rd)
5379{
5380 memset(rd, 0, sizeof(*rd));
5381
5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383 goto out;
5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385 goto free_span;
5386 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5387 goto free_online;
5388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5389 goto free_dlo_mask;
5390
5391 init_dl_bw(&rd->dl_bw);
5392 if (cpudl_init(&rd->cpudl) != 0)
5393 goto free_dlo_mask;
5394
5395 if (cpupri_init(&rd->cpupri) != 0)
5396 goto free_rto_mask;
5397 return 0;
5398
5399free_rto_mask:
5400 free_cpumask_var(rd->rto_mask);
5401free_dlo_mask:
5402 free_cpumask_var(rd->dlo_mask);
5403free_online:
5404 free_cpumask_var(rd->online);
5405free_span:
5406 free_cpumask_var(rd->span);
5407out:
5408 return -ENOMEM;
5409}
5410
5411/*
5412 * By default the system creates a single root-domain with all cpus as
5413 * members (mimicking the global state we have today).
5414 */
5415struct root_domain def_root_domain;
5416
5417static void init_defrootdomain(void)
5418{
5419 init_rootdomain(&def_root_domain);
5420
5421 atomic_set(&def_root_domain.refcount, 1);
5422}
5423
5424static struct root_domain *alloc_rootdomain(void)
5425{
5426 struct root_domain *rd;
5427
5428 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5429 if (!rd)
5430 return NULL;
5431
5432 if (init_rootdomain(rd) != 0) {
5433 kfree(rd);
5434 return NULL;
5435 }
5436
5437 return rd;
5438}
5439
5440static void free_sched_groups(struct sched_group *sg, int free_sgp)
5441{
5442 struct sched_group *tmp, *first;
5443
5444 if (!sg)
5445 return;
5446
5447 first = sg;
5448 do {
5449 tmp = sg->next;
5450
5451 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5452 kfree(sg->sgp);
5453
5454 kfree(sg);
5455 sg = tmp;
5456 } while (sg != first);
5457}
5458
5459static void free_sched_domain(struct rcu_head *rcu)
5460{
5461 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5462
5463 /*
5464 * If its an overlapping domain it has private groups, iterate and
5465 * nuke them all.
5466 */
5467 if (sd->flags & SD_OVERLAP) {
5468 free_sched_groups(sd->groups, 1);
5469 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5470 kfree(sd->groups->sgp);
5471 kfree(sd->groups);
5472 }
5473 kfree(sd);
5474}
5475
5476static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5477{
5478 call_rcu(&sd->rcu, free_sched_domain);
5479}
5480
5481static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5482{
5483 for (; sd; sd = sd->parent)
5484 destroy_sched_domain(sd, cpu);
5485}
5486
5487/*
5488 * Keep a special pointer to the highest sched_domain that has
5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5490 * allows us to avoid some pointer chasing select_idle_sibling().
5491 *
5492 * Also keep a unique ID per domain (we use the first cpu number in
5493 * the cpumask of the domain), this allows us to quickly tell if
5494 * two cpus are in the same cache domain, see cpus_share_cache().
5495 */
5496DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5497DEFINE_PER_CPU(int, sd_llc_size);
5498DEFINE_PER_CPU(int, sd_llc_id);
5499DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5500DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5501DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5502
5503static void update_top_cache_domain(int cpu)
5504{
5505 struct sched_domain *sd;
5506 struct sched_domain *busy_sd = NULL;
5507 int id = cpu;
5508 int size = 1;
5509
5510 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5511 if (sd) {
5512 id = cpumask_first(sched_domain_span(sd));
5513 size = cpumask_weight(sched_domain_span(sd));
5514 busy_sd = sd->parent; /* sd_busy */
5515 }
5516 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5517
5518 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5519 per_cpu(sd_llc_size, cpu) = size;
5520 per_cpu(sd_llc_id, cpu) = id;
5521
5522 sd = lowest_flag_domain(cpu, SD_NUMA);
5523 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5524
5525 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5526 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5527}
5528
5529/*
5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5531 * hold the hotplug lock.
5532 */
5533static void
5534cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5535{
5536 struct rq *rq = cpu_rq(cpu);
5537 struct sched_domain *tmp;
5538
5539 /* Remove the sched domains which do not contribute to scheduling. */
5540 for (tmp = sd; tmp; ) {
5541 struct sched_domain *parent = tmp->parent;
5542 if (!parent)
5543 break;
5544
5545 if (sd_parent_degenerate(tmp, parent)) {
5546 tmp->parent = parent->parent;
5547 if (parent->parent)
5548 parent->parent->child = tmp;
5549 /*
5550 * Transfer SD_PREFER_SIBLING down in case of a
5551 * degenerate parent; the spans match for this
5552 * so the property transfers.
5553 */
5554 if (parent->flags & SD_PREFER_SIBLING)
5555 tmp->flags |= SD_PREFER_SIBLING;
5556 destroy_sched_domain(parent, cpu);
5557 } else
5558 tmp = tmp->parent;
5559 }
5560
5561 if (sd && sd_degenerate(sd)) {
5562 tmp = sd;
5563 sd = sd->parent;
5564 destroy_sched_domain(tmp, cpu);
5565 if (sd)
5566 sd->child = NULL;
5567 }
5568
5569 sched_domain_debug(sd, cpu);
5570
5571 rq_attach_root(rq, rd);
5572 tmp = rq->sd;
5573 rcu_assign_pointer(rq->sd, sd);
5574 destroy_sched_domains(tmp, cpu);
5575
5576 update_top_cache_domain(cpu);
5577}
5578
5579/* cpus with isolated domains */
5580static cpumask_var_t cpu_isolated_map;
5581
5582/* Setup the mask of cpus configured for isolated domains */
5583static int __init isolated_cpu_setup(char *str)
5584{
5585 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5586 cpulist_parse(str, cpu_isolated_map);
5587 return 1;
5588}
5589
5590__setup("isolcpus=", isolated_cpu_setup);
5591
5592static const struct cpumask *cpu_cpu_mask(int cpu)
5593{
5594 return cpumask_of_node(cpu_to_node(cpu));
5595}
5596
5597struct sd_data {
5598 struct sched_domain **__percpu sd;
5599 struct sched_group **__percpu sg;
5600 struct sched_group_power **__percpu sgp;
5601};
5602
5603struct s_data {
5604 struct sched_domain ** __percpu sd;
5605 struct root_domain *rd;
5606};
5607
5608enum s_alloc {
5609 sa_rootdomain,
5610 sa_sd,
5611 sa_sd_storage,
5612 sa_none,
5613};
5614
5615struct sched_domain_topology_level;
5616
5617typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5618typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5619
5620#define SDTL_OVERLAP 0x01
5621
5622struct sched_domain_topology_level {
5623 sched_domain_init_f init;
5624 sched_domain_mask_f mask;
5625 int flags;
5626 int numa_level;
5627 struct sd_data data;
5628};
5629
5630/*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal.
5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range.
5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that.
5641 *
5642 */
5643static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644{
5645 const struct cpumask *span = sched_domain_span(sd);
5646 struct sd_data *sdd = sd->private;
5647 struct sched_domain *sibling;
5648 int i;
5649
5650 for_each_cpu(i, span) {
5651 sibling = *per_cpu_ptr(sdd->sd, i);
5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653 continue;
5654
5655 cpumask_set_cpu(i, sched_group_mask(sg));
5656 }
5657}
5658
5659/*
5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask.
5662 */
5663int group_balance_cpu(struct sched_group *sg)
5664{
5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666}
5667
5668static int
5669build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670{
5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672 const struct cpumask *span = sched_domain_span(sd);
5673 struct cpumask *covered = sched_domains_tmpmask;
5674 struct sd_data *sdd = sd->private;
5675 struct sched_domain *child;
5676 int i;
5677
5678 cpumask_clear(covered);
5679
5680 for_each_cpu(i, span) {
5681 struct cpumask *sg_span;
5682
5683 if (cpumask_test_cpu(i, covered))
5684 continue;
5685
5686 child = *per_cpu_ptr(sdd->sd, i);
5687
5688 /* See the comment near build_group_mask(). */
5689 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690 continue;
5691
5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5693 GFP_KERNEL, cpu_to_node(cpu));
5694
5695 if (!sg)
5696 goto fail;
5697
5698 sg_span = sched_group_cpus(sg);
5699 if (child->child) {
5700 child = child->child;
5701 cpumask_copy(sg_span, sched_domain_span(child));
5702 } else
5703 cpumask_set_cpu(i, sg_span);
5704
5705 cpumask_or(covered, covered, sg_span);
5706
5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5708 if (atomic_inc_return(&sg->sgp->ref) == 1)
5709 build_group_mask(sd, sg);
5710
5711 /*
5712 * Initialize sgp->power such that even if we mess up the
5713 * domains and no possible iteration will get us here, we won't
5714 * die on a /0 trap.
5715 */
5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5717 sg->sgp->power_orig = sg->sgp->power;
5718
5719 /*
5720 * Make sure the first group of this domain contains the
5721 * canonical balance cpu. Otherwise the sched_domain iteration
5722 * breaks. See update_sg_lb_stats().
5723 */
5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5725 group_balance_cpu(sg) == cpu)
5726 groups = sg;
5727
5728 if (!first)
5729 first = sg;
5730 if (last)
5731 last->next = sg;
5732 last = sg;
5733 last->next = first;
5734 }
5735 sd->groups = groups;
5736
5737 return 0;
5738
5739fail:
5740 free_sched_groups(first, 0);
5741
5742 return -ENOMEM;
5743}
5744
5745static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5746{
5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748 struct sched_domain *child = sd->child;
5749
5750 if (child)
5751 cpu = cpumask_first(sched_domain_span(child));
5752
5753 if (sg) {
5754 *sg = *per_cpu_ptr(sdd->sg, cpu);
5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5757 }
5758
5759 return cpu;
5760}
5761
5762/*
5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0.
5766 *
5767 * Assumes the sched_domain tree is fully constructed
5768 */
5769static int
5770build_sched_groups(struct sched_domain *sd, int cpu)
5771{
5772 struct sched_group *first = NULL, *last = NULL;
5773 struct sd_data *sdd = sd->private;
5774 const struct cpumask *span = sched_domain_span(sd);
5775 struct cpumask *covered;
5776 int i;
5777
5778 get_group(cpu, sdd, &sd->groups);
5779 atomic_inc(&sd->groups->ref);
5780
5781 if (cpu != cpumask_first(span))
5782 return 0;
5783
5784 lockdep_assert_held(&sched_domains_mutex);
5785 covered = sched_domains_tmpmask;
5786
5787 cpumask_clear(covered);
5788
5789 for_each_cpu(i, span) {
5790 struct sched_group *sg;
5791 int group, j;
5792
5793 if (cpumask_test_cpu(i, covered))
5794 continue;
5795
5796 group = get_group(i, sdd, &sg);
5797 cpumask_clear(sched_group_cpus(sg));
5798 sg->sgp->power = 0;
5799 cpumask_setall(sched_group_mask(sg));
5800
5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group)
5803 continue;
5804
5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 }
5808
5809 if (!first)
5810 first = sg;
5811 if (last)
5812 last->next = sg;
5813 last = sg;
5814 }
5815 last->next = first;
5816
5817 return 0;
5818}
5819
5820/*
5821 * Initialize sched groups cpu_power.
5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power.
5829 */
5830static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831{
5832 struct sched_group *sg = sd->groups;
5833
5834 WARN_ON(!sg);
5835
5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next;
5839 } while (sg != sd->groups);
5840
5841 if (cpu != group_balance_cpu(sg))
5842 return;
5843
5844 update_group_power(sd, cpu);
5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5846}
5847
5848int __weak arch_sd_sibling_asym_packing(void)
5849{
5850 return 0*SD_ASYM_PACKING;
5851}
5852
5853/*
5854 * Initializers for schedule domains
5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5856 */
5857
5858#ifdef CONFIG_SCHED_DEBUG
5859# define SD_INIT_NAME(sd, type) sd->name = #type
5860#else
5861# define SD_INIT_NAME(sd, type) do { } while (0)
5862#endif
5863
5864#define SD_INIT_FUNC(type) \
5865static noinline struct sched_domain * \
5866sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5867{ \
5868 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5869 *sd = SD_##type##_INIT; \
5870 SD_INIT_NAME(sd, type); \
5871 sd->private = &tl->data; \
5872 return sd; \
5873}
5874
5875SD_INIT_FUNC(CPU)
5876#ifdef CONFIG_SCHED_SMT
5877 SD_INIT_FUNC(SIBLING)
5878#endif
5879#ifdef CONFIG_SCHED_MC
5880 SD_INIT_FUNC(MC)
5881#endif
5882#ifdef CONFIG_SCHED_BOOK
5883 SD_INIT_FUNC(BOOK)
5884#endif
5885
5886static int default_relax_domain_level = -1;
5887int sched_domain_level_max;
5888
5889static int __init setup_relax_domain_level(char *str)
5890{
5891 if (kstrtoint(str, 0, &default_relax_domain_level))
5892 pr_warn("Unable to set relax_domain_level\n");
5893
5894 return 1;
5895}
5896__setup("relax_domain_level=", setup_relax_domain_level);
5897
5898static void set_domain_attribute(struct sched_domain *sd,
5899 struct sched_domain_attr *attr)
5900{
5901 int request;
5902
5903 if (!attr || attr->relax_domain_level < 0) {
5904 if (default_relax_domain_level < 0)
5905 return;
5906 else
5907 request = default_relax_domain_level;
5908 } else
5909 request = attr->relax_domain_level;
5910 if (request < sd->level) {
5911 /* turn off idle balance on this domain */
5912 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5913 } else {
5914 /* turn on idle balance on this domain */
5915 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5916 }
5917}
5918
5919static void __sdt_free(const struct cpumask *cpu_map);
5920static int __sdt_alloc(const struct cpumask *cpu_map);
5921
5922static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5923 const struct cpumask *cpu_map)
5924{
5925 switch (what) {
5926 case sa_rootdomain:
5927 if (!atomic_read(&d->rd->refcount))
5928 free_rootdomain(&d->rd->rcu); /* fall through */
5929 case sa_sd:
5930 free_percpu(d->sd); /* fall through */
5931 case sa_sd_storage:
5932 __sdt_free(cpu_map); /* fall through */
5933 case sa_none:
5934 break;
5935 }
5936}
5937
5938static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5939 const struct cpumask *cpu_map)
5940{
5941 memset(d, 0, sizeof(*d));
5942
5943 if (__sdt_alloc(cpu_map))
5944 return sa_sd_storage;
5945 d->sd = alloc_percpu(struct sched_domain *);
5946 if (!d->sd)
5947 return sa_sd_storage;
5948 d->rd = alloc_rootdomain();
5949 if (!d->rd)
5950 return sa_sd;
5951 return sa_rootdomain;
5952}
5953
5954/*
5955 * NULL the sd_data elements we've used to build the sched_domain and
5956 * sched_group structure so that the subsequent __free_domain_allocs()
5957 * will not free the data we're using.
5958 */
5959static void claim_allocations(int cpu, struct sched_domain *sd)
5960{
5961 struct sd_data *sdd = sd->private;
5962
5963 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5964 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5965
5966 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5967 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5968
5969 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5970 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5971}
5972
5973#ifdef CONFIG_SCHED_SMT
5974static const struct cpumask *cpu_smt_mask(int cpu)
5975{
5976 return topology_thread_cpumask(cpu);
5977}
5978#endif
5979
5980/*
5981 * Topology list, bottom-up.
5982 */
5983static struct sched_domain_topology_level default_topology[] = {
5984#ifdef CONFIG_SCHED_SMT
5985 { sd_init_SIBLING, cpu_smt_mask, },
5986#endif
5987#ifdef CONFIG_SCHED_MC
5988 { sd_init_MC, cpu_coregroup_mask, },
5989#endif
5990#ifdef CONFIG_SCHED_BOOK
5991 { sd_init_BOOK, cpu_book_mask, },
5992#endif
5993 { sd_init_CPU, cpu_cpu_mask, },
5994 { NULL, },
5995};
5996
5997static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5998
5999#define for_each_sd_topology(tl) \
6000 for (tl = sched_domain_topology; tl->init; tl++)
6001
6002#ifdef CONFIG_NUMA
6003
6004static int sched_domains_numa_levels;
6005static int *sched_domains_numa_distance;
6006static struct cpumask ***sched_domains_numa_masks;
6007static int sched_domains_curr_level;
6008
6009static inline int sd_local_flags(int level)
6010{
6011 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6012 return 0;
6013
6014 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6015}
6016
6017static struct sched_domain *
6018sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6019{
6020 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6021 int level = tl->numa_level;
6022 int sd_weight = cpumask_weight(
6023 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6024
6025 *sd = (struct sched_domain){
6026 .min_interval = sd_weight,
6027 .max_interval = 2*sd_weight,
6028 .busy_factor = 32,
6029 .imbalance_pct = 125,
6030 .cache_nice_tries = 2,
6031 .busy_idx = 3,
6032 .idle_idx = 2,
6033 .newidle_idx = 0,
6034 .wake_idx = 0,
6035 .forkexec_idx = 0,
6036
6037 .flags = 1*SD_LOAD_BALANCE
6038 | 1*SD_BALANCE_NEWIDLE
6039 | 0*SD_BALANCE_EXEC
6040 | 0*SD_BALANCE_FORK
6041 | 0*SD_BALANCE_WAKE
6042 | 0*SD_WAKE_AFFINE
6043 | 0*SD_SHARE_CPUPOWER
6044 | 0*SD_SHARE_PKG_RESOURCES
6045 | 1*SD_SERIALIZE
6046 | 0*SD_PREFER_SIBLING
6047 | 1*SD_NUMA
6048 | sd_local_flags(level)
6049 ,
6050 .last_balance = jiffies,
6051 .balance_interval = sd_weight,
6052 .max_newidle_lb_cost = 0,
6053 .next_decay_max_lb_cost = jiffies,
6054 };
6055 SD_INIT_NAME(sd, NUMA);
6056 sd->private = &tl->data;
6057
6058 /*
6059 * Ugly hack to pass state to sd_numa_mask()...
6060 */
6061 sched_domains_curr_level = tl->numa_level;
6062
6063 return sd;
6064}
6065
6066static const struct cpumask *sd_numa_mask(int cpu)
6067{
6068 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6069}
6070
6071static void sched_numa_warn(const char *str)
6072{
6073 static int done = false;
6074 int i,j;
6075
6076 if (done)
6077 return;
6078
6079 done = true;
6080
6081 printk(KERN_WARNING "ERROR: %s\n\n", str);
6082
6083 for (i = 0; i < nr_node_ids; i++) {
6084 printk(KERN_WARNING " ");
6085 for (j = 0; j < nr_node_ids; j++)
6086 printk(KERN_CONT "%02d ", node_distance(i,j));
6087 printk(KERN_CONT "\n");
6088 }
6089 printk(KERN_WARNING "\n");
6090}
6091
6092static bool find_numa_distance(int distance)
6093{
6094 int i;
6095
6096 if (distance == node_distance(0, 0))
6097 return true;
6098
6099 for (i = 0; i < sched_domains_numa_levels; i++) {
6100 if (sched_domains_numa_distance[i] == distance)
6101 return true;
6102 }
6103
6104 return false;
6105}
6106
6107static void sched_init_numa(void)
6108{
6109 int next_distance, curr_distance = node_distance(0, 0);
6110 struct sched_domain_topology_level *tl;
6111 int level = 0;
6112 int i, j, k;
6113
6114 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6115 if (!sched_domains_numa_distance)
6116 return;
6117
6118 /*
6119 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6120 * unique distances in the node_distance() table.
6121 *
6122 * Assumes node_distance(0,j) includes all distances in
6123 * node_distance(i,j) in order to avoid cubic time.
6124 */
6125 next_distance = curr_distance;
6126 for (i = 0; i < nr_node_ids; i++) {
6127 for (j = 0; j < nr_node_ids; j++) {
6128 for (k = 0; k < nr_node_ids; k++) {
6129 int distance = node_distance(i, k);
6130
6131 if (distance > curr_distance &&
6132 (distance < next_distance ||
6133 next_distance == curr_distance))
6134 next_distance = distance;
6135
6136 /*
6137 * While not a strong assumption it would be nice to know
6138 * about cases where if node A is connected to B, B is not
6139 * equally connected to A.
6140 */
6141 if (sched_debug() && node_distance(k, i) != distance)
6142 sched_numa_warn("Node-distance not symmetric");
6143
6144 if (sched_debug() && i && !find_numa_distance(distance))
6145 sched_numa_warn("Node-0 not representative");
6146 }
6147 if (next_distance != curr_distance) {
6148 sched_domains_numa_distance[level++] = next_distance;
6149 sched_domains_numa_levels = level;
6150 curr_distance = next_distance;
6151 } else break;
6152 }
6153
6154 /*
6155 * In case of sched_debug() we verify the above assumption.
6156 */
6157 if (!sched_debug())
6158 break;
6159 }
6160 /*
6161 * 'level' contains the number of unique distances, excluding the
6162 * identity distance node_distance(i,i).
6163 *
6164 * The sched_domains_numa_distance[] array includes the actual distance
6165 * numbers.
6166 */
6167
6168 /*
6169 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6170 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6171 * the array will contain less then 'level' members. This could be
6172 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6173 * in other functions.
6174 *
6175 * We reset it to 'level' at the end of this function.
6176 */
6177 sched_domains_numa_levels = 0;
6178
6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180 if (!sched_domains_numa_masks)
6181 return;
6182
6183 /*
6184 * Now for each level, construct a mask per node which contains all
6185 * cpus of nodes that are that many hops away from us.
6186 */
6187 for (i = 0; i < level; i++) {
6188 sched_domains_numa_masks[i] =
6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190 if (!sched_domains_numa_masks[i])
6191 return;
6192
6193 for (j = 0; j < nr_node_ids; j++) {
6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6195 if (!mask)
6196 return;
6197
6198 sched_domains_numa_masks[i][j] = mask;
6199
6200 for (k = 0; k < nr_node_ids; k++) {
6201 if (node_distance(j, k) > sched_domains_numa_distance[i])
6202 continue;
6203
6204 cpumask_or(mask, mask, cpumask_of_node(k));
6205 }
6206 }
6207 }
6208
6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211 if (!tl)
6212 return;
6213
6214 /*
6215 * Copy the default topology bits..
6216 */
6217 for (i = 0; default_topology[i].init; i++)
6218 tl[i] = default_topology[i];
6219
6220 /*
6221 * .. and append 'j' levels of NUMA goodness.
6222 */
6223 for (j = 0; j < level; i++, j++) {
6224 tl[i] = (struct sched_domain_topology_level){
6225 .init = sd_numa_init,
6226 .mask = sd_numa_mask,
6227 .flags = SDTL_OVERLAP,
6228 .numa_level = j,
6229 };
6230 }
6231
6232 sched_domain_topology = tl;
6233
6234 sched_domains_numa_levels = level;
6235}
6236
6237static void sched_domains_numa_masks_set(int cpu)
6238{
6239 int i, j;
6240 int node = cpu_to_node(cpu);
6241
6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++) {
6244 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6245 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6246 }
6247 }
6248}
6249
6250static void sched_domains_numa_masks_clear(int cpu)
6251{
6252 int i, j;
6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++)
6255 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6256 }
6257}
6258
6259/*
6260 * Update sched_domains_numa_masks[level][node] array when new cpus
6261 * are onlined.
6262 */
6263static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264 unsigned long action,
6265 void *hcpu)
6266{
6267 int cpu = (long)hcpu;
6268
6269 switch (action & ~CPU_TASKS_FROZEN) {
6270 case CPU_ONLINE:
6271 sched_domains_numa_masks_set(cpu);
6272 break;
6273
6274 case CPU_DEAD:
6275 sched_domains_numa_masks_clear(cpu);
6276 break;
6277
6278 default:
6279 return NOTIFY_DONE;
6280 }
6281
6282 return NOTIFY_OK;
6283}
6284#else
6285static inline void sched_init_numa(void)
6286{
6287}
6288
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action,
6291 void *hcpu)
6292{
6293 return 0;
6294}
6295#endif /* CONFIG_NUMA */
6296
6297static int __sdt_alloc(const struct cpumask *cpu_map)
6298{
6299 struct sched_domain_topology_level *tl;
6300 int j;
6301
6302 for_each_sd_topology(tl) {
6303 struct sd_data *sdd = &tl->data;
6304
6305 sdd->sd = alloc_percpu(struct sched_domain *);
6306 if (!sdd->sd)
6307 return -ENOMEM;
6308
6309 sdd->sg = alloc_percpu(struct sched_group *);
6310 if (!sdd->sg)
6311 return -ENOMEM;
6312
6313 sdd->sgp = alloc_percpu(struct sched_group_power *);
6314 if (!sdd->sgp)
6315 return -ENOMEM;
6316
6317 for_each_cpu(j, cpu_map) {
6318 struct sched_domain *sd;
6319 struct sched_group *sg;
6320 struct sched_group_power *sgp;
6321
6322 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6323 GFP_KERNEL, cpu_to_node(j));
6324 if (!sd)
6325 return -ENOMEM;
6326
6327 *per_cpu_ptr(sdd->sd, j) = sd;
6328
6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 GFP_KERNEL, cpu_to_node(j));
6331 if (!sg)
6332 return -ENOMEM;
6333
6334 sg->next = sg;
6335
6336 *per_cpu_ptr(sdd->sg, j) = sg;
6337
6338 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6339 GFP_KERNEL, cpu_to_node(j));
6340 if (!sgp)
6341 return -ENOMEM;
6342
6343 *per_cpu_ptr(sdd->sgp, j) = sgp;
6344 }
6345 }
6346
6347 return 0;
6348}
6349
6350static void __sdt_free(const struct cpumask *cpu_map)
6351{
6352 struct sched_domain_topology_level *tl;
6353 int j;
6354
6355 for_each_sd_topology(tl) {
6356 struct sd_data *sdd = &tl->data;
6357
6358 for_each_cpu(j, cpu_map) {
6359 struct sched_domain *sd;
6360
6361 if (sdd->sd) {
6362 sd = *per_cpu_ptr(sdd->sd, j);
6363 if (sd && (sd->flags & SD_OVERLAP))
6364 free_sched_groups(sd->groups, 0);
6365 kfree(*per_cpu_ptr(sdd->sd, j));
6366 }
6367
6368 if (sdd->sg)
6369 kfree(*per_cpu_ptr(sdd->sg, j));
6370 if (sdd->sgp)
6371 kfree(*per_cpu_ptr(sdd->sgp, j));
6372 }
6373 free_percpu(sdd->sd);
6374 sdd->sd = NULL;
6375 free_percpu(sdd->sg);
6376 sdd->sg = NULL;
6377 free_percpu(sdd->sgp);
6378 sdd->sgp = NULL;
6379 }
6380}
6381
6382struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6384 struct sched_domain *child, int cpu)
6385{
6386 struct sched_domain *sd = tl->init(tl, cpu);
6387 if (!sd)
6388 return child;
6389
6390 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6391 if (child) {
6392 sd->level = child->level + 1;
6393 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6394 child->parent = sd;
6395 sd->child = child;
6396 }
6397 set_domain_attribute(sd, attr);
6398
6399 return sd;
6400}
6401
6402/*
6403 * Build sched domains for a given set of cpus and attach the sched domains
6404 * to the individual cpus
6405 */
6406static int build_sched_domains(const struct cpumask *cpu_map,
6407 struct sched_domain_attr *attr)
6408{
6409 enum s_alloc alloc_state;
6410 struct sched_domain *sd;
6411 struct s_data d;
6412 int i, ret = -ENOMEM;
6413
6414 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6415 if (alloc_state != sa_rootdomain)
6416 goto error;
6417
6418 /* Set up domains for cpus specified by the cpu_map. */
6419 for_each_cpu(i, cpu_map) {
6420 struct sched_domain_topology_level *tl;
6421
6422 sd = NULL;
6423 for_each_sd_topology(tl) {
6424 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6425 if (tl == sched_domain_topology)
6426 *per_cpu_ptr(d.sd, i) = sd;
6427 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6428 sd->flags |= SD_OVERLAP;
6429 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6430 break;
6431 }
6432 }
6433
6434 /* Build the groups for the domains */
6435 for_each_cpu(i, cpu_map) {
6436 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6437 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6438 if (sd->flags & SD_OVERLAP) {
6439 if (build_overlap_sched_groups(sd, i))
6440 goto error;
6441 } else {
6442 if (build_sched_groups(sd, i))
6443 goto error;
6444 }
6445 }
6446 }
6447
6448 /* Calculate CPU power for physical packages and nodes */
6449 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6450 if (!cpumask_test_cpu(i, cpu_map))
6451 continue;
6452
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 claim_allocations(i, sd);
6455 init_sched_groups_power(i, sd);
6456 }
6457 }
6458
6459 /* Attach the domains */
6460 rcu_read_lock();
6461 for_each_cpu(i, cpu_map) {
6462 sd = *per_cpu_ptr(d.sd, i);
6463 cpu_attach_domain(sd, d.rd, i);
6464 }
6465 rcu_read_unlock();
6466
6467 ret = 0;
6468error:
6469 __free_domain_allocs(&d, alloc_state, cpu_map);
6470 return ret;
6471}
6472
6473static cpumask_var_t *doms_cur; /* current sched domains */
6474static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6475static struct sched_domain_attr *dattr_cur;
6476 /* attribues of custom domains in 'doms_cur' */
6477
6478/*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask fallback_doms.
6482 */
6483static cpumask_var_t fallback_doms;
6484
6485/*
6486 * arch_update_cpu_topology lets virtualized architectures update the
6487 * cpu core maps. It is supposed to return 1 if the topology changed
6488 * or 0 if it stayed the same.
6489 */
6490int __weak arch_update_cpu_topology(void)
6491{
6492 return 0;
6493}
6494
6495cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6496{
6497 int i;
6498 cpumask_var_t *doms;
6499
6500 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6501 if (!doms)
6502 return NULL;
6503 for (i = 0; i < ndoms; i++) {
6504 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6505 free_sched_domains(doms, i);
6506 return NULL;
6507 }
6508 }
6509 return doms;
6510}
6511
6512void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6513{
6514 unsigned int i;
6515 for (i = 0; i < ndoms; i++)
6516 free_cpumask_var(doms[i]);
6517 kfree(doms);
6518}
6519
6520/*
6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6522 * For now this just excludes isolated cpus, but could be used to
6523 * exclude other special cases in the future.
6524 */
6525static int init_sched_domains(const struct cpumask *cpu_map)
6526{
6527 int err;
6528
6529 arch_update_cpu_topology();
6530 ndoms_cur = 1;
6531 doms_cur = alloc_sched_domains(ndoms_cur);
6532 if (!doms_cur)
6533 doms_cur = &fallback_doms;
6534 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6535 err = build_sched_domains(doms_cur[0], NULL);
6536 register_sched_domain_sysctl();
6537
6538 return err;
6539}
6540
6541/*
6542 * Detach sched domains from a group of cpus specified in cpu_map
6543 * These cpus will now be attached to the NULL domain
6544 */
6545static void detach_destroy_domains(const struct cpumask *cpu_map)
6546{
6547 int i;
6548
6549 rcu_read_lock();
6550 for_each_cpu(i, cpu_map)
6551 cpu_attach_domain(NULL, &def_root_domain, i);
6552 rcu_read_unlock();
6553}
6554
6555/* handle null as "default" */
6556static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6557 struct sched_domain_attr *new, int idx_new)
6558{
6559 struct sched_domain_attr tmp;
6560
6561 /* fast path */
6562 if (!new && !cur)
6563 return 1;
6564
6565 tmp = SD_ATTR_INIT;
6566 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6567 new ? (new + idx_new) : &tmp,
6568 sizeof(struct sched_domain_attr));
6569}
6570
6571/*
6572 * Partition sched domains as specified by the 'ndoms_new'
6573 * cpumasks in the array doms_new[] of cpumasks. This compares
6574 * doms_new[] to the current sched domain partitioning, doms_cur[].
6575 * It destroys each deleted domain and builds each new domain.
6576 *
6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6578 * The masks don't intersect (don't overlap.) We should setup one
6579 * sched domain for each mask. CPUs not in any of the cpumasks will
6580 * not be load balanced. If the same cpumask appears both in the
6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6582 * it as it is.
6583 *
6584 * The passed in 'doms_new' should be allocated using
6585 * alloc_sched_domains. This routine takes ownership of it and will
6586 * free_sched_domains it when done with it. If the caller failed the
6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6588 * and partition_sched_domains() will fallback to the single partition
6589 * 'fallback_doms', it also forces the domains to be rebuilt.
6590 *
6591 * If doms_new == NULL it will be replaced with cpu_online_mask.
6592 * ndoms_new == 0 is a special case for destroying existing domains,
6593 * and it will not create the default domain.
6594 *
6595 * Call with hotplug lock held
6596 */
6597void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6598 struct sched_domain_attr *dattr_new)
6599{
6600 int i, j, n;
6601 int new_topology;
6602
6603 mutex_lock(&sched_domains_mutex);
6604
6605 /* always unregister in case we don't destroy any domains */
6606 unregister_sched_domain_sysctl();
6607
6608 /* Let architecture update cpu core mappings. */
6609 new_topology = arch_update_cpu_topology();
6610
6611 n = doms_new ? ndoms_new : 0;
6612
6613 /* Destroy deleted domains */
6614 for (i = 0; i < ndoms_cur; i++) {
6615 for (j = 0; j < n && !new_topology; j++) {
6616 if (cpumask_equal(doms_cur[i], doms_new[j])
6617 && dattrs_equal(dattr_cur, i, dattr_new, j))
6618 goto match1;
6619 }
6620 /* no match - a current sched domain not in new doms_new[] */
6621 detach_destroy_domains(doms_cur[i]);
6622match1:
6623 ;
6624 }
6625
6626 n = ndoms_cur;
6627 if (doms_new == NULL) {
6628 n = 0;
6629 doms_new = &fallback_doms;
6630 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6631 WARN_ON_ONCE(dattr_new);
6632 }
6633
6634 /* Build new domains */
6635 for (i = 0; i < ndoms_new; i++) {
6636 for (j = 0; j < n && !new_topology; j++) {
6637 if (cpumask_equal(doms_new[i], doms_cur[j])
6638 && dattrs_equal(dattr_new, i, dattr_cur, j))
6639 goto match2;
6640 }
6641 /* no match - add a new doms_new */
6642 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6643match2:
6644 ;
6645 }
6646
6647 /* Remember the new sched domains */
6648 if (doms_cur != &fallback_doms)
6649 free_sched_domains(doms_cur, ndoms_cur);
6650 kfree(dattr_cur); /* kfree(NULL) is safe */
6651 doms_cur = doms_new;
6652 dattr_cur = dattr_new;
6653 ndoms_cur = ndoms_new;
6654
6655 register_sched_domain_sysctl();
6656
6657 mutex_unlock(&sched_domains_mutex);
6658}
6659
6660static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6661
6662/*
6663 * Update cpusets according to cpu_active mask. If cpusets are
6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6665 * around partition_sched_domains().
6666 *
6667 * If we come here as part of a suspend/resume, don't touch cpusets because we
6668 * want to restore it back to its original state upon resume anyway.
6669 */
6670static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6671 void *hcpu)
6672{
6673 switch (action) {
6674 case CPU_ONLINE_FROZEN:
6675 case CPU_DOWN_FAILED_FROZEN:
6676
6677 /*
6678 * num_cpus_frozen tracks how many CPUs are involved in suspend
6679 * resume sequence. As long as this is not the last online
6680 * operation in the resume sequence, just build a single sched
6681 * domain, ignoring cpusets.
6682 */
6683 num_cpus_frozen--;
6684 if (likely(num_cpus_frozen)) {
6685 partition_sched_domains(1, NULL, NULL);
6686 break;
6687 }
6688
6689 /*
6690 * This is the last CPU online operation. So fall through and
6691 * restore the original sched domains by considering the
6692 * cpuset configurations.
6693 */
6694
6695 case CPU_ONLINE:
6696 case CPU_DOWN_FAILED:
6697 cpuset_update_active_cpus(true);
6698 break;
6699 default:
6700 return NOTIFY_DONE;
6701 }
6702 return NOTIFY_OK;
6703}
6704
6705static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6706 void *hcpu)
6707{
6708 switch (action) {
6709 case CPU_DOWN_PREPARE:
6710 cpuset_update_active_cpus(false);
6711 break;
6712 case CPU_DOWN_PREPARE_FROZEN:
6713 num_cpus_frozen++;
6714 partition_sched_domains(1, NULL, NULL);
6715 break;
6716 default:
6717 return NOTIFY_DONE;
6718 }
6719 return NOTIFY_OK;
6720}
6721
6722void __init sched_init_smp(void)
6723{
6724 cpumask_var_t non_isolated_cpus;
6725
6726 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6727 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6728
6729 sched_init_numa();
6730
6731 /*
6732 * There's no userspace yet to cause hotplug operations; hence all the
6733 * cpu masks are stable and all blatant races in the below code cannot
6734 * happen.
6735 */
6736 mutex_lock(&sched_domains_mutex);
6737 init_sched_domains(cpu_active_mask);
6738 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6739 if (cpumask_empty(non_isolated_cpus))
6740 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6741 mutex_unlock(&sched_domains_mutex);
6742
6743 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6744 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6745 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6746
6747 init_hrtick();
6748
6749 /* Move init over to a non-isolated CPU */
6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751 BUG();
6752 sched_init_granularity();
6753 free_cpumask_var(non_isolated_cpus);
6754
6755 init_sched_rt_class();
6756 init_sched_dl_class();
6757}
6758#else
6759void __init sched_init_smp(void)
6760{
6761 sched_init_granularity();
6762}
6763#endif /* CONFIG_SMP */
6764
6765const_debug unsigned int sysctl_timer_migration = 1;
6766
6767int in_sched_functions(unsigned long addr)
6768{
6769 return in_lock_functions(addr) ||
6770 (addr >= (unsigned long)__sched_text_start
6771 && addr < (unsigned long)__sched_text_end);
6772}
6773
6774#ifdef CONFIG_CGROUP_SCHED
6775/*
6776 * Default task group.
6777 * Every task in system belongs to this group at bootup.
6778 */
6779struct task_group root_task_group;
6780LIST_HEAD(task_groups);
6781#endif
6782
6783DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6784
6785void __init sched_init(void)
6786{
6787 int i, j;
6788 unsigned long alloc_size = 0, ptr;
6789
6790#ifdef CONFIG_FAIR_GROUP_SCHED
6791 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6792#endif
6793#ifdef CONFIG_RT_GROUP_SCHED
6794 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6795#endif
6796#ifdef CONFIG_CPUMASK_OFFSTACK
6797 alloc_size += num_possible_cpus() * cpumask_size();
6798#endif
6799 if (alloc_size) {
6800 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
6803 root_task_group.se = (struct sched_entity **)ptr;
6804 ptr += nr_cpu_ids * sizeof(void **);
6805
6806 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6807 ptr += nr_cpu_ids * sizeof(void **);
6808
6809#endif /* CONFIG_FAIR_GROUP_SCHED */
6810#ifdef CONFIG_RT_GROUP_SCHED
6811 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6812 ptr += nr_cpu_ids * sizeof(void **);
6813
6814 root_task_group.rt_rq = (struct rt_rq **)ptr;
6815 ptr += nr_cpu_ids * sizeof(void **);
6816
6817#endif /* CONFIG_RT_GROUP_SCHED */
6818#ifdef CONFIG_CPUMASK_OFFSTACK
6819 for_each_possible_cpu(i) {
6820 per_cpu(load_balance_mask, i) = (void *)ptr;
6821 ptr += cpumask_size();
6822 }
6823#endif /* CONFIG_CPUMASK_OFFSTACK */
6824 }
6825
6826 init_rt_bandwidth(&def_rt_bandwidth,
6827 global_rt_period(), global_rt_runtime());
6828 init_dl_bandwidth(&def_dl_bandwidth,
6829 global_rt_period(), global_rt_runtime());
6830
6831#ifdef CONFIG_SMP
6832 init_defrootdomain();
6833#endif
6834
6835#ifdef CONFIG_RT_GROUP_SCHED
6836 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6837 global_rt_period(), global_rt_runtime());
6838#endif /* CONFIG_RT_GROUP_SCHED */
6839
6840#ifdef CONFIG_CGROUP_SCHED
6841 list_add(&root_task_group.list, &task_groups);
6842 INIT_LIST_HEAD(&root_task_group.children);
6843 INIT_LIST_HEAD(&root_task_group.siblings);
6844 autogroup_init(&init_task);
6845
6846#endif /* CONFIG_CGROUP_SCHED */
6847
6848 for_each_possible_cpu(i) {
6849 struct rq *rq;
6850
6851 rq = cpu_rq(i);
6852 raw_spin_lock_init(&rq->lock);
6853 rq->nr_running = 0;
6854 rq->calc_load_active = 0;
6855 rq->calc_load_update = jiffies + LOAD_FREQ;
6856 init_cfs_rq(&rq->cfs);
6857 init_rt_rq(&rq->rt, rq);
6858 init_dl_rq(&rq->dl, rq);
6859#ifdef CONFIG_FAIR_GROUP_SCHED
6860 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6861 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6862 /*
6863 * How much cpu bandwidth does root_task_group get?
6864 *
6865 * In case of task-groups formed thr' the cgroup filesystem, it
6866 * gets 100% of the cpu resources in the system. This overall
6867 * system cpu resource is divided among the tasks of
6868 * root_task_group and its child task-groups in a fair manner,
6869 * based on each entity's (task or task-group's) weight
6870 * (se->load.weight).
6871 *
6872 * In other words, if root_task_group has 10 tasks of weight
6873 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6874 * then A0's share of the cpu resource is:
6875 *
6876 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6877 *
6878 * We achieve this by letting root_task_group's tasks sit
6879 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6880 */
6881 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6883#endif /* CONFIG_FAIR_GROUP_SCHED */
6884
6885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6886#ifdef CONFIG_RT_GROUP_SCHED
6887 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6888#endif
6889
6890 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891 rq->cpu_load[j] = 0;
6892
6893 rq->last_load_update_tick = jiffies;
6894
6895#ifdef CONFIG_SMP
6896 rq->sd = NULL;
6897 rq->rd = NULL;
6898 rq->cpu_power = SCHED_POWER_SCALE;
6899 rq->post_schedule = 0;
6900 rq->active_balance = 0;
6901 rq->next_balance = jiffies;
6902 rq->push_cpu = 0;
6903 rq->cpu = i;
6904 rq->online = 0;
6905 rq->idle_stamp = 0;
6906 rq->avg_idle = 2*sysctl_sched_migration_cost;
6907 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6908
6909 INIT_LIST_HEAD(&rq->cfs_tasks);
6910
6911 rq_attach_root(rq, &def_root_domain);
6912#ifdef CONFIG_NO_HZ_COMMON
6913 rq->nohz_flags = 0;
6914#endif
6915#ifdef CONFIG_NO_HZ_FULL
6916 rq->last_sched_tick = 0;
6917#endif
6918#endif
6919 init_rq_hrtick(rq);
6920 atomic_set(&rq->nr_iowait, 0);
6921 }
6922
6923 set_load_weight(&init_task);
6924
6925#ifdef CONFIG_PREEMPT_NOTIFIERS
6926 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6927#endif
6928
6929 /*
6930 * The boot idle thread does lazy MMU switching as well:
6931 */
6932 atomic_inc(&init_mm.mm_count);
6933 enter_lazy_tlb(&init_mm, current);
6934
6935 /*
6936 * Make us the idle thread. Technically, schedule() should not be
6937 * called from this thread, however somewhere below it might be,
6938 * but because we are the idle thread, we just pick up running again
6939 * when this runqueue becomes "idle".
