Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76#include <linux/compiler.h>
  77
  78#include <asm/switch_to.h>
  79#include <asm/tlb.h>
  80#include <asm/irq_regs.h>
  81#include <asm/mutex.h>
  82#ifdef CONFIG_PARAVIRT
  83#include <asm/paravirt.h>
  84#endif
  85
  86#include "sched.h"
  87#include "../workqueue_internal.h"
 
  88#include "../smpboot.h"
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/sched.h>
  92
  93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  94{
  95	unsigned long delta;
  96	ktime_t soft, hard, now;
 
 
 
 
 
 
 
 
 
 
  97
  98	for (;;) {
  99		if (hrtimer_active(period_timer))
 100			break;
 101
 102		now = hrtimer_cb_get_time(period_timer);
 103		hrtimer_forward(period_timer, now, period);
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105		soft = hrtimer_get_softexpires(period_timer);
 106		hard = hrtimer_get_expires(period_timer);
 107		delta = ktime_to_ns(ktime_sub(hard, soft));
 108		__hrtimer_start_range_ns(period_timer, soft, delta,
 109					 HRTIMER_MODE_ABS_PINNED, 0);
 110	}
 111}
 
 
 
 112
 113DEFINE_MUTEX(sched_domains_mutex);
 114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 
 
 115
 116static void update_rq_clock_task(struct rq *rq, s64 delta);
 
 
 
 
 117
 118void update_rq_clock(struct rq *rq)
 
 
 
 
 
 
 
 119{
 120	s64 delta;
 
 121
 122	if (rq->skip_clock_update > 0)
 123		return;
 124
 125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 126	rq->clock += delta;
 127	update_rq_clock_task(rq, delta);
 
 128}
 129
 130/*
 131 * Debugging: various feature bits
 
 
 
 132 */
 133
 134#define SCHED_FEAT(name, enabled)	\
 135	(1UL << __SCHED_FEAT_##name) * enabled |
 
 136
 137const_debug unsigned int sysctl_sched_features =
 138#include "features.h"
 139	0;
 140
 141#undef SCHED_FEAT
 
 142
 143#ifdef CONFIG_SCHED_DEBUG
 144#define SCHED_FEAT(name, enabled)	\
 145	#name ,
 146
 147static const char * const sched_feat_names[] = {
 148#include "features.h"
 149};
 150
 151#undef SCHED_FEAT
 
 
 
 
 152
 153static int sched_feat_show(struct seq_file *m, void *v)
 154{
 155	int i;
 
 156
 157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 158		if (!(sysctl_sched_features & (1UL << i)))
 159			seq_puts(m, "NO_");
 160		seq_printf(m, "%s ", sched_feat_names[i]);
 161	}
 162	seq_puts(m, "\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164	return 0;
 165}
 166
 167#ifdef HAVE_JUMP_LABEL
 
 
 168
 169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 170#define jump_label_key__false STATIC_KEY_INIT_FALSE
 171
 172#define SCHED_FEAT(name, enabled)	\
 173	jump_label_key__##enabled ,
 174
 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 176#include "features.h"
 177};
 178
 179#undef SCHED_FEAT
 
 180
 181static void sched_feat_disable(int i)
 
 
 
 
 
 
 
 182{
 183	if (static_key_enabled(&sched_feat_keys[i]))
 184		static_key_slow_dec(&sched_feat_keys[i]);
 
 
 
 
 
 
 
 
 185}
 186
 187static void sched_feat_enable(int i)
 188{
 189	if (!static_key_enabled(&sched_feat_keys[i]))
 190		static_key_slow_inc(&sched_feat_keys[i]);
 
 
 
 
 
 
 
 
 
 191}
 192#else
 193static void sched_feat_disable(int i) { };
 194static void sched_feat_enable(int i) { };
 195#endif /* HAVE_JUMP_LABEL */
 196
 197static int sched_feat_set(char *cmp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198{
 199	int i;
 200	int neg = 0;
 201
 202	if (strncmp(cmp, "NO_", 3) == 0) {
 203		neg = 1;
 204		cmp += 3;
 205	}
 206
 207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
 209			if (neg) {
 210				sysctl_sched_features &= ~(1UL << i);
 211				sched_feat_disable(i);
 212			} else {
 213				sysctl_sched_features |= (1UL << i);
 214				sched_feat_enable(i);
 215			}
 216			break;
 217		}
 218	}
 219
 220	return i;
 
 
 221}
 222
 223static ssize_t
 224sched_feat_write(struct file *filp, const char __user *ubuf,
 225		size_t cnt, loff_t *ppos)
 226{
 227	char buf[64];
 228	char *cmp;
 229	int i;
 230
 231	if (cnt > 63)
 232		cnt = 63;
 233
 234	if (copy_from_user(&buf, ubuf, cnt))
 235		return -EFAULT;
 
 
 
 
 236
 237	buf[cnt] = 0;
 238	cmp = strstrip(buf);
 239
 240	i = sched_feat_set(cmp);
 241	if (i == __SCHED_FEAT_NR)
 242		return -EINVAL;
 243
 244	*ppos += cnt;
 
 
 
 245
 246	return cnt;
 
 
 
 
 
 
 
 
 
 247}
 248
 249static int sched_feat_open(struct inode *inode, struct file *filp)
 250{
 251	return single_open(filp, sched_feat_show, NULL);
 
 
 
 252}
 253
 254static const struct file_operations sched_feat_fops = {
 255	.open		= sched_feat_open,
 256	.write		= sched_feat_write,
 257	.read		= seq_read,
 258	.llseek		= seq_lseek,
 259	.release	= single_release,
 260};
 
 
 
 
 
 
 
 
 
 
 
 261
 262static __init int sched_init_debug(void)
 263{
 264	debugfs_create_file("sched_features", 0644, NULL, NULL,
 265			&sched_feat_fops);
 266
 267	return 0;
 
 
 
 
 
 
 268}
 269late_initcall(sched_init_debug);
 270#endif /* CONFIG_SCHED_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271
 272/*
 273 * Number of tasks to iterate in a single balance run.
 274 * Limited because this is done with IRQs disabled.
 275 */
 276const_debug unsigned int sysctl_sched_nr_migrate = 32;
 
 277
 278/*
 279 * period over which we average the RT time consumption, measured
 280 * in ms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281 *
 282 * default: 1s
 283 */
 284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 285
 286/*
 287 * period over which we measure -rt task cpu usage in us.
 288 * default: 1s
 289 */
 290unsigned int sysctl_sched_rt_period = 1000000;
 291
 292__read_mostly int scheduler_running;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294/*
 295 * part of the period that we allow rt tasks to run in us.
 296 * default: 0.95s
 297 */
 298int sysctl_sched_rt_runtime = 950000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 299
 300/*
 301 * __task_rq_lock - lock the rq @p resides on.
 302 */
 303static inline struct rq *__task_rq_lock(struct task_struct *p)
 304	__acquires(rq->lock)
 305{
 306	struct rq *rq;
 307
 308	lockdep_assert_held(&p->pi_lock);
 309
 310	for (;;) {
 311		rq = task_rq(p);
 312		raw_spin_lock(&rq->lock);
 313		if (likely(rq == task_rq(p)))
 
 314			return rq;
 315		raw_spin_unlock(&rq->lock);
 
 
 
 
 316	}
 317}
 318
 319/*
 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 321 */
 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 323	__acquires(p->pi_lock)
 324	__acquires(rq->lock)
 325{
 326	struct rq *rq;
 327
 328	for (;;) {
 329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
 330		rq = task_rq(p);
 331		raw_spin_lock(&rq->lock);
 332		if (likely(rq == task_rq(p)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333			return rq;
 334		raw_spin_unlock(&rq->lock);
 335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 
 
 
 
 336	}
 337}
 338
 339static void __task_rq_unlock(struct rq *rq)
 340	__releases(rq->lock)
 341{
 342	raw_spin_unlock(&rq->lock);
 343}
 344
 345static inline void
 346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 347	__releases(rq->lock)
 348	__releases(p->pi_lock)
 349{
 350	raw_spin_unlock(&rq->lock);
 351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 352}
 353
 354/*
 355 * this_rq_lock - lock this runqueue and disable interrupts.
 
 356 */
 357static struct rq *this_rq_lock(void)
 358	__acquires(rq->lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359{
 360	struct rq *rq;
 361
 362	local_irq_disable();
 363	rq = this_rq();
 364	raw_spin_lock(&rq->lock);
 365
 366	return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 367}
 368
 369#ifdef CONFIG_SCHED_HRTICK
 370/*
 371 * Use HR-timers to deliver accurate preemption points.
 372 */
 373
 374static void hrtick_clear(struct rq *rq)
 375{
 376	if (hrtimer_active(&rq->hrtick_timer))
 377		hrtimer_cancel(&rq->hrtick_timer);
 378}
 379
 380/*
 381 * High-resolution timer tick.
 382 * Runs from hardirq context with interrupts disabled.
 383 */
 384static enum hrtimer_restart hrtick(struct hrtimer *timer)
 385{
 386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 
 387
 388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 389
 390	raw_spin_lock(&rq->lock);
 391	update_rq_clock(rq);
 392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 393	raw_spin_unlock(&rq->lock);
 394
 395	return HRTIMER_NORESTART;
 396}
 397
 398#ifdef CONFIG_SMP
 399
 400static int __hrtick_restart(struct rq *rq)
 401{
 402	struct hrtimer *timer = &rq->hrtick_timer;
 403	ktime_t time = hrtimer_get_softexpires(timer);
 404
 405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
 406}
 407
 408/*
 409 * called from hardirq (IPI) context
 410 */
 411static void __hrtick_start(void *arg)
 412{
 413	struct rq *rq = arg;
 
 414
 415	raw_spin_lock(&rq->lock);
 416	__hrtick_restart(rq);
 417	rq->hrtick_csd_pending = 0;
 418	raw_spin_unlock(&rq->lock);
 419}
 420
 421/*
 422 * Called to set the hrtick timer state.
 423 *
 424 * called with rq->lock held and irqs disabled
 425 */
 426void hrtick_start(struct rq *rq, u64 delay)
 427{
 428	struct hrtimer *timer = &rq->hrtick_timer;
 429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 430
 431	hrtimer_set_expires(timer, time);
 
 
 
 
 
 432
 433	if (rq == this_rq()) {
 434		__hrtick_restart(rq);
 435	} else if (!rq->hrtick_csd_pending) {
 436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 437		rq->hrtick_csd_pending = 1;
 438	}
 439}
 440
 441static int
 442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 
 
 
 
 
 443{
 444	int cpu = (int)(long)hcpu;
 
 
 
 
 
 
 
 445
 446	switch (action) {
 447	case CPU_UP_CANCELED:
 448	case CPU_UP_CANCELED_FROZEN:
 449	case CPU_DOWN_PREPARE:
 450	case CPU_DOWN_PREPARE_FROZEN:
 451	case CPU_DEAD:
 452	case CPU_DEAD_FROZEN:
 453		hrtick_clear(cpu_rq(cpu));
 454		return NOTIFY_OK;
 455	}
 456
 457	return NOTIFY_DONE;
 
 
 
 
 
 
 
 
 
 
 458}
 459
 460static __init void init_hrtick(void)
 461{
 462	hotcpu_notifier(hotplug_hrtick, 0);
 463}
 464#else
 
 465/*
 466 * Called to set the hrtick timer state.
 467 *
 468 * called with rq->lock held and irqs disabled
 469 */
 470void hrtick_start(struct rq *rq, u64 delay)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 473			HRTIMER_MODE_REL_PINNED, 0);
 474}
 475
 476static inline void init_hrtick(void)
 
 
 
 
 
 
 477{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479#endif /* CONFIG_SMP */
 480
 481static void init_rq_hrtick(struct rq *rq)
 
 482{
 483#ifdef CONFIG_SMP
 484	rq->hrtick_csd_pending = 0;
 
 485
 486	rq->hrtick_csd.flags = 0;
 487	rq->hrtick_csd.func = __hrtick_start;
 488	rq->hrtick_csd.info = rq;
 
 
 
 489#endif
 490
 491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 492	rq->hrtick_timer.function = hrtick;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493}
 494#else	/* CONFIG_SCHED_HRTICK */
 495static inline void hrtick_clear(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 496{
 
 
 497}
 498
 499static inline void init_rq_hrtick(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500{
 
 
 501}
 502
 503static inline void init_hrtick(void)
 504{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506#endif	/* CONFIG_SCHED_HRTICK */
 507
 508/*
 509 * resched_task - mark a task 'to be rescheduled now'.
 510 *
 511 * On UP this means the setting of the need_resched flag, on SMP it
 512 * might also involve a cross-CPU call to trigger the scheduler on
 513 * the target CPU.
 514 */
 515void resched_task(struct task_struct *p)
 516{
 
 517	int cpu;
 518
 519	lockdep_assert_held(&task_rq(p)->lock);
 520
 521	if (test_tsk_need_resched(p))
 522		return;
 523
 524	set_tsk_need_resched(p);
 525
 526	cpu = task_cpu(p);
 527	if (cpu == smp_processor_id()) {
 
 528		set_preempt_need_resched();
 529		return;
 530	}
 531
 532	/* NEED_RESCHED must be visible before we test polling */
 533	smp_mb();
 534	if (!tsk_is_polling(p))
 535		smp_send_reschedule(cpu);
 
 
 536}
 537
 538void resched_cpu(int cpu)
 539{
 540	struct rq *rq = cpu_rq(cpu);
 541	unsigned long flags;
 542
 543	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 544		return;
 545	resched_task(cpu_curr(cpu));
 546	raw_spin_unlock_irqrestore(&rq->lock, flags);
 547}
 548
 549#ifdef CONFIG_SMP
 550#ifdef CONFIG_NO_HZ_COMMON
 551/*
 552 * In the semi idle case, use the nearest busy cpu for migrating timers
 553 * from an idle cpu.  This is good for power-savings.
 554 *
 555 * We don't do similar optimization for completely idle system, as
 556 * selecting an idle cpu will add more delays to the timers than intended
 557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 558 */
 559int get_nohz_timer_target(int pinned)
 560{
 561	int cpu = smp_processor_id();
 562	int i;
 563	struct sched_domain *sd;
 564
 565	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
 566		return cpu;
 
 
 
 567
 568	rcu_read_lock();
 569	for_each_domain(cpu, sd) {
 570		for_each_cpu(i, sched_domain_span(sd)) {
 
 
 
 
 571			if (!idle_cpu(i)) {
 572				cpu = i;
 573				goto unlock;
 574			}
 575		}
 576	}
 
 
 
 
 577unlock:
 578	rcu_read_unlock();
 579	return cpu;
 580}
 
 581/*
 582 * When add_timer_on() enqueues a timer into the timer wheel of an
 583 * idle CPU then this timer might expire before the next timer event
 584 * which is scheduled to wake up that CPU. In case of a completely
 585 * idle system the next event might even be infinite time into the
 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 587 * leaves the inner idle loop so the newly added timer is taken into
 588 * account when the CPU goes back to idle and evaluates the timer
 589 * wheel for the next timer event.
 590 */
 591static void wake_up_idle_cpu(int cpu)
 592{
 593	struct rq *rq = cpu_rq(cpu);
 594
 595	if (cpu == smp_processor_id())
 596		return;
 597
 598	/*
 599	 * This is safe, as this function is called with the timer
 600	 * wheel base lock of (cpu) held. When the CPU is on the way
 601	 * to idle and has not yet set rq->curr to idle then it will
 602	 * be serialized on the timer wheel base lock and take the new
 603	 * timer into account automatically.
 604	 */
 605	if (rq->curr != rq->idle)
 606		return;
 607
 608	/*
 609	 * We can set TIF_RESCHED on the idle task of the other CPU
 610	 * lockless. The worst case is that the other CPU runs the
 611	 * idle task through an additional NOOP schedule()
 612	 */
 613	set_tsk_need_resched(rq->idle);
 614
 615	/* NEED_RESCHED must be visible before we test polling */
 616	smp_mb();
 617	if (!tsk_is_polling(rq->idle))
 618		smp_send_reschedule(cpu);
 
 
 619}
 620
 621static bool wake_up_full_nohz_cpu(int cpu)
 622{
 
 
 
 
 
 
 
 
 623	if (tick_nohz_full_cpu(cpu)) {
 624		if (cpu != smp_processor_id() ||
 625		    tick_nohz_tick_stopped())
 626			smp_send_reschedule(cpu);
 627		return true;
 628	}
 629
 630	return false;
 631}
 632
 
 
 
 
 
 633void wake_up_nohz_cpu(int cpu)
 634{
 635	if (!wake_up_full_nohz_cpu(cpu))
 636		wake_up_idle_cpu(cpu);
 637}
 638
 639static inline bool got_nohz_idle_kick(void)
 640{
 641	int cpu = smp_processor_id();
 642
 643	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 644		return false;
 645
 646	if (idle_cpu(cpu) && !need_resched())
 647		return true;
 648
 649	/*
 650	 * We can't run Idle Load Balance on this CPU for this time so we
 651	 * cancel it and clear NOHZ_BALANCE_KICK
 652	 */
 653	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 654	return false;
 655}
 656
 657#else /* CONFIG_NO_HZ_COMMON */
 658
 659static inline bool got_nohz_idle_kick(void)
 660{
 661	return false;
 
 
 662}
 663
 664#endif /* CONFIG_NO_HZ_COMMON */
 665
 666#ifdef CONFIG_NO_HZ_FULL
 667bool sched_can_stop_tick(void)
 668{
 669       struct rq *rq;
 670
 671       rq = this_rq();
 672
 673       /* Make sure rq->nr_running update is visible after the IPI */
 674       smp_rmb();
 
 675
 676       /* More than one running task need preemption */
 677       if (rq->nr_running > 1)
 678               return false;
 
 
 
 
 
 
 
 679
 680       return true;
 681}
 682#endif /* CONFIG_NO_HZ_FULL */
 
 
 
 
 683
 684void sched_avg_update(struct rq *rq)
 685{
 686	s64 period = sched_avg_period();
 
 
 
 
 687
 688	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 689		/*
 690		 * Inline assembly required to prevent the compiler
 691		 * optimising this loop into a divmod call.
 692		 * See __iter_div_u64_rem() for another example of this.
 693		 */
 694		asm("" : "+rm" (rq->age_stamp));
 695		rq->age_stamp += period;
 696		rq->rt_avg /= 2;
 697	}
 698}
 699
 700#endif /* CONFIG_SMP */
 701
 702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 704/*
 705 * Iterate task_group tree rooted at *from, calling @down when first entering a
 706 * node and @up when leaving it for the final time.
 707 *
 708 * Caller must hold rcu_lock or sufficient equivalent.
 709 */
 710int walk_tg_tree_from(struct task_group *from,
 711			     tg_visitor down, tg_visitor up, void *data)
 712{
 713	struct task_group *parent, *child;
 714	int ret;
 715
 716	parent = from;
 717
 718down:
 719	ret = (*down)(parent, data);
 720	if (ret)
 721		goto out;
 722	list_for_each_entry_rcu(child, &parent->children, siblings) {
 723		parent = child;
 724		goto down;
 725
 726up:
 727		continue;
 728	}
 729	ret = (*up)(parent, data);
 730	if (ret || parent == from)
 731		goto out;
 732
 733	child = parent;
 734	parent = parent->parent;
 735	if (parent)
 736		goto up;
 737out:
 738	return ret;
 739}
 740
 741int tg_nop(struct task_group *tg, void *data)
 742{
 743	return 0;
 744}
 745#endif
 746
 747static void set_load_weight(struct task_struct *p)
 748{
 749	int prio = p->static_prio - MAX_RT_PRIO;
 750	struct load_weight *load = &p->se.load;
 751
 752	/*
 753	 * SCHED_IDLE tasks get minimal weight:
 754	 */
 755	if (p->policy == SCHED_IDLE) {
 756		load->weight = scale_load(WEIGHT_IDLEPRIO);
 757		load->inv_weight = WMULT_IDLEPRIO;
 758		return;
 759	}
 760
 761	load->weight = scale_load(prio_to_weight[prio]);
 762	load->inv_weight = prio_to_wmult[prio];
 
 
 
 
 
 
 
 
 763}
 764
 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766{
 767	update_rq_clock(rq);
 768	sched_info_queued(rq, p);
 769	p->sched_class->enqueue_task(rq, p, flags);
 770}
 771
 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 773{
 774	update_rq_clock(rq);
 775	sched_info_dequeued(rq, p);
 776	p->sched_class->dequeue_task(rq, p, flags);
 777}
 778
 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
 
 780{
 781	if (task_contributes_to_load(p))
 782		rq->nr_uninterruptible--;
 
 
 783
 784	enqueue_task(rq, p, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785}
 786
 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 
 788{
 789	if (task_contributes_to_load(p))
 790		rq->nr_uninterruptible++;
 
 791
 792	dequeue_task(rq, p, flags);
 793}
 794
 795static void update_rq_clock_task(struct rq *rq, s64 delta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797/*
 798 * In theory, the compile should just see 0 here, and optimize out the call
 799 * to sched_rt_avg_update. But I don't trust it...
 
 
 
 
 800 */
 801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 802	s64 steal = 0, irq_delta = 0;
 803#endif
 804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	/*
 808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 809	 * this case when a previous update_rq_clock() happened inside a
 810	 * {soft,}irq region.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811	 *
 812	 * When this happens, we stop ->clock_task and only update the
 813	 * prev_irq_time stamp to account for the part that fit, so that a next
 814	 * update will consume the rest. This ensures ->clock_task is
 815	 * monotonic.
 816	 *
 817	 * It does however cause some slight miss-attribution of {soft,}irq
 818	 * time, a more accurate solution would be to update the irq_time using
 819	 * the current rq->clock timestamp, except that would require using
 820	 * atomic ops.
 
 
 
 
 
 
 
 
 
 
 821	 */
 822	if (irq_delta > delta)
 823		irq_delta = delta;
 824
 825	rq->prev_irq_time += irq_delta;
 826	delta -= irq_delta;
 827#endif
 828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 829	if (static_key_false((&paravirt_steal_rq_enabled))) {
 830		steal = paravirt_steal_clock(cpu_of(rq));
 831		steal -= rq->prev_steal_time_rq;
 832
 833		if (unlikely(steal > delta))
 834			steal = delta;
 
 835
 836		rq->prev_steal_time_rq += steal;
 837		delta -= steal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838	}
 839#endif
 840
 841	rq->clock_task += delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 844	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 845		sched_rt_avg_update(rq, irq_delta + steal);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849void sched_set_stop_task(int cpu, struct task_struct *stop)
 
 850{
 851	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 852	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 853
 854	if (stop) {
 855		/*
 856		 * Make it appear like a SCHED_FIFO task, its something
 857		 * userspace knows about and won't get confused about.
 858		 *
 859		 * Also, it will make PI more or less work without too
 860		 * much confusion -- but then, stop work should not
 861		 * rely on PI working anyway.
 862		 */
 863		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 864
 865		stop->sched_class = &stop_sched_class;
 
 866	}
 867
 868	cpu_rq(cpu)->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870	if (old_stop) {
 871		/*
 872		 * Reset it back to a normal scheduling class so that
 873		 * it can die in pieces.
 874		 */
 875		old_stop->sched_class = &rt_sched_class;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	}
 877}
 878
 879/*
 880 * __normal_prio - return the priority that is based on the static prio
 881 */
 882static inline int __normal_prio(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883{
 884	return p->static_prio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885}
 886
 887/*
 888 * Calculate the expected normal priority: i.e. priority
 889 * without taking RT-inheritance into account. Might be
 890 * boosted by interactivity modifiers. Changes upon fork,
 891 * setprio syscalls, and whenever the interactivity
 892 * estimator recalculates.
 893 */
 894static inline int normal_prio(struct task_struct *p)
 895{
 896	int prio;
 897
 898	if (task_has_dl_policy(p))
 899		prio = MAX_DL_PRIO-1;
 900	else if (task_has_rt_policy(p))
 901		prio = MAX_RT_PRIO-1 - p->rt_priority;
 902	else
 903		prio = __normal_prio(p);
 904	return prio;
 905}
 906
 907/*
 908 * Calculate the current priority, i.e. the priority
 909 * taken into account by the scheduler. This value might
 910 * be boosted by RT tasks, or might be boosted by
 911 * interactivity modifiers. Will be RT if the task got
 912 * RT-boosted. If not then it returns p->normal_prio.
 913 */
 914static int effective_prio(struct task_struct *p)
 915{
 916	p->normal_prio = normal_prio(p);
 917	/*
 918	 * If we are RT tasks or we were boosted to RT priority,
 919	 * keep the priority unchanged. Otherwise, update priority
 920	 * to the normal priority:
 921	 */
 922	if (!rt_prio(p->prio))
 923		return p->normal_prio;
 924	return p->prio;
 925}
 926
 927/**
 928 * task_curr - is this task currently executing on a CPU?
 929 * @p: the task in question.
 930 *
 931 * Return: 1 if the task is currently executing. 0 otherwise.
 932 */
 933inline int task_curr(const struct task_struct *p)
 934{
 935	return cpu_curr(task_cpu(p)) == p;
 936}
 937
 
 
 
 
 
 
 
 938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 939				       const struct sched_class *prev_class,
 940				       int oldprio)
 941{
 942	if (prev_class != p->sched_class) {
 943		if (prev_class->switched_from)
 944			prev_class->switched_from(rq, p);
 
 945		p->sched_class->switched_to(rq, p);
 946	} else if (oldprio != p->prio || dl_task(p))
 947		p->sched_class->prio_changed(rq, p, oldprio);
 948}
 949
 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 951{
 952	const struct sched_class *class;
 953
 954	if (p->sched_class == rq->curr->sched_class) {
 955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956	} else {
 957		for_each_class(class) {
 958			if (class == rq->curr->sched_class)
 959				break;
 960			if (class == p->sched_class) {
 961				resched_task(rq->curr);
 962				break;
 
 
 963			}
 964		}
 
 
 
 
 965	}
 966
 
 
 
 
 
 967	/*
 968	 * A queue event has occurred, and we're going to schedule.  In
 969	 * this case, we can save a useless back to back clock update.
 970	 */
 971	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 972		rq->skip_clock_update = 1;
 
 
 
 
 973}
 974
 975#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 977{
 978#ifdef CONFIG_SCHED_DEBUG
 
 
 979	/*
 980	 * We should never call set_task_cpu() on a blocked task,
 981	 * ttwu() will sort out the placement.
 982	 */
 983	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 984			!(task_preempt_count(p) & PREEMPT_ACTIVE));
 
 
 
 
 
 
 
 
 985
 986#ifdef CONFIG_LOCKDEP
 987	/*
 988	 * The caller should hold either p->pi_lock or rq->lock, when changing
 989	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 990	 *
 991	 * sched_move_task() holds both and thus holding either pins the cgroup,
 992	 * see task_group().
 993	 *
 994	 * Furthermore, all task_rq users should acquire both locks, see
 995	 * task_rq_lock().
 996	 */
 997	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 998				      lockdep_is_held(&task_rq(p)->lock)));
 999#endif
 
 
 
 
 
 
1000#endif
1001
1002	trace_sched_migrate_task(p, new_cpu);
1003
1004	if (task_cpu(p) != new_cpu) {
1005		if (p->sched_class->migrate_task_rq)
1006			p->sched_class->migrate_task_rq(p, new_cpu);
1007		p->se.nr_migrations++;
1008		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
 
1009	}
1010
1011	__set_task_cpu(p, new_cpu);
1012}
1013
 
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016	if (p->on_rq) {
1017		struct rq *src_rq, *dst_rq;
 
1018
1019		src_rq = task_rq(p);
1020		dst_rq = cpu_rq(cpu);
1021
 
 
 
1022		deactivate_task(src_rq, p, 0);
1023		set_task_cpu(p, cpu);
1024		activate_task(dst_rq, p, 0);
1025		check_preempt_curr(dst_rq, p, 0);
 
 
 
 
1026	} else {
1027		/*
1028		 * Task isn't running anymore; make it appear like we migrated
1029		 * it before it went to sleep. This means on wakeup we make the
1030		 * previous cpu our targer instead of where it really is.
1031		 */
1032		p->wake_cpu = cpu;
1033	}
1034}
1035
1036struct migration_swap_arg {
1037	struct task_struct *src_task, *dst_task;
1038	int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043	struct migration_swap_arg *arg = data;
1044	struct rq *src_rq, *dst_rq;
1045	int ret = -EAGAIN;
1046
 
 
 
1047	src_rq = cpu_rq(arg->src_cpu);
1048	dst_rq = cpu_rq(arg->dst_cpu);
1049
1050	double_raw_lock(&arg->src_task->pi_lock,
1051			&arg->dst_task->pi_lock);
1052	double_rq_lock(src_rq, dst_rq);
 
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072	raw_spin_unlock(&arg->dst_task->pi_lock);
1073	raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075	return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
 
1082{
1083	struct migration_swap_arg arg;
1084	int ret = -EINVAL;
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	/*
1097	 * These three tests are all lockless; this is OK since all of them
1098	 * will be re-checked with proper locks held further down the line.
1099	 */
1100	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101		goto out;
1102
1103	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104		goto out;
1105
1106	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107		goto out;
1108
1109	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113	return ret;
1114}
1115
1116struct migration_arg {
1117	struct task_struct *task;
1118	int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change.  If it changes, i.e. @p might have woken up,
1128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count).  If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141	unsigned long flags;
1142	int running, on_rq;
1143	unsigned long ncsw;
1144	struct rq *rq;
1145
1146	for (;;) {
1147		/*
1148		 * We do the initial early heuristics without holding
1149		 * any task-queue locks at all. We'll only try to get
1150		 * the runqueue lock when things look like they will
1151		 * work out!
1152		 */
1153		rq = task_rq(p);
1154
1155		/*
1156		 * If the task is actively running on another CPU
1157		 * still, just relax and busy-wait without holding
1158		 * any locks.
1159		 *
1160		 * NOTE! Since we don't hold any locks, it's not
1161		 * even sure that "rq" stays as the right runqueue!
1162		 * But we don't care, since "task_running()" will
1163		 * return false if the runqueue has changed and p
1164		 * is actually now running somewhere else!
1165		 */
1166		while (task_running(rq, p)) {
1167			if (match_state && unlikely(p->state != match_state))
1168				return 0;
1169			cpu_relax();
1170		}
1171
1172		/*
1173		 * Ok, time to look more closely! We need the rq
1174		 * lock now, to be *sure*. If we're wrong, we'll
1175		 * just go back and repeat.
1176		 */
1177		rq = task_rq_lock(p, &flags);
1178		trace_sched_wait_task(p);
1179		running = task_running(rq, p);
1180		on_rq = p->on_rq;
1181		ncsw = 0;
1182		if (!match_state || p->state == match_state)
1183			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184		task_rq_unlock(rq, p, &flags);
1185
1186		/*
1187		 * If it changed from the expected state, bail out now.
1188		 */
1189		if (unlikely(!ncsw))
1190			break;
1191
1192		/*
1193		 * Was it really running after all now that we
1194		 * checked with the proper locks actually held?
1195		 *
1196		 * Oops. Go back and try again..
1197		 */
1198		if (unlikely(running)) {
1199			cpu_relax();
1200			continue;
1201		}
1202
1203		/*
1204		 * It's not enough that it's not actively running,
1205		 * it must be off the runqueue _entirely_, and not
1206		 * preempted!
1207		 *
1208		 * So if it was still runnable (but just not actively
1209		 * running right now), it's preempted, and we should
1210		 * yield - it could be a while.
1211		 */
1212		if (unlikely(on_rq)) {
1213			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215			set_current_state(TASK_UNINTERRUPTIBLE);
1216			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217			continue;
1218		}
1219
1220		/*
1221		 * Ahh, all good. It wasn't running, and it wasn't
1222		 * runnable, which means that it will never become
1223		 * running in the future either. We're all done!
1224		 */
1225		break;
1226	}
1227
1228	return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246	int cpu;
1247
1248	preempt_disable();
1249	cpu = task_cpu(p);
1250	if ((cpu != smp_processor_id()) && task_curr(p))
1251		smp_send_reschedule(cpu);
1252	preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263	int nid = cpu_to_node(cpu);
1264	const struct cpumask *nodemask = NULL;
1265	enum { cpuset, possible, fail } state = cpuset;
1266	int dest_cpu;
1267
1268	/*
1269	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270	 * will return -1. There is no cpu on the node, and we should
1271	 * select the cpu on the other node.
1272	 */
1273	if (nid != -1) {
1274		nodemask = cpumask_of_node(nid);
1275
1276		/* Look for allowed, online CPU in same node. */
1277		for_each_cpu(dest_cpu, nodemask) {
1278			if (!cpu_online(dest_cpu))
1279				continue;
1280			if (!cpu_active(dest_cpu))
1281				continue;
1282			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283				return dest_cpu;
1284		}
1285	}
1286
1287	for (;;) {
1288		/* Any allowed, online CPU? */
1289		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
 
1294			goto out;
1295		}
1296
 
1297		switch (state) {
1298		case cpuset:
1299			/* No more Mr. Nice Guy. */
1300			cpuset_cpus_allowed_fallback(p);
1301			state = possible;
1302			break;
1303
 
1304		case possible:
 
 
 
 
 
 
1305			do_set_cpus_allowed(p, cpu_possible_mask);
1306			state = fail;
1307			break;
1308
1309		case fail:
1310			BUG();
1311			break;
1312		}
1313	}
1314
1315out:
1316	if (state != cpuset) {
1317		/*
1318		 * Don't tell them about moving exiting tasks or
1319		 * kernel threads (both mm NULL), since they never
1320		 * leave kernel.
1321		 */
1322		if (p->mm && printk_ratelimit()) {
1323			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324					task_pid_nr(p), p->comm, cpu);
1325		}
1326	}
1327
1328	return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
 
 
 
 
 
1338
1339	/*
1340	 * In order not to call set_task_cpu() on a blocking task we need
1341	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342	 * cpu.
1343	 *
1344	 * Since this is common to all placement strategies, this lives here.
1345	 *
1346	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347	 *   not worry about this generic constraint ]
1348	 */
1349	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350		     !cpu_online(cpu)))
1351		cpu = select_fallback_rq(task_cpu(p), p);
1352
1353	return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357{
1358	s64 diff = sample - *avg;
1359	*avg += diff >> 3;
 
 
 
 
 
 
1360}
1361#endif
 
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367	struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370	int this_cpu = smp_processor_id();
1371
1372	if (cpu == this_cpu) {
1373		schedstat_inc(rq, ttwu_local);
1374		schedstat_inc(p, se.statistics.nr_wakeups_local);
 
 
 
1375	} else {
1376		struct sched_domain *sd;
1377
1378		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379		rcu_read_lock();
1380		for_each_domain(this_cpu, sd) {
1381			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382				schedstat_inc(sd, ttwu_wake_remote);
1383				break;
1384			}
1385		}
1386		rcu_read_unlock();
1387	}
1388
1389	if (wake_flags & WF_MIGRATED)
1390		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394	schedstat_inc(rq, ttwu_count);
1395	schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397	if (wake_flags & WF_SYNC)
1398		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405	activate_task(rq, p, en_flags);
1406	p->on_rq = 1;
1407
1408	/* if a worker is waking up, notify workqueue */
1409	if (p->flags & PF_WQ_WORKER)
1410		wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419	check_preempt_curr(rq, p, wake_flags);
1420	trace_sched_wakeup(p, true);
 
1421
1422	p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424	if (p->sched_class->task_woken)
 
 
 
 
 
1425		p->sched_class->task_woken(rq, p);
 
 
1426
1427	if (rq->idle_stamp) {
1428		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429		u64 max = 2*rq->max_idle_balance_cost;
1430
1431		update_avg(&rq->avg_idle, delta);
1432
1433		if (rq->avg_idle > max)
1434			rq->avg_idle = max;
1435
 
 
 
1436		rq->idle_stamp = 0;
1437	}
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 
1443{
1444#ifdef CONFIG_SMP
 
 
 
1445	if (p->sched_contributes_to_load)
1446		rq->nr_uninterruptible--;
 
 
 
 
 
1447#endif
 
 
 
 
1448
1449	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450	ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
 
1461	struct rq *rq;
1462	int ret = 0;
1463
1464	rq = __task_rq_lock(p);
1465	if (p->on_rq) {
1466		/* check_preempt_curr() may use rq clock */
1467		update_rq_clock(rq);
1468		ttwu_do_wakeup(rq, p, wake_flags);
1469		ret = 1;
1470	}
1471	__task_rq_unlock(rq);
1472
1473	return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
 
1479	struct rq *rq = this_rq();
1480	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481	struct task_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482
1483	raw_spin_lock(&rq->lock);
 
1484
1485	while (llist) {
1486		p = llist_entry(llist, struct task_struct, wake_entry);
1487		llist = llist_next(llist);
1488		ttwu_do_activate(rq, p, 0);
1489	}
1490
1491	raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495{
1496	/*
1497	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499	 * this IPI.
1500	 */
1501	preempt_fold_need_resched();
1502
1503	if (llist_empty(&this_rq()->wake_list)
1504			&& !tick_nohz_full_cpu(smp_processor_id())
1505			&& !got_nohz_idle_kick())
1506		return;
1507
1508	/*
1509	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510	 * traditionally all their work was done from the interrupt return
1511	 * path. Now that we actually do some work, we need to make sure
1512	 * we do call them.
1513	 *
1514	 * Some archs already do call them, luckily irq_enter/exit nest
1515	 * properly.
1516	 *
1517	 * Arguably we should visit all archs and update all handlers,
1518	 * however a fair share of IPIs are still resched only so this would
1519	 * somewhat pessimize the simple resched case.
1520	 */
1521	irq_enter();
1522	tick_nohz_full_check();
1523	sched_ttwu_pending();
1524
1525	/*
1526	 * Check if someone kicked us for doing the nohz idle load balance.
 