6940 */
6941 init_idle(current, smp_processor_id());
6942
6943 calc_load_update = jiffies + LOAD_FREQ;
6944
6945 /*
6946 * During early bootup we pretend to be a normal task:
6947 */
6948 current->sched_class = &fair_sched_class;
6949
6950#ifdef CONFIG_SMP
6951 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6952 /* May be allocated at isolcpus cmdline parse time */
6953 if (cpu_isolated_map == NULL)
6954 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6955 idle_thread_set_boot_cpu();
6956#endif
6957 init_sched_fair_class();
6958
6959 scheduler_running = 1;
6960}
6961
6962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6963static inline int preempt_count_equals(int preempt_offset)
6964{
6965 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6966
6967 return (nested == preempt_offset);
6968}
6969
6970void __might_sleep(const char *file, int line, int preempt_offset)
6971{
6972 static unsigned long prev_jiffy; /* ratelimiting */
6973
6974 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6975 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6976 !is_idle_task(current)) ||
6977 system_state != SYSTEM_RUNNING || oops_in_progress)
6978 return;
6979 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6980 return;
6981 prev_jiffy = jiffies;
6982
6983 printk(KERN_ERR
6984 "BUG: sleeping function called from invalid context at %s:%d\n",
6985 file, line);
6986 printk(KERN_ERR
6987 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6988 in_atomic(), irqs_disabled(),
6989 current->pid, current->comm);
6990
6991 debug_show_held_locks(current);
6992 if (irqs_disabled())
6993 print_irqtrace_events(current);
6994#ifdef CONFIG_DEBUG_PREEMPT
6995 if (!preempt_count_equals(preempt_offset)) {
6996 pr_err("Preemption disabled at:");
6997 print_ip_sym(current->preempt_disable_ip);
6998 pr_cont("\n");
6999 }
7000#endif
7001 dump_stack();
7002}
7003EXPORT_SYMBOL(__might_sleep);
7004#endif
7005
7006#ifdef CONFIG_MAGIC_SYSRQ
7007static void normalize_task(struct rq *rq, struct task_struct *p)
7008{
7009 const struct sched_class *prev_class = p->sched_class;
7010 struct sched_attr attr = {
7011 .sched_policy = SCHED_NORMAL,
7012 };
7013 int old_prio = p->prio;
7014 int on_rq;
7015
7016 on_rq = p->on_rq;
7017 if (on_rq)
7018 dequeue_task(rq, p, 0);
7019 __setscheduler(rq, p, &attr);
7020 if (on_rq) {
7021 enqueue_task(rq, p, 0);
7022 resched_task(rq->curr);
7023 }
7024
7025 check_class_changed(rq, p, prev_class, old_prio);
7026}
7027
7028void normalize_rt_tasks(void)
7029{
7030 struct task_struct *g, *p;
7031 unsigned long flags;
7032 struct rq *rq;
7033
7034 read_lock_irqsave(&tasklist_lock, flags);
7035 do_each_thread(g, p) {
7036 /*
7037 * Only normalize user tasks:
7038 */
7039 if (!p->mm)
7040 continue;
7041
7042 p->se.exec_start = 0;
7043#ifdef CONFIG_SCHEDSTATS
7044 p->se.statistics.wait_start = 0;
7045 p->se.statistics.sleep_start = 0;
7046 p->se.statistics.block_start = 0;
7047#endif
7048
7049 if (!dl_task(p) && !rt_task(p)) {
7050 /*
7051 * Renice negative nice level userspace
7052 * tasks back to 0:
7053 */
7054 if (task_nice(p) < 0 && p->mm)
7055 set_user_nice(p, 0);
7056 continue;
7057 }
7058
7059 raw_spin_lock(&p->pi_lock);
7060 rq = __task_rq_lock(p);
7061
7062 normalize_task(rq, p);
7063
7064 __task_rq_unlock(rq);
7065 raw_spin_unlock(&p->pi_lock);
7066 } while_each_thread(g, p);
7067
7068 read_unlock_irqrestore(&tasklist_lock, flags);
7069}
7070
7071#endif /* CONFIG_MAGIC_SYSRQ */
7072
7073#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7074/*
7075 * These functions are only useful for the IA64 MCA handling, or kdb.
7076 *
7077 * They can only be called when the whole system has been
7078 * stopped - every CPU needs to be quiescent, and no scheduling
7079 * activity can take place. Using them for anything else would
7080 * be a serious bug, and as a result, they aren't even visible
7081 * under any other configuration.
7082 */
7083
7084/**
7085 * curr_task - return the current task for a given cpu.
7086 * @cpu: the processor in question.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 *
7090 * Return: The current task for @cpu.
7091 */
7092struct task_struct *curr_task(int cpu)
7093{
7094 return cpu_curr(cpu);
7095}
7096
7097#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7098
7099#ifdef CONFIG_IA64
7100/**
7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set.
7104 *
7105 * Description: This function must only be used when non-maskable interrupts
7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function
7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system.
7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */
7115void set_curr_task(int cpu, struct task_struct *p)
7116{
7117 cpu_curr(cpu) = p;
7118}
7119
7120#endif
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123/* task_group_lock serializes the addition/removal of task groups */
7124static DEFINE_SPINLOCK(task_group_lock);
7125
7126static void free_sched_group(struct task_group *tg)
7127{
7128 free_fair_sched_group(tg);
7129 free_rt_sched_group(tg);
7130 autogroup_free(tg);
7131 kfree(tg);
7132}
7133
7134/* allocate runqueue etc for a new task group */
7135struct task_group *sched_create_group(struct task_group *parent)
7136{
7137 struct task_group *tg;
7138
7139 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7140 if (!tg)
7141 return ERR_PTR(-ENOMEM);
7142
7143 if (!alloc_fair_sched_group(tg, parent))
7144 goto err;
7145
7146 if (!alloc_rt_sched_group(tg, parent))
7147 goto err;
7148
7149 return tg;
7150
7151err:
7152 free_sched_group(tg);
7153 return ERR_PTR(-ENOMEM);
7154}
7155
7156void sched_online_group(struct task_group *tg, struct task_group *parent)
7157{
7158 unsigned long flags;
7159
7160 spin_lock_irqsave(&task_group_lock, flags);
7161 list_add_rcu(&tg->list, &task_groups);
7162
7163 WARN_ON(!parent); /* root should already exist */
7164
7165 tg->parent = parent;
7166 INIT_LIST_HEAD(&tg->children);
7167 list_add_rcu(&tg->siblings, &parent->children);
7168 spin_unlock_irqrestore(&task_group_lock, flags);
7169}
7170
7171/* rcu callback to free various structures associated with a task group */
7172static void free_sched_group_rcu(struct rcu_head *rhp)
7173{
7174 /* now it should be safe to free those cfs_rqs */
7175 free_sched_group(container_of(rhp, struct task_group, rcu));
7176}
7177
7178/* Destroy runqueue etc associated with a task group */
7179void sched_destroy_group(struct task_group *tg)
7180{
7181 /* wait for possible concurrent references to cfs_rqs complete */
7182 call_rcu(&tg->rcu, free_sched_group_rcu);
7183}
7184
7185void sched_offline_group(struct task_group *tg)
7186{
7187 unsigned long flags;
7188 int i;
7189
7190 /* end participation in shares distribution */
7191 for_each_possible_cpu(i)
7192 unregister_fair_sched_group(tg, i);
7193
7194 spin_lock_irqsave(&task_group_lock, flags);
7195 list_del_rcu(&tg->list);
7196 list_del_rcu(&tg->siblings);
7197 spin_unlock_irqrestore(&task_group_lock, flags);
7198}
7199
7200/* change task's runqueue when it moves between groups.
7201 * The caller of this function should have put the task in its new group
7202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7203 * reflect its new group.
7204 */
7205void sched_move_task(struct task_struct *tsk)
7206{
7207 struct task_group *tg;
7208 int on_rq, running;
7209 unsigned long flags;
7210 struct rq *rq;
7211
7212 rq = task_rq_lock(tsk, &flags);
7213
7214 running = task_current(rq, tsk);
7215 on_rq = tsk->on_rq;
7216
7217 if (on_rq)
7218 dequeue_task(rq, tsk, 0);
7219 if (unlikely(running))
7220 tsk->sched_class->put_prev_task(rq, tsk);
7221
7222 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7223 lockdep_is_held(&tsk->sighand->siglock)),
7224 struct task_group, css);
7225 tg = autogroup_task_group(tsk, tg);
7226 tsk->sched_task_group = tg;
7227
7228#ifdef CONFIG_FAIR_GROUP_SCHED
7229 if (tsk->sched_class->task_move_group)
7230 tsk->sched_class->task_move_group(tsk, on_rq);
7231 else
7232#endif
7233 set_task_rq(tsk, task_cpu(tsk));
7234
7235 if (unlikely(running))
7236 tsk->sched_class->set_curr_task(rq);
7237 if (on_rq)
7238 enqueue_task(rq, tsk, 0);
7239
7240 task_rq_unlock(rq, tsk, &flags);
7241}
7242#endif /* CONFIG_CGROUP_SCHED */
7243
7244#ifdef CONFIG_RT_GROUP_SCHED
7245/*
7246 * Ensure that the real time constraints are schedulable.
7247 */
7248static DEFINE_MUTEX(rt_constraints_mutex);
7249
7250/* Must be called with tasklist_lock held */
7251static inline int tg_has_rt_tasks(struct task_group *tg)
7252{
7253 struct task_struct *g, *p;
7254
7255 do_each_thread(g, p) {
7256 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7257 return 1;
7258 } while_each_thread(g, p);
7259
7260 return 0;
7261}
7262
7263struct rt_schedulable_data {
7264 struct task_group *tg;
7265 u64 rt_period;
7266 u64 rt_runtime;
7267};
7268
7269static int tg_rt_schedulable(struct task_group *tg, void *data)
7270{
7271 struct rt_schedulable_data *d = data;
7272 struct task_group *child;
7273 unsigned long total, sum = 0;
7274 u64 period, runtime;
7275
7276 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277 runtime = tg->rt_bandwidth.rt_runtime;
7278
7279 if (tg == d->tg) {
7280 period = d->rt_period;
7281 runtime = d->rt_runtime;
7282 }
7283
7284 /*
7285 * Cannot have more runtime than the period.
7286 */
7287 if (runtime > period && runtime != RUNTIME_INF)
7288 return -EINVAL;
7289
7290 /*
7291 * Ensure we don't starve existing RT tasks.
7292 */
7293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7294 return -EBUSY;
7295
7296 total = to_ratio(period, runtime);
7297
7298 /*
7299 * Nobody can have more than the global setting allows.
7300 */
7301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7302 return -EINVAL;
7303
7304 /*
7305 * The sum of our children's runtime should not exceed our own.
7306 */
7307 list_for_each_entry_rcu(child, &tg->children, siblings) {
7308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7309 runtime = child->rt_bandwidth.rt_runtime;
7310
7311 if (child == d->tg) {
7312 period = d->rt_period;
7313 runtime = d->rt_runtime;
7314 }
7315
7316 sum += to_ratio(period, runtime);
7317 }
7318
7319 if (sum > total)
7320 return -EINVAL;
7321
7322 return 0;
7323}
7324
7325static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7326{
7327 int ret;
7328
7329 struct rt_schedulable_data data = {
7330 .tg = tg,
7331 .rt_period = period,
7332 .rt_runtime = runtime,
7333 };
7334
7335 rcu_read_lock();
7336 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7337 rcu_read_unlock();
7338
7339 return ret;
7340}
7341
7342static int tg_set_rt_bandwidth(struct task_group *tg,
7343 u64 rt_period, u64 rt_runtime)
7344{
7345 int i, err = 0;
7346
7347 mutex_lock(&rt_constraints_mutex);
7348 read_lock(&tasklist_lock);
7349 err = __rt_schedulable(tg, rt_period, rt_runtime);
7350 if (err)
7351 goto unlock;
7352
7353 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7354 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7355 tg->rt_bandwidth.rt_runtime = rt_runtime;
7356
7357 for_each_possible_cpu(i) {
7358 struct rt_rq *rt_rq = tg->rt_rq[i];
7359
7360 raw_spin_lock(&rt_rq->rt_runtime_lock);
7361 rt_rq->rt_runtime = rt_runtime;
7362 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7363 }
7364 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365unlock:
7366 read_unlock(&tasklist_lock);
7367 mutex_unlock(&rt_constraints_mutex);
7368
7369 return err;
7370}
7371
7372static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7373{
7374 u64 rt_runtime, rt_period;
7375
7376 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7377 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7378 if (rt_runtime_us < 0)
7379 rt_runtime = RUNTIME_INF;
7380
7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7382}
7383
7384static long sched_group_rt_runtime(struct task_group *tg)
7385{
7386 u64 rt_runtime_us;
7387
7388 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7389 return -1;
7390
7391 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7392 do_div(rt_runtime_us, NSEC_PER_USEC);
7393 return rt_runtime_us;
7394}
7395
7396static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7397{
7398 u64 rt_runtime, rt_period;
7399
7400 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7401 rt_runtime = tg->rt_bandwidth.rt_runtime;
7402
7403 if (rt_period == 0)
7404 return -EINVAL;
7405
7406 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7407}
7408
7409static long sched_group_rt_period(struct task_group *tg)
7410{
7411 u64 rt_period_us;
7412
7413 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7414 do_div(rt_period_us, NSEC_PER_USEC);
7415 return rt_period_us;
7416}
7417#endif /* CONFIG_RT_GROUP_SCHED */
7418
7419#ifdef CONFIG_RT_GROUP_SCHED
7420static int sched_rt_global_constraints(void)
7421{
7422 int ret = 0;
7423
7424 mutex_lock(&rt_constraints_mutex);
7425 read_lock(&tasklist_lock);
7426 ret = __rt_schedulable(NULL, 0, 0);
7427 read_unlock(&tasklist_lock);
7428 mutex_unlock(&rt_constraints_mutex);
7429
7430 return ret;
7431}
7432
7433static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7434{
7435 /* Don't accept realtime tasks when there is no way for them to run */
7436 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7437 return 0;
7438
7439 return 1;
7440}
7441
7442#else /* !CONFIG_RT_GROUP_SCHED */
7443static int sched_rt_global_constraints(void)
7444{
7445 unsigned long flags;
7446 int i, ret = 0;
7447
7448 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7449 for_each_possible_cpu(i) {
7450 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7451
7452 raw_spin_lock(&rt_rq->rt_runtime_lock);
7453 rt_rq->rt_runtime = global_rt_runtime();
7454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7455 }
7456 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7457
7458 return ret;
7459}
7460#endif /* CONFIG_RT_GROUP_SCHED */
7461
7462static int sched_dl_global_constraints(void)
7463{
7464 u64 runtime = global_rt_runtime();
7465 u64 period = global_rt_period();
7466 u64 new_bw = to_ratio(period, runtime);
7467 int cpu, ret = 0;
7468 unsigned long flags;
7469
7470 /*
7471 * Here we want to check the bandwidth not being set to some
7472 * value smaller than the currently allocated bandwidth in
7473 * any of the root_domains.
7474 *
7475 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7476 * cycling on root_domains... Discussion on different/better
7477 * solutions is welcome!
7478 */
7479 for_each_possible_cpu(cpu) {
7480 struct dl_bw *dl_b = dl_bw_of(cpu);
7481
7482 raw_spin_lock_irqsave(&dl_b->lock, flags);
7483 if (new_bw < dl_b->total_bw)
7484 ret = -EBUSY;
7485 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7486
7487 if (ret)
7488 break;
7489 }
7490
7491 return ret;
7492}
7493
7494static void sched_dl_do_global(void)
7495{
7496 u64 new_bw = -1;
7497 int cpu;
7498 unsigned long flags;
7499
7500 def_dl_bandwidth.dl_period = global_rt_period();
7501 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7502
7503 if (global_rt_runtime() != RUNTIME_INF)
7504 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7505
7506 /*
7507 * FIXME: As above...
7508 */
7509 for_each_possible_cpu(cpu) {
7510 struct dl_bw *dl_b = dl_bw_of(cpu);
7511
7512 raw_spin_lock_irqsave(&dl_b->lock, flags);
7513 dl_b->bw = new_bw;
7514 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7515 }
7516}
7517
7518static int sched_rt_global_validate(void)
7519{
7520 if (sysctl_sched_rt_period <= 0)
7521 return -EINVAL;
7522
7523 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7524 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7525 return -EINVAL;
7526
7527 return 0;
7528}
7529
7530static void sched_rt_do_global(void)
7531{
7532 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7533 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7534}
7535
7536int sched_rt_handler(struct ctl_table *table, int write,
7537 void __user *buffer, size_t *lenp,
7538 loff_t *ppos)
7539{
7540 int old_period, old_runtime;
7541 static DEFINE_MUTEX(mutex);
7542 int ret;
7543
7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime;
7547
7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7549
7550 if (!ret && write) {
7551 ret = sched_rt_global_validate();
7552 if (ret)
7553 goto undo;
7554
7555 ret = sched_rt_global_constraints();
7556 if (ret)
7557 goto undo;
7558
7559 ret = sched_dl_global_constraints();
7560 if (ret)
7561 goto undo;
7562
7563 sched_rt_do_global();
7564 sched_dl_do_global();
7565 }
7566 if (0) {
7567undo:
7568 sysctl_sched_rt_period = old_period;
7569 sysctl_sched_rt_runtime = old_runtime;
7570 }
7571 mutex_unlock(&mutex);
7572
7573 return ret;
7574}
7575
7576int sched_rr_handler(struct ctl_table *table, int write,
7577 void __user *buffer, size_t *lenp,
7578 loff_t *ppos)
7579{
7580 int ret;
7581 static DEFINE_MUTEX(mutex);
7582
7583 mutex_lock(&mutex);
7584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585 /* make sure that internally we keep jiffies */
7586 /* also, writing zero resets timeslice to default */
7587 if (!ret && write) {
7588 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7589 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7590 }
7591 mutex_unlock(&mutex);
7592 return ret;
7593}
7594
7595#ifdef CONFIG_CGROUP_SCHED
7596
7597static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7598{
7599 return css ? container_of(css, struct task_group, css) : NULL;
7600}
7601
7602static struct cgroup_subsys_state *
7603cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7604{
7605 struct task_group *parent = css_tg(parent_css);
7606 struct task_group *tg;
7607
7608 if (!parent) {
7609 /* This is early initialization for the top cgroup */
7610 return &root_task_group.css;
7611 }
7612
7613 tg = sched_create_group(parent);
7614 if (IS_ERR(tg))
7615 return ERR_PTR(-ENOMEM);
7616
7617 return &tg->css;
7618}
7619
7620static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7621{
7622 struct task_group *tg = css_tg(css);
7623 struct task_group *parent = css_tg(css_parent(css));
7624
7625 if (parent)
7626 sched_online_group(tg, parent);
7627 return 0;
7628}
7629
7630static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631{
7632 struct task_group *tg = css_tg(css);
7633
7634 sched_destroy_group(tg);
7635}
7636
7637static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7638{
7639 struct task_group *tg = css_tg(css);
7640
7641 sched_offline_group(tg);
7642}
7643
7644static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7645 struct cgroup_taskset *tset)
7646{
7647 struct task_struct *task;
7648
7649 cgroup_taskset_for_each(task, tset) {
7650#ifdef CONFIG_RT_GROUP_SCHED
7651 if (!sched_rt_can_attach(css_tg(css), task))
7652 return -EINVAL;
7653#else
7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL;
7657#endif
7658 }
7659 return 0;
7660}
7661
7662static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7663 struct cgroup_taskset *tset)
7664{
7665 struct task_struct *task;
7666
7667 cgroup_taskset_for_each(task, tset)
7668 sched_move_task(task);
7669}
7670
7671static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7672 struct cgroup_subsys_state *old_css,
7673 struct task_struct *task)
7674{
7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code.
7679 */
7680 if (!(task->flags & PF_EXITING))
7681 return;
7682
7683 sched_move_task(task);
7684}
7685
7686#ifdef CONFIG_FAIR_GROUP_SCHED
7687static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7688 struct cftype *cftype, u64 shareval)
7689{
7690 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7691}
7692
7693static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7694 struct cftype *cft)
7695{
7696 struct task_group *tg = css_tg(css);
7697
7698 return (u64) scale_load_down(tg->shares);
7699}
7700
7701#ifdef CONFIG_CFS_BANDWIDTH
7702static DEFINE_MUTEX(cfs_constraints_mutex);
7703
7704const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7705const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7706
7707static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7708
7709static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7710{
7711 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7712 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7713
7714 if (tg == &root_task_group)
7715 return -EINVAL;
7716
7717 /*
7718 * Ensure we have at some amount of bandwidth every period. This is
7719 * to prevent reaching a state of large arrears when throttled via
7720 * entity_tick() resulting in prolonged exit starvation.
7721 */
7722 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7723 return -EINVAL;
7724
7725 /*
7726 * Likewise, bound things on the otherside by preventing insane quota
7727 * periods. This also allows us to normalize in computing quota
7728 * feasibility.
7729 */
7730 if (period > max_cfs_quota_period)
7731 return -EINVAL;
7732
7733 mutex_lock(&cfs_constraints_mutex);
7734 ret = __cfs_schedulable(tg, period, quota);
7735 if (ret)
7736 goto out_unlock;
7737
7738 runtime_enabled = quota != RUNTIME_INF;
7739 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7740 /*
7741 * If we need to toggle cfs_bandwidth_used, off->on must occur
7742 * before making related changes, and on->off must occur afterwards
7743 */
7744 if (runtime_enabled && !runtime_was_enabled)
7745 cfs_bandwidth_usage_inc();
7746 raw_spin_lock_irq(&cfs_b->lock);
7747 cfs_b->period = ns_to_ktime(period);
7748 cfs_b->quota = quota;
7749
7750 __refill_cfs_bandwidth_runtime(cfs_b);
7751 /* restart the period timer (if active) to handle new period expiry */
7752 if (runtime_enabled && cfs_b->timer_active) {
7753 /* force a reprogram */
7754 __start_cfs_bandwidth(cfs_b, true);
7755 }
7756 raw_spin_unlock_irq(&cfs_b->lock);
7757
7758 for_each_possible_cpu(i) {
7759 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7760 struct rq *rq = cfs_rq->rq;
7761
7762 raw_spin_lock_irq(&rq->lock);
7763 cfs_rq->runtime_enabled = runtime_enabled;
7764 cfs_rq->runtime_remaining = 0;
7765
7766 if (cfs_rq->throttled)
7767 unthrottle_cfs_rq(cfs_rq);
7768 raw_spin_unlock_irq(&rq->lock);
7769 }
7770 if (runtime_was_enabled && !runtime_enabled)
7771 cfs_bandwidth_usage_dec();
7772out_unlock:
7773 mutex_unlock(&cfs_constraints_mutex);
7774
7775 return ret;
7776}
7777
7778int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7779{
7780 u64 quota, period;
7781
7782 period = ktime_to_ns(tg->cfs_bandwidth.period);
7783 if (cfs_quota_us < 0)
7784 quota = RUNTIME_INF;
7785 else
7786 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7787
7788 return tg_set_cfs_bandwidth(tg, period, quota);
7789}
7790
7791long tg_get_cfs_quota(struct task_group *tg)
7792{
7793 u64 quota_us;
7794
7795 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7796 return -1;
7797
7798 quota_us = tg->cfs_bandwidth.quota;
7799 do_div(quota_us, NSEC_PER_USEC);
7800
7801 return quota_us;
7802}
7803
7804int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7805{
7806 u64 quota, period;
7807
7808 period = (u64)cfs_period_us * NSEC_PER_USEC;
7809 quota = tg->cfs_bandwidth.quota;
7810
7811 return tg_set_cfs_bandwidth(tg, period, quota);
7812}
7813
7814long tg_get_cfs_period(struct task_group *tg)
7815{
7816 u64 cfs_period_us;
7817
7818 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7819 do_div(cfs_period_us, NSEC_PER_USEC);
7820
7821 return cfs_period_us;
7822}
7823
7824static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7825 struct cftype *cft)
7826{
7827 return tg_get_cfs_quota(css_tg(css));
7828}
7829
7830static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7831 struct cftype *cftype, s64 cfs_quota_us)
7832{
7833 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7834}
7835
7836static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7837 struct cftype *cft)
7838{
7839 return tg_get_cfs_period(css_tg(css));
7840}
7841
7842static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7843 struct cftype *cftype, u64 cfs_period_us)
7844{
7845 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7846}
7847
7848struct cfs_schedulable_data {
7849 struct task_group *tg;
7850 u64 period, quota;
7851};
7852
7853/*
7854 * normalize group quota/period to be quota/max_period
7855 * note: units are usecs
7856 */
7857static u64 normalize_cfs_quota(struct task_group *tg,
7858 struct cfs_schedulable_data *d)
7859{
7860 u64 quota, period;
7861
7862 if (tg == d->tg) {
7863 period = d->period;
7864 quota = d->quota;
7865 } else {
7866 period = tg_get_cfs_period(tg);
7867 quota = tg_get_cfs_quota(tg);
7868 }
7869
7870 /* note: these should typically be equivalent */
7871 if (quota == RUNTIME_INF || quota == -1)
7872 return RUNTIME_INF;
7873
7874 return to_ratio(period, quota);
7875}
7876
7877static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7878{
7879 struct cfs_schedulable_data *d = data;
7880 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7881 s64 quota = 0, parent_quota = -1;
7882
7883 if (!tg->parent) {
7884 quota = RUNTIME_INF;
7885 } else {
7886 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7887
7888 quota = normalize_cfs_quota(tg, d);
7889 parent_quota = parent_b->hierarchal_quota;
7890
7891 /*
7892 * ensure max(child_quota) <= parent_quota, inherit when no
7893 * limit is set
7894 */
7895 if (quota == RUNTIME_INF)
7896 quota = parent_quota;
7897 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7898 return -EINVAL;
7899 }
7900 cfs_b->hierarchal_quota = quota;
7901
7902 return 0;
7903}
7904
7905static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7906{
7907 int ret;
7908 struct cfs_schedulable_data data = {
7909 .tg = tg,
7910 .period = period,
7911 .quota = quota,
7912 };
7913
7914 if (quota != RUNTIME_INF) {
7915 do_div(data.period, NSEC_PER_USEC);
7916 do_div(data.quota, NSEC_PER_USEC);
7917 }
7918
7919 rcu_read_lock();
7920 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7921 rcu_read_unlock();
7922
7923 return ret;
7924}
7925
7926static int cpu_stats_show(struct seq_file *sf, void *v)
7927{
7928 struct task_group *tg = css_tg(seq_css(sf));
7929 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7930
7931 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7932 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7933 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7934
7935 return 0;
7936}
7937#endif /* CONFIG_CFS_BANDWIDTH */
7938#endif /* CONFIG_FAIR_GROUP_SCHED */
7939
7940#ifdef CONFIG_RT_GROUP_SCHED
7941static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7942 struct cftype *cft, s64 val)
7943{
7944 return sched_group_set_rt_runtime(css_tg(css), val);
7945}
7946
7947static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7948 struct cftype *cft)
7949{
7950 return sched_group_rt_runtime(css_tg(css));
7951}
7952
7953static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7954 struct cftype *cftype, u64 rt_period_us)
7955{
7956 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7957}
7958
7959static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7960 struct cftype *cft)
7961{
7962 return sched_group_rt_period(css_tg(css));
7963}
7964#endif /* CONFIG_RT_GROUP_SCHED */
7965
7966static struct cftype cpu_files[] = {
7967#ifdef CONFIG_FAIR_GROUP_SCHED
7968 {
7969 .name = "shares",
7970 .read_u64 = cpu_shares_read_u64,
7971 .write_u64 = cpu_shares_write_u64,
7972 },
7973#endif
7974#ifdef CONFIG_CFS_BANDWIDTH
7975 {
7976 .name = "cfs_quota_us",
7977 .read_s64 = cpu_cfs_quota_read_s64,
7978 .write_s64 = cpu_cfs_quota_write_s64,
7979 },
7980 {
7981 .name = "cfs_period_us",
7982 .read_u64 = cpu_cfs_period_read_u64,
7983 .write_u64 = cpu_cfs_period_write_u64,
7984 },
7985 {
7986 .name = "stat",
7987 .seq_show = cpu_stats_show,
7988 },
7989#endif
7990#ifdef CONFIG_RT_GROUP_SCHED
7991 {
7992 .name = "rt_runtime_us",
7993 .read_s64 = cpu_rt_runtime_read,
7994 .write_s64 = cpu_rt_runtime_write,
7995 },
7996 {
7997 .name = "rt_period_us",
7998 .read_u64 = cpu_rt_period_read_uint,
7999 .write_u64 = cpu_rt_period_write_uint,
8000 },
8001#endif
8002 { } /* terminate */
8003};
8004
8005struct cgroup_subsys cpu_cgrp_subsys = {
8006 .css_alloc = cpu_cgroup_css_alloc,
8007 .css_free = cpu_cgroup_css_free,
8008 .css_online = cpu_cgroup_css_online,
8009 .css_offline = cpu_cgroup_css_offline,
8010 .can_attach = cpu_cgroup_can_attach,
8011 .attach = cpu_cgroup_attach,
8012 .exit = cpu_cgroup_exit,
8013 .base_cftypes = cpu_files,
8014 .early_init = 1,
8015};
8016
8017#endif /* CONFIG_CGROUP_SCHED */
8018
8019void dump_cpu_task(int cpu)
8020{
8021 pr_info("Task dump for CPU %d:\n", cpu);
8022 sched_show_task(cpu_curr(cpu));
8023}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
13#include "sched.h"
14
15#include <linux/nospec.h>
16
17#include <linux/kcov.h>
18#include <linux/scs.h>
19
20#include <asm/switch_to.h>
21#include <asm/tlb.h>
22
23#include "../workqueue_internal.h"
24#include "../../fs/io-wq.h"
25#include "../smpboot.h"
26
27#include "pelt.h"
28#include "smp.h"
29
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47#ifdef CONFIG_SCHED_DEBUG
48/*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57const_debug unsigned int sysctl_sched_features =
58#include "features.h"
59 0;
60#undef SCHED_FEAT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
72
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79/*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83unsigned int sysctl_sched_rt_period = 1000000;
84
85__read_mostly int scheduler_running;
86
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181{
182 rq->core->core_task_seq++;
183
184 if (!sched_core_enqueued(p))
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
188 RB_CLEAR_NODE(&p->core_node);
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
237static atomic_t sched_core_count;
238static struct cpumask sched_core_mask;
239
240static void sched_core_lock(int cpu, unsigned long *flags)
241{
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248}
249
250static void sched_core_unlock(int cpu, unsigned long *flags)
251{
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258}
259
260static void __sched_core_flip(bool enabled)
261{
262 unsigned long flags;
263 int cpu, t;
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274 sched_core_lock(cpu, &flags);
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
279 sched_core_unlock(cpu, &flags);
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294}
295
296static void sched_core_assert_empty(void)
297{
298 int cpu;
299
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302}
303
304static void __sched_core_enable(void)
305{
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
313 sched_core_assert_empty();
314}
315
316static void __sched_core_disable(void)
317{
318 sched_core_assert_empty();
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321}
322
323void sched_core_get(void)
324{
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
328 mutex_lock(&sched_core_mutex);
329 if (!atomic_read(&sched_core_count))
330 __sched_core_enable();
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
334 mutex_unlock(&sched_core_mutex);
335}
336
337static void __sched_core_put(struct work_struct *work)
338{
339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 __sched_core_disable();
341 mutex_unlock(&sched_core_mutex);
342 }
343}
344
345void sched_core_put(void)
346{
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
358}
359
360#else /* !CONFIG_SCHED_CORE */
361
362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365#endif /* CONFIG_SCHED_CORE */
366
367/*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371int sysctl_sched_rt_runtime = 950000;
372
373
374/*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
390 * always looks at the local rq data structures to find the most eligible task
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468{
469 raw_spinlock_t *lock;
470
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
477 return;
478 }
479
480 for (;;) {
481 lock = __rq_lockp(rq);
482 raw_spin_lock_nested(lock, subclass);
483 if (likely(lock == __rq_lockp(rq))) {
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
486 return;
487 }
488 raw_spin_unlock(lock);
489 }
490}
491
492bool raw_spin_rq_trylock(struct rq *rq)
493{
494 raw_spinlock_t *lock;
495 bool ret;
496
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
504
505 for (;;) {
506 lock = __rq_lockp(rq);
507 ret = raw_spin_trylock(lock);
508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 preempt_enable();
510 return ret;
511 }
512 raw_spin_unlock(lock);
513 }
514}
515
516void raw_spin_rq_unlock(struct rq *rq)
517{
518 raw_spin_unlock(rq_lockp(rq));
519}
520
521#ifdef CONFIG_SMP
522/*
523 * double_rq_lock - safely lock two runqueues
524 */
525void double_rq_lock(struct rq *rq1, struct rq *rq2)
526{
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537}
538#endif
539
540/*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 __acquires(rq->lock)
545{
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
552 raw_spin_rq_lock(rq);
553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 rq_pin_lock(rq, rf);
555 return rq;
556 }
557 raw_spin_rq_unlock(rq);
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562}
563
564/*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570{
571 struct rq *rq;
572
573 for (;;) {
574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 rq = task_rq(p);
576 raw_spin_rq_lock(rq);
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
587 * If we observe the old CPU in task_rq_lock(), the acquire of
588 * the old rq->lock will fully serialize against the stores.
589 *
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 rq_pin_lock(rq, rf);
596 return rq;
597 }
598 raw_spin_rq_unlock(rq);
599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604}
605
606/*
607 * RQ-clock updating methods:
608 */
609
610static void update_rq_clock_task(struct rq *rq, s64 delta)
611{
612/*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641#endif
642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((¶virt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653#endif
654
655 rq->clock_task += delta;
656
657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 update_irq_load_avg(rq, irq_delta + steal);
660#endif
661 update_rq_clock_pelt(rq, delta);
662}
663
664void update_rq_clock(struct rq *rq)
665{
666 s64 delta;
667
668 lockdep_assert_rq_held(rq);
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673#ifdef CONFIG_SCHED_DEBUG
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 rq->clock_update_flags |= RQCF_UPDATED;
677#endif
678
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684}
685
686#ifdef CONFIG_SCHED_HRTICK
687/*
688 * Use HR-timers to deliver accurate preemption points.
689 */
690
691static void hrtick_clear(struct rq *rq)
692{
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695}
696
697/*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
701static enum hrtimer_restart hrtick(struct hrtimer *timer)
702{
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 struct rq_flags rf;
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708 rq_lock(rq, &rf);
709 update_rq_clock(rq);
710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 rq_unlock(rq, &rf);
712
713 return HRTIMER_NORESTART;
714}
715
716#ifdef CONFIG_SMP
717
718static void __hrtick_restart(struct rq *rq)
719{
720 struct hrtimer *timer = &rq->hrtick_timer;
721 ktime_t time = rq->hrtick_time;
722
723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724}
725
726/*
727 * called from hardirq (IPI) context
728 */
729static void __hrtick_start(void *arg)
730{
731 struct rq *rq = arg;
732 struct rq_flags rf;
733
734 rq_lock(rq, &rf);
735 __hrtick_restart(rq);
736 rq_unlock(rq, &rf);
737}
738
739/*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
744void hrtick_start(struct rq *rq, u64 delay)
745{
746 struct hrtimer *timer = &rq->hrtick_timer;
747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756 if (rq == this_rq())
757 __hrtick_restart(rq);
758 else
759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760}
761
762#else
763/*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
768void hrtick_start(struct rq *rq, u64 delay)
769{
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 HRTIMER_MODE_REL_PINNED_HARD);
777}
778
779#endif /* CONFIG_SMP */
780
781static void hrtick_rq_init(struct rq *rq)
782{
783#ifdef CONFIG_SMP
784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785#endif
786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 rq->hrtick_timer.function = hrtick;
788}
789#else /* CONFIG_SCHED_HRTICK */
790static inline void hrtick_clear(struct rq *rq)
791{
792}
793
794static inline void hrtick_rq_init(struct rq *rq)
795{
796}
797#endif /* CONFIG_SCHED_HRTICK */
798
799/*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802#define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815})
816
817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818/*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
823static bool set_nr_and_not_polling(struct task_struct *p)
824{
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827}
828
829/*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
835static bool set_nr_if_polling(struct task_struct *p)
836{
837 struct thread_info *ti = task_thread_info(p);
838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851}
852
853#else
854static bool set_nr_and_not_polling(struct task_struct *p)
855{
856 set_tsk_need_resched(p);
857 return true;
858}
859
860#ifdef CONFIG_SMP
861static bool set_nr_if_polling(struct task_struct *p)
862{
863 return false;
864}
865#endif
866#endif
867
868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869{
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
874 * it's already queued (either by us or someone else) and will get the
875 * wakeup due to that.
876 *
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
879 */
880 smp_mb__before_atomic();
881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 return false;
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
889 return true;
890}
891
892/**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905{
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908}
909
910/**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928{
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
931}
932
933void wake_up_q(struct wake_q_head *head)
934{
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
941 /* Task can safely be re-inserted now: */
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952}
953
954/*
955 * resched_curr - mark rq's current task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
961void resched_curr(struct rq *rq)
962{
963 struct task_struct *curr = rq->curr;
964 int cpu;
965
966 lockdep_assert_rq_held(rq);
967
968 if (test_tsk_need_resched(curr))
969 return;
970
971 cpu = cpu_of(rq);
972
973 if (cpu == smp_processor_id()) {
974 set_tsk_need_resched(curr);
975 set_preempt_need_resched();
976 return;
977 }
978
979 if (set_nr_and_not_polling(curr))
980 smp_send_reschedule(cpu);
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
983}
984
985void resched_cpu(int cpu)
986{
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
990 raw_spin_rq_lock_irqsave(rq, flags);
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
993 raw_spin_rq_unlock_irqrestore(rq, flags);
994}
995
996#ifdef CONFIG_SMP
997#ifdef CONFIG_NO_HZ_COMMON
998/*
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
1006int get_nohz_timer_target(void)
1007{
1008 int i, cpu = smp_processor_id(), default_cpu = -1;
1009 struct sched_domain *sd;
1010
1011 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1012 if (!idle_cpu(cpu))
1013 return cpu;
1014 default_cpu = cpu;
1015 }
1016
1017 rcu_read_lock();
1018 for_each_domain(cpu, sd) {
1019 for_each_cpu_and(i, sched_domain_span(sd),
1020 housekeeping_cpumask(HK_FLAG_TIMER)) {
1021 if (cpu == i)
1022 continue;
1023
1024 if (!idle_cpu(i)) {
1025 cpu = i;
1026 goto unlock;
1027 }
1028 }
1029 }
1030
1031 if (default_cpu == -1)
1032 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1033 cpu = default_cpu;
1034unlock:
1035 rcu_read_unlock();
1036 return cpu;
1037}
1038
1039/*
1040 * When add_timer_on() enqueues a timer into the timer wheel of an
1041 * idle CPU then this timer might expire before the next timer event
1042 * which is scheduled to wake up that CPU. In case of a completely
1043 * idle system the next event might even be infinite time into the
1044 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1045 * leaves the inner idle loop so the newly added timer is taken into
1046 * account when the CPU goes back to idle and evaluates the timer
1047 * wheel for the next timer event.
1048 */
1049static void wake_up_idle_cpu(int cpu)
1050{
1051 struct rq *rq = cpu_rq(cpu);
1052
1053 if (cpu == smp_processor_id())
1054 return;
1055
1056 if (set_nr_and_not_polling(rq->idle))
1057 smp_send_reschedule(cpu);
1058 else
1059 trace_sched_wake_idle_without_ipi(cpu);
1060}
1061
1062static bool wake_up_full_nohz_cpu(int cpu)
1063{
1064 /*
1065 * We just need the target to call irq_exit() and re-evaluate
1066 * the next tick. The nohz full kick at least implies that.
1067 * If needed we can still optimize that later with an
1068 * empty IRQ.
1069 */
1070 if (cpu_is_offline(cpu))
1071 return true; /* Don't try to wake offline CPUs. */
1072 if (tick_nohz_full_cpu(cpu)) {
1073 if (cpu != smp_processor_id() ||
1074 tick_nohz_tick_stopped())
1075 tick_nohz_full_kick_cpu(cpu);
1076 return true;
1077 }
1078
1079 return false;
1080}
1081
1082/*
1083 * Wake up the specified CPU. If the CPU is going offline, it is the
1084 * caller's responsibility to deal with the lost wakeup, for example,
1085 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1086 */
1087void wake_up_nohz_cpu(int cpu)
1088{
1089 if (!wake_up_full_nohz_cpu(cpu))
1090 wake_up_idle_cpu(cpu);
1091}
1092
1093static void nohz_csd_func(void *info)
1094{
1095 struct rq *rq = info;
1096 int cpu = cpu_of(rq);
1097 unsigned int flags;
1098
1099 /*
1100 * Release the rq::nohz_csd.
1101 */
1102 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1103 WARN_ON(!(flags & NOHZ_KICK_MASK));
1104
1105 rq->idle_balance = idle_cpu(cpu);
1106 if (rq->idle_balance && !need_resched()) {
1107 rq->nohz_idle_balance = flags;
1108 raise_softirq_irqoff(SCHED_SOFTIRQ);
1109 }
1110}
1111
1112#endif /* CONFIG_NO_HZ_COMMON */
1113
1114#ifdef CONFIG_NO_HZ_FULL
1115bool sched_can_stop_tick(struct rq *rq)
1116{
1117 int fifo_nr_running;
1118
1119 /* Deadline tasks, even if single, need the tick */
1120 if (rq->dl.dl_nr_running)
1121 return false;
1122
1123 /*
1124 * If there are more than one RR tasks, we need the tick to affect the
1125 * actual RR behaviour.
1126 */
1127 if (rq->rt.rr_nr_running) {
1128 if (rq->rt.rr_nr_running == 1)
1129 return true;
1130 else
1131 return false;
1132 }
1133
1134 /*
1135 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1136 * forced preemption between FIFO tasks.
1137 */
1138 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1139 if (fifo_nr_running)
1140 return true;
1141
1142 /*
1143 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1144 * if there's more than one we need the tick for involuntary
1145 * preemption.
1146 */
1147 if (rq->nr_running > 1)
1148 return false;
1149
1150 return true;
1151}
1152#endif /* CONFIG_NO_HZ_FULL */
1153#endif /* CONFIG_SMP */
1154
1155#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1156 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1157/*
1158 * Iterate task_group tree rooted at *from, calling @down when first entering a
1159 * node and @up when leaving it for the final time.
1160 *
1161 * Caller must hold rcu_lock or sufficient equivalent.
1162 */
1163int walk_tg_tree_from(struct task_group *from,
1164 tg_visitor down, tg_visitor up, void *data)
1165{
1166 struct task_group *parent, *child;
1167 int ret;
1168
1169 parent = from;
1170
1171down:
1172 ret = (*down)(parent, data);
1173 if (ret)
1174 goto out;
1175 list_for_each_entry_rcu(child, &parent->children, siblings) {
1176 parent = child;
1177 goto down;
1178
1179up:
1180 continue;
1181 }
1182 ret = (*up)(parent, data);
1183 if (ret || parent == from)
1184 goto out;
1185
1186 child = parent;
1187 parent = parent->parent;
1188 if (parent)
1189 goto up;
1190out:
1191 return ret;
1192}
1193
1194int tg_nop(struct task_group *tg, void *data)
1195{
1196 return 0;
1197}
1198#endif
1199
1200static void set_load_weight(struct task_struct *p, bool update_load)
1201{
1202 int prio = p->static_prio - MAX_RT_PRIO;
1203 struct load_weight *load = &p->se.load;
1204
1205 /*
1206 * SCHED_IDLE tasks get minimal weight:
1207 */
1208 if (task_has_idle_policy(p)) {
1209 load->weight = scale_load(WEIGHT_IDLEPRIO);
1210 load->inv_weight = WMULT_IDLEPRIO;
1211 return;
1212 }
1213
1214 /*
1215 * SCHED_OTHER tasks have to update their load when changing their
1216 * weight
1217 */
1218 if (update_load && p->sched_class == &fair_sched_class) {
1219 reweight_task(p, prio);
1220 } else {
1221 load->weight = scale_load(sched_prio_to_weight[prio]);
1222 load->inv_weight = sched_prio_to_wmult[prio];
1223 }
1224}
1225
1226#ifdef CONFIG_UCLAMP_TASK
1227/*
1228 * Serializes updates of utilization clamp values
1229 *
1230 * The (slow-path) user-space triggers utilization clamp value updates which
1231 * can require updates on (fast-path) scheduler's data structures used to
1232 * support enqueue/dequeue operations.
1233 * While the per-CPU rq lock protects fast-path update operations, user-space
1234 * requests are serialized using a mutex to reduce the risk of conflicting
1235 * updates or API abuses.
1236 */
1237static DEFINE_MUTEX(uclamp_mutex);
1238
1239/* Max allowed minimum utilization */
1240unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1241
1242/* Max allowed maximum utilization */
1243unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1244
1245/*
1246 * By default RT tasks run at the maximum performance point/capacity of the
1247 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1248 * SCHED_CAPACITY_SCALE.
1249 *
1250 * This knob allows admins to change the default behavior when uclamp is being
1251 * used. In battery powered devices, particularly, running at the maximum
1252 * capacity and frequency will increase energy consumption and shorten the
1253 * battery life.
1254 *
1255 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1256 *
1257 * This knob will not override the system default sched_util_clamp_min defined
1258 * above.
1259 */
1260unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1261
1262/* All clamps are required to be less or equal than these values */
1263static struct uclamp_se uclamp_default[UCLAMP_CNT];
1264
1265/*
1266 * This static key is used to reduce the uclamp overhead in the fast path. It
1267 * primarily disables the call to uclamp_rq_{inc, dec}() in
1268 * enqueue/dequeue_task().
1269 *
1270 * This allows users to continue to enable uclamp in their kernel config with
1271 * minimum uclamp overhead in the fast path.
1272 *
1273 * As soon as userspace modifies any of the uclamp knobs, the static key is
1274 * enabled, since we have an actual users that make use of uclamp
1275 * functionality.
1276 *
1277 * The knobs that would enable this static key are:
1278 *
1279 * * A task modifying its uclamp value with sched_setattr().
1280 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1281 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1282 */
1283DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1284
1285/* Integer rounded range for each bucket */
1286#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1287
1288#define for_each_clamp_id(clamp_id) \
1289 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1290
1291static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1292{
1293 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1294}
1295
1296static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1297{
1298 if (clamp_id == UCLAMP_MIN)
1299 return 0;
1300 return SCHED_CAPACITY_SCALE;
1301}
1302
1303static inline void uclamp_se_set(struct uclamp_se *uc_se,
1304 unsigned int value, bool user_defined)
1305{
1306 uc_se->value = value;
1307 uc_se->bucket_id = uclamp_bucket_id(value);
1308 uc_se->user_defined = user_defined;
1309}
1310
1311static inline unsigned int
1312uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1313 unsigned int clamp_value)
1314{
1315 /*
1316 * Avoid blocked utilization pushing up the frequency when we go
1317 * idle (which drops the max-clamp) by retaining the last known
1318 * max-clamp.
1319 */
1320 if (clamp_id == UCLAMP_MAX) {
1321 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1322 return clamp_value;
1323 }
1324
1325 return uclamp_none(UCLAMP_MIN);
1326}
1327
1328static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1329 unsigned int clamp_value)
1330{
1331 /* Reset max-clamp retention only on idle exit */
1332 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1333 return;
1334
1335 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1336}
1337
1338static inline
1339unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1340 unsigned int clamp_value)
1341{
1342 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1343 int bucket_id = UCLAMP_BUCKETS - 1;
1344
1345 /*
1346 * Since both min and max clamps are max aggregated, find the
1347 * top most bucket with tasks in.
1348 */
1349 for ( ; bucket_id >= 0; bucket_id--) {
1350 if (!bucket[bucket_id].tasks)
1351 continue;
1352 return bucket[bucket_id].value;
1353 }
1354
1355 /* No tasks -- default clamp values */
1356 return uclamp_idle_value(rq, clamp_id, clamp_value);
1357}
1358
1359static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1360{
1361 unsigned int default_util_min;
1362 struct uclamp_se *uc_se;
1363
1364 lockdep_assert_held(&p->pi_lock);
1365
1366 uc_se = &p->uclamp_req[UCLAMP_MIN];
1367
1368 /* Only sync if user didn't override the default */
1369 if (uc_se->user_defined)
1370 return;
1371
1372 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1373 uclamp_se_set(uc_se, default_util_min, false);
1374}
1375
1376static void uclamp_update_util_min_rt_default(struct task_struct *p)
1377{
1378 struct rq_flags rf;
1379 struct rq *rq;
1380
1381 if (!rt_task(p))
1382 return;
1383
1384 /* Protect updates to p->uclamp_* */
1385 rq = task_rq_lock(p, &rf);
1386 __uclamp_update_util_min_rt_default(p);
1387 task_rq_unlock(rq, p, &rf);
1388}
1389
1390static void uclamp_sync_util_min_rt_default(void)
1391{
1392 struct task_struct *g, *p;
1393
1394 /*
1395 * copy_process() sysctl_uclamp
1396 * uclamp_min_rt = X;
1397 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1398 * // link thread smp_mb__after_spinlock()
1399 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1400 * sched_post_fork() for_each_process_thread()
1401 * __uclamp_sync_rt() __uclamp_sync_rt()
1402 *
1403 * Ensures that either sched_post_fork() will observe the new
1404 * uclamp_min_rt or for_each_process_thread() will observe the new
1405 * task.
1406 */
1407 read_lock(&tasklist_lock);
1408 smp_mb__after_spinlock();
1409 read_unlock(&tasklist_lock);
1410
1411 rcu_read_lock();
1412 for_each_process_thread(g, p)
1413 uclamp_update_util_min_rt_default(p);
1414 rcu_read_unlock();
1415}
1416
1417static inline struct uclamp_se
1418uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1419{
1420 /* Copy by value as we could modify it */
1421 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1422#ifdef CONFIG_UCLAMP_TASK_GROUP
1423 unsigned int tg_min, tg_max, value;
1424
1425 /*
1426 * Tasks in autogroups or root task group will be
1427 * restricted by system defaults.
1428 */
1429 if (task_group_is_autogroup(task_group(p)))
1430 return uc_req;
1431 if (task_group(p) == &root_task_group)
1432 return uc_req;
1433
1434 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1435 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1436 value = uc_req.value;
1437 value = clamp(value, tg_min, tg_max);
1438 uclamp_se_set(&uc_req, value, false);
1439#endif
1440
1441 return uc_req;
1442}
1443
1444/*
1445 * The effective clamp bucket index of a task depends on, by increasing
1446 * priority:
1447 * - the task specific clamp value, when explicitly requested from userspace
1448 * - the task group effective clamp value, for tasks not either in the root
1449 * group or in an autogroup
1450 * - the system default clamp value, defined by the sysadmin
1451 */
1452static inline struct uclamp_se
1453uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1454{
1455 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1456 struct uclamp_se uc_max = uclamp_default[clamp_id];
1457
1458 /* System default restrictions always apply */
1459 if (unlikely(uc_req.value > uc_max.value))
1460 return uc_max;
1461
1462 return uc_req;
1463}
1464
1465unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1466{
1467 struct uclamp_se uc_eff;
1468
1469 /* Task currently refcounted: use back-annotated (effective) value */
1470 if (p->uclamp[clamp_id].active)
1471 return (unsigned long)p->uclamp[clamp_id].value;
1472
1473 uc_eff = uclamp_eff_get(p, clamp_id);
1474
1475 return (unsigned long)uc_eff.value;
1476}
1477
1478/*
1479 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1480 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1481 * updates the rq's clamp value if required.
1482 *
1483 * Tasks can have a task-specific value requested from user-space, track
1484 * within each bucket the maximum value for tasks refcounted in it.
1485 * This "local max aggregation" allows to track the exact "requested" value
1486 * for each bucket when all its RUNNABLE tasks require the same clamp.
1487 */
1488static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1489 enum uclamp_id clamp_id)
1490{
1491 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1492 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1493 struct uclamp_bucket *bucket;
1494
1495 lockdep_assert_rq_held(rq);
1496
1497 /* Update task effective clamp */
1498 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1499
1500 bucket = &uc_rq->bucket[uc_se->bucket_id];
1501 bucket->tasks++;
1502 uc_se->active = true;
1503
1504 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1505
1506 /*
1507 * Local max aggregation: rq buckets always track the max
1508 * "requested" clamp value of its RUNNABLE tasks.
1509 */
1510 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1511 bucket->value = uc_se->value;
1512
1513 if (uc_se->value > READ_ONCE(uc_rq->value))
1514 WRITE_ONCE(uc_rq->value, uc_se->value);
1515}
1516
1517/*
1518 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1519 * is released. If this is the last task reference counting the rq's max
1520 * active clamp value, then the rq's clamp value is updated.
1521 *
1522 * Both refcounted tasks and rq's cached clamp values are expected to be
1523 * always valid. If it's detected they are not, as defensive programming,
1524 * enforce the expected state and warn.
1525 */
1526static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1527 enum uclamp_id clamp_id)
1528{
1529 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1530 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1531 struct uclamp_bucket *bucket;
1532 unsigned int bkt_clamp;
1533 unsigned int rq_clamp;
1534
1535 lockdep_assert_rq_held(rq);
1536
1537 /*
1538 * If sched_uclamp_used was enabled after task @p was enqueued,
1539 * we could end up with unbalanced call to uclamp_rq_dec_id().
1540 *
1541 * In this case the uc_se->active flag should be false since no uclamp
1542 * accounting was performed at enqueue time and we can just return
1543 * here.
1544 *
1545 * Need to be careful of the following enqueue/dequeue ordering
1546 * problem too
1547 *
1548 * enqueue(taskA)
1549 * // sched_uclamp_used gets enabled
1550 * enqueue(taskB)
1551 * dequeue(taskA)
1552 * // Must not decrement bucket->tasks here
1553 * dequeue(taskB)
1554 *
1555 * where we could end up with stale data in uc_se and
1556 * bucket[uc_se->bucket_id].
1557 *
1558 * The following check here eliminates the possibility of such race.
1559 */
1560 if (unlikely(!uc_se->active))
1561 return;
1562
1563 bucket = &uc_rq->bucket[uc_se->bucket_id];
1564
1565 SCHED_WARN_ON(!bucket->tasks);
1566 if (likely(bucket->tasks))
1567 bucket->tasks--;
1568
1569 uc_se->active = false;
1570
1571 /*
1572 * Keep "local max aggregation" simple and accept to (possibly)
1573 * overboost some RUNNABLE tasks in the same bucket.
1574 * The rq clamp bucket value is reset to its base value whenever
1575 * there are no more RUNNABLE tasks refcounting it.
1576 */
1577 if (likely(bucket->tasks))
1578 return;
1579
1580 rq_clamp = READ_ONCE(uc_rq->value);
1581 /*
1582 * Defensive programming: this should never happen. If it happens,
1583 * e.g. due to future modification, warn and fixup the expected value.
1584 */
1585 SCHED_WARN_ON(bucket->value > rq_clamp);
1586 if (bucket->value >= rq_clamp) {
1587 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1588 WRITE_ONCE(uc_rq->value, bkt_clamp);
1589 }
1590}
1591
1592static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1593{
1594 enum uclamp_id clamp_id;
1595
1596 /*
1597 * Avoid any overhead until uclamp is actually used by the userspace.
1598 *
1599 * The condition is constructed such that a NOP is generated when
1600 * sched_uclamp_used is disabled.
1601 */
1602 if (!static_branch_unlikely(&sched_uclamp_used))
1603 return;
1604
1605 if (unlikely(!p->sched_class->uclamp_enabled))
1606 return;
1607
1608 for_each_clamp_id(clamp_id)
1609 uclamp_rq_inc_id(rq, p, clamp_id);
1610
1611 /* Reset clamp idle holding when there is one RUNNABLE task */
1612 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1613 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1614}
1615
1616static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1617{
1618 enum uclamp_id clamp_id;
1619
1620 /*
1621 * Avoid any overhead until uclamp is actually used by the userspace.
1622 *
1623 * The condition is constructed such that a NOP is generated when
1624 * sched_uclamp_used is disabled.
1625 */
1626 if (!static_branch_unlikely(&sched_uclamp_used))
1627 return;
1628
1629 if (unlikely(!p->sched_class->uclamp_enabled))
1630 return;
1631
1632 for_each_clamp_id(clamp_id)
1633 uclamp_rq_dec_id(rq, p, clamp_id);
1634}
1635
1636static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1637 enum uclamp_id clamp_id)
1638{
1639 if (!p->uclamp[clamp_id].active)
1640 return;
1641
1642 uclamp_rq_dec_id(rq, p, clamp_id);
1643 uclamp_rq_inc_id(rq, p, clamp_id);
1644
1645 /*
1646 * Make sure to clear the idle flag if we've transiently reached 0
1647 * active tasks on rq.
1648 */
1649 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1650 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1651}
1652
1653static inline void
1654uclamp_update_active(struct task_struct *p)
1655{
1656 enum uclamp_id clamp_id;
1657 struct rq_flags rf;
1658 struct rq *rq;
1659
1660 /*
1661 * Lock the task and the rq where the task is (or was) queued.
1662 *
1663 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1664 * price to pay to safely serialize util_{min,max} updates with
1665 * enqueues, dequeues and migration operations.
1666 * This is the same locking schema used by __set_cpus_allowed_ptr().
1667 */
1668 rq = task_rq_lock(p, &rf);
1669
1670 /*
1671 * Setting the clamp bucket is serialized by task_rq_lock().
1672 * If the task is not yet RUNNABLE and its task_struct is not
1673 * affecting a valid clamp bucket, the next time it's enqueued,
1674 * it will already see the updated clamp bucket value.
1675 */
1676 for_each_clamp_id(clamp_id)
1677 uclamp_rq_reinc_id(rq, p, clamp_id);
1678
1679 task_rq_unlock(rq, p, &rf);
1680}
1681
1682#ifdef CONFIG_UCLAMP_TASK_GROUP
1683static inline void
1684uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1685{
1686 struct css_task_iter it;
1687 struct task_struct *p;
1688
1689 css_task_iter_start(css, 0, &it);
1690 while ((p = css_task_iter_next(&it)))
1691 uclamp_update_active(p);
1692 css_task_iter_end(&it);
1693}
1694
1695static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1696static void uclamp_update_root_tg(void)
1697{
1698 struct task_group *tg = &root_task_group;
1699
1700 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1701 sysctl_sched_uclamp_util_min, false);
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1703 sysctl_sched_uclamp_util_max, false);
1704
1705 rcu_read_lock();
1706 cpu_util_update_eff(&root_task_group.css);
1707 rcu_read_unlock();
1708}
1709#else
1710static void uclamp_update_root_tg(void) { }
1711#endif
1712
1713int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1714 void *buffer, size_t *lenp, loff_t *ppos)
1715{
1716 bool update_root_tg = false;
1717 int old_min, old_max, old_min_rt;
1718 int result;
1719
1720 mutex_lock(&uclamp_mutex);
1721 old_min = sysctl_sched_uclamp_util_min;
1722 old_max = sysctl_sched_uclamp_util_max;
1723 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1724
1725 result = proc_dointvec(table, write, buffer, lenp, ppos);
1726 if (result)
1727 goto undo;
1728 if (!write)
1729 goto done;
1730
1731 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1732 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1733 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1734
1735 result = -EINVAL;
1736 goto undo;
1737 }
1738
1739 if (old_min != sysctl_sched_uclamp_util_min) {
1740 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1741 sysctl_sched_uclamp_util_min, false);
1742 update_root_tg = true;
1743 }
1744 if (old_max != sysctl_sched_uclamp_util_max) {
1745 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1746 sysctl_sched_uclamp_util_max, false);
1747 update_root_tg = true;
1748 }
1749
1750 if (update_root_tg) {
1751 static_branch_enable(&sched_uclamp_used);
1752 uclamp_update_root_tg();
1753 }
1754
1755 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1756 static_branch_enable(&sched_uclamp_used);
1757 uclamp_sync_util_min_rt_default();
1758 }
1759
1760 /*
1761 * We update all RUNNABLE tasks only when task groups are in use.
1762 * Otherwise, keep it simple and do just a lazy update at each next
1763 * task enqueue time.
1764 */
1765
1766 goto done;
1767
1768undo:
1769 sysctl_sched_uclamp_util_min = old_min;
1770 sysctl_sched_uclamp_util_max = old_max;
1771 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1772done:
1773 mutex_unlock(&uclamp_mutex);
1774
1775 return result;
1776}
1777
1778static int uclamp_validate(struct task_struct *p,
1779 const struct sched_attr *attr)
1780{
1781 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1782 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1783
1784 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1785 util_min = attr->sched_util_min;
1786
1787 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1788 return -EINVAL;
1789 }
1790
1791 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1792 util_max = attr->sched_util_max;
1793
1794 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1795 return -EINVAL;
1796 }
1797
1798 if (util_min != -1 && util_max != -1 && util_min > util_max)
1799 return -EINVAL;
1800
1801 /*
1802 * We have valid uclamp attributes; make sure uclamp is enabled.
1803 *
1804 * We need to do that here, because enabling static branches is a
1805 * blocking operation which obviously cannot be done while holding
1806 * scheduler locks.
1807 */
1808 static_branch_enable(&sched_uclamp_used);
1809
1810 return 0;
1811}
1812
1813static bool uclamp_reset(const struct sched_attr *attr,
1814 enum uclamp_id clamp_id,
1815 struct uclamp_se *uc_se)
1816{
1817 /* Reset on sched class change for a non user-defined clamp value. */
1818 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1819 !uc_se->user_defined)
1820 return true;
1821
1822 /* Reset on sched_util_{min,max} == -1. */
1823 if (clamp_id == UCLAMP_MIN &&
1824 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1825 attr->sched_util_min == -1) {
1826 return true;
1827 }
1828
1829 if (clamp_id == UCLAMP_MAX &&
1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1831 attr->sched_util_max == -1) {
1832 return true;
1833 }
1834
1835 return false;
1836}
1837
1838static void __setscheduler_uclamp(struct task_struct *p,
1839 const struct sched_attr *attr)
1840{
1841 enum uclamp_id clamp_id;
1842
1843 for_each_clamp_id(clamp_id) {
1844 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1845 unsigned int value;
1846
1847 if (!uclamp_reset(attr, clamp_id, uc_se))
1848 continue;
1849
1850 /*
1851 * RT by default have a 100% boost value that could be modified
1852 * at runtime.
1853 */
1854 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1855 value = sysctl_sched_uclamp_util_min_rt_default;
1856 else
1857 value = uclamp_none(clamp_id);
1858
1859 uclamp_se_set(uc_se, value, false);
1860
1861 }
1862
1863 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1864 return;
1865
1866 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1867 attr->sched_util_min != -1) {
1868 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1869 attr->sched_util_min, true);
1870 }
1871
1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1873 attr->sched_util_max != -1) {
1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1875 attr->sched_util_max, true);
1876 }
1877}
1878
1879static void uclamp_fork(struct task_struct *p)
1880{
1881 enum uclamp_id clamp_id;
1882
1883 /*
1884 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1885 * as the task is still at its early fork stages.
1886 */
1887 for_each_clamp_id(clamp_id)
1888 p->uclamp[clamp_id].active = false;
1889
1890 if (likely(!p->sched_reset_on_fork))
1891 return;
1892
1893 for_each_clamp_id(clamp_id) {
1894 uclamp_se_set(&p->uclamp_req[clamp_id],
1895 uclamp_none(clamp_id), false);
1896 }
1897}
1898
1899static void uclamp_post_fork(struct task_struct *p)
1900{
1901 uclamp_update_util_min_rt_default(p);
1902}
1903
1904static void __init init_uclamp_rq(struct rq *rq)
1905{
1906 enum uclamp_id clamp_id;
1907 struct uclamp_rq *uc_rq = rq->uclamp;
1908
1909 for_each_clamp_id(clamp_id) {
1910 uc_rq[clamp_id] = (struct uclamp_rq) {
1911 .value = uclamp_none(clamp_id)
1912 };
1913 }
1914
1915 rq->uclamp_flags = 0;
1916}
1917
1918static void __init init_uclamp(void)
1919{
1920 struct uclamp_se uc_max = {};
1921 enum uclamp_id clamp_id;
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu)
1925 init_uclamp_rq(cpu_rq(cpu));
1926
1927 for_each_clamp_id(clamp_id) {
1928 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1929 uclamp_none(clamp_id), false);
1930 }
1931
1932 /* System defaults allow max clamp values for both indexes */
1933 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1934 for_each_clamp_id(clamp_id) {
1935 uclamp_default[clamp_id] = uc_max;
1936#ifdef CONFIG_UCLAMP_TASK_GROUP
1937 root_task_group.uclamp_req[clamp_id] = uc_max;
1938 root_task_group.uclamp[clamp_id] = uc_max;
1939#endif
1940 }
1941}
1942
1943#else /* CONFIG_UCLAMP_TASK */
1944static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1945static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1946static inline int uclamp_validate(struct task_struct *p,
1947 const struct sched_attr *attr)
1948{
1949 return -EOPNOTSUPP;
1950}
1951static void __setscheduler_uclamp(struct task_struct *p,
1952 const struct sched_attr *attr) { }
1953static inline void uclamp_fork(struct task_struct *p) { }
1954static inline void uclamp_post_fork(struct task_struct *p) { }
1955static inline void init_uclamp(void) { }
1956#endif /* CONFIG_UCLAMP_TASK */
1957
1958bool sched_task_on_rq(struct task_struct *p)
1959{
1960 return task_on_rq_queued(p);
1961}
1962
1963static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1964{
1965 if (!(flags & ENQUEUE_NOCLOCK))
1966 update_rq_clock(rq);
1967
1968 if (!(flags & ENQUEUE_RESTORE)) {
1969 sched_info_enqueue(rq, p);
1970 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1971 }
1972
1973 uclamp_rq_inc(rq, p);
1974 p->sched_class->enqueue_task(rq, p, flags);
1975
1976 if (sched_core_enabled(rq))
1977 sched_core_enqueue(rq, p);
1978}
1979
1980static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1981{
1982 if (sched_core_enabled(rq))
1983 sched_core_dequeue(rq, p);
1984
1985 if (!(flags & DEQUEUE_NOCLOCK))
1986 update_rq_clock(rq);
1987
1988 if (!(flags & DEQUEUE_SAVE)) {
1989 sched_info_dequeue(rq, p);
1990 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1991 }
1992
1993 uclamp_rq_dec(rq, p);
1994 p->sched_class->dequeue_task(rq, p, flags);
1995}
1996
1997void activate_task(struct rq *rq, struct task_struct *p, int flags)
1998{
1999 enqueue_task(rq, p, flags);
2000
2001 p->on_rq = TASK_ON_RQ_QUEUED;
2002}
2003
2004void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2005{
2006 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2007
2008 dequeue_task(rq, p, flags);
2009}
2010
2011static inline int __normal_prio(int policy, int rt_prio, int nice)
2012{
2013 int prio;
2014
2015 if (dl_policy(policy))
2016 prio = MAX_DL_PRIO - 1;
2017 else if (rt_policy(policy))
2018 prio = MAX_RT_PRIO - 1 - rt_prio;
2019 else
2020 prio = NICE_TO_PRIO(nice);
2021
2022 return prio;
2023}
2024
2025/*
2026 * Calculate the expected normal priority: i.e. priority
2027 * without taking RT-inheritance into account. Might be
2028 * boosted by interactivity modifiers. Changes upon fork,
2029 * setprio syscalls, and whenever the interactivity
2030 * estimator recalculates.
2031 */
2032static inline int normal_prio(struct task_struct *p)
2033{
2034 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2035}
2036
2037/*
2038 * Calculate the current priority, i.e. the priority
2039 * taken into account by the scheduler. This value might
2040 * be boosted by RT tasks, or might be boosted by
2041 * interactivity modifiers. Will be RT if the task got
2042 * RT-boosted. If not then it returns p->normal_prio.
2043 */
2044static int effective_prio(struct task_struct *p)
2045{
2046 p->normal_prio = normal_prio(p);
2047 /*
2048 * If we are RT tasks or we were boosted to RT priority,
2049 * keep the priority unchanged. Otherwise, update priority
2050 * to the normal priority:
2051 */
2052 if (!rt_prio(p->prio))
2053 return p->normal_prio;
2054 return p->prio;
2055}
2056
2057/**
2058 * task_curr - is this task currently executing on a CPU?
2059 * @p: the task in question.
2060 *
2061 * Return: 1 if the task is currently executing. 0 otherwise.
2062 */
2063inline int task_curr(const struct task_struct *p)
2064{
2065 return cpu_curr(task_cpu(p)) == p;
2066}
2067
2068/*
2069 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2070 * use the balance_callback list if you want balancing.
2071 *
2072 * this means any call to check_class_changed() must be followed by a call to
2073 * balance_callback().
2074 */
2075static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2076 const struct sched_class *prev_class,
2077 int oldprio)
2078{
2079 if (prev_class != p->sched_class) {
2080 if (prev_class->switched_from)
2081 prev_class->switched_from(rq, p);
2082
2083 p->sched_class->switched_to(rq, p);
2084 } else if (oldprio != p->prio || dl_task(p))
2085 p->sched_class->prio_changed(rq, p, oldprio);
2086}
2087
2088void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2089{
2090 if (p->sched_class == rq->curr->sched_class)
2091 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2092 else if (p->sched_class > rq->curr->sched_class)
2093 resched_curr(rq);
2094
2095 /*
2096 * A queue event has occurred, and we're going to schedule. In
2097 * this case, we can save a useless back to back clock update.
2098 */
2099 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2100 rq_clock_skip_update(rq);
2101}
2102
2103#ifdef CONFIG_SMP
2104
2105static void
2106__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2107
2108static int __set_cpus_allowed_ptr(struct task_struct *p,
2109 const struct cpumask *new_mask,
2110 u32 flags);
2111
2112static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2113{
2114 if (likely(!p->migration_disabled))
2115 return;
2116
2117 if (p->cpus_ptr != &p->cpus_mask)
2118 return;
2119
2120 /*
2121 * Violates locking rules! see comment in __do_set_cpus_allowed().
2122 */
2123 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2124}
2125
2126void migrate_disable(void)
2127{
2128 struct task_struct *p = current;
2129
2130 if (p->migration_disabled) {
2131 p->migration_disabled++;
2132 return;
2133 }
2134
2135 preempt_disable();
2136 this_rq()->nr_pinned++;
2137 p->migration_disabled = 1;
2138 preempt_enable();
2139}
2140EXPORT_SYMBOL_GPL(migrate_disable);
2141
2142void migrate_enable(void)
2143{
2144 struct task_struct *p = current;
2145
2146 if (p->migration_disabled > 1) {
2147 p->migration_disabled--;
2148 return;
2149 }
2150
2151 /*
2152 * Ensure stop_task runs either before or after this, and that
2153 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2154 */
2155 preempt_disable();
2156 if (p->cpus_ptr != &p->cpus_mask)
2157 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2158 /*
2159 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2160 * regular cpus_mask, otherwise things that race (eg.
2161 * select_fallback_rq) get confused.
2162 */
2163 barrier();
2164 p->migration_disabled = 0;
2165 this_rq()->nr_pinned--;
2166 preempt_enable();
2167}
2168EXPORT_SYMBOL_GPL(migrate_enable);
2169
2170static inline bool rq_has_pinned_tasks(struct rq *rq)
2171{
2172 return rq->nr_pinned;
2173}
2174
2175/*
2176 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2177 * __set_cpus_allowed_ptr() and select_fallback_rq().
2178 */
2179static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2180{
2181 /* When not in the task's cpumask, no point in looking further. */
2182 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2183 return false;
2184
2185 /* migrate_disabled() must be allowed to finish. */
2186 if (is_migration_disabled(p))
2187 return cpu_online(cpu);
2188
2189 /* Non kernel threads are not allowed during either online or offline. */
2190 if (!(p->flags & PF_KTHREAD))
2191 return cpu_active(cpu);
2192
2193 /* KTHREAD_IS_PER_CPU is always allowed. */
2194 if (kthread_is_per_cpu(p))
2195 return cpu_online(cpu);
2196
2197 /* Regular kernel threads don't get to stay during offline. */
2198 if (cpu_dying(cpu))
2199 return false;
2200
2201 /* But are allowed during online. */
2202 return cpu_online(cpu);
2203}
2204
2205/*
2206 * This is how migration works:
2207 *
2208 * 1) we invoke migration_cpu_stop() on the target CPU using
2209 * stop_one_cpu().
2210 * 2) stopper starts to run (implicitly forcing the migrated thread
2211 * off the CPU)
2212 * 3) it checks whether the migrated task is still in the wrong runqueue.
2213 * 4) if it's in the wrong runqueue then the migration thread removes
2214 * it and puts it into the right queue.
2215 * 5) stopper completes and stop_one_cpu() returns and the migration
2216 * is done.
2217 */
2218
2219/*
2220 * move_queued_task - move a queued task to new rq.
2221 *
2222 * Returns (locked) new rq. Old rq's lock is released.
2223 */
2224static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2225 struct task_struct *p, int new_cpu)
2226{
2227 lockdep_assert_rq_held(rq);
2228
2229 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2230 set_task_cpu(p, new_cpu);
2231 rq_unlock(rq, rf);
2232
2233 rq = cpu_rq(new_cpu);
2234
2235 rq_lock(rq, rf);
2236 BUG_ON(task_cpu(p) != new_cpu);
2237 activate_task(rq, p, 0);
2238 check_preempt_curr(rq, p, 0);
2239
2240 return rq;
2241}
2242
2243struct migration_arg {
2244 struct task_struct *task;
2245 int dest_cpu;
2246 struct set_affinity_pending *pending;
2247};
2248
2249/*
2250 * @refs: number of wait_for_completion()
2251 * @stop_pending: is @stop_work in use
2252 */
2253struct set_affinity_pending {
2254 refcount_t refs;
2255 unsigned int stop_pending;
2256 struct completion done;
2257 struct cpu_stop_work stop_work;
2258 struct migration_arg arg;
2259};
2260
2261/*
2262 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2263 * this because either it can't run here any more (set_cpus_allowed()
2264 * away from this CPU, or CPU going down), or because we're
2265 * attempting to rebalance this task on exec (sched_exec).
2266 *
2267 * So we race with normal scheduler movements, but that's OK, as long
2268 * as the task is no longer on this CPU.
2269 */
2270static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2271 struct task_struct *p, int dest_cpu)
2272{
2273 /* Affinity changed (again). */
2274 if (!is_cpu_allowed(p, dest_cpu))
2275 return rq;
2276
2277 update_rq_clock(rq);
2278 rq = move_queued_task(rq, rf, p, dest_cpu);
2279
2280 return rq;
2281}
2282
2283/*
2284 * migration_cpu_stop - this will be executed by a highprio stopper thread
2285 * and performs thread migration by bumping thread off CPU then
2286 * 'pushing' onto another runqueue.
2287 */
2288static int migration_cpu_stop(void *data)
2289{
2290 struct migration_arg *arg = data;
2291 struct set_affinity_pending *pending = arg->pending;
2292 struct task_struct *p = arg->task;
2293 struct rq *rq = this_rq();
2294 bool complete = false;
2295 struct rq_flags rf;
2296
2297 /*
2298 * The original target CPU might have gone down and we might
2299 * be on another CPU but it doesn't matter.
2300 */
2301 local_irq_save(rf.flags);
2302 /*
2303 * We need to explicitly wake pending tasks before running
2304 * __migrate_task() such that we will not miss enforcing cpus_ptr
2305 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2306 */
2307 flush_smp_call_function_from_idle();
2308
2309 raw_spin_lock(&p->pi_lock);
2310 rq_lock(rq, &rf);
2311
2312 /*
2313 * If we were passed a pending, then ->stop_pending was set, thus
2314 * p->migration_pending must have remained stable.
2315 */
2316 WARN_ON_ONCE(pending && pending != p->migration_pending);
2317
2318 /*
2319 * If task_rq(p) != rq, it cannot be migrated here, because we're
2320 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2321 * we're holding p->pi_lock.
2322 */
2323 if (task_rq(p) == rq) {
2324 if (is_migration_disabled(p))
2325 goto out;
2326
2327 if (pending) {
2328 p->migration_pending = NULL;
2329 complete = true;
2330
2331 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2332 goto out;
2333 }
2334
2335 if (task_on_rq_queued(p))
2336 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2337 else
2338 p->wake_cpu = arg->dest_cpu;
2339
2340 /*
2341 * XXX __migrate_task() can fail, at which point we might end
2342 * up running on a dodgy CPU, AFAICT this can only happen
2343 * during CPU hotplug, at which point we'll get pushed out
2344 * anyway, so it's probably not a big deal.
2345 */
2346
2347 } else if (pending) {
2348 /*
2349 * This happens when we get migrated between migrate_enable()'s
2350 * preempt_enable() and scheduling the stopper task. At that
2351 * point we're a regular task again and not current anymore.
2352 *
2353 * A !PREEMPT kernel has a giant hole here, which makes it far
2354 * more likely.
2355 */
2356
2357 /*
2358 * The task moved before the stopper got to run. We're holding
2359 * ->pi_lock, so the allowed mask is stable - if it got
2360 * somewhere allowed, we're done.
2361 */
2362 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2363 p->migration_pending = NULL;
2364 complete = true;
2365 goto out;
2366 }
2367
2368 /*
2369 * When migrate_enable() hits a rq mis-match we can't reliably
2370 * determine is_migration_disabled() and so have to chase after
2371 * it.
2372 */
2373 WARN_ON_ONCE(!pending->stop_pending);
2374 task_rq_unlock(rq, p, &rf);
2375 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2376 &pending->arg, &pending->stop_work);
2377 return 0;
2378 }
2379out:
2380 if (pending)
2381 pending->stop_pending = false;
2382 task_rq_unlock(rq, p, &rf);
2383
2384 if (complete)
2385 complete_all(&pending->done);
2386
2387 return 0;
2388}
2389
2390int push_cpu_stop(void *arg)
2391{
2392 struct rq *lowest_rq = NULL, *rq = this_rq();
2393 struct task_struct *p = arg;
2394
2395 raw_spin_lock_irq(&p->pi_lock);
2396 raw_spin_rq_lock(rq);
2397
2398 if (task_rq(p) != rq)
2399 goto out_unlock;
2400
2401 if (is_migration_disabled(p)) {
2402 p->migration_flags |= MDF_PUSH;
2403 goto out_unlock;
2404 }
2405
2406 p->migration_flags &= ~MDF_PUSH;
2407
2408 if (p->sched_class->find_lock_rq)
2409 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2410
2411 if (!lowest_rq)
2412 goto out_unlock;
2413
2414 // XXX validate p is still the highest prio task
2415 if (task_rq(p) == rq) {
2416 deactivate_task(rq, p, 0);
2417 set_task_cpu(p, lowest_rq->cpu);
2418 activate_task(lowest_rq, p, 0);
2419 resched_curr(lowest_rq);
2420 }
2421
2422 double_unlock_balance(rq, lowest_rq);
2423
2424out_unlock:
2425 rq->push_busy = false;
2426 raw_spin_rq_unlock(rq);
2427 raw_spin_unlock_irq(&p->pi_lock);
2428
2429 put_task_struct(p);
2430 return 0;
2431}
2432
2433/*
2434 * sched_class::set_cpus_allowed must do the below, but is not required to
2435 * actually call this function.
2436 */
2437void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2438{
2439 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2440 p->cpus_ptr = new_mask;
2441 return;
2442 }
2443
2444 cpumask_copy(&p->cpus_mask, new_mask);
2445 p->nr_cpus_allowed = cpumask_weight(new_mask);
2446}
2447
2448static void
2449__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2450{
2451 struct rq *rq = task_rq(p);
2452 bool queued, running;
2453
2454 /*
2455 * This here violates the locking rules for affinity, since we're only
2456 * supposed to change these variables while holding both rq->lock and
2457 * p->pi_lock.
2458 *
2459 * HOWEVER, it magically works, because ttwu() is the only code that
2460 * accesses these variables under p->pi_lock and only does so after
2461 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2462 * before finish_task().
2463 *
2464 * XXX do further audits, this smells like something putrid.
2465 */
2466 if (flags & SCA_MIGRATE_DISABLE)
2467 SCHED_WARN_ON(!p->on_cpu);
2468 else
2469 lockdep_assert_held(&p->pi_lock);
2470
2471 queued = task_on_rq_queued(p);
2472 running = task_current(rq, p);
2473
2474 if (queued) {
2475 /*
2476 * Because __kthread_bind() calls this on blocked tasks without
2477 * holding rq->lock.
2478 */
2479 lockdep_assert_rq_held(rq);
2480 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2481 }
2482 if (running)
2483 put_prev_task(rq, p);
2484
2485 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2486
2487 if (queued)
2488 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2489 if (running)
2490 set_next_task(rq, p);
2491}
2492
2493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2494{
2495 __do_set_cpus_allowed(p, new_mask, 0);
2496}
2497
2498/*
2499 * This function is wildly self concurrent; here be dragons.
2500 *
2501 *
2502 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2503 * designated task is enqueued on an allowed CPU. If that task is currently
2504 * running, we have to kick it out using the CPU stopper.
2505 *
2506 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2507 * Consider:
2508 *
2509 * Initial conditions: P0->cpus_mask = [0, 1]
2510 *
2511 * P0@CPU0 P1
2512 *
2513 * migrate_disable();
2514 * <preempted>
2515 * set_cpus_allowed_ptr(P0, [1]);
2516 *
2517 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2518 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2519 * This means we need the following scheme:
2520 *
2521 * P0@CPU0 P1
2522 *
2523 * migrate_disable();
2524 * <preempted>
2525 * set_cpus_allowed_ptr(P0, [1]);
2526 * <blocks>
2527 * <resumes>
2528 * migrate_enable();
2529 * __set_cpus_allowed_ptr();
2530 * <wakes local stopper>
2531 * `--> <woken on migration completion>
2532 *
2533 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2534 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2535 * task p are serialized by p->pi_lock, which we can leverage: the one that
2536 * should come into effect at the end of the Migrate-Disable region is the last
2537 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2538 * but we still need to properly signal those waiting tasks at the appropriate
2539 * moment.
2540 *
2541 * This is implemented using struct set_affinity_pending. The first
2542 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2543 * setup an instance of that struct and install it on the targeted task_struct.
2544 * Any and all further callers will reuse that instance. Those then wait for
2545 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2546 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2547 *
2548 *
2549 * (1) In the cases covered above. There is one more where the completion is
2550 * signaled within affine_move_task() itself: when a subsequent affinity request
2551 * occurs after the stopper bailed out due to the targeted task still being
2552 * Migrate-Disable. Consider:
2553 *
2554 * Initial conditions: P0->cpus_mask = [0, 1]
2555 *
2556 * CPU0 P1 P2
2557 * <P0>
2558 * migrate_disable();
2559 * <preempted>
2560 * set_cpus_allowed_ptr(P0, [1]);
2561 * <blocks>
2562 * <migration/0>
2563 * migration_cpu_stop()
2564 * is_migration_disabled()
2565 * <bails>
2566 * set_cpus_allowed_ptr(P0, [0, 1]);
2567 * <signal completion>
2568 * <awakes>
2569 *
2570 * Note that the above is safe vs a concurrent migrate_enable(), as any
2571 * pending affinity completion is preceded by an uninstallation of
2572 * p->migration_pending done with p->pi_lock held.
2573 */
2574static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2575 int dest_cpu, unsigned int flags)
2576{
2577 struct set_affinity_pending my_pending = { }, *pending = NULL;
2578 bool stop_pending, complete = false;
2579
2580 /* Can the task run on the task's current CPU? If so, we're done */
2581 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2582 struct task_struct *push_task = NULL;
2583
2584 if ((flags & SCA_MIGRATE_ENABLE) &&
2585 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2586 rq->push_busy = true;
2587 push_task = get_task_struct(p);
2588 }
2589
2590 /*
2591 * If there are pending waiters, but no pending stop_work,
2592 * then complete now.
2593 */
2594 pending = p->migration_pending;
2595 if (pending && !pending->stop_pending) {
2596 p->migration_pending = NULL;
2597 complete = true;
2598 }
2599
2600 task_rq_unlock(rq, p, rf);
2601
2602 if (push_task) {
2603 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2604 p, &rq->push_work);
2605 }
2606
2607 if (complete)
2608 complete_all(&pending->done);
2609
2610 return 0;
2611 }
2612
2613 if (!(flags & SCA_MIGRATE_ENABLE)) {
2614 /* serialized by p->pi_lock */
2615 if (!p->migration_pending) {
2616 /* Install the request */
2617 refcount_set(&my_pending.refs, 1);
2618 init_completion(&my_pending.done);
2619 my_pending.arg = (struct migration_arg) {
2620 .task = p,
2621 .dest_cpu = dest_cpu,
2622 .pending = &my_pending,
2623 };
2624
2625 p->migration_pending = &my_pending;
2626 } else {
2627 pending = p->migration_pending;
2628 refcount_inc(&pending->refs);
2629 /*
2630 * Affinity has changed, but we've already installed a
2631 * pending. migration_cpu_stop() *must* see this, else
2632 * we risk a completion of the pending despite having a
2633 * task on a disallowed CPU.
2634 *
2635 * Serialized by p->pi_lock, so this is safe.
2636 */
2637 pending->arg.dest_cpu = dest_cpu;
2638 }
2639 }
2640 pending = p->migration_pending;
2641 /*
2642 * - !MIGRATE_ENABLE:
2643 * we'll have installed a pending if there wasn't one already.
2644 *
2645 * - MIGRATE_ENABLE:
2646 * we're here because the current CPU isn't matching anymore,
2647 * the only way that can happen is because of a concurrent
2648 * set_cpus_allowed_ptr() call, which should then still be
2649 * pending completion.
2650 *
2651 * Either way, we really should have a @pending here.
2652 */
2653 if (WARN_ON_ONCE(!pending)) {
2654 task_rq_unlock(rq, p, rf);
2655 return -EINVAL;
2656 }
2657
2658 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2659 /*
2660 * MIGRATE_ENABLE gets here because 'p == current', but for
2661 * anything else we cannot do is_migration_disabled(), punt
2662 * and have the stopper function handle it all race-free.
2663 */
2664 stop_pending = pending->stop_pending;
2665 if (!stop_pending)
2666 pending->stop_pending = true;
2667
2668 if (flags & SCA_MIGRATE_ENABLE)
2669 p->migration_flags &= ~MDF_PUSH;
2670
2671 task_rq_unlock(rq, p, rf);
2672
2673 if (!stop_pending) {
2674 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2675 &pending->arg, &pending->stop_work);
2676 }
2677
2678 if (flags & SCA_MIGRATE_ENABLE)
2679 return 0;
2680 } else {
2681
2682 if (!is_migration_disabled(p)) {
2683 if (task_on_rq_queued(p))
2684 rq = move_queued_task(rq, rf, p, dest_cpu);
2685
2686 if (!pending->stop_pending) {
2687 p->migration_pending = NULL;
2688 complete = true;
2689 }
2690 }
2691 task_rq_unlock(rq, p, rf);
2692
2693 if (complete)
2694 complete_all(&pending->done);
2695 }
2696
2697 wait_for_completion(&pending->done);
2698
2699 if (refcount_dec_and_test(&pending->refs))
2700 wake_up_var(&pending->refs); /* No UaF, just an address */
2701
2702 /*
2703 * Block the original owner of &pending until all subsequent callers
2704 * have seen the completion and decremented the refcount
2705 */
2706 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2707
2708 /* ARGH */
2709 WARN_ON_ONCE(my_pending.stop_pending);
2710
2711 return 0;
2712}
2713
2714/*
2715 * Change a given task's CPU affinity. Migrate the thread to a
2716 * proper CPU and schedule it away if the CPU it's executing on
2717 * is removed from the allowed bitmask.
2718 *
2719 * NOTE: the caller must have a valid reference to the task, the
2720 * task must not exit() & deallocate itself prematurely. The
2721 * call is not atomic; no spinlocks may be held.
2722 */
2723static int __set_cpus_allowed_ptr(struct task_struct *p,
2724 const struct cpumask *new_mask,
2725 u32 flags)
2726{
2727 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2728 unsigned int dest_cpu;
2729 struct rq_flags rf;
2730 struct rq *rq;
2731 int ret = 0;
2732
2733 rq = task_rq_lock(p, &rf);
2734 update_rq_clock(rq);
2735
2736 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2737 /*
2738 * Kernel threads are allowed on online && !active CPUs,
2739 * however, during cpu-hot-unplug, even these might get pushed
2740 * away if not KTHREAD_IS_PER_CPU.
2741 *
2742 * Specifically, migration_disabled() tasks must not fail the
2743 * cpumask_any_and_distribute() pick below, esp. so on
2744 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2745 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2746 */
2747 cpu_valid_mask = cpu_online_mask;
2748 }
2749
2750 /*
2751 * Must re-check here, to close a race against __kthread_bind(),
2752 * sched_setaffinity() is not guaranteed to observe the flag.
2753 */
2754 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2755 ret = -EINVAL;
2756 goto out;
2757 }
2758
2759 if (!(flags & SCA_MIGRATE_ENABLE)) {
2760 if (cpumask_equal(&p->cpus_mask, new_mask))
2761 goto out;
2762
2763 if (WARN_ON_ONCE(p == current &&
2764 is_migration_disabled(p) &&
2765 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2766 ret = -EBUSY;
2767 goto out;
2768 }
2769 }
2770
2771 /*
2772 * Picking a ~random cpu helps in cases where we are changing affinity
2773 * for groups of tasks (ie. cpuset), so that load balancing is not
2774 * immediately required to distribute the tasks within their new mask.
2775 */
2776 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2777 if (dest_cpu >= nr_cpu_ids) {
2778 ret = -EINVAL;
2779 goto out;
2780 }
2781
2782 __do_set_cpus_allowed(p, new_mask, flags);
2783
2784 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2785
2786out:
2787 task_rq_unlock(rq, p, &rf);
2788
2789 return ret;
2790}
2791
2792int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2793{
2794 return __set_cpus_allowed_ptr(p, new_mask, 0);
2795}
2796EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2797
2798void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2799{
2800#ifdef CONFIG_SCHED_DEBUG
2801 unsigned int state = READ_ONCE(p->__state);
2802
2803 /*
2804 * We should never call set_task_cpu() on a blocked task,
2805 * ttwu() will sort out the placement.
2806 */
2807 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2808
2809 /*
2810 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2811 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2812 * time relying on p->on_rq.
2813 */
2814 WARN_ON_ONCE(state == TASK_RUNNING &&
2815 p->sched_class == &fair_sched_class &&
2816 (p->on_rq && !task_on_rq_migrating(p)));
2817
2818#ifdef CONFIG_LOCKDEP
2819 /*
2820 * The caller should hold either p->pi_lock or rq->lock, when changing
2821 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2822 *
2823 * sched_move_task() holds both and thus holding either pins the cgroup,
2824 * see task_group().
2825 *
2826 * Furthermore, all task_rq users should acquire both locks, see
2827 * task_rq_lock().