 
 
1527	 */
1528	if (unlikely(got_nohz_idle_kick())) {
1529		this_rq()->idle_balance = 1;
1530		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531	}
1532	irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538		smp_send_reschedule(cpu);
 
 
 
 
 
 
 
 
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
 
 
1542{
1543	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
 
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549	struct rq *rq = cpu_rq(cpu);
 
1550
1551#if defined(CONFIG_SMP)
1552	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554		ttwu_queue_remote(p, cpu);
1555		return;
1556	}
1557#endif
1558
1559	raw_spin_lock(&rq->lock);
1560	ttwu_do_activate(rq, p, 0);
1561	raw_spin_unlock(&rq->lock);
 
1562}
1563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582	unsigned long flags;
1583	int cpu, success = 0;
1584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585	/*
1586	 * If we are going to wake up a thread waiting for CONDITION we
1587	 * need to ensure that CONDITION=1 done by the caller can not be
1588	 * reordered with p->state check below. This pairs with mb() in
1589	 * set_current_state() the waiting thread does.
1590	 */
1591	smp_mb__before_spinlock();
1592	raw_spin_lock_irqsave(&p->pi_lock, flags);
1593	if (!(p->state & state))
1594		goto out;
 
1595
1596	success = 1; /* we're going to change ->state */
1597	cpu = task_cpu(p);
1598
1599	if (p->on_rq && ttwu_remote(p, wake_flags))
1600		goto stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602#ifdef CONFIG_SMP
1603	/*
1604	 * If the owning (remote) cpu is still in the middle of schedule() with
1605	 * this task as prev, wait until its done referencing the task.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606	 */
1607	while (p->on_cpu)
1608		cpu_relax();
1609	/*
1610	 * Pairs with the smp_wmb() in finish_lock_switch().
 
 
 
1611	 */
1612	smp_rmb();
1613
1614	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615	p->state = TASK_WAKING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616
1617	if (p->sched_class->task_waking)
1618		p->sched_class->task_waking(p);
 
 
 
 
 
 
 
 
1619
1620	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621	if (task_cpu(p) != cpu) {
 
 
 
 
 
1622		wake_flags |= WF_MIGRATED;
 
1623		set_task_cpu(p, cpu);
1624	}
 
 
1625#endif /* CONFIG_SMP */
1626
1627	ttwu_queue(p, cpu);
1628stat:
1629	ttwu_stat(p, cpu, wake_flags);
1630out:
1631	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
 
 
 
1632
1633	return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
 
 
 
 
 
 
 
 
 
 
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646	struct rq *rq = task_rq(p);
1647
1648	if (WARN_ON_ONCE(rq != this_rq()) ||
1649	    WARN_ON_ONCE(p == current))
1650		return;
1651
1652	lockdep_assert_held(&rq->lock);
1653
1654	if (!raw_spin_trylock(&p->pi_lock)) {
1655		raw_spin_unlock(&rq->lock);
1656		raw_spin_lock(&p->pi_lock);
1657		raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
1658	}
1659
1660	if (!(p->state & TASK_NORMAL))
1661		goto out;
1662
1663	if (!p->on_rq)
1664		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666	ttwu_do_wakeup(rq, p, 0);
1667	ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669	raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686	WARN_ON(task_is_stopped_or_traced(p));
1687	return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693	return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704	p->on_rq			= 0;
1705
1706	p->se.on_rq			= 0;
1707	p->se.exec_start		= 0;
1708	p->se.sum_exec_runtime		= 0;
1709	p->se.prev_sum_exec_runtime	= 0;
1710	p->se.nr_migrations		= 0;
1711	p->se.vruntime			= 0;
1712	INIT_LIST_HEAD(&p->se.group_node);
1713
 
 
 
 
1714#ifdef CONFIG_SCHEDSTATS
 
1715	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718	RB_CLEAR_NODE(&p->dl.rb_node);
1719	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720	p->dl.dl_runtime = p->dl.runtime = 0;
1721	p->dl.dl_deadline = p->dl.deadline = 0;
1722	p->dl.dl_period = 0;
1723	p->dl.flags = 0;
1724
1725	INIT_LIST_HEAD(&p->rt.run_list);
 
 
 
 
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728	INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
 
 
 
 
 
 
 
 
 
 
 
 
1731#ifdef CONFIG_NUMA_BALANCING
1732	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734		p->mm->numa_scan_seq = 0;
1735	}
1736
1737	if (clone_flags & CLONE_VM)
1738		p->numa_preferred_nid = current->numa_preferred_nid;
 
 
1739	else
1740		p->numa_preferred_nid = -1;
 
 
 
 
 
 
 
 
 
1741
1742	p->node_stamp = 0ULL;
1743	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745	p->numa_work.next = &p->numa_work;
1746	p->numa_faults_memory = NULL;
1747	p->numa_faults_buffer_memory = NULL;
1748	p->last_task_numa_placement = 0;
1749	p->last_sum_exec_runtime = 0;
1750
1751	INIT_LIST_HEAD(&p->numa_entry);
1752	p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
1754}
 
 
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
 
 
1759{
1760	if (enabled)
1761		sched_feat_set("NUMA");
1762	else
1763		sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770	numabalancing_enabled = enabled;
 
 
 
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778	struct ctl_table t;
1779	int err;
1780	int state = numabalancing_enabled;
1781
1782	if (write && !capable(CAP_SYS_ADMIN))
1783		return -EPERM;
1784
1785	t = *table;
1786	t.data = &state;
1787	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788	if (err < 0)
1789		return err;
1790	if (write)
1791		set_numabalancing_state(state);
1792	return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802	unsigned long flags;
1803	int cpu = get_cpu();
1804
1805	__sched_fork(clone_flags, p);
1806	/*
1807	 * We mark the process as running here. This guarantees that
1808	 * nobody will actually run it, and a signal or other external
1809	 * event cannot wake it up and insert it on the runqueue either.
1810	 */
1811	p->state = TASK_RUNNING;
1812
1813	/*
1814	 * Make sure we do not leak PI boosting priority to the child.
1815	 */
1816	p->prio = current->normal_prio;
1817
 
 
1818	/*
1819	 * Revert to default priority/policy on fork if requested.
1820	 */
1821	if (unlikely(p->sched_reset_on_fork)) {
1822		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823			p->policy = SCHED_NORMAL;
1824			p->static_prio = NICE_TO_PRIO(0);
1825			p->rt_priority = 0;
1826		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827			p->static_prio = NICE_TO_PRIO(0);
1828
1829		p->prio = p->normal_prio = __normal_prio(p);
1830		set_load_weight(p);
1831
1832		/*
1833		 * We don't need the reset flag anymore after the fork. It has
1834		 * fulfilled its duty:
1835		 */
1836		p->sched_reset_on_fork = 0;
1837	}
1838
1839	if (dl_prio(p->prio)) {
1840		put_cpu();
1841		return -EAGAIN;
1842	} else if (rt_prio(p->prio)) {
1843		p->sched_class = &rt_sched_class;
1844	} else {
1845		p->sched_class = &fair_sched_class;
1846	}
1847
1848	if (p->sched_class->task_fork)
1849		p->sched_class->task_fork(p);
1850
1851	/*
1852	 * The child is not yet in the pid-hash so no cgroup attach races,
1853	 * and the cgroup is pinned to this child due to cgroup_fork()
1854	 * is ran before sched_fork().
1855	 *
1856	 * Silence PROVE_RCU.
1857	 */
1858	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859	set_task_cpu(p, cpu);
 
 
 
 
 
 
 
1860	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863	if (likely(sched_info_on()))
1864		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867	p->on_cpu = 0;
1868#endif
1869	init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875	put_cpu();
1876	return 0;
1877}
1878
 
 
 
 
 
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881	if (runtime == RUNTIME_INF)
1882		return 1ULL << 20;
1883
1884	/*
1885	 * Doing this here saves a lot of checks in all
1886	 * the calling paths, and returning zero seems
1887	 * safe for them anyway.
1888	 */
1889	if (period == 0)
1890		return 0;
1891
1892	return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898	return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903	struct root_domain *rd = cpu_rq(i)->rd;
1904	int cpus = 0;
1905
1906	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907		cpus++;
1908
1909	return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914	return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919	return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926	dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932	dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938	return dl_b->bw != -1 &&
1939	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951		       const struct sched_attr *attr)
1952{
1953
1954	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955	u64 period = attr->sched_period ?: attr->sched_deadline;
1956	u64 runtime = attr->sched_runtime;
1957	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958	int cpus, err = -1;
1959
1960	if (new_bw == p->dl.dl_bw)
1961		return 0;
1962
1963	/*
1964	 * Either if a task, enters, leave, or stays -deadline but changes
1965	 * its parameters, we may need to update accordingly the total
1966	 * allocated bandwidth of the container.
1967	 */
1968	raw_spin_lock(&dl_b->lock);
1969	cpus = dl_bw_cpus(task_cpu(p));
1970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972		__dl_add(dl_b, new_bw);
1973		err = 0;
1974	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976		__dl_clear(dl_b, p->dl.dl_bw);
1977		__dl_add(dl_b, new_bw);
1978		err = 0;
1979	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980		__dl_clear(dl_b, p->dl.dl_bw);
1981		err = 0;
1982	}
1983	raw_spin_unlock(&dl_b->lock);
1984
1985	return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999	unsigned long flags;
2000	struct rq *rq;
2001
2002	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
2003#ifdef CONFIG_SMP
2004	/*
2005	 * Fork balancing, do it here and not earlier because:
2006	 *  - cpus_allowed can change in the fork path
2007	 *  - any previously selected cpu might disappear through hotplug
 
 
 
2008	 */
2009	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
 
 
2010#endif
 
 
 
2011
2012	/* Initialize new task's runnable average */
2013	init_task_runnable_average(p);
2014	rq = __task_rq_lock(p);
2015	activate_task(rq, p, 0);
2016	p->on_rq = 1;
2017	trace_sched_wakeup_new(p, true);
2018	check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020	if (p->sched_class->task_woken)
 
 
 
 
 
2021		p->sched_class->task_woken(rq, p);
 
 
2022#endif
2023	task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
 
 
 
2034	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046	hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052	struct preempt_notifier *notifier;
2053
2054	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
 
 
 
 
 
 
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060				 struct task_struct *next)
2061{
2062	struct preempt_notifier *notifier;
2063
2064	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065		notifier->ops->sched_out(notifier, next);
2066}
2067
 
 
 
 
 
 
 
 
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076				 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097		    struct task_struct *next)
2098{
2099	trace_sched_switch(prev, next);
2100	sched_info_switch(rq, prev, next);
2101	perf_event_task_sched_out(prev, next);
 
2102	fire_sched_out_preempt_notifiers(prev, next);
2103	prepare_lock_switch(rq, next);
 
2104	prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
 
 
 
 
 
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123	__releases(rq->lock)
2124{
 
2125	struct mm_struct *mm = rq->prev_mm;
2126	long prev_state;
2127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128	rq->prev_mm = NULL;
2129
2130	/*
2131	 * A task struct has one reference for the use as "current".
2132	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133	 * schedule one last time. The schedule call will never return, and
2134	 * the scheduled task must drop that reference.
2135	 * The test for TASK_DEAD must occur while the runqueue locks are
2136	 * still held, otherwise prev could be scheduled on another cpu, die
2137	 * there before we look at prev->state, and then the reference would
2138	 * be dropped twice.
2139	 *		Manfred Spraul <manfred@colorfullife.com>
2140	 */
2141	prev_state = prev->state;
2142	vtime_task_switch(prev);
2143	finish_arch_switch(prev);
2144	perf_event_task_sched_in(prev, current);
2145	finish_lock_switch(rq, prev);
 
 
2146	finish_arch_post_lock_switch();
 
 
 
 
 
 
 
 
 
2147
2148	fire_sched_in_preempt_notifiers(current);
2149	if (mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
2150		mmdrop(mm);
 
2151	if (unlikely(prev_state == TASK_DEAD)) {
2152		if (prev->sched_class->task_dead)
2153			prev->sched_class->task_dead(prev);
2154
2155		/*
2156		 * Remove function-return probe instances associated with this
2157		 * task and put them back on the free list.
2158		 */
2159		kprobe_flush_task(prev);
2160		put_task_struct(prev);
2161	}
2162
2163	tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171	if (rq->post_schedule) {
2172		unsigned long flags;
2173
2174		raw_spin_lock_irqsave(&rq->lock, flags);
2175		if (rq->curr->sched_class->post_schedule)
2176			rq->curr->sched_class->post_schedule(rq);
2177		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179		rq->post_schedule = 0;
2180	}
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage __visible void schedule_tail(struct task_struct *prev)
2196	__releases(rq->lock)
2197{
2198	struct rq *rq = this_rq();
2199
2200	finish_task_switch(rq, prev);
2201
2202	/*
2203	 * FIXME: do we need to worry about rq being invalidated by the
2204	 * task_switch?
 
 
 
 
2205	 */
2206	post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209	/* In this case, finish_task_switch does not reenable preemption */
2210	preempt_enable();
2211#endif
2212	if (current->set_child_tid)
2213		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222	       struct task_struct *next)
2223{
2224	struct mm_struct *mm, *oldmm;
2225
2226	prepare_task_switch(rq, prev, next);
2227
2228	mm = next->mm;
2229	oldmm = prev->active_mm;
2230	/*
2231	 * For paravirt, this is coupled with an exit in switch_to to
2232	 * combine the page table reload and the switch backend into
2233	 * one hypercall.
2234	 */
2235	arch_start_context_switch(prev);
2236
2237	if (!mm) {
2238		next->active_mm = oldmm;
2239		atomic_inc(&oldmm->mm_count);
2240		enter_lazy_tlb(oldmm, next);
2241	} else
2242		switch_mm(oldmm, mm, next);
2243
2244	if (!prev->mm) {
2245		prev->active_mm = NULL;
2246		rq->prev_mm = oldmm;
2247	}
2248	/*
2249	 * Since the runqueue lock will be released by the next
2250	 * task (which is an invalid locking op but in the case
2251	 * of the scheduler it's an obvious special-case), so we
2252	 * do an early lockdep release here:
 
2253	 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257
2258	context_tracking_task_switch(prev, next);
2259	/* Here we just switch the register state and the stack. */
2260	switch_to(prev, next, prev);
2261
2262	barrier();
2263	/*
2264	 * this_rq must be evaluated again because prev may have moved
2265	 * CPUs since it called schedule(), thus the 'rq' on its stack
2266	 * frame will be invalid.
2267	 */
2268	finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279	unsigned long i, sum = 0;
2280
2281	for_each_online_cpu(i)
2282		sum += cpu_rq(i)->nr_running;
2283
2284	return sum;
2285}
2286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287unsigned long long nr_context_switches(void)
2288{
2289	int i;
2290	unsigned long long sum = 0;
2291
2292	for_each_possible_cpu(i)
2293		sum += cpu_rq(i)->nr_switches;
2294
2295	return sum;
2296}
2297
2298unsigned long nr_iowait(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299{
2300	unsigned long i, sum = 0;
2301
2302	for_each_possible_cpu(i)
2303		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305	return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310	struct rq *this = cpu_rq(cpu);
2311	return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322	struct task_struct *p = current;
2323	unsigned long flags;
2324	int dest_cpu;
2325
2326	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328	if (dest_cpu == smp_processor_id())
2329		goto unlock;
2330
2331	if (likely(cpu_active(dest_cpu))) {
2332		struct migration_arg arg = { p, dest_cpu };
2333
2334		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336		return;
2337	}
2338unlock:
2339	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358	u64 ns = 0;
2359
2360	if (task_current(rq, p)) {
2361		update_rq_clock(rq);
2362		ns = rq_clock_task(rq) - p->se.exec_start;
2363		if ((s64)ns < 0)
2364			ns = 0;
2365	}
2366
2367	return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372	unsigned long flags;
2373	struct rq *rq;
2374	u64 ns = 0;
2375
2376	rq = task_rq_lock(p, &flags);
2377	ns = do_task_delta_exec(p, rq);
2378	task_rq_unlock(rq, p, &flags);
2379
2380	return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390	unsigned long flags;
2391	struct rq *rq;
2392	u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395	/*
2396	 * 64-bit doesn't need locks to atomically read a 64bit value.
2397	 * So we have a optimization chance when the task's delta_exec is 0.
2398	 * Reading ->on_cpu is racy, but this is ok.
2399	 *
2400	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401	 * If we race with it entering cpu, unaccounted time is 0. This is
2402	 * indistinguishable from the read occurring a few cycles earlier.
 
 
2403	 */
2404	if (!p->on_cpu)
2405		return p->se.sum_exec_runtime;
2406#endif
2407
2408	rq = task_rq_lock(p, &flags);
2409	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410	task_rq_unlock(rq, p, &flags);
 
 
 
 
 
 
 
 
 
 
2411
2412	return ns;
2413}
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421	int cpu = smp_processor_id();
2422	struct rq *rq = cpu_rq(cpu);
2423	struct task_struct *curr = rq->curr;
 
 
 
2424
 
2425	sched_clock_tick();
2426
2427	raw_spin_lock(&rq->lock);
 
2428	update_rq_clock(rq);
 
 
2429	curr->sched_class->task_tick(rq, curr, 0);
2430	update_cpu_load_active(rq);
2431	raw_spin_unlock(&rq->lock);
 
 
 
 
 
 
2432
2433	perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436	rq->idle_balance = idle_cpu(cpu);
2437	trigger_load_balance(rq);
2438#endif
2439	rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
 
 
 
 
 
 
 
 
 
 
 
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
 
 
 
 
 
 
 
 
 
 
2453 *
2454 * Return: Maximum deferment in nanoseconds.
 
 
2455 */
2456u64 scheduler_tick_max_deferment(void)
 
 
 
2457{
2458	struct rq *rq = this_rq();
2459	unsigned long next, now = ACCESS_ONCE(jiffies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460
2461	next = rq->last_sched_tick + HZ;
2462
2463	if (time_before_eq(next, now))
2464		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466	return jiffies_to_nsecs(next - now);
 
 
 
 
 
 
 
 
 
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472	if (in_lock_functions(addr)) {
2473		addr = CALLER_ADDR2;
2474		if (in_lock_functions(addr))
2475			addr = CALLER_ADDR3;
 
 
 
 
 
 
 
 
 
 
 
2476	}
2477	return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481				defined(CONFIG_PREEMPT_TRACER))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486	/*
2487	 * Underflow?
2488	 */
2489	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490		return;
2491#endif
2492	__preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494	/*
2495	 * Spinlock count overflowing soon?
2496	 */
2497	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498				PREEMPT_MASK - 10);
2499#endif
2500	if (preempt_count() == val) {
2501		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503		current->preempt_disable_ip = ip;
2504#endif
2505		trace_preempt_off(CALLER_ADDR0, ip);
2506	}
2507}
2508EXPORT_SYMBOL(preempt_count_add);
 
2509
2510void __kprobes preempt_count_sub(int val)
 
 
 
 
 
 
 
 
 
 
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513	/*
2514	 * Underflow?
2515	 */
2516	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517		return;
2518	/*
2519	 * Is the spinlock portion underflowing?
2520	 */
2521	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522			!(preempt_count() & PREEMPT_MASK)))
2523		return;
2524#endif
2525
2526	if (preempt_count() == val)
2527		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528	__preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
 
2531
 
 
 
 
 
 
 
 
 
 
 
2532#endif
 
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
 
 
 
2539	if (oops_in_progress)
2540		return;
2541
2542	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543		prev->comm, prev->pid, preempt_count());
2544
2545	debug_show_held_locks(prev);
2546	print_modules();
2547	if (irqs_disabled())
2548		print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550	if (in_atomic_preempt_off()) {
2551		pr_err("Preemption disabled at:");
2552		print_ip_sym(current->preempt_disable_ip);
2553		pr_cont("\n");
2554	}
2555#endif
 
 
2556	dump_stack();
2557	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565	/*
2566	 * Test if we are atomic. Since do_exit() needs to call into
2567	 * schedule() atomically, we ignore that path. Otherwise whine
2568	 * if we are scheduling when we should not.
2569	 */
2570	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
 
 
 
 
 
 
 
 
 
 
 
 
2571		__schedule_bug(prev);
 
 
2572	rcu_sleep_check();
 
2573
2574	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576	schedstat_inc(this_rq(), sched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585	const struct sched_class *class = &fair_sched_class;
2586	struct task_struct *p;
2587
2588	/*
2589	 * Optimization: we know that if all tasks are in
2590	 * the fair class we can call that function directly:
 
 
2591	 */
2592	if (likely(prev->sched_class == class &&
2593		   rq->nr_running == rq->cfs.h_nr_running)) {
2594		p = fair_sched_class.pick_next_task(rq, prev);
 
2595		if (unlikely(p == RETRY_TASK))
2596			goto again;
2597
2598		/* assumes fair_sched_class->next == idle_sched_class */
2599		if (unlikely(!p))
2600			p = idle_sched_class.pick_next_task(rq, prev);
 
 
2601
2602		return p;
2603	}
2604
2605again:
 
 
2606	for_each_class(class) {
2607		p = class->pick_next_task(rq, prev);
2608		if (p) {
2609			if (unlikely(p == RETRY_TASK))
2610				goto again;
2611			return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612		}
2613	}
2614
2615	BUG(); /* the idle class will always have a runnable task */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2616}
2617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618/*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 *      paths. For example, see arch/x86/entry_64.S.
2627 *
2628 *      To drive preemption between tasks, the scheduler sets the flag in timer
2629 *      interrupt handler scheduler_tick().
2630 *
2631 *   3. Wakeups don't really cause entry into schedule(). They add a
2632 *      task to the run-queue and that's it.
2633 *
2634 *      Now, if the new task added to the run-queue preempts the current
2635 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 *      called on the nearest possible occasion:
2637 *
2638 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 *         - in syscall or exception context, at the next outmost
2641 *           preempt_enable(). (this might be as soon as the wake_up()'s
2642 *           spin_unlock()!)
2643 *
2644 *         - in IRQ context, return from interrupt-handler to
2645 *           preemptible context
2646 *
2647 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 *         then at the next:
2649 *
2650 *          - cond_resched() call
2651 *          - explicit schedule() call
2652 *          - return from syscall or exception to user-space
2653 *          - return from interrupt-handler to user-space
 
 
2654 */
2655static void __sched __schedule(void)
2656{
2657	struct task_struct *prev, *next;
2658	unsigned long *switch_count;
 
 
2659	struct rq *rq;
2660	int cpu;
2661
2662need_resched:
2663	preempt_disable();
2664	cpu = smp_processor_id();
2665	rq = cpu_rq(cpu);
2666	rcu_note_context_switch(cpu);
2667	prev = rq->curr;
2668
2669	schedule_debug(prev);
2670
2671	if (sched_feat(HRTICK))
2672		hrtick_clear(rq);
2673
 
 
 
2674	/*
2675	 * Make sure that signal_pending_state()->signal_pending() below
2676	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677	 * done by the caller to avoid the race with signal_wake_up().
 
 
 
 
 
 
 
 
 
 
2678	 */
2679	smp_mb__before_spinlock();
2680	raw_spin_lock_irq(&rq->lock);
 
 
 
 
2681
2682	switch_count = &prev->nivcsw;
2683	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684		if (unlikely(signal_pending_state(prev->state, prev))) {
2685			prev->state = TASK_RUNNING;
 
 
 
 
 
 
 
 
 
2686		} else {
2687			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688			prev->on_rq = 0;
 
 
 
 
 
2689
2690			/*
2691			 * If a worker went to sleep, notify and ask workqueue
2692			 * whether it wants to wake up a task to maintain
2693			 * concurrency.
 
 
 
 
 
 
2694			 */
2695			if (prev->flags & PF_WQ_WORKER) {
2696				struct task_struct *to_wakeup;
2697
2698				to_wakeup = wq_worker_sleeping(prev, cpu);
2699				if (to_wakeup)
2700					try_to_wake_up_local(to_wakeup);
2701			}
2702		}
2703		switch_count = &prev->nvcsw;
2704	}
2705
2706	if (prev->on_rq || rq->skip_clock_update < 0)
2707		update_rq_clock(rq);
2708
2709	next = pick_next_task(rq, prev);
2710	clear_tsk_need_resched(prev);
2711	clear_preempt_need_resched();
2712	rq->skip_clock_update = 0;
 
 
2713
2714	if (likely(prev != next)) {
2715		rq->nr_switches++;
2716		rq->curr = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717		++*switch_count;
2718
2719		context_switch(rq, prev, next); /* unlocks the rq */
2720		/*
2721		 * The context switch have flipped the stack from under us
2722		 * and restored the local variables which were saved when
2723		 * this task called schedule() in the past. prev == current
2724		 * is still correct, but it can be moved to another cpu/rq.
2725		 */
2726		cpu = smp_processor_id();
2727		rq = cpu_rq(cpu);
2728	} else
2729		raw_spin_unlock_irq(&rq->lock);
2730
2731	post_schedule(rq);
2732
2733	sched_preempt_enable_no_resched();
2734	if (need_resched())
2735		goto need_resched;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740	if (!tsk->state || tsk_is_pi_blocked(tsk))
 
 
2741		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742	/*
2743	 * If we are going to sleep and we have plugged IO queued,
2744	 * make sure to submit it to avoid deadlocks.
2745	 */
2746	if (blk_needs_flush_plug(tsk))
2747		blk_schedule_flush_plug(tsk);
2748}
2749
 
 
 
 
 
 
 
 
 
 
2750asmlinkage __visible void __sched schedule(void)
2751{
2752	struct task_struct *tsk = current;
2753
2754	sched_submit_work(tsk);
2755	__schedule();
 
 
 
 
 
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760asmlinkage __visible void __sched schedule_user(void)
2761{
2762	/*
2763	 * If we come here after a random call to set_need_resched(),
2764	 * or we have been woken up remotely but the IPI has not yet arrived,
2765	 * we haven't yet exited the RCU idle mode. Do it here manually until
2766	 * we find a better solution.
 