2828 */
2829 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2830 lockdep_is_held(__rq_lockp(task_rq(p)))));
2831#endif
2832 /*
2833 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2834 */
2835 WARN_ON_ONCE(!cpu_online(new_cpu));
2836
2837 WARN_ON_ONCE(is_migration_disabled(p));
2838#endif
2839
2840 trace_sched_migrate_task(p, new_cpu);
2841
2842 if (task_cpu(p) != new_cpu) {
2843 if (p->sched_class->migrate_task_rq)
2844 p->sched_class->migrate_task_rq(p, new_cpu);
2845 p->se.nr_migrations++;
2846 rseq_migrate(p);
2847 perf_event_task_migrate(p);
2848 }
2849
2850 __set_task_cpu(p, new_cpu);
2851}
2852
2853#ifdef CONFIG_NUMA_BALANCING
2854static void __migrate_swap_task(struct task_struct *p, int cpu)
2855{
2856 if (task_on_rq_queued(p)) {
2857 struct rq *src_rq, *dst_rq;
2858 struct rq_flags srf, drf;
2859
2860 src_rq = task_rq(p);
2861 dst_rq = cpu_rq(cpu);
2862
2863 rq_pin_lock(src_rq, &srf);
2864 rq_pin_lock(dst_rq, &drf);
2865
2866 deactivate_task(src_rq, p, 0);
2867 set_task_cpu(p, cpu);
2868 activate_task(dst_rq, p, 0);
2869 check_preempt_curr(dst_rq, p, 0);
2870
2871 rq_unpin_lock(dst_rq, &drf);
2872 rq_unpin_lock(src_rq, &srf);
2873
2874 } else {
2875 /*
2876 * Task isn't running anymore; make it appear like we migrated
2877 * it before it went to sleep. This means on wakeup we make the
2878 * previous CPU our target instead of where it really is.
2879 */
2880 p->wake_cpu = cpu;
2881 }
2882}
2883
2884struct migration_swap_arg {
2885 struct task_struct *src_task, *dst_task;
2886 int src_cpu, dst_cpu;
2887};
2888
2889static int migrate_swap_stop(void *data)
2890{
2891 struct migration_swap_arg *arg = data;
2892 struct rq *src_rq, *dst_rq;
2893 int ret = -EAGAIN;
2894
2895 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2896 return -EAGAIN;
2897
2898 src_rq = cpu_rq(arg->src_cpu);
2899 dst_rq = cpu_rq(arg->dst_cpu);
2900
2901 double_raw_lock(&arg->src_task->pi_lock,
2902 &arg->dst_task->pi_lock);
2903 double_rq_lock(src_rq, dst_rq);
2904
2905 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2906 goto unlock;
2907
2908 if (task_cpu(arg->src_task) != arg->src_cpu)
2909 goto unlock;
2910
2911 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2912 goto unlock;
2913
2914 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2915 goto unlock;
2916
2917 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2918 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2919
2920 ret = 0;
2921
2922unlock:
2923 double_rq_unlock(src_rq, dst_rq);
2924 raw_spin_unlock(&arg->dst_task->pi_lock);
2925 raw_spin_unlock(&arg->src_task->pi_lock);
2926
2927 return ret;
2928}
2929
2930/*
2931 * Cross migrate two tasks
2932 */
2933int migrate_swap(struct task_struct *cur, struct task_struct *p,
2934 int target_cpu, int curr_cpu)
2935{
2936 struct migration_swap_arg arg;
2937 int ret = -EINVAL;
2938
2939 arg = (struct migration_swap_arg){
2940 .src_task = cur,
2941 .src_cpu = curr_cpu,
2942 .dst_task = p,
2943 .dst_cpu = target_cpu,
2944 };
2945
2946 if (arg.src_cpu == arg.dst_cpu)
2947 goto out;
2948
2949 /*
2950 * These three tests are all lockless; this is OK since all of them
2951 * will be re-checked with proper locks held further down the line.
2952 */
2953 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2954 goto out;
2955
2956 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2957 goto out;
2958
2959 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2960 goto out;
2961
2962 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2963 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2964
2965out:
2966 return ret;
2967}
2968#endif /* CONFIG_NUMA_BALANCING */
2969
2970/*
2971 * wait_task_inactive - wait for a thread to unschedule.
2972 *
2973 * If @match_state is nonzero, it's the @p->state value just checked and
2974 * not expected to change. If it changes, i.e. @p might have woken up,
2975 * then return zero. When we succeed in waiting for @p to be off its CPU,
2976 * we return a positive number (its total switch count). If a second call
2977 * a short while later returns the same number, the caller can be sure that
2978 * @p has remained unscheduled the whole time.
2979 *
2980 * The caller must ensure that the task *will* unschedule sometime soon,
2981 * else this function might spin for a *long* time. This function can't
2982 * be called with interrupts off, or it may introduce deadlock with
2983 * smp_call_function() if an IPI is sent by the same process we are
2984 * waiting to become inactive.
2985 */
2986unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2987{
2988 int running, queued;
2989 struct rq_flags rf;
2990 unsigned long ncsw;
2991 struct rq *rq;
2992
2993 for (;;) {
2994 /*
2995 * We do the initial early heuristics without holding
2996 * any task-queue locks at all. We'll only try to get
2997 * the runqueue lock when things look like they will
2998 * work out!
2999 */
3000 rq = task_rq(p);
3001
3002 /*
3003 * If the task is actively running on another CPU
3004 * still, just relax and busy-wait without holding
3005 * any locks.
3006 *
3007 * NOTE! Since we don't hold any locks, it's not
3008 * even sure that "rq" stays as the right runqueue!
3009 * But we don't care, since "task_running()" will
3010 * return false if the runqueue has changed and p
3011 * is actually now running somewhere else!
3012 */
3013 while (task_running(rq, p)) {
3014 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3015 return 0;
3016 cpu_relax();
3017 }
3018
3019 /*
3020 * Ok, time to look more closely! We need the rq
3021 * lock now, to be *sure*. If we're wrong, we'll
3022 * just go back and repeat.
3023 */
3024 rq = task_rq_lock(p, &rf);
3025 trace_sched_wait_task(p);
3026 running = task_running(rq, p);
3027 queued = task_on_rq_queued(p);
3028 ncsw = 0;
3029 if (!match_state || READ_ONCE(p->__state) == match_state)
3030 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3031 task_rq_unlock(rq, p, &rf);
3032
3033 /*
3034 * If it changed from the expected state, bail out now.
3035 */
3036 if (unlikely(!ncsw))
3037 break;
3038
3039 /*
3040 * Was it really running after all now that we
3041 * checked with the proper locks actually held?
3042 *
3043 * Oops. Go back and try again..
3044 */
3045 if (unlikely(running)) {
3046 cpu_relax();
3047 continue;
3048 }
3049
3050 /*
3051 * It's not enough that it's not actively running,
3052 * it must be off the runqueue _entirely_, and not
3053 * preempted!
3054 *
3055 * So if it was still runnable (but just not actively
3056 * running right now), it's preempted, and we should
3057 * yield - it could be a while.
3058 */
3059 if (unlikely(queued)) {
3060 ktime_t to = NSEC_PER_SEC / HZ;
3061
3062 set_current_state(TASK_UNINTERRUPTIBLE);
3063 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3064 continue;
3065 }
3066
3067 /*
3068 * Ahh, all good. It wasn't running, and it wasn't
3069 * runnable, which means that it will never become
3070 * running in the future either. We're all done!
3071 */
3072 break;
3073 }
3074
3075 return ncsw;
3076}
3077
3078/***
3079 * kick_process - kick a running thread to enter/exit the kernel
3080 * @p: the to-be-kicked thread
3081 *
3082 * Cause a process which is running on another CPU to enter
3083 * kernel-mode, without any delay. (to get signals handled.)
3084 *
3085 * NOTE: this function doesn't have to take the runqueue lock,
3086 * because all it wants to ensure is that the remote task enters
3087 * the kernel. If the IPI races and the task has been migrated
3088 * to another CPU then no harm is done and the purpose has been
3089 * achieved as well.
3090 */
3091void kick_process(struct task_struct *p)
3092{
3093 int cpu;
3094
3095 preempt_disable();
3096 cpu = task_cpu(p);
3097 if ((cpu != smp_processor_id()) && task_curr(p))
3098 smp_send_reschedule(cpu);
3099 preempt_enable();
3100}
3101EXPORT_SYMBOL_GPL(kick_process);
3102
3103/*
3104 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3105 *
3106 * A few notes on cpu_active vs cpu_online:
3107 *
3108 * - cpu_active must be a subset of cpu_online
3109 *
3110 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3111 * see __set_cpus_allowed_ptr(). At this point the newly online
3112 * CPU isn't yet part of the sched domains, and balancing will not
3113 * see it.
3114 *
3115 * - on CPU-down we clear cpu_active() to mask the sched domains and
3116 * avoid the load balancer to place new tasks on the to be removed
3117 * CPU. Existing tasks will remain running there and will be taken
3118 * off.
3119 *
3120 * This means that fallback selection must not select !active CPUs.
3121 * And can assume that any active CPU must be online. Conversely
3122 * select_task_rq() below may allow selection of !active CPUs in order
3123 * to satisfy the above rules.
3124 */
3125static int select_fallback_rq(int cpu, struct task_struct *p)
3126{
3127 int nid = cpu_to_node(cpu);
3128 const struct cpumask *nodemask = NULL;
3129 enum { cpuset, possible, fail } state = cpuset;
3130 int dest_cpu;
3131
3132 /*
3133 * If the node that the CPU is on has been offlined, cpu_to_node()
3134 * will return -1. There is no CPU on the node, and we should
3135 * select the CPU on the other node.
3136 */
3137 if (nid != -1) {
3138 nodemask = cpumask_of_node(nid);
3139
3140 /* Look for allowed, online CPU in same node. */
3141 for_each_cpu(dest_cpu, nodemask) {
3142 if (!cpu_active(dest_cpu))
3143 continue;
3144 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3145 return dest_cpu;
3146 }
3147 }
3148
3149 for (;;) {
3150 /* Any allowed, online CPU? */
3151 for_each_cpu(dest_cpu, p->cpus_ptr) {
3152 if (!is_cpu_allowed(p, dest_cpu))
3153 continue;
3154
3155 goto out;
3156 }
3157
3158 /* No more Mr. Nice Guy. */
3159 switch (state) {
3160 case cpuset:
3161 if (IS_ENABLED(CONFIG_CPUSETS)) {
3162 cpuset_cpus_allowed_fallback(p);
3163 state = possible;
3164 break;
3165 }
3166 fallthrough;
3167 case possible:
3168 /*
3169 * XXX When called from select_task_rq() we only
3170 * hold p->pi_lock and again violate locking order.
3171 *
3172 * More yuck to audit.
3173 */
3174 do_set_cpus_allowed(p, cpu_possible_mask);
3175 state = fail;
3176 break;
3177
3178 case fail:
3179 BUG();
3180 break;
3181 }
3182 }
3183
3184out:
3185 if (state != cpuset) {
3186 /*
3187 * Don't tell them about moving exiting tasks or
3188 * kernel threads (both mm NULL), since they never
3189 * leave kernel.
3190 */
3191 if (p->mm && printk_ratelimit()) {
3192 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3193 task_pid_nr(p), p->comm, cpu);
3194 }
3195 }
3196
3197 return dest_cpu;
3198}
3199
3200/*
3201 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3202 */
3203static inline
3204int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3205{
3206 lockdep_assert_held(&p->pi_lock);
3207
3208 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3209 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3210 else
3211 cpu = cpumask_any(p->cpus_ptr);
3212
3213 /*
3214 * In order not to call set_task_cpu() on a blocking task we need
3215 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3216 * CPU.
3217 *
3218 * Since this is common to all placement strategies, this lives here.
3219 *
3220 * [ this allows ->select_task() to simply return task_cpu(p) and
3221 * not worry about this generic constraint ]
3222 */
3223 if (unlikely(!is_cpu_allowed(p, cpu)))
3224 cpu = select_fallback_rq(task_cpu(p), p);
3225
3226 return cpu;
3227}
3228
3229void sched_set_stop_task(int cpu, struct task_struct *stop)
3230{
3231 static struct lock_class_key stop_pi_lock;
3232 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3233 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3234
3235 if (stop) {
3236 /*
3237 * Make it appear like a SCHED_FIFO task, its something
3238 * userspace knows about and won't get confused about.
3239 *
3240 * Also, it will make PI more or less work without too
3241 * much confusion -- but then, stop work should not
3242 * rely on PI working anyway.
3243 */
3244 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3245
3246 stop->sched_class = &stop_sched_class;
3247
3248 /*
3249 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3250 * adjust the effective priority of a task. As a result,
3251 * rt_mutex_setprio() can trigger (RT) balancing operations,
3252 * which can then trigger wakeups of the stop thread to push
3253 * around the current task.
3254 *
3255 * The stop task itself will never be part of the PI-chain, it
3256 * never blocks, therefore that ->pi_lock recursion is safe.
3257 * Tell lockdep about this by placing the stop->pi_lock in its
3258 * own class.
3259 */
3260 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3261 }
3262
3263 cpu_rq(cpu)->stop = stop;
3264
3265 if (old_stop) {
3266 /*
3267 * Reset it back to a normal scheduling class so that
3268 * it can die in pieces.
3269 */
3270 old_stop->sched_class = &rt_sched_class;
3271 }
3272}
3273
3274#else /* CONFIG_SMP */
3275
3276static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3277 const struct cpumask *new_mask,
3278 u32 flags)
3279{
3280 return set_cpus_allowed_ptr(p, new_mask);
3281}
3282
3283static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3284
3285static inline bool rq_has_pinned_tasks(struct rq *rq)
3286{
3287 return false;
3288}
3289
3290#endif /* !CONFIG_SMP */
3291
3292static void
3293ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3294{
3295 struct rq *rq;
3296
3297 if (!schedstat_enabled())
3298 return;
3299
3300 rq = this_rq();
3301
3302#ifdef CONFIG_SMP
3303 if (cpu == rq->cpu) {
3304 __schedstat_inc(rq->ttwu_local);
3305 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3306 } else {
3307 struct sched_domain *sd;
3308
3309 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3310 rcu_read_lock();
3311 for_each_domain(rq->cpu, sd) {
3312 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3313 __schedstat_inc(sd->ttwu_wake_remote);
3314 break;
3315 }
3316 }
3317 rcu_read_unlock();
3318 }
3319
3320 if (wake_flags & WF_MIGRATED)
3321 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3322#endif /* CONFIG_SMP */
3323
3324 __schedstat_inc(rq->ttwu_count);
3325 __schedstat_inc(p->se.statistics.nr_wakeups);
3326
3327 if (wake_flags & WF_SYNC)
3328 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3329}
3330
3331/*
3332 * Mark the task runnable and perform wakeup-preemption.
3333 */
3334static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3335 struct rq_flags *rf)
3336{
3337 check_preempt_curr(rq, p, wake_flags);
3338 WRITE_ONCE(p->__state, TASK_RUNNING);
3339 trace_sched_wakeup(p);
3340
3341#ifdef CONFIG_SMP
3342 if (p->sched_class->task_woken) {
3343 /*
3344 * Our task @p is fully woken up and running; so it's safe to
3345 * drop the rq->lock, hereafter rq is only used for statistics.
3346 */
3347 rq_unpin_lock(rq, rf);
3348 p->sched_class->task_woken(rq, p);
3349 rq_repin_lock(rq, rf);
3350 }
3351
3352 if (rq->idle_stamp) {
3353 u64 delta = rq_clock(rq) - rq->idle_stamp;
3354 u64 max = 2*rq->max_idle_balance_cost;
3355
3356 update_avg(&rq->avg_idle, delta);
3357
3358 if (rq->avg_idle > max)
3359 rq->avg_idle = max;
3360
3361 rq->wake_stamp = jiffies;
3362 rq->wake_avg_idle = rq->avg_idle / 2;
3363
3364 rq->idle_stamp = 0;
3365 }
3366#endif
3367}
3368
3369static void
3370ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3371 struct rq_flags *rf)
3372{
3373 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3374
3375 lockdep_assert_rq_held(rq);
3376
3377 if (p->sched_contributes_to_load)
3378 rq->nr_uninterruptible--;
3379
3380#ifdef CONFIG_SMP
3381 if (wake_flags & WF_MIGRATED)
3382 en_flags |= ENQUEUE_MIGRATED;
3383 else
3384#endif
3385 if (p->in_iowait) {
3386 delayacct_blkio_end(p);
3387 atomic_dec(&task_rq(p)->nr_iowait);
3388 }
3389
3390 activate_task(rq, p, en_flags);
3391 ttwu_do_wakeup(rq, p, wake_flags, rf);
3392}
3393
3394/*
3395 * Consider @p being inside a wait loop:
3396 *
3397 * for (;;) {
3398 * set_current_state(TASK_UNINTERRUPTIBLE);
3399 *
3400 * if (CONDITION)
3401 * break;
3402 *
3403 * schedule();
3404 * }
3405 * __set_current_state(TASK_RUNNING);
3406 *
3407 * between set_current_state() and schedule(). In this case @p is still
3408 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3409 * an atomic manner.
3410 *
3411 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3412 * then schedule() must still happen and p->state can be changed to
3413 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3414 * need to do a full wakeup with enqueue.
3415 *
3416 * Returns: %true when the wakeup is done,
3417 * %false otherwise.
3418 */
3419static int ttwu_runnable(struct task_struct *p, int wake_flags)
3420{
3421 struct rq_flags rf;
3422 struct rq *rq;
3423 int ret = 0;
3424
3425 rq = __task_rq_lock(p, &rf);
3426 if (task_on_rq_queued(p)) {
3427 /* check_preempt_curr() may use rq clock */
3428 update_rq_clock(rq);
3429 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3430 ret = 1;
3431 }
3432 __task_rq_unlock(rq, &rf);
3433
3434 return ret;
3435}
3436
3437#ifdef CONFIG_SMP
3438void sched_ttwu_pending(void *arg)
3439{
3440 struct llist_node *llist = arg;
3441 struct rq *rq = this_rq();
3442 struct task_struct *p, *t;
3443 struct rq_flags rf;
3444
3445 if (!llist)
3446 return;
3447
3448 /*
3449 * rq::ttwu_pending racy indication of out-standing wakeups.
3450 * Races such that false-negatives are possible, since they
3451 * are shorter lived that false-positives would be.
3452 */
3453 WRITE_ONCE(rq->ttwu_pending, 0);
3454
3455 rq_lock_irqsave(rq, &rf);
3456 update_rq_clock(rq);
3457
3458 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3459 if (WARN_ON_ONCE(p->on_cpu))
3460 smp_cond_load_acquire(&p->on_cpu, !VAL);
3461
3462 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3463 set_task_cpu(p, cpu_of(rq));
3464
3465 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3466 }
3467
3468 rq_unlock_irqrestore(rq, &rf);
3469}
3470
3471void send_call_function_single_ipi(int cpu)
3472{
3473 struct rq *rq = cpu_rq(cpu);
3474
3475 if (!set_nr_if_polling(rq->idle))
3476 arch_send_call_function_single_ipi(cpu);
3477 else
3478 trace_sched_wake_idle_without_ipi(cpu);
3479}
3480
3481/*
3482 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3483 * necessary. The wakee CPU on receipt of the IPI will queue the task
3484 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3485 * of the wakeup instead of the waker.
3486 */
3487static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3488{
3489 struct rq *rq = cpu_rq(cpu);
3490
3491 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3492
3493 WRITE_ONCE(rq->ttwu_pending, 1);
3494 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3495}
3496
3497void wake_up_if_idle(int cpu)
3498{
3499 struct rq *rq = cpu_rq(cpu);
3500 struct rq_flags rf;
3501
3502 rcu_read_lock();
3503
3504 if (!is_idle_task(rcu_dereference(rq->curr)))
3505 goto out;
3506
3507 if (set_nr_if_polling(rq->idle)) {
3508 trace_sched_wake_idle_without_ipi(cpu);
3509 } else {
3510 rq_lock_irqsave(rq, &rf);
3511 if (is_idle_task(rq->curr))
3512 smp_send_reschedule(cpu);
3513 /* Else CPU is not idle, do nothing here: */
3514 rq_unlock_irqrestore(rq, &rf);
3515 }
3516
3517out:
3518 rcu_read_unlock();
3519}
3520
3521bool cpus_share_cache(int this_cpu, int that_cpu)
3522{
3523 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3524}
3525
3526static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3527{
3528 /*
3529 * Do not complicate things with the async wake_list while the CPU is
3530 * in hotplug state.
3531 */
3532 if (!cpu_active(cpu))
3533 return false;
3534
3535 /*
3536 * If the CPU does not share cache, then queue the task on the
3537 * remote rqs wakelist to avoid accessing remote data.
3538 */
3539 if (!cpus_share_cache(smp_processor_id(), cpu))
3540 return true;
3541
3542 /*
3543 * If the task is descheduling and the only running task on the
3544 * CPU then use the wakelist to offload the task activation to
3545 * the soon-to-be-idle CPU as the current CPU is likely busy.
3546 * nr_running is checked to avoid unnecessary task stacking.
3547 */
3548 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3549 return true;
3550
3551 return false;
3552}
3553
3554static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3555{
3556 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3557 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3558 return false;
3559
3560 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3561 __ttwu_queue_wakelist(p, cpu, wake_flags);
3562 return true;
3563 }
3564
3565 return false;
3566}
3567
3568#else /* !CONFIG_SMP */
3569
3570static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3571{
3572 return false;
3573}
3574
3575#endif /* CONFIG_SMP */
3576
3577static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3578{
3579 struct rq *rq = cpu_rq(cpu);
3580 struct rq_flags rf;
3581
3582 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3583 return;
3584
3585 rq_lock(rq, &rf);
3586 update_rq_clock(rq);
3587 ttwu_do_activate(rq, p, wake_flags, &rf);
3588 rq_unlock(rq, &rf);
3589}
3590
3591/*
3592 * Notes on Program-Order guarantees on SMP systems.
3593 *
3594 * MIGRATION
3595 *
3596 * The basic program-order guarantee on SMP systems is that when a task [t]
3597 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3598 * execution on its new CPU [c1].
3599 *
3600 * For migration (of runnable tasks) this is provided by the following means:
3601 *
3602 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3603 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3604 * rq(c1)->lock (if not at the same time, then in that order).
3605 * C) LOCK of the rq(c1)->lock scheduling in task
3606 *
3607 * Release/acquire chaining guarantees that B happens after A and C after B.
3608 * Note: the CPU doing B need not be c0 or c1
3609 *
3610 * Example:
3611 *
3612 * CPU0 CPU1 CPU2
3613 *
3614 * LOCK rq(0)->lock
3615 * sched-out X
3616 * sched-in Y
3617 * UNLOCK rq(0)->lock
3618 *
3619 * LOCK rq(0)->lock // orders against CPU0
3620 * dequeue X
3621 * UNLOCK rq(0)->lock
3622 *
3623 * LOCK rq(1)->lock
3624 * enqueue X
3625 * UNLOCK rq(1)->lock
3626 *
3627 * LOCK rq(1)->lock // orders against CPU2
3628 * sched-out Z
3629 * sched-in X
3630 * UNLOCK rq(1)->lock
3631 *
3632 *
3633 * BLOCKING -- aka. SLEEP + WAKEUP
3634 *
3635 * For blocking we (obviously) need to provide the same guarantee as for
3636 * migration. However the means are completely different as there is no lock
3637 * chain to provide order. Instead we do:
3638 *
3639 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3640 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3641 *
3642 * Example:
3643 *
3644 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3645 *
3646 * LOCK rq(0)->lock LOCK X->pi_lock
3647 * dequeue X
3648 * sched-out X
3649 * smp_store_release(X->on_cpu, 0);
3650 *
3651 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3652 * X->state = WAKING
3653 * set_task_cpu(X,2)
3654 *
3655 * LOCK rq(2)->lock
3656 * enqueue X
3657 * X->state = RUNNING
3658 * UNLOCK rq(2)->lock
3659 *
3660 * LOCK rq(2)->lock // orders against CPU1
3661 * sched-out Z
3662 * sched-in X
3663 * UNLOCK rq(2)->lock
3664 *
3665 * UNLOCK X->pi_lock
3666 * UNLOCK rq(0)->lock
3667 *
3668 *
3669 * However, for wakeups there is a second guarantee we must provide, namely we
3670 * must ensure that CONDITION=1 done by the caller can not be reordered with
3671 * accesses to the task state; see try_to_wake_up() and set_current_state().
3672 */
3673
3674/**
3675 * try_to_wake_up - wake up a thread
3676 * @p: the thread to be awakened
3677 * @state: the mask of task states that can be woken
3678 * @wake_flags: wake modifier flags (WF_*)
3679 *
3680 * Conceptually does:
3681 *
3682 * If (@state & @p->state) @p->state = TASK_RUNNING.
3683 *
3684 * If the task was not queued/runnable, also place it back on a runqueue.
3685 *
3686 * This function is atomic against schedule() which would dequeue the task.
3687 *
3688 * It issues a full memory barrier before accessing @p->state, see the comment
3689 * with set_current_state().
3690 *
3691 * Uses p->pi_lock to serialize against concurrent wake-ups.
3692 *
3693 * Relies on p->pi_lock stabilizing:
3694 * - p->sched_class
3695 * - p->cpus_ptr
3696 * - p->sched_task_group
3697 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3698 *
3699 * Tries really hard to only take one task_rq(p)->lock for performance.
3700 * Takes rq->lock in:
3701 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3702 * - ttwu_queue() -- new rq, for enqueue of the task;
3703 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3704 *
3705 * As a consequence we race really badly with just about everything. See the
3706 * many memory barriers and their comments for details.
3707 *
3708 * Return: %true if @p->state changes (an actual wakeup was done),
3709 * %false otherwise.
3710 */
3711static int
3712try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3713{
3714 unsigned long flags;
3715 int cpu, success = 0;
3716
3717 preempt_disable();
3718 if (p == current) {
3719 /*
3720 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3721 * == smp_processor_id()'. Together this means we can special
3722 * case the whole 'p->on_rq && ttwu_runnable()' case below
3723 * without taking any locks.
3724 *
3725 * In particular:
3726 * - we rely on Program-Order guarantees for all the ordering,
3727 * - we're serialized against set_special_state() by virtue of
3728 * it disabling IRQs (this allows not taking ->pi_lock).
3729 */
3730 if (!(READ_ONCE(p->__state) & state))
3731 goto out;
3732
3733 success = 1;
3734 trace_sched_waking(p);
3735 WRITE_ONCE(p->__state, TASK_RUNNING);
3736 trace_sched_wakeup(p);
3737 goto out;
3738 }
3739
3740 /*
3741 * If we are going to wake up a thread waiting for CONDITION we
3742 * need to ensure that CONDITION=1 done by the caller can not be
3743 * reordered with p->state check below. This pairs with smp_store_mb()
3744 * in set_current_state() that the waiting thread does.
3745 */
3746 raw_spin_lock_irqsave(&p->pi_lock, flags);
3747 smp_mb__after_spinlock();
3748 if (!(READ_ONCE(p->__state) & state))
3749 goto unlock;
3750
3751 trace_sched_waking(p);
3752
3753 /* We're going to change ->state: */
3754 success = 1;
3755
3756 /*
3757 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3758 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3759 * in smp_cond_load_acquire() below.
3760 *
3761 * sched_ttwu_pending() try_to_wake_up()
3762 * STORE p->on_rq = 1 LOAD p->state
3763 * UNLOCK rq->lock
3764 *
3765 * __schedule() (switch to task 'p')
3766 * LOCK rq->lock smp_rmb();
3767 * smp_mb__after_spinlock();
3768 * UNLOCK rq->lock
3769 *
3770 * [task p]
3771 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3772 *
3773 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3774 * __schedule(). See the comment for smp_mb__after_spinlock().
3775 *
3776 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3777 */
3778 smp_rmb();
3779 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3780 goto unlock;
3781
3782#ifdef CONFIG_SMP
3783 /*
3784 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3785 * possible to, falsely, observe p->on_cpu == 0.
3786 *
3787 * One must be running (->on_cpu == 1) in order to remove oneself
3788 * from the runqueue.
3789 *
3790 * __schedule() (switch to task 'p') try_to_wake_up()
3791 * STORE p->on_cpu = 1 LOAD p->on_rq
3792 * UNLOCK rq->lock
3793 *
3794 * __schedule() (put 'p' to sleep)
3795 * LOCK rq->lock smp_rmb();
3796 * smp_mb__after_spinlock();
3797 * STORE p->on_rq = 0 LOAD p->on_cpu
3798 *
3799 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3800 * __schedule(). See the comment for smp_mb__after_spinlock().
3801 *
3802 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3803 * schedule()'s deactivate_task() has 'happened' and p will no longer
3804 * care about it's own p->state. See the comment in __schedule().
3805 */
3806 smp_acquire__after_ctrl_dep();
3807
3808 /*
3809 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3810 * == 0), which means we need to do an enqueue, change p->state to
3811 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3812 * enqueue, such as ttwu_queue_wakelist().
3813 */
3814 WRITE_ONCE(p->__state, TASK_WAKING);
3815
3816 /*
3817 * If the owning (remote) CPU is still in the middle of schedule() with
3818 * this task as prev, considering queueing p on the remote CPUs wake_list
3819 * which potentially sends an IPI instead of spinning on p->on_cpu to
3820 * let the waker make forward progress. This is safe because IRQs are
3821 * disabled and the IPI will deliver after on_cpu is cleared.
3822 *
3823 * Ensure we load task_cpu(p) after p->on_cpu:
3824 *
3825 * set_task_cpu(p, cpu);
3826 * STORE p->cpu = @cpu
3827 * __schedule() (switch to task 'p')
3828 * LOCK rq->lock
3829 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3830 * STORE p->on_cpu = 1 LOAD p->cpu
3831 *
3832 * to ensure we observe the correct CPU on which the task is currently
3833 * scheduling.
3834 */
3835 if (smp_load_acquire(&p->on_cpu) &&
3836 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3837 goto unlock;
3838
3839 /*
3840 * If the owning (remote) CPU is still in the middle of schedule() with
3841 * this task as prev, wait until it's done referencing the task.
3842 *
3843 * Pairs with the smp_store_release() in finish_task().
3844 *
3845 * This ensures that tasks getting woken will be fully ordered against
3846 * their previous state and preserve Program Order.
3847 */
3848 smp_cond_load_acquire(&p->on_cpu, !VAL);
3849
3850 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3851 if (task_cpu(p) != cpu) {
3852 if (p->in_iowait) {
3853 delayacct_blkio_end(p);
3854 atomic_dec(&task_rq(p)->nr_iowait);
3855 }
3856
3857 wake_flags |= WF_MIGRATED;
3858 psi_ttwu_dequeue(p);
3859 set_task_cpu(p, cpu);
3860 }
3861#else
3862 cpu = task_cpu(p);
3863#endif /* CONFIG_SMP */
3864
3865 ttwu_queue(p, cpu, wake_flags);
3866unlock:
3867 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3868out:
3869 if (success)
3870 ttwu_stat(p, task_cpu(p), wake_flags);
3871 preempt_enable();
3872
3873 return success;
3874}
3875
3876/**
3877 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3878 * @p: Process for which the function is to be invoked, can be @current.
3879 * @func: Function to invoke.
3880 * @arg: Argument to function.
3881 *
3882 * If the specified task can be quickly locked into a definite state
3883 * (either sleeping or on a given runqueue), arrange to keep it in that
3884 * state while invoking @func(@arg). This function can use ->on_rq and
3885 * task_curr() to work out what the state is, if required. Given that
3886 * @func can be invoked with a runqueue lock held, it had better be quite
3887 * lightweight.
3888 *
3889 * Returns:
3890 * @false if the task slipped out from under the locks.
3891 * @true if the task was locked onto a runqueue or is sleeping.
3892 * However, @func can override this by returning @false.
3893 */
3894bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3895{
3896 struct rq_flags rf;
3897 bool ret = false;
3898 struct rq *rq;
3899
3900 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3901 if (p->on_rq) {
3902 rq = __task_rq_lock(p, &rf);
3903 if (task_rq(p) == rq)
3904 ret = func(p, arg);
3905 rq_unlock(rq, &rf);
3906 } else {
3907 switch (READ_ONCE(p->__state)) {
3908 case TASK_RUNNING:
3909 case TASK_WAKING:
3910 break;
3911 default:
3912 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3913 if (!p->on_rq)
3914 ret = func(p, arg);
3915 }
3916 }
3917 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3918 return ret;
3919}
3920
3921/**
3922 * wake_up_process - Wake up a specific process
3923 * @p: The process to be woken up.
3924 *
3925 * Attempt to wake up the nominated process and move it to the set of runnable
3926 * processes.
3927 *
3928 * Return: 1 if the process was woken up, 0 if it was already running.
3929 *
3930 * This function executes a full memory barrier before accessing the task state.
3931 */
3932int wake_up_process(struct task_struct *p)
3933{
3934 return try_to_wake_up(p, TASK_NORMAL, 0);
3935}
3936EXPORT_SYMBOL(wake_up_process);
3937
3938int wake_up_state(struct task_struct *p, unsigned int state)
3939{
3940 return try_to_wake_up(p, state, 0);
3941}
3942
3943/*
3944 * Perform scheduler related setup for a newly forked process p.
3945 * p is forked by current.
3946 *
3947 * __sched_fork() is basic setup used by init_idle() too:
3948 */
3949static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3950{
3951 p->on_rq = 0;
3952
3953 p->se.on_rq = 0;
3954 p->se.exec_start = 0;
3955 p->se.sum_exec_runtime = 0;
3956 p->se.prev_sum_exec_runtime = 0;
3957 p->se.nr_migrations = 0;
3958 p->se.vruntime = 0;
3959 INIT_LIST_HEAD(&p->se.group_node);
3960
3961#ifdef CONFIG_FAIR_GROUP_SCHED
3962 p->se.cfs_rq = NULL;
3963#endif
3964
3965#ifdef CONFIG_SCHEDSTATS
3966 /* Even if schedstat is disabled, there should not be garbage */
3967 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3968#endif
3969
3970 RB_CLEAR_NODE(&p->dl.rb_node);
3971 init_dl_task_timer(&p->dl);
3972 init_dl_inactive_task_timer(&p->dl);
3973 __dl_clear_params(p);
3974
3975 INIT_LIST_HEAD(&p->rt.run_list);
3976 p->rt.timeout = 0;
3977 p->rt.time_slice = sched_rr_timeslice;
3978 p->rt.on_rq = 0;
3979 p->rt.on_list = 0;
3980
3981#ifdef CONFIG_PREEMPT_NOTIFIERS
3982 INIT_HLIST_HEAD(&p->preempt_notifiers);
3983#endif
3984
3985#ifdef CONFIG_COMPACTION
3986 p->capture_control = NULL;
3987#endif
3988 init_numa_balancing(clone_flags, p);
3989#ifdef CONFIG_SMP
3990 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3991 p->migration_pending = NULL;
3992#endif
3993}
3994
3995DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3996
3997#ifdef CONFIG_NUMA_BALANCING
3998
3999void set_numabalancing_state(bool enabled)
4000{
4001 if (enabled)
4002 static_branch_enable(&sched_numa_balancing);
4003 else
4004 static_branch_disable(&sched_numa_balancing);
4005}
4006
4007#ifdef CONFIG_PROC_SYSCTL
4008int sysctl_numa_balancing(struct ctl_table *table, int write,
4009 void *buffer, size_t *lenp, loff_t *ppos)
4010{
4011 struct ctl_table t;
4012 int err;
4013 int state = static_branch_likely(&sched_numa_balancing);
4014
4015 if (write && !capable(CAP_SYS_ADMIN))
4016 return -EPERM;
4017
4018 t = *table;
4019 t.data = &state;
4020 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4021 if (err < 0)
4022 return err;
4023 if (write)
4024 set_numabalancing_state(state);
4025 return err;
4026}
4027#endif
4028#endif
4029
4030#ifdef CONFIG_SCHEDSTATS
4031
4032DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4033
4034static void set_schedstats(bool enabled)
4035{
4036 if (enabled)
4037 static_branch_enable(&sched_schedstats);
4038 else
4039 static_branch_disable(&sched_schedstats);
4040}
4041
4042void force_schedstat_enabled(void)
4043{
4044 if (!schedstat_enabled()) {
4045 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4046 static_branch_enable(&sched_schedstats);
4047 }
4048}
4049
4050static int __init setup_schedstats(char *str)
4051{
4052 int ret = 0;
4053 if (!str)
4054 goto out;
4055
4056 if (!strcmp(str, "enable")) {
4057 set_schedstats(true);
4058 ret = 1;
4059 } else if (!strcmp(str, "disable")) {
4060 set_schedstats(false);
4061 ret = 1;
4062 }
4063out:
4064 if (!ret)
4065 pr_warn("Unable to parse schedstats=\n");
4066
4067 return ret;
4068}
4069__setup("schedstats=", setup_schedstats);
4070
4071#ifdef CONFIG_PROC_SYSCTL
4072int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4073 size_t *lenp, loff_t *ppos)
4074{
4075 struct ctl_table t;
4076 int err;
4077 int state = static_branch_likely(&sched_schedstats);
4078
4079 if (write && !capable(CAP_SYS_ADMIN))
4080 return -EPERM;
4081
4082 t = *table;
4083 t.data = &state;
4084 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4085 if (err < 0)
4086 return err;
4087 if (write)
4088 set_schedstats(state);
4089 return err;
4090}
4091#endif /* CONFIG_PROC_SYSCTL */
4092#endif /* CONFIG_SCHEDSTATS */
4093
4094/*
4095 * fork()/clone()-time setup:
4096 */
4097int sched_fork(unsigned long clone_flags, struct task_struct *p)
4098{
4099 unsigned long flags;
4100
4101 __sched_fork(clone_flags, p);
4102 /*
4103 * We mark the process as NEW here. This guarantees that
4104 * nobody will actually run it, and a signal or other external
4105 * event cannot wake it up and insert it on the runqueue either.
4106 */
4107 p->__state = TASK_NEW;
4108
4109 /*
4110 * Make sure we do not leak PI boosting priority to the child.
4111 */
4112 p->prio = current->normal_prio;
4113
4114 uclamp_fork(p);
4115
4116 /*
4117 * Revert to default priority/policy on fork if requested.
4118 */
4119 if (unlikely(p->sched_reset_on_fork)) {
4120 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4121 p->policy = SCHED_NORMAL;
4122 p->static_prio = NICE_TO_PRIO(0);
4123 p->rt_priority = 0;
4124 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4125 p->static_prio = NICE_TO_PRIO(0);
4126
4127 p->prio = p->normal_prio = p->static_prio;
4128 set_load_weight(p, false);
4129
4130 /*
4131 * We don't need the reset flag anymore after the fork. It has
4132 * fulfilled its duty:
4133 */
4134 p->sched_reset_on_fork = 0;
4135 }
4136
4137 if (dl_prio(p->prio))
4138 return -EAGAIN;
4139 else if (rt_prio(p->prio))
4140 p->sched_class = &rt_sched_class;
4141 else
4142 p->sched_class = &fair_sched_class;
4143
4144 init_entity_runnable_average(&p->se);
4145
4146 /*
4147 * The child is not yet in the pid-hash so no cgroup attach races,
4148 * and the cgroup is pinned to this child due to cgroup_fork()
4149 * is ran before sched_fork().
4150 *
4151 * Silence PROVE_RCU.
4152 */
4153 raw_spin_lock_irqsave(&p->pi_lock, flags);
4154 rseq_migrate(p);
4155 /*
4156 * We're setting the CPU for the first time, we don't migrate,
4157 * so use __set_task_cpu().
4158 */
4159 __set_task_cpu(p, smp_processor_id());
4160 if (p->sched_class->task_fork)
4161 p->sched_class->task_fork(p);
4162 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4163
4164#ifdef CONFIG_SCHED_INFO
4165 if (likely(sched_info_on()))
4166 memset(&p->sched_info, 0, sizeof(p->sched_info));
4167#endif
4168#if defined(CONFIG_SMP)
4169 p->on_cpu = 0;
4170#endif
4171 init_task_preempt_count(p);
4172#ifdef CONFIG_SMP
4173 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4174 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4175#endif
4176 return 0;
4177}
4178
4179void sched_post_fork(struct task_struct *p)
4180{
4181 uclamp_post_fork(p);
4182}
4183
4184unsigned long to_ratio(u64 period, u64 runtime)
4185{
4186 if (runtime == RUNTIME_INF)
4187 return BW_UNIT;
4188
4189 /*
4190 * Doing this here saves a lot of checks in all
4191 * the calling paths, and returning zero seems
4192 * safe for them anyway.
4193 */
4194 if (period == 0)
4195 return 0;
4196
4197 return div64_u64(runtime << BW_SHIFT, period);
4198}
4199
4200/*
4201 * wake_up_new_task - wake up a newly created task for the first time.
4202 *
4203 * This function will do some initial scheduler statistics housekeeping
4204 * that must be done for every newly created context, then puts the task
4205 * on the runqueue and wakes it.
4206 */
4207void wake_up_new_task(struct task_struct *p)
4208{
4209 struct rq_flags rf;
4210 struct rq *rq;
4211
4212 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4213 WRITE_ONCE(p->__state, TASK_RUNNING);
4214#ifdef CONFIG_SMP
4215 /*
4216 * Fork balancing, do it here and not earlier because:
4217 * - cpus_ptr can change in the fork path
4218 * - any previously selected CPU might disappear through hotplug
4219 *
4220 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4221 * as we're not fully set-up yet.
4222 */
4223 p->recent_used_cpu = task_cpu(p);
4224 rseq_migrate(p);
4225 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4226#endif
4227 rq = __task_rq_lock(p, &rf);
4228 update_rq_clock(rq);
4229 post_init_entity_util_avg(p);
4230
4231 activate_task(rq, p, ENQUEUE_NOCLOCK);
4232 trace_sched_wakeup_new(p);
4233 check_preempt_curr(rq, p, WF_FORK);
4234#ifdef CONFIG_SMP
4235 if (p->sched_class->task_woken) {
4236 /*
4237 * Nothing relies on rq->lock after this, so it's fine to
4238 * drop it.
4239 */
4240 rq_unpin_lock(rq, &rf);
4241 p->sched_class->task_woken(rq, p);
4242 rq_repin_lock(rq, &rf);
4243 }
4244#endif
4245 task_rq_unlock(rq, p, &rf);
4246}
4247
4248#ifdef CONFIG_PREEMPT_NOTIFIERS
4249
4250static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4251
4252void preempt_notifier_inc(void)
4253{
4254 static_branch_inc(&preempt_notifier_key);
4255}
4256EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4257
4258void preempt_notifier_dec(void)
4259{
4260 static_branch_dec(&preempt_notifier_key);
4261}
4262EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4263
4264/**
4265 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4266 * @notifier: notifier struct to register
4267 */
4268void preempt_notifier_register(struct preempt_notifier *notifier)
4269{
4270 if (!static_branch_unlikely(&preempt_notifier_key))
4271 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4272
4273 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4274}
4275EXPORT_SYMBOL_GPL(preempt_notifier_register);
4276
4277/**
4278 * preempt_notifier_unregister - no longer interested in preemption notifications
4279 * @notifier: notifier struct to unregister
4280 *
4281 * This is *not* safe to call from within a preemption notifier.
4282 */
4283void preempt_notifier_unregister(struct preempt_notifier *notifier)
4284{
4285 hlist_del(¬ifier->link);
4286}
4287EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4288
4289static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4290{
4291 struct preempt_notifier *notifier;
4292
4293 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4294 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4295}
4296
4297static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4298{
4299 if (static_branch_unlikely(&preempt_notifier_key))
4300 __fire_sched_in_preempt_notifiers(curr);
4301}
4302
4303static void
4304__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4305 struct task_struct *next)
4306{
4307 struct preempt_notifier *notifier;
4308
4309 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4310 notifier->ops->sched_out(notifier, next);
4311}
4312
4313static __always_inline void
4314fire_sched_out_preempt_notifiers(struct task_struct *curr,
4315 struct task_struct *next)
4316{
4317 if (static_branch_unlikely(&preempt_notifier_key))
4318 __fire_sched_out_preempt_notifiers(curr, next);
4319}
4320
4321#else /* !CONFIG_PREEMPT_NOTIFIERS */
4322
4323static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4324{
4325}
4326
4327static inline void
4328fire_sched_out_preempt_notifiers(struct task_struct *curr,
4329 struct task_struct *next)
4330{
4331}
4332
4333#endif /* CONFIG_PREEMPT_NOTIFIERS */
4334
4335static inline void prepare_task(struct task_struct *next)
4336{
4337#ifdef CONFIG_SMP
4338 /*
4339 * Claim the task as running, we do this before switching to it
4340 * such that any running task will have this set.
4341 *
4342 * See the ttwu() WF_ON_CPU case and its ordering comment.
4343 */
4344 WRITE_ONCE(next->on_cpu, 1);
4345#endif
4346}
4347
4348static inline void finish_task(struct task_struct *prev)
4349{
4350#ifdef CONFIG_SMP
4351 /*
4352 * This must be the very last reference to @prev from this CPU. After
4353 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4354 * must ensure this doesn't happen until the switch is completely
4355 * finished.