 
 
 
2767	 */
2768	user_exit();
2769	schedule();
2770	user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781	sched_preempt_enable_no_resched();
2782	schedule();
2783	preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage __visible void __sched notrace preempt_schedule(void)
2793{
2794	/*
2795	 * If there is a non-zero preempt_count or interrupts are disabled,
2796	 * we do not want to preempt the current task. Just return..
2797	 */
2798	if (likely(!preemptible()))
2799		return;
2800
2801	do {
2802		__preempt_count_add(PREEMPT_ACTIVE);
2803		__schedule();
2804		__preempt_count_sub(PREEMPT_ACTIVE);
2805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806		/*
2807		 * Check again in case we missed a preemption opportunity
2808		 * between schedule and now.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2809		 */
2810		barrier();
 
 
 
 
 
2811	} while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
 
 
 
 
 
 
 
 
 
 
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage __visible void __sched preempt_schedule_irq(void)
2823{
2824	enum ctx_state prev_state;
2825
2826	/* Catch callers which need to be fixed */
2827	BUG_ON(preempt_count() || !irqs_disabled());
2828
2829	prev_state = exception_enter();
2830
2831	do {
2832		__preempt_count_add(PREEMPT_ACTIVE);
2833		local_irq_enable();
2834		__schedule();
2835		local_irq_disable();
2836		__preempt_count_sub(PREEMPT_ACTIVE);
2837
2838		/*
2839		 * Check again in case we missed a preemption opportunity
2840		 * between schedule and now.
2841		 */
2842		barrier();
2843	} while (need_resched());
2844
2845	exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849			  void *key)
2850{
 
2851	return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
 
 
 
 
 
 
 
 
 
 
 
 
2855#ifdef CONFIG_RT_MUTEXES
2856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868void rt_mutex_setprio(struct task_struct *p, int prio)
2869{
2870	int oldprio, on_rq, running, enqueue_flag = 0;
2871	struct rq *rq;
2872	const struct sched_class *prev_class;
 
 
2873
2874	BUG_ON(prio > MAX_PRIO);
 
2875
2876	rq = __task_rq_lock(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877
2878	/*
2879	 * Idle task boosting is a nono in general. There is one
2880	 * exception, when PREEMPT_RT and NOHZ is active:
2881	 *
2882	 * The idle task calls get_next_timer_interrupt() and holds
2883	 * the timer wheel base->lock on the CPU and another CPU wants
2884	 * to access the timer (probably to cancel it). We can safely
2885	 * ignore the boosting request, as the idle CPU runs this code
2886	 * with interrupts disabled and will complete the lock
2887	 * protected section without being interrupted. So there is no
2888	 * real need to boost.
2889	 */
2890	if (unlikely(p == rq->idle)) {
2891		WARN_ON(p != rq->curr);
2892		WARN_ON(p->pi_blocked_on);
2893		goto out_unlock;
2894	}
2895
2896	trace_sched_pi_setprio(p, prio);
2897	p->pi_top_task = rt_mutex_get_top_task(p);
2898	oldprio = p->prio;
 
 
 
 
2899	prev_class = p->sched_class;
2900	on_rq = p->on_rq;
2901	running = task_current(rq, p);
2902	if (on_rq)
2903		dequeue_task(rq, p, 0);
2904	if (running)
2905		p->sched_class->put_prev_task(rq, p);
2906
2907	/*
2908	 * Boosting condition are:
2909	 * 1. -rt task is running and holds mutex A
2910	 *      --> -dl task blocks on mutex A
2911	 *
2912	 * 2. -dl task is running and holds mutex A
2913	 *      --> -dl task blocks on mutex A and could preempt the
2914	 *          running task
2915	 */
2916	if (dl_prio(prio)) {
2917		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919			p->dl.dl_boosted = 1;
2920			p->dl.dl_throttled = 0;
2921			enqueue_flag = ENQUEUE_REPLENISH;
2922		} else
2923			p->dl.dl_boosted = 0;
2924		p->sched_class = &dl_sched_class;
2925	} else if (rt_prio(prio)) {
2926		if (dl_prio(oldprio))
2927			p->dl.dl_boosted = 0;
2928		if (oldprio < prio)
2929			enqueue_flag = ENQUEUE_HEAD;
2930		p->sched_class = &rt_sched_class;
2931	} else {
2932		if (dl_prio(oldprio))
2933			p->dl.dl_boosted = 0;
2934		p->sched_class = &fair_sched_class;
 
2935	}
2936
2937	p->prio = prio;
2938
 
 
2939	if (running)
2940		p->sched_class->set_curr_task(rq);
2941	if (on_rq)
2942		enqueue_task(rq, p, enqueue_flag);
2943
2944	check_class_changed(rq, p, prev_class, oldprio);
2945out_unlock:
2946	__task_rq_unlock(rq);
 
 
 
 
 
 
 
 
 
 
 
 
2947}
2948#endif
2949
2950void set_user_nice(struct task_struct *p, long nice)
2951{
2952	int old_prio, delta, on_rq;
2953	unsigned long flags;
 
2954	struct rq *rq;
2955
2956	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957		return;
2958	/*
2959	 * We have to be careful, if called from sys_setpriority(),
2960	 * the task might be in the middle of scheduling on another CPU.
2961	 */
2962	rq = task_rq_lock(p, &flags);
 
 
2963	/*
2964	 * The RT priorities are set via sched_setscheduler(), but we still
2965	 * allow the 'normal' nice value to be set - but as expected
2966	 * it wont have any effect on scheduling until the task is
2967	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968	 */
2969	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970		p->static_prio = NICE_TO_PRIO(nice);
2971		goto out_unlock;
2972	}
2973	on_rq = p->on_rq;
2974	if (on_rq)
2975		dequeue_task(rq, p, 0);
 
 
 
2976
2977	p->static_prio = NICE_TO_PRIO(nice);
2978	set_load_weight(p);
2979	old_prio = p->prio;
2980	p->prio = effective_prio(p);
2981	delta = p->prio - old_prio;
2982
2983	if (on_rq) {
2984		enqueue_task(rq, p, 0);
2985		/*
2986		 * If the task increased its priority or is running and
2987		 * lowered its priority, then reschedule its CPU:
2988		 */
2989		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990			resched_task(rq->curr);
2991	}
 
 
2992out_unlock:
2993	task_rq_unlock(rq, p, &flags);
2994}
2995EXPORT_SYMBOL(set_user_nice);
2996
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002int can_nice(const struct task_struct *p, const int nice)
3003{
3004	/* convert nice value [19,-20] to rlimit style value [1,40] */
3005	int nice_rlim = 20 - nice;
3006
3007	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008		capable(CAP_SYS_NICE));
3009}
3010
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020SYSCALL_DEFINE1(nice, int, increment)
3021{
3022	long nice, retval;
3023
3024	/*
3025	 * Setpriority might change our priority at the same moment.
3026	 * We don't have to worry. Conceptually one call occurs first
3027	 * and we have a single winner.
3028	 */
3029	if (increment < -40)
3030		increment = -40;
3031	if (increment > 40)
3032		increment = 40;
3033
3034	nice = task_nice(current) + increment;
3035	if (nice < MIN_NICE)
3036		nice = MIN_NICE;
3037	if (nice > MAX_NICE)
3038		nice = MAX_NICE;
3039
 
3040	if (increment < 0 && !can_nice(current, nice))
3041		return -EPERM;
3042
3043	retval = security_task_setnice(current, nice);
3044	if (retval)
3045		return retval;
3046
3047	set_user_nice(current, nice);
3048	return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
 
 
 
 
3060 */
3061int task_prio(const struct task_struct *p)
3062{
3063	return p->prio - MAX_RT_PRIO;
3064}
3065
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072int idle_cpu(int cpu)
3073{
3074	struct rq *rq = cpu_rq(cpu);
3075
3076	if (rq->curr != rq->idle)
3077		return 0;
3078
3079	if (rq->nr_running)
3080		return 0;
3081
3082#ifdef CONFIG_SMP
3083	if (!llist_empty(&rq->wake_list))
3084		return 0;
3085#endif
3086
3087	return 1;
3088}
3089
3090/**
3091 * idle_task - return the idle task for a given cpu.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096struct task_struct *idle_task(int cpu)
3097{
3098	return cpu_rq(cpu)->idle;
3099}
3100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107static struct task_struct *find_process_by_pid(pid_t pid)
3108{
3109	return pid ? find_task_by_vpid(pid) : current;
3110}
3111
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123	struct sched_dl_entity *dl_se = &p->dl;
3124
3125	init_dl_task_timer(dl_se);
3126	dl_se->dl_runtime = attr->sched_runtime;
3127	dl_se->dl_deadline = attr->sched_deadline;
3128	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129	dl_se->flags = attr->sched_flags;
3130	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131	dl_se->dl_throttled = 0;
3132	dl_se->dl_new = 1;
3133	dl_se->dl_yielded = 0;
3134}
3135
3136static void __setscheduler_params(struct task_struct *p,
3137		const struct sched_attr *attr)
3138{
3139	int policy = attr->sched_policy;
3140
3141	if (policy == -1) /* setparam */
3142		policy = p->policy;
3143
3144	p->policy = policy;
3145
3146	if (dl_policy(policy))
3147		__setparam_dl(p, attr);
3148	else if (fair_policy(policy))
3149		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151	/*
3152	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153	 * !rt_policy. Always setting this ensures that things like
3154	 * getparam()/getattr() don't report silly values for !rt tasks.
3155	 */
3156	p->rt_priority = attr->sched_priority;
3157	p->normal_prio = normal_prio(p);
3158	set_load_weight(p);
3159}
3160
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163			   const struct sched_attr *attr)
3164{
3165	__setscheduler_params(p, attr);
3166
3167	/*
3168	 * If we get here, there was no pi waiters boosting the
3169	 * task. It is safe to use the normal prio.
3170	 */
3171	p->prio = normal_prio(p);
3172
3173	if (dl_prio(p->prio))
3174		p->sched_class = &dl_sched_class;
3175	else if (rt_prio(p->prio))
3176		p->sched_class = &rt_sched_class;
3177	else
3178		p->sched_class = &fair_sched_class;
3179}
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184	struct sched_dl_entity *dl_se = &p->dl;
3185
3186	attr->sched_priority = p->rt_priority;
3187	attr->sched_runtime = dl_se->dl_runtime;
3188	attr->sched_deadline = dl_se->dl_deadline;
3189	attr->sched_period = dl_se->dl_period;
3190	attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero).
3202 */
3203static bool
3204__checkparam_dl(const struct sched_attr *attr)
3205{
3206	/* deadline != 0 */
3207	if (attr->sched_deadline == 0)
3208		return false;
3209
3210	/*
3211	 * Since we truncate DL_SCALE bits, make sure we're at least
3212	 * that big.
3213	 */
3214	if (attr->sched_runtime < (1ULL << DL_SCALE))
3215		return false;
3216
3217	/*
3218	 * Since we use the MSB for wrap-around and sign issues, make
3219	 * sure it's not set (mind that period can be equal to zero).
3220	 */
3221	if (attr->sched_deadline & (1ULL << 63) ||
3222	    attr->sched_period & (1ULL << 63))
3223		return false;
3224
3225	/* runtime <= deadline <= period (if period != 0) */
3226	if ((attr->sched_period != 0 &&
3227	     attr->sched_period < attr->sched_deadline) ||
3228	    attr->sched_deadline < attr->sched_runtime)
3229		return false;
3230
3231	return true;
3232}
3233
3234/*
3235 * check the target process has a UID that matches the current process's
3236 */
3237static bool check_same_owner(struct task_struct *p)
3238{
3239	const struct cred *cred = current_cred(), *pcred;
3240	bool match;
3241
3242	rcu_read_lock();
3243	pcred = __task_cred(p);
3244	match = (uid_eq(cred->euid, pcred->euid) ||
3245		 uid_eq(cred->euid, pcred->uid));
3246	rcu_read_unlock();
3247	return match;
3248}
3249
3250static int __sched_setscheduler(struct task_struct *p,
3251				const struct sched_attr *attr,
3252				bool user)
3253{
3254	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255		      MAX_RT_PRIO - 1 - attr->sched_priority;
3256	int retval, oldprio, oldpolicy = -1, on_rq, running;
3257	int policy = attr->sched_policy;
3258	unsigned long flags;
3259	const struct sched_class *prev_class;
3260	struct rq *rq;
 
3261	int reset_on_fork;
 
 
3262
3263	/* may grab non-irq protected spin_locks */
3264	BUG_ON(in_interrupt());
3265recheck:
3266	/* double check policy once rq lock held */
3267	if (policy < 0) {
3268		reset_on_fork = p->sched_reset_on_fork;
3269		policy = oldpolicy = p->policy;
3270	} else {
3271		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3272
3273		if (policy != SCHED_DEADLINE &&
3274				policy != SCHED_FIFO && policy != SCHED_RR &&
3275				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276				policy != SCHED_IDLE)
3277			return -EINVAL;
3278	}
3279
3280	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281		return -EINVAL;
3282
3283	/*
3284	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3285	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286	 * SCHED_BATCH and SCHED_IDLE is 0.
3287	 */
3288	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3289	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3290		return -EINVAL;
3291	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292	    (rt_policy(policy) != (attr->sched_priority != 0)))
3293		return -EINVAL;
3294
3295	/*
3296	 * Allow unprivileged RT tasks to decrease priority:
3297	 */
3298	if (user && !capable(CAP_SYS_NICE)) {
3299		if (fair_policy(policy)) {
3300			if (attr->sched_nice < task_nice(p) &&
3301			    !can_nice(p, attr->sched_nice))
3302				return -EPERM;
3303		}
3304
3305		if (rt_policy(policy)) {
3306			unsigned long rlim_rtprio =
3307					task_rlimit(p, RLIMIT_RTPRIO);
3308
3309			/* can't set/change the rt policy */
3310			if (policy != p->policy && !rlim_rtprio)
3311				return -EPERM;
3312
3313			/* can't increase priority */
3314			if (attr->sched_priority > p->rt_priority &&
3315			    attr->sched_priority > rlim_rtprio)
3316				return -EPERM;
3317		}
3318
3319		 /*
3320		  * Can't set/change SCHED_DEADLINE policy at all for now
3321		  * (safest behavior); in the future we would like to allow
3322		  * unprivileged DL tasks to increase their relative deadline
3323		  * or reduce their runtime (both ways reducing utilization)
3324		  */
3325		if (dl_policy(policy))
3326			return -EPERM;
3327
3328		/*
3329		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3331		 */
3332		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3333			if (!can_nice(p, task_nice(p)))
3334				return -EPERM;
3335		}
3336
3337		/* can't change other user's priorities */
3338		if (!check_same_owner(p))
3339			return -EPERM;
3340
3341		/* Normal users shall not reset the sched_reset_on_fork flag */
3342		if (p->sched_reset_on_fork && !reset_on_fork)
3343			return -EPERM;
3344	}
3345
3346	if (user) {
 
 
 
3347		retval = security_task_setscheduler(p);
3348		if (retval)
3349			return retval;
3350	}
3351
 
 
 
 
 
 
 
 
 
 
3352	/*
3353	 * make sure no PI-waiters arrive (or leave) while we are
3354	 * changing the priority of the task:
3355	 *
3356	 * To be able to change p->policy safely, the appropriate
3357	 * runqueue lock must be held.
3358	 */
3359	rq = task_rq_lock(p, &flags);
 
3360
3361	/*
3362	 * Changing the policy of the stop threads its a very bad idea
3363	 */
3364	if (p == rq->stop) {
3365		task_rq_unlock(rq, p, &flags);
3366		return -EINVAL;
3367	}
3368
3369	/*
3370	 * If not changing anything there's no need to proceed further,
3371	 * but store a possible modification of reset_on_fork.
3372	 */
3373	if (unlikely(policy == p->policy)) {
3374		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3375			goto change;
3376		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377			goto change;
3378		if (dl_policy(policy))
 
 
3379			goto change;
3380
3381		p->sched_reset_on_fork = reset_on_fork;
3382		task_rq_unlock(rq, p, &flags);
3383		return 0;
3384	}
3385change:
3386
3387	if (user) {
3388#ifdef CONFIG_RT_GROUP_SCHED
3389		/*
3390		 * Do not allow realtime tasks into groups that have no runtime
3391		 * assigned.
3392		 */
3393		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395				!task_group_is_autogroup(task_group(p))) {
3396			task_rq_unlock(rq, p, &flags);
3397			return -EPERM;
3398		}
3399#endif
3400#ifdef CONFIG_SMP
3401		if (dl_bandwidth_enabled() && dl_policy(policy)) {
 
3402			cpumask_t *span = rq->rd->span;
3403
3404			/*
3405			 * Don't allow tasks with an affinity mask smaller than
3406			 * the entire root_domain to become SCHED_DEADLINE. We
3407			 * will also fail if there's no bandwidth available.
3408			 */
3409			if (!cpumask_subset(span, &p->cpus_allowed) ||
3410			    rq->rd->dl_bw.bw == 0) {
3411				task_rq_unlock(rq, p, &flags);
3412				return -EPERM;
3413			}
3414		}
3415#endif
3416	}
3417
3418	/* recheck policy now with rq lock held */
3419	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420		policy = oldpolicy = -1;
3421		task_rq_unlock(rq, p, &flags);
 
 
3422		goto recheck;
3423	}
3424
3425	/*
3426	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428	 * is available.
3429	 */
3430	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3431		task_rq_unlock(rq, p, &flags);
3432		return -EBUSY;
3433	}
3434
3435	p->sched_reset_on_fork = reset_on_fork;
3436	oldprio = p->prio;
3437
3438	/*
3439	 * Special case for priority boosted tasks.
3440	 *
3441	 * If the new priority is lower or equal (user space view)
3442	 * than the current (boosted) priority, we just store the new
3443	 * normal parameters and do not touch the scheduler class and
3444	 * the runqueue. This will be done when the task deboost
3445	 * itself.
3446	 */
3447	if (rt_mutex_check_prio(p, newprio)) {
3448		__setscheduler_params(p, attr);
3449		task_rq_unlock(rq, p, &flags);
3450		return 0;
3451	}
3452
3453	on_rq = p->on_rq;
3454	running = task_current(rq, p);
3455	if (on_rq)
3456		dequeue_task(rq, p, 0);
3457	if (running)
3458		p->sched_class->put_prev_task(rq, p);
3459
3460	prev_class = p->sched_class;
3461	__setscheduler(rq, p, attr);
3462
3463	if (running)
3464		p->sched_class->set_curr_task(rq);
3465	if (on_rq) {
 
 
 
 
3466		/*
3467		 * We enqueue to tail when the priority of a task is
3468		 * increased (user space view).
3469		 */
3470		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
 
 
 
3471	}
 
 
3472
3473	check_class_changed(rq, p, prev_class, oldprio);
3474	task_rq_unlock(rq, p, &flags);
3475
3476	rt_mutex_adjust_pi(p);
 
 
 
 
 
 
 
 
 
 
 
 
3477
3478	return 0;
 
 
 
 
 
 
3479}
3480
3481static int _sched_setscheduler(struct task_struct *p, int policy,
3482			       const struct sched_param *param, bool check)
3483{
3484	struct sched_attr attr = {
3485		.sched_policy   = policy,
3486		.sched_priority = param->sched_priority,
3487		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3488	};
3489
3490	/*
3491	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492	 */
3493	if (policy & SCHED_RESET_ON_FORK) {
3494		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495		policy &= ~SCHED_RESET_ON_FORK;
3496		attr.sched_policy = policy;
3497	}
3498
3499	return __sched_setscheduler(p, &attr, check);
3500}
3501/**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
 
 
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511int sched_setscheduler(struct task_struct *p, int policy,
3512		       const struct sched_param *param)
3513{
3514	return _sched_setscheduler(p, policy, param, true);
3515}
3516EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519{
3520	return __sched_setscheduler(p, attr, true);
 
 
 
 
 
3521}
3522EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524/**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission.  For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538			       const struct sched_param *param)
3539{
3540	return _sched_setscheduler(p, policy, param, false);
3541}
3542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543static int
3544do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545{
3546	struct sched_param lparam;
3547	struct task_struct *p;
3548	int retval;
3549
3550	if (!param || pid < 0)
3551		return -EINVAL;
3552	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553		return -EFAULT;
3554
3555	rcu_read_lock();
3556	retval = -ESRCH;
3557	p = find_process_by_pid(pid);
3558	if (p != NULL)
3559		retval = sched_setscheduler(p, policy, &lparam);
3560	rcu_read_unlock();
3561
 
 
 
 
 
3562	return retval;
3563}
3564
3565/*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568static int sched_copy_attr(struct sched_attr __user *uattr,
3569			   struct sched_attr *attr)
3570{
3571	u32 size;
3572	int ret;
3573
3574	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575		return -EFAULT;
3576
3577	/*
3578	 * zero the full structure, so that a short copy will be nice.
3579	 */
3580	memset(attr, 0, sizeof(*attr));
3581
3582	ret = get_user(size, &uattr->size);
3583	if (ret)
3584		return ret;
3585
3586	if (size > PAGE_SIZE)	/* silly large */
3587		goto err_size;
3588
3589	if (!size)		/* abi compat */
3590		size = SCHED_ATTR_SIZE_VER0;
3591
3592	if (size < SCHED_ATTR_SIZE_VER0)
3593		goto err_size;
3594
3595	/*
3596	 * If we're handed a bigger struct than we know of,
3597	 * ensure all the unknown bits are 0 - i.e. new
3598	 * user-space does not rely on any kernel feature
3599	 * extensions we dont know about yet.
3600	 */
3601	if (size > sizeof(*attr)) {
3602		unsigned char __user *addr;
3603		unsigned char __user *end;
3604		unsigned char val;
3605
3606		addr = (void __user *)uattr + sizeof(*attr);
3607		end  = (void __user *)uattr + size;
3608
3609		for (; addr < end; addr++) {
3610			ret = get_user(val, addr);
3611			if (ret)
3612				return ret;
3613			if (val)
3614				goto err_size;
3615		}
3616		size = sizeof(*attr);
3617	}
3618
3619	ret = copy_from_user(attr, uattr, size);
3620	if (ret)
3621		return -EFAULT;
3622
3623	/*
3624	 * XXX: do we want to be lenient like existing syscalls; or do we want
3625	 * to be strict and return an error on out-of-bounds values?
3626	 */
3627	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3628
3629out:
3630	return ret;
3631
3632err_size:
3633	put_user(sizeof(*attr), &uattr->size);
3634	ret = -E2BIG;
3635	goto out;
3636}
3637
3638/**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647		struct sched_param __user *, param)
3648{
3649	/* negative values for policy are not valid */
3650	if (policy < 0)
3651		return -EINVAL;
3652
3653	return do_sched_setscheduler(pid, policy, param);
3654}
3655
3656/**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664{
3665	return do_sched_setscheduler(pid, -1, param);
3666}
3667
3668/**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 * @flags: for future extension.
3673 */
3674SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675			       unsigned int, flags)
3676{
3677	struct sched_attr attr;
3678	struct task_struct *p;
3679	int retval;
3680
3681	if (!uattr || pid < 0 || flags)
3682		return -EINVAL;
3683
3684	retval = sched_copy_attr(uattr, &attr);
3685	if (retval)
3686		return retval;
3687
3688	if ((int)attr.sched_policy < 0)
3689		return -EINVAL;
 
 
3690
3691	rcu_read_lock();
3692	retval = -ESRCH;
3693	p = find_process_by_pid(pid);
3694	if (p != NULL)
3695		retval = sched_setattr(p, &attr);
3696	rcu_read_unlock();
3697
 
 
 
 
 
3698	return retval;
3699}
3700
3701/**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question.
3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code.
3707 */
3708SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3709{
3710	struct task_struct *p;
3711	int retval;
3712
3713	if (pid < 0)
3714		return -EINVAL;
3715
3716	retval = -ESRCH;
3717	rcu_read_lock();
3718	p = find_process_by_pid(pid);
3719	if (p) {
3720		retval = security_task_getscheduler(p);
3721		if (!retval)
3722			retval = p->policy
3723				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3724	}
3725	rcu_read_unlock();
3726	return retval;
3727}
3728
3729/**
3730 * sys_sched_getparam - get the RT priority of a thread
3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority.
3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code.
3736 */
3737SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3738{
3739	struct sched_param lp = { .sched_priority = 0 };
3740	struct task_struct *p;
3741	int retval;
3742
3743	if (!param || pid < 0)
3744		return -EINVAL;
3745
3746	rcu_read_lock();
3747	p = find_process_by_pid(pid);
3748	retval = -ESRCH;
3749	if (!p)
3750		goto out_unlock;
3751
3752	retval = security_task_getscheduler(p);
3753	if (retval)
3754		goto out_unlock;
3755
3756	if (task_has_rt_policy(p))
3757		lp.sched_priority = p->rt_priority;
3758	rcu_read_unlock();
3759
3760	/*
3761	 * This one might sleep, we cannot do it with a spinlock held ...
3762	 */
3763	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
3765	return retval;
3766
3767out_unlock:
3768	rcu_read_unlock();
3769	return retval;
3770}
3771
3772static int sched_read_attr(struct sched_attr __user *uattr,
3773			   struct sched_attr *attr,
3774			   unsigned int usize)
 
 
 
 
 
 
 
 
 
3775{
3776	int ret;
3777
3778	if (!access_ok(VERIFY_WRITE, uattr, usize))
3779		return -EFAULT;
3780
3781	/*
3782	 * If we're handed a smaller struct than we know of,
3783	 * ensure all the unknown bits are 0 - i.e. old
3784	 * user-space does not get uncomplete information.
 
 
 
 
 
 
 
 
3785	 */
3786	if (usize < sizeof(*attr)) {
3787		unsigned char *addr;
3788		unsigned char *end;
3789
3790		addr = (void *)attr + usize;
3791		end  = (void *)attr + sizeof(*attr);
3792
3793		for (; addr < end; addr++) {
3794			if (*addr)
3795				goto err_size;
3796		}
3797
3798		attr->size = usize;
3799	}
3800
3801	ret = copy_to_user(uattr, attr, attr->size);
3802	if (ret)
3803		return -EFAULT;
3804
3805out:
3806	return ret;
3807
3808err_size:
3809	ret = -E2BIG;
3810	goto out;
3811}
3812
3813/**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 * @flags: for future extension.
3819 */
3820SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821		unsigned int, size, unsigned int, flags)
3822{
3823	struct sched_attr attr = {
3824		.size = sizeof(struct sched_attr),
3825	};
3826	struct task_struct *p;
3827	int retval;
3828
3829	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3830	    size < SCHED_ATTR_SIZE_VER0 || flags)
3831		return -EINVAL;
3832
3833	rcu_read_lock();
3834	p = find_process_by_pid(pid);
3835	retval = -ESRCH;
3836	if (!p)
3837		goto out_unlock;
3838
3839	retval = security_task_getscheduler(p);
3840	if (retval)
3841		goto out_unlock;
3842
3843	attr.sched_policy = p->policy;
3844	if (p->sched_reset_on_fork)
3845		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3846	if (task_has_dl_policy(p))
3847		__getparam_dl(p, &attr);
3848	else if (task_has_rt_policy(p))
3849		attr.sched_priority = p->rt_priority;
3850	else
3851		attr.sched_nice = task_nice(p);
 
 
 
 
 
 
 
 
 
 
3852
3853	rcu_read_unlock();
3854
3855	retval = sched_read_attr(uattr, &attr, size);
3856	return retval;
3857
3858out_unlock:
3859	rcu_read_unlock();
3860	return retval;
3861}
3862
3863long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3864{
3865	cpumask_var_t cpus_allowed, new_mask;
3866	struct task_struct *p;
3867	int retval;
3868
3869	rcu_read_lock();
3870
3871	p = find_process_by_pid(pid);
3872	if (!p) {
3873		rcu_read_unlock();
3874		return -ESRCH;
3875	}
3876
3877	/* Prevent p going away */
3878	get_task_struct(p);
3879	rcu_read_unlock();
3880
3881	if (p->flags & PF_NO_SETAFFINITY) {
3882		retval = -EINVAL;
3883		goto out_put_task;
3884	}
3885	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886		retval = -ENOMEM;
3887		goto out_put_task;
3888	}
3889	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890		retval = -ENOMEM;
3891		goto out_free_cpus_allowed;
3892	}
3893	retval = -EPERM;
3894	if (!check_same_owner(p)) {
3895		rcu_read_lock();
3896		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897			rcu_read_unlock();
3898			goto out_unlock;
3899		}
3900		rcu_read_unlock();
3901	}
3902
3903	retval = security_task_setscheduler(p);
3904	if (retval)
3905		goto out_unlock;
3906
3907
3908	cpuset_cpus_allowed(p, cpus_allowed);
3909	cpumask_and(new_mask, in_mask, cpus_allowed);
3910
3911	/*
3912	 * Since bandwidth control happens on root_domain basis,
3913	 * if admission test is enabled, we only admit -deadline
3914	 * tasks allowed to run on all the CPUs in the task's
3915	 * root_domain.
3916	 */
3917#ifdef CONFIG_SMP
3918	if (task_has_dl_policy(p)) {
3919		const struct cpumask *span = task_rq(p)->rd->span;
3920
3921		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3922			retval = -EBUSY;
3923			goto out_unlock;
 
3924		}
 
3925	}
3926#endif
3927again:
3928	retval = set_cpus_allowed_ptr(p, new_mask);
3929
3930	if (!retval) {
3931		cpuset_cpus_allowed(p, cpus_allowed);
3932		if (!cpumask_subset(new_mask, cpus_allowed)) {
3933			/*
3934			 * We must have raced with a concurrent cpuset
3935			 * update. Just reset the cpus_allowed to the
3936			 * cpuset's cpus_allowed
3937			 */
3938			cpumask_copy(new_mask, cpus_allowed);
3939			goto again;
3940		}
3941	}
3942out_unlock:
3943	free_cpumask_var(new_mask);
3944out_free_cpus_allowed:
3945	free_cpumask_var(cpus_allowed);
3946out_put_task:
3947	put_task_struct(p);
3948	return retval;
3949}
3950
3951static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3952			     struct cpumask *new_mask)
3953{
3954	if (len < cpumask_size())
3955		cpumask_clear(new_mask);
3956	else if (len > cpumask_size())
3957		len = cpumask_size();
3958
3959	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960}
3961
3962/**
3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask
3967 *
3968 * Return: 0 on success. An error code otherwise.
3969 */
3970SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971		unsigned long __user *, user_mask_ptr)
3972{
3973	cpumask_var_t new_mask;
3974	int retval;
3975
3976	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977		return -ENOMEM;
3978
3979	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980	if (retval == 0)
3981		retval = sched_setaffinity(pid, new_mask);
3982	free_cpumask_var(new_mask);
3983	return retval;
3984}
3985
3986long sched_getaffinity(pid_t pid, struct cpumask *mask)
3987{
3988	struct task_struct *p;
3989	unsigned long flags;
3990	int retval;
3991
3992	rcu_read_lock();
3993
3994	retval = -ESRCH;
3995	p = find_process_by_pid(pid);
3996	if (!p)
3997		goto out_unlock;
3998
3999	retval = security_task_getscheduler(p);
4000	if (retval)
4001		goto out_unlock;
4002
4003	raw_spin_lock_irqsave(&p->pi_lock, flags);
4004	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4005	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4006
4007out_unlock:
4008	rcu_read_unlock();
4009
4010	return retval;
4011}
4012
4013/**
4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4018 *
4019 * Return: 0 on success. An error code otherwise.
 
4020 */
4021SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022		unsigned long __user *, user_mask_ptr)
4023{
4024	int ret;
4025	cpumask_var_t mask;
4026
4027	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4028		return -EINVAL;
4029	if (len & (sizeof(unsigned long)-1))
4030		return -EINVAL;
4031
4032	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033		return -ENOMEM;
4034
4035	ret = sched_getaffinity(pid, mask);
4036	if (ret == 0) {
4037		size_t retlen = min_t(size_t, len, cpumask_size());
4038
4039		if (copy_to_user(user_mask_ptr, mask, retlen))
4040			ret = -EFAULT;
4041		else
4042			ret = retlen;
4043	}
4044	free_cpumask_var(mask);
4045
4046	return ret;
4047}
4048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049/**
4050 * sys_sched_yield - yield the current processor to other threads.
4051 *
4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return.
4054 *
4055 * Return: 0.
4056 */
4057SYSCALL_DEFINE0(sched_yield)
4058{
4059	struct rq *rq = this_rq_lock();
4060
4061	schedstat_inc(rq, yld_count);
4062	current->sched_class->yield_task(rq);
4063
4064	/*
4065	 * Since we are going to call schedule() anyway, there's
4066	 * no need to preempt or enable interrupts:
4067	 */
4068	__release(rq->lock);
4069	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4070	do_raw_spin_unlock(&rq->lock);
4071	sched_preempt_enable_no_resched();
4072
4073	schedule();
4074
4075	return 0;
4076}
4077
4078static void __cond_resched(void)
 
4079{
4080	__preempt_count_add(PREEMPT_ACTIVE);
4081	__schedule();
4082	__preempt_count_sub(PREEMPT_ACTIVE);
4083}
4084
4085int __sched _cond_resched(void)
4086{
4087	if (should_resched()) {
4088		__cond_resched();
4089		return 1;
4090	}
 
 
 
4091	return 0;
4092}
4093EXPORT_SYMBOL(_cond_resched);
 
 
 
 
 
 
 
 
 
4094
4095/*
4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4097 * call schedule, and on return reacquire the lock.
4098 *
4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand).
4102 */
4103int __cond_resched_lock(spinlock_t *lock)
4104{
4105	int resched = should_resched();
4106	int ret = 0;
4107
4108	lockdep_assert_held(lock);
4109
4110	if (spin_needbreak(lock) || resched) {
4111		spin_unlock(lock);
4112		if (resched)
4113			__cond_resched();
4114		else
4115			cpu_relax();
4116		ret = 1;
4117		spin_lock(lock);
4118	}
4119	return ret;
4120}
4121EXPORT_SYMBOL(__cond_resched_lock);
4122
4123int __sched __cond_resched_softirq(void)
4124{
4125	BUG_ON(!in_softirq());
 
4126
4127	if (should_resched()) {
4128		local_bh_enable();
4129		__cond_resched();
4130		local_bh_disable();
4131		return 1;
 
 
 
 
 
4132	}
4133	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4134}
4135EXPORT_SYMBOL(__cond_resched_softirq);
4136
4137/**
4138 * yield - yield the current processor to other threads.
4139 *
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 *
4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken.
4145 *
4146 * Typical broken usage is:
4147 *
4148 * while (!event)
4149 * 	yield();
4150 *
4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!!
4154 *
4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not!
4158 */
4159void __sched yield(void)
4160{
4161	set_current_state(TASK_RUNNING);
4162	sys_sched_yield();
4163}
4164EXPORT_SYMBOL(yield);
4165
4166/**
4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on.
4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not
4172 *
4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks.
4175 *
4176 * Return:
4177 *	true (>0) if we indeed boosted the target task.
4178 *	false (0) if we failed to boost the target.
4179 *	-ESRCH if there's no task to yield to.
4180 */
4181bool __sched yield_to(struct task_struct *p, bool preempt)
4182{
4183	struct task_struct *curr = current;
4184	struct rq *rq, *p_rq;
4185	unsigned long flags;
4186	int yielded = 0;
4187
4188	local_irq_save(flags);
4189	rq = this_rq();
4190
4191again:
4192	p_rq = task_rq(p);
4193	/*
4194	 * If we're the only runnable task on the rq and target rq also
4195	 * has only one task, there's absolutely no point in yielding.
4196	 */
4197	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198		yielded = -ESRCH;
4199		goto out_irq;
4200	}
4201
4202	double_rq_lock(rq, p_rq);
4203	if (task_rq(p) != p_rq) {
4204		double_rq_unlock(rq, p_rq);
4205		goto again;
4206	}
4207
4208	if (!curr->sched_class->yield_to_task)
4209		goto out_unlock;
4210
4211	if (curr->sched_class != p->sched_class)
4212		goto out_unlock;
4213
4214	if (task_running(p_rq, p) || p->state)
4215		goto out_unlock;
4216
4217	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4218	if (yielded) {
4219		schedstat_inc(rq, yld_count);
4220		/*
4221		 * Make p's CPU reschedule; pick_next_entity takes care of
4222		 * fairness.
4223		 */
4224		if (preempt && rq != p_rq)
4225			resched_task(p_rq->curr);
4226	}
4227
4228out_unlock:
4229	double_rq_unlock(rq, p_rq);
4230out_irq:
4231	local_irq_restore(flags);
4232
4233	if (yielded > 0)
4234		schedule();
4235
4236	return yielded;
4237}
4238EXPORT_SYMBOL_GPL(yield_to);
4239
4240/*
4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4242 * that process accounting knows that this is a task in IO wait state.
4243 */
4244void __sched io_schedule(void)
4245{
4246	struct rq *rq = raw_rq();
4247
4248	delayacct_blkio_start();
4249	atomic_inc(&rq->nr_iowait);
4250	blk_flush_plug(current);
4251	current->in_iowait = 1;
4252	schedule();
4253	current->in_iowait = 0;
4254	atomic_dec(&rq->nr_iowait);
4255	delayacct_blkio_end();
4256}
4257EXPORT_SYMBOL(io_schedule);
4258
 
 
 
 
 
 
 
 
 
4259long __sched io_schedule_timeout(long timeout)
4260{
4261	struct rq *rq = raw_rq();
4262	long ret;
4263
4264	delayacct_blkio_start();
4265	atomic_inc(&rq->nr_iowait);
4266	blk_flush_plug(current);
4267	current->in_iowait = 1;
4268	ret = schedule_timeout(timeout);
4269	current->in_iowait = 0;
4270	atomic_dec(&rq->nr_iowait);
4271	delayacct_blkio_end();
4272	return ret;
4273}
 
 
 
 
 
 
 
 
 
 
 