4356 *
4357 * In particular, the load of prev->state in finish_task_switch() must
4358 * happen before this.
4359 *
4360 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4361 */
4362 smp_store_release(&prev->on_cpu, 0);
4363#endif
4364}
4365
4366#ifdef CONFIG_SMP
4367
4368static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4369{
4370 void (*func)(struct rq *rq);
4371 struct callback_head *next;
4372
4373 lockdep_assert_rq_held(rq);
4374
4375 while (head) {
4376 func = (void (*)(struct rq *))head->func;
4377 next = head->next;
4378 head->next = NULL;
4379 head = next;
4380
4381 func(rq);
4382 }
4383}
4384
4385static void balance_push(struct rq *rq);
4386
4387struct callback_head balance_push_callback = {
4388 .next = NULL,
4389 .func = (void (*)(struct callback_head *))balance_push,
4390};
4391
4392static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4393{
4394 struct callback_head *head = rq->balance_callback;
4395
4396 lockdep_assert_rq_held(rq);
4397 if (head)
4398 rq->balance_callback = NULL;
4399
4400 return head;
4401}
4402
4403static void __balance_callbacks(struct rq *rq)
4404{
4405 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4406}
4407
4408static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4409{
4410 unsigned long flags;
4411
4412 if (unlikely(head)) {
4413 raw_spin_rq_lock_irqsave(rq, flags);
4414 do_balance_callbacks(rq, head);
4415 raw_spin_rq_unlock_irqrestore(rq, flags);
4416 }
4417}
4418
4419#else
4420
4421static inline void __balance_callbacks(struct rq *rq)
4422{
4423}
4424
4425static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4426{
4427 return NULL;
4428}
4429
4430static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4431{
4432}
4433
4434#endif
4435
4436static inline void
4437prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4438{
4439 /*
4440 * Since the runqueue lock will be released by the next
4441 * task (which is an invalid locking op but in the case
4442 * of the scheduler it's an obvious special-case), so we
4443 * do an early lockdep release here:
4444 */
4445 rq_unpin_lock(rq, rf);
4446 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4447#ifdef CONFIG_DEBUG_SPINLOCK
4448 /* this is a valid case when another task releases the spinlock */
4449 rq_lockp(rq)->owner = next;
4450#endif
4451}
4452
4453static inline void finish_lock_switch(struct rq *rq)
4454{
4455 /*
4456 * If we are tracking spinlock dependencies then we have to
4457 * fix up the runqueue lock - which gets 'carried over' from
4458 * prev into current:
4459 */
4460 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4461 __balance_callbacks(rq);
4462 raw_spin_rq_unlock_irq(rq);
4463}
4464
4465/*
4466 * NOP if the arch has not defined these:
4467 */
4468
4469#ifndef prepare_arch_switch
4470# define prepare_arch_switch(next) do { } while (0)
4471#endif
4472
4473#ifndef finish_arch_post_lock_switch
4474# define finish_arch_post_lock_switch() do { } while (0)
4475#endif
4476
4477static inline void kmap_local_sched_out(void)
4478{
4479#ifdef CONFIG_KMAP_LOCAL
4480 if (unlikely(current->kmap_ctrl.idx))
4481 __kmap_local_sched_out();
4482#endif
4483}
4484
4485static inline void kmap_local_sched_in(void)
4486{
4487#ifdef CONFIG_KMAP_LOCAL
4488 if (unlikely(current->kmap_ctrl.idx))
4489 __kmap_local_sched_in();
4490#endif
4491}
4492
4493/**
4494 * prepare_task_switch - prepare to switch tasks
4495 * @rq: the runqueue preparing to switch
4496 * @prev: the current task that is being switched out
4497 * @next: the task we are going to switch to.
4498 *
4499 * This is called with the rq lock held and interrupts off. It must
4500 * be paired with a subsequent finish_task_switch after the context
4501 * switch.
4502 *
4503 * prepare_task_switch sets up locking and calls architecture specific
4504 * hooks.
4505 */
4506static inline void
4507prepare_task_switch(struct rq *rq, struct task_struct *prev,
4508 struct task_struct *next)
4509{
4510 kcov_prepare_switch(prev);
4511 sched_info_switch(rq, prev, next);
4512 perf_event_task_sched_out(prev, next);
4513 rseq_preempt(prev);
4514 fire_sched_out_preempt_notifiers(prev, next);
4515 kmap_local_sched_out();
4516 prepare_task(next);
4517 prepare_arch_switch(next);
4518}
4519
4520/**
4521 * finish_task_switch - clean up after a task-switch
4522 * @prev: the thread we just switched away from.
4523 *
4524 * finish_task_switch must be called after the context switch, paired
4525 * with a prepare_task_switch call before the context switch.
4526 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4527 * and do any other architecture-specific cleanup actions.
4528 *
4529 * Note that we may have delayed dropping an mm in context_switch(). If
4530 * so, we finish that here outside of the runqueue lock. (Doing it
4531 * with the lock held can cause deadlocks; see schedule() for
4532 * details.)
4533 *
4534 * The context switch have flipped the stack from under us and restored the
4535 * local variables which were saved when this task called schedule() in the
4536 * past. prev == current is still correct but we need to recalculate this_rq
4537 * because prev may have moved to another CPU.
4538 */
4539static struct rq *finish_task_switch(struct task_struct *prev)
4540 __releases(rq->lock)
4541{
4542 struct rq *rq = this_rq();
4543 struct mm_struct *mm = rq->prev_mm;
4544 long prev_state;
4545
4546 /*
4547 * The previous task will have left us with a preempt_count of 2
4548 * because it left us after:
4549 *
4550 * schedule()
4551 * preempt_disable(); // 1
4552 * __schedule()
4553 * raw_spin_lock_irq(&rq->lock) // 2
4554 *
4555 * Also, see FORK_PREEMPT_COUNT.
4556 */
4557 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4558 "corrupted preempt_count: %s/%d/0x%x\n",
4559 current->comm, current->pid, preempt_count()))
4560 preempt_count_set(FORK_PREEMPT_COUNT);
4561
4562 rq->prev_mm = NULL;
4563
4564 /*
4565 * A task struct has one reference for the use as "current".
4566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4567 * schedule one last time. The schedule call will never return, and
4568 * the scheduled task must drop that reference.
4569 *
4570 * We must observe prev->state before clearing prev->on_cpu (in
4571 * finish_task), otherwise a concurrent wakeup can get prev
4572 * running on another CPU and we could rave with its RUNNING -> DEAD
4573 * transition, resulting in a double drop.
4574 */
4575 prev_state = READ_ONCE(prev->__state);
4576 vtime_task_switch(prev);
4577 perf_event_task_sched_in(prev, current);
4578 finish_task(prev);
4579 tick_nohz_task_switch();
4580 finish_lock_switch(rq);
4581 finish_arch_post_lock_switch();
4582 kcov_finish_switch(current);
4583 /*
4584 * kmap_local_sched_out() is invoked with rq::lock held and
4585 * interrupts disabled. There is no requirement for that, but the
4586 * sched out code does not have an interrupt enabled section.
4587 * Restoring the maps on sched in does not require interrupts being
4588 * disabled either.
4589 */
4590 kmap_local_sched_in();
4591
4592 fire_sched_in_preempt_notifiers(current);
4593 /*
4594 * When switching through a kernel thread, the loop in
4595 * membarrier_{private,global}_expedited() may have observed that
4596 * kernel thread and not issued an IPI. It is therefore possible to
4597 * schedule between user->kernel->user threads without passing though
4598 * switch_mm(). Membarrier requires a barrier after storing to
4599 * rq->curr, before returning to userspace, so provide them here:
4600 *
4601 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4602 * provided by mmdrop(),
4603 * - a sync_core for SYNC_CORE.
4604 */
4605 if (mm) {
4606 membarrier_mm_sync_core_before_usermode(mm);
4607 mmdrop(mm);
4608 }
4609 if (unlikely(prev_state == TASK_DEAD)) {
4610 if (prev->sched_class->task_dead)
4611 prev->sched_class->task_dead(prev);
4612
4613 /*
4614 * Remove function-return probe instances associated with this
4615 * task and put them back on the free list.
4616 */
4617 kprobe_flush_task(prev);
4618
4619 /* Task is done with its stack. */
4620 put_task_stack(prev);
4621
4622 put_task_struct_rcu_user(prev);
4623 }
4624
4625 return rq;
4626}
4627
4628/**
4629 * schedule_tail - first thing a freshly forked thread must call.
4630 * @prev: the thread we just switched away from.
4631 */
4632asmlinkage __visible void schedule_tail(struct task_struct *prev)
4633 __releases(rq->lock)
4634{
4635 /*
4636 * New tasks start with FORK_PREEMPT_COUNT, see there and
4637 * finish_task_switch() for details.
4638 *
4639 * finish_task_switch() will drop rq->lock() and lower preempt_count
4640 * and the preempt_enable() will end up enabling preemption (on
4641 * PREEMPT_COUNT kernels).
4642 */
4643
4644 finish_task_switch(prev);
4645 preempt_enable();
4646
4647 if (current->set_child_tid)
4648 put_user(task_pid_vnr(current), current->set_child_tid);
4649
4650 calculate_sigpending();
4651}
4652
4653/*
4654 * context_switch - switch to the new MM and the new thread's register state.
4655 */
4656static __always_inline struct rq *
4657context_switch(struct rq *rq, struct task_struct *prev,
4658 struct task_struct *next, struct rq_flags *rf)
4659{
4660 prepare_task_switch(rq, prev, next);
4661
4662 /*
4663 * For paravirt, this is coupled with an exit in switch_to to
4664 * combine the page table reload and the switch backend into
4665 * one hypercall.
4666 */
4667 arch_start_context_switch(prev);
4668
4669 /*
4670 * kernel -> kernel lazy + transfer active
4671 * user -> kernel lazy + mmgrab() active
4672 *
4673 * kernel -> user switch + mmdrop() active
4674 * user -> user switch
4675 */
4676 if (!next->mm) { // to kernel
4677 enter_lazy_tlb(prev->active_mm, next);
4678
4679 next->active_mm = prev->active_mm;
4680 if (prev->mm) // from user
4681 mmgrab(prev->active_mm);
4682 else
4683 prev->active_mm = NULL;
4684 } else { // to user
4685 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4686 /*
4687 * sys_membarrier() requires an smp_mb() between setting
4688 * rq->curr / membarrier_switch_mm() and returning to userspace.
4689 *
4690 * The below provides this either through switch_mm(), or in
4691 * case 'prev->active_mm == next->mm' through
4692 * finish_task_switch()'s mmdrop().
4693 */
4694 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4695
4696 if (!prev->mm) { // from kernel
4697 /* will mmdrop() in finish_task_switch(). */
4698 rq->prev_mm = prev->active_mm;
4699 prev->active_mm = NULL;
4700 }
4701 }
4702
4703 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4704
4705 prepare_lock_switch(rq, next, rf);
4706
4707 /* Here we just switch the register state and the stack. */
4708 switch_to(prev, next, prev);
4709 barrier();
4710
4711 return finish_task_switch(prev);
4712}
4713
4714/*
4715 * nr_running and nr_context_switches:
4716 *
4717 * externally visible scheduler statistics: current number of runnable
4718 * threads, total number of context switches performed since bootup.
4719 */
4720unsigned int nr_running(void)
4721{
4722 unsigned int i, sum = 0;
4723
4724 for_each_online_cpu(i)
4725 sum += cpu_rq(i)->nr_running;
4726
4727 return sum;
4728}
4729
4730/*
4731 * Check if only the current task is running on the CPU.
4732 *
4733 * Caution: this function does not check that the caller has disabled
4734 * preemption, thus the result might have a time-of-check-to-time-of-use
4735 * race. The caller is responsible to use it correctly, for example:
4736 *
4737 * - from a non-preemptible section (of course)
4738 *
4739 * - from a thread that is bound to a single CPU
4740 *
4741 * - in a loop with very short iterations (e.g. a polling loop)
4742 */
4743bool single_task_running(void)
4744{
4745 return raw_rq()->nr_running == 1;
4746}
4747EXPORT_SYMBOL(single_task_running);
4748
4749unsigned long long nr_context_switches(void)
4750{
4751 int i;
4752 unsigned long long sum = 0;
4753
4754 for_each_possible_cpu(i)
4755 sum += cpu_rq(i)->nr_switches;
4756
4757 return sum;
4758}
4759
4760/*
4761 * Consumers of these two interfaces, like for example the cpuidle menu
4762 * governor, are using nonsensical data. Preferring shallow idle state selection
4763 * for a CPU that has IO-wait which might not even end up running the task when
4764 * it does become runnable.
4765 */
4766
4767unsigned int nr_iowait_cpu(int cpu)
4768{
4769 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4770}
4771
4772/*
4773 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4774 *
4775 * The idea behind IO-wait account is to account the idle time that we could
4776 * have spend running if it were not for IO. That is, if we were to improve the
4777 * storage performance, we'd have a proportional reduction in IO-wait time.
4778 *
4779 * This all works nicely on UP, where, when a task blocks on IO, we account
4780 * idle time as IO-wait, because if the storage were faster, it could've been
4781 * running and we'd not be idle.
4782 *
4783 * This has been extended to SMP, by doing the same for each CPU. This however
4784 * is broken.
4785 *
4786 * Imagine for instance the case where two tasks block on one CPU, only the one
4787 * CPU will have IO-wait accounted, while the other has regular idle. Even
4788 * though, if the storage were faster, both could've ran at the same time,
4789 * utilising both CPUs.
4790 *
4791 * This means, that when looking globally, the current IO-wait accounting on
4792 * SMP is a lower bound, by reason of under accounting.
4793 *
4794 * Worse, since the numbers are provided per CPU, they are sometimes
4795 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4796 * associated with any one particular CPU, it can wake to another CPU than it
4797 * blocked on. This means the per CPU IO-wait number is meaningless.
4798 *
4799 * Task CPU affinities can make all that even more 'interesting'.
4800 */
4801
4802unsigned int nr_iowait(void)
4803{
4804 unsigned int i, sum = 0;
4805
4806 for_each_possible_cpu(i)
4807 sum += nr_iowait_cpu(i);
4808
4809 return sum;
4810}
4811
4812#ifdef CONFIG_SMP
4813
4814/*
4815 * sched_exec - execve() is a valuable balancing opportunity, because at
4816 * this point the task has the smallest effective memory and cache footprint.
4817 */
4818void sched_exec(void)
4819{
4820 struct task_struct *p = current;
4821 unsigned long flags;
4822 int dest_cpu;
4823
4824 raw_spin_lock_irqsave(&p->pi_lock, flags);
4825 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4826 if (dest_cpu == smp_processor_id())
4827 goto unlock;
4828
4829 if (likely(cpu_active(dest_cpu))) {
4830 struct migration_arg arg = { p, dest_cpu };
4831
4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4833 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4834 return;
4835 }
4836unlock:
4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838}
4839
4840#endif
4841
4842DEFINE_PER_CPU(struct kernel_stat, kstat);
4843DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4844
4845EXPORT_PER_CPU_SYMBOL(kstat);
4846EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4847
4848/*
4849 * The function fair_sched_class.update_curr accesses the struct curr
4850 * and its field curr->exec_start; when called from task_sched_runtime(),
4851 * we observe a high rate of cache misses in practice.
4852 * Prefetching this data results in improved performance.
4853 */
4854static inline void prefetch_curr_exec_start(struct task_struct *p)
4855{
4856#ifdef CONFIG_FAIR_GROUP_SCHED
4857 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4858#else
4859 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4860#endif
4861 prefetch(curr);
4862 prefetch(&curr->exec_start);
4863}
4864
4865/*
4866 * Return accounted runtime for the task.
4867 * In case the task is currently running, return the runtime plus current's
4868 * pending runtime that have not been accounted yet.
4869 */
4870unsigned long long task_sched_runtime(struct task_struct *p)
4871{
4872 struct rq_flags rf;
4873 struct rq *rq;
4874 u64 ns;
4875
4876#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4877 /*
4878 * 64-bit doesn't need locks to atomically read a 64-bit value.
4879 * So we have a optimization chance when the task's delta_exec is 0.
4880 * Reading ->on_cpu is racy, but this is ok.
4881 *
4882 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4883 * If we race with it entering CPU, unaccounted time is 0. This is
4884 * indistinguishable from the read occurring a few cycles earlier.
4885 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4886 * been accounted, so we're correct here as well.
4887 */
4888 if (!p->on_cpu || !task_on_rq_queued(p))
4889 return p->se.sum_exec_runtime;
4890#endif
4891
4892 rq = task_rq_lock(p, &rf);
4893 /*
4894 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4895 * project cycles that may never be accounted to this
4896 * thread, breaking clock_gettime().
4897 */
4898 if (task_current(rq, p) && task_on_rq_queued(p)) {
4899 prefetch_curr_exec_start(p);
4900 update_rq_clock(rq);
4901 p->sched_class->update_curr(rq);
4902 }
4903 ns = p->se.sum_exec_runtime;
4904 task_rq_unlock(rq, p, &rf);
4905
4906 return ns;
4907}
4908
4909#ifdef CONFIG_SCHED_DEBUG
4910static u64 cpu_resched_latency(struct rq *rq)
4911{
4912 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4913 u64 resched_latency, now = rq_clock(rq);
4914 static bool warned_once;
4915
4916 if (sysctl_resched_latency_warn_once && warned_once)
4917 return 0;
4918
4919 if (!need_resched() || !latency_warn_ms)
4920 return 0;
4921
4922 if (system_state == SYSTEM_BOOTING)
4923 return 0;
4924
4925 if (!rq->last_seen_need_resched_ns) {
4926 rq->last_seen_need_resched_ns = now;
4927 rq->ticks_without_resched = 0;
4928 return 0;
4929 }
4930
4931 rq->ticks_without_resched++;
4932 resched_latency = now - rq->last_seen_need_resched_ns;
4933 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4934 return 0;
4935
4936 warned_once = true;
4937
4938 return resched_latency;
4939}
4940
4941static int __init setup_resched_latency_warn_ms(char *str)
4942{
4943 long val;
4944
4945 if ((kstrtol(str, 0, &val))) {
4946 pr_warn("Unable to set resched_latency_warn_ms\n");
4947 return 1;
4948 }
4949
4950 sysctl_resched_latency_warn_ms = val;
4951 return 1;
4952}
4953__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4954#else
4955static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4956#endif /* CONFIG_SCHED_DEBUG */
4957
4958/*
4959 * This function gets called by the timer code, with HZ frequency.
4960 * We call it with interrupts disabled.
4961 */
4962void scheduler_tick(void)
4963{
4964 int cpu = smp_processor_id();
4965 struct rq *rq = cpu_rq(cpu);
4966 struct task_struct *curr = rq->curr;
4967 struct rq_flags rf;
4968 unsigned long thermal_pressure;
4969 u64 resched_latency;
4970
4971 arch_scale_freq_tick();
4972 sched_clock_tick();
4973
4974 rq_lock(rq, &rf);
4975
4976 update_rq_clock(rq);
4977 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4978 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4979 curr->sched_class->task_tick(rq, curr, 0);
4980 if (sched_feat(LATENCY_WARN))
4981 resched_latency = cpu_resched_latency(rq);
4982 calc_global_load_tick(rq);
4983
4984 rq_unlock(rq, &rf);
4985
4986 if (sched_feat(LATENCY_WARN) && resched_latency)
4987 resched_latency_warn(cpu, resched_latency);
4988
4989 perf_event_task_tick();
4990
4991#ifdef CONFIG_SMP
4992 rq->idle_balance = idle_cpu(cpu);
4993 trigger_load_balance(rq);
4994#endif
4995}
4996
4997#ifdef CONFIG_NO_HZ_FULL
4998
4999struct tick_work {
5000 int cpu;
5001 atomic_t state;
5002 struct delayed_work work;
5003};
5004/* Values for ->state, see diagram below. */
5005#define TICK_SCHED_REMOTE_OFFLINE 0
5006#define TICK_SCHED_REMOTE_OFFLINING 1
5007#define TICK_SCHED_REMOTE_RUNNING 2
5008
5009/*
5010 * State diagram for ->state:
5011 *
5012 *
5013 * TICK_SCHED_REMOTE_OFFLINE
5014 * | ^
5015 * | |
5016 * | | sched_tick_remote()
5017 * | |
5018 * | |
5019 * +--TICK_SCHED_REMOTE_OFFLINING
5020 * | ^
5021 * | |
5022 * sched_tick_start() | | sched_tick_stop()
5023 * | |
5024 * V |
5025 * TICK_SCHED_REMOTE_RUNNING
5026 *
5027 *
5028 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5029 * and sched_tick_start() are happy to leave the state in RUNNING.
5030 */
5031
5032static struct tick_work __percpu *tick_work_cpu;
5033
5034static void sched_tick_remote(struct work_struct *work)
5035{
5036 struct delayed_work *dwork = to_delayed_work(work);
5037 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5038 int cpu = twork->cpu;
5039 struct rq *rq = cpu_rq(cpu);
5040 struct task_struct *curr;
5041 struct rq_flags rf;
5042 u64 delta;
5043 int os;
5044
5045 /*
5046 * Handle the tick only if it appears the remote CPU is running in full
5047 * dynticks mode. The check is racy by nature, but missing a tick or
5048 * having one too much is no big deal because the scheduler tick updates
5049 * statistics and checks timeslices in a time-independent way, regardless
5050 * of when exactly it is running.
5051 */
5052 if (!tick_nohz_tick_stopped_cpu(cpu))
5053 goto out_requeue;
5054
5055 rq_lock_irq(rq, &rf);
5056 curr = rq->curr;
5057 if (cpu_is_offline(cpu))
5058 goto out_unlock;
5059
5060 update_rq_clock(rq);
5061
5062 if (!is_idle_task(curr)) {
5063 /*
5064 * Make sure the next tick runs within a reasonable
5065 * amount of time.
5066 */
5067 delta = rq_clock_task(rq) - curr->se.exec_start;
5068 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5069 }
5070 curr->sched_class->task_tick(rq, curr, 0);
5071
5072 calc_load_nohz_remote(rq);
5073out_unlock:
5074 rq_unlock_irq(rq, &rf);
5075out_requeue:
5076
5077 /*
5078 * Run the remote tick once per second (1Hz). This arbitrary
5079 * frequency is large enough to avoid overload but short enough
5080 * to keep scheduler internal stats reasonably up to date. But
5081 * first update state to reflect hotplug activity if required.
5082 */
5083 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5084 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5085 if (os == TICK_SCHED_REMOTE_RUNNING)
5086 queue_delayed_work(system_unbound_wq, dwork, HZ);
5087}
5088
5089static void sched_tick_start(int cpu)
5090{
5091 int os;
5092 struct tick_work *twork;
5093
5094 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5095 return;
5096
5097 WARN_ON_ONCE(!tick_work_cpu);
5098
5099 twork = per_cpu_ptr(tick_work_cpu, cpu);
5100 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5101 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5102 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5103 twork->cpu = cpu;
5104 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5105 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5106 }
5107}
5108
5109#ifdef CONFIG_HOTPLUG_CPU
5110static void sched_tick_stop(int cpu)
5111{
5112 struct tick_work *twork;
5113 int os;
5114
5115 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5116 return;
5117
5118 WARN_ON_ONCE(!tick_work_cpu);
5119
5120 twork = per_cpu_ptr(tick_work_cpu, cpu);
5121 /* There cannot be competing actions, but don't rely on stop-machine. */
5122 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5123 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5124 /* Don't cancel, as this would mess up the state machine. */
5125}
5126#endif /* CONFIG_HOTPLUG_CPU */
5127
5128int __init sched_tick_offload_init(void)
5129{
5130 tick_work_cpu = alloc_percpu(struct tick_work);
5131 BUG_ON(!tick_work_cpu);
5132 return 0;
5133}
5134
5135#else /* !CONFIG_NO_HZ_FULL */
5136static inline void sched_tick_start(int cpu) { }
5137static inline void sched_tick_stop(int cpu) { }
5138#endif
5139
5140#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5141 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5142/*
5143 * If the value passed in is equal to the current preempt count
5144 * then we just disabled preemption. Start timing the latency.
5145 */
5146static inline void preempt_latency_start(int val)
5147{
5148 if (preempt_count() == val) {
5149 unsigned long ip = get_lock_parent_ip();
5150#ifdef CONFIG_DEBUG_PREEMPT
5151 current->preempt_disable_ip = ip;
5152#endif
5153 trace_preempt_off(CALLER_ADDR0, ip);
5154 }
5155}
5156
5157void preempt_count_add(int val)
5158{
5159#ifdef CONFIG_DEBUG_PREEMPT
5160 /*
5161 * Underflow?
5162 */
5163 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5164 return;
5165#endif
5166 __preempt_count_add(val);
5167#ifdef CONFIG_DEBUG_PREEMPT
5168 /*
5169 * Spinlock count overflowing soon?
5170 */
5171 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5172 PREEMPT_MASK - 10);
5173#endif
5174 preempt_latency_start(val);
5175}
5176EXPORT_SYMBOL(preempt_count_add);
5177NOKPROBE_SYMBOL(preempt_count_add);
5178
5179/*
5180 * If the value passed in equals to the current preempt count
5181 * then we just enabled preemption. Stop timing the latency.
5182 */
5183static inline void preempt_latency_stop(int val)
5184{
5185 if (preempt_count() == val)
5186 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5187}
5188
5189void preempt_count_sub(int val)
5190{
5191#ifdef CONFIG_DEBUG_PREEMPT
5192 /*
5193 * Underflow?
5194 */
5195 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5196 return;
5197 /*
5198 * Is the spinlock portion underflowing?
5199 */
5200 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5201 !(preempt_count() & PREEMPT_MASK)))
5202 return;
5203#endif
5204
5205 preempt_latency_stop(val);
5206 __preempt_count_sub(val);
5207}
5208EXPORT_SYMBOL(preempt_count_sub);
5209NOKPROBE_SYMBOL(preempt_count_sub);
5210
5211#else
5212static inline void preempt_latency_start(int val) { }
5213static inline void preempt_latency_stop(int val) { }
5214#endif
5215
5216static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5217{
5218#ifdef CONFIG_DEBUG_PREEMPT
5219 return p->preempt_disable_ip;
5220#else
5221 return 0;
5222#endif
5223}
5224
5225/*
5226 * Print scheduling while atomic bug:
5227 */
5228static noinline void __schedule_bug(struct task_struct *prev)
5229{
5230 /* Save this before calling printk(), since that will clobber it */
5231 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5232
5233 if (oops_in_progress)
5234 return;
5235
5236 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5237 prev->comm, prev->pid, preempt_count());
5238
5239 debug_show_held_locks(prev);
5240 print_modules();
5241 if (irqs_disabled())
5242 print_irqtrace_events(prev);
5243 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5244 && in_atomic_preempt_off()) {
5245 pr_err("Preemption disabled at:");
5246 print_ip_sym(KERN_ERR, preempt_disable_ip);
5247 }
5248 if (panic_on_warn)
5249 panic("scheduling while atomic\n");
5250
5251 dump_stack();
5252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5253}
5254
5255/*
5256 * Various schedule()-time debugging checks and statistics:
5257 */
5258static inline void schedule_debug(struct task_struct *prev, bool preempt)
5259{
5260#ifdef CONFIG_SCHED_STACK_END_CHECK
5261 if (task_stack_end_corrupted(prev))
5262 panic("corrupted stack end detected inside scheduler\n");
5263
5264 if (task_scs_end_corrupted(prev))
5265 panic("corrupted shadow stack detected inside scheduler\n");
5266#endif
5267
5268#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5269 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5270 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5271 prev->comm, prev->pid, prev->non_block_count);
5272 dump_stack();
5273 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5274 }
5275#endif
5276
5277 if (unlikely(in_atomic_preempt_off())) {
5278 __schedule_bug(prev);
5279 preempt_count_set(PREEMPT_DISABLED);
5280 }
5281 rcu_sleep_check();
5282 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5283
5284 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5285
5286 schedstat_inc(this_rq()->sched_count);
5287}
5288
5289static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5290 struct rq_flags *rf)
5291{
5292#ifdef CONFIG_SMP
5293 const struct sched_class *class;
5294 /*
5295 * We must do the balancing pass before put_prev_task(), such
5296 * that when we release the rq->lock the task is in the same
5297 * state as before we took rq->lock.
5298 *
5299 * We can terminate the balance pass as soon as we know there is
5300 * a runnable task of @class priority or higher.
5301 */
5302 for_class_range(class, prev->sched_class, &idle_sched_class) {
5303 if (class->balance(rq, prev, rf))
5304 break;
5305 }
5306#endif
5307
5308 put_prev_task(rq, prev);
5309}
5310
5311/*
5312 * Pick up the highest-prio task:
5313 */
5314static inline struct task_struct *
5315__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5316{
5317 const struct sched_class *class;
5318 struct task_struct *p;
5319
5320 /*
5321 * Optimization: we know that if all tasks are in the fair class we can
5322 * call that function directly, but only if the @prev task wasn't of a
5323 * higher scheduling class, because otherwise those lose the
5324 * opportunity to pull in more work from other CPUs.
5325 */
5326 if (likely(prev->sched_class <= &fair_sched_class &&
5327 rq->nr_running == rq->cfs.h_nr_running)) {
5328
5329 p = pick_next_task_fair(rq, prev, rf);
5330 if (unlikely(p == RETRY_TASK))
5331 goto restart;
5332
5333 /* Assume the next prioritized class is idle_sched_class */
5334 if (!p) {
5335 put_prev_task(rq, prev);
5336 p = pick_next_task_idle(rq);
5337 }
5338
5339 return p;
5340 }
5341
5342restart:
5343 put_prev_task_balance(rq, prev, rf);
5344
5345 for_each_class(class) {
5346 p = class->pick_next_task(rq);
5347 if (p)
5348 return p;
5349 }
5350
5351 /* The idle class should always have a runnable task: */
5352 BUG();
5353}
5354
5355#ifdef CONFIG_SCHED_CORE
5356static inline bool is_task_rq_idle(struct task_struct *t)
5357{
5358 return (task_rq(t)->idle == t);
5359}
5360
5361static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5362{
5363 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5364}
5365
5366static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5367{
5368 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5369 return true;
5370
5371 return a->core_cookie == b->core_cookie;
5372}
5373
5374// XXX fairness/fwd progress conditions
5375/*
5376 * Returns
5377 * - NULL if there is no runnable task for this class.
5378 * - the highest priority task for this runqueue if it matches
5379 * rq->core->core_cookie or its priority is greater than max.
5380 * - Else returns idle_task.
5381 */
5382static struct task_struct *
5383pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5384{
5385 struct task_struct *class_pick, *cookie_pick;
5386 unsigned long cookie = rq->core->core_cookie;
5387
5388 class_pick = class->pick_task(rq);
5389 if (!class_pick)
5390 return NULL;
5391
5392 if (!cookie) {
5393 /*
5394 * If class_pick is tagged, return it only if it has
5395 * higher priority than max.
5396 */
5397 if (max && class_pick->core_cookie &&
5398 prio_less(class_pick, max, in_fi))
5399 return idle_sched_class.pick_task(rq);
5400
5401 return class_pick;
5402 }
5403
5404 /*
5405 * If class_pick is idle or matches cookie, return early.
5406 */
5407 if (cookie_equals(class_pick, cookie))
5408 return class_pick;
5409
5410 cookie_pick = sched_core_find(rq, cookie);
5411
5412 /*
5413 * If class > max && class > cookie, it is the highest priority task on
5414 * the core (so far) and it must be selected, otherwise we must go with
5415 * the cookie pick in order to satisfy the constraint.
5416 */
5417 if (prio_less(cookie_pick, class_pick, in_fi) &&
5418 (!max || prio_less(max, class_pick, in_fi)))
5419 return class_pick;
5420
5421 return cookie_pick;
5422}
5423
5424extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5425
5426static struct task_struct *
5427pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5428{
5429 struct task_struct *next, *max = NULL;
5430 const struct sched_class *class;
5431 const struct cpumask *smt_mask;
5432 bool fi_before = false;
5433 int i, j, cpu, occ = 0;
5434 bool need_sync;
5435
5436 if (!sched_core_enabled(rq))
5437 return __pick_next_task(rq, prev, rf);
5438
5439 cpu = cpu_of(rq);
5440
5441 /* Stopper task is switching into idle, no need core-wide selection. */
5442 if (cpu_is_offline(cpu)) {
5443 /*
5444 * Reset core_pick so that we don't enter the fastpath when
5445 * coming online. core_pick would already be migrated to
5446 * another cpu during offline.
5447 */
5448 rq->core_pick = NULL;
5449 return __pick_next_task(rq, prev, rf);
5450 }
5451
5452 /*
5453 * If there were no {en,de}queues since we picked (IOW, the task
5454 * pointers are all still valid), and we haven't scheduled the last
5455 * pick yet, do so now.
5456 *
5457 * rq->core_pick can be NULL if no selection was made for a CPU because
5458 * it was either offline or went offline during a sibling's core-wide
5459 * selection. In this case, do a core-wide selection.
5460 */
5461 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5462 rq->core->core_pick_seq != rq->core_sched_seq &&
5463 rq->core_pick) {
5464 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5465
5466 next = rq->core_pick;
5467 if (next != prev) {
5468 put_prev_task(rq, prev);
5469 set_next_task(rq, next);
5470 }
5471
5472 rq->core_pick = NULL;
5473 return next;
5474 }
5475
5476 put_prev_task_balance(rq, prev, rf);
5477
5478 smt_mask = cpu_smt_mask(cpu);
5479 need_sync = !!rq->core->core_cookie;
5480
5481 /* reset state */
5482 rq->core->core_cookie = 0UL;
5483 if (rq->core->core_forceidle) {
5484 need_sync = true;
5485 fi_before = true;
5486 rq->core->core_forceidle = false;
5487 }
5488
5489 /*
5490 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5491 *
5492 * @task_seq guards the task state ({en,de}queues)
5493 * @pick_seq is the @task_seq we did a selection on
5494 * @sched_seq is the @pick_seq we scheduled
5495 *
5496 * However, preemptions can cause multiple picks on the same task set.
5497 * 'Fix' this by also increasing @task_seq for every pick.
5498 */
5499 rq->core->core_task_seq++;
5500
5501 /*
5502 * Optimize for common case where this CPU has no cookies
5503 * and there are no cookied tasks running on siblings.
5504 */
5505 if (!need_sync) {
5506 for_each_class(class) {
5507 next = class->pick_task(rq);
5508 if (next)
5509 break;
5510 }
5511
5512 if (!next->core_cookie) {
5513 rq->core_pick = NULL;
5514 /*
5515 * For robustness, update the min_vruntime_fi for
5516 * unconstrained picks as well.
5517 */
5518 WARN_ON_ONCE(fi_before);
5519 task_vruntime_update(rq, next, false);
5520 goto done;
5521 }
5522 }
5523
5524 for_each_cpu(i, smt_mask) {
5525 struct rq *rq_i = cpu_rq(i);
5526
5527 rq_i->core_pick = NULL;
5528
5529 if (i != cpu)
5530 update_rq_clock(rq_i);
5531 }
5532
5533 /*
5534 * Try and select tasks for each sibling in descending sched_class
5535 * order.
5536 */
5537 for_each_class(class) {
5538again:
5539 for_each_cpu_wrap(i, smt_mask, cpu) {
5540 struct rq *rq_i = cpu_rq(i);
5541 struct task_struct *p;
5542
5543 if (rq_i->core_pick)
5544 continue;
5545
5546 /*
5547 * If this sibling doesn't yet have a suitable task to
5548 * run; ask for the most eligible task, given the
5549 * highest priority task already selected for this
5550 * core.
5551 */
5552 p = pick_task(rq_i, class, max, fi_before);
5553 if (!p)
5554 continue;
5555
5556 if (!is_task_rq_idle(p))
5557 occ++;
5558
5559 rq_i->core_pick = p;
5560 if (rq_i->idle == p && rq_i->nr_running) {
5561 rq->core->core_forceidle = true;
5562 if (!fi_before)
5563 rq->core->core_forceidle_seq++;
5564 }
5565
5566 /*
5567 * If this new candidate is of higher priority than the
5568 * previous; and they're incompatible; we need to wipe
5569 * the slate and start over. pick_task makes sure that
5570 * p's priority is more than max if it doesn't match
5571 * max's cookie.
5572 *
5573 * NOTE: this is a linear max-filter and is thus bounded
5574 * in execution time.
5575 */
5576 if (!max || !cookie_match(max, p)) {
5577 struct task_struct *old_max = max;
5578
5579 rq->core->core_cookie = p->core_cookie;
5580 max = p;
5581
5582 if (old_max) {
5583 rq->core->core_forceidle = false;
5584 for_each_cpu(j, smt_mask) {
5585 if (j == i)
5586 continue;
5587
5588 cpu_rq(j)->core_pick = NULL;
5589 }
5590 occ = 1;
5591 goto again;
5592 }
5593 }
5594 }
5595 }
5596
5597 rq->core->core_pick_seq = rq->core->core_task_seq;
5598 next = rq->core_pick;
5599 rq->core_sched_seq = rq->core->core_pick_seq;
5600
5601 /* Something should have been selected for current CPU */
5602 WARN_ON_ONCE(!next);
5603
5604 /*
5605 * Reschedule siblings
5606 *
5607 * NOTE: L1TF -- at this point we're no longer running the old task and
5608 * sending an IPI (below) ensures the sibling will no longer be running
5609 * their task. This ensures there is no inter-sibling overlap between
5610 * non-matching user state.
5611 */
5612 for_each_cpu(i, smt_mask) {
5613 struct rq *rq_i = cpu_rq(i);
5614
5615 /*
5616 * An online sibling might have gone offline before a task
5617 * could be picked for it, or it might be offline but later
5618 * happen to come online, but its too late and nothing was
5619 * picked for it. That's Ok - it will pick tasks for itself,
5620 * so ignore it.
5621 */
5622 if (!rq_i->core_pick)
5623 continue;
5624
5625 /*
5626 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5627 * fi_before fi update?
5628 * 0 0 1
5629 * 0 1 1
5630 * 1 0 1
5631 * 1 1 0
5632 */
5633 if (!(fi_before && rq->core->core_forceidle))
5634 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5635
5636 rq_i->core_pick->core_occupation = occ;
5637
5638 if (i == cpu) {
5639 rq_i->core_pick = NULL;
5640 continue;
5641 }
5642
5643 /* Did we break L1TF mitigation requirements? */
5644 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5645
5646 if (rq_i->curr == rq_i->core_pick) {
5647 rq_i->core_pick = NULL;
5648 continue;
5649 }
5650
5651 resched_curr(rq_i);
5652 }
5653
5654done:
5655 set_next_task(rq, next);
5656 return next;
5657}
5658
5659static bool try_steal_cookie(int this, int that)
5660{
5661 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5662 struct task_struct *p;
5663 unsigned long cookie;
5664 bool success = false;
5665
5666 local_irq_disable();
5667 double_rq_lock(dst, src);
5668
5669 cookie = dst->core->core_cookie;
5670 if (!cookie)
5671 goto unlock;
5672
5673 if (dst->curr != dst->idle)
5674 goto unlock;
5675
5676 p = sched_core_find(src, cookie);
5677 if (p == src->idle)
5678 goto unlock;
5679
5680 do {
5681 if (p == src->core_pick || p == src->curr)
5682 goto next;
5683
5684 if (!cpumask_test_cpu(this, &p->cpus_mask))
5685 goto next;
5686
5687 if (p->core_occupation > dst->idle->core_occupation)
5688 goto next;
5689
5690 p->on_rq = TASK_ON_RQ_MIGRATING;
5691 deactivate_task(src, p, 0);
5692 set_task_cpu(p, this);
5693 activate_task(dst, p, 0);
5694 p->on_rq = TASK_ON_RQ_QUEUED;
5695
5696 resched_curr(dst);
5697
5698 success = true;
5699 break;
5700
5701next:
5702 p = sched_core_next(p, cookie);
5703 } while (p);
5704
5705unlock:
5706 double_rq_unlock(dst, src);
5707 local_irq_enable();
5708
5709 return success;
5710}
5711
5712static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5713{
5714 int i;
5715
5716 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5717 if (i == cpu)
5718 continue;
5719
5720 if (need_resched())
5721 break;
5722
5723 if (try_steal_cookie(cpu, i))
5724 return true;
5725 }
5726
5727 return false;
5728}
5729
5730static void sched_core_balance(struct rq *rq)
5731{
5732 struct sched_domain *sd;
5733 int cpu = cpu_of(rq);
5734
5735 preempt_disable();
5736 rcu_read_lock();
5737 raw_spin_rq_unlock_irq(rq);
5738 for_each_domain(cpu, sd) {
5739 if (need_resched())
5740 break;
5741
5742 if (steal_cookie_task(cpu, sd))
5743 break;
5744 }
5745 raw_spin_rq_lock_irq(rq);
5746 rcu_read_unlock();
5747 preempt_enable();
5748}
5749
5750static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5751
5752void queue_core_balance(struct rq *rq)
5753{
5754 if (!sched_core_enabled(rq))
5755 return;
5756
5757 if (!rq->core->core_cookie)
5758 return;
5759
5760 if (!rq->nr_running) /* not forced idle */
5761 return;
5762
5763 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5764}
5765
5766static void sched_core_cpu_starting(unsigned int cpu)
5767{
5768 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5769 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5770 unsigned long flags;
5771 int t;
5772
5773 sched_core_lock(cpu, &flags);
5774
5775 WARN_ON_ONCE(rq->core != rq);
5776
5777 /* if we're the first, we'll be our own leader */
5778 if (cpumask_weight(smt_mask) == 1)
5779 goto unlock;
5780
5781 /* find the leader */
5782 for_each_cpu(t, smt_mask) {
5783 if (t == cpu)
5784 continue;
5785 rq = cpu_rq(t);
5786 if (rq->core == rq) {
5787 core_rq = rq;
5788 break;
5789 }
5790 }
5791
5792 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5793 goto unlock;
5794
5795 /* install and validate core_rq */
5796 for_each_cpu(t, smt_mask) {
5797 rq = cpu_rq(t);
5798
5799 if (t == cpu)
5800 rq->core = core_rq;
5801
5802 WARN_ON_ONCE(rq->core != core_rq);
5803 }
5804
5805unlock:
5806 sched_core_unlock(cpu, &flags);
5807}
5808
5809static void sched_core_cpu_deactivate(unsigned int cpu)
5810{
5811 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5812 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5813 unsigned long flags;
5814 int t;
5815
5816 sched_core_lock(cpu, &flags);
5817
5818 /* if we're the last man standing, nothing to do */
5819 if (cpumask_weight(smt_mask) == 1) {
5820 WARN_ON_ONCE(rq->core != rq);
5821 goto unlock;
5822 }
5823
5824 /* if we're not the leader, nothing to do */
5825 if (rq->core != rq)
5826 goto unlock;
5827
5828 /* find a new leader */
5829 for_each_cpu(t, smt_mask) {
5830 if (t == cpu)
5831 continue;
5832 core_rq = cpu_rq(t);
5833 break;
5834 }
5835
5836 if (WARN_ON_ONCE(!core_rq)) /* impossible */
5837 goto unlock;
5838
5839 /* copy the shared state to the new leader */
5840 core_rq->core_task_seq = rq->core_task_seq;
5841 core_rq->core_pick_seq = rq->core_pick_seq;
5842 core_rq->core_cookie = rq->core_cookie;
5843 core_rq->core_forceidle = rq->core_forceidle;
5844 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
5845
5846 /* install new leader */
5847 for_each_cpu(t, smt_mask) {
5848 rq = cpu_rq(t);
5849 rq->core = core_rq;
5850 }
5851
5852unlock:
5853 sched_core_unlock(cpu, &flags);
5854}
5855
5856static inline void sched_core_cpu_dying(unsigned int cpu)
5857{
5858 struct rq *rq = cpu_rq(cpu);
5859
5860 if (rq->core != rq)
5861 rq->core = rq;
5862}
5863
5864#else /* !CONFIG_SCHED_CORE */
5865
5866static inline void sched_core_cpu_starting(unsigned int cpu) {}
5867static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
5868static inline void sched_core_cpu_dying(unsigned int cpu) {}
5869
5870static struct task_struct *
5871pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5872{
5873 return __pick_next_task(rq, prev, rf);
5874}
5875
5876#endif /* CONFIG_SCHED_CORE */
5877
5878/*
5879 * __schedule() is the main scheduler function.
5880 *
5881 * The main means of driving the scheduler and thus entering this function are:
5882 *
5883 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5884 *
5885 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5886 * paths. For example, see arch/x86/entry_64.S.
5887 *
5888 * To drive preemption between tasks, the scheduler sets the flag in timer
5889 * interrupt handler scheduler_tick().
5890 *
5891 * 3. Wakeups don't really cause entry into schedule(). They add a
5892 * task to the run-queue and that's it.
5893 *
5894 * Now, if the new task added to the run-queue preempts the current
5895 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5896 * called on the nearest possible occasion:
5897 *
5898 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5899 *
5900 * - in syscall or exception context, at the next outmost
5901 * preempt_enable(). (this might be as soon as the wake_up()'s
5902 * spin_unlock()!)