4274
4275/**
4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class.
4278 *
4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned.
4282 */
4283SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4284{
4285	int ret = -EINVAL;
4286
4287	switch (policy) {
4288	case SCHED_FIFO:
4289	case SCHED_RR:
4290		ret = MAX_USER_RT_PRIO-1;
4291		break;
4292	case SCHED_DEADLINE:
4293	case SCHED_NORMAL:
4294	case SCHED_BATCH:
4295	case SCHED_IDLE:
4296		ret = 0;
4297		break;
4298	}
4299	return ret;
4300}
4301
4302/**
4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class.
4305 *
4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned.
4309 */
4310SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4311{
4312	int ret = -EINVAL;
4313
4314	switch (policy) {
4315	case SCHED_FIFO:
4316	case SCHED_RR:
4317		ret = 1;
4318		break;
4319	case SCHED_DEADLINE:
4320	case SCHED_NORMAL:
4321	case SCHED_BATCH:
4322	case SCHED_IDLE:
4323		ret = 0;
4324	}
4325	return ret;
4326}
4327
4328/**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value.
4332 *
4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity.
4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code.
4338 */
4339SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4340		struct timespec __user *, interval)
4341{
4342	struct task_struct *p;
4343	unsigned int time_slice;
4344	unsigned long flags;
4345	struct rq *rq;
4346	int retval;
4347	struct timespec t;
4348
4349	if (pid < 0)
4350		return -EINVAL;
4351
4352	retval = -ESRCH;
4353	rcu_read_lock();
4354	p = find_process_by_pid(pid);
4355	if (!p)
4356		goto out_unlock;
4357
4358	retval = security_task_getscheduler(p);
4359	if (retval)
4360		goto out_unlock;
4361
4362	rq = task_rq_lock(p, &flags);
4363	time_slice = 0;
4364	if (p->sched_class->get_rr_interval)
4365		time_slice = p->sched_class->get_rr_interval(rq, p);
4366	task_rq_unlock(rq, p, &flags);
4367
4368	rcu_read_unlock();
4369	jiffies_to_timespec(time_slice, &t);
4370	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4371	return retval;
4372
4373out_unlock:
4374	rcu_read_unlock();
4375	return retval;
4376}
4377
4378static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4379
4380void sched_show_task(struct task_struct *p)
4381{
4382	unsigned long free = 0;
4383	int ppid;
4384	unsigned state;
4385
4386	state = p->state ? __ffs(p->state) + 1 : 0;
4387	printk(KERN_INFO "%-15.15s %c", p->comm,
4388		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4389#if BITS_PER_LONG == 32
4390	if (state == TASK_RUNNING)
4391		printk(KERN_CONT " running  ");
4392	else
4393		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4394#else
4395	if (state == TASK_RUNNING)
4396		printk(KERN_CONT "  running task    ");
4397	else
4398		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4399#endif
4400#ifdef CONFIG_DEBUG_STACK_USAGE
4401	free = stack_not_used(p);
4402#endif
 
4403	rcu_read_lock();
4404	ppid = task_pid_nr(rcu_dereference(p->real_parent));
 
4405	rcu_read_unlock();
4406	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4407		task_pid_nr(p), ppid,
4408		(unsigned long)task_thread_info(p)->flags);
4409
4410	print_worker_info(KERN_INFO, p);
4411	show_stack(p, NULL);
 
 
4412}
 
4413
4414void show_state_filter(unsigned long state_filter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4415{
4416	struct task_struct *g, *p;
4417
4418#if BITS_PER_LONG == 32
4419	printk(KERN_INFO
4420		"  task                PC stack   pid father\n");
4421#else
4422	printk(KERN_INFO
4423		"  task                        PC stack   pid father\n");
4424#endif
4425	rcu_read_lock();
4426	do_each_thread(g, p) {
4427		/*
4428		 * reset the NMI-timeout, listing all files on a slow
4429		 * console might take a lot of time:
 
 
 
4430		 */
4431		touch_nmi_watchdog();
4432		if (!state_filter || (p->state & state_filter))
 
4433			sched_show_task(p);
4434	} while_each_thread(g, p);
4435
4436	touch_all_softlockup_watchdogs();
4437
4438#ifdef CONFIG_SCHED_DEBUG
4439	sysrq_sched_debug_show();
 
4440#endif
4441	rcu_read_unlock();
4442	/*
4443	 * Only show locks if all tasks are dumped:
4444	 */
4445	if (!state_filter)
4446		debug_show_all_locks();
4447}
4448
4449void init_idle_bootup_task(struct task_struct *idle)
4450{
4451	idle->sched_class = &idle_sched_class;
4452}
4453
4454/**
4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to
4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust.
4461 */
4462void init_idle(struct task_struct *idle, int cpu)
4463{
4464	struct rq *rq = cpu_rq(cpu);
4465	unsigned long flags;
4466
4467	raw_spin_lock_irqsave(&rq->lock, flags);
4468
4469	__sched_fork(0, idle);
4470	idle->state = TASK_RUNNING;
 
 
 
 
 
 
 
 
 
 
 
 
4471	idle->se.exec_start = sched_clock();
 
 
 
 
 
 
4472
4473	do_set_cpus_allowed(idle, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
4474	/*
4475	 * We're having a chicken and egg problem, even though we are
4476	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477	 * lockdep check in task_group() will fail.
4478	 *
4479	 * Similar case to sched_fork(). / Alternatively we could
4480	 * use task_rq_lock() here and obtain the other rq->lock.
4481	 *
4482	 * Silence PROVE_RCU
4483	 */
4484	rcu_read_lock();
4485	__set_task_cpu(idle, cpu);
4486	rcu_read_unlock();
4487
4488	rq->curr = rq->idle = idle;
4489	idle->on_rq = 1;
4490#if defined(CONFIG_SMP)
 
4491	idle->on_cpu = 1;
4492#endif
4493	raw_spin_unlock_irqrestore(&rq->lock, flags);
 
4494
4495	/* Set the preempt count _outside_ the spinlocks! */
4496	init_idle_preempt_count(idle, cpu);
4497
4498	/*
4499	 * The idle tasks have their own, simple scheduling class:
4500	 */
4501	idle->sched_class = &idle_sched_class;
4502	ftrace_graph_init_idle_task(idle, cpu);
4503	vtime_init_idle(idle, cpu);
4504#if defined(CONFIG_SMP)
4505	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506#endif
4507}
4508
4509#ifdef CONFIG_SMP
4510void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511{
4512	if (p->sched_class && p->sched_class->set_cpus_allowed)
4513		p->sched_class->set_cpus_allowed(p, new_mask);
4514
4515	cpumask_copy(&p->cpus_allowed, new_mask);
4516	p->nr_cpus_allowed = cpumask_weight(new_mask);
4517}
4518
4519/*
4520 * This is how migration works:
4521 *
4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 *    stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 *    off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes
4528 *    it and puts it into the right queue.
4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 *    is done.
4531 */
4532
4533/*
4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask.
4537 *
4538 * NOTE: the caller must have a valid reference to the task, the
4539 * task must not exit() & deallocate itself prematurely. The
4540 * call is not atomic; no spinlocks may be held.
4541 */
4542int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4543{
4544	unsigned long flags;
4545	struct rq *rq;
4546	unsigned int dest_cpu;
4547	int ret = 0;
4548
4549	rq = task_rq_lock(p, &flags);
4550
4551	if (cpumask_equal(&p->cpus_allowed, new_mask))
4552		goto out;
4553
4554	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4555		ret = -EINVAL;
4556		goto out;
4557	}
4558
4559	do_set_cpus_allowed(p, new_mask);
4560
4561	/* Can the task run on the task's current CPU? If so, we're done */
4562	if (cpumask_test_cpu(task_cpu(p), new_mask))
4563		goto out;
4564
4565	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4566	if (p->on_rq) {
4567		struct migration_arg arg = { p, dest_cpu };
4568		/* Need help from migration thread: drop lock and wait. */
4569		task_rq_unlock(rq, p, &flags);
4570		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4571		tlb_migrate_finish(p->mm);
4572		return 0;
4573	}
4574out:
4575	task_rq_unlock(rq, p, &flags);
4576
4577	return ret;
4578}
4579EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4580
4581/*
4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec).
4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU.
4589 *
4590 * Returns non-zero if task was successfully migrated.
4591 */
4592static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4593{
4594	struct rq *rq_dest, *rq_src;
4595	int ret = 0;
4596
4597	if (unlikely(!cpu_active(dest_cpu)))
4598		return ret;
4599
4600	rq_src = cpu_rq(src_cpu);
4601	rq_dest = cpu_rq(dest_cpu);
4602
4603	raw_spin_lock(&p->pi_lock);
4604	double_rq_lock(rq_src, rq_dest);
4605	/* Already moved. */
4606	if (task_cpu(p) != src_cpu)
4607		goto done;
4608	/* Affinity changed (again). */
4609	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4610		goto fail;
4611
4612	/*
4613	 * If we're not on a rq, the next wake-up will ensure we're
4614	 * placed properly.
 
 
 
 
 
4615	 */
4616	if (p->on_rq) {
4617		dequeue_task(rq_src, p, 0);
4618		set_task_cpu(p, dest_cpu);
4619		enqueue_task(rq_dest, p, 0);
4620		check_preempt_curr(rq_dest, p, 0);
4621	}
4622done:
4623	ret = 1;
4624fail:
4625	double_rq_unlock(rq_src, rq_dest);
4626	raw_spin_unlock(&p->pi_lock);
 
4627	return ret;
4628}
4629
 
 
4630#ifdef CONFIG_NUMA_BALANCING
4631/* Migrate current task p to target_cpu */
4632int migrate_task_to(struct task_struct *p, int target_cpu)
4633{
4634	struct migration_arg arg = { p, target_cpu };
4635	int curr_cpu = task_cpu(p);
4636
4637	if (curr_cpu == target_cpu)
4638		return 0;
4639
4640	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641		return -EINVAL;
4642
4643	/* TODO: This is not properly updating schedstats */
4644
4645	trace_sched_move_numa(p, curr_cpu, target_cpu);
4646	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647}
4648
4649/*
4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues
4652 */
4653void sched_setnuma(struct task_struct *p, int nid)
4654{
 
 
4655	struct rq *rq;
4656	unsigned long flags;
4657	bool on_rq, running;
4658
4659	rq = task_rq_lock(p, &flags);
4660	on_rq = p->on_rq;
4661	running = task_current(rq, p);
4662
4663	if (on_rq)
4664		dequeue_task(rq, p, 0);
4665	if (running)
4666		p->sched_class->put_prev_task(rq, p);
4667
4668	p->numa_preferred_nid = nid;
4669
 
 
4670	if (running)
4671		p->sched_class->set_curr_task(rq);
4672	if (on_rq)
4673		enqueue_task(rq, p, 0);
4674	task_rq_unlock(rq, p, &flags);
4675}
4676#endif
4677
4678/*
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue.
4682 */
4683static int migration_cpu_stop(void *data)
4684{
4685	struct migration_arg *arg = data;
4686
4687	/*
4688	 * The original target cpu might have gone down and we might
4689	 * be on another cpu but it doesn't matter.
4690	 */
4691	local_irq_disable();
4692	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4693	local_irq_enable();
4694	return 0;
4695}
 
4696
4697#ifdef CONFIG_HOTPLUG_CPU
4698
4699/*
4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline.
4702 */
4703void idle_task_exit(void)
4704{
4705	struct mm_struct *mm = current->active_mm;
4706
4707	BUG_ON(cpu_online(smp_processor_id()));
 
4708
4709	if (mm != &init_mm) {
4710		switch_mm(mm, &init_mm, current);
4711		finish_arch_post_lock_switch();
4712	}
4713	mmdrop(mm);
4714}
4715
4716/*
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable.
4720 *
4721 * Also see the comment "Global load-average calculations".
4722 */
4723static void calc_load_migrate(struct rq *rq)
4724{
4725	long delta = calc_load_fold_active(rq);
4726	if (delta)
4727		atomic_long_add(delta, &calc_load_tasks);
4728}
4729
4730static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731{
4732}
 
 
 
4733
4734static const struct sched_class fake_sched_class = {
4735	.put_prev_task = put_prev_task_fake,
4736};
4737
4738static struct task_struct fake_task = {
4739	/*
4740	 * Avoid pull_{rt,dl}_task()
4741	 */
4742	.prio = MAX_PRIO + 1,
4743	.sched_class = &fake_sched_class,
4744};
 
 
 
 
 
 
 
 
 
4745
4746/*
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq().
4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts.
4753 */
4754static void migrate_tasks(unsigned int dead_cpu)
4755{
4756	struct rq *rq = cpu_rq(dead_cpu);
4757	struct task_struct *next, *stop = rq->stop;
4758	int dest_cpu;
4759
4760	/*
4761	 * Fudge the rq selection such that the below task selection loop
4762	 * doesn't get stuck on the currently eligible stop task.
4763	 *
4764	 * We're currently inside stop_machine() and the rq is either stuck
4765	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766	 * either way we should never end up calling schedule() until we're
4767	 * done here.
4768	 */
4769	rq->stop = NULL;
4770
4771	/*
4772	 * put_prev_task() and pick_next_task() sched
4773	 * class method both need to have an up-to-date
4774	 * value of rq->clock[_task]
4775	 */
4776	update_rq_clock(rq);
 
 
 
 
 
 
 
 
4777
4778	for ( ; ; ) {
4779		/*
4780		 * There's this thread running, bail when that's the only
4781		 * remaining thread.
 
 
 
 
 
 
 
4782		 */
4783		if (rq->nr_running == 1)
4784			break;
4785
4786		next = pick_next_task(rq, &fake_task);
4787		BUG_ON(!next);
4788		next->sched_class->put_prev_task(rq, next);
4789
4790		/* Find suitable destination for @next, with force if needed. */
4791		dest_cpu = select_fallback_rq(dead_cpu, next);
4792		raw_spin_unlock(&rq->lock);
4793
4794		__migrate_task(next, dead_cpu, dest_cpu);
4795
4796		raw_spin_lock(&rq->lock);
4797	}
4798
4799	rq->stop = stop;
4800}
4801
4802#endif /* CONFIG_HOTPLUG_CPU */
4803
4804#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805
4806static struct ctl_table sd_ctl_dir[] = {
4807	{
4808		.procname	= "sched_domain",
4809		.mode		= 0555,
4810	},
4811	{}
4812};
4813
4814static struct ctl_table sd_ctl_root[] = {
4815	{
4816		.procname	= "kernel",
4817		.mode		= 0555,
4818		.child		= sd_ctl_dir,
4819	},
4820	{}
4821};
4822
4823static struct ctl_table *sd_alloc_ctl_entry(int n)
4824{
4825	struct ctl_table *entry =
4826		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4827
4828	return entry;
4829}
4830
4831static void sd_free_ctl_entry(struct ctl_table **tablep)
4832{
4833	struct ctl_table *entry;
4834
4835	/*
4836	 * In the intermediate directories, both the child directory and
4837	 * procname are dynamically allocated and could fail but the mode
4838	 * will always be set. In the lowest directory the names are
4839	 * static strings and all have proc handlers.
4840	 */
4841	for (entry = *tablep; entry->mode; entry++) {
4842		if (entry->child)
4843			sd_free_ctl_entry(&entry->child);
4844		if (entry->proc_handler == NULL)
4845			kfree(entry->procname);
4846	}
4847
4848	kfree(*tablep);
4849	*tablep = NULL;
4850}
4851
4852static int min_load_idx = 0;
4853static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4854
4855static void
4856set_table_entry(struct ctl_table *entry,
4857		const char *procname, void *data, int maxlen,
4858		umode_t mode, proc_handler *proc_handler,
4859		bool load_idx)
4860{
4861	entry->procname = procname;
4862	entry->data = data;
4863	entry->maxlen = maxlen;
4864	entry->mode = mode;
4865	entry->proc_handler = proc_handler;
4866
4867	if (load_idx) {
4868		entry->extra1 = &min_load_idx;
4869		entry->extra2 = &max_load_idx;
 
 
 
4870	}
 
4871}
4872
4873static struct ctl_table *
4874sd_alloc_ctl_domain_table(struct sched_domain *sd)
 
 
 
 
 
4875{
4876	struct ctl_table *table = sd_alloc_ctl_entry(14);
4877
4878	if (table == NULL)
4879		return NULL;
4880
4881	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4882		sizeof(long), 0644, proc_doulongvec_minmax, false);
4883	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4884		sizeof(long), 0644, proc_doulongvec_minmax, false);
4885	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4886		sizeof(int), 0644, proc_dointvec_minmax, true);
4887	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4888		sizeof(int), 0644, proc_dointvec_minmax, true);
4889	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4890		sizeof(int), 0644, proc_dointvec_minmax, true);
4891	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4892		sizeof(int), 0644, proc_dointvec_minmax, true);
4893	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4894		sizeof(int), 0644, proc_dointvec_minmax, true);
4895	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4896		sizeof(int), 0644, proc_dointvec_minmax, false);
4897	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4898		sizeof(int), 0644, proc_dointvec_minmax, false);
4899	set_table_entry(&table[9], "cache_nice_tries",
4900		&sd->cache_nice_tries,
4901		sizeof(int), 0644, proc_dointvec_minmax, false);
4902	set_table_entry(&table[10], "flags", &sd->flags,
4903		sizeof(int), 0644, proc_dointvec_minmax, false);
4904	set_table_entry(&table[11], "max_newidle_lb_cost",
4905		&sd->max_newidle_lb_cost,
4906		sizeof(long), 0644, proc_doulongvec_minmax, false);
4907	set_table_entry(&table[12], "name", sd->name,
4908		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4909	/* &table[13] is terminator */
4910
4911	return table;
 
 
4912}
4913
4914static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4915{
4916	struct ctl_table *entry, *table;
4917	struct sched_domain *sd;
4918	int domain_num = 0, i;
4919	char buf[32];
4920
4921	for_each_domain(cpu, sd)
4922		domain_num++;
4923	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4924	if (table == NULL)
4925		return NULL;
4926
4927	i = 0;
4928	for_each_domain(cpu, sd) {
4929		snprintf(buf, 32, "domain%d", i);
4930		entry->procname = kstrdup(buf, GFP_KERNEL);
4931		entry->mode = 0555;
4932		entry->child = sd_alloc_ctl_domain_table(sd);
4933		entry++;
4934		i++;
4935	}
4936	return table;
4937}
4938
4939static struct ctl_table_header *sd_sysctl_header;
4940static void register_sched_domain_sysctl(void)
4941{
4942	int i, cpu_num = num_possible_cpus();
4943	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944	char buf[32];
4945
4946	WARN_ON(sd_ctl_dir[0].child);
4947	sd_ctl_dir[0].child = entry;
4948
4949	if (entry == NULL)
4950		return;
4951
4952	for_each_possible_cpu(i) {
4953		snprintf(buf, 32, "cpu%d", i);
4954		entry->procname = kstrdup(buf, GFP_KERNEL);
4955		entry->mode = 0555;
4956		entry->child = sd_alloc_ctl_cpu_table(i);
4957		entry++;
4958	}
4959
4960	WARN_ON(sd_sysctl_header);
4961	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962}
4963
4964/* may be called multiple times per register */
4965static void unregister_sched_domain_sysctl(void)
4966{
4967	if (sd_sysctl_header)
4968		unregister_sysctl_table(sd_sysctl_header);
4969	sd_sysctl_header = NULL;
4970	if (sd_ctl_dir[0].child)
4971		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4972}
4973#else
4974static void register_sched_domain_sysctl(void)
4975{
4976}
4977static void unregister_sched_domain_sysctl(void)
4978{
4979}
4980#endif
4981
4982static void set_rq_online(struct rq *rq)
 
 
4983{
4984	if (!rq->online) {
4985		const struct sched_class *class;
4986
4987		cpumask_set_cpu(rq->cpu, rq->rd->online);
4988		rq->online = 1;
4989
4990		for_each_class(class) {
4991			if (class->rq_online)
4992				class->rq_online(rq);
4993		}
4994	}
4995}
4996
4997static void set_rq_offline(struct rq *rq)
4998{
4999	if (rq->online) {
5000		const struct sched_class *class;
5001
5002		for_each_class(class) {
5003			if (class->rq_offline)
5004				class->rq_offline(rq);
5005		}
5006
5007		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5008		rq->online = 0;
5009	}
5010}
5011
5012/*
5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */
5016static int
5017migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5018{
5019	int cpu = (long)hcpu;
5020	unsigned long flags;
5021	struct rq *rq = cpu_rq(cpu);
5022
5023	switch (action & ~CPU_TASKS_FROZEN) {
5024
5025	case CPU_UP_PREPARE:
5026		rq->calc_load_update = calc_load_update;
5027		break;
5028
5029	case CPU_ONLINE:
5030		/* Update our root-domain */
5031		raw_spin_lock_irqsave(&rq->lock, flags);
5032		if (rq->rd) {
5033			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5034
5035			set_rq_online(rq);
5036		}
5037		raw_spin_unlock_irqrestore(&rq->lock, flags);
5038		break;
5039
5040#ifdef CONFIG_HOTPLUG_CPU
5041	case CPU_DYING:
5042		sched_ttwu_pending();
5043		/* Update our root-domain */
5044		raw_spin_lock_irqsave(&rq->lock, flags);
5045		if (rq->rd) {
5046			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047			set_rq_offline(rq);
5048		}
5049		migrate_tasks(cpu);
5050		BUG_ON(rq->nr_running != 1); /* the migration thread */
5051		raw_spin_unlock_irqrestore(&rq->lock, flags);
5052		break;
5053
5054	case CPU_DEAD:
5055		calc_load_migrate(rq);
5056		break;
5057#endif
5058	}
5059
5060	update_max_interval();
5061
5062	return NOTIFY_OK;
5063}
5064
5065/*
5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else.  This has to be lower priority than
5068 * the notifier in the perf_event subsystem, though.
5069 */
5070static struct notifier_block migration_notifier = {
5071	.notifier_call = migration_call,
5072	.priority = CPU_PRI_MIGRATION,
5073};
5074
5075static int sched_cpu_active(struct notifier_block *nfb,
5076				      unsigned long action, void *hcpu)
5077{
5078	switch (action & ~CPU_TASKS_FROZEN) {
5079	case CPU_DOWN_FAILED:
5080		set_cpu_active((long)hcpu, true);
5081		return NOTIFY_OK;
5082	default:
5083		return NOTIFY_DONE;
5084	}
5085}
5086
5087static int sched_cpu_inactive(struct notifier_block *nfb,
5088					unsigned long action, void *hcpu)
5089{
5090	unsigned long flags;
5091	long cpu = (long)hcpu;
5092
5093	switch (action & ~CPU_TASKS_FROZEN) {
5094	case CPU_DOWN_PREPARE:
5095		set_cpu_active(cpu, false);
5096
5097		/* explicitly allow suspend */
5098		if (!(action & CPU_TASKS_FROZEN)) {
5099			struct dl_bw *dl_b = dl_bw_of(cpu);
5100			bool overflow;
5101			int cpus;
5102
5103			raw_spin_lock_irqsave(&dl_b->lock, flags);
5104			cpus = dl_bw_cpus(cpu);
5105			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5106			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5107
5108			if (overflow)
5109				return notifier_from_errno(-EBUSY);
5110		}
5111		return NOTIFY_OK;
5112	}
5113
5114	return NOTIFY_DONE;
5115}
5116
5117static int __init migration_init(void)
5118{
5119	void *cpu = (void *)(long)smp_processor_id();
5120	int err;
5121
5122	/* Initialize migration for the boot CPU */
5123	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5124	BUG_ON(err == NOTIFY_BAD);
5125	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5126	register_cpu_notifier(&migration_notifier);
5127
5128	/* Register cpu active notifiers */
5129	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5130	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5131
5132	return 0;
5133}
5134early_initcall(migration_init);
5135#endif
5136
5137#ifdef CONFIG_SMP
5138
5139static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5140
5141#ifdef CONFIG_SCHED_DEBUG
5142
5143static __read_mostly int sched_debug_enabled;
5144
5145static int __init sched_debug_setup(char *str)
5146{
5147	sched_debug_enabled = 1;
5148
5149	return 0;
5150}
5151early_param("sched_debug", sched_debug_setup);
5152
5153static inline bool sched_debug(void)
5154{
5155	return sched_debug_enabled;
5156}
5157
5158static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5159				  struct cpumask *groupmask)
5160{
5161	struct sched_group *group = sd->groups;
5162	char str[256];
5163
5164	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5165	cpumask_clear(groupmask);
5166
5167	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5168
5169	if (!(sd->flags & SD_LOAD_BALANCE)) {
5170		printk("does not load-balance\n");
5171		if (sd->parent)
5172			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5173					" has parent");
5174		return -1;
5175	}
5176
5177	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5178
5179	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5180		printk(KERN_ERR "ERROR: domain->span does not contain "
5181				"CPU%d\n", cpu);
5182	}
5183	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5184		printk(KERN_ERR "ERROR: domain->groups does not contain"
5185				" CPU%d\n", cpu);
5186	}
5187
5188	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5189	do {
5190		if (!group) {
5191			printk("\n");
5192			printk(KERN_ERR "ERROR: group is NULL\n");
5193			break;
5194		}
5195
5196		/*
5197		 * Even though we initialize ->power to something semi-sane,
5198		 * we leave power_orig unset. This allows us to detect if
5199		 * domain iteration is still funny without causing /0 traps.
5200		 */
5201		if (!group->sgp->power_orig) {
5202			printk(KERN_CONT "\n");
5203			printk(KERN_ERR "ERROR: domain->cpu_power not "
5204					"set\n");
5205			break;
5206		}
5207
5208		if (!cpumask_weight(sched_group_cpus(group))) {
5209			printk(KERN_CONT "\n");
5210			printk(KERN_ERR "ERROR: empty group\n");
5211			break;
5212		}
5213
5214		if (!(sd->flags & SD_OVERLAP) &&
5215		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5216			printk(KERN_CONT "\n");
5217			printk(KERN_ERR "ERROR: repeated CPUs\n");
5218			break;
5219		}
5220
5221		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5222
5223		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5224
5225		printk(KERN_CONT " %s", str);
5226		if (group->sgp->power != SCHED_POWER_SCALE) {
5227			printk(KERN_CONT " (cpu_power = %d)",
5228				group->sgp->power);
5229		}
5230
5231		group = group->next;
5232	} while (group != sd->groups);
5233	printk(KERN_CONT "\n");
5234
5235	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5236		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5237
5238	if (sd->parent &&
5239	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5240		printk(KERN_ERR "ERROR: parent span is not a superset "
5241			"of domain->span\n");
5242	return 0;
5243}
5244
5245static void sched_domain_debug(struct sched_domain *sd, int cpu)
5246{
5247	int level = 0;
5248
5249	if (!sched_debug_enabled)
5250		return;
5251
5252	if (!sd) {
5253		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5254		return;
5255	}
5256
5257	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5258
5259	for (;;) {
5260		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5261			break;
5262		level++;
5263		sd = sd->parent;
5264		if (!sd)
5265			break;
5266	}
5267}
5268#else /* !CONFIG_SCHED_DEBUG */
5269# define sched_domain_debug(sd, cpu) do { } while (0)
5270static inline bool sched_debug(void)
5271{
5272	return false;
5273}
5274#endif /* CONFIG_SCHED_DEBUG */
5275
5276static int sd_degenerate(struct sched_domain *sd)
5277{
5278	if (cpumask_weight(sched_domain_span(sd)) == 1)
5279		return 1;
5280
5281	/* Following flags need at least 2 groups */
5282	if (sd->flags & (SD_LOAD_BALANCE |
5283			 SD_BALANCE_NEWIDLE |
5284			 SD_BALANCE_FORK |
5285			 SD_BALANCE_EXEC |
5286			 SD_SHARE_CPUPOWER |
5287			 SD_SHARE_PKG_RESOURCES)) {
5288		if (sd->groups != sd->groups->next)
5289			return 0;
5290	}
5291
5292	/* Following flags don't use groups */
5293	if (sd->flags & (SD_WAKE_AFFINE))
5294		return 0;
5295
5296	return 1;
5297}
5298
5299static int
5300sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5301{
5302	unsigned long cflags = sd->flags, pflags = parent->flags;
5303
5304	if (sd_degenerate(parent))
5305		return 1;
5306
5307	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5308		return 0;
5309
5310	/* Flags needing groups don't count if only 1 group in parent */
5311	if (parent->groups == parent->groups->next) {
5312		pflags &= ~(SD_LOAD_BALANCE |
5313				SD_BALANCE_NEWIDLE |
5314				SD_BALANCE_FORK |
5315				SD_BALANCE_EXEC |
5316				SD_SHARE_CPUPOWER |
5317				SD_SHARE_PKG_RESOURCES |
5318				SD_PREFER_SIBLING);
5319		if (nr_node_ids == 1)
5320			pflags &= ~SD_SERIALIZE;
5321	}
5322	if (~cflags & pflags)
5323		return 0;
5324
5325	return 1;
5326}
5327
5328static void free_rootdomain(struct rcu_head *rcu)
5329{
5330	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5331
5332	cpupri_cleanup(&rd->cpupri);
5333	cpudl_cleanup(&rd->cpudl);
5334	free_cpumask_var(rd->dlo_mask);
5335	free_cpumask_var(rd->rto_mask);
5336	free_cpumask_var(rd->online);
5337	free_cpumask_var(rd->span);
5338	kfree(rd);
5339}
5340
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
5343	struct root_domain *old_rd = NULL;
5344	unsigned long flags;
5345
5346	raw_spin_lock_irqsave(&rq->lock, flags);
5347
5348	if (rq->rd) {
5349		old_rd = rq->rd;
5350
5351		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352			set_rq_offline(rq);
5353
5354		cpumask_clear_cpu(rq->cpu, old_rd->span);
5355
5356		/*
5357		 * If we dont want to free the old_rd yet then
5358		 * set old_rd to NULL to skip the freeing later
5359		 * in this function:
5360		 */
5361		if (!atomic_dec_and_test(&old_rd->refcount))
5362			old_rd = NULL;
5363	}
5364
5365	atomic_inc(&rd->refcount);
5366	rq->rd = rd;
5367
5368	cpumask_set_cpu(rq->cpu, rd->span);
5369	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370		set_rq_online(rq);
5371
5372	raw_spin_unlock_irqrestore(&rq->lock, flags);
5373
5374	if (old_rd)
5375		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5376}
5377
5378static int init_rootdomain(struct root_domain *rd)
5379{
5380	memset(rd, 0, sizeof(*rd));
5381
5382	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383		goto out;
5384	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385		goto free_span;
5386	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5387		goto free_online;
5388	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5389		goto free_dlo_mask;
5390
5391	init_dl_bw(&rd->dl_bw);
5392	if (cpudl_init(&rd->cpudl) != 0)
5393		goto free_dlo_mask;
5394
5395	if (cpupri_init(&rd->cpupri) != 0)
5396		goto free_rto_mask;
5397	return 0;
5398
5399free_rto_mask:
5400	free_cpumask_var(rd->rto_mask);
5401free_dlo_mask:
5402	free_cpumask_var(rd->dlo_mask);
5403free_online:
5404	free_cpumask_var(rd->online);
5405free_span:
5406	free_cpumask_var(rd->span);
5407out:
5408	return -ENOMEM;
5409}
5410
5411/*
5412 * By default the system creates a single root-domain with all cpus as
5413 * members (mimicking the global state we have today).
5414 */
5415struct root_domain def_root_domain;
5416
5417static void init_defrootdomain(void)
5418{
5419	init_rootdomain(&def_root_domain);
5420
5421	atomic_set(&def_root_domain.refcount, 1);
5422}
5423
5424static struct root_domain *alloc_rootdomain(void)
5425{
5426	struct root_domain *rd;
5427
5428	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5429	if (!rd)
5430		return NULL;
5431
5432	if (init_rootdomain(rd) != 0) {
5433		kfree(rd);
5434		return NULL;
5435	}
5436
5437	return rd;
5438}
5439
5440static void free_sched_groups(struct sched_group *sg, int free_sgp)
5441{
5442	struct sched_group *tmp, *first;
5443
5444	if (!sg)
5445		return;
5446
5447	first = sg;
5448	do {
5449		tmp = sg->next;
5450
5451		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5452			kfree(sg->sgp);
5453
5454		kfree(sg);
5455		sg = tmp;
5456	} while (sg != first);
5457}
5458
5459static void free_sched_domain(struct rcu_head *rcu)
5460{
5461	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5462
5463	/*
5464	 * If its an overlapping domain it has private groups, iterate and
5465	 * nuke them all.
5466	 */
5467	if (sd->flags & SD_OVERLAP) {
5468		free_sched_groups(sd->groups, 1);
5469	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5470		kfree(sd->groups->sgp);
5471		kfree(sd->groups);
5472	}
5473	kfree(sd);
5474}
5475
5476static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5477{
5478	call_rcu(&sd->rcu, free_sched_domain);
5479}
5480
5481static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5482{
5483	for (; sd; sd = sd->parent)
5484		destroy_sched_domain(sd, cpu);
5485}
5486
5487/*
5488 * Keep a special pointer to the highest sched_domain that has
5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5490 * allows us to avoid some pointer chasing select_idle_sibling().
5491 *
5492 * Also keep a unique ID per domain (we use the first cpu number in
5493 * the cpumask of the domain), this allows us to quickly tell if
5494 * two cpus are in the same cache domain, see cpus_share_cache().
5495 */
5496DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5497DEFINE_PER_CPU(int, sd_llc_size);
5498DEFINE_PER_CPU(int, sd_llc_id);
5499DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5500DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5501DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5502
5503static void update_top_cache_domain(int cpu)
5504{
5505	struct sched_domain *sd;
5506	struct sched_domain *busy_sd = NULL;
5507	int id = cpu;
5508	int size = 1;
5509
5510	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5511	if (sd) {
5512		id = cpumask_first(sched_domain_span(sd));
5513		size = cpumask_weight(sched_domain_span(sd));
5514		busy_sd = sd->parent; /* sd_busy */
5515	}
5516	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5517
5518	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5519	per_cpu(sd_llc_size, cpu) = size;
5520	per_cpu(sd_llc_id, cpu) = id;
5521
5522	sd = lowest_flag_domain(cpu, SD_NUMA);
5523	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5524
5525	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5526	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5527}
5528
5529/*
5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5531 * hold the hotplug lock.
5532 */
5533static void
5534cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5535{
5536	struct rq *rq = cpu_rq(cpu);
5537	struct sched_domain *tmp;
5538
5539	/* Remove the sched domains which do not contribute to scheduling. */
5540	for (tmp = sd; tmp; ) {
5541		struct sched_domain *parent = tmp->parent;
5542		if (!parent)
5543			break;
5544
5545		if (sd_parent_degenerate(tmp, parent)) {
5546			tmp->parent = parent->parent;
5547			if (parent->parent)
5548				parent->parent->child = tmp;
5549			/*
5550			 * Transfer SD_PREFER_SIBLING down in case of a
5551			 * degenerate parent; the spans match for this
5552			 * so the property transfers.
5553			 */
5554			if (parent->flags & SD_PREFER_SIBLING)
5555				tmp->flags |= SD_PREFER_SIBLING;
5556			destroy_sched_domain(parent, cpu);
5557		} else
5558			tmp = tmp->parent;
5559	}
5560
5561	if (sd && sd_degenerate(sd)) {
5562		tmp = sd;
5563		sd = sd->parent;
5564		destroy_sched_domain(tmp, cpu);
5565		if (sd)
5566			sd->child = NULL;
5567	}
5568
5569	sched_domain_debug(sd, cpu);
5570
5571	rq_attach_root(rq, rd);
5572	tmp = rq->sd;
5573	rcu_assign_pointer(rq->sd, sd);
5574	destroy_sched_domains(tmp, cpu);
5575
5576	update_top_cache_domain(cpu);
5577}
5578
5579/* cpus with isolated domains */
5580static cpumask_var_t cpu_isolated_map;
5581
5582/* Setup the mask of cpus configured for isolated domains */
5583static int __init isolated_cpu_setup(char *str)
5584{
5585	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5586	cpulist_parse(str, cpu_isolated_map);
5587	return 1;
5588}
5589
5590__setup("isolcpus=", isolated_cpu_setup);
5591
5592static const struct cpumask *cpu_cpu_mask(int cpu)
5593{
5594	return cpumask_of_node(cpu_to_node(cpu));
5595}
5596
5597struct sd_data {
5598	struct sched_domain **__percpu sd;
5599	struct sched_group **__percpu sg;
5600	struct sched_group_power **__percpu sgp;
5601};
5602
5603struct s_data {
5604	struct sched_domain ** __percpu sd;
5605	struct root_domain	*rd;
5606};
5607
5608enum s_alloc {
5609	sa_rootdomain,
5610	sa_sd,
5611	sa_sd_storage,
5612	sa_none,
5613};
5614
5615struct sched_domain_topology_level;
5616
5617typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5618typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5619
5620#define SDTL_OVERLAP	0x01
5621
5622struct sched_domain_topology_level {
5623	sched_domain_init_f init;
5624	sched_domain_mask_f mask;
5625	int		    flags;
5626	int		    numa_level;
5627	struct sd_data      data;
5628};
5629
5630/*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal.
5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range.
5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that.
5641 *
 
 
5642 */
5643static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644{
5645	const struct cpumask *span = sched_domain_span(sd);
5646	struct sd_data *sdd = sd->private;
5647	struct sched_domain *sibling;
5648	int i;
5649
5650	for_each_cpu(i, span) {
5651		sibling = *per_cpu_ptr(sdd->sd, i);
5652		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653			continue;
5654
5655		cpumask_set_cpu(i, sched_group_mask(sg));
5656	}
5657}
5658
5659/*
5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask.
5662 */
5663int group_balance_cpu(struct sched_group *sg)
5664{
5665	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666}
5667
5668static int
5669build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670{
5671	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672	const struct cpumask *span = sched_domain_span(sd);
5673	struct cpumask *covered = sched_domains_tmpmask;
5674	struct sd_data *sdd = sd->private;
5675	struct sched_domain *child;
5676	int i;
5677
5678	cpumask_clear(covered);
5679
5680	for_each_cpu(i, span) {
5681		struct cpumask *sg_span;
5682
5683		if (cpumask_test_cpu(i, covered))
5684			continue;
5685
5686		child = *per_cpu_ptr(sdd->sd, i);
5687
5688		/* See the comment near build_group_mask(). */
5689		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690			continue;
5691
5692		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5693				GFP_KERNEL, cpu_to_node(cpu));
5694
5695		if (!sg)
5696			goto fail;
5697
5698		sg_span = sched_group_cpus(sg);
5699		if (child->child) {
5700			child = child->child;
5701			cpumask_copy(sg_span, sched_domain_span(child));
5702		} else
5703			cpumask_set_cpu(i, sg_span);
5704
5705		cpumask_or(covered, covered, sg_span);
5706
5707		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5708		if (atomic_inc_return(&sg->sgp->ref) == 1)
5709			build_group_mask(sd, sg);
5710
5711		/*
5712		 * Initialize sgp->power such that even if we mess up the
5713		 * domains and no possible iteration will get us here, we won't
5714		 * die on a /0 trap.
 