5903 *
5904 * - in IRQ context, return from interrupt-handler to
5905 * preemptible context
5906 *
5907 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5908 * then at the next:
5909 *
5910 * - cond_resched() call
5911 * - explicit schedule() call
5912 * - return from syscall or exception to user-space
5913 * - return from interrupt-handler to user-space
5914 *
5915 * WARNING: must be called with preemption disabled!
5916 */
5917static void __sched notrace __schedule(bool preempt)
5918{
5919 struct task_struct *prev, *next;
5920 unsigned long *switch_count;
5921 unsigned long prev_state;
5922 struct rq_flags rf;
5923 struct rq *rq;
5924 int cpu;
5925
5926 cpu = smp_processor_id();
5927 rq = cpu_rq(cpu);
5928 prev = rq->curr;
5929
5930 schedule_debug(prev, preempt);
5931
5932 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5933 hrtick_clear(rq);
5934
5935 local_irq_disable();
5936 rcu_note_context_switch(preempt);
5937
5938 /*
5939 * Make sure that signal_pending_state()->signal_pending() below
5940 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5941 * done by the caller to avoid the race with signal_wake_up():
5942 *
5943 * __set_current_state(@state) signal_wake_up()
5944 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5945 * wake_up_state(p, state)
5946 * LOCK rq->lock LOCK p->pi_state
5947 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5948 * if (signal_pending_state()) if (p->state & @state)
5949 *
5950 * Also, the membarrier system call requires a full memory barrier
5951 * after coming from user-space, before storing to rq->curr.
5952 */
5953 rq_lock(rq, &rf);
5954 smp_mb__after_spinlock();
5955
5956 /* Promote REQ to ACT */
5957 rq->clock_update_flags <<= 1;
5958 update_rq_clock(rq);
5959
5960 switch_count = &prev->nivcsw;
5961
5962 /*
5963 * We must load prev->state once (task_struct::state is volatile), such
5964 * that:
5965 *
5966 * - we form a control dependency vs deactivate_task() below.
5967 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
5968 */
5969 prev_state = READ_ONCE(prev->__state);
5970 if (!preempt && prev_state) {
5971 if (signal_pending_state(prev_state, prev)) {
5972 WRITE_ONCE(prev->__state, TASK_RUNNING);
5973 } else {
5974 prev->sched_contributes_to_load =
5975 (prev_state & TASK_UNINTERRUPTIBLE) &&
5976 !(prev_state & TASK_NOLOAD) &&
5977 !(prev->flags & PF_FROZEN);
5978
5979 if (prev->sched_contributes_to_load)
5980 rq->nr_uninterruptible++;
5981
5982 /*
5983 * __schedule() ttwu()
5984 * prev_state = prev->state; if (p->on_rq && ...)
5985 * if (prev_state) goto out;
5986 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5987 * p->state = TASK_WAKING
5988 *
5989 * Where __schedule() and ttwu() have matching control dependencies.
5990 *
5991 * After this, schedule() must not care about p->state any more.
5992 */
5993 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5994
5995 if (prev->in_iowait) {
5996 atomic_inc(&rq->nr_iowait);
5997 delayacct_blkio_start();
5998 }
5999 }
6000 switch_count = &prev->nvcsw;
6001 }
6002
6003 next = pick_next_task(rq, prev, &rf);
6004 clear_tsk_need_resched(prev);
6005 clear_preempt_need_resched();
6006#ifdef CONFIG_SCHED_DEBUG
6007 rq->last_seen_need_resched_ns = 0;
6008#endif
6009
6010 if (likely(prev != next)) {
6011 rq->nr_switches++;
6012 /*
6013 * RCU users of rcu_dereference(rq->curr) may not see
6014 * changes to task_struct made by pick_next_task().
6015 */
6016 RCU_INIT_POINTER(rq->curr, next);
6017 /*
6018 * The membarrier system call requires each architecture
6019 * to have a full memory barrier after updating
6020 * rq->curr, before returning to user-space.
6021 *
6022 * Here are the schemes providing that barrier on the
6023 * various architectures:
6024 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6025 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6026 * - finish_lock_switch() for weakly-ordered
6027 * architectures where spin_unlock is a full barrier,
6028 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6029 * is a RELEASE barrier),
6030 */
6031 ++*switch_count;
6032
6033 migrate_disable_switch(rq, prev);
6034 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6035
6036 trace_sched_switch(preempt, prev, next);
6037
6038 /* Also unlocks the rq: */
6039 rq = context_switch(rq, prev, next, &rf);
6040 } else {
6041 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6042
6043 rq_unpin_lock(rq, &rf);
6044 __balance_callbacks(rq);
6045 raw_spin_rq_unlock_irq(rq);
6046 }
6047}
6048
6049void __noreturn do_task_dead(void)
6050{
6051 /* Causes final put_task_struct in finish_task_switch(): */
6052 set_special_state(TASK_DEAD);
6053
6054 /* Tell freezer to ignore us: */
6055 current->flags |= PF_NOFREEZE;
6056
6057 __schedule(false);
6058 BUG();
6059
6060 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6061 for (;;)
6062 cpu_relax();
6063}
6064
6065static inline void sched_submit_work(struct task_struct *tsk)
6066{
6067 unsigned int task_flags;
6068
6069 if (task_is_running(tsk))
6070 return;
6071
6072 task_flags = tsk->flags;
6073 /*
6074 * If a worker went to sleep, notify and ask workqueue whether
6075 * it wants to wake up a task to maintain concurrency.
6076 * As this function is called inside the schedule() context,
6077 * we disable preemption to avoid it calling schedule() again
6078 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6079 * requires it.
6080 */
6081 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6082 preempt_disable();
6083 if (task_flags & PF_WQ_WORKER)
6084 wq_worker_sleeping(tsk);
6085 else
6086 io_wq_worker_sleeping(tsk);
6087 preempt_enable_no_resched();
6088 }
6089
6090 if (tsk_is_pi_blocked(tsk))
6091 return;
6092
6093 /*
6094 * If we are going to sleep and we have plugged IO queued,
6095 * make sure to submit it to avoid deadlocks.
6096 */
6097 if (blk_needs_flush_plug(tsk))
6098 blk_schedule_flush_plug(tsk);
6099}
6100
6101static void sched_update_worker(struct task_struct *tsk)
6102{
6103 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6104 if (tsk->flags & PF_WQ_WORKER)
6105 wq_worker_running(tsk);
6106 else
6107 io_wq_worker_running(tsk);
6108 }
6109}
6110
6111asmlinkage __visible void __sched schedule(void)
6112{
6113 struct task_struct *tsk = current;
6114
6115 sched_submit_work(tsk);
6116 do {
6117 preempt_disable();
6118 __schedule(false);
6119 sched_preempt_enable_no_resched();
6120 } while (need_resched());
6121 sched_update_worker(tsk);
6122}
6123EXPORT_SYMBOL(schedule);
6124
6125/*
6126 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6127 * state (have scheduled out non-voluntarily) by making sure that all
6128 * tasks have either left the run queue or have gone into user space.
6129 * As idle tasks do not do either, they must not ever be preempted
6130 * (schedule out non-voluntarily).
6131 *
6132 * schedule_idle() is similar to schedule_preempt_disable() except that it
6133 * never enables preemption because it does not call sched_submit_work().
6134 */
6135void __sched schedule_idle(void)
6136{
6137 /*
6138 * As this skips calling sched_submit_work(), which the idle task does
6139 * regardless because that function is a nop when the task is in a
6140 * TASK_RUNNING state, make sure this isn't used someplace that the
6141 * current task can be in any other state. Note, idle is always in the
6142 * TASK_RUNNING state.
6143 */
6144 WARN_ON_ONCE(current->__state);
6145 do {
6146 __schedule(false);
6147 } while (need_resched());
6148}
6149
6150#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6151asmlinkage __visible void __sched schedule_user(void)
6152{
6153 /*
6154 * If we come here after a random call to set_need_resched(),
6155 * or we have been woken up remotely but the IPI has not yet arrived,
6156 * we haven't yet exited the RCU idle mode. Do it here manually until
6157 * we find a better solution.
6158 *
6159 * NB: There are buggy callers of this function. Ideally we
6160 * should warn if prev_state != CONTEXT_USER, but that will trigger
6161 * too frequently to make sense yet.
6162 */
6163 enum ctx_state prev_state = exception_enter();
6164 schedule();
6165 exception_exit(prev_state);
6166}
6167#endif
6168
6169/**
6170 * schedule_preempt_disabled - called with preemption disabled
6171 *
6172 * Returns with preemption disabled. Note: preempt_count must be 1
6173 */
6174void __sched schedule_preempt_disabled(void)
6175{
6176 sched_preempt_enable_no_resched();
6177 schedule();
6178 preempt_disable();
6179}
6180
6181static void __sched notrace preempt_schedule_common(void)
6182{
6183 do {
6184 /*
6185 * Because the function tracer can trace preempt_count_sub()
6186 * and it also uses preempt_enable/disable_notrace(), if
6187 * NEED_RESCHED is set, the preempt_enable_notrace() called
6188 * by the function tracer will call this function again and
6189 * cause infinite recursion.
6190 *
6191 * Preemption must be disabled here before the function
6192 * tracer can trace. Break up preempt_disable() into two
6193 * calls. One to disable preemption without fear of being
6194 * traced. The other to still record the preemption latency,
6195 * which can also be traced by the function tracer.
6196 */
6197 preempt_disable_notrace();
6198 preempt_latency_start(1);
6199 __schedule(true);
6200 preempt_latency_stop(1);
6201 preempt_enable_no_resched_notrace();
6202
6203 /*
6204 * Check again in case we missed a preemption opportunity
6205 * between schedule and now.
6206 */
6207 } while (need_resched());
6208}
6209
6210#ifdef CONFIG_PREEMPTION
6211/*
6212 * This is the entry point to schedule() from in-kernel preemption
6213 * off of preempt_enable.
6214 */
6215asmlinkage __visible void __sched notrace preempt_schedule(void)
6216{
6217 /*
6218 * If there is a non-zero preempt_count or interrupts are disabled,
6219 * we do not want to preempt the current task. Just return..
6220 */
6221 if (likely(!preemptible()))
6222 return;
6223
6224 preempt_schedule_common();
6225}
6226NOKPROBE_SYMBOL(preempt_schedule);
6227EXPORT_SYMBOL(preempt_schedule);
6228
6229#ifdef CONFIG_PREEMPT_DYNAMIC
6230DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6231EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6232#endif
6233
6234
6235/**
6236 * preempt_schedule_notrace - preempt_schedule called by tracing
6237 *
6238 * The tracing infrastructure uses preempt_enable_notrace to prevent
6239 * recursion and tracing preempt enabling caused by the tracing
6240 * infrastructure itself. But as tracing can happen in areas coming
6241 * from userspace or just about to enter userspace, a preempt enable
6242 * can occur before user_exit() is called. This will cause the scheduler
6243 * to be called when the system is still in usermode.
6244 *
6245 * To prevent this, the preempt_enable_notrace will use this function
6246 * instead of preempt_schedule() to exit user context if needed before
6247 * calling the scheduler.
6248 */
6249asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6250{
6251 enum ctx_state prev_ctx;
6252
6253 if (likely(!preemptible()))
6254 return;
6255
6256 do {
6257 /*
6258 * Because the function tracer can trace preempt_count_sub()
6259 * and it also uses preempt_enable/disable_notrace(), if
6260 * NEED_RESCHED is set, the preempt_enable_notrace() called
6261 * by the function tracer will call this function again and
6262 * cause infinite recursion.
6263 *
6264 * Preemption must be disabled here before the function
6265 * tracer can trace. Break up preempt_disable() into two
6266 * calls. One to disable preemption without fear of being
6267 * traced. The other to still record the preemption latency,
6268 * which can also be traced by the function tracer.
6269 */
6270 preempt_disable_notrace();
6271 preempt_latency_start(1);
6272 /*
6273 * Needs preempt disabled in case user_exit() is traced
6274 * and the tracer calls preempt_enable_notrace() causing
6275 * an infinite recursion.
6276 */
6277 prev_ctx = exception_enter();
6278 __schedule(true);
6279 exception_exit(prev_ctx);
6280
6281 preempt_latency_stop(1);
6282 preempt_enable_no_resched_notrace();
6283 } while (need_resched());
6284}
6285EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6286
6287#ifdef CONFIG_PREEMPT_DYNAMIC
6288DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6289EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6290#endif
6291
6292#endif /* CONFIG_PREEMPTION */
6293
6294#ifdef CONFIG_PREEMPT_DYNAMIC
6295
6296#include <linux/entry-common.h>
6297
6298/*
6299 * SC:cond_resched
6300 * SC:might_resched
6301 * SC:preempt_schedule
6302 * SC:preempt_schedule_notrace
6303 * SC:irqentry_exit_cond_resched
6304 *
6305 *
6306 * NONE:
6307 * cond_resched <- __cond_resched
6308 * might_resched <- RET0
6309 * preempt_schedule <- NOP
6310 * preempt_schedule_notrace <- NOP
6311 * irqentry_exit_cond_resched <- NOP
6312 *
6313 * VOLUNTARY:
6314 * cond_resched <- __cond_resched
6315 * might_resched <- __cond_resched
6316 * preempt_schedule <- NOP
6317 * preempt_schedule_notrace <- NOP
6318 * irqentry_exit_cond_resched <- NOP
6319 *
6320 * FULL:
6321 * cond_resched <- RET0
6322 * might_resched <- RET0
6323 * preempt_schedule <- preempt_schedule
6324 * preempt_schedule_notrace <- preempt_schedule_notrace
6325 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6326 */
6327
6328enum {
6329 preempt_dynamic_none = 0,
6330 preempt_dynamic_voluntary,
6331 preempt_dynamic_full,
6332};
6333
6334int preempt_dynamic_mode = preempt_dynamic_full;
6335
6336int sched_dynamic_mode(const char *str)
6337{
6338 if (!strcmp(str, "none"))
6339 return preempt_dynamic_none;
6340
6341 if (!strcmp(str, "voluntary"))
6342 return preempt_dynamic_voluntary;
6343
6344 if (!strcmp(str, "full"))
6345 return preempt_dynamic_full;
6346
6347 return -EINVAL;
6348}
6349
6350void sched_dynamic_update(int mode)
6351{
6352 /*
6353 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6354 * the ZERO state, which is invalid.
6355 */
6356 static_call_update(cond_resched, __cond_resched);
6357 static_call_update(might_resched, __cond_resched);
6358 static_call_update(preempt_schedule, __preempt_schedule_func);
6359 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6360 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6361
6362 switch (mode) {
6363 case preempt_dynamic_none:
6364 static_call_update(cond_resched, __cond_resched);
6365 static_call_update(might_resched, (void *)&__static_call_return0);
6366 static_call_update(preempt_schedule, NULL);
6367 static_call_update(preempt_schedule_notrace, NULL);
6368 static_call_update(irqentry_exit_cond_resched, NULL);
6369 pr_info("Dynamic Preempt: none\n");
6370 break;
6371
6372 case preempt_dynamic_voluntary:
6373 static_call_update(cond_resched, __cond_resched);
6374 static_call_update(might_resched, __cond_resched);
6375 static_call_update(preempt_schedule, NULL);
6376 static_call_update(preempt_schedule_notrace, NULL);
6377 static_call_update(irqentry_exit_cond_resched, NULL);
6378 pr_info("Dynamic Preempt: voluntary\n");
6379 break;
6380
6381 case preempt_dynamic_full:
6382 static_call_update(cond_resched, (void *)&__static_call_return0);
6383 static_call_update(might_resched, (void *)&__static_call_return0);
6384 static_call_update(preempt_schedule, __preempt_schedule_func);
6385 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6386 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6387 pr_info("Dynamic Preempt: full\n");
6388 break;
6389 }
6390
6391 preempt_dynamic_mode = mode;
6392}
6393
6394static int __init setup_preempt_mode(char *str)
6395{
6396 int mode = sched_dynamic_mode(str);
6397 if (mode < 0) {
6398 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6399 return 1;
6400 }
6401
6402 sched_dynamic_update(mode);
6403 return 0;
6404}
6405__setup("preempt=", setup_preempt_mode);
6406
6407#endif /* CONFIG_PREEMPT_DYNAMIC */
6408
6409/*
6410 * This is the entry point to schedule() from kernel preemption
6411 * off of irq context.
6412 * Note, that this is called and return with irqs disabled. This will
6413 * protect us against recursive calling from irq.
6414 */
6415asmlinkage __visible void __sched preempt_schedule_irq(void)
6416{
6417 enum ctx_state prev_state;
6418
6419 /* Catch callers which need to be fixed */
6420 BUG_ON(preempt_count() || !irqs_disabled());
6421
6422 prev_state = exception_enter();
6423
6424 do {
6425 preempt_disable();
6426 local_irq_enable();
6427 __schedule(true);
6428 local_irq_disable();
6429 sched_preempt_enable_no_resched();
6430 } while (need_resched());
6431
6432 exception_exit(prev_state);
6433}
6434
6435int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6436 void *key)
6437{
6438 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6439 return try_to_wake_up(curr->private, mode, wake_flags);
6440}
6441EXPORT_SYMBOL(default_wake_function);
6442
6443static void __setscheduler_prio(struct task_struct *p, int prio)
6444{
6445 if (dl_prio(prio))
6446 p->sched_class = &dl_sched_class;
6447 else if (rt_prio(prio))
6448 p->sched_class = &rt_sched_class;
6449 else
6450 p->sched_class = &fair_sched_class;
6451
6452 p->prio = prio;
6453}
6454
6455#ifdef CONFIG_RT_MUTEXES
6456
6457static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6458{
6459 if (pi_task)
6460 prio = min(prio, pi_task->prio);
6461
6462 return prio;
6463}
6464
6465static inline int rt_effective_prio(struct task_struct *p, int prio)
6466{
6467 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6468
6469 return __rt_effective_prio(pi_task, prio);
6470}
6471
6472/*
6473 * rt_mutex_setprio - set the current priority of a task
6474 * @p: task to boost
6475 * @pi_task: donor task
6476 *
6477 * This function changes the 'effective' priority of a task. It does
6478 * not touch ->normal_prio like __setscheduler().
6479 *
6480 * Used by the rt_mutex code to implement priority inheritance
6481 * logic. Call site only calls if the priority of the task changed.
6482 */
6483void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6484{
6485 int prio, oldprio, queued, running, queue_flag =
6486 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6487 const struct sched_class *prev_class;
6488 struct rq_flags rf;
6489 struct rq *rq;
6490
6491 /* XXX used to be waiter->prio, not waiter->task->prio */
6492 prio = __rt_effective_prio(pi_task, p->normal_prio);
6493
6494 /*
6495 * If nothing changed; bail early.
6496 */
6497 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6498 return;
6499
6500 rq = __task_rq_lock(p, &rf);
6501 update_rq_clock(rq);
6502 /*
6503 * Set under pi_lock && rq->lock, such that the value can be used under
6504 * either lock.
6505 *
6506 * Note that there is loads of tricky to make this pointer cache work
6507 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6508 * ensure a task is de-boosted (pi_task is set to NULL) before the
6509 * task is allowed to run again (and can exit). This ensures the pointer
6510 * points to a blocked task -- which guarantees the task is present.
6511 */
6512 p->pi_top_task = pi_task;
6513
6514 /*
6515 * For FIFO/RR we only need to set prio, if that matches we're done.
6516 */
6517 if (prio == p->prio && !dl_prio(prio))
6518 goto out_unlock;
6519
6520 /*
6521 * Idle task boosting is a nono in general. There is one
6522 * exception, when PREEMPT_RT and NOHZ is active:
6523 *
6524 * The idle task calls get_next_timer_interrupt() and holds
6525 * the timer wheel base->lock on the CPU and another CPU wants
6526 * to access the timer (probably to cancel it). We can safely
6527 * ignore the boosting request, as the idle CPU runs this code
6528 * with interrupts disabled and will complete the lock
6529 * protected section without being interrupted. So there is no
6530 * real need to boost.
6531 */
6532 if (unlikely(p == rq->idle)) {
6533 WARN_ON(p != rq->curr);
6534 WARN_ON(p->pi_blocked_on);
6535 goto out_unlock;
6536 }
6537
6538 trace_sched_pi_setprio(p, pi_task);
6539 oldprio = p->prio;
6540
6541 if (oldprio == prio)
6542 queue_flag &= ~DEQUEUE_MOVE;
6543
6544 prev_class = p->sched_class;
6545 queued = task_on_rq_queued(p);
6546 running = task_current(rq, p);
6547 if (queued)
6548 dequeue_task(rq, p, queue_flag);
6549 if (running)
6550 put_prev_task(rq, p);
6551
6552 /*
6553 * Boosting condition are:
6554 * 1. -rt task is running and holds mutex A
6555 * --> -dl task blocks on mutex A
6556 *
6557 * 2. -dl task is running and holds mutex A
6558 * --> -dl task blocks on mutex A and could preempt the
6559 * running task
6560 */
6561 if (dl_prio(prio)) {
6562 if (!dl_prio(p->normal_prio) ||
6563 (pi_task && dl_prio(pi_task->prio) &&
6564 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6565 p->dl.pi_se = pi_task->dl.pi_se;
6566 queue_flag |= ENQUEUE_REPLENISH;
6567 } else {
6568 p->dl.pi_se = &p->dl;
6569 }
6570 } else if (rt_prio(prio)) {
6571 if (dl_prio(oldprio))
6572 p->dl.pi_se = &p->dl;
6573 if (oldprio < prio)
6574 queue_flag |= ENQUEUE_HEAD;
6575 } else {
6576 if (dl_prio(oldprio))
6577 p->dl.pi_se = &p->dl;
6578 if (rt_prio(oldprio))
6579 p->rt.timeout = 0;
6580 }
6581
6582 __setscheduler_prio(p, prio);
6583
6584 if (queued)
6585 enqueue_task(rq, p, queue_flag);
6586 if (running)
6587 set_next_task(rq, p);
6588
6589 check_class_changed(rq, p, prev_class, oldprio);
6590out_unlock:
6591 /* Avoid rq from going away on us: */
6592 preempt_disable();
6593
6594 rq_unpin_lock(rq, &rf);
6595 __balance_callbacks(rq);
6596 raw_spin_rq_unlock(rq);
6597
6598 preempt_enable();
6599}
6600#else
6601static inline int rt_effective_prio(struct task_struct *p, int prio)
6602{
6603 return prio;
6604}
6605#endif
6606
6607void set_user_nice(struct task_struct *p, long nice)
6608{
6609 bool queued, running;
6610 int old_prio;
6611 struct rq_flags rf;
6612 struct rq *rq;
6613
6614 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6615 return;
6616 /*
6617 * We have to be careful, if called from sys_setpriority(),
6618 * the task might be in the middle of scheduling on another CPU.
6619 */
6620 rq = task_rq_lock(p, &rf);
6621 update_rq_clock(rq);
6622
6623 /*
6624 * The RT priorities are set via sched_setscheduler(), but we still
6625 * allow the 'normal' nice value to be set - but as expected
6626 * it won't have any effect on scheduling until the task is
6627 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6628 */
6629 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6630 p->static_prio = NICE_TO_PRIO(nice);
6631 goto out_unlock;
6632 }
6633 queued = task_on_rq_queued(p);
6634 running = task_current(rq, p);
6635 if (queued)
6636 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6637 if (running)
6638 put_prev_task(rq, p);
6639
6640 p->static_prio = NICE_TO_PRIO(nice);
6641 set_load_weight(p, true);
6642 old_prio = p->prio;
6643 p->prio = effective_prio(p);
6644
6645 if (queued)
6646 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6647 if (running)
6648 set_next_task(rq, p);
6649
6650 /*
6651 * If the task increased its priority or is running and
6652 * lowered its priority, then reschedule its CPU:
6653 */
6654 p->sched_class->prio_changed(rq, p, old_prio);
6655
6656out_unlock:
6657 task_rq_unlock(rq, p, &rf);
6658}
6659EXPORT_SYMBOL(set_user_nice);
6660
6661/*
6662 * can_nice - check if a task can reduce its nice value
6663 * @p: task
6664 * @nice: nice value
6665 */
6666int can_nice(const struct task_struct *p, const int nice)
6667{
6668 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6669 int nice_rlim = nice_to_rlimit(nice);
6670
6671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6672 capable(CAP_SYS_NICE));
6673}
6674
6675#ifdef __ARCH_WANT_SYS_NICE
6676
6677/*
6678 * sys_nice - change the priority of the current process.
6679 * @increment: priority increment
6680 *
6681 * sys_setpriority is a more generic, but much slower function that
6682 * does similar things.
6683 */
6684SYSCALL_DEFINE1(nice, int, increment)
6685{
6686 long nice, retval;
6687
6688 /*
6689 * Setpriority might change our priority at the same moment.
6690 * We don't have to worry. Conceptually one call occurs first
6691 * and we have a single winner.
6692 */
6693 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6694 nice = task_nice(current) + increment;
6695
6696 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6697 if (increment < 0 && !can_nice(current, nice))
6698 return -EPERM;
6699
6700 retval = security_task_setnice(current, nice);
6701 if (retval)
6702 return retval;
6703
6704 set_user_nice(current, nice);
6705 return 0;
6706}
6707
6708#endif
6709
6710/**
6711 * task_prio - return the priority value of a given task.
6712 * @p: the task in question.
6713 *
6714 * Return: The priority value as seen by users in /proc.
6715 *
6716 * sched policy return value kernel prio user prio/nice
6717 *
6718 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6719 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6720 * deadline -101 -1 0
6721 */
6722int task_prio(const struct task_struct *p)
6723{
6724 return p->prio - MAX_RT_PRIO;
6725}
6726
6727/**
6728 * idle_cpu - is a given CPU idle currently?
6729 * @cpu: the processor in question.
6730 *
6731 * Return: 1 if the CPU is currently idle. 0 otherwise.
6732 */
6733int idle_cpu(int cpu)
6734{
6735 struct rq *rq = cpu_rq(cpu);
6736
6737 if (rq->curr != rq->idle)
6738 return 0;
6739
6740 if (rq->nr_running)
6741 return 0;
6742
6743#ifdef CONFIG_SMP
6744 if (rq->ttwu_pending)
6745 return 0;
6746#endif
6747
6748 return 1;
6749}
6750
6751/**
6752 * available_idle_cpu - is a given CPU idle for enqueuing work.
6753 * @cpu: the CPU in question.
6754 *
6755 * Return: 1 if the CPU is currently idle. 0 otherwise.
6756 */
6757int available_idle_cpu(int cpu)
6758{
6759 if (!idle_cpu(cpu))
6760 return 0;
6761
6762 if (vcpu_is_preempted(cpu))
6763 return 0;
6764
6765 return 1;
6766}
6767
6768/**
6769 * idle_task - return the idle task for a given CPU.
6770 * @cpu: the processor in question.
6771 *
6772 * Return: The idle task for the CPU @cpu.
6773 */
6774struct task_struct *idle_task(int cpu)
6775{
6776 return cpu_rq(cpu)->idle;
6777}
6778
6779#ifdef CONFIG_SMP
6780/*
6781 * This function computes an effective utilization for the given CPU, to be
6782 * used for frequency selection given the linear relation: f = u * f_max.
6783 *
6784 * The scheduler tracks the following metrics:
6785 *
6786 * cpu_util_{cfs,rt,dl,irq}()
6787 * cpu_bw_dl()
6788 *
6789 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6790 * synchronized windows and are thus directly comparable.
6791 *
6792 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6793 * which excludes things like IRQ and steal-time. These latter are then accrued
6794 * in the irq utilization.
6795 *
6796 * The DL bandwidth number otoh is not a measured metric but a value computed
6797 * based on the task model parameters and gives the minimal utilization
6798 * required to meet deadlines.
6799 */
6800unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6801 unsigned long max, enum cpu_util_type type,
6802 struct task_struct *p)
6803{
6804 unsigned long dl_util, util, irq;
6805 struct rq *rq = cpu_rq(cpu);
6806
6807 if (!uclamp_is_used() &&
6808 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6809 return max;
6810 }
6811
6812 /*
6813 * Early check to see if IRQ/steal time saturates the CPU, can be
6814 * because of inaccuracies in how we track these -- see
6815 * update_irq_load_avg().
6816 */
6817 irq = cpu_util_irq(rq);
6818 if (unlikely(irq >= max))
6819 return max;
6820
6821 /*
6822 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6823 * CFS tasks and we use the same metric to track the effective
6824 * utilization (PELT windows are synchronized) we can directly add them
6825 * to obtain the CPU's actual utilization.
6826 *
6827 * CFS and RT utilization can be boosted or capped, depending on
6828 * utilization clamp constraints requested by currently RUNNABLE
6829 * tasks.
6830 * When there are no CFS RUNNABLE tasks, clamps are released and
6831 * frequency will be gracefully reduced with the utilization decay.
6832 */
6833 util = util_cfs + cpu_util_rt(rq);
6834 if (type == FREQUENCY_UTIL)
6835 util = uclamp_rq_util_with(rq, util, p);
6836
6837 dl_util = cpu_util_dl(rq);
6838
6839 /*
6840 * For frequency selection we do not make cpu_util_dl() a permanent part
6841 * of this sum because we want to use cpu_bw_dl() later on, but we need
6842 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6843 * that we select f_max when there is no idle time.
6844 *
6845 * NOTE: numerical errors or stop class might cause us to not quite hit
6846 * saturation when we should -- something for later.
6847 */
6848 if (util + dl_util >= max)
6849 return max;
6850
6851 /*
6852 * OTOH, for energy computation we need the estimated running time, so
6853 * include util_dl and ignore dl_bw.
6854 */
6855 if (type == ENERGY_UTIL)
6856 util += dl_util;
6857
6858 /*
6859 * There is still idle time; further improve the number by using the
6860 * irq metric. Because IRQ/steal time is hidden from the task clock we
6861 * need to scale the task numbers:
6862 *
6863 * max - irq
6864 * U' = irq + --------- * U
6865 * max
6866 */
6867 util = scale_irq_capacity(util, irq, max);
6868 util += irq;
6869
6870 /*
6871 * Bandwidth required by DEADLINE must always be granted while, for
6872 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6873 * to gracefully reduce the frequency when no tasks show up for longer
6874 * periods of time.
6875 *
6876 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6877 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6878 * an interface. So, we only do the latter for now.
6879 */
6880 if (type == FREQUENCY_UTIL)
6881 util += cpu_bw_dl(rq);
6882
6883 return min(max, util);
6884}
6885
6886unsigned long sched_cpu_util(int cpu, unsigned long max)
6887{
6888 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6889 ENERGY_UTIL, NULL);
6890}
6891#endif /* CONFIG_SMP */
6892
6893/**
6894 * find_process_by_pid - find a process with a matching PID value.
6895 * @pid: the pid in question.
6896 *
6897 * The task of @pid, if found. %NULL otherwise.
6898 */
6899static struct task_struct *find_process_by_pid(pid_t pid)
6900{
6901 return pid ? find_task_by_vpid(pid) : current;
6902}
6903
6904/*
6905 * sched_setparam() passes in -1 for its policy, to let the functions
6906 * it calls know not to change it.
6907 */
6908#define SETPARAM_POLICY -1
6909
6910static void __setscheduler_params(struct task_struct *p,
6911 const struct sched_attr *attr)
6912{
6913 int policy = attr->sched_policy;
6914
6915 if (policy == SETPARAM_POLICY)
6916 policy = p->policy;
6917
6918 p->policy = policy;
6919
6920 if (dl_policy(policy))
6921 __setparam_dl(p, attr);
6922 else if (fair_policy(policy))
6923 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6924
6925 /*
6926 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6927 * !rt_policy. Always setting this ensures that things like
6928 * getparam()/getattr() don't report silly values for !rt tasks.
6929 */
6930 p->rt_priority = attr->sched_priority;
6931 p->normal_prio = normal_prio(p);
6932 set_load_weight(p, true);
6933}
6934
6935/*
6936 * Check the target process has a UID that matches the current process's:
6937 */
6938static bool check_same_owner(struct task_struct *p)
6939{
6940 const struct cred *cred = current_cred(), *pcred;
6941 bool match;
6942
6943 rcu_read_lock();
6944 pcred = __task_cred(p);
6945 match = (uid_eq(cred->euid, pcred->euid) ||
6946 uid_eq(cred->euid, pcred->uid));
6947 rcu_read_unlock();
6948 return match;
6949}
6950
6951static int __sched_setscheduler(struct task_struct *p,
6952 const struct sched_attr *attr,
6953 bool user, bool pi)
6954{
6955 int oldpolicy = -1, policy = attr->sched_policy;
6956 int retval, oldprio, newprio, queued, running;
6957 const struct sched_class *prev_class;
6958 struct callback_head *head;
6959 struct rq_flags rf;
6960 int reset_on_fork;
6961 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6962 struct rq *rq;
6963
6964 /* The pi code expects interrupts enabled */
6965 BUG_ON(pi && in_interrupt());
6966recheck:
6967 /* Double check policy once rq lock held: */
6968 if (policy < 0) {
6969 reset_on_fork = p->sched_reset_on_fork;
6970 policy = oldpolicy = p->policy;
6971 } else {
6972 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6973
6974 if (!valid_policy(policy))
6975 return -EINVAL;
6976 }
6977
6978 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6979 return -EINVAL;
6980
6981 /*
6982 * Valid priorities for SCHED_FIFO and SCHED_RR are
6983 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6984 * SCHED_BATCH and SCHED_IDLE is 0.
6985 */
6986 if (attr->sched_priority > MAX_RT_PRIO-1)
6987 return -EINVAL;
6988 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6989 (rt_policy(policy) != (attr->sched_priority != 0)))
6990 return -EINVAL;
6991
6992 /*
6993 * Allow unprivileged RT tasks to decrease priority:
6994 */
6995 if (user && !capable(CAP_SYS_NICE)) {
6996 if (fair_policy(policy)) {
6997 if (attr->sched_nice < task_nice(p) &&
6998 !can_nice(p, attr->sched_nice))
6999 return -EPERM;
7000 }
7001
7002 if (rt_policy(policy)) {
7003 unsigned long rlim_rtprio =
7004 task_rlimit(p, RLIMIT_RTPRIO);
7005
7006 /* Can't set/change the rt policy: */
7007 if (policy != p->policy && !rlim_rtprio)
7008 return -EPERM;
7009
7010 /* Can't increase priority: */
7011 if (attr->sched_priority > p->rt_priority &&
7012 attr->sched_priority > rlim_rtprio)
7013 return -EPERM;
7014 }
7015
7016 /*
7017 * Can't set/change SCHED_DEADLINE policy at all for now
7018 * (safest behavior); in the future we would like to allow
7019 * unprivileged DL tasks to increase their relative deadline
7020 * or reduce their runtime (both ways reducing utilization)
7021 */
7022 if (dl_policy(policy))
7023 return -EPERM;
7024
7025 /*
7026 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7027 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7028 */
7029 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7030 if (!can_nice(p, task_nice(p)))
7031 return -EPERM;
7032 }
7033
7034 /* Can't change other user's priorities: */
7035 if (!check_same_owner(p))
7036 return -EPERM;
7037
7038 /* Normal users shall not reset the sched_reset_on_fork flag: */
7039 if (p->sched_reset_on_fork && !reset_on_fork)
7040 return -EPERM;
7041 }
7042
7043 if (user) {
7044 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7045 return -EINVAL;
7046
7047 retval = security_task_setscheduler(p);
7048 if (retval)
7049 return retval;
7050 }
7051
7052 /* Update task specific "requested" clamps */
7053 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7054 retval = uclamp_validate(p, attr);
7055 if (retval)
7056 return retval;
7057 }
7058
7059 if (pi)
7060 cpuset_read_lock();
7061
7062 /*
7063 * Make sure no PI-waiters arrive (or leave) while we are
7064 * changing the priority of the task:
7065 *
7066 * To be able to change p->policy safely, the appropriate
7067 * runqueue lock must be held.
7068 */
7069 rq = task_rq_lock(p, &rf);
7070 update_rq_clock(rq);
7071
7072 /*
7073 * Changing the policy of the stop threads its a very bad idea:
7074 */
7075 if (p == rq->stop) {
7076 retval = -EINVAL;
7077 goto unlock;
7078 }
7079
7080 /*
7081 * If not changing anything there's no need to proceed further,
7082 * but store a possible modification of reset_on_fork.
7083 */
7084 if (unlikely(policy == p->policy)) {
7085 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7086 goto change;
7087 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7088 goto change;
7089 if (dl_policy(policy) && dl_param_changed(p, attr))
7090 goto change;
7091 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7092 goto change;
7093
7094 p->sched_reset_on_fork = reset_on_fork;
7095 retval = 0;
7096 goto unlock;
7097 }
7098change:
7099
7100 if (user) {
7101#ifdef CONFIG_RT_GROUP_SCHED
7102 /*
7103 * Do not allow realtime tasks into groups that have no runtime
7104 * assigned.
7105 */
7106 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7107 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7108 !task_group_is_autogroup(task_group(p))) {
7109 retval = -EPERM;
7110 goto unlock;
7111 }
7112#endif
7113#ifdef CONFIG_SMP
7114 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7115 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7116 cpumask_t *span = rq->rd->span;
7117
7118 /*
7119 * Don't allow tasks with an affinity mask smaller than
7120 * the entire root_domain to become SCHED_DEADLINE. We
7121 * will also fail if there's no bandwidth available.
7122 */
7123 if (!cpumask_subset(span, p->cpus_ptr) ||
7124 rq->rd->dl_bw.bw == 0) {
7125 retval = -EPERM;
7126 goto unlock;
7127 }
7128 }
7129#endif
7130 }
7131
7132 /* Re-check policy now with rq lock held: */
7133 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7134 policy = oldpolicy = -1;
7135 task_rq_unlock(rq, p, &rf);
7136 if (pi)
7137 cpuset_read_unlock();
7138 goto recheck;
7139 }
7140
7141 /*
7142 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7143 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7144 * is available.
7145 */
7146 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7147 retval = -EBUSY;
7148 goto unlock;
7149 }
7150
7151 p->sched_reset_on_fork = reset_on_fork;
7152 oldprio = p->prio;
7153
7154 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7155 if (pi) {
7156 /*
7157 * Take priority boosted tasks into account. If the new
7158 * effective priority is unchanged, we just store the new
7159 * normal parameters and do not touch the scheduler class and
7160 * the runqueue. This will be done when the task deboost
7161 * itself.
7162 */
7163 newprio = rt_effective_prio(p, newprio);
7164 if (newprio == oldprio)
7165 queue_flags &= ~DEQUEUE_MOVE;
7166 }
7167
7168 queued = task_on_rq_queued(p);
7169 running = task_current(rq, p);
7170 if (queued)
7171 dequeue_task(rq, p, queue_flags);
7172 if (running)
7173 put_prev_task(rq, p);
7174
7175 prev_class = p->sched_class;
7176
7177 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7178 __setscheduler_params(p, attr);
7179 __setscheduler_prio(p, newprio);
7180 }
7181 __setscheduler_uclamp(p, attr);
7182
7183 if (queued) {
7184 /*
7185 * We enqueue to tail when the priority of a task is
7186 * increased (user space view).
7187 */
7188 if (oldprio < p->prio)
7189 queue_flags |= ENQUEUE_HEAD;
7190
7191 enqueue_task(rq, p, queue_flags);
7192 }
7193 if (running)
7194 set_next_task(rq, p);
7195
7196 check_class_changed(rq, p, prev_class, oldprio);
7197
7198 /* Avoid rq from going away on us: */
7199 preempt_disable();
7200 head = splice_balance_callbacks(rq);
7201 task_rq_unlock(rq, p, &rf);
7202
7203 if (pi) {
7204 cpuset_read_unlock();
7205 rt_mutex_adjust_pi(p);
7206 }
7207
7208 /* Run balance callbacks after we've adjusted the PI chain: */
7209 balance_callbacks(rq, head);
7210 preempt_enable();
7211
7212 return 0;
7213
7214unlock:
7215 task_rq_unlock(rq, p, &rf);
7216 if (pi)
7217 cpuset_read_unlock();
7218 return retval;
7219}
7220
7221static int _sched_setscheduler(struct task_struct *p, int policy,
7222 const struct sched_param *param, bool check)
7223{
7224 struct sched_attr attr = {
7225 .sched_policy = policy,
7226 .sched_priority = param->sched_priority,
7227 .sched_nice = PRIO_TO_NICE(p->static_prio),
7228 };
7229
7230 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7231 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7232 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7233 policy &= ~SCHED_RESET_ON_FORK;
7234 attr.sched_policy = policy;
7235 }
7236
7237 return __sched_setscheduler(p, &attr, check, true);
7238}
7239/**
7240 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7241 * @p: the task in question.
7242 * @policy: new policy.
7243 * @param: structure containing the new RT priority.
7244 *
7245 * Use sched_set_fifo(), read its comment.
7246 *
7247 * Return: 0 on success. An error code otherwise.
7248 *
7249 * NOTE that the task may be already dead.
7250 */
7251int sched_setscheduler(struct task_struct *p, int policy,
7252 const struct sched_param *param)
7253{
7254 return _sched_setscheduler(p, policy, param, true);
7255}
7256
7257int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7258{
7259 return __sched_setscheduler(p, attr, true, true);
7260}
7261
7262int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7263{
7264 return __sched_setscheduler(p, attr, false, true);
7265}
7266EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7267
7268/**
7269 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7270 * @p: the task in question.
7271 * @policy: new policy.
7272 * @param: structure containing the new RT priority.
7273 *
7274 * Just like sched_setscheduler, only don't bother checking if the
7275 * current context has permission. For example, this is needed in
7276 * stop_machine(): we create temporary high priority worker threads,
7277 * but our caller might not have that capability.
7278 *
7279 * Return: 0 on success. An error code otherwise.
7280 */
7281int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7282 const struct sched_param *param)
7283{
7284 return _sched_setscheduler(p, policy, param, false);
7285}
7286
7287/*
7288 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7289 * incapable of resource management, which is the one thing an OS really should
7290 * be doing.
7291 *
7292 * This is of course the reason it is limited to privileged users only.
7293 *
7294 * Worse still; it is fundamentally impossible to compose static priority
7295 * workloads. You cannot take two correctly working static prio workloads
7296 * and smash them together and still expect them to work.
7297 *
7298 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7299 *
7300 * MAX_RT_PRIO / 2
7301 *
7302 * The administrator _MUST_ configure the system, the kernel simply doesn't
7303 * know enough information to make a sensible choice.
7304 */
7305void sched_set_fifo(struct task_struct *p)
7306{
7307 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7308 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7309}
7310EXPORT_SYMBOL_GPL(sched_set_fifo);
7311
7312/*
7313 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7314 */
7315void sched_set_fifo_low(struct task_struct *p)
7316{
7317 struct sched_param sp = { .sched_priority = 1 };
7318 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7319}
7320EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7321
7322void sched_set_normal(struct task_struct *p, int nice)
7323{
7324 struct sched_attr attr = {
7325 .sched_policy = SCHED_NORMAL,
7326 .sched_nice = nice,
7327 };
7328 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7329}
7330EXPORT_SYMBOL_GPL(sched_set_normal);
7331
7332static int
7333do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7334{
7335 struct sched_param lparam;
7336 struct task_struct *p;
7337 int retval;
7338
7339 if (!param || pid < 0)
7340 return -EINVAL;
7341 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7342 return -EFAULT;
7343
7344 rcu_read_lock();
7345 retval = -ESRCH;
7346 p = find_process_by_pid(pid);
7347 if (likely(p))
7348 get_task_struct(p);
7349 rcu_read_unlock();
7350
7351 if (likely(p)) {
7352 retval = sched_setscheduler(p, policy, &lparam);
7353 put_task_struct(p);
7354 }
7355
7356 return retval;
7357}
7358
7359/*
7360 * Mimics kernel/events/core.c perf_copy_attr().
7361 */
7362static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7363{
7364 u32 size;
7365 int ret;
7366
7367 /* Zero the full structure, so that a short copy will be nice: */
7368 memset(attr, 0, sizeof(*attr));
7369
7370 ret = get_user(size, &uattr->size);
7371 if (ret)
7372 return ret;
7373
7374 /* ABI compatibility quirk: */
7375 if (!size)
7376 size = SCHED_ATTR_SIZE_VER0;
7377 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7378 goto err_size;
7379
7380 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7381 if (ret) {
7382 if (ret == -E2BIG)
7383 goto err_size;
7384 return ret;
7385 }
7386
7387 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7388 size < SCHED_ATTR_SIZE_VER1)
7389 return -EINVAL;
7390
7391 /*
7392 * XXX: Do we want to be lenient like existing syscalls; or do we want
7393 * to be strict and return an error on out-of-bounds values?
7394 */
7395 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7396
7397 return 0;
7398
7399err_size:
7400 put_user(sizeof(*attr), &uattr->size);
7401 return -E2BIG;
7402}
7403
7404/**
7405 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7406 * @pid: the pid in question.
7407 * @policy: new policy.
7408 * @param: structure containing the new RT priority.
7409 *
7410 * Return: 0 on success. An error code otherwise.
7411 */
7412SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7413{
7414 if (policy < 0)
7415 return -EINVAL;
7416
7417 return do_sched_setscheduler(pid, policy, param);
7418}
7419
7420/**
7421 * sys_sched_setparam - set/change the RT priority of a thread
7422 * @pid: the pid in question.
7423 * @param: structure containing the new RT priority.
7424 *
7425 * Return: 0 on success. An error code otherwise.
7426 */
7427SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7428{
7429 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7430}
7431
7432/**
7433 * sys_sched_setattr - same as above, but with extended sched_attr
7434 * @pid: the pid in question.
7435 * @uattr: structure containing the extended parameters.
7436 * @flags: for future extension.
7437 */
7438SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7439 unsigned int, flags)
7440{
7441 struct sched_attr attr;
7442 struct task_struct *p;
7443 int retval;
7444
7445 if (!uattr || pid < 0 || flags)
7446 return -EINVAL;
7447
7448 retval = sched_copy_attr(uattr, &attr);
7449 if (retval)
7450 return retval;
7451
7452 if ((int)attr.sched_policy < 0)
7453 return -EINVAL;
7454 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7455 attr.sched_policy = SETPARAM_POLICY;
7456
7457 rcu_read_lock();
7458 retval = -ESRCH;
7459 p = find_process_by_pid(pid);
7460 if (likely(p))
7461 get_task_struct(p);
7462 rcu_read_unlock();
7463
7464 if (likely(p)) {
7465 retval = sched_setattr(p, &attr);
7466 put_task_struct(p);
7467 }
7468
7469 return retval;
7470}
7471
7472/**
7473 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7474 * @pid: the pid in question.
7475 *
7476 * Return: On success, the policy of the thread. Otherwise, a negative error
7477 * code.
7478 */
7479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7480{
7481 struct task_struct *p;
7482 int retval;
7483
7484 if (pid < 0)
7485 return -EINVAL;
7486
7487 retval = -ESRCH;
7488 rcu_read_lock();
7489 p = find_process_by_pid(pid);
7490 if (p) {
7491 retval = security_task_getscheduler(p);
7492 if (!retval)
7493 retval = p->policy
7494 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7495 }
7496 rcu_read_unlock();
7497 return retval;
7498}
7499
7500/**
7501 * sys_sched_getparam - get the RT priority of a thread
7502 * @pid: the pid in question.
7503 * @param: structure containing the RT priority.
7504 *
7505 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7506 * code.
7507 */
7508SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7509{
7510 struct sched_param lp = { .sched_priority = 0 };
7511 struct task_struct *p;
7512 int retval;
7513
7514 if (!param || pid < 0)
7515 return -EINVAL;
7516
7517 rcu_read_lock();
7518 p = find_process_by_pid(pid);
7519 retval = -ESRCH;
7520 if (!p)
7521 goto out_unlock;
7522
7523 retval = security_task_getscheduler(p);
7524 if (retval)
7525 goto out_unlock;
7526
7527 if (task_has_rt_policy(p))
7528 lp.sched_priority = p->rt_priority;
7529 rcu_read_unlock();
7530
7531 /*
7532 * This one might sleep, we cannot do it with a spinlock held ...
7533 */
7534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7535
7536 return retval;
7537
7538out_unlock:
7539 rcu_read_unlock();
7540 return retval;
7541}
7542
7543/*
7544 * Copy the kernel size attribute structure (which might be larger
7545 * than what user-space knows about) to user-space.
7546 *
7547 * Note that all cases are valid: user-space buffer can be larger or
7548 * smaller than the kernel-space buffer. The usual case is that both
7549 * have the same size.
7550 */
7551static int
7552sched_attr_copy_to_user(struct sched_attr __user *uattr,
7553 struct sched_attr *kattr,
7554 unsigned int usize)
7555{
7556 unsigned int ksize = sizeof(*kattr);
7557
7558 if (!access_ok(uattr, usize))
7559 return -EFAULT;
7560
7561 /*
7562 * sched_getattr() ABI forwards and backwards compatibility:
7563 *
7564 * If usize == ksize then we just copy everything to user-space and all is good.
7565 *
7566 * If usize < ksize then we only copy as much as user-space has space for,
7567 * this keeps ABI compatibility as well. We skip the rest.
7568 *
7569 * If usize > ksize then user-space is using a newer version of the ABI,
7570 * which part the kernel doesn't know about. Just ignore it - tooling can
7571 * detect the kernel's knowledge of attributes from the attr->size value
7572 * which is set to ksize in this case.
7573 */
7574 kattr->size = min(usize, ksize);
7575
7576 if (copy_to_user(uattr, kattr, kattr->size))
7577 return -EFAULT;
7578
7579 return 0;
7580}
7581
7582/**
7583 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7584 * @pid: the pid in question.
7585 * @uattr: structure containing the extended parameters.
7586 * @usize: sizeof(attr) for fwd/bwd comp.
7587 * @flags: for future extension.
7588 */
7589SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7590 unsigned int, usize, unsigned int, flags)
7591{
7592 struct sched_attr kattr = { };
7593 struct task_struct *p;
7594 int retval;
7595
7596 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7597 usize < SCHED_ATTR_SIZE_VER0 || flags)
7598 return -EINVAL;
7599
7600 rcu_read_lock();
7601 p = find_process_by_pid(pid);
7602 retval = -ESRCH;
7603 if (!p)
7604 goto out_unlock;
7605
7606 retval = security_task_getscheduler(p);
7607 if (retval)
7608 goto out_unlock;
7609
7610 kattr.sched_policy = p->policy;
7611 if (p->sched_reset_on_fork)
7612 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7613 if (task_has_dl_policy(p))
7614 __getparam_dl(p, &kattr);
7615 else if (task_has_rt_policy(p))
7616 kattr.sched_priority = p->rt_priority;
7617 else
7618 kattr.sched_nice = task_nice(p);
7619
7620#ifdef CONFIG_UCLAMP_TASK
7621 /*
7622 * This could race with another potential updater, but this is fine
7623 * because it'll correctly read the old or the new value. We don't need
7624 * to guarantee who wins the race as long as it doesn't return garbage.
7625 */
7626 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7627 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7628#endif
7629
7630 rcu_read_unlock();
7631
7632 return sched_attr_copy_to_user(uattr, &kattr, usize);
7633
7634out_unlock:
7635 rcu_read_unlock();
7636 return retval;
7637}
7638
7639long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7640{
7641 cpumask_var_t cpus_allowed, new_mask;
7642 struct task_struct *p;
7643 int retval;
7644
7645 rcu_read_lock();
7646
7647 p = find_process_by_pid(pid);
7648 if (!p) {
7649 rcu_read_unlock();
7650 return -ESRCH;
7651 }
7652
7653 /* Prevent p going away */
7654 get_task_struct(p);
7655 rcu_read_unlock();
7656
7657 if (p->flags & PF_NO_SETAFFINITY) {
7658 retval = -EINVAL;
7659 goto out_put_task;
7660 }
7661 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7662 retval = -ENOMEM;
7663 goto out_put_task;
7664 }
7665 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7666 retval = -ENOMEM;
7667 goto out_free_cpus_allowed;
7668 }
7669 retval = -EPERM;
7670 if (!check_same_owner(p)) {
7671 rcu_read_lock();
7672 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7673 rcu_read_unlock();
7674 goto out_free_new_mask;
7675 }
7676 rcu_read_unlock();
7677 }
7678
7679 retval = security_task_setscheduler(p);
7680 if (retval)
7681 goto out_free_new_mask;
7682
7683
7684 cpuset_cpus_allowed(p, cpus_allowed);
7685 cpumask_and(new_mask, in_mask, cpus_allowed);
7686
7687 /*
7688 * Since bandwidth control happens on root_domain basis,
7689 * if admission test is enabled, we only admit -deadline
7690 * tasks allowed to run on all the CPUs in the task's
7691 * root_domain.
7692 */
7693#ifdef CONFIG_SMP
7694 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7695 rcu_read_lock();
7696 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7697 retval = -EBUSY;
7698 rcu_read_unlock();
7699 goto out_free_new_mask;
7700 }
7701 rcu_read_unlock();
7702 }
7703#endif
7704again:
7705 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7706
7707 if (!retval) {
7708 cpuset_cpus_allowed(p, cpus_allowed);
7709 if (!cpumask_subset(new_mask, cpus_allowed)) {
7710 /*
7711 * We must have raced with a concurrent cpuset
7712 * update. Just reset the cpus_allowed to the
7713 * cpuset's cpus_allowed
7714 */
7715 cpumask_copy(new_mask, cpus_allowed);
7716 goto again;
7717 }
7718 }
7719out_free_new_mask:
7720 free_cpumask_var(new_mask);
7721out_free_cpus_allowed:
7722 free_cpumask_var(cpus_allowed);
7723out_put_task:
7724 put_task_struct(p);
7725 return retval;
7726}
7727
7728static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7729 struct cpumask *new_mask)
7730{
7731 if (len < cpumask_size())
7732 cpumask_clear(new_mask);
7733 else if (len > cpumask_size())
7734 len = cpumask_size();
7735
7736 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7737}
7738
7739/**
7740 * sys_sched_setaffinity - set the CPU affinity of a process
7741 * @pid: pid of the process
7742 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7743 * @user_mask_ptr: user-space pointer to the new CPU mask
7744 *
7745 * Return: 0 on success. An error code otherwise.
7746 */
7747SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7748 unsigned long __user *, user_mask_ptr)
7749{
7750 cpumask_var_t new_mask;
7751 int retval;
7752
7753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7754 return -ENOMEM;
7755
7756 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7757 if (retval == 0)
7758 retval = sched_setaffinity(pid, new_mask);
7759 free_cpumask_var(new_mask);
7760 return retval;
7761}
7762
7763long sched_getaffinity(pid_t pid, struct cpumask *mask)
7764{
7765 struct task_struct *p;
7766 unsigned long flags;
7767 int retval;
7768
7769 rcu_read_lock();
7770
7771 retval = -ESRCH;
7772 p = find_process_by_pid(pid);
7773 if (!p)
7774 goto out_unlock;
7775
7776 retval = security_task_getscheduler(p);
7777 if (retval)
7778 goto out_unlock;
7779
7780 raw_spin_lock_irqsave(&p->pi_lock, flags);
7781 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7782 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7783
7784out_unlock:
7785 rcu_read_unlock();
7786
7787 return retval;
7788}
7789
7790/**
7791 * sys_sched_getaffinity - get the CPU affinity of a process
7792 * @pid: pid of the process
7793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7794 * @user_mask_ptr: user-space pointer to hold the current CPU mask
7795 *
7796 * Return: size of CPU mask copied to user_mask_ptr on success. An
7797 * error code otherwise.
7798 */
7799SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7800 unsigned long __user *, user_mask_ptr)
7801{
7802 int ret;
7803 cpumask_var_t mask;
7804
7805 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7806 return -EINVAL;
7807 if (len & (sizeof(unsigned long)-1))
7808 return -EINVAL;
7809
7810 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7811 return -ENOMEM;
7812
7813 ret = sched_getaffinity(pid, mask);
7814 if (ret == 0) {
7815 unsigned int retlen = min(len, cpumask_size());
7816
7817 if (copy_to_user(user_mask_ptr, mask, retlen))
7818 ret = -EFAULT;
7819 else
7820 ret = retlen;
7821 }
7822 free_cpumask_var(mask);
7823
7824 return ret;
7825}
7826
7827static void do_sched_yield(void)
7828{
7829 struct rq_flags rf;
7830 struct rq *rq;
7831
7832 rq = this_rq_lock_irq(&rf);
7833
7834 schedstat_inc(rq->yld_count);
7835 current->sched_class->yield_task(rq);
7836
7837 preempt_disable();
7838 rq_unlock_irq(rq, &rf);
7839 sched_preempt_enable_no_resched();
7840
7841 schedule();
7842}
7843
7844/**
7845 * sys_sched_yield - yield the current processor to other threads.
7846 *
7847 * This function yields the current CPU to other tasks. If there are no
7848 * other threads running on this CPU then this function will return.
7849 *
7850 * Return: 0.
7851 */
7852SYSCALL_DEFINE0(sched_yield)
7853{
7854 do_sched_yield();
7855 return 0;
7856}
7857
7858#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7859int __sched __cond_resched(void)
7860{
7861 if (should_resched(0)) {
7862 preempt_schedule_common();
7863 return 1;
7864 }
7865#ifndef CONFIG_PREEMPT_RCU
7866 rcu_all_qs();
7867#endif
7868 return 0;
7869}
7870EXPORT_SYMBOL(__cond_resched);
7871#endif
7872
7873#ifdef CONFIG_PREEMPT_DYNAMIC
7874DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7875EXPORT_STATIC_CALL_TRAMP(cond_resched);
7876
7877DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7878EXPORT_STATIC_CALL_TRAMP(might_resched);
7879#endif
7880
7881/*
7882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7883 * call schedule, and on return reacquire the lock.
7884 *
7885 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7886 * operations here to prevent schedule() from being called twice (once via
7887 * spin_unlock(), once by hand).
7888 */
7889int __cond_resched_lock(spinlock_t *lock)
7890{
7891 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7892 int ret = 0;
7893
7894 lockdep_assert_held(lock);
7895
7896 if (spin_needbreak(lock) || resched) {
7897 spin_unlock(lock);
7898 if (resched)
7899 preempt_schedule_common();
7900 else
7901 cpu_relax();
7902 ret = 1;
7903 spin_lock(lock);
7904 }
7905 return ret;
7906}
7907EXPORT_SYMBOL(__cond_resched_lock);
7908
7909int __cond_resched_rwlock_read(rwlock_t *lock)
7910{
7911 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7912 int ret = 0;
7913
7914 lockdep_assert_held_read(lock);
7915
7916 if (rwlock_needbreak(lock) || resched) {
7917 read_unlock(lock);
7918 if (resched)
7919 preempt_schedule_common();
7920 else
7921 cpu_relax();
7922 ret = 1;
7923 read_lock(lock);
7924 }
7925 return ret;
7926}
7927EXPORT_SYMBOL(__cond_resched_rwlock_read);
7928
7929int __cond_resched_rwlock_write(rwlock_t *lock)
7930{
7931 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7932 int ret = 0;
7933
7934 lockdep_assert_held_write(lock);
7935
7936 if (rwlock_needbreak(lock) || resched) {
7937 write_unlock(lock);
7938 if (resched)
7939 preempt_schedule_common();
7940 else
7941 cpu_relax();
7942 ret = 1;
7943 write_lock(lock);
7944 }
7945 return ret;
7946}
7947EXPORT_SYMBOL(__cond_resched_rwlock_write);
7948
7949/**
7950 * yield - yield the current processor to other threads.
7951 *
7952 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7953 *
7954 * The scheduler is at all times free to pick the calling task as the most
7955 * eligible task to run, if removing the yield() call from your code breaks
7956 * it, it's already broken.
7957 *
7958 * Typical broken usage is:
7959 *
7960 * while (!event)
7961 * yield();
7962 *
7963 * where one assumes that yield() will let 'the other' process run that will
7964 * make event true. If the current task is a SCHED_FIFO task that will never
7965 * happen. Never use yield() as a progress guarantee!!
7966 *
7967 * If you want to use yield() to wait for something, use wait_event().
7968 * If you want to use yield() to be 'nice' for others, use cond_resched().
7969 * If you still want to use yield(), do not!
7970 */
7971void __sched yield(void)
7972{
7973 set_current_state(TASK_RUNNING);
7974 do_sched_yield();
7975}
7976EXPORT_SYMBOL(yield);
7977
7978/**
7979 * yield_to - yield the current processor to another thread in
7980 * your thread group, or accelerate that thread toward the
7981 * processor it's on.
7982 * @p: target task
7983 * @preempt: whether task preemption is allowed or not
7984 *
7985 * It's the caller's job to ensure that the target task struct
7986 * can't go away on us before we can do any checks.
7987 *
7988 * Return:
7989 * true (>0) if we indeed boosted the target task.
7990 * false (0) if we failed to boost the target.
7991 * -ESRCH if there's no task to yield to.
7992 */
7993int __sched yield_to(struct task_struct *p, bool preempt)
7994{
7995 struct task_struct *curr = current;
7996 struct rq *rq, *p_rq;
7997 unsigned long flags;
7998 int yielded = 0;
7999
8000 local_irq_save(flags);
8001 rq = this_rq();
8002
8003again:
8004 p_rq = task_rq(p);
8005 /*
8006 * If we're the only runnable task on the rq and target rq also
8007 * has only one task, there's absolutely no point in yielding.
8008 */
8009 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8010 yielded = -ESRCH;
8011 goto out_irq;
8012 }
8013
8014 double_rq_lock(rq, p_rq);
8015 if (task_rq(p) != p_rq) {
8016 double_rq_unlock(rq, p_rq);
8017 goto again;
8018 }
8019
8020 if (!curr->sched_class->yield_to_task)
8021 goto out_unlock;
8022
8023 if (curr->sched_class != p->sched_class)
8024 goto out_unlock;
8025
8026 if (task_running(p_rq, p) || !task_is_running(p))
8027 goto out_unlock;
8028
8029 yielded = curr->sched_class->yield_to_task(rq, p);
8030 if (yielded) {
8031 schedstat_inc(rq->yld_count);
8032 /*
8033 * Make p's CPU reschedule; pick_next_entity takes care of
8034 * fairness.
8035 */
8036 if (preempt && rq != p_rq)
8037 resched_curr(p_rq);
8038 }
8039
8040out_unlock:
8041 double_rq_unlock(rq, p_rq);
8042out_irq:
8043 local_irq_restore(flags);
8044
8045 if (yielded > 0)
8046 schedule();
8047
8048 return yielded;
8049}
8050EXPORT_SYMBOL_GPL(yield_to);
8051
8052int io_schedule_prepare(void)
8053{
8054 int old_iowait = current->in_iowait;
8055
8056 current->in_iowait = 1;
8057 blk_schedule_flush_plug(current);
8058
8059 return old_iowait;
8060}
8061
8062void io_schedule_finish(int token)
8063{
8064 current->in_iowait = token;
8065}
8066
8067/*
8068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8069 * that process accounting knows that this is a task in IO wait state.
8070 */
8071long __sched io_schedule_timeout(long timeout)
8072{
8073 int token;
8074 long ret;
8075
8076 token = io_schedule_prepare();
8077 ret = schedule_timeout(timeout);
8078 io_schedule_finish(token);
8079
8080 return ret;
8081}
8082EXPORT_SYMBOL(io_schedule_timeout);
8083
8084void __sched io_schedule(void)
8085{
8086 int token;
8087
8088 token = io_schedule_prepare();
8089 schedule();
8090 io_schedule_finish(token);
8091}
8092EXPORT_SYMBOL(io_schedule);
8093
8094/**
8095 * sys_sched_get_priority_max - return maximum RT priority.
8096 * @policy: scheduling class.
8097 *
8098 * Return: On success, this syscall returns the maximum
8099 * rt_priority that can be used by a given scheduling class.
8100 * On failure, a negative error code is returned.
8101 */
8102SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8103{
8104 int ret = -EINVAL;
8105
8106 switch (policy) {
8107 case SCHED_FIFO:
8108 case SCHED_RR:
8109 ret = MAX_RT_PRIO-1;
8110 break;
8111 case SCHED_DEADLINE:
8112 case SCHED_NORMAL:
8113 case SCHED_BATCH:
8114 case SCHED_IDLE:
8115 ret = 0;
8116 break;
8117 }
8118 return ret;
8119}
8120
8121/**
8122 * sys_sched_get_priority_min - return minimum RT priority.
8123 * @policy: scheduling class.
8124 *
8125 * Return: On success, this syscall returns the minimum
8126 * rt_priority that can be used by a given scheduling class.
8127 * On failure, a negative error code is returned.
8128 */
8129SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8130{
8131 int ret = -EINVAL;
8132
8133 switch (policy) {
8134 case SCHED_FIFO:
8135 case SCHED_RR:
8136 ret = 1;
8137 break;
8138 case SCHED_DEADLINE:
8139 case SCHED_NORMAL:
8140 case SCHED_BATCH:
8141 case SCHED_IDLE:
8142 ret = 0;
8143 }
8144 return ret;
8145}
8146
8147static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8148{
8149 struct task_struct *p;
8150 unsigned int time_slice;
8151 struct rq_flags rf;
8152 struct rq *rq;
8153 int retval;
8154
8155 if (pid < 0)
8156 return -EINVAL;
8157
8158 retval = -ESRCH;
8159 rcu_read_lock();
8160 p = find_process_by_pid(pid);
8161 if (!p)
8162 goto out_unlock;
8163
8164 retval = security_task_getscheduler(p);
8165 if (retval)
8166 goto out_unlock;
8167
8168 rq = task_rq_lock(p, &rf);
8169 time_slice = 0;
8170 if (p->sched_class->get_rr_interval)
8171 time_slice = p->sched_class->get_rr_interval(rq, p);
8172 task_rq_unlock(rq, p, &rf);
8173
8174 rcu_read_unlock();
8175 jiffies_to_timespec64(time_slice, t);
8176 return 0;
8177
8178out_unlock:
8179 rcu_read_unlock();
8180 return retval;
8181}
8182
8183/**
8184 * sys_sched_rr_get_interval - return the default timeslice of a process.
8185 * @pid: pid of the process.
8186 * @interval: userspace pointer to the timeslice value.
8187 *
8188 * this syscall writes the default timeslice value of a given process
8189 * into the user-space timespec buffer. A value of '0' means infinity.
8190 *
8191 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8192 * an error code.
8193 */
8194SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8195 struct __kernel_timespec __user *, interval)
8196{
8197 struct timespec64 t;
8198 int retval = sched_rr_get_interval(pid, &t);
8199
8200 if (retval == 0)
8201 retval = put_timespec64(&t, interval);
8202
8203 return retval;
8204}
8205
8206#ifdef CONFIG_COMPAT_32BIT_TIME
8207SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8208 struct old_timespec32 __user *, interval)
8209{
8210 struct timespec64 t;
8211 int retval = sched_rr_get_interval(pid, &t);
8212
8213 if (retval == 0)
8214 retval = put_old_timespec32(&t, interval);
8215 return retval;
8216}
8217#endif
8218
8219void sched_show_task(struct task_struct *p)
8220{
8221 unsigned long free = 0;
8222 int ppid;
8223
8224 if (!try_get_task_stack(p))
8225 return;
8226
8227 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8228
8229 if (task_is_running(p))
8230 pr_cont(" running task ");
8231#ifdef CONFIG_DEBUG_STACK_USAGE
8232 free = stack_not_used(p);
8233#endif
8234 ppid = 0;
8235 rcu_read_lock();
8236 if (pid_alive(p))
8237 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8238 rcu_read_unlock();
8239 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8240 free, task_pid_nr(p), ppid,
8241 (unsigned long)task_thread_info(p)->flags);
8242
8243 print_worker_info(KERN_INFO, p);
8244 print_stop_info(KERN_INFO, p);
8245 show_stack(p, NULL, KERN_INFO);
8246 put_task_stack(p);
8247}
8248EXPORT_SYMBOL_GPL(sched_show_task);
8249
8250static inline bool
8251state_filter_match(unsigned long state_filter, struct task_struct *p)
8252{
8253 unsigned int state = READ_ONCE(p->__state);
8254
8255 /* no filter, everything matches */
8256 if (!state_filter)
8257 return true;
8258
8259 /* filter, but doesn't match */
8260 if (!(state & state_filter))
8261 return false;
8262
8263 /*
8264 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8265 * TASK_KILLABLE).
8266 */
8267 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8268 return false;
8269
8270 return true;
8271}
8272
8273
8274void show_state_filter(unsigned int state_filter)
8275{
8276 struct task_struct *g, *p;
8277
8278 rcu_read_lock();
8279 for_each_process_thread(g, p) {
8280 /*
8281 * reset the NMI-timeout, listing all files on a slow
8282 * console might take a lot of time:
8283 * Also, reset softlockup watchdogs on all CPUs, because
8284 * another CPU might be blocked waiting for us to process
8285 * an IPI.
8286 */
8287 touch_nmi_watchdog();
8288 touch_all_softlockup_watchdogs();
8289 if (state_filter_match(state_filter, p))
8290 sched_show_task(p);
8291 }
8292
8293#ifdef CONFIG_SCHED_DEBUG
8294 if (!state_filter)
8295 sysrq_sched_debug_show();
8296#endif
8297 rcu_read_unlock();
8298 /*
8299 * Only show locks if all tasks are dumped:
8300 */
8301 if (!state_filter)
8302 debug_show_all_locks();
8303}
8304
8305/**
8306 * init_idle - set up an idle thread for a given CPU
8307 * @idle: task in question
8308 * @cpu: CPU the idle task belongs to
8309 *
8310 * NOTE: this function does not set the idle thread's NEED_RESCHED
8311 * flag, to make booting more robust.
8312 */
8313void __init init_idle(struct task_struct *idle, int cpu)
8314{
8315 struct rq *rq = cpu_rq(cpu);
8316 unsigned long flags;
8317
8318 __sched_fork(0, idle);
8319
8320 /*
8321 * The idle task doesn't need the kthread struct to function, but it
8322 * is dressed up as a per-CPU kthread and thus needs to play the part
8323 * if we want to avoid special-casing it in code that deals with per-CPU
8324 * kthreads.
8325 */
8326 set_kthread_struct(idle);
8327
8328 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8329 raw_spin_rq_lock(rq);
8330
8331 idle->__state = TASK_RUNNING;
8332 idle->se.exec_start = sched_clock();
8333 /*
8334 * PF_KTHREAD should already be set at this point; regardless, make it
8335 * look like a proper per-CPU kthread.
8336 */
8337 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8338 kthread_set_per_cpu(idle, cpu);
8339
8340 scs_task_reset(idle);
8341 kasan_unpoison_task_stack(idle);
8342
8343#ifdef CONFIG_SMP
8344 /*
8345 * It's possible that init_idle() gets called multiple times on a task,
8346 * in that case do_set_cpus_allowed() will not do the right thing.
8347 *
8348 * And since this is boot we can forgo the serialization.
8349 */
8350 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8351#endif
8352 /*
8353 * We're having a chicken and egg problem, even though we are
8354 * holding rq->lock, the CPU isn't yet set to this CPU so the
8355 * lockdep check in task_group() will fail.
8356 *
8357 * Similar case to sched_fork(). / Alternatively we could
8358 * use task_rq_lock() here and obtain the other rq->lock.
8359 *
8360 * Silence PROVE_RCU
8361 */
8362 rcu_read_lock();
8363 __set_task_cpu(idle, cpu);
8364 rcu_read_unlock();
8365
8366 rq->idle = idle;
8367 rcu_assign_pointer(rq->curr, idle);
8368 idle->on_rq = TASK_ON_RQ_QUEUED;
8369#ifdef CONFIG_SMP
8370 idle->on_cpu = 1;
8371#endif
8372 raw_spin_rq_unlock(rq);
8373 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8374
8375 /* Set the preempt count _outside_ the spinlocks! */
8376 init_idle_preempt_count(idle, cpu);
8377
8378 /*
8379 * The idle tasks have their own, simple scheduling class:
8380 */
8381 idle->sched_class = &idle_sched_class;
8382 ftrace_graph_init_idle_task(idle, cpu);
8383 vtime_init_idle(idle, cpu);
8384#ifdef CONFIG_SMP
8385 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8386#endif
8387}
8388
8389#ifdef CONFIG_SMP
8390
8391int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8392 const struct cpumask *trial)
8393{
8394 int ret = 1;
8395
8396 if (!cpumask_weight(cur))
8397 return ret;
8398
8399 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8400
8401 return ret;
8402}
8403
8404int task_can_attach(struct task_struct *p,
8405 const struct cpumask *cs_cpus_allowed)
8406{
8407 int ret = 0;
8408
8409 /*
8410 * Kthreads which disallow setaffinity shouldn't be moved
8411 * to a new cpuset; we don't want to change their CPU
8412 * affinity and isolating such threads by their set of
8413 * allowed nodes is unnecessary. Thus, cpusets are not
8414 * applicable for such threads. This prevents checking for
8415 * success of set_cpus_allowed_ptr() on all attached tasks
8416 * before cpus_mask may be changed.
8417 */
8418 if (p->flags & PF_NO_SETAFFINITY) {
8419 ret = -EINVAL;
8420 goto out;
8421 }
8422
8423 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8424 cs_cpus_allowed))
8425 ret = dl_task_can_attach(p, cs_cpus_allowed);
8426
8427out:
8428 return ret;
8429}
8430
8431bool sched_smp_initialized __read_mostly;
8432
8433#ifdef CONFIG_NUMA_BALANCING
8434/* Migrate current task p to target_cpu */
8435int migrate_task_to(struct task_struct *p, int target_cpu)
8436{
8437 struct migration_arg arg = { p, target_cpu };
8438 int curr_cpu = task_cpu(p);
8439
8440 if (curr_cpu == target_cpu)
8441 return 0;
8442
8443 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8444 return -EINVAL;
8445
8446 /* TODO: This is not properly updating schedstats */
8447
8448 trace_sched_move_numa(p, curr_cpu, target_cpu);
8449 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8450}
8451
8452/*
8453 * Requeue a task on a given node and accurately track the number of NUMA
8454 * tasks on the runqueues
8455 */
8456void sched_setnuma(struct task_struct *p, int nid)
8457{
8458 bool queued, running;
8459 struct rq_flags rf;
8460 struct rq *rq;
8461
8462 rq = task_rq_lock(p, &rf);
8463 queued = task_on_rq_queued(p);
8464 running = task_current(rq, p);
8465
8466 if (queued)
8467 dequeue_task(rq, p, DEQUEUE_SAVE);
8468 if (running)
8469 put_prev_task(rq, p);
8470
8471 p->numa_preferred_nid = nid;
8472
8473 if (queued)
8474 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8475 if (running)
8476 set_next_task(rq, p);
8477 task_rq_unlock(rq, p, &rf);
8478}
8479#endif /* CONFIG_NUMA_BALANCING */
8480
8481#ifdef CONFIG_HOTPLUG_CPU
8482/*
8483 * Ensure that the idle task is using init_mm right before its CPU goes
8484 * offline.
8485 */
8486void idle_task_exit(void)
8487{
8488 struct mm_struct *mm = current->active_mm;
8489
8490 BUG_ON(cpu_online(smp_processor_id()));
8491 BUG_ON(current != this_rq()->idle);
8492
8493 if (mm != &init_mm) {
8494 switch_mm(mm, &init_mm, current);
8495 finish_arch_post_lock_switch();
8496 }
8497
8498 scs_task_reset(current);
8499 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8500}
8501
8502static int __balance_push_cpu_stop(void *arg)
8503{
8504 struct task_struct *p = arg;
8505 struct rq *rq = this_rq();
8506 struct rq_flags rf;
8507 int cpu;
8508
8509 raw_spin_lock_irq(&p->pi_lock);
8510 rq_lock(rq, &rf);
8511
8512 update_rq_clock(rq);
8513
8514 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8515 cpu = select_fallback_rq(rq->cpu, p);
8516 rq = __migrate_task(rq, &rf, p, cpu);
8517 }
8518
8519 rq_unlock(rq, &rf);
8520 raw_spin_unlock_irq(&p->pi_lock);
8521
8522 put_task_struct(p);
8523
8524 return 0;
8525}
8526
8527static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8528
8529/*
8530 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8531 *
8532 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8533 * effective when the hotplug motion is down.
8534 */
8535static void balance_push(struct rq *rq)
8536{
8537 struct task_struct *push_task = rq->curr;
8538
8539 lockdep_assert_rq_held(rq);
8540
8541 /*
8542 * Ensure the thing is persistent until balance_push_set(.on = false);
8543 */
8544 rq->balance_callback = &balance_push_callback;
8545
8546 /*
8547 * Only active while going offline and when invoked on the outgoing
8548 * CPU.
8549 */
8550 if (!cpu_dying(rq->cpu) || rq != this_rq())
8551 return;
8552
8553 /*
8554 * Both the cpu-hotplug and stop task are in this case and are
8555 * required to complete the hotplug process.
8556 */
8557 if (kthread_is_per_cpu(push_task) ||
8558 is_migration_disabled(push_task)) {
8559
8560 /*
8561 * If this is the idle task on the outgoing CPU try to wake
8562 * up the hotplug control thread which might wait for the
8563 * last task to vanish. The rcuwait_active() check is
8564 * accurate here because the waiter is pinned on this CPU
8565 * and can't obviously be running in parallel.
8566 *
8567 * On RT kernels this also has to check whether there are
8568 * pinned and scheduled out tasks on the runqueue. They
8569 * need to leave the migrate disabled section first.
8570 */
8571 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8572 rcuwait_active(&rq->hotplug_wait)) {
8573 raw_spin_rq_unlock(rq);
8574 rcuwait_wake_up(&rq->hotplug_wait);
8575 raw_spin_rq_lock(rq);
8576 }
8577 return;
8578 }
8579
8580 get_task_struct(push_task);
8581 /*
8582 * Temporarily drop rq->lock such that we can wake-up the stop task.
8583 * Both preemption and IRQs are still disabled.
8584 */
8585 raw_spin_rq_unlock(rq);
8586 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8587 this_cpu_ptr(&push_work));
8588 /*
8589 * At this point need_resched() is true and we'll take the loop in
8590 * schedule(). The next pick is obviously going to be the stop task
8591 * which kthread_is_per_cpu() and will push this task away.
8592 */
8593 raw_spin_rq_lock(rq);
8594}
8595
8596static void balance_push_set(int cpu, bool on)
8597{
8598 struct rq *rq = cpu_rq(cpu);
8599 struct rq_flags rf;
8600
8601 rq_lock_irqsave(rq, &rf);
8602 if (on) {
8603 WARN_ON_ONCE(rq->balance_callback);
8604 rq->balance_callback = &balance_push_callback;
8605 } else if (rq->balance_callback == &balance_push_callback) {
8606 rq->balance_callback = NULL;
8607 }
8608 rq_unlock_irqrestore(rq, &rf);
8609}
8610
8611/*
8612 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8613 * inactive. All tasks which are not per CPU kernel threads are either
8614 * pushed off this CPU now via balance_push() or placed on a different CPU
8615 * during wakeup. Wait until the CPU is quiescent.
8616 */
8617static void balance_hotplug_wait(void)
8618{
8619 struct rq *rq = this_rq();
8620
8621 rcuwait_wait_event(&rq->hotplug_wait,
8622 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8623 TASK_UNINTERRUPTIBLE);
8624}
8625
8626#else
8627
8628static inline void balance_push(struct rq *rq)
8629{
8630}
8631
8632static inline void balance_push_set(int cpu, bool on)
8633{
8634}
8635
8636static inline void balance_hotplug_wait(void)
8637{
8638}
8639
8640#endif /* CONFIG_HOTPLUG_CPU */
8641
8642void set_rq_online(struct rq *rq)
8643{
8644 if (!rq->online) {
8645 const struct sched_class *class;
8646
8647 cpumask_set_cpu(rq->cpu, rq->rd->online);
8648 rq->online = 1;
8649
8650 for_each_class(class) {
8651 if (class->rq_online)
8652 class->rq_online(rq);
8653 }
8654 }
8655}
8656
8657void set_rq_offline(struct rq *rq)
8658{
8659 if (rq->online) {
8660 const struct sched_class *class;
8661
8662 for_each_class(class) {
8663 if (class->rq_offline)
8664 class->rq_offline(rq);
8665 }
8666
8667 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8668 rq->online = 0;
8669 }
8670}
8671
8672/*
8673 * used to mark begin/end of suspend/resume:
8674 */
8675static int num_cpus_frozen;
8676
8677/*
8678 * Update cpusets according to cpu_active mask. If cpusets are
8679 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8680 * around partition_sched_domains().
8681 *
8682 * If we come here as part of a suspend/resume, don't touch cpusets because we
8683 * want to restore it back to its original state upon resume anyway.
8684 */
8685static void cpuset_cpu_active(void)
8686{
8687 if (cpuhp_tasks_frozen) {
8688 /*
8689 * num_cpus_frozen tracks how many CPUs are involved in suspend
8690 * resume sequence. As long as this is not the last online
8691 * operation in the resume sequence, just build a single sched
8692 * domain, ignoring cpusets.
8693 */
8694 partition_sched_domains(1, NULL, NULL);
8695 if (--num_cpus_frozen)
8696 return;
8697 /*
8698 * This is the last CPU online operation. So fall through and
8699 * restore the original sched domains by considering the
8700 * cpuset configurations.
8701 */
8702 cpuset_force_rebuild();
8703 }
8704 cpuset_update_active_cpus();
8705}
8706
8707static int cpuset_cpu_inactive(unsigned int cpu)
8708{
8709 if (!cpuhp_tasks_frozen) {
8710 if (dl_cpu_busy(cpu))
8711 return -EBUSY;
8712 cpuset_update_active_cpus();
8713 } else {
8714 num_cpus_frozen++;
8715 partition_sched_domains(1, NULL, NULL);
8716 }
8717 return 0;
8718}
8719
8720int sched_cpu_activate(unsigned int cpu)
8721{
8722 struct rq *rq = cpu_rq(cpu);
8723 struct rq_flags rf;
8724
8725 /*
8726 * Clear the balance_push callback and prepare to schedule
8727 * regular tasks.
8728 */
8729 balance_push_set(cpu, false);
8730
8731#ifdef CONFIG_SCHED_SMT
8732 /*
8733 * When going up, increment the number of cores with SMT present.
8734 */
8735 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8736 static_branch_inc_cpuslocked(&sched_smt_present);
8737#endif
8738 set_cpu_active(cpu, true);
8739
8740 if (sched_smp_initialized) {
8741 sched_domains_numa_masks_set(cpu);
8742 cpuset_cpu_active();
8743 }
8744
8745 /*
8746 * Put the rq online, if not already. This happens:
8747 *
8748 * 1) In the early boot process, because we build the real domains
8749 * after all CPUs have been brought up.
8750 *
8751 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8752 * domains.
8753 */
8754 rq_lock_irqsave(rq, &rf);
8755 if (rq->rd) {
8756 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8757 set_rq_online(rq);
8758 }
8759 rq_unlock_irqrestore(rq, &rf);
8760
8761 return 0;
8762}
8763
8764int sched_cpu_deactivate(unsigned int cpu)
8765{
8766 struct rq *rq = cpu_rq(cpu);
8767 struct rq_flags rf;
8768 int ret;
8769
8770 /*
8771 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8772 * load balancing when not active
8773 */
8774 nohz_balance_exit_idle(rq);
8775
8776 set_cpu_active(cpu, false);
8777
8778 /*
8779 * From this point forward, this CPU will refuse to run any task that
8780 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8781 * push those tasks away until this gets cleared, see
8782 * sched_cpu_dying().
8783 */
8784 balance_push_set(cpu, true);
8785
8786 /*
8787 * We've cleared cpu_active_mask / set balance_push, wait for all
8788 * preempt-disabled and RCU users of this state to go away such that
8789 * all new such users will observe it.
8790 *
8791 * Specifically, we rely on ttwu to no longer target this CPU, see
8792 * ttwu_queue_cond() and is_cpu_allowed().
8793 *
8794 * Do sync before park smpboot threads to take care the rcu boost case.
8795 */
8796 synchronize_rcu();
8797
8798 rq_lock_irqsave(rq, &rf);
8799 if (rq->rd) {
8800 update_rq_clock(rq);
8801 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8802 set_rq_offline(rq);
8803 }
8804 rq_unlock_irqrestore(rq, &rf);
8805
8806#ifdef CONFIG_SCHED_SMT
8807 /*
8808 * When going down, decrement the number of cores with SMT present.
8809 */
8810 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8811 static_branch_dec_cpuslocked(&sched_smt_present);
8812
8813 sched_core_cpu_deactivate(cpu);
8814#endif
8815
8816 if (!sched_smp_initialized)
8817 return 0;
8818
8819 ret = cpuset_cpu_inactive(cpu);
8820 if (ret) {
8821 balance_push_set(cpu, false);
8822 set_cpu_active(cpu, true);
8823 return ret;
8824 }
8825 sched_domains_numa_masks_clear(cpu);
8826 return 0;
8827}
8828
8829static void sched_rq_cpu_starting(unsigned int cpu)
8830{
8831 struct rq *rq = cpu_rq(cpu);
8832
8833 rq->calc_load_update = calc_load_update;
8834 update_max_interval();
8835}
8836
8837int sched_cpu_starting(unsigned int cpu)
8838{
8839 sched_core_cpu_starting(cpu);
8840 sched_rq_cpu_starting(cpu);
8841 sched_tick_start(cpu);
8842 return 0;
8843}
8844
8845#ifdef CONFIG_HOTPLUG_CPU
8846
8847/*
8848 * Invoked immediately before the stopper thread is invoked to bring the
8849 * CPU down completely. At this point all per CPU kthreads except the
8850 * hotplug thread (current) and the stopper thread (inactive) have been
8851 * either parked or have been unbound from the outgoing CPU. Ensure that
8852 * any of those which might be on the way out are gone.
8853 *
8854 * If after this point a bound task is being woken on this CPU then the
8855 * responsible hotplug callback has failed to do it's job.
8856 * sched_cpu_dying() will catch it with the appropriate fireworks.
8857 */
8858int sched_cpu_wait_empty(unsigned int cpu)
8859{
8860 balance_hotplug_wait();
8861 return 0;
8862}
8863
8864/*
8865 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8866 * might have. Called from the CPU stopper task after ensuring that the
8867 * stopper is the last running task on the CPU, so nr_active count is
8868 * stable. We need to take the teardown thread which is calling this into
8869 * account, so we hand in adjust = 1 to the load calculation.
8870 *
8871 * Also see the comment "Global load-average calculations".
8872 */
8873static void calc_load_migrate(struct rq *rq)
8874{
8875 long delta = calc_load_fold_active(rq, 1);
8876
8877 if (delta)
8878 atomic_long_add(delta, &calc_load_tasks);
8879}
8880
8881static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8882{
8883 struct task_struct *g, *p;
8884 int cpu = cpu_of(rq);
8885
8886 lockdep_assert_rq_held(rq);
8887
8888 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8889 for_each_process_thread(g, p) {
8890 if (task_cpu(p) != cpu)
8891 continue;
8892
8893 if (!task_on_rq_queued(p))
8894 continue;
8895
8896 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8897 }
8898}
8899
8900int sched_cpu_dying(unsigned int cpu)
8901{
8902 struct rq *rq = cpu_rq(cpu);
8903 struct rq_flags rf;
8904
8905 /* Handle pending wakeups and then migrate everything off */
8906 sched_tick_stop(cpu);
8907
8908 rq_lock_irqsave(rq, &rf);
8909 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8910 WARN(true, "Dying CPU not properly vacated!");
8911 dump_rq_tasks(rq, KERN_WARNING);
8912 }
8913 rq_unlock_irqrestore(rq, &rf);
8914
8915 calc_load_migrate(rq);
8916 update_max_interval();
8917 hrtick_clear(rq);
8918 sched_core_cpu_dying(cpu);
8919 return 0;
8920}
8921#endif
8922
8923void __init sched_init_smp(void)
8924{
8925 sched_init_numa();
8926
8927 /*
8928 * There's no userspace yet to cause hotplug operations; hence all the
8929 * CPU masks are stable and all blatant races in the below code cannot
8930 * happen.
8931 */
8932 mutex_lock(&sched_domains_mutex);
8933 sched_init_domains(cpu_active_mask);
8934 mutex_unlock(&sched_domains_mutex);
8935
8936 /* Move init over to a non-isolated CPU */
8937 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8938 BUG();
8939 current->flags &= ~PF_NO_SETAFFINITY;
8940 sched_init_granularity();
8941
8942 init_sched_rt_class();
8943 init_sched_dl_class();
8944
8945 sched_smp_initialized = true;
8946}
8947
8948static int __init migration_init(void)
8949{
8950 sched_cpu_starting(smp_processor_id());
8951 return 0;
8952}
8953early_initcall(migration_init);
8954
8955#else
8956void __init sched_init_smp(void)
8957{
8958 sched_init_granularity();
8959}
8960#endif /* CONFIG_SMP */
8961
8962int in_sched_functions(unsigned long addr)
8963{
8964 return in_lock_functions(addr) ||
8965 (addr >= (unsigned long)__sched_text_start
8966 && addr < (unsigned long)__sched_text_end);
8967}
8968
8969#ifdef CONFIG_CGROUP_SCHED
8970/*
8971 * Default task group.
8972 * Every task in system belongs to this group at bootup.