5715		 */
5716		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5717		sg->sgp->power_orig = sg->sgp->power;
5718
5719		/*
5720		 * Make sure the first group of this domain contains the
5721		 * canonical balance cpu. Otherwise the sched_domain iteration
5722		 * breaks. See update_sg_lb_stats().
5723		 */
5724		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5725		    group_balance_cpu(sg) == cpu)
5726			groups = sg;
5727
5728		if (!first)
5729			first = sg;
5730		if (last)
5731			last->next = sg;
5732		last = sg;
5733		last->next = first;
5734	}
5735	sd->groups = groups;
5736
5737	return 0;
5738
5739fail:
5740	free_sched_groups(first, 0);
5741
5742	return -ENOMEM;
5743}
5744
5745static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5746{
5747	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748	struct sched_domain *child = sd->child;
5749
5750	if (child)
5751		cpu = cpumask_first(sched_domain_span(child));
5752
5753	if (sg) {
5754		*sg = *per_cpu_ptr(sdd->sg, cpu);
5755		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5756		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5757	}
5758
5759	return cpu;
5760}
5761
5762/*
5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0.
5766 *
5767 * Assumes the sched_domain tree is fully constructed
5768 */
5769static int
5770build_sched_groups(struct sched_domain *sd, int cpu)
5771{
5772	struct sched_group *first = NULL, *last = NULL;
5773	struct sd_data *sdd = sd->private;
5774	const struct cpumask *span = sched_domain_span(sd);
5775	struct cpumask *covered;
5776	int i;
5777
5778	get_group(cpu, sdd, &sd->groups);
5779	atomic_inc(&sd->groups->ref);
5780
5781	if (cpu != cpumask_first(span))
5782		return 0;
5783
5784	lockdep_assert_held(&sched_domains_mutex);
5785	covered = sched_domains_tmpmask;
5786
5787	cpumask_clear(covered);
5788
5789	for_each_cpu(i, span) {
5790		struct sched_group *sg;
5791		int group, j;
5792
5793		if (cpumask_test_cpu(i, covered))
5794			continue;
5795
5796		group = get_group(i, sdd, &sg);
5797		cpumask_clear(sched_group_cpus(sg));
5798		sg->sgp->power = 0;
5799		cpumask_setall(sched_group_mask(sg));
5800
5801		for_each_cpu(j, span) {
5802			if (get_group(j, sdd, NULL) != group)
5803				continue;
5804
5805			cpumask_set_cpu(j, covered);
5806			cpumask_set_cpu(j, sched_group_cpus(sg));
5807		}
5808
5809		if (!first)
5810			first = sg;
5811		if (last)
5812			last->next = sg;
5813		last = sg;
5814	}
5815	last->next = first;
5816
5817	return 0;
5818}
5819
5820/*
5821 * Initialize sched groups cpu_power.
5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power.
5829 */
5830static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831{
5832	struct sched_group *sg = sd->groups;
5833
5834	WARN_ON(!sg);
5835
5836	do {
5837		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838		sg = sg->next;
5839	} while (sg != sd->groups);
5840
5841	if (cpu != group_balance_cpu(sg))
5842		return;
5843
5844	update_group_power(sd, cpu);
5845	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5846}
5847
5848int __weak arch_sd_sibling_asym_packing(void)
5849{
5850       return 0*SD_ASYM_PACKING;
5851}
5852
5853/*
5854 * Initializers for schedule domains
5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5856 */
5857
5858#ifdef CONFIG_SCHED_DEBUG
5859# define SD_INIT_NAME(sd, type)		sd->name = #type
5860#else
5861# define SD_INIT_NAME(sd, type)		do { } while (0)
5862#endif
5863
5864#define SD_INIT_FUNC(type)						\
5865static noinline struct sched_domain *					\
5866sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5867{									\
5868	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5869	*sd = SD_##type##_INIT;						\
5870	SD_INIT_NAME(sd, type);						\
5871	sd->private = &tl->data;					\
5872	return sd;							\
5873}
5874
5875SD_INIT_FUNC(CPU)
5876#ifdef CONFIG_SCHED_SMT
5877 SD_INIT_FUNC(SIBLING)
5878#endif
5879#ifdef CONFIG_SCHED_MC
5880 SD_INIT_FUNC(MC)
5881#endif
5882#ifdef CONFIG_SCHED_BOOK
5883 SD_INIT_FUNC(BOOK)
5884#endif
 
5885
5886static int default_relax_domain_level = -1;
5887int sched_domain_level_max;
5888
5889static int __init setup_relax_domain_level(char *str)
5890{
5891	if (kstrtoint(str, 0, &default_relax_domain_level))
5892		pr_warn("Unable to set relax_domain_level\n");
5893
5894	return 1;
5895}
5896__setup("relax_domain_level=", setup_relax_domain_level);
5897
5898static void set_domain_attribute(struct sched_domain *sd,
5899				 struct sched_domain_attr *attr)
5900{
5901	int request;
5902
5903	if (!attr || attr->relax_domain_level < 0) {
5904		if (default_relax_domain_level < 0)
5905			return;
5906		else
5907			request = default_relax_domain_level;
5908	} else
5909		request = attr->relax_domain_level;
5910	if (request < sd->level) {
5911		/* turn off idle balance on this domain */
5912		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5913	} else {
5914		/* turn on idle balance on this domain */
5915		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5916	}
5917}
5918
5919static void __sdt_free(const struct cpumask *cpu_map);
5920static int __sdt_alloc(const struct cpumask *cpu_map);
5921
5922static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5923				 const struct cpumask *cpu_map)
5924{
5925	switch (what) {
5926	case sa_rootdomain:
5927		if (!atomic_read(&d->rd->refcount))
5928			free_rootdomain(&d->rd->rcu); /* fall through */
5929	case sa_sd:
5930		free_percpu(d->sd); /* fall through */
5931	case sa_sd_storage:
5932		__sdt_free(cpu_map); /* fall through */
5933	case sa_none:
5934		break;
5935	}
5936}
5937
5938static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5939						   const struct cpumask *cpu_map)
5940{
5941	memset(d, 0, sizeof(*d));
5942
5943	if (__sdt_alloc(cpu_map))
5944		return sa_sd_storage;
5945	d->sd = alloc_percpu(struct sched_domain *);
5946	if (!d->sd)
5947		return sa_sd_storage;
5948	d->rd = alloc_rootdomain();
5949	if (!d->rd)
5950		return sa_sd;
5951	return sa_rootdomain;
5952}
5953
5954/*
5955 * NULL the sd_data elements we've used to build the sched_domain and
5956 * sched_group structure so that the subsequent __free_domain_allocs()
5957 * will not free the data we're using.
5958 */
5959static void claim_allocations(int cpu, struct sched_domain *sd)
5960{
5961	struct sd_data *sdd = sd->private;
5962
5963	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5964	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5965
5966	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5967		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5968
5969	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5970		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5971}
5972
5973#ifdef CONFIG_SCHED_SMT
5974static const struct cpumask *cpu_smt_mask(int cpu)
5975{
5976	return topology_thread_cpumask(cpu);
5977}
5978#endif
5979
5980/*
5981 * Topology list, bottom-up.
5982 */
5983static struct sched_domain_topology_level default_topology[] = {
5984#ifdef CONFIG_SCHED_SMT
5985	{ sd_init_SIBLING, cpu_smt_mask, },
5986#endif
5987#ifdef CONFIG_SCHED_MC
5988	{ sd_init_MC, cpu_coregroup_mask, },
5989#endif
5990#ifdef CONFIG_SCHED_BOOK
5991	{ sd_init_BOOK, cpu_book_mask, },
5992#endif
5993	{ sd_init_CPU, cpu_cpu_mask, },
5994	{ NULL, },
5995};
5996
5997static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5998
5999#define for_each_sd_topology(tl)			\
6000	for (tl = sched_domain_topology; tl->init; tl++)
6001
6002#ifdef CONFIG_NUMA
6003
6004static int sched_domains_numa_levels;
6005static int *sched_domains_numa_distance;
6006static struct cpumask ***sched_domains_numa_masks;
6007static int sched_domains_curr_level;
6008
6009static inline int sd_local_flags(int level)
6010{
6011	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6012		return 0;
6013
6014	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6015}
6016
6017static struct sched_domain *
6018sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6019{
6020	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6021	int level = tl->numa_level;
6022	int sd_weight = cpumask_weight(
6023			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6024
6025	*sd = (struct sched_domain){
6026		.min_interval		= sd_weight,
6027		.max_interval		= 2*sd_weight,
6028		.busy_factor		= 32,
6029		.imbalance_pct		= 125,
6030		.cache_nice_tries	= 2,
6031		.busy_idx		= 3,
6032		.idle_idx		= 2,
6033		.newidle_idx		= 0,
6034		.wake_idx		= 0,
6035		.forkexec_idx		= 0,
6036
6037		.flags			= 1*SD_LOAD_BALANCE
6038					| 1*SD_BALANCE_NEWIDLE
6039					| 0*SD_BALANCE_EXEC
6040					| 0*SD_BALANCE_FORK
6041					| 0*SD_BALANCE_WAKE
6042					| 0*SD_WAKE_AFFINE
6043					| 0*SD_SHARE_CPUPOWER
6044					| 0*SD_SHARE_PKG_RESOURCES
6045					| 1*SD_SERIALIZE
6046					| 0*SD_PREFER_SIBLING
6047					| 1*SD_NUMA
6048					| sd_local_flags(level)
6049					,
6050		.last_balance		= jiffies,
6051		.balance_interval	= sd_weight,
6052		.max_newidle_lb_cost	= 0,
6053		.next_decay_max_lb_cost	= jiffies,
6054	};
6055	SD_INIT_NAME(sd, NUMA);
6056	sd->private = &tl->data;
6057
6058	/*
6059	 * Ugly hack to pass state to sd_numa_mask()...
 
 
 
 
 
 
6060	 */
6061	sched_domains_curr_level = tl->numa_level;
6062
6063	return sd;
6064}
6065
6066static const struct cpumask *sd_numa_mask(int cpu)
6067{
6068	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6069}
6070
6071static void sched_numa_warn(const char *str)
6072{
6073	static int done = false;
6074	int i,j;
6075
6076	if (done)
6077		return;
6078
6079	done = true;
6080
6081	printk(KERN_WARNING "ERROR: %s\n\n", str);
6082
6083	for (i = 0; i < nr_node_ids; i++) {
6084		printk(KERN_WARNING "  ");
6085		for (j = 0; j < nr_node_ids; j++)
6086			printk(KERN_CONT "%02d ", node_distance(i,j));
6087		printk(KERN_CONT "\n");
6088	}
6089	printk(KERN_WARNING "\n");
6090}
6091
6092static bool find_numa_distance(int distance)
6093{
6094	int i;
6095
6096	if (distance == node_distance(0, 0))
6097		return true;
6098
6099	for (i = 0; i < sched_domains_numa_levels; i++) {
6100		if (sched_domains_numa_distance[i] == distance)
6101			return true;
6102	}
 
6103
6104	return false;
6105}
6106
6107static void sched_init_numa(void)
6108{
6109	int next_distance, curr_distance = node_distance(0, 0);
6110	struct sched_domain_topology_level *tl;
6111	int level = 0;
6112	int i, j, k;
6113
6114	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6115	if (!sched_domains_numa_distance)
6116		return;
6117
6118	/*
6119	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6120	 * unique distances in the node_distance() table.
6121	 *
6122	 * Assumes node_distance(0,j) includes all distances in
6123	 * node_distance(i,j) in order to avoid cubic time.
6124	 */
6125	next_distance = curr_distance;
6126	for (i = 0; i < nr_node_ids; i++) {
6127		for (j = 0; j < nr_node_ids; j++) {
6128			for (k = 0; k < nr_node_ids; k++) {
6129				int distance = node_distance(i, k);
6130
6131				if (distance > curr_distance &&
6132				    (distance < next_distance ||
6133				     next_distance == curr_distance))
6134					next_distance = distance;
6135
6136				/*
6137				 * While not a strong assumption it would be nice to know
6138				 * about cases where if node A is connected to B, B is not
6139				 * equally connected to A.
6140				 */
6141				if (sched_debug() && node_distance(k, i) != distance)
6142					sched_numa_warn("Node-distance not symmetric");
6143
6144				if (sched_debug() && i && !find_numa_distance(distance))
6145					sched_numa_warn("Node-0 not representative");
6146			}
6147			if (next_distance != curr_distance) {
6148				sched_domains_numa_distance[level++] = next_distance;
6149				sched_domains_numa_levels = level;
6150				curr_distance = next_distance;
6151			} else break;
6152		}
6153
6154		/*
6155		 * In case of sched_debug() we verify the above assumption.
6156		 */
6157		if (!sched_debug())
6158			break;
6159	}
6160	/*
6161	 * 'level' contains the number of unique distances, excluding the
6162	 * identity distance node_distance(i,i).
6163	 *
6164	 * The sched_domains_numa_distance[] array includes the actual distance
6165	 * numbers.
6166	 */
 
6167
6168	/*
6169	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6170	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6171	 * the array will contain less then 'level' members. This could be
6172	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6173	 * in other functions.
6174	 *
6175	 * We reset it to 'level' at the end of this function.
6176	 */
6177	sched_domains_numa_levels = 0;
6178
6179	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180	if (!sched_domains_numa_masks)
6181		return;
6182
6183	/*
6184	 * Now for each level, construct a mask per node which contains all
6185	 * cpus of nodes that are that many hops away from us.
6186	 */
6187	for (i = 0; i < level; i++) {
6188		sched_domains_numa_masks[i] =
6189			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190		if (!sched_domains_numa_masks[i])
6191			return;
6192
6193		for (j = 0; j < nr_node_ids; j++) {
6194			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6195			if (!mask)
6196				return;
6197
6198			sched_domains_numa_masks[i][j] = mask;
6199
6200			for (k = 0; k < nr_node_ids; k++) {
6201				if (node_distance(j, k) > sched_domains_numa_distance[i])
6202					continue;
6203
6204				cpumask_or(mask, mask, cpumask_of_node(k));
6205			}
6206		}
 
 
6207	}
 
6208
6209	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211	if (!tl)
6212		return;
6213
6214	/*
6215	 * Copy the default topology bits..
6216	 */
6217	for (i = 0; default_topology[i].init; i++)
6218		tl[i] = default_topology[i];
6219
6220	/*
6221	 * .. and append 'j' levels of NUMA goodness.
6222	 */
6223	for (j = 0; j < level; i++, j++) {
6224		tl[i] = (struct sched_domain_topology_level){
6225			.init = sd_numa_init,
6226			.mask = sd_numa_mask,
6227			.flags = SDTL_OVERLAP,
6228			.numa_level = j,
6229		};
6230	}
6231
6232	sched_domain_topology = tl;
6233
6234	sched_domains_numa_levels = level;
6235}
6236
6237static void sched_domains_numa_masks_set(int cpu)
6238{
6239	int i, j;
6240	int node = cpu_to_node(cpu);
6241
6242	for (i = 0; i < sched_domains_numa_levels; i++) {
6243		for (j = 0; j < nr_node_ids; j++) {
6244			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6245				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6246		}
6247	}
6248}
6249
6250static void sched_domains_numa_masks_clear(int cpu)
6251{
6252	int i, j;
6253	for (i = 0; i < sched_domains_numa_levels; i++) {
6254		for (j = 0; j < nr_node_ids; j++)
6255			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6256	}
6257}
6258
6259/*
6260 * Update sched_domains_numa_masks[level][node] array when new cpus
6261 * are onlined.
6262 */
6263static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264					   unsigned long action,
6265					   void *hcpu)
6266{
6267	int cpu = (long)hcpu;
6268
6269	switch (action & ~CPU_TASKS_FROZEN) {
6270	case CPU_ONLINE:
6271		sched_domains_numa_masks_set(cpu);
6272		break;
6273
6274	case CPU_DEAD:
6275		sched_domains_numa_masks_clear(cpu);
6276		break;
6277
6278	default:
6279		return NOTIFY_DONE;
6280	}
6281
6282	return NOTIFY_OK;
6283}
6284#else
6285static inline void sched_init_numa(void)
6286{
6287}
6288
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290					   unsigned long action,
6291					   void *hcpu)
6292{
6293	return 0;
6294}
6295#endif /* CONFIG_NUMA */
6296
6297static int __sdt_alloc(const struct cpumask *cpu_map)
6298{
6299	struct sched_domain_topology_level *tl;
6300	int j;
6301
6302	for_each_sd_topology(tl) {
6303		struct sd_data *sdd = &tl->data;
6304
6305		sdd->sd = alloc_percpu(struct sched_domain *);
6306		if (!sdd->sd)
6307			return -ENOMEM;
6308
6309		sdd->sg = alloc_percpu(struct sched_group *);
6310		if (!sdd->sg)
6311			return -ENOMEM;
6312
6313		sdd->sgp = alloc_percpu(struct sched_group_power *);
6314		if (!sdd->sgp)
6315			return -ENOMEM;
6316
6317		for_each_cpu(j, cpu_map) {
6318			struct sched_domain *sd;
6319			struct sched_group *sg;
6320			struct sched_group_power *sgp;
6321
6322		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6323					GFP_KERNEL, cpu_to_node(j));
6324			if (!sd)
6325				return -ENOMEM;
6326
6327			*per_cpu_ptr(sdd->sd, j) = sd;
6328
6329			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330					GFP_KERNEL, cpu_to_node(j));
6331			if (!sg)
6332				return -ENOMEM;
6333
6334			sg->next = sg;
6335
6336			*per_cpu_ptr(sdd->sg, j) = sg;
6337
6338			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6339					GFP_KERNEL, cpu_to_node(j));
6340			if (!sgp)
6341				return -ENOMEM;
6342
6343			*per_cpu_ptr(sdd->sgp, j) = sgp;
6344		}
 
 
 
6345	}
6346
6347	return 0;
6348}
6349
6350static void __sdt_free(const struct cpumask *cpu_map)
6351{
6352	struct sched_domain_topology_level *tl;
6353	int j;
6354
6355	for_each_sd_topology(tl) {
6356		struct sd_data *sdd = &tl->data;
6357
6358		for_each_cpu(j, cpu_map) {
6359			struct sched_domain *sd;
6360
6361			if (sdd->sd) {
6362				sd = *per_cpu_ptr(sdd->sd, j);
6363				if (sd && (sd->flags & SD_OVERLAP))
6364					free_sched_groups(sd->groups, 0);
6365				kfree(*per_cpu_ptr(sdd->sd, j));
6366			}
6367
6368			if (sdd->sg)
6369				kfree(*per_cpu_ptr(sdd->sg, j));
6370			if (sdd->sgp)
6371				kfree(*per_cpu_ptr(sdd->sgp, j));
6372		}
6373		free_percpu(sdd->sd);
6374		sdd->sd = NULL;
6375		free_percpu(sdd->sg);
6376		sdd->sg = NULL;
6377		free_percpu(sdd->sgp);
6378		sdd->sgp = NULL;
6379	}
6380}
6381
6382struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6383		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6384		struct sched_domain *child, int cpu)
6385{
6386	struct sched_domain *sd = tl->init(tl, cpu);
6387	if (!sd)
6388		return child;
6389
6390	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6391	if (child) {
6392		sd->level = child->level + 1;
6393		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6394		child->parent = sd;
6395		sd->child = child;
6396	}
6397	set_domain_attribute(sd, attr);
6398
6399	return sd;
6400}
6401
6402/*
6403 * Build sched domains for a given set of cpus and attach the sched domains
6404 * to the individual cpus
6405 */
6406static int build_sched_domains(const struct cpumask *cpu_map,
6407			       struct sched_domain_attr *attr)
6408{
6409	enum s_alloc alloc_state;
6410	struct sched_domain *sd;
6411	struct s_data d;
6412	int i, ret = -ENOMEM;
6413
6414	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6415	if (alloc_state != sa_rootdomain)
6416		goto error;
6417
6418	/* Set up domains for cpus specified by the cpu_map. */
6419	for_each_cpu(i, cpu_map) {
6420		struct sched_domain_topology_level *tl;
6421
6422		sd = NULL;
6423		for_each_sd_topology(tl) {
6424			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6425			if (tl == sched_domain_topology)
6426				*per_cpu_ptr(d.sd, i) = sd;
6427			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6428				sd->flags |= SD_OVERLAP;
6429			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6430				break;
6431		}
6432	}
6433
6434	/* Build the groups for the domains */
6435	for_each_cpu(i, cpu_map) {
6436		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6437			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6438			if (sd->flags & SD_OVERLAP) {
6439				if (build_overlap_sched_groups(sd, i))
6440					goto error;
6441			} else {
6442				if (build_sched_groups(sd, i))
6443					goto error;
6444			}
6445		}
6446	}
6447
6448	/* Calculate CPU power for physical packages and nodes */
6449	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6450		if (!cpumask_test_cpu(i, cpu_map))
6451			continue;
6452
6453		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454			claim_allocations(i, sd);
6455			init_sched_groups_power(i, sd);
6456		}
6457	}
6458
6459	/* Attach the domains */
6460	rcu_read_lock();
6461	for_each_cpu(i, cpu_map) {
6462		sd = *per_cpu_ptr(d.sd, i);
6463		cpu_attach_domain(sd, d.rd, i);
6464	}
6465	rcu_read_unlock();
6466
6467	ret = 0;
6468error:
6469	__free_domain_allocs(&d, alloc_state, cpu_map);
6470	return ret;
6471}
6472
6473static cpumask_var_t *doms_cur;	/* current sched domains */
6474static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6475static struct sched_domain_attr *dattr_cur;
6476				/* attribues of custom domains in 'doms_cur' */
6477
6478/*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask fallback_doms.
6482 */
6483static cpumask_var_t fallback_doms;
6484
6485/*
6486 * arch_update_cpu_topology lets virtualized architectures update the
6487 * cpu core maps. It is supposed to return 1 if the topology changed
6488 * or 0 if it stayed the same.
6489 */
6490int __weak arch_update_cpu_topology(void)
6491{
 
 
 
6492	return 0;
6493}
6494
6495cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6496{
6497	int i;
6498	cpumask_var_t *doms;
6499
6500	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6501	if (!doms)
6502		return NULL;
6503	for (i = 0; i < ndoms; i++) {
6504		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6505			free_sched_domains(doms, i);
6506			return NULL;
6507		}
6508	}
6509	return doms;
6510}
6511
6512void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6513{
6514	unsigned int i;
6515	for (i = 0; i < ndoms; i++)
6516		free_cpumask_var(doms[i]);
6517	kfree(doms);
6518}
6519
6520/*
6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6522 * For now this just excludes isolated cpus, but could be used to
6523 * exclude other special cases in the future.
 
 
 
 
 
 
6524 */
6525static int init_sched_domains(const struct cpumask *cpu_map)
6526{
6527	int err;
6528
6529	arch_update_cpu_topology();
6530	ndoms_cur = 1;
6531	doms_cur = alloc_sched_domains(ndoms_cur);
6532	if (!doms_cur)
6533		doms_cur = &fallback_doms;
6534	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6535	err = build_sched_domains(doms_cur[0], NULL);
6536	register_sched_domain_sysctl();
6537
6538	return err;
6539}
6540
6541/*
6542 * Detach sched domains from a group of cpus specified in cpu_map
6543 * These cpus will now be attached to the NULL domain
 
 
 
 
 
6544 */
6545static void detach_destroy_domains(const struct cpumask *cpu_map)
6546{
6547	int i;
6548
6549	rcu_read_lock();
6550	for_each_cpu(i, cpu_map)
6551		cpu_attach_domain(NULL, &def_root_domain, i);
6552	rcu_read_unlock();
6553}
6554
6555/* handle null as "default" */
6556static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6557			struct sched_domain_attr *new, int idx_new)
6558{
6559	struct sched_domain_attr tmp;
6560
6561	/* fast path */
6562	if (!new && !cur)
6563		return 1;
6564
6565	tmp = SD_ATTR_INIT;
6566	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6567			new ? (new + idx_new) : &tmp,
6568			sizeof(struct sched_domain_attr));
6569}
6570
6571/*
6572 * Partition sched domains as specified by the 'ndoms_new'
6573 * cpumasks in the array doms_new[] of cpumasks. This compares
6574 * doms_new[] to the current sched domain partitioning, doms_cur[].
6575 * It destroys each deleted domain and builds each new domain.
6576 *
6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6578 * The masks don't intersect (don't overlap.) We should setup one
6579 * sched domain for each mask. CPUs not in any of the cpumasks will
6580 * not be load balanced. If the same cpumask appears both in the
6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6582 * it as it is.
6583 *
6584 * The passed in 'doms_new' should be allocated using
6585 * alloc_sched_domains.  This routine takes ownership of it and will
6586 * free_sched_domains it when done with it. If the caller failed the
6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6588 * and partition_sched_domains() will fallback to the single partition
6589 * 'fallback_doms', it also forces the domains to be rebuilt.
6590 *
6591 * If doms_new == NULL it will be replaced with cpu_online_mask.
6592 * ndoms_new == 0 is a special case for destroying existing domains,
6593 * and it will not create the default domain.
6594 *
6595 * Call with hotplug lock held
6596 */
6597void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6598			     struct sched_domain_attr *dattr_new)
6599{
6600	int i, j, n;
6601	int new_topology;
6602
6603	mutex_lock(&sched_domains_mutex);
6604
6605	/* always unregister in case we don't destroy any domains */
6606	unregister_sched_domain_sysctl();
6607
6608	/* Let architecture update cpu core mappings. */
6609	new_topology = arch_update_cpu_topology();
6610
6611	n = doms_new ? ndoms_new : 0;
6612
6613	/* Destroy deleted domains */
6614	for (i = 0; i < ndoms_cur; i++) {
6615		for (j = 0; j < n && !new_topology; j++) {
6616			if (cpumask_equal(doms_cur[i], doms_new[j])
6617			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6618				goto match1;
6619		}
6620		/* no match - a current sched domain not in new doms_new[] */
6621		detach_destroy_domains(doms_cur[i]);
6622match1:
6623		;
6624	}
6625
6626	n = ndoms_cur;
6627	if (doms_new == NULL) {
6628		n = 0;
6629		doms_new = &fallback_doms;
6630		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6631		WARN_ON_ONCE(dattr_new);
6632	}
6633
6634	/* Build new domains */
6635	for (i = 0; i < ndoms_new; i++) {
6636		for (j = 0; j < n && !new_topology; j++) {
6637			if (cpumask_equal(doms_new[i], doms_cur[j])
6638			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6639				goto match2;
6640		}
6641		/* no match - add a new doms_new */
6642		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6643match2:
6644		;
6645	}
6646
6647	/* Remember the new sched domains */
6648	if (doms_cur != &fallback_doms)
6649		free_sched_domains(doms_cur, ndoms_cur);
6650	kfree(dattr_cur);	/* kfree(NULL) is safe */
6651	doms_cur = doms_new;
6652	dattr_cur = dattr_new;
6653	ndoms_cur = ndoms_new;
6654
6655	register_sched_domain_sysctl();
 
6656
6657	mutex_unlock(&sched_domains_mutex);
 
6658}
6659
6660static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6661
6662/*
6663 * Update cpusets according to cpu_active mask.  If cpusets are
6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6665 * around partition_sched_domains().
6666 *
6667 * If we come here as part of a suspend/resume, don't touch cpusets because we
6668 * want to restore it back to its original state upon resume anyway.
6669 */
6670static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6671			     void *hcpu)
6672{
6673	switch (action) {
6674	case CPU_ONLINE_FROZEN:
6675	case CPU_DOWN_FAILED_FROZEN:
6676
6677		/*
6678		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6679		 * resume sequence. As long as this is not the last online
6680		 * operation in the resume sequence, just build a single sched
6681		 * domain, ignoring cpusets.
6682		 */
6683		num_cpus_frozen--;
6684		if (likely(num_cpus_frozen)) {
6685			partition_sched_domains(1, NULL, NULL);
6686			break;
6687		}
6688
6689		/*
6690		 * This is the last CPU online operation. So fall through and
6691		 * restore the original sched domains by considering the
6692		 * cpuset configurations.
6693		 */
6694
6695	case CPU_ONLINE:
6696	case CPU_DOWN_FAILED:
6697		cpuset_update_active_cpus(true);
6698		break;
6699	default:
6700		return NOTIFY_DONE;
6701	}
6702	return NOTIFY_OK;
6703}
6704
6705static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6706			       void *hcpu)
6707{
6708	switch (action) {
6709	case CPU_DOWN_PREPARE:
6710		cpuset_update_active_cpus(false);
6711		break;
6712	case CPU_DOWN_PREPARE_FROZEN:
6713		num_cpus_frozen++;
6714		partition_sched_domains(1, NULL, NULL);
6715		break;
6716	default:
6717		return NOTIFY_DONE;
6718	}
6719	return NOTIFY_OK;
6720}
 
6721
6722void __init sched_init_smp(void)
6723{
6724	cpumask_var_t non_isolated_cpus;
6725
6726	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6727	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6728
6729	sched_init_numa();
6730
6731	/*
6732	 * There's no userspace yet to cause hotplug operations; hence all the
6733	 * cpu masks are stable and all blatant races in the below code cannot
6734	 * happen.
6735	 */
6736	mutex_lock(&sched_domains_mutex);
6737	init_sched_domains(cpu_active_mask);
6738	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6739	if (cpumask_empty(non_isolated_cpus))
6740		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6741	mutex_unlock(&sched_domains_mutex);
6742
6743	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6744	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6745	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6746
6747	init_hrtick();
6748
6749	/* Move init over to a non-isolated CPU */
6750	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751		BUG();
 
6752	sched_init_granularity();
6753	free_cpumask_var(non_isolated_cpus);
6754
6755	init_sched_rt_class();
6756	init_sched_dl_class();
 
 
 
 
 
 
 
 
6757}
 
 
6758#else
6759void __init sched_init_smp(void)
6760{
6761	sched_init_granularity();
6762}
6763#endif /* CONFIG_SMP */
6764
6765const_debug unsigned int sysctl_timer_migration = 1;
6766
6767int in_sched_functions(unsigned long addr)
6768{
6769	return in_lock_functions(addr) ||
6770		(addr >= (unsigned long)__sched_text_start
6771		&& addr < (unsigned long)__sched_text_end);
6772}
6773
6774#ifdef CONFIG_CGROUP_SCHED
6775/*
6776 * Default task group.
6777 * Every task in system belongs to this group at bootup.
6778 */
6779struct task_group root_task_group;
6780LIST_HEAD(task_groups);
 
 
 
6781#endif
6782
6783DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
 
6784
6785void __init sched_init(void)
6786{
6787	int i, j;
6788	unsigned long alloc_size = 0, ptr;
 
 
 
 
 
 
 
 
 