8973 */
8974struct task_group root_task_group;
8975LIST_HEAD(task_groups);
8976
8977/* Cacheline aligned slab cache for task_group */
8978static struct kmem_cache *task_group_cache __read_mostly;
8979#endif
8980
8981DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8982DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8983
8984void __init sched_init(void)
8985{
8986 unsigned long ptr = 0;
8987 int i;
8988
8989 /* Make sure the linker didn't screw up */
8990 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8991 &fair_sched_class + 1 != &rt_sched_class ||
8992 &rt_sched_class + 1 != &dl_sched_class);
8993#ifdef CONFIG_SMP
8994 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8995#endif
8996
8997 wait_bit_init();
8998
8999#ifdef CONFIG_FAIR_GROUP_SCHED
9000 ptr += 2 * nr_cpu_ids * sizeof(void **);
9001#endif
9002#ifdef CONFIG_RT_GROUP_SCHED
9003 ptr += 2 * nr_cpu_ids * sizeof(void **);
9004#endif
9005 if (ptr) {
9006 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9007
9008#ifdef CONFIG_FAIR_GROUP_SCHED
9009 root_task_group.se = (struct sched_entity **)ptr;
9010 ptr += nr_cpu_ids * sizeof(void **);
9011
9012 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9013 ptr += nr_cpu_ids * sizeof(void **);
9014
9015 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9016 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9017#endif /* CONFIG_FAIR_GROUP_SCHED */
9018#ifdef CONFIG_RT_GROUP_SCHED
9019 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9020 ptr += nr_cpu_ids * sizeof(void **);
9021
9022 root_task_group.rt_rq = (struct rt_rq **)ptr;
9023 ptr += nr_cpu_ids * sizeof(void **);
9024
9025#endif /* CONFIG_RT_GROUP_SCHED */
9026 }
9027#ifdef CONFIG_CPUMASK_OFFSTACK
9028 for_each_possible_cpu(i) {
9029 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9030 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9031 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9032 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9033 }
9034#endif /* CONFIG_CPUMASK_OFFSTACK */
9035
9036 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9037 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9038
9039#ifdef CONFIG_SMP
9040 init_defrootdomain();
9041#endif
9042
9043#ifdef CONFIG_RT_GROUP_SCHED
9044 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9045 global_rt_period(), global_rt_runtime());
9046#endif /* CONFIG_RT_GROUP_SCHED */
9047
9048#ifdef CONFIG_CGROUP_SCHED
9049 task_group_cache = KMEM_CACHE(task_group, 0);
9050
9051 list_add(&root_task_group.list, &task_groups);
9052 INIT_LIST_HEAD(&root_task_group.children);
9053 INIT_LIST_HEAD(&root_task_group.siblings);
9054 autogroup_init(&init_task);
9055#endif /* CONFIG_CGROUP_SCHED */
9056
9057 for_each_possible_cpu(i) {
9058 struct rq *rq;
9059
9060 rq = cpu_rq(i);
9061 raw_spin_lock_init(&rq->__lock);
9062 rq->nr_running = 0;
9063 rq->calc_load_active = 0;
9064 rq->calc_load_update = jiffies + LOAD_FREQ;
9065 init_cfs_rq(&rq->cfs);
9066 init_rt_rq(&rq->rt);
9067 init_dl_rq(&rq->dl);
9068#ifdef CONFIG_FAIR_GROUP_SCHED
9069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9070 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9071 /*
9072 * How much CPU bandwidth does root_task_group get?
9073 *
9074 * In case of task-groups formed thr' the cgroup filesystem, it
9075 * gets 100% of the CPU resources in the system. This overall
9076 * system CPU resource is divided among the tasks of
9077 * root_task_group and its child task-groups in a fair manner,
9078 * based on each entity's (task or task-group's) weight
9079 * (se->load.weight).
9080 *
9081 * In other words, if root_task_group has 10 tasks of weight
9082 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9083 * then A0's share of the CPU resource is:
9084 *
9085 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9086 *
9087 * We achieve this by letting root_task_group's tasks sit
9088 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9089 */
9090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9091#endif /* CONFIG_FAIR_GROUP_SCHED */
9092
9093 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9094#ifdef CONFIG_RT_GROUP_SCHED
9095 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9096#endif
9097#ifdef CONFIG_SMP
9098 rq->sd = NULL;
9099 rq->rd = NULL;
9100 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9101 rq->balance_callback = &balance_push_callback;
9102 rq->active_balance = 0;
9103 rq->next_balance = jiffies;
9104 rq->push_cpu = 0;
9105 rq->cpu = i;
9106 rq->online = 0;
9107 rq->idle_stamp = 0;
9108 rq->avg_idle = 2*sysctl_sched_migration_cost;
9109 rq->wake_stamp = jiffies;
9110 rq->wake_avg_idle = rq->avg_idle;
9111 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9112
9113 INIT_LIST_HEAD(&rq->cfs_tasks);
9114
9115 rq_attach_root(rq, &def_root_domain);
9116#ifdef CONFIG_NO_HZ_COMMON
9117 rq->last_blocked_load_update_tick = jiffies;
9118 atomic_set(&rq->nohz_flags, 0);
9119
9120 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9121#endif
9122#ifdef CONFIG_HOTPLUG_CPU
9123 rcuwait_init(&rq->hotplug_wait);
9124#endif
9125#endif /* CONFIG_SMP */
9126 hrtick_rq_init(rq);
9127 atomic_set(&rq->nr_iowait, 0);
9128
9129#ifdef CONFIG_SCHED_CORE
9130 rq->core = rq;
9131 rq->core_pick = NULL;
9132 rq->core_enabled = 0;
9133 rq->core_tree = RB_ROOT;
9134 rq->core_forceidle = false;
9135
9136 rq->core_cookie = 0UL;
9137#endif
9138 }
9139
9140 set_load_weight(&init_task, false);
9141
9142 /*
9143 * The boot idle thread does lazy MMU switching as well:
9144 */
9145 mmgrab(&init_mm);
9146 enter_lazy_tlb(&init_mm, current);
9147
9148 /*
9149 * Make us the idle thread. Technically, schedule() should not be
9150 * called from this thread, however somewhere below it might be,
9151 * but because we are the idle thread, we just pick up running again
9152 * when this runqueue becomes "idle".
9153 */
9154 init_idle(current, smp_processor_id());
9155
9156 calc_load_update = jiffies + LOAD_FREQ;
9157
9158#ifdef CONFIG_SMP
9159 idle_thread_set_boot_cpu();
9160 balance_push_set(smp_processor_id(), false);
9161#endif
9162 init_sched_fair_class();
9163
9164 psi_init();
9165
9166 init_uclamp();
9167
9168 scheduler_running = 1;
9169}
9170
9171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9172static inline int preempt_count_equals(int preempt_offset)
9173{
9174 int nested = preempt_count() + rcu_preempt_depth();
9175
9176 return (nested == preempt_offset);
9177}
9178
9179void __might_sleep(const char *file, int line, int preempt_offset)
9180{
9181 unsigned int state = get_current_state();
9182 /*
9183 * Blocking primitives will set (and therefore destroy) current->state,
9184 * since we will exit with TASK_RUNNING make sure we enter with it,
9185 * otherwise we will destroy state.
9186 */
9187 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9188 "do not call blocking ops when !TASK_RUNNING; "
9189 "state=%x set at [<%p>] %pS\n", state,
9190 (void *)current->task_state_change,
9191 (void *)current->task_state_change);
9192
9193 ___might_sleep(file, line, preempt_offset);
9194}
9195EXPORT_SYMBOL(__might_sleep);
9196
9197void ___might_sleep(const char *file, int line, int preempt_offset)
9198{
9199 /* Ratelimiting timestamp: */
9200 static unsigned long prev_jiffy;
9201
9202 unsigned long preempt_disable_ip;
9203
9204 /* WARN_ON_ONCE() by default, no rate limit required: */
9205 rcu_sleep_check();
9206
9207 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9208 !is_idle_task(current) && !current->non_block_count) ||
9209 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9210 oops_in_progress)
9211 return;
9212
9213 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9214 return;
9215 prev_jiffy = jiffies;
9216
9217 /* Save this before calling printk(), since that will clobber it: */
9218 preempt_disable_ip = get_preempt_disable_ip(current);
9219
9220 printk(KERN_ERR
9221 "BUG: sleeping function called from invalid context at %s:%d\n",
9222 file, line);
9223 printk(KERN_ERR
9224 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9225 in_atomic(), irqs_disabled(), current->non_block_count,
9226 current->pid, current->comm);
9227
9228 if (task_stack_end_corrupted(current))
9229 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9230
9231 debug_show_held_locks(current);
9232 if (irqs_disabled())
9233 print_irqtrace_events(current);
9234 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9235 && !preempt_count_equals(preempt_offset)) {
9236 pr_err("Preemption disabled at:");
9237 print_ip_sym(KERN_ERR, preempt_disable_ip);
9238 }
9239 dump_stack();
9240 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9241}
9242EXPORT_SYMBOL(___might_sleep);
9243
9244void __cant_sleep(const char *file, int line, int preempt_offset)
9245{
9246 static unsigned long prev_jiffy;
9247
9248 if (irqs_disabled())
9249 return;
9250
9251 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9252 return;
9253
9254 if (preempt_count() > preempt_offset)
9255 return;
9256
9257 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9258 return;
9259 prev_jiffy = jiffies;
9260
9261 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9262 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9263 in_atomic(), irqs_disabled(),
9264 current->pid, current->comm);
9265
9266 debug_show_held_locks(current);
9267 dump_stack();
9268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9269}
9270EXPORT_SYMBOL_GPL(__cant_sleep);
9271
9272#ifdef CONFIG_SMP
9273void __cant_migrate(const char *file, int line)
9274{
9275 static unsigned long prev_jiffy;
9276
9277 if (irqs_disabled())
9278 return;
9279
9280 if (is_migration_disabled(current))
9281 return;
9282
9283 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9284 return;
9285
9286 if (preempt_count() > 0)
9287 return;
9288
9289 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9290 return;
9291 prev_jiffy = jiffies;
9292
9293 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9294 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9295 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9296 current->pid, current->comm);
9297
9298 debug_show_held_locks(current);
9299 dump_stack();
9300 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9301}
9302EXPORT_SYMBOL_GPL(__cant_migrate);
9303#endif
9304#endif
9305
9306#ifdef CONFIG_MAGIC_SYSRQ
9307void normalize_rt_tasks(void)
9308{
9309 struct task_struct *g, *p;
9310 struct sched_attr attr = {
9311 .sched_policy = SCHED_NORMAL,
9312 };
9313
9314 read_lock(&tasklist_lock);
9315 for_each_process_thread(g, p) {
9316 /*
9317 * Only normalize user tasks:
9318 */
9319 if (p->flags & PF_KTHREAD)
9320 continue;
9321
9322 p->se.exec_start = 0;
9323 schedstat_set(p->se.statistics.wait_start, 0);
9324 schedstat_set(p->se.statistics.sleep_start, 0);
9325 schedstat_set(p->se.statistics.block_start, 0);
9326
9327 if (!dl_task(p) && !rt_task(p)) {
9328 /*
9329 * Renice negative nice level userspace
9330 * tasks back to 0:
9331 */
9332 if (task_nice(p) < 0)
9333 set_user_nice(p, 0);
9334 continue;
9335 }
9336
9337 __sched_setscheduler(p, &attr, false, false);
9338 }
9339 read_unlock(&tasklist_lock);
9340}
9341
9342#endif /* CONFIG_MAGIC_SYSRQ */
9343
9344#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9345/*
9346 * These functions are only useful for the IA64 MCA handling, or kdb.
9347 *
9348 * They can only be called when the whole system has been
9349 * stopped - every CPU needs to be quiescent, and no scheduling
9350 * activity can take place. Using them for anything else would
9351 * be a serious bug, and as a result, they aren't even visible
9352 * under any other configuration.
9353 */
9354
9355/**
9356 * curr_task - return the current task for a given CPU.
9357 * @cpu: the processor in question.
9358 *
9359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9360 *
9361 * Return: The current task for @cpu.
9362 */
9363struct task_struct *curr_task(int cpu)
9364{
9365 return cpu_curr(cpu);
9366}
9367
9368#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9369
9370#ifdef CONFIG_IA64
9371/**
9372 * ia64_set_curr_task - set the current task for a given CPU.
9373 * @cpu: the processor in question.
9374 * @p: the task pointer to set.
9375 *
9376 * Description: This function must only be used when non-maskable interrupts
9377 * are serviced on a separate stack. It allows the architecture to switch the
9378 * notion of the current task on a CPU in a non-blocking manner. This function
9379 * must be called with all CPU's synchronized, and interrupts disabled, the
9380 * and caller must save the original value of the current task (see
9381 * curr_task() above) and restore that value before reenabling interrupts and
9382 * re-starting the system.
9383 *
9384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9385 */
9386void ia64_set_curr_task(int cpu, struct task_struct *p)
9387{
9388 cpu_curr(cpu) = p;
9389}
9390
9391#endif
9392
9393#ifdef CONFIG_CGROUP_SCHED
9394/* task_group_lock serializes the addition/removal of task groups */
9395static DEFINE_SPINLOCK(task_group_lock);
9396
9397static inline void alloc_uclamp_sched_group(struct task_group *tg,
9398 struct task_group *parent)
9399{
9400#ifdef CONFIG_UCLAMP_TASK_GROUP
9401 enum uclamp_id clamp_id;
9402
9403 for_each_clamp_id(clamp_id) {
9404 uclamp_se_set(&tg->uclamp_req[clamp_id],
9405 uclamp_none(clamp_id), false);
9406 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9407 }
9408#endif
9409}
9410
9411static void sched_free_group(struct task_group *tg)
9412{
9413 free_fair_sched_group(tg);
9414 free_rt_sched_group(tg);
9415 autogroup_free(tg);
9416 kmem_cache_free(task_group_cache, tg);
9417}
9418
9419/* allocate runqueue etc for a new task group */
9420struct task_group *sched_create_group(struct task_group *parent)
9421{
9422 struct task_group *tg;
9423
9424 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9425 if (!tg)
9426 return ERR_PTR(-ENOMEM);
9427
9428 if (!alloc_fair_sched_group(tg, parent))
9429 goto err;
9430
9431 if (!alloc_rt_sched_group(tg, parent))
9432 goto err;
9433
9434 alloc_uclamp_sched_group(tg, parent);
9435
9436 return tg;
9437
9438err:
9439 sched_free_group(tg);
9440 return ERR_PTR(-ENOMEM);
9441}
9442
9443void sched_online_group(struct task_group *tg, struct task_group *parent)
9444{
9445 unsigned long flags;
9446
9447 spin_lock_irqsave(&task_group_lock, flags);
9448 list_add_rcu(&tg->list, &task_groups);
9449
9450 /* Root should already exist: */
9451 WARN_ON(!parent);
9452
9453 tg->parent = parent;
9454 INIT_LIST_HEAD(&tg->children);
9455 list_add_rcu(&tg->siblings, &parent->children);
9456 spin_unlock_irqrestore(&task_group_lock, flags);
9457
9458 online_fair_sched_group(tg);
9459}
9460
9461/* rcu callback to free various structures associated with a task group */
9462static void sched_free_group_rcu(struct rcu_head *rhp)
9463{
9464 /* Now it should be safe to free those cfs_rqs: */
9465 sched_free_group(container_of(rhp, struct task_group, rcu));
9466}
9467
9468void sched_destroy_group(struct task_group *tg)
9469{
9470 /* Wait for possible concurrent references to cfs_rqs complete: */
9471 call_rcu(&tg->rcu, sched_free_group_rcu);
9472}
9473
9474void sched_offline_group(struct task_group *tg)
9475{
9476 unsigned long flags;
9477
9478 /* End participation in shares distribution: */
9479 unregister_fair_sched_group(tg);
9480
9481 spin_lock_irqsave(&task_group_lock, flags);
9482 list_del_rcu(&tg->list);
9483 list_del_rcu(&tg->siblings);
9484 spin_unlock_irqrestore(&task_group_lock, flags);
9485}
9486
9487static void sched_change_group(struct task_struct *tsk, int type)
9488{
9489 struct task_group *tg;
9490
9491 /*
9492 * All callers are synchronized by task_rq_lock(); we do not use RCU
9493 * which is pointless here. Thus, we pass "true" to task_css_check()
9494 * to prevent lockdep warnings.
9495 */
9496 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9497 struct task_group, css);
9498 tg = autogroup_task_group(tsk, tg);
9499 tsk->sched_task_group = tg;
9500
9501#ifdef CONFIG_FAIR_GROUP_SCHED
9502 if (tsk->sched_class->task_change_group)
9503 tsk->sched_class->task_change_group(tsk, type);
9504 else
9505#endif
9506 set_task_rq(tsk, task_cpu(tsk));
9507}
9508
9509/*
9510 * Change task's runqueue when it moves between groups.
9511 *
9512 * The caller of this function should have put the task in its new group by
9513 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9514 * its new group.
9515 */
9516void sched_move_task(struct task_struct *tsk)
9517{
9518 int queued, running, queue_flags =
9519 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9520 struct rq_flags rf;
9521 struct rq *rq;
9522
9523 rq = task_rq_lock(tsk, &rf);
9524 update_rq_clock(rq);
9525
9526 running = task_current(rq, tsk);
9527 queued = task_on_rq_queued(tsk);
9528
9529 if (queued)
9530 dequeue_task(rq, tsk, queue_flags);
9531 if (running)
9532 put_prev_task(rq, tsk);
9533
9534 sched_change_group(tsk, TASK_MOVE_GROUP);
9535
9536 if (queued)
9537 enqueue_task(rq, tsk, queue_flags);
9538 if (running) {
9539 set_next_task(rq, tsk);
9540 /*
9541 * After changing group, the running task may have joined a
9542 * throttled one but it's still the running task. Trigger a
9543 * resched to make sure that task can still run.
9544 */
9545 resched_curr(rq);
9546 }
9547
9548 task_rq_unlock(rq, tsk, &rf);
9549}
9550
9551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9552{
9553 return css ? container_of(css, struct task_group, css) : NULL;
9554}
9555
9556static struct cgroup_subsys_state *
9557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9558{
9559 struct task_group *parent = css_tg(parent_css);
9560 struct task_group *tg;
9561
9562 if (!parent) {
9563 /* This is early initialization for the top cgroup */
9564 return &root_task_group.css;
9565 }
9566
9567 tg = sched_create_group(parent);
9568 if (IS_ERR(tg))
9569 return ERR_PTR(-ENOMEM);
9570
9571 return &tg->css;
9572}
9573
9574/* Expose task group only after completing cgroup initialization */
9575static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9576{
9577 struct task_group *tg = css_tg(css);
9578 struct task_group *parent = css_tg(css->parent);
9579
9580 if (parent)
9581 sched_online_group(tg, parent);
9582
9583#ifdef CONFIG_UCLAMP_TASK_GROUP
9584 /* Propagate the effective uclamp value for the new group */
9585 mutex_lock(&uclamp_mutex);
9586 rcu_read_lock();
9587 cpu_util_update_eff(css);
9588 rcu_read_unlock();
9589 mutex_unlock(&uclamp_mutex);
9590#endif
9591
9592 return 0;
9593}
9594
9595static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9596{
9597 struct task_group *tg = css_tg(css);
9598
9599 sched_offline_group(tg);
9600}
9601
9602static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9603{
9604 struct task_group *tg = css_tg(css);
9605
9606 /*
9607 * Relies on the RCU grace period between css_released() and this.
9608 */
9609 sched_free_group(tg);
9610}
9611
9612/*
9613 * This is called before wake_up_new_task(), therefore we really only
9614 * have to set its group bits, all the other stuff does not apply.
9615 */
9616static void cpu_cgroup_fork(struct task_struct *task)
9617{
9618 struct rq_flags rf;
9619 struct rq *rq;
9620
9621 rq = task_rq_lock(task, &rf);
9622
9623 update_rq_clock(rq);
9624 sched_change_group(task, TASK_SET_GROUP);
9625
9626 task_rq_unlock(rq, task, &rf);
9627}
9628
9629static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9630{
9631 struct task_struct *task;
9632 struct cgroup_subsys_state *css;
9633 int ret = 0;
9634
9635 cgroup_taskset_for_each(task, css, tset) {
9636#ifdef CONFIG_RT_GROUP_SCHED
9637 if (!sched_rt_can_attach(css_tg(css), task))
9638 return -EINVAL;
9639#endif
9640 /*
9641 * Serialize against wake_up_new_task() such that if it's
9642 * running, we're sure to observe its full state.
9643 */
9644 raw_spin_lock_irq(&task->pi_lock);
9645 /*
9646 * Avoid calling sched_move_task() before wake_up_new_task()
9647 * has happened. This would lead to problems with PELT, due to
9648 * move wanting to detach+attach while we're not attached yet.
9649 */
9650 if (READ_ONCE(task->__state) == TASK_NEW)
9651 ret = -EINVAL;
9652 raw_spin_unlock_irq(&task->pi_lock);
9653
9654 if (ret)
9655 break;
9656 }
9657 return ret;
9658}
9659
9660static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9661{
9662 struct task_struct *task;
9663 struct cgroup_subsys_state *css;
9664
9665 cgroup_taskset_for_each(task, css, tset)
9666 sched_move_task(task);
9667}
9668
9669#ifdef CONFIG_UCLAMP_TASK_GROUP
9670static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9671{
9672 struct cgroup_subsys_state *top_css = css;
9673 struct uclamp_se *uc_parent = NULL;
9674 struct uclamp_se *uc_se = NULL;
9675 unsigned int eff[UCLAMP_CNT];
9676 enum uclamp_id clamp_id;
9677 unsigned int clamps;
9678
9679 lockdep_assert_held(&uclamp_mutex);
9680 SCHED_WARN_ON(!rcu_read_lock_held());
9681
9682 css_for_each_descendant_pre(css, top_css) {
9683 uc_parent = css_tg(css)->parent
9684 ? css_tg(css)->parent->uclamp : NULL;
9685
9686 for_each_clamp_id(clamp_id) {
9687 /* Assume effective clamps matches requested clamps */
9688 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9689 /* Cap effective clamps with parent's effective clamps */
9690 if (uc_parent &&
9691 eff[clamp_id] > uc_parent[clamp_id].value) {
9692 eff[clamp_id] = uc_parent[clamp_id].value;
9693 }
9694 }
9695 /* Ensure protection is always capped by limit */
9696 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9697
9698 /* Propagate most restrictive effective clamps */
9699 clamps = 0x0;
9700 uc_se = css_tg(css)->uclamp;
9701 for_each_clamp_id(clamp_id) {
9702 if (eff[clamp_id] == uc_se[clamp_id].value)
9703 continue;
9704 uc_se[clamp_id].value = eff[clamp_id];
9705 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9706 clamps |= (0x1 << clamp_id);
9707 }
9708 if (!clamps) {
9709 css = css_rightmost_descendant(css);
9710 continue;
9711 }
9712
9713 /* Immediately update descendants RUNNABLE tasks */
9714 uclamp_update_active_tasks(css);
9715 }
9716}
9717
9718/*
9719 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9720 * C expression. Since there is no way to convert a macro argument (N) into a
9721 * character constant, use two levels of macros.
9722 */
9723#define _POW10(exp) ((unsigned int)1e##exp)
9724#define POW10(exp) _POW10(exp)
9725
9726struct uclamp_request {
9727#define UCLAMP_PERCENT_SHIFT 2
9728#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9729 s64 percent;
9730 u64 util;
9731 int ret;
9732};
9733
9734static inline struct uclamp_request
9735capacity_from_percent(char *buf)
9736{
9737 struct uclamp_request req = {
9738 .percent = UCLAMP_PERCENT_SCALE,
9739 .util = SCHED_CAPACITY_SCALE,
9740 .ret = 0,
9741 };
9742
9743 buf = strim(buf);
9744 if (strcmp(buf, "max")) {
9745 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9746 &req.percent);
9747 if (req.ret)
9748 return req;
9749 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9750 req.ret = -ERANGE;
9751 return req;
9752 }
9753
9754 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9755 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9756 }
9757
9758 return req;
9759}
9760
9761static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9762 size_t nbytes, loff_t off,
9763 enum uclamp_id clamp_id)
9764{
9765 struct uclamp_request req;
9766 struct task_group *tg;
9767
9768 req = capacity_from_percent(buf);
9769 if (req.ret)
9770 return req.ret;
9771
9772 static_branch_enable(&sched_uclamp_used);
9773
9774 mutex_lock(&uclamp_mutex);
9775 rcu_read_lock();
9776
9777 tg = css_tg(of_css(of));
9778 if (tg->uclamp_req[clamp_id].value != req.util)
9779 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9780
9781 /*
9782 * Because of not recoverable conversion rounding we keep track of the
9783 * exact requested value
9784 */
9785 tg->uclamp_pct[clamp_id] = req.percent;
9786
9787 /* Update effective clamps to track the most restrictive value */
9788 cpu_util_update_eff(of_css(of));
9789
9790 rcu_read_unlock();
9791 mutex_unlock(&uclamp_mutex);
9792
9793 return nbytes;
9794}
9795
9796static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9797 char *buf, size_t nbytes,
9798 loff_t off)
9799{
9800 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9801}
9802
9803static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9804 char *buf, size_t nbytes,
9805 loff_t off)
9806{
9807 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9808}
9809
9810static inline void cpu_uclamp_print(struct seq_file *sf,
9811 enum uclamp_id clamp_id)
9812{
9813 struct task_group *tg;
9814 u64 util_clamp;
9815 u64 percent;
9816 u32 rem;
9817
9818 rcu_read_lock();
9819 tg = css_tg(seq_css(sf));
9820 util_clamp = tg->uclamp_req[clamp_id].value;
9821 rcu_read_unlock();
9822
9823 if (util_clamp == SCHED_CAPACITY_SCALE) {
9824 seq_puts(sf, "max\n");
9825 return;
9826 }
9827
9828 percent = tg->uclamp_pct[clamp_id];
9829 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9830 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9831}
9832
9833static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9834{
9835 cpu_uclamp_print(sf, UCLAMP_MIN);
9836 return 0;
9837}
9838
9839static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9840{
9841 cpu_uclamp_print(sf, UCLAMP_MAX);
9842 return 0;
9843}
9844#endif /* CONFIG_UCLAMP_TASK_GROUP */
9845
9846#ifdef CONFIG_FAIR_GROUP_SCHED
9847static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9848 struct cftype *cftype, u64 shareval)
9849{
9850 if (shareval > scale_load_down(ULONG_MAX))
9851 shareval = MAX_SHARES;
9852 return sched_group_set_shares(css_tg(css), scale_load(shareval));
9853}
9854
9855static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9856 struct cftype *cft)
9857{
9858 struct task_group *tg = css_tg(css);
9859
9860 return (u64) scale_load_down(tg->shares);
9861}
9862
9863#ifdef CONFIG_CFS_BANDWIDTH
9864static DEFINE_MUTEX(cfs_constraints_mutex);
9865
9866const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9867static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9868/* More than 203 days if BW_SHIFT equals 20. */
9869static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9870
9871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9872
9873static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9874 u64 burst)
9875{
9876 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9878
9879 if (tg == &root_task_group)
9880 return -EINVAL;
9881
9882 /*
9883 * Ensure we have at some amount of bandwidth every period. This is
9884 * to prevent reaching a state of large arrears when throttled via
9885 * entity_tick() resulting in prolonged exit starvation.
9886 */
9887 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9888 return -EINVAL;
9889
9890 /*
9891 * Likewise, bound things on the other side by preventing insane quota
9892 * periods. This also allows us to normalize in computing quota
9893 * feasibility.
9894 */
9895 if (period > max_cfs_quota_period)
9896 return -EINVAL;
9897
9898 /*
9899 * Bound quota to defend quota against overflow during bandwidth shift.
9900 */
9901 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9902 return -EINVAL;
9903
9904 if (quota != RUNTIME_INF && (burst > quota ||
9905 burst + quota > max_cfs_runtime))
9906 return -EINVAL;
9907
9908 /*
9909 * Prevent race between setting of cfs_rq->runtime_enabled and
9910 * unthrottle_offline_cfs_rqs().
9911 */
9912 get_online_cpus();
9913 mutex_lock(&cfs_constraints_mutex);
9914 ret = __cfs_schedulable(tg, period, quota);
9915 if (ret)
9916 goto out_unlock;
9917
9918 runtime_enabled = quota != RUNTIME_INF;
9919 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9920 /*
9921 * If we need to toggle cfs_bandwidth_used, off->on must occur
9922 * before making related changes, and on->off must occur afterwards
9923 */
9924 if (runtime_enabled && !runtime_was_enabled)
9925 cfs_bandwidth_usage_inc();
9926 raw_spin_lock_irq(&cfs_b->lock);
9927 cfs_b->period = ns_to_ktime(period);
9928 cfs_b->quota = quota;
9929 cfs_b->burst = burst;
9930
9931 __refill_cfs_bandwidth_runtime(cfs_b);
9932
9933 /* Restart the period timer (if active) to handle new period expiry: */
9934 if (runtime_enabled)
9935 start_cfs_bandwidth(cfs_b);
9936
9937 raw_spin_unlock_irq(&cfs_b->lock);
9938
9939 for_each_online_cpu(i) {
9940 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9941 struct rq *rq = cfs_rq->rq;
9942 struct rq_flags rf;
9943
9944 rq_lock_irq(rq, &rf);
9945 cfs_rq->runtime_enabled = runtime_enabled;
9946 cfs_rq->runtime_remaining = 0;
9947
9948 if (cfs_rq->throttled)
9949 unthrottle_cfs_rq(cfs_rq);
9950 rq_unlock_irq(rq, &rf);
9951 }
9952 if (runtime_was_enabled && !runtime_enabled)
9953 cfs_bandwidth_usage_dec();
9954out_unlock:
9955 mutex_unlock(&cfs_constraints_mutex);
9956 put_online_cpus();
9957
9958 return ret;
9959}
9960
9961static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9962{
9963 u64 quota, period, burst;
9964
9965 period = ktime_to_ns(tg->cfs_bandwidth.period);
9966 burst = tg->cfs_bandwidth.burst;
9967 if (cfs_quota_us < 0)
9968 quota = RUNTIME_INF;
9969 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9970 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9971 else
9972 return -EINVAL;
9973
9974 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9975}
9976
9977static long tg_get_cfs_quota(struct task_group *tg)
9978{
9979 u64 quota_us;
9980
9981 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9982 return -1;
9983
9984 quota_us = tg->cfs_bandwidth.quota;
9985 do_div(quota_us, NSEC_PER_USEC);
9986
9987 return quota_us;
9988}
9989
9990static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9991{
9992 u64 quota, period, burst;
9993
9994 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9995 return -EINVAL;
9996
9997 period = (u64)cfs_period_us * NSEC_PER_USEC;
9998 quota = tg->cfs_bandwidth.quota;
9999 burst = tg->cfs_bandwidth.burst;
10000
10001 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10002}
10003
10004static long tg_get_cfs_period(struct task_group *tg)
10005{
10006 u64 cfs_period_us;
10007
10008 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10009 do_div(cfs_period_us, NSEC_PER_USEC);
10010
10011 return cfs_period_us;
10012}
10013
10014static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10015{
10016 u64 quota, period, burst;
10017
10018 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10019 return -EINVAL;
10020
10021 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10022 period = ktime_to_ns(tg->cfs_bandwidth.period);
10023 quota = tg->cfs_bandwidth.quota;
10024
10025 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10026}
10027
10028static long tg_get_cfs_burst(struct task_group *tg)
10029{
10030 u64 burst_us;
10031
10032 burst_us = tg->cfs_bandwidth.burst;
10033 do_div(burst_us, NSEC_PER_USEC);
10034
10035 return burst_us;
10036}
10037
10038static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10039 struct cftype *cft)
10040{
10041 return tg_get_cfs_quota(css_tg(css));
10042}
10043
10044static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10045 struct cftype *cftype, s64 cfs_quota_us)
10046{
10047 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10048}
10049
10050static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10051 struct cftype *cft)
10052{
10053 return tg_get_cfs_period(css_tg(css));
10054}
10055
10056static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10057 struct cftype *cftype, u64 cfs_period_us)
10058{
10059 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10060}
10061
10062static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10063 struct cftype *cft)
10064{
10065 return tg_get_cfs_burst(css_tg(css));
10066}
10067
10068static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10069 struct cftype *cftype, u64 cfs_burst_us)
10070{
10071 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10072}
10073
10074struct cfs_schedulable_data {
10075 struct task_group *tg;
10076 u64 period, quota;
10077};
10078
10079/*
10080 * normalize group quota/period to be quota/max_period
10081 * note: units are usecs
10082 */
10083static u64 normalize_cfs_quota(struct task_group *tg,
10084 struct cfs_schedulable_data *d)
10085{
10086 u64 quota, period;
10087
10088 if (tg == d->tg) {
10089 period = d->period;
10090 quota = d->quota;
10091 } else {
10092 period = tg_get_cfs_period(tg);
10093 quota = tg_get_cfs_quota(tg);
10094 }
10095
10096 /* note: these should typically be equivalent */
10097 if (quota == RUNTIME_INF || quota == -1)
10098 return RUNTIME_INF;
10099
10100 return to_ratio(period, quota);
10101}
10102
10103static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10104{
10105 struct cfs_schedulable_data *d = data;
10106 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10107 s64 quota = 0, parent_quota = -1;
10108
10109 if (!tg->parent) {
10110 quota = RUNTIME_INF;
10111 } else {
10112 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10113
10114 quota = normalize_cfs_quota(tg, d);
10115 parent_quota = parent_b->hierarchical_quota;
10116
10117 /*
10118 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10119 * always take the min. On cgroup1, only inherit when no
10120 * limit is set:
10121 */
10122 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10123 quota = min(quota, parent_quota);
10124 } else {
10125 if (quota == RUNTIME_INF)
10126 quota = parent_quota;
10127 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10128 return -EINVAL;
10129 }
10130 }
10131 cfs_b->hierarchical_quota = quota;
10132
10133 return 0;
10134}
10135
10136static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10137{
10138 int ret;
10139 struct cfs_schedulable_data data = {
10140 .tg = tg,
10141 .period = period,
10142 .quota = quota,
10143 };
10144
10145 if (quota != RUNTIME_INF) {
10146 do_div(data.period, NSEC_PER_USEC);
10147 do_div(data.quota, NSEC_PER_USEC);
10148 }
10149
10150 rcu_read_lock();
10151 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10152 rcu_read_unlock();
10153
10154 return ret;
10155}
10156
10157static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10158{
10159 struct task_group *tg = css_tg(seq_css(sf));
10160 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10161
10162 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10163 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10164 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10165
10166 if (schedstat_enabled() && tg != &root_task_group) {
10167 u64 ws = 0;
10168 int i;
10169
10170 for_each_possible_cpu(i)
10171 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10172
10173 seq_printf(sf, "wait_sum %llu\n", ws);
10174 }
10175
10176 return 0;
10177}
10178#endif /* CONFIG_CFS_BANDWIDTH */
10179#endif /* CONFIG_FAIR_GROUP_SCHED */
10180
10181#ifdef CONFIG_RT_GROUP_SCHED
10182static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10183 struct cftype *cft, s64 val)
10184{
10185 return sched_group_set_rt_runtime(css_tg(css), val);
10186}
10187
10188static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10189 struct cftype *cft)
10190{
10191 return sched_group_rt_runtime(css_tg(css));
10192}
10193
10194static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10195 struct cftype *cftype, u64 rt_period_us)
10196{
10197 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10198}
10199
10200static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10201 struct cftype *cft)
10202{
10203 return sched_group_rt_period(css_tg(css));
10204}
10205#endif /* CONFIG_RT_GROUP_SCHED */
10206
10207static struct cftype cpu_legacy_files[] = {
10208#ifdef CONFIG_FAIR_GROUP_SCHED
10209 {
10210 .name = "shares",
10211 .read_u64 = cpu_shares_read_u64,
10212 .write_u64 = cpu_shares_write_u64,
10213 },
10214#endif
10215#ifdef CONFIG_CFS_BANDWIDTH
10216 {
10217 .name = "cfs_quota_us",
10218 .read_s64 = cpu_cfs_quota_read_s64,
10219 .write_s64 = cpu_cfs_quota_write_s64,
10220 },
10221 {
10222 .name = "cfs_period_us",
10223 .read_u64 = cpu_cfs_period_read_u64,
10224 .write_u64 = cpu_cfs_period_write_u64,
10225 },
10226 {
10227 .name = "cfs_burst_us",
10228 .read_u64 = cpu_cfs_burst_read_u64,
10229 .write_u64 = cpu_cfs_burst_write_u64,
10230 },
10231 {
10232 .name = "stat",
10233 .seq_show = cpu_cfs_stat_show,
10234 },
10235#endif
10236#ifdef CONFIG_RT_GROUP_SCHED
10237 {
10238 .name = "rt_runtime_us",
10239 .read_s64 = cpu_rt_runtime_read,
10240 .write_s64 = cpu_rt_runtime_write,
10241 },
10242 {
10243 .name = "rt_period_us",
10244 .read_u64 = cpu_rt_period_read_uint,
10245 .write_u64 = cpu_rt_period_write_uint,
10246 },
10247#endif
10248#ifdef CONFIG_UCLAMP_TASK_GROUP
10249 {
10250 .name = "uclamp.min",
10251 .flags = CFTYPE_NOT_ON_ROOT,
10252 .seq_show = cpu_uclamp_min_show,
10253 .write = cpu_uclamp_min_write,
10254 },
10255 {
10256 .name = "uclamp.max",
10257 .flags = CFTYPE_NOT_ON_ROOT,
10258 .seq_show = cpu_uclamp_max_show,
10259 .write = cpu_uclamp_max_write,
10260 },
10261#endif
10262 { } /* Terminate */
10263};
10264
10265static int cpu_extra_stat_show(struct seq_file *sf,
10266 struct cgroup_subsys_state *css)
10267{
10268#ifdef CONFIG_CFS_BANDWIDTH
10269 {
10270 struct task_group *tg = css_tg(css);
10271 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10272 u64 throttled_usec;
10273
10274 throttled_usec = cfs_b->throttled_time;
10275 do_div(throttled_usec, NSEC_PER_USEC);
10276
10277 seq_printf(sf, "nr_periods %d\n"
10278 "nr_throttled %d\n"
10279 "throttled_usec %llu\n",
10280 cfs_b->nr_periods, cfs_b->nr_throttled,
10281 throttled_usec);
10282 }
10283#endif
10284 return 0;
10285}
10286
10287#ifdef CONFIG_FAIR_GROUP_SCHED
10288static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10289 struct cftype *cft)
10290{
10291 struct task_group *tg = css_tg(css);
10292 u64 weight = scale_load_down(tg->shares);
10293
10294 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10295}
10296
10297static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10298 struct cftype *cft, u64 weight)
10299{
10300 /*
10301 * cgroup weight knobs should use the common MIN, DFL and MAX
10302 * values which are 1, 100 and 10000 respectively. While it loses
10303 * a bit of range on both ends, it maps pretty well onto the shares
10304 * value used by scheduler and the round-trip conversions preserve
10305 * the original value over the entire range.
10306 */
10307 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10308 return -ERANGE;
10309
10310 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10311
10312 return sched_group_set_shares(css_tg(css), scale_load(weight));
10313}
10314
10315static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10316 struct cftype *cft)
10317{
10318 unsigned long weight = scale_load_down(css_tg(css)->shares);
10319 int last_delta = INT_MAX;
10320 int prio, delta;
10321
10322 /* find the closest nice value to the current weight */
10323 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10324 delta = abs(sched_prio_to_weight[prio] - weight);
10325 if (delta >= last_delta)
10326 break;
10327 last_delta = delta;
10328 }
10329
10330 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10331}
10332
10333static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10334 struct cftype *cft, s64 nice)
10335{
10336 unsigned long weight;
10337 int idx;
10338
10339 if (nice < MIN_NICE || nice > MAX_NICE)
10340 return -ERANGE;
10341
10342 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10343 idx = array_index_nospec(idx, 40);
10344 weight = sched_prio_to_weight[idx];
10345
10346 return sched_group_set_shares(css_tg(css), scale_load(weight));
10347}
10348#endif
10349
10350static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10351 long period, long quota)
10352{
10353 if (quota < 0)
10354 seq_puts(sf, "max");
10355 else
10356 seq_printf(sf, "%ld", quota);
10357
10358 seq_printf(sf, " %ld\n", period);
10359}
10360
10361/* caller should put the current value in *@periodp before calling */
10362static int __maybe_unused cpu_period_quota_parse(char *buf,
10363 u64 *periodp, u64 *quotap)
10364{
10365 char tok[21]; /* U64_MAX */
10366
10367 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10368 return -EINVAL;
10369
10370 *periodp *= NSEC_PER_USEC;
10371
10372 if (sscanf(tok, "%llu", quotap))
10373 *quotap *= NSEC_PER_USEC;
10374 else if (!strcmp(tok, "max"))
10375 *quotap = RUNTIME_INF;
10376 else
10377 return -EINVAL;
10378
10379 return 0;
10380}
10381
10382#ifdef CONFIG_CFS_BANDWIDTH
10383static int cpu_max_show(struct seq_file *sf, void *v)
10384{
10385 struct task_group *tg = css_tg(seq_css(sf));
10386
10387 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10388 return 0;
10389}
10390
10391static ssize_t cpu_max_write(struct kernfs_open_file *of,
10392 char *buf, size_t nbytes, loff_t off)
10393{
10394 struct task_group *tg = css_tg(of_css(of));
10395 u64 period = tg_get_cfs_period(tg);
10396 u64 burst = tg_get_cfs_burst(tg);
10397 u64 quota;
10398 int ret;
10399
10400 ret = cpu_period_quota_parse(buf, &period, "a);
10401 if (!ret)
10402 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10403 return ret ?: nbytes;
10404}
10405#endif
10406
10407static struct cftype cpu_files[] = {
10408#ifdef CONFIG_FAIR_GROUP_SCHED
10409 {
10410 .name = "weight",
10411 .flags = CFTYPE_NOT_ON_ROOT,
10412 .read_u64 = cpu_weight_read_u64,
10413 .write_u64 = cpu_weight_write_u64,
10414 },
10415 {
10416 .name = "weight.nice",
10417 .flags = CFTYPE_NOT_ON_ROOT,
10418 .read_s64 = cpu_weight_nice_read_s64,
10419 .write_s64 = cpu_weight_nice_write_s64,
10420 },
10421#endif
10422#ifdef CONFIG_CFS_BANDWIDTH
10423 {
10424 .name = "max",
10425 .flags = CFTYPE_NOT_ON_ROOT,
10426 .seq_show = cpu_max_show,
10427 .write = cpu_max_write,
10428 },
10429 {
10430 .name = "max.burst",
10431 .flags = CFTYPE_NOT_ON_ROOT,
10432 .read_u64 = cpu_cfs_burst_read_u64,
10433 .write_u64 = cpu_cfs_burst_write_u64,
10434 },
10435#endif
10436#ifdef CONFIG_UCLAMP_TASK_GROUP
10437 {
10438 .name = "uclamp.min",
10439 .flags = CFTYPE_NOT_ON_ROOT,
10440 .seq_show = cpu_uclamp_min_show,
10441 .write = cpu_uclamp_min_write,
10442 },
10443 {
10444 .name = "uclamp.max",
10445 .flags = CFTYPE_NOT_ON_ROOT,
10446 .seq_show = cpu_uclamp_max_show,
10447 .write = cpu_uclamp_max_write,
10448 },
10449#endif
10450 { } /* terminate */
10451};
10452
10453struct cgroup_subsys cpu_cgrp_subsys = {
10454 .css_alloc = cpu_cgroup_css_alloc,
10455 .css_online = cpu_cgroup_css_online,
10456 .css_released = cpu_cgroup_css_released,
10457 .css_free = cpu_cgroup_css_free,
10458 .css_extra_stat_show = cpu_extra_stat_show,
10459 .fork = cpu_cgroup_fork,
10460 .can_attach = cpu_cgroup_can_attach,
10461 .attach = cpu_cgroup_attach,
10462 .legacy_cftypes = cpu_legacy_files,
10463 .dfl_cftypes = cpu_files,
10464 .early_init = true,
10465 .threaded = true,
10466};
10467
10468#endif /* CONFIG_CGROUP_SCHED */
10469
10470void dump_cpu_task(int cpu)
10471{
10472 pr_info("Task dump for CPU %d:\n", cpu);
10473 sched_show_task(cpu_curr(cpu));
10474}
10475
10476/*
10477 * Nice levels are multiplicative, with a gentle 10% change for every
10478 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10479 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10480 * that remained on nice 0.
10481 *
10482 * The "10% effect" is relative and cumulative: from _any_ nice level,
10483 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10484 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10485 * If a task goes up by ~10% and another task goes down by ~10% then
10486 * the relative distance between them is ~25%.)
10487 */
10488const int sched_prio_to_weight[40] = {
10489 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10490 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10491 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10492 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10493 /* 0 */ 1024, 820, 655, 526, 423,
10494 /* 5 */ 335, 272, 215, 172, 137,
10495 /* 10 */ 110, 87, 70, 56, 45,
10496 /* 15 */ 36, 29, 23, 18, 15,
10497};
10498
10499/*
10500 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10501 *
10502 * In cases where the weight does not change often, we can use the
10503 * precalculated inverse to speed up arithmetics by turning divisions
10504 * into multiplications:
10505 */
10506const u32 sched_prio_to_wmult[40] = {
10507 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10508 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10509 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10510 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10511 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10512 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10513 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10514 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10515};
10516
10517void call_trace_sched_update_nr_running(struct rq *rq, int count)
10518{
10519 trace_sched_update_nr_running_tp(rq, count);
10520}