 
6789
6790#ifdef CONFIG_FAIR_GROUP_SCHED
6791	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6792#endif
6793#ifdef CONFIG_RT_GROUP_SCHED
6794	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6795#endif
6796#ifdef CONFIG_CPUMASK_OFFSTACK
6797	alloc_size += num_possible_cpus() * cpumask_size();
6798#endif
6799	if (alloc_size) {
6800		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
6803		root_task_group.se = (struct sched_entity **)ptr;
6804		ptr += nr_cpu_ids * sizeof(void **);
6805
6806		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6807		ptr += nr_cpu_ids * sizeof(void **);
6808
 
 
6809#endif /* CONFIG_FAIR_GROUP_SCHED */
6810#ifdef CONFIG_RT_GROUP_SCHED
6811		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6812		ptr += nr_cpu_ids * sizeof(void **);
6813
6814		root_task_group.rt_rq = (struct rt_rq **)ptr;
6815		ptr += nr_cpu_ids * sizeof(void **);
6816
6817#endif /* CONFIG_RT_GROUP_SCHED */
 
6818#ifdef CONFIG_CPUMASK_OFFSTACK
6819		for_each_possible_cpu(i) {
6820			per_cpu(load_balance_mask, i) = (void *)ptr;
6821			ptr += cpumask_size();
6822		}
6823#endif /* CONFIG_CPUMASK_OFFSTACK */
6824	}
 
6825
6826	init_rt_bandwidth(&def_rt_bandwidth,
6827			global_rt_period(), global_rt_runtime());
6828	init_dl_bandwidth(&def_dl_bandwidth,
6829			global_rt_period(), global_rt_runtime());
6830
6831#ifdef CONFIG_SMP
6832	init_defrootdomain();
6833#endif
6834
6835#ifdef CONFIG_RT_GROUP_SCHED
6836	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6837			global_rt_period(), global_rt_runtime());
6838#endif /* CONFIG_RT_GROUP_SCHED */
6839
6840#ifdef CONFIG_CGROUP_SCHED
 
 
6841	list_add(&root_task_group.list, &task_groups);
6842	INIT_LIST_HEAD(&root_task_group.children);
6843	INIT_LIST_HEAD(&root_task_group.siblings);
6844	autogroup_init(&init_task);
6845
6846#endif /* CONFIG_CGROUP_SCHED */
6847
6848	for_each_possible_cpu(i) {
6849		struct rq *rq;
6850
6851		rq = cpu_rq(i);
6852		raw_spin_lock_init(&rq->lock);
6853		rq->nr_running = 0;
6854		rq->calc_load_active = 0;
6855		rq->calc_load_update = jiffies + LOAD_FREQ;
6856		init_cfs_rq(&rq->cfs);
6857		init_rt_rq(&rq->rt, rq);
6858		init_dl_rq(&rq->dl, rq);
6859#ifdef CONFIG_FAIR_GROUP_SCHED
6860		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6861		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
6862		/*
6863		 * How much cpu bandwidth does root_task_group get?
6864		 *
6865		 * In case of task-groups formed thr' the cgroup filesystem, it
6866		 * gets 100% of the cpu resources in the system. This overall
6867		 * system cpu resource is divided among the tasks of
6868		 * root_task_group and its child task-groups in a fair manner,
6869		 * based on each entity's (task or task-group's) weight
6870		 * (se->load.weight).
6871		 *
6872		 * In other words, if root_task_group has 10 tasks of weight
6873		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6874		 * then A0's share of the cpu resource is:
6875		 *
6876		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6877		 *
6878		 * We achieve this by letting root_task_group's tasks sit
6879		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6880		 */
6881		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6882		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6883#endif /* CONFIG_FAIR_GROUP_SCHED */
6884
6885		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6886#ifdef CONFIG_RT_GROUP_SCHED
6887		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6888#endif
6889
6890		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891			rq->cpu_load[j] = 0;
6892
6893		rq->last_load_update_tick = jiffies;
6894
6895#ifdef CONFIG_SMP
6896		rq->sd = NULL;
6897		rq->rd = NULL;
6898		rq->cpu_power = SCHED_POWER_SCALE;
6899		rq->post_schedule = 0;
6900		rq->active_balance = 0;
6901		rq->next_balance = jiffies;
6902		rq->push_cpu = 0;
6903		rq->cpu = i;
6904		rq->online = 0;
6905		rq->idle_stamp = 0;
6906		rq->avg_idle = 2*sysctl_sched_migration_cost;
 
 
6907		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6908
6909		INIT_LIST_HEAD(&rq->cfs_tasks);
6910
6911		rq_attach_root(rq, &def_root_domain);
6912#ifdef CONFIG_NO_HZ_COMMON
6913		rq->nohz_flags = 0;
6914#endif
6915#ifdef CONFIG_NO_HZ_FULL
6916		rq->last_sched_tick = 0;
6917#endif
 
 
6918#endif
6919		init_rq_hrtick(rq);
 
6920		atomic_set(&rq->nr_iowait, 0);
6921	}
6922
6923	set_load_weight(&init_task);
 
 
 
 
 
6924
6925#ifdef CONFIG_PREEMPT_NOTIFIERS
6926	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6927#endif
 
 
 
6928
6929	/*
6930	 * The boot idle thread does lazy MMU switching as well:
6931	 */
6932	atomic_inc(&init_mm.mm_count);
6933	enter_lazy_tlb(&init_mm, current);
6934
6935	/*
6936	 * Make us the idle thread. Technically, schedule() should not be
6937	 * called from this thread, however somewhere below it might be,
6938	 * but because we are the idle thread, we just pick up running again
6939	 * when this runqueue becomes "idle".
6940	 */
6941	init_idle(current, smp_processor_id());
6942
6943	calc_load_update = jiffies + LOAD_FREQ;
6944
6945	/*
6946	 * During early bootup we pretend to be a normal task:
6947	 */
6948	current->sched_class = &fair_sched_class;
6949
6950#ifdef CONFIG_SMP
6951	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6952	/* May be allocated at isolcpus cmdline parse time */
6953	if (cpu_isolated_map == NULL)
6954		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6955	idle_thread_set_boot_cpu();
 
6956#endif
6957	init_sched_fair_class();
6958
 
 
 
 
6959	scheduler_running = 1;
6960}
6961
6962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6963static inline int preempt_count_equals(int preempt_offset)
6964{
6965	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6966
6967	return (nested == preempt_offset);
6968}
6969
6970void __might_sleep(const char *file, int line, int preempt_offset)
6971{
6972	static unsigned long prev_jiffy;	/* ratelimiting */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6973
6974	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6975	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6976	     !is_idle_task(current)) ||
6977	    system_state != SYSTEM_RUNNING || oops_in_progress)
 
6978		return;
 
6979	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6980		return;
6981	prev_jiffy = jiffies;
6982
 
 
 
6983	printk(KERN_ERR
6984		"BUG: sleeping function called from invalid context at %s:%d\n",
6985			file, line);
6986	printk(KERN_ERR
6987		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6988			in_atomic(), irqs_disabled(),
6989			current->pid, current->comm);
6990
 
 
 
6991	debug_show_held_locks(current);
6992	if (irqs_disabled())
6993		print_irqtrace_events(current);
6994#ifdef CONFIG_DEBUG_PREEMPT
6995	if (!preempt_count_equals(preempt_offset)) {
6996		pr_err("Preemption disabled at:");
6997		print_ip_sym(current->preempt_disable_ip);
6998		pr_cont("\n");
6999	}
7000#endif
7001	dump_stack();
 
7002}
7003EXPORT_SYMBOL(__might_sleep);
7004#endif
7005
7006#ifdef CONFIG_MAGIC_SYSRQ
7007static void normalize_task(struct rq *rq, struct task_struct *p)
7008{
7009	const struct sched_class *prev_class = p->sched_class;
7010	struct sched_attr attr = {
7011		.sched_policy = SCHED_NORMAL,
7012	};
7013	int old_prio = p->prio;
7014	int on_rq;
7015
7016	on_rq = p->on_rq;
7017	if (on_rq)
7018		dequeue_task(rq, p, 0);
7019	__setscheduler(rq, p, &attr);
7020	if (on_rq) {
7021		enqueue_task(rq, p, 0);
7022		resched_task(rq->curr);
7023	}
 
 
 
 
7024
7025	check_class_changed(rq, p, prev_class, old_prio);
 
 
 
 
 
 
 
7026}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7028void normalize_rt_tasks(void)
7029{
7030	struct task_struct *g, *p;
7031	unsigned long flags;
7032	struct rq *rq;
 
7033
7034	read_lock_irqsave(&tasklist_lock, flags);
7035	do_each_thread(g, p) {
7036		/*
7037		 * Only normalize user tasks:
7038		 */
7039		if (!p->mm)
7040			continue;
7041
7042		p->se.exec_start		= 0;
7043#ifdef CONFIG_SCHEDSTATS
7044		p->se.statistics.wait_start	= 0;
7045		p->se.statistics.sleep_start	= 0;
7046		p->se.statistics.block_start	= 0;
7047#endif
7048
7049		if (!dl_task(p) && !rt_task(p)) {
7050			/*
7051			 * Renice negative nice level userspace
7052			 * tasks back to 0:
7053			 */
7054			if (task_nice(p) < 0 && p->mm)
7055				set_user_nice(p, 0);
7056			continue;
7057		}
7058
7059		raw_spin_lock(&p->pi_lock);
7060		rq = __task_rq_lock(p);
7061
7062		normalize_task(rq, p);
7063
7064		__task_rq_unlock(rq);
7065		raw_spin_unlock(&p->pi_lock);
7066	} while_each_thread(g, p);
7067
7068	read_unlock_irqrestore(&tasklist_lock, flags);
7069}
7070
7071#endif /* CONFIG_MAGIC_SYSRQ */
7072
7073#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7074/*
7075 * These functions are only useful for the IA64 MCA handling, or kdb.
7076 *
7077 * They can only be called when the whole system has been
7078 * stopped - every CPU needs to be quiescent, and no scheduling
7079 * activity can take place. Using them for anything else would
7080 * be a serious bug, and as a result, they aren't even visible
7081 * under any other configuration.
7082 */
7083
7084/**
7085 * curr_task - return the current task for a given cpu.
7086 * @cpu: the processor in question.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 *
7090 * Return: The current task for @cpu.
7091 */
7092struct task_struct *curr_task(int cpu)
7093{
7094	return cpu_curr(cpu);
7095}
7096
7097#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7098
7099#ifdef CONFIG_IA64
7100/**
7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set.
7104 *
7105 * Description: This function must only be used when non-maskable interrupts
7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function
7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system.
7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */
7115void set_curr_task(int cpu, struct task_struct *p)
7116{
7117	cpu_curr(cpu) = p;
7118}
7119
7120#endif
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123/* task_group_lock serializes the addition/removal of task groups */
7124static DEFINE_SPINLOCK(task_group_lock);
7125
7126static void free_sched_group(struct task_group *tg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7127{
7128	free_fair_sched_group(tg);
7129	free_rt_sched_group(tg);
7130	autogroup_free(tg);
7131	kfree(tg);
7132}
7133
7134/* allocate runqueue etc for a new task group */
7135struct task_group *sched_create_group(struct task_group *parent)
7136{
7137	struct task_group *tg;
7138
7139	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7140	if (!tg)
7141		return ERR_PTR(-ENOMEM);
7142
7143	if (!alloc_fair_sched_group(tg, parent))
7144		goto err;
7145
7146	if (!alloc_rt_sched_group(tg, parent))
7147		goto err;
7148
 
 
7149	return tg;
7150
7151err:
7152	free_sched_group(tg);
7153	return ERR_PTR(-ENOMEM);
7154}
7155
7156void sched_online_group(struct task_group *tg, struct task_group *parent)
7157{
7158	unsigned long flags;
7159
7160	spin_lock_irqsave(&task_group_lock, flags);
7161	list_add_rcu(&tg->list, &task_groups);
7162
7163	WARN_ON(!parent); /* root should already exist */
 
7164
7165	tg->parent = parent;
7166	INIT_LIST_HEAD(&tg->children);
7167	list_add_rcu(&tg->siblings, &parent->children);
7168	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
7169}
7170
7171/* rcu callback to free various structures associated with a task group */
7172static void free_sched_group_rcu(struct rcu_head *rhp)
7173{
7174	/* now it should be safe to free those cfs_rqs */
7175	free_sched_group(container_of(rhp, struct task_group, rcu));
7176}
7177
7178/* Destroy runqueue etc associated with a task group */
7179void sched_destroy_group(struct task_group *tg)
7180{
7181	/* wait for possible concurrent references to cfs_rqs complete */
7182	call_rcu(&tg->rcu, free_sched_group_rcu);
7183}
7184
7185void sched_offline_group(struct task_group *tg)
7186{
7187	unsigned long flags;
7188	int i;
7189
7190	/* end participation in shares distribution */
7191	for_each_possible_cpu(i)
7192		unregister_fair_sched_group(tg, i);
7193
7194	spin_lock_irqsave(&task_group_lock, flags);
7195	list_del_rcu(&tg->list);
7196	list_del_rcu(&tg->siblings);
7197	spin_unlock_irqrestore(&task_group_lock, flags);
7198}
7199
7200/* change task's runqueue when it moves between groups.
7201 *	The caller of this function should have put the task in its new group
7202 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7203 *	reflect its new group.
7204 */
7205void sched_move_task(struct task_struct *tsk)
7206{
7207	struct task_group *tg;
7208	int on_rq, running;
7209	unsigned long flags;
7210	struct rq *rq;
7211
7212	rq = task_rq_lock(tsk, &flags);
7213
7214	running = task_current(rq, tsk);
7215	on_rq = tsk->on_rq;
7216
7217	if (on_rq)
7218		dequeue_task(rq, tsk, 0);
7219	if (unlikely(running))
7220		tsk->sched_class->put_prev_task(rq, tsk);
7221
7222	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7223				lockdep_is_held(&tsk->sighand->siglock)),
 
 
 
 
7224			  struct task_group, css);
7225	tg = autogroup_task_group(tsk, tg);
7226	tsk->sched_task_group = tg;
7227
7228#ifdef CONFIG_FAIR_GROUP_SCHED
7229	if (tsk->sched_class->task_move_group)
7230		tsk->sched_class->task_move_group(tsk, on_rq);
7231	else
7232#endif
7233		set_task_rq(tsk, task_cpu(tsk));
7234
7235	if (unlikely(running))
7236		tsk->sched_class->set_curr_task(rq);
7237	if (on_rq)
7238		enqueue_task(rq, tsk, 0);
7239
7240	task_rq_unlock(rq, tsk, &flags);
7241}
7242#endif /* CONFIG_CGROUP_SCHED */
7243
7244#ifdef CONFIG_RT_GROUP_SCHED
7245/*
7246 * Ensure that the real time constraints are schedulable.
 
 
 
 
7247 */
7248static DEFINE_MUTEX(rt_constraints_mutex);
7249
7250/* Must be called with tasklist_lock held */
7251static inline int tg_has_rt_tasks(struct task_group *tg)
7252{
7253	struct task_struct *g, *p;
7254
7255	do_each_thread(g, p) {
7256		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7257			return 1;
7258	} while_each_thread(g, p);
7259
7260	return 0;
7261}
7262
7263struct rt_schedulable_data {
7264	struct task_group *tg;
7265	u64 rt_period;
7266	u64 rt_runtime;
7267};
7268
7269static int tg_rt_schedulable(struct task_group *tg, void *data)
7270{
7271	struct rt_schedulable_data *d = data;
7272	struct task_group *child;
7273	unsigned long total, sum = 0;
7274	u64 period, runtime;
7275
7276	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277	runtime = tg->rt_bandwidth.rt_runtime;
7278
7279	if (tg == d->tg) {
7280		period = d->rt_period;
7281		runtime = d->rt_runtime;
 
 
 
 
 
 
 
7282	}
7283
7284	/*
7285	 * Cannot have more runtime than the period.
7286	 */
7287	if (runtime > period && runtime != RUNTIME_INF)
7288		return -EINVAL;
7289
7290	/*
7291	 * Ensure we don't starve existing RT tasks.
7292	 */
7293	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7294		return -EBUSY;
7295
7296	total = to_ratio(period, runtime);
7297
7298	/*
7299	 * Nobody can have more than the global setting allows.
7300	 */
7301	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7302		return -EINVAL;
7303
7304	/*
7305	 * The sum of our children's runtime should not exceed our own.
7306	 */
7307	list_for_each_entry_rcu(child, &tg->children, siblings) {
7308		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7309		runtime = child->rt_bandwidth.rt_runtime;
7310
7311		if (child == d->tg) {
7312			period = d->rt_period;
7313			runtime = d->rt_runtime;
7314		}
 
7315
7316		sum += to_ratio(period, runtime);
 
 
7317	}
7318
7319	if (sum > total)
7320		return -EINVAL;
 
7321
7322	return 0;
7323}
7324
7325static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
 
7326{
7327	int ret;
 
7328
7329	struct rt_schedulable_data data = {
7330		.tg = tg,
7331		.rt_period = period,
7332		.rt_runtime = runtime,
7333	};
7334
 
 
 
7335	rcu_read_lock();
7336	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7337	rcu_read_unlock();
 
 
7338
7339	return ret;
7340}
7341
7342static int tg_set_rt_bandwidth(struct task_group *tg,
7343		u64 rt_period, u64 rt_runtime)
7344{
7345	int i, err = 0;
7346
7347	mutex_lock(&rt_constraints_mutex);
7348	read_lock(&tasklist_lock);
7349	err = __rt_schedulable(tg, rt_period, rt_runtime);
7350	if (err)
7351		goto unlock;
7352
7353	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7354	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7355	tg->rt_bandwidth.rt_runtime = rt_runtime;
7356
7357	for_each_possible_cpu(i) {
7358		struct rt_rq *rt_rq = tg->rt_rq[i];
7359
7360		raw_spin_lock(&rt_rq->rt_runtime_lock);
7361		rt_rq->rt_runtime = rt_runtime;
7362		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7363	}
7364	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365unlock:
7366	read_unlock(&tasklist_lock);
7367	mutex_unlock(&rt_constraints_mutex);
7368
7369	return err;
7370}
7371
7372static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7373{
7374	u64 rt_runtime, rt_period;
7375
7376	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7377	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7378	if (rt_runtime_us < 0)
7379		rt_runtime = RUNTIME_INF;
7380
7381	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7382}
7383
7384static long sched_group_rt_runtime(struct task_group *tg)
7385{
7386	u64 rt_runtime_us;
7387
7388	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7389		return -1;
7390
7391	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7392	do_div(rt_runtime_us, NSEC_PER_USEC);
7393	return rt_runtime_us;
 
7394}
7395
7396static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
 
 
 
 
7397{
7398	u64 rt_runtime, rt_period;
 
7399
7400	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7401	rt_runtime = tg->rt_bandwidth.rt_runtime;
7402
7403	if (rt_period == 0)
7404		return -EINVAL;
7405
7406	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7407}
7408
7409static long sched_group_rt_period(struct task_group *tg)
7410{
7411	u64 rt_period_us;
7412
7413	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7414	do_div(rt_period_us, NSEC_PER_USEC);
7415	return rt_period_us;
7416}
7417#endif /* CONFIG_RT_GROUP_SCHED */
7418
7419#ifdef CONFIG_RT_GROUP_SCHED
7420static int sched_rt_global_constraints(void)
7421{
 
 
7422	int ret = 0;
7423
7424	mutex_lock(&rt_constraints_mutex);
7425	read_lock(&tasklist_lock);
7426	ret = __rt_schedulable(NULL, 0, 0);
7427	read_unlock(&tasklist_lock);
7428	mutex_unlock(&rt_constraints_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
7429
 
 
 
7430	return ret;
7431}
7432
7433static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7434{
7435	/* Don't accept realtime tasks when there is no way for them to run */
7436	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7437		return 0;
7438
7439	return 1;
 
7440}
7441
7442#else /* !CONFIG_RT_GROUP_SCHED */
7443static int sched_rt_global_constraints(void)
7444{
7445	unsigned long flags;
7446	int i, ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7447
7448	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7449	for_each_possible_cpu(i) {
7450		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
 
 
 
 
 
 
 
 
 
 
 
7451
7452		raw_spin_lock(&rt_rq->rt_runtime_lock);
7453		rt_rq->rt_runtime = global_rt_runtime();
7454		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7455	}
7456	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7457
7458	return ret;
7459}
7460#endif /* CONFIG_RT_GROUP_SCHED */
7461
7462static int sched_dl_global_constraints(void)
7463{
7464	u64 runtime = global_rt_runtime();
7465	u64 period = global_rt_period();
7466	u64 new_bw = to_ratio(period, runtime);
7467	int cpu, ret = 0;
7468	unsigned long flags;
7469
7470	/*
7471	 * Here we want to check the bandwidth not being set to some
7472	 * value smaller than the currently allocated bandwidth in
7473	 * any of the root_domains.
7474	 *
7475	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7476	 * cycling on root_domains... Discussion on different/better
7477	 * solutions is welcome!
7478	 */
7479	for_each_possible_cpu(cpu) {
7480		struct dl_bw *dl_b = dl_bw_of(cpu);
7481
7482		raw_spin_lock_irqsave(&dl_b->lock, flags);
7483		if (new_bw < dl_b->total_bw)
7484			ret = -EBUSY;
7485		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7486
7487		if (ret)
7488			break;
7489	}
7490
7491	return ret;
7492}
 
 
 
 
 
7493
7494static void sched_dl_do_global(void)
 
7495{
7496	u64 new_bw = -1;
7497	int cpu;
7498	unsigned long flags;
7499
7500	def_dl_bandwidth.dl_period = global_rt_period();
7501	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7502
7503	if (global_rt_runtime() != RUNTIME_INF)
7504		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7505
7506	/*
7507	 * FIXME: As above...
7508	 */
7509	for_each_possible_cpu(cpu) {
7510		struct dl_bw *dl_b = dl_bw_of(cpu);
 
 
 
 
 
7511
7512		raw_spin_lock_irqsave(&dl_b->lock, flags);
7513		dl_b->bw = new_bw;
7514		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7515	}
7516}
7517
7518static int sched_rt_global_validate(void)
7519{
7520	if (sysctl_sched_rt_period <= 0)
7521		return -EINVAL;
7522
7523	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7524		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7525		return -EINVAL;
7526
7527	return 0;
7528}
7529
7530static void sched_rt_do_global(void)
 
 
7531{
7532	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7533	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7534}
7535
7536int sched_rt_handler(struct ctl_table *table, int write,
7537		void __user *buffer, size_t *lenp,
7538		loff_t *ppos)
7539{
7540	int old_period, old_runtime;
7541	static DEFINE_MUTEX(mutex);
7542	int ret;
7543
7544	mutex_lock(&mutex);
7545	old_period = sysctl_sched_rt_period;
7546	old_runtime = sysctl_sched_rt_runtime;
7547
7548	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 
7549
7550	if (!ret && write) {
7551		ret = sched_rt_global_validate();
7552		if (ret)
7553			goto undo;
7554
7555		ret = sched_rt_global_constraints();
7556		if (ret)
7557			goto undo;
 
 
7558
7559		ret = sched_dl_global_constraints();
7560		if (ret)
7561			goto undo;
7562
7563		sched_rt_do_global();
7564		sched_dl_do_global();
7565	}
7566	if (0) {
7567undo:
7568		sysctl_sched_rt_period = old_period;
7569		sysctl_sched_rt_runtime = old_runtime;
7570	}
7571	mutex_unlock(&mutex);
7572
7573	return ret;
7574}
7575
7576int sched_rr_handler(struct ctl_table *table, int write,
7577		void __user *buffer, size_t *lenp,
7578		loff_t *ppos)
7579{
7580	int ret;
7581	static DEFINE_MUTEX(mutex);
7582
7583	mutex_lock(&mutex);
7584	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585	/* make sure that internally we keep jiffies */
7586	/* also, writing zero resets timeslice to default */
7587	if (!ret && write) {
7588		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7589			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7590	}
7591	mutex_unlock(&mutex);
7592	return ret;
7593}
7594
7595#ifdef CONFIG_CGROUP_SCHED
7596
7597static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7598{
7599	return css ? container_of(css, struct task_group, css) : NULL;
7600}
7601
7602static struct cgroup_subsys_state *
7603cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7604{
7605	struct task_group *parent = css_tg(parent_css);
7606	struct task_group *tg;
 
 
 
7607
7608	if (!parent) {
7609		/* This is early initialization for the top cgroup */
7610		return &root_task_group.css;
7611	}
7612
7613	tg = sched_create_group(parent);
7614	if (IS_ERR(tg))
7615		return ERR_PTR(-ENOMEM);
 
7616
7617	return &tg->css;
 
 
7618}
7619
7620static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7621{
7622	struct task_group *tg = css_tg(css);
7623	struct task_group *parent = css_tg(css_parent(css));
7624
7625	if (parent)
7626		sched_online_group(tg, parent);
7627	return 0;
7628}
7629
7630static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631{
7632	struct task_group *tg = css_tg(css);
7633
7634	sched_destroy_group(tg);
7635}
7636
7637static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7638{
7639	struct task_group *tg = css_tg(css);
7640
7641	sched_offline_group(tg);
7642}
7643
7644static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7645				 struct cgroup_taskset *tset)
7646{
7647	struct task_struct *task;
7648
7649	cgroup_taskset_for_each(task, tset) {
7650#ifdef CONFIG_RT_GROUP_SCHED
7651		if (!sched_rt_can_attach(css_tg(css), task))
7652			return -EINVAL;
7653#else
7654		/* We don't support RT-tasks being in separate groups */
7655		if (task->sched_class != &fair_sched_class)
7656			return -EINVAL;
7657#endif
7658	}
7659	return 0;
7660}
7661
7662static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7663			      struct cgroup_taskset *tset)
7664{
7665	struct task_struct *task;
7666
7667	cgroup_taskset_for_each(task, tset)
7668		sched_move_task(task);
7669}
7670
7671static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7672			    struct cgroup_subsys_state *old_css,
7673			    struct task_struct *task)
7674{
7675	/*
7676	 * cgroup_exit() is called in the copy_process() failure path.
7677	 * Ignore this case since the task hasn't ran yet, this avoids
7678	 * trying to poke a half freed task state from generic code.
7679	 */
7680	if (!(task->flags & PF_EXITING))
7681		return;
7682
7683	sched_move_task(task);
7684}
7685
7686#ifdef CONFIG_FAIR_GROUP_SCHED
7687static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7688				struct cftype *cftype, u64 shareval)
7689{
 
 
7690	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7691}
7692
7693static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7694			       struct cftype *cft)
7695{
7696	struct task_group *tg = css_tg(css);
7697
7698	return (u64) scale_load_down(tg->shares);
7699}
7700
7701#ifdef CONFIG_CFS_BANDWIDTH
7702static DEFINE_MUTEX(cfs_constraints_mutex);
7703
7704const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7705const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 
 
7706
7707static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7708
7709static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
 
7710{
7711	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7712	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7713
7714	if (tg == &root_task_group)
7715		return -EINVAL;
7716
7717	/*
7718	 * Ensure we have at some amount of bandwidth every period.  This is
7719	 * to prevent reaching a state of large arrears when throttled via
7720	 * entity_tick() resulting in prolonged exit starvation.
7721	 */
7722	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7723		return -EINVAL;
7724
7725	/*
7726	 * Likewise, bound things on the otherside by preventing insane quota
7727	 * periods.  This also allows us to normalize in computing quota
7728	 * feasibility.
7729	 */
7730	if (period > max_cfs_quota_period)
7731		return -EINVAL;
7732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7733	mutex_lock(&cfs_constraints_mutex);
7734	ret = __cfs_schedulable(tg, period, quota);
7735	if (ret)
7736		goto out_unlock;
7737
7738	runtime_enabled = quota != RUNTIME_INF;
7739	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7740	/*
7741	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7742	 * before making related changes, and on->off must occur afterwards
7743	 */
7744	if (runtime_enabled && !runtime_was_enabled)
7745		cfs_bandwidth_usage_inc();
7746	raw_spin_lock_irq(&cfs_b->lock);
7747	cfs_b->period = ns_to_ktime(period);
7748	cfs_b->quota = quota;
 
7749
7750	__refill_cfs_bandwidth_runtime(cfs_b);
7751	/* restart the period timer (if active) to handle new period expiry */
7752	if (runtime_enabled && cfs_b->timer_active) {
7753		/* force a reprogram */
7754		__start_cfs_bandwidth(cfs_b, true);
7755	}
7756	raw_spin_unlock_irq(&cfs_b->lock);
7757
7758	for_each_possible_cpu(i) {
7759		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7760		struct rq *rq = cfs_rq->rq;
 
7761
7762		raw_spin_lock_irq(&rq->lock);
7763		cfs_rq->runtime_enabled = runtime_enabled;
7764		cfs_rq->runtime_remaining = 0;
7765
7766		if (cfs_rq->throttled)
7767			unthrottle_cfs_rq(cfs_rq);
7768		raw_spin_unlock_irq(&rq->lock);
7769	}
7770	if (runtime_was_enabled && !runtime_enabled)
7771		cfs_bandwidth_usage_dec();
7772out_unlock:
7773	mutex_unlock(&cfs_constraints_mutex);
 
7774
7775	return ret;
7776}
7777
7778int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7779{
7780	u64 quota, period;
7781
7782	period = ktime_to_ns(tg->cfs_bandwidth.period);
 
7783	if (cfs_quota_us < 0)
7784		quota = RUNTIME_INF;
7785	else
7786		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 
 
7787
7788	return tg_set_cfs_bandwidth(tg, period, quota);
7789}
7790
7791long tg_get_cfs_quota(struct task_group *tg)
7792{
7793	u64 quota_us;
7794
7795	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7796		return -1;
7797
7798	quota_us = tg->cfs_bandwidth.quota;
7799	do_div(quota_us, NSEC_PER_USEC);
7800
7801	return quota_us;
7802}
7803
7804int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7805{
7806	u64 quota, period;
 
 
 
7807
7808	period = (u64)cfs_period_us * NSEC_PER_USEC;
7809	quota = tg->cfs_bandwidth.quota;
 
7810
7811	return tg_set_cfs_bandwidth(tg, period, quota);
7812}
7813
7814long tg_get_cfs_period(struct task_group *tg)
7815{
7816	u64 cfs_period_us;
7817
7818	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7819	do_div(cfs_period_us, NSEC_PER_USEC);
7820
7821	return cfs_period_us;
7822}
7823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7824static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7825				  struct cftype *cft)
7826{
7827	return tg_get_cfs_quota(css_tg(css));
7828}
7829
7830static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7831				   struct cftype *cftype, s64 cfs_quota_us)
7832{
7833	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7834}
7835
7836static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7837				   struct cftype *cft)
7838{
7839	return tg_get_cfs_period(css_tg(css));
7840}
7841
7842static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7843				    struct cftype *cftype, u64 cfs_period_us)
7844{
7845	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7846}
7847
 
 
 
 
 
 
 
 
 
 
 
 
7848struct cfs_schedulable_data {
7849	struct task_group *tg;
7850	u64 period, quota;
7851};
7852
7853/*
7854 * normalize group quota/period to be quota/max_period
7855 * note: units are usecs
7856 */
7857static u64 normalize_cfs_quota(struct task_group *tg,
7858			       struct cfs_schedulable_data *d)
7859{
7860	u64 quota, period;
7861
7862	if (tg == d->tg) {
7863		period = d->period;
7864		quota = d->quota;
7865	} else {
7866		period = tg_get_cfs_period(tg);
7867		quota = tg_get_cfs_quota(tg);
7868	}
7869
7870	/* note: these should typically be equivalent */
7871	if (quota == RUNTIME_INF || quota == -1)
7872		return RUNTIME_INF;
7873
7874	return to_ratio(period, quota);
7875}
7876
7877static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7878{
7879	struct cfs_schedulable_data *d = data;
7880	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7881	s64 quota = 0, parent_quota = -1;
7882
7883	if (!tg->parent) {
7884		quota = RUNTIME_INF;
7885	} else {
7886		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7887
7888		quota = normalize_cfs_quota(tg, d);
7889		parent_quota = parent_b->hierarchal_quota;
7890
7891		/*
7892		 * ensure max(child_quota) <= parent_quota, inherit when no
7893		 * limit is set
 
7894		 */
7895		if (quota == RUNTIME_INF)
7896			quota = parent_quota;
7897		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7898			return -EINVAL;
 
 
 
 
7899	}
7900	cfs_b->hierarchal_quota = quota;
7901
7902	return 0;
7903}
7904
7905static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7906{
7907	int ret;
7908	struct cfs_schedulable_data data = {
7909		.tg = tg,
7910		.period = period,
7911		.quota = quota,
7912	};
7913
7914	if (quota != RUNTIME_INF) {
7915		do_div(data.period, NSEC_PER_USEC);
7916		do_div(data.quota, NSEC_PER_USEC);
7917	}
7918
7919	rcu_read_lock();
7920	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7921	rcu_read_unlock();
7922
7923	return ret;
7924}
7925
7926static int cpu_stats_show(struct seq_file *sf, void *v)
7927{
7928	struct task_group *tg = css_tg(seq_css(sf));
7929	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7930
7931	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7932	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7933	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7934
 
 
 
 
 
 
 
 
 
 
7935	return 0;
7936}
7937#endif /* CONFIG_CFS_BANDWIDTH */
7938#endif /* CONFIG_FAIR_GROUP_SCHED */
7939
7940#ifdef CONFIG_RT_GROUP_SCHED
7941static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7942				struct cftype *cft, s64 val)
7943{
7944	return sched_group_set_rt_runtime(css_tg(css), val);
7945}
7946
7947static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7948			       struct cftype *cft)
7949{
7950	return sched_group_rt_runtime(css_tg(css));
7951}
7952
7953static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7954				    struct cftype *cftype, u64 rt_period_us)
7955{
7956	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7957}
7958
7959static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7960				   struct cftype *cft)
7961{
7962	return sched_group_rt_period(css_tg(css));
7963}
7964#endif /* CONFIG_RT_GROUP_SCHED */
7965
7966static struct cftype cpu_files[] = {
7967#ifdef CONFIG_FAIR_GROUP_SCHED
7968	{
7969		.name = "shares",
7970		.read_u64 = cpu_shares_read_u64,
7971		.write_u64 = cpu_shares_write_u64,
7972	},
7973#endif
7974#ifdef CONFIG_CFS_BANDWIDTH
7975	{
7976		.name = "cfs_quota_us",
7977		.read_s64 = cpu_cfs_quota_read_s64,
7978		.write_s64 = cpu_cfs_quota_write_s64,
7979	},
7980	{
7981		.name = "cfs_period_us",
7982		.read_u64 = cpu_cfs_period_read_u64,
7983		.write_u64 = cpu_cfs_period_write_u64,
7984	},
7985	{
 
 
 
 
 
7986		.name = "stat",
7987		.seq_show = cpu_stats_show,
7988	},
7989#endif
7990#ifdef CONFIG_RT_GROUP_SCHED
7991	{
7992		.name = "rt_runtime_us",
7993		.read_s64 = cpu_rt_runtime_read,
7994		.write_s64 = cpu_rt_runtime_write,
7995	},
7996	{
7997		.name = "rt_period_us",
7998		.read_u64 = cpu_rt_period_read_uint,
7999		.write_u64 = cpu_rt_period_write_uint,
8000	},
8001#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8002	{ }	/* terminate */
8003};
8004
8005struct cgroup_subsys cpu_cgrp_subsys = {
8006	.css_alloc	= cpu_cgroup_css_alloc,
8007	.css_free	= cpu_cgroup_css_free,
8008	.css_online	= cpu_cgroup_css_online,
8009	.css_offline	= cpu_cgroup_css_offline,
 
 
 
8010	.can_attach	= cpu_cgroup_can_attach,
8011	.attach		= cpu_cgroup_attach,
8012	.exit		= cpu_cgroup_exit,
8013	.base_cftypes	= cpu_files,
8014	.early_init	= 1,
 
8015};
8016
8017#endif	/* CONFIG_CGROUP_SCHED */
8018
8019void dump_cpu_task(int cpu)
8020{
8021	pr_info("Task dump for CPU %d:\n", cpu);
8022	sched_show_task(cpu_curr(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8023}
v5.14.15
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel scheduler code and related syscalls
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 */
    9#define CREATE_TRACE_POINTS
   10#include <trace/events/sched.h>
   11#undef CREATE_TRACE_POINTS
   12
   13#include "sched.h"
   14
   15#include <linux/nospec.h>
   16
   17#include <linux/kcov.h>
   18#include <linux/scs.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   19
   20#include <asm/switch_to.h>
   21#include <asm/tlb.h>
 
 
 
 
 
   22
 
   23#include "../workqueue_internal.h"
   24#include "../../fs/io-wq.h"
   25#include "../smpboot.h"
   26
   27#include "pelt.h"
   28#include "smp.h"
   29
   30/*
   31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
   32 * associated with them) to allow external modules to probe them.
   33 */
   34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
   35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
   36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
   37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
   38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
   39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
   40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
   41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
   42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
   43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
   44
   45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 
   46
   47#ifdef CONFIG_SCHED_DEBUG
   48/*
   49 * Debugging: various feature bits
   50 *
   51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
   52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
   53 * at compile time and compiler optimization based on features default.
   54 */
   55#define SCHED_FEAT(name, enabled)	\
   56	(1UL << __SCHED_FEAT_##name) * enabled |
   57const_debug unsigned int sysctl_sched_features =
   58#include "features.h"
   59	0;
   60#undef SCHED_FEAT
   61
   62/*
   63 * Print a warning if need_resched is set for the given duration (if
   64 * LATENCY_WARN is enabled).
   65 *
   66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
   67 * per boot.
   68 */
   69__read_mostly int sysctl_resched_latency_warn_ms = 100;
   70__read_mostly int sysctl_resched_latency_warn_once = 1;
   71#endif /* CONFIG_SCHED_DEBUG */
   72
   73/*
   74 * Number of tasks to iterate in a single balance run.
   75 * Limited because this is done with IRQs disabled.
   76 */
   77const_debug unsigned int sysctl_sched_nr_migrate = 32;
   78
   79/*
   80 * period over which we measure -rt task CPU usage in us.
   81 * default: 1s
   82 */
   83unsigned int sysctl_sched_rt_period = 1000000;
   84
   85__read_mostly int scheduler_running;
   86
   87#ifdef CONFIG_SCHED_CORE
   88
   89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
   90
   91/* kernel prio, less is more */
   92static inline int __task_prio(struct task_struct *p)
   93{
   94	if (p->sched_class == &stop_sched_class) /* trumps deadline */
   95		return -2;
   96
   97	if (rt_prio(p->prio)) /* includes deadline */
   98		return p->prio; /* [-1, 99] */
   99
  100	if (p->sched_class == &idle_sched_class)
  101		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  102
  103	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
  104}
  105
  106/*
  107 * l(a,b)
  108 * le(a,b) := !l(b,a)
  109 * g(a,b)  := l(b,a)
  110 * ge(a,b) := !l(a,b)
  111 */
  112
  113/* real prio, less is less */
  114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
  115{
  116
  117	int pa = __task_prio(a), pb = __task_prio(b);
 
 
  118
  119	if (-pa < -pb)
  120		return true;
  121
  122	if (-pb < -pa)
  123		return false;
 
  124
  125	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
  126		return !dl_time_before(a->dl.deadline, b->dl.deadline);
 
  127
  128	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  129		return cfs_prio_less(a, b, in_fi);
  130
  131	return false;
  132}
  133
  134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
  135{
  136	if (a->core_cookie < b->core_cookie)
  137		return true;
  138
  139	if (a->core_cookie > b->core_cookie)
  140		return false;
  141
  142	/* flip prio, so high prio is leftmost */
  143	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
  144		return true;
  145
  146	return false;
  147}
  148
  149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  150
  151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  152{
  153	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  154}
  155
  156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  157{
  158	const struct task_struct *p = __node_2_sc(node);
  159	unsigned long cookie = (unsigned long)key;
  160
  161	if (cookie < p->core_cookie)
  162		return -1;
  163
  164	if (cookie > p->core_cookie)
  165		return 1;
  166
  167	return 0;
  168}
  169
  170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  171{
  172	rq->core->core_task_seq++;
  173
  174	if (!p->core_cookie)
  175		return;
  176
  177	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  178}
  179
  180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
  181{
  182	rq->core->core_task_seq++;
  183
  184	if (!sched_core_enqueued(p))
  185		return;
  186
  187	rb_erase(&p->core_node, &rq->core_tree);
  188	RB_CLEAR_NODE(&p->core_node);
  189}
  190
  191/*
  192 * Find left-most (aka, highest priority) task matching @cookie.
  193 */
  194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  195{
  196	struct rb_node *node;
  197
  198	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  199	/*
  200	 * The idle task always matches any cookie!
  201	 */
  202	if (!node)
  203		return idle_sched_class.pick_task(rq);
  204
  205	return __node_2_sc(node);
  206}
  207
  208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  209{
  210	struct rb_node *node = &p->core_node;
  211
  212	node = rb_next(node);
  213	if (!node)
  214		return NULL;
  215
  216	p = container_of(node, struct task_struct, core_node);
  217	if (p->core_cookie != cookie)
  218		return NULL;
  219
  220	return p;
  221}
 
 
 
 
  222
  223/*
  224 * Magic required such that:
  225 *
  226 *	raw_spin_rq_lock(rq);
  227 *	...
  228 *	raw_spin_rq_unlock(rq);
  229 *
  230 * ends up locking and unlocking the _same_ lock, and all CPUs
  231 * always agree on what rq has what lock.
  232 *
  233 * XXX entirely possible to selectively enable cores, don't bother for now.
  234 */
  235
  236static DEFINE_MUTEX(sched_core_mutex);
  237static atomic_t sched_core_count;
  238static struct cpumask sched_core_mask;
  239
  240static void sched_core_lock(int cpu, unsigned long *flags)
  241{
  242	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  243	int t, i = 0;
  244
  245	local_irq_save(*flags);
  246	for_each_cpu(t, smt_mask)
  247		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  248}
  249
  250static void sched_core_unlock(int cpu, unsigned long *flags)
  251{
  252	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  253	int t;
 
 
 
 
 
 
 
 
  254
  255	for_each_cpu(t, smt_mask)
  256		raw_spin_unlock(&cpu_rq(t)->__lock);
  257	local_irq_restore(*flags);
  258}
  259
  260static void __sched_core_flip(bool enabled)
 
 
  261{
  262	unsigned long flags;
  263	int cpu, t;
 
  264
  265	cpus_read_lock();
 
  266
  267	/*
  268	 * Toggle the online cores, one by one.
  269	 */
  270	cpumask_copy(&sched_core_mask, cpu_online_mask);
  271	for_each_cpu(cpu, &sched_core_mask) {
  272		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  273
  274		sched_core_lock(cpu, &flags);
 
  275
  276		for_each_cpu(t, smt_mask)
  277			cpu_rq(t)->core_enabled = enabled;
 
  278
  279		sched_core_unlock(cpu, &flags);
  280
  281		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  282	}
  283
  284	/*
  285	 * Toggle the offline CPUs.
  286	 */
  287	cpumask_copy(&sched_core_mask, cpu_possible_mask);
  288	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
  289
  290	for_each_cpu(cpu, &sched_core_mask)
  291		cpu_rq(cpu)->core_enabled = enabled;
  292
  293	cpus_read_unlock();
  294}
  295
  296static void sched_core_assert_empty(void)
  297{
  298	int cpu;
  299
  300	for_each_possible_cpu(cpu)
  301		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  302}
  303
  304static void __sched_core_enable(void)
  305{
  306	static_branch_enable(&__sched_core_enabled);
  307	/*
  308	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  309	 * and future ones will observe !sched_core_disabled().
  310	 */
  311	synchronize_rcu();
  312	__sched_core_flip(true);
  313	sched_core_assert_empty();
  314}
  315
  316static void __sched_core_disable(void)
  317{
  318	sched_core_assert_empty();
  319	__sched_core_flip(false);
  320	static_branch_disable(&__sched_core_enabled);
  321}
  322
  323void sched_core_get(void)
  324{
  325	if (atomic_inc_not_zero(&sched_core_count))
  326		return;
  327
  328	mutex_lock(&sched_core_mutex);
  329	if (!atomic_read(&sched_core_count))
  330		__sched_core_enable();
  331
  332	smp_mb__before_atomic();
  333	atomic_inc(&sched_core_count);
  334	mutex_unlock(&sched_core_mutex);
  335}
  336
  337static void __sched_core_put(struct work_struct *work)
  338{
  339	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  340		__sched_core_disable();
  341		mutex_unlock(&sched_core_mutex);
  342	}
  343}
  344
  345void sched_core_put(void)
  346{
  347	static DECLARE_WORK(_work, __sched_core_put);
  348
  349	/*
  350	 * "There can be only one"
  351	 *
  352	 * Either this is the last one, or we don't actually need to do any
  353	 * 'work'. If it is the last *again*, we rely on
  354	 * WORK_STRUCT_PENDING_BIT.
  355	 */
  356	if (!atomic_add_unless(&sched_core_count, -1, 1))
  357		schedule_work(&_work);
  358}
  359
  360#else /* !CONFIG_SCHED_CORE */
  361
  362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
  364
  365#endif /* CONFIG_SCHED_CORE */
  366
  367/*
  368 * part of the period that we allow rt tasks to run in us.
  369 * default: 0.95s
  370 */
  371int sysctl_sched_rt_runtime = 950000;
  372
  373
  374/*
  375 * Serialization rules:
  376 *
  377 * Lock order:
  378 *
  379 *   p->pi_lock
  380 *     rq->lock
  381 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  382 *
  383 *  rq1->lock
  384 *    rq2->lock  where: rq1 < rq2
  385 *
  386 * Regular state:
  387 *
  388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  390 * always looks at the local rq data structures to find the most eligible task
  391 * to run next.
  392 *
  393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  395 * the local CPU to avoid bouncing the runqueue state around [ see
  396 * ttwu_queue_wakelist() ]
  397 *
  398 * Task wakeup, specifically wakeups that involve migration, are horribly
  399 * complicated to avoid having to take two rq->locks.
  400 *
  401 * Special state:
  402 *
  403 * System-calls and anything external will use task_rq_lock() which acquires
  404 * both p->pi_lock and rq->lock. As a consequence the state they change is
  405 * stable while holding either lock:
  406 *
  407 *  - sched_setaffinity()/
  408 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  409 *  - set_user_nice():		p->se.load, p->*prio
  410 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  411 *				p->se.load, p->rt_priority,
  412 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  413 *  - sched_setnuma():		p->numa_preferred_nid
  414 *  - sched_move_task()/
  415 *    cpu_cgroup_fork():	p->sched_task_group
  416 *  - uclamp_update_active()	p->uclamp*
  417 *
  418 * p->state <- TASK_*:
  419 *
  420 *   is changed locklessly using set_current_state(), __set_current_state() or
  421 *   set_special_state(), see their respective comments, or by
  422 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  423 *   concurrent self.
  424 *
  425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  426 *
  427 *   is set by activate_task() and cleared by deactivate_task(), under
  428 *   rq->lock. Non-zero indicates the task is runnable, the special
  429 *   ON_RQ_MIGRATING state is used for migration without holding both
  430 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  431 *
  432 * p->on_cpu <- { 0, 1 }:
  433 *
  434 *   is set by prepare_task() and cleared by finish_task() such that it will be
  435 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  436 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  437 *
  438 *   [ The astute reader will observe that it is possible for two tasks on one
  439 *     CPU to have ->on_cpu = 1 at the same time. ]
  440 *
  441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  442 *
  443 *  - Don't call set_task_cpu() on a blocked task:
  444 *
  445 *    We don't care what CPU we're not running on, this simplifies hotplug,
  446 *    the CPU assignment of blocked tasks isn't required to be valid.
  447 *
  448 *  - for try_to_wake_up(), called under p->pi_lock:
  449 *
  450 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  451 *
  452 *  - for migration called under rq->lock:
  453 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  454 *
  455 *    o move_queued_task()
  456 *    o detach_task()
  457 *
  458 *  - for migration called under double_rq_lock():
  459 *
  460 *    o __migrate_swap_task()
  461 *    o push_rt_task() / pull_rt_task()
  462 *    o push_dl_task() / pull_dl_task()
  463 *    o dl_task_offline_migration()
  464 *
 
  465 */
 
  466
  467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  468{
  469	raw_spinlock_t *lock;
 
 
  470
  471	/* Matches synchronize_rcu() in __sched_core_enable() */
  472	preempt_disable();
  473	if (sched_core_disabled()) {
  474		raw_spin_lock_nested(&rq->__lock, subclass);
  475		/* preempt_count *MUST* be > 1 */
  476		preempt_enable_no_resched();
  477		return;
  478	}
  479
  480	for (;;) {
  481		lock = __rq_lockp(rq);
  482		raw_spin_lock_nested(lock, subclass);
  483		if (likely(lock == __rq_lockp(rq))) {
  484			/* preempt_count *MUST* be > 1 */
  485			preempt_enable_no_resched();
  486			return;
  487		}
  488		raw_spin_unlock(lock);
  489	}
  490}
  491
  492bool raw_spin_rq_trylock(struct rq *rq)
  493{
  494	raw_spinlock_t *lock;
  495	bool ret;
  496
  497	/* Matches synchronize_rcu() in __sched_core_enable() */
  498	preempt_disable();
  499	if (sched_core_disabled()) {
  500		ret = raw_spin_trylock(&rq->__lock);
  501		preempt_enable();
  502		return ret;
  503	}
  504
  505	for (;;) {
  506		lock = __rq_lockp(rq);
  507		ret = raw_spin_trylock(lock);
  508		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  509			preempt_enable();
  510			return ret;
  511		}
  512		raw_spin_unlock(lock);
  513	}
  514}
  515
  516void raw_spin_rq_unlock(struct rq *rq)
  517{
  518	raw_spin_unlock(rq_lockp(rq));
  519}
  520
  521#ifdef CONFIG_SMP
  522/*
  523 * double_rq_lock - safely lock two runqueues
 
  524 */
  525void double_rq_lock(struct rq *rq1, struct rq *rq2)
  526{
  527	lockdep_assert_irqs_disabled();
  528
  529	if (rq_order_less(rq2, rq1))
  530		swap(rq1, rq2);
  531
  532	raw_spin_rq_lock(rq1);
  533	if (__rq_lockp(rq1) == __rq_lockp(rq2))
  534		return;
  535
  536	raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  537}
  538#endif
  539
  540/*
  541 * __task_rq_lock - lock the rq @p resides on.
  542 */
  543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  544	__acquires(rq->lock)
  545{
  546	struct rq *rq;
  547
  548	lockdep_assert_held(&p->pi_lock);
  549
  550	for (;;) {
  551		rq = task_rq(p);
  552		raw_spin_rq_lock(rq);
  553		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  554			rq_pin_lock(rq, rf);
  555			return rq;
  556		}
  557		raw_spin_rq_unlock(rq);
  558
  559		while (unlikely(task_on_rq_migrating(p)))
  560			cpu_relax();
  561	}
  562}
  563
  564/*
  565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  566 */
  567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  568	__acquires(p->pi_lock)
  569	__acquires(rq->lock)
  570{
  571	struct rq *rq;
  572
  573	for (;;) {
  574		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  575		rq = task_rq(p);
  576		raw_spin_rq_lock(rq);
  577		/*
  578		 *	move_queued_task()		task_rq_lock()
  579		 *
  580		 *	ACQUIRE (rq->lock)
  581		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  582		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  583		 *	[S] ->cpu = new_cpu		[L] task_rq()
  584		 *					[L] ->on_rq
  585		 *	RELEASE (rq->lock)
  586		 *
  587		 * If we observe the old CPU in task_rq_lock(), the acquire of
  588		 * the old rq->lock will fully serialize against the stores.
  589		 *
  590		 * If we observe the new CPU in task_rq_lock(), the address
  591		 * dependency headed by '[L] rq = task_rq()' and the acquire
  592		 * will pair with the WMB to ensure we then also see migrating.
  593		 */
  594		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  595			rq_pin_lock(rq, rf);
  596			return rq;
  597		}
  598		raw_spin_rq_unlock(rq);
  599		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  600
  601		while (unlikely(task_on_rq_migrating(p)))
  602			cpu_relax();
  603	}
  604}
  605
  606/*
  607 * RQ-clock updating methods:
  608 */
 
 
  609
  610static void update_rq_clock_task(struct rq *rq, s64 delta)
 
 
 
  611{
 
 
 
 
  612/*
  613 * In theory, the compile should just see 0 here, and optimize out the call
  614 * to sched_rt_avg_update. But I don't trust it...
  615 */
  616	s64 __maybe_unused steal = 0, irq_delta = 0;
  617
  618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  619	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  620
  621	/*
  622	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  623	 * this case when a previous update_rq_clock() happened inside a
  624	 * {soft,}irq region.
  625	 *
  626	 * When this happens, we stop ->clock_task and only update the
  627	 * prev_irq_time stamp to account for the part that fit, so that a next
  628	 * update will consume the rest. This ensures ->clock_task is
  629	 * monotonic.
  630	 *
  631	 * It does however cause some slight miss-attribution of {soft,}irq
  632	 * time, a more accurate solution would be to update the irq_time using
  633	 * the current rq->clock timestamp, except that would require using
  634	 * atomic ops.
  635	 */
  636	if (irq_delta > delta)
  637		irq_delta = delta;
  638
  639	rq->prev_irq_time += irq_delta;
  640	delta -= irq_delta;
  641#endif
  642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  643	if (static_key_false((&paravirt_steal_rq_enabled))) {
  644		steal = paravirt_steal_clock(cpu_of(rq));
  645		steal -= rq->prev_steal_time_rq;
  646
  647		if (unlikely(steal > delta))
  648			steal = delta;
  649
  650		rq->prev_steal_time_rq += steal;
  651		delta -= steal;
  652	}
  653#endif
  654
  655	rq->clock_task += delta;
  656
  657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  658	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  659		update_irq_load_avg(rq, irq_delta + steal);
  660#endif
  661	update_rq_clock_pelt(rq, delta);
  662}
  663
  664void update_rq_clock(struct rq *rq)
  665{
  666	s64 delta;
  667
  668	lockdep_assert_rq_held(rq);
 
 
  669
  670	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  671		return;
  672
  673#ifdef CONFIG_SCHED_DEBUG
  674	if (sched_feat(WARN_DOUBLE_CLOCK))
  675		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  676	rq->clock_update_flags |= RQCF_UPDATED;
  677#endif
  678
  679	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  680	if (delta < 0)
  681		return;
  682	rq->clock += delta;
  683	update_rq_clock_task(rq, delta);
  684}
  685
  686#ifdef CONFIG_SCHED_HRTICK
  687/*
  688 * Use HR-timers to deliver accurate preemption points.
  689 */
  690
  691static void hrtick_clear(struct rq *rq)
  692{
  693	if (hrtimer_active(&rq->hrtick_timer))
  694		hrtimer_cancel(&rq->hrtick_timer);
  695}
  696
  697/*
  698 * High-resolution timer tick.
  699 * Runs from hardirq context with interrupts disabled.
  700 */
  701static enum hrtimer_restart hrtick(struct hrtimer *timer)
  702{
  703	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  704	struct rq_flags rf;
  705
  706	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  707
  708	rq_lock(rq, &rf);
  709	update_rq_clock(rq);
  710	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  711	rq_unlock(rq, &rf);
  712
  713	return HRTIMER_NORESTART;
  714}
  715
  716#ifdef CONFIG_SMP
  717
  718static void __hrtick_restart(struct rq *rq)
  719{
  720	struct hrtimer *timer = &rq->hrtick_timer;
  721	ktime_t time = rq->hrtick_time;
  722
  723	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  724}
  725
  726/*
  727 * called from hardirq (IPI) context
  728 */
  729static void __hrtick_start(void *arg)
  730{
  731	struct rq *rq = arg;
  732	struct rq_flags rf;
  733
  734	rq_lock(rq, &rf);
  735	__hrtick_restart(rq);
  736	rq_unlock(rq, &rf);
 
  737}
  738
  739/*
  740 * Called to set the hrtick timer state.
  741 *
  742 * called with rq->lock held and irqs disabled
  743 */
  744void hrtick_start(struct rq *rq, u64 delay)
  745{
  746	struct hrtimer *timer = &rq->hrtick_timer;
  747	s64 delta;
  748
  749	/*
  750	 * Don't schedule slices shorter than 10000ns, that just
  751	 * doesn't make sense and can cause timer DoS.
  752	 */
  753	delta = max_t(s64, delay, 10000LL);
  754	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
  755
  756	if (rq == this_rq())
  757		__hrtick_restart(rq);
  758	else
  759		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 
 
  760}
  761
  762#else
  763/*
  764 * Called to set the hrtick timer state.
  765 *
  766 * called with rq->lock held and irqs disabled
  767 */
  768void hrtick_start(struct rq *rq, u64 delay)
  769{
  770	/*
  771	 * Don't schedule slices shorter than 10000ns, that just
  772	 * doesn't make sense. Rely on vruntime for fairness.
  773	 */
  774	delay = max_t(u64, delay, 10000LL);
  775	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  776		      HRTIMER_MODE_REL_PINNED_HARD);
  777}
  778
  779#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 
  780
  781static void hrtick_rq_init(struct rq *rq)
  782{
  783#ifdef CONFIG_SMP
  784	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
  785#endif
  786	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
  787	rq->hrtick_timer.function = hrtick;
  788}
  789#else	/* CONFIG_SCHED_HRTICK */
  790static inline void hrtick_clear(struct rq *rq)
  791{
  792}
  793
  794static inline void hrtick_rq_init(struct rq *rq)
  795{
 
  796}
  797#endif	/* CONFIG_SCHED_HRTICK */
  798
  799/*
  800 * cmpxchg based fetch_or, macro so it works for different integer types
 
 
  801 */
  802#define fetch_or(ptr, mask)						\
  803	({								\
  804		typeof(ptr) _ptr = (ptr);				\
  805		typeof(mask) _mask = (mask);				\
  806		typeof(*_ptr) _old, _val = *_ptr;			\
  807									\
  808		for (;;) {						\
  809			_old = cmpxchg(_ptr, _val, _val | _mask);	\
  810			if (_old == _val)				\
  811				break;					\
  812			_val = _old;					\
  813		}							\
  814	_old;								\
  815})
  816
  817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  818/*
  819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  820 * this avoids any races wrt polling state changes and thereby avoids
  821 * spurious IPIs.
  822 */
  823static bool set_nr_and_not_polling(struct task_struct *p)
  824{
  825	struct thread_info *ti = task_thread_info(p);
  826	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  827}
  828
  829/*
  830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  831 *
  832 * If this returns true, then the idle task promises to call
  833 * sched_ttwu_pending() and reschedule soon.
  834 */
  835static bool set_nr_if_polling(struct task_struct *p)
  836{
  837	struct thread_info *ti = task_thread_info(p);
  838	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  839
  840	for (;;) {
  841		if (!(val & _TIF_POLLING_NRFLAG))
  842			return false;
  843		if (val & _TIF_NEED_RESCHED)
  844			return true;
  845		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  846		if (old == val)
  847			break;
  848		val = old;
  849	}
  850	return true;
  851}
 
  852
  853#else
  854static bool set_nr_and_not_polling(struct task_struct *p)
  855{
  856	set_tsk_need_resched(p);
  857	return true;
  858}
  859
  860#ifdef CONFIG_SMP
  861static bool set_nr_if_polling(struct task_struct *p)
  862{
  863	return false;
  864}
  865#endif
  866#endif
  867
  868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  869{
  870	struct wake_q_node *node = &task->wake_q;
  871
  872	/*
  873	 * Atomically grab the task, if ->wake_q is !nil already it means
  874	 * it's already queued (either by us or someone else) and will get the
  875	 * wakeup due to that.
  876	 *
  877	 * In order to ensure that a pending wakeup will observe our pending
  878	 * state, even in the failed case, an explicit smp_mb() must be used.
  879	 */
  880	smp_mb__before_atomic();
  881	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
  882		return false;
  883
  884	/*
  885	 * The head is context local, there can be no concurrency.
  886	 */
  887	*head->lastp = node;
  888	head->lastp = &node->next;
  889	return true;
  890}
  891
  892/**
  893 * wake_q_add() - queue a wakeup for 'later' waking.
  894 * @head: the wake_q_head to add @task to
  895 * @task: the task to queue for 'later' wakeup
  896 *
  897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  899 * instantly.
  900 *
  901 * This function must be used as-if it were wake_up_process(); IOW the task
  902 * must be ready to be woken at this location.
  903 */
  904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  905{
  906	if (__wake_q_add(head, task))
  907		get_task_struct(task);
  908}
  909
  910/**
  911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
  912 * @head: the wake_q_head to add @task to
  913 * @task: the task to queue for 'later' wakeup
  914 *
  915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  917 * instantly.
  918 *
  919 * This function must be used as-if it were wake_up_process(); IOW the task
  920 * must be ready to be woken at this location.
  921 *
  922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
  923 * that already hold reference to @task can call the 'safe' version and trust
  924 * wake_q to do the right thing depending whether or not the @task is already
  925 * queued for wakeup.
  926 */
  927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
  928{
  929	if (!__wake_q_add(head, task))
  930		put_task_struct(task);
  931}
  932
  933void wake_up_q(struct wake_q_head *head)
  934{
  935	struct wake_q_node *node = head->first;
  936
  937	while (node != WAKE_Q_TAIL) {
  938		struct task_struct *task;
  939
  940		task = container_of(node, struct task_struct, wake_q);
  941		/* Task can safely be re-inserted now: */
  942		node = node->next;
  943		task->wake_q.next = NULL;
  944
  945		/*
  946		 * wake_up_process() executes a full barrier, which pairs with
  947		 * the queueing in wake_q_add() so as not to miss wakeups.
  948		 */
  949		wake_up_process(task);
  950		put_task_struct(task);
  951	}
  952}
 
  953
  954/*
  955 * resched_curr - mark rq's current task 'to be rescheduled now'.
  956 *
  957 * On UP this means the setting of the need_resched flag, on SMP it
  958 * might also involve a cross-CPU call to trigger the scheduler on
  959 * the target CPU.
  960 */
  961void resched_curr(struct rq *rq)
  962{
  963	struct task_struct *curr = rq->curr;
  964	int cpu;
  965
  966	lockdep_assert_rq_held(rq);
  967
  968	if (test_tsk_need_resched(curr))
  969		return;
  970
  971	cpu = cpu_of(rq);
  972
 
  973	if (cpu == smp_processor_id()) {
  974		set_tsk_need_resched(curr);
  975		set_preempt_need_resched();
  976		return;
  977	}
  978
  979	if (set_nr_and_not_polling(curr))
 
 
  980		smp_send_reschedule(cpu);
  981	else
  982		trace_sched_wake_idle_without_ipi(cpu);
  983}
  984
  985void resched_cpu(int cpu)
  986{
  987	struct rq *rq = cpu_rq(cpu);
  988	unsigned long flags;
  989
  990	raw_spin_rq_lock_irqsave(rq, flags);
  991	if (cpu_online(cpu) || cpu == smp_processor_id())
  992		resched_curr(rq);
  993	raw_spin_rq_unlock_irqrestore(rq, flags);
  994}
  995
  996#ifdef CONFIG_SMP
  997#ifdef CONFIG_NO_HZ_COMMON
  998/*
  999 * In the semi idle case, use the nearest busy CPU for migrating timers
 1000 * from an idle CPU.  This is good for power-savings.
 1001 *
 1002 * We don't do similar optimization for completely idle system, as
 1003 * selecting an idle CPU will add more delays to the timers than intended
 1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 1005 */
 1006int get_nohz_timer_target(void)
 1007{
 1008	int i, cpu = smp_processor_id(), default_cpu = -1;
 
 1009	struct sched_domain *sd;
 1010
 1011	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 1012		if (!idle_cpu(cpu))
 1013			return cpu;
 1014		default_cpu = cpu;
 1015	}
 1016
 1017	rcu_read_lock();
 1018	for_each_domain(cpu, sd) {
 1019		for_each_cpu_and(i, sched_domain_span(sd),
 1020			housekeeping_cpumask(HK_FLAG_TIMER)) {
 1021			if (cpu == i)
 1022				continue;
 1023
 1024			if (!idle_cpu(i)) {
 1025				cpu = i;
 1026				goto unlock;
 1027			}
 1028		}
 1029	}
 1030
 1031	if (default_cpu == -1)
 1032		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 1033	cpu = default_cpu;
 1034unlock:
 1035	rcu_read_unlock();
 1036	return cpu;
 1037}
 1038
 1039/*
 1040 * When add_timer_on() enqueues a timer into the timer wheel of an
 1041 * idle CPU then this timer might expire before the next timer event
 1042 * which is scheduled to wake up that CPU. In case of a completely
 1043 * idle system the next event might even be infinite time into the
 1044 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1045 * leaves the inner idle loop so the newly added timer is taken into
 1046 * account when the CPU goes back to idle and evaluates the timer
 1047 * wheel for the next timer event.
 1048 */
 1049static void wake_up_idle_cpu(int cpu)
 1050{
 1051	struct rq *rq = cpu_rq(cpu);
 1052
 1053	if (cpu == smp_processor_id())
 1054		return;
 1055
 1056	if (set_nr_and_not_polling(rq->idle))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1057		smp_send_reschedule(cpu);
 1058	else
 1059		trace_sched_wake_idle_without_ipi(cpu);
 1060}
 1061
 1062static bool wake_up_full_nohz_cpu(int cpu)
 1063{
 1064	/*
 1065	 * We just need the target to call irq_exit() and re-evaluate
 1066	 * the next tick. The nohz full kick at least implies that.
 1067	 * If needed we can still optimize that later with an
 1068	 * empty IRQ.
 1069	 */
 1070	if (cpu_is_offline(cpu))
 1071		return true;  /* Don't try to wake offline CPUs. */
 1072	if (tick_nohz_full_cpu(cpu)) {
 1073		if (cpu != smp_processor_id() ||
 1074		    tick_nohz_tick_stopped())
 1075			tick_nohz_full_kick_cpu(cpu);
 1076		return true;
 1077	}
 1078
 1079	return false;
 1080}
 1081
 1082/*
 1083 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1084 * caller's responsibility to deal with the lost wakeup, for example,
 1085 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1086 */
 1087void wake_up_nohz_cpu(int cpu)
 1088{
 1089	if (!wake_up_full_nohz_cpu(cpu))
 1090		wake_up_idle_cpu(cpu);
 1091}
 1092
 1093static void nohz_csd_func(void *info)
 1094{
 1095	struct rq *rq = info;
 1096	int cpu = cpu_of(rq);
 1097	unsigned int flags;
 
 
 
 
 1098
 1099	/*
 1100	 * Release the rq::nohz_csd.
 
 1101	 */
 1102	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1103	WARN_ON(!(flags & NOHZ_KICK_MASK));
 
 
 
 1104
 1105	rq->idle_balance = idle_cpu(cpu);
 1106	if (rq->idle_balance && !need_resched()) {
 1107		rq->nohz_idle_balance = flags;
 1108		raise_softirq_irqoff(SCHED_SOFTIRQ);
 1109	}
 1110}
 1111
 1112#endif /* CONFIG_NO_HZ_COMMON */
 1113
 1114#ifdef CONFIG_NO_HZ_FULL
 1115bool sched_can_stop_tick(struct rq *rq)
 1116{
 1117	int fifo_nr_running;
 
 
 1118
 1119	/* Deadline tasks, even if single, need the tick */
 1120	if (rq->dl.dl_nr_running)
 1121		return false;
 1122
 1123	/*
 1124	 * If there are more than one RR tasks, we need the tick to affect the
 1125	 * actual RR behaviour.
 1126	 */
 1127	if (rq->rt.rr_nr_running) {
 1128		if (rq->rt.rr_nr_running == 1)
 1129			return true;
 1130		else
 1131			return false;
 1132	}
 1133
 1134	/*
 1135	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1136	 * forced preemption between FIFO tasks.
 1137	 */
 1138	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1139	if (fifo_nr_running)
 1140		return true;
 1141
 1142	/*
 1143	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 1144	 * if there's more than one we need the tick for involuntary
 1145	 * preemption.
 1146	 */
 1147	if (rq->nr_running > 1)
 1148		return false;
 1149
 1150	return true;
 
 
 
 
 
 
 
 
 
 1151}
 1152#endif /* CONFIG_NO_HZ_FULL */
 1153#endif /* CONFIG_SMP */
 1154
 1155#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1156			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1157/*
 1158 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1159 * node and @up when leaving it for the final time.
 1160 *
 1161 * Caller must hold rcu_lock or sufficient equivalent.
 1162 */
 1163int walk_tg_tree_from(struct task_group *from,
 1164			     tg_visitor down, tg_visitor up, void *data)
 1165{
 1166	struct task_group *parent, *child;
 1167	int ret;
 1168
 1169	parent = from;
 1170
 1171down:
 1172	ret = (*down)(parent, data);
 1173	if (ret)
 1174		goto out;
 1175	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1176		parent = child;
 1177		goto down;
 1178
 1179up:
 1180		continue;
 1181	}
 1182	ret = (*up)(parent, data);
 1183	if (ret || parent == from)
 1184		goto out;
 1185
 1186	child = parent;
 1187	parent = parent->parent;
 1188	if (parent)
 1189		goto up;
 1190out:
 1191	return ret;
 1192}
 1193
 1194int tg_nop(struct task_group *tg, void *data)
 1195{
 1196	return 0;
 1197}
 1198#endif
 1199
 1200static void set_load_weight(struct task_struct *p, bool update_load)
 1201{
 1202	int prio = p->static_prio - MAX_RT_PRIO;
 1203	struct load_weight *load = &p->se.load;
 1204
 1205	/*
 1206	 * SCHED_IDLE tasks get minimal weight:
 1207	 */
 1208	if (task_has_idle_policy(p)) {
 1209		load->weight = scale_load(WEIGHT_IDLEPRIO);
 1210		load->inv_weight = WMULT_IDLEPRIO;
 1211		return;
 1212	}
 1213
 1214	/*
 1215	 * SCHED_OTHER tasks have to update their load when changing their
 1216	 * weight
 1217	 */
 1218	if (update_load && p->sched_class == &fair_sched_class) {
 1219		reweight_task(p, prio);
 1220	} else {
 1221		load->weight = scale_load(sched_prio_to_weight[prio]);
 1222		load->inv_weight = sched_prio_to_wmult[prio];
 1223	}
 1224}
 1225
 1226#ifdef CONFIG_UCLAMP_TASK
 1227/*
 1228 * Serializes updates of utilization clamp values
 1229 *
 1230 * The (slow-path) user-space triggers utilization clamp value updates which
 1231 * can require updates on (fast-path) scheduler's data structures used to
 1232 * support enqueue/dequeue operations.
 1233 * While the per-CPU rq lock protects fast-path update operations, user-space
 1234 * requests are serialized using a mutex to reduce the risk of conflicting
 1235 * updates or API abuses.
 1236 */
 1237static DEFINE_MUTEX(uclamp_mutex);
 1238
 1239/* Max allowed minimum utilization */
 1240unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1241
 1242/* Max allowed maximum utilization */
 1243unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1244
 1245/*
 1246 * By default RT tasks run at the maximum performance point/capacity of the
 1247 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1248 * SCHED_CAPACITY_SCALE.
 1249 *
 1250 * This knob allows admins to change the default behavior when uclamp is being
 1251 * used. In battery powered devices, particularly, running at the maximum
 1252 * capacity and frequency will increase energy consumption and shorten the
 1253 * battery life.
 1254 *
 1255 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1256 *
 1257 * This knob will not override the system default sched_util_clamp_min defined
 1258 * above.
 1259 */
 1260unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1261
 1262/* All clamps are required to be less or equal than these values */
 1263static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1264
 1265/*
 1266 * This static key is used to reduce the uclamp overhead in the fast path. It
 1267 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1268 * enqueue/dequeue_task().
 1269 *
 1270 * This allows users to continue to enable uclamp in their kernel config with
 1271 * minimum uclamp overhead in the fast path.
 1272 *
 1273 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1274 * enabled, since we have an actual users that make use of uclamp
 1275 * functionality.
 1276 *
 1277 * The knobs that would enable this static key are:
 1278 *
 1279 *   * A task modifying its uclamp value with sched_setattr().
 1280 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1281 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1282 */
 1283DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1284
 1285/* Integer rounded range for each bucket */
 1286#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 1287
 1288#define for_each_clamp_id(clamp_id) \
 1289	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 1290
 1291static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 1292{
 1293	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
 
 
 1294}
 1295
 1296static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 1297{
 1298	if (clamp_id == UCLAMP_MIN)
 1299		return 0;
 1300	return SCHED_CAPACITY_SCALE;
 1301}
 1302
 1303static inline void uclamp_se_set(struct uclamp_se *uc_se,
 1304				 unsigned int value, bool user_defined)
 1305{
 1306	uc_se->value = value;
 1307	uc_se->bucket_id = uclamp_bucket_id(value);
 1308	uc_se->user_defined = user_defined;
 1309}
 1310
 1311static inline unsigned int
 1312uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1313		  unsigned int clamp_value)
 1314{
 1315	/*
 1316	 * Avoid blocked utilization pushing up the frequency when we go
 1317	 * idle (which drops the max-clamp) by retaining the last known
 1318	 * max-clamp.
 1319	 */
 1320	if (clamp_id == UCLAMP_MAX) {
 1321		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1322		return clamp_value;
 1323	}
 1324
 1325	return uclamp_none(UCLAMP_MIN);
 1326}
 1327
 1328static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1329				     unsigned int clamp_value)
 1330{
 1331	/* Reset max-clamp retention only on idle exit */
 1332	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1333		return;
 1334
 1335	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 1336}
 1337
 1338static inline
 1339unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1340				   unsigned int clamp_value)
 1341{
 1342	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1343	int bucket_id = UCLAMP_BUCKETS - 1;
 1344
 1345	/*
 1346	 * Since both min and max clamps are max aggregated, find the
 1347	 * top most bucket with tasks in.
 1348	 */
 1349	for ( ; bucket_id >= 0; bucket_id--) {
 1350		if (!bucket[bucket_id].tasks)
 1351			continue;
 1352		return bucket[bucket_id].value;
 1353	}
 1354
 1355	/* No tasks -- default clamp values */
 1356	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1357}
 1358
 1359static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1360{
 1361	unsigned int default_util_min;
 1362	struct uclamp_se *uc_se;
 1363
 1364	lockdep_assert_held(&p->pi_lock);
 1365
 1366	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1367
 1368	/* Only sync if user didn't override the default */
 1369	if (uc_se->user_defined)
 1370		return;
 1371
 1372	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1373	uclamp_se_set(uc_se, default_util_min, false);
 1374}
 1375
 1376static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1377{
 1378	struct rq_flags rf;
 1379	struct rq *rq;
 1380
 1381	if (!rt_task(p))
 1382		return;
 1383
 1384	/* Protect updates to p->uclamp_* */
 1385	rq = task_rq_lock(p, &rf);
 1386	__uclamp_update_util_min_rt_default(p);
 1387	task_rq_unlock(rq, p, &rf);
 1388}
 1389
 1390static void uclamp_sync_util_min_rt_default(void)
 1391{
 1392	struct task_struct *g, *p;
 1393
 1394	/*
 1395	 * copy_process()			sysctl_uclamp
 1396	 *					  uclamp_min_rt = X;
 1397	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1398	 *   // link thread			  smp_mb__after_spinlock()
 1399	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1400	 *   sched_post_fork()			  for_each_process_thread()
 1401	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1402	 *
 1403	 * Ensures that either sched_post_fork() will observe the new
 1404	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1405	 * task.
 1406	 */
 1407	read_lock(&tasklist_lock);
 1408	smp_mb__after_spinlock();
 1409	read_unlock(&tasklist_lock);
 1410
 1411	rcu_read_lock();
 1412	for_each_process_thread(g, p)
 1413		uclamp_update_util_min_rt_default(p);
 1414	rcu_read_unlock();
 1415}
 1416
 1417static inline struct uclamp_se
 1418uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1419{
 1420	/* Copy by value as we could modify it */
 1421	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1422#ifdef CONFIG_UCLAMP_TASK_GROUP
 1423	unsigned int tg_min, tg_max, value;
 1424
 1425	/*
 1426	 * Tasks in autogroups or root task group will be
 1427	 * restricted by system defaults.
 1428	 */
 1429	if (task_group_is_autogroup(task_group(p)))
 1430		return uc_req;
 1431	if (task_group(p) == &root_task_group)
 1432		return uc_req;
 1433
 1434	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1435	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1436	value = uc_req.value;
 1437	value = clamp(value, tg_min, tg_max);
 1438	uclamp_se_set(&uc_req, value, false);
 1439#endif
 1440
 1441	return uc_req;
 1442}
 1443
 1444/*
 1445 * The effective clamp bucket index of a task depends on, by increasing
 1446 * priority:
 1447 * - the task specific clamp value, when explicitly requested from userspace
 1448 * - the task group effective clamp value, for tasks not either in the root
 1449 *   group or in an autogroup
 1450 * - the system default clamp value, defined by the sysadmin
 1451 */
 1452static inline struct uclamp_se
 1453uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1454{
 1455	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1456	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1457
 1458	/* System default restrictions always apply */
 1459	if (unlikely(uc_req.value > uc_max.value))
 1460		return uc_max;
 1461
 1462	return uc_req;
 1463}
 1464
 1465unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1466{
 1467	struct uclamp_se uc_eff;
 1468
 1469	/* Task currently refcounted: use back-annotated (effective) value */
 1470	if (p->uclamp[clamp_id].active)
 1471		return (unsigned long)p->uclamp[clamp_id].value;
 1472
 1473	uc_eff = uclamp_eff_get(p, clamp_id);
 1474
 1475	return (unsigned long)uc_eff.value;
 1476}
 1477
 1478/*
 1479 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1480 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1481 * updates the rq's clamp value if required.
 1482 *
 1483 * Tasks can have a task-specific value requested from user-space, track
 1484 * within each bucket the maximum value for tasks refcounted in it.
 1485 * This "local max aggregation" allows to track the exact "requested" value
 1486 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1487 */
 1488static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1489				    enum uclamp_id clamp_id)
 1490{
 1491	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1492	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1493	struct uclamp_bucket *bucket;
 1494
 1495	lockdep_assert_rq_held(rq);
 1496
 1497	/* Update task effective clamp */
 1498	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1499
 1500	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1501	bucket->tasks++;
 1502	uc_se->active = true;
 1503
 1504	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1505
 1506	/*
 1507	 * Local max aggregation: rq buckets always track the max
 1508	 * "requested" clamp value of its RUNNABLE tasks.
 1509	 */
 1510	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1511		bucket->value = uc_se->value;
 1512
 1513	if (uc_se->value > READ_ONCE(uc_rq->value))
 1514		WRITE_ONCE(uc_rq->value, uc_se->value);
 1515}
 1516
 1517/*
 1518 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1519 * is released. If this is the last task reference counting the rq's max
 1520 * active clamp value, then the rq's clamp value is updated.
 1521 *
 1522 * Both refcounted tasks and rq's cached clamp values are expected to be
 1523 * always valid. If it's detected they are not, as defensive programming,
 1524 * enforce the expected state and warn.
 1525 */
 1526static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1527				    enum uclamp_id clamp_id)
 1528{
 1529	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1530	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1531	struct uclamp_bucket *bucket;
 1532	unsigned int bkt_clamp;
 1533	unsigned int rq_clamp;
 1534
 1535	lockdep_assert_rq_held(rq);
 1536
 1537	/*
 1538	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1539	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1540	 *
 1541	 * In this case the uc_se->active flag should be false since no uclamp
 1542	 * accounting was performed at enqueue time and we can just return
 1543	 * here.
 
 1544	 *
 1545	 * Need to be careful of the following enqueue/dequeue ordering
 1546	 * problem too
 1547	 *
 1548	 *	enqueue(taskA)
 1549	 *	// sched_uclamp_used gets enabled
 1550	 *	enqueue(taskB)
 1551	 *	dequeue(taskA)
 1552	 *	// Must not decrement bucket->tasks here
 1553	 *	dequeue(taskB)
 1554	 *
 1555	 * where we could end up with stale data in uc_se and
 1556	 * bucket[uc_se->bucket_id].
 1557	 *
 1558	 * The following check here eliminates the possibility of such race.
 1559	 */
 1560	if (unlikely(!uc_se->active))
 1561		return;
 1562
 1563	bucket = &uc_rq->bucket[uc_se->bucket_id];
 
 
 
 
 
 
 1564
 1565	SCHED_WARN_ON(!bucket->tasks);
 1566	if (likely(bucket->tasks))
 1567		bucket->tasks--;
 1568
 1569	uc_se->active = false;
 1570
 1571	/*
 1572	 * Keep "local max aggregation" simple and accept to (possibly)
 1573	 * overboost some RUNNABLE tasks in the same bucket.
 1574	 * The rq clamp bucket value is reset to its base value whenever
 1575	 * there are no more RUNNABLE tasks refcounting it.
 1576	 */
 1577	if (likely(bucket->tasks))
 1578		return;
 1579
 1580	rq_clamp = READ_ONCE(uc_rq->value);
 1581	/*
 1582	 * Defensive programming: this should never happen. If it happens,
 1583	 * e.g. due to future modification, warn and fixup the expected value.
 1584	 */
 1585	SCHED_WARN_ON(bucket->value > rq_clamp);
 1586	if (bucket->value >= rq_clamp) {
 1587		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1588		WRITE_ONCE(uc_rq->value, bkt_clamp);
 1589	}
 1590}
 1591
 1592static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1593{
 1594	enum uclamp_id clamp_id;
 1595
 1596	/*
 1597	 * Avoid any overhead until uclamp is actually used by the userspace.
 1598	 *
 1599	 * The condition is constructed such that a NOP is generated when
 1600	 * sched_uclamp_used is disabled.
 1601	 */
 1602	if (!static_branch_unlikely(&sched_uclamp_used))
 1603		return;
 1604
 1605	if (unlikely(!p->sched_class->uclamp_enabled))
 1606		return;
 1607
 1608	for_each_clamp_id(clamp_id)
 1609		uclamp_rq_inc_id(rq, p, clamp_id);
 1610
 1611	/* Reset clamp idle holding when there is one RUNNABLE task */
 1612	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1613		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1614}
 1615
 1616static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1617{
 1618	enum uclamp_id clamp_id;
 1619
 1620	/*
 1621	 * Avoid any overhead until uclamp is actually used by the userspace.
 1622	 *
 1623	 * The condition is constructed such that a NOP is generated when
 1624	 * sched_uclamp_used is disabled.
 1625	 */
 1626	if (!static_branch_unlikely(&sched_uclamp_used))
 1627		return;
 1628
 1629	if (unlikely(!p->sched_class->uclamp_enabled))
 1630		return;
 1631
 1632	for_each_clamp_id(clamp_id)
 1633		uclamp_rq_dec_id(rq, p, clamp_id);
 1634}
 1635
 1636static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1637				      enum uclamp_id clamp_id)
 1638{
 1639	if (!p->uclamp[clamp_id].active)
 1640		return;
 1641
 1642	uclamp_rq_dec_id(rq, p, clamp_id);
 1643	uclamp_rq_inc_id(rq, p, clamp_id);
 1644
 1645	/*
 1646	 * Make sure to clear the idle flag if we've transiently reached 0
 1647	 * active tasks on rq.
 1648	 */
 1649	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1650		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1651}
 1652
 1653static inline void
 1654uclamp_update_active(struct task_struct *p)
 1655{
 1656	enum uclamp_id clamp_id;
 1657	struct rq_flags rf;
 1658	struct rq *rq;
 1659
 1660	/*
 1661	 * Lock the task and the rq where the task is (or was) queued.
 1662	 *
 1663	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1664	 * price to pay to safely serialize util_{min,max} updates with
 1665	 * enqueues, dequeues and migration operations.
 1666	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1667	 */
 1668	rq = task_rq_lock(p, &rf);
 1669
 1670	/*
 1671	 * Setting the clamp bucket is serialized by task_rq_lock().
 1672	 * If the task is not yet RUNNABLE and its task_struct is not
 1673	 * affecting a valid clamp bucket, the next time it's enqueued,
 1674	 * it will already see the updated clamp bucket value.
 1675	 */
 1676	for_each_clamp_id(clamp_id)
 1677		uclamp_rq_reinc_id(rq, p, clamp_id);
 1678
 1679	task_rq_unlock(rq, p, &rf);
 1680}
 1681
 1682#ifdef CONFIG_UCLAMP_TASK_GROUP
 1683static inline void
 1684uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 1685{
 1686	struct css_task_iter it;
 1687	struct task_struct *p;
 1688
 1689	css_task_iter_start(css, 0, &it);
 1690	while ((p = css_task_iter_next(&it)))
 1691		uclamp_update_active(p);
 1692	css_task_iter_end(&it);
 1693}
 1694
 1695static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1696static void uclamp_update_root_tg(void)
 1697{
 1698	struct task_group *tg = &root_task_group;
 1699
 1700	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1701		      sysctl_sched_uclamp_util_min, false);
 1702	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1703		      sysctl_sched_uclamp_util_max, false);
 1704
 1705	rcu_read_lock();
 1706	cpu_util_update_eff(&root_task_group.css);
 1707	rcu_read_unlock();
 1708}
 1709#else
 1710static void uclamp_update_root_tg(void) { }
 1711#endif
 1712
 1713int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
 1714				void *buffer, size_t *lenp, loff_t *ppos)
 1715{
 1716	bool update_root_tg = false;
 1717	int old_min, old_max, old_min_rt;
 1718	int result;
 1719
 1720	mutex_lock(&uclamp_mutex);
 1721	old_min = sysctl_sched_uclamp_util_min;
 1722	old_max = sysctl_sched_uclamp_util_max;
 1723	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1724
 1725	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1726	if (result)
 1727		goto undo;
 1728	if (!write)
 1729		goto done;
 1730
 1731	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1732	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1733	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1734
 1735		result = -EINVAL;
 1736		goto undo;
 1737	}
 1738
 1739	if (old_min != sysctl_sched_uclamp_util_min) {
 1740		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1741			      sysctl_sched_uclamp_util_min, false);
 1742		update_root_tg = true;
 1743	}
 1744	if (old_max != sysctl_sched_uclamp_util_max) {
 1745		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1746			      sysctl_sched_uclamp_util_max, false);
 1747		update_root_tg = true;
 1748	}
 1749
 1750	if (update_root_tg) {
 1751		static_branch_enable(&sched_uclamp_used);
 1752		uclamp_update_root_tg();
 1753	}
 1754
 1755	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1756		static_branch_enable(&sched_uclamp_used);
 1757		uclamp_sync_util_min_rt_default();
 1758	}
 1759
 1760	/*
 1761	 * We update all RUNNABLE tasks only when task groups are in use.
 1762	 * Otherwise, keep it simple and do just a lazy update at each next
 1763	 * task enqueue time.
 1764	 */
 1765
 1766	goto done;
 1767
 1768undo:
 1769	sysctl_sched_uclamp_util_min = old_min;
 1770	sysctl_sched_uclamp_util_max = old_max;
 1771	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1772done:
 1773	mutex_unlock(&uclamp_mutex);
 1774
 1775	return result;
 1776}
 1777
 1778static int uclamp_validate(struct task_struct *p,
 1779			   const struct sched_attr *attr)
 1780{
 1781	int util_min = p->uclamp_req[UCLAMP_MIN].value;
 1782	int util_max = p->uclamp_req[UCLAMP_MAX].value;
 1783
 1784	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 1785		util_min = attr->sched_util_min;
 
 
 
 
 
 
 
 
 1786
 1787		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
 1788			return -EINVAL;
 1789	}
 1790
 1791	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 1792		util_max = attr->sched_util_max;
 1793
 1794		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
 1795			return -EINVAL;
 1796	}
 1797
 1798	if (util_min != -1 && util_max != -1 && util_min > util_max)
 1799		return -EINVAL;
 1800
 1801	/*
 1802	 * We have valid uclamp attributes; make sure uclamp is enabled.
 1803	 *
 1804	 * We need to do that here, because enabling static branches is a
 1805	 * blocking operation which obviously cannot be done while holding
 1806	 * scheduler locks.
 1807	 */
 1808	static_branch_enable(&sched_uclamp_used);
 1809
 1810	return 0;
 1811}
 1812
 1813static bool uclamp_reset(const struct sched_attr *attr,
 1814			 enum uclamp_id clamp_id,
 1815			 struct uclamp_se *uc_se)
 1816{
 1817	/* Reset on sched class change for a non user-defined clamp value. */
 1818	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
 1819	    !uc_se->user_defined)
 1820		return true;
 1821
 1822	/* Reset on sched_util_{min,max} == -1. */
 1823	if (clamp_id == UCLAMP_MIN &&
 1824	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1825	    attr->sched_util_min == -1) {
 1826		return true;
 1827	}
 1828
 1829	if (clamp_id == UCLAMP_MAX &&
 1830	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1831	    attr->sched_util_max == -1) {
 1832		return true;
 1833	}
 1834
 1835	return false;
 1836}
 1837
 1838static void __setscheduler_uclamp(struct task_struct *p,
 1839				  const struct sched_attr *attr)
 1840{
 1841	enum uclamp_id clamp_id;
 1842
 1843	for_each_clamp_id(clamp_id) {
 1844		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 1845		unsigned int value;
 1846
 1847		if (!uclamp_reset(attr, clamp_id, uc_se))
 1848			continue;
 1849
 
 1850		/*
 1851		 * RT by default have a 100% boost value that could be modified
 1852		 * at runtime.
 1853		 */
 1854		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
 1855			value = sysctl_sched_uclamp_util_min_rt_default;
 1856		else
 1857			value = uclamp_none(clamp_id);
 1858
 1859		uclamp_se_set(uc_se, value, false);
 1860
 1861	}
 1862
 1863	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
 1864		return;
 1865
 1866	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1867	    attr->sched_util_min != -1) {
 1868		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
 1869			      attr->sched_util_min, true);
 1870	}
 1871
 1872	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1873	    attr->sched_util_max != -1) {
 1874		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
 1875			      attr->sched_util_max, true);
 1876	}
 1877}
 1878
 1879static void uclamp_fork(struct task_struct *p)
 1880{
 1881	enum uclamp_id clamp_id;
 1882
 1883	/*
 1884	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 1885	 * as the task is still at its early fork stages.
 1886	 */
 1887	for_each_clamp_id(clamp_id)
 1888		p->uclamp[clamp_id].active = false;
 1889
 1890	if (likely(!p->sched_reset_on_fork))
 1891		return;
 1892
 1893	for_each_clamp_id(clamp_id) {
 1894		uclamp_se_set(&p->uclamp_req[clamp_id],
 1895			      uclamp_none(clamp_id), false);
 1896	}
 1897}
 1898
 1899static void uclamp_post_fork(struct task_struct *p)
 1900{
 1901	uclamp_update_util_min_rt_default(p);
 1902}
 1903
 1904static void __init init_uclamp_rq(struct rq *rq)
 1905{
 1906	enum uclamp_id clamp_id;
 1907	struct uclamp_rq *uc_rq = rq->uclamp;
 1908
 1909	for_each_clamp_id(clamp_id) {
 1910		uc_rq[clamp_id] = (struct uclamp_rq) {
 1911			.value = uclamp_none(clamp_id)
 1912		};
 1913	}
 1914
 1915	rq->uclamp_flags = 0;
 1916}
 1917
 1918static void __init init_uclamp(void)
 1919{
 1920	struct uclamp_se uc_max = {};
 1921	enum uclamp_id clamp_id;
 1922	int cpu;
 1923
 1924	for_each_possible_cpu(cpu)
 1925		init_uclamp_rq(cpu_rq(cpu));
 1926
 1927	for_each_clamp_id(clamp_id) {
 1928		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 1929			      uclamp_none(clamp_id), false);
 1930	}
 1931
 1932	/* System defaults allow max clamp values for both indexes */
 1933	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 1934	for_each_clamp_id(clamp_id) {
 1935		uclamp_default[clamp_id] = uc_max;
 1936#ifdef CONFIG_UCLAMP_TASK_GROUP
 1937		root_task_group.uclamp_req[clamp_id] = uc_max;
 1938		root_task_group.uclamp[clamp_id] = uc_max;
 1939#endif
 1940	}
 1941}
 1942
 1943#else /* CONFIG_UCLAMP_TASK */
 1944static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 1945static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 1946static inline int uclamp_validate(struct task_struct *p,
 1947				  const struct sched_attr *attr)
 1948{
 1949	return -EOPNOTSUPP;
 1950}
 1951static void __setscheduler_uclamp(struct task_struct *p,
 1952				  const struct sched_attr *attr) { }
 1953static inline void uclamp_fork(struct task_struct *p) { }
 1954static inline void uclamp_post_fork(struct task_struct *p) { }
 1955static inline void init_uclamp(void) { }
 1956#endif /* CONFIG_UCLAMP_TASK */
 1957
 1958bool sched_task_on_rq(struct task_struct *p)
 1959{
 1960	return task_on_rq_queued(p);
 1961}
 1962
 1963static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 1964{
 1965	if (!(flags & ENQUEUE_NOCLOCK))
 1966		update_rq_clock(rq);
 1967
 1968	if (!(flags & ENQUEUE_RESTORE)) {
 1969		sched_info_enqueue(rq, p);
 1970		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
 1971	}
 1972
 1973	uclamp_rq_inc(rq, p);
 1974	p->sched_class->enqueue_task(rq, p, flags);
 1975
 1976	if (sched_core_enabled(rq))
 1977		sched_core_enqueue(rq, p);
 1978}
 1979
 1980static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 1981{
 1982	if (sched_core_enabled(rq))
 1983		sched_core_dequeue(rq, p);
 1984
 1985	if (!(flags & DEQUEUE_NOCLOCK))
 1986		update_rq_clock(rq);
 1987
 1988	if (!(flags & DEQUEUE_SAVE)) {
 1989		sched_info_dequeue(rq, p);
 1990		psi_dequeue(p, flags & DEQUEUE_SLEEP);
 1991	}
 1992
 1993	uclamp_rq_dec(rq, p);
 1994	p->sched_class->dequeue_task(rq, p, flags);
 1995}
 1996
 1997void activate_task(struct rq *rq, struct task_struct *p, int flags)
 1998{
 1999	enqueue_task(rq, p, flags);
 2000
 2001	p->on_rq = TASK_ON_RQ_QUEUED;
 2002}
 2003
 2004void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 2005{
 2006	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
 2007
 2008	dequeue_task(rq, p, flags);
 2009}
 2010
 2011static inline int __normal_prio(int policy, int rt_prio, int nice)
 2012{
 2013	int prio;
 2014
 2015	if (dl_policy(policy))
 2016		prio = MAX_DL_PRIO - 1;
 2017	else if (rt_policy(policy))
 2018		prio = MAX_RT_PRIO - 1 - rt_prio;
 2019	else
 2020		prio = NICE_TO_PRIO(nice);
 2021
 2022	return prio;
 2023}
 2024
 2025/*
 2026 * Calculate the expected normal priority: i.e. priority
 2027 * without taking RT-inheritance into account. Might be
 2028 * boosted by interactivity modifiers. Changes upon fork,
 2029 * setprio syscalls, and whenever the interactivity
 2030 * estimator recalculates.
 2031 */
 2032static inline int normal_prio(struct task_struct *p)
 2033{
 2034	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
 
 
 
 
 
 
 
 
 2035}
 2036
 2037/*
 2038 * Calculate the current priority, i.e. the priority
 2039 * taken into account by the scheduler. This value might
 2040 * be boosted by RT tasks, or might be boosted by
 2041 * interactivity modifiers. Will be RT if the task got
 2042 * RT-boosted. If not then it returns p->normal_prio.
 2043 */
 2044static int effective_prio(struct task_struct *p)
 2045{
 2046	p->normal_prio = normal_prio(p);
 2047	/*
 2048	 * If we are RT tasks or we were boosted to RT priority,
 2049	 * keep the priority unchanged. Otherwise, update priority
 2050	 * to the normal priority:
 2051	 */
 2052	if (!rt_prio(p->prio))
 2053		return p->normal_prio;
 2054	return p->prio;
 2055}
 2056
 2057/**
 2058 * task_curr - is this task currently executing on a CPU?
 2059 * @p: the task in question.
 2060 *
 2061 * Return: 1 if the task is currently executing. 0 otherwise.
 2062 */
 2063inline int task_curr(const struct task_struct *p)
 2064{
 2065	return cpu_curr(task_cpu(p)) == p;
 2066}
 2067
 2068/*
 2069 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2070 * use the balance_callback list if you want balancing.
 2071 *
 2072 * this means any call to check_class_changed() must be followed by a call to
 2073 * balance_callback().
 2074 */
 2075static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 2076				       const struct sched_class *prev_class,
 2077				       int oldprio)
 2078{
 2079	if (prev_class != p->sched_class) {
 2080		if (prev_class->switched_from)
 2081			prev_class->switched_from(rq, p);
 2082
 2083		p->sched_class->switched_to(rq, p);
 2084	} else if (oldprio != p->prio || dl_task(p))
 2085		p->sched_class->prio_changed(rq, p, oldprio);
 2086}
 2087
 2088void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 2089{
 2090	if (p->sched_class == rq->curr->sched_class)
 
 
 2091		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 2092	else if (p->sched_class > rq->curr->sched_class)
 2093		resched_curr(rq);
 2094
 2095	/*
 2096	 * A queue event has occurred, and we're going to schedule.  In
 2097	 * this case, we can save a useless back to back clock update.
 2098	 */
 2099	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 2100		rq_clock_skip_update(rq);
 2101}
 2102
 2103#ifdef CONFIG_SMP
 2104
 2105static void
 2106__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
 2107
 2108static int __set_cpus_allowed_ptr(struct task_struct *p,
 2109				  const struct cpumask *new_mask,
 2110				  u32 flags);
 2111
 2112static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2113{
 2114	if (likely(!p->migration_disabled))
 2115		return;
 2116
 2117	if (p->cpus_ptr != &p->cpus_mask)
 2118		return;
 2119
 2120	/*
 2121	 * Violates locking rules! see comment in __do_set_cpus_allowed().
 2122	 */
 2123	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
 2124}
 2125
 2126void migrate_disable(void)
 2127{
 2128	struct task_struct *p = current;
 2129
 2130	if (p->migration_disabled) {
 2131		p->migration_disabled++;
 2132		return;
 2133	}
 2134
 2135	preempt_disable();
 2136	this_rq()->nr_pinned++;
 2137	p->migration_disabled = 1;
 2138	preempt_enable();
 2139}
 2140EXPORT_SYMBOL_GPL(migrate_disable);
 2141
 2142void migrate_enable(void)
 2143{
 2144	struct task_struct *p = current;
 2145
 2146	if (p->migration_disabled > 1) {
 2147		p->migration_disabled--;
 2148		return;
 2149	}
 2150
 2151	/*
 2152	 * Ensure stop_task runs either before or after this, and that
 2153	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2154	 */
 2155	preempt_disable();
 2156	if (p->cpus_ptr != &p->cpus_mask)
 2157		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
 2158	/*
 2159	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2160	 * regular cpus_mask, otherwise things that race (eg.
 2161	 * select_fallback_rq) get confused.
 2162	 */
 2163	barrier();
 2164	p->migration_disabled = 0;
 2165	this_rq()->nr_pinned--;
 2166	preempt_enable();
 2167}
 2168EXPORT_SYMBOL_GPL(migrate_enable);
 2169
 2170static inline bool rq_has_pinned_tasks(struct rq *rq)
 2171{
 2172	return rq->nr_pinned;
 2173}
 2174
 2175/*
 2176 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2177 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2178 */
 2179static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2180{
 2181	/* When not in the task's cpumask, no point in looking further. */
 2182	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 2183		return false;
 2184
 2185	/* migrate_disabled() must be allowed to finish. */
 2186	if (is_migration_disabled(p))
 2187		return cpu_online(cpu);
 2188
 2189	/* Non kernel threads are not allowed during either online or offline. */
 2190	if (!(p->flags & PF_KTHREAD))
 2191		return cpu_active(cpu);
 2192
 2193	/* KTHREAD_IS_PER_CPU is always allowed. */
 2194	if (kthread_is_per_cpu(p))
 2195		return cpu_online(cpu);
 2196
 2197	/* Regular kernel threads don't get to stay during offline. */
 2198	if (cpu_dying(cpu))
 2199		return false;
 2200
 2201	/* But are allowed during online. */
 2202	return cpu_online(cpu);
 2203}
 2204
 2205/*
 2206 * This is how migration works:
 2207 *
 2208 * 1) we invoke migration_cpu_stop() on the target CPU using
 2209 *    stop_one_cpu().
 2210 * 2) stopper starts to run (implicitly forcing the migrated thread
 2211 *    off the CPU)
 2212 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2213 * 4) if it's in the wrong runqueue then the migration thread removes
 2214 *    it and puts it into the right queue.
 2215 * 5) stopper completes and stop_one_cpu() returns and the migration
 2216 *    is done.
 2217 */
 2218
 2219/*
 2220 * move_queued_task - move a queued task to new rq.
 2221 *
 2222 * Returns (locked) new rq. Old rq's lock is released.
 2223 */
 2224static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2225				   struct task_struct *p, int new_cpu)
 2226{
 2227	lockdep_assert_rq_held(rq);
 2228
 2229	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 2230	set_task_cpu(p, new_cpu);
 2231	rq_unlock(rq, rf);
 2232
 2233	rq = cpu_rq(new_cpu);
 2234
 2235	rq_lock(rq, rf);
 2236	BUG_ON(task_cpu(p) != new_cpu);
 2237	activate_task(rq, p, 0);
 2238	check_preempt_curr(rq, p, 0);
 2239
 2240	return rq;
 2241}
 2242
 2243struct migration_arg {
 2244	struct task_struct		*task;
 2245	int				dest_cpu;
 2246	struct set_affinity_pending	*pending;
 2247};
 2248
 2249/*
 2250 * @refs: number of wait_for_completion()
 2251 * @stop_pending: is @stop_work in use
 2252 */
 2253struct set_affinity_pending {
 2254	refcount_t		refs;
 2255	unsigned int		stop_pending;
 2256	struct completion	done;
 2257	struct cpu_stop_work	stop_work;
 2258	struct migration_arg	arg;
 2259};
 2260
 2261/*
 2262 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2263 * this because either it can't run here any more (set_cpus_allowed()
 2264 * away from this CPU, or CPU going down), or because we're
 2265 * attempting to rebalance this task on exec (sched_exec).
 2266 *
 2267 * So we race with normal scheduler movements, but that's OK, as long
 2268 * as the task is no longer on this CPU.
 2269 */
 2270static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2271				 struct task_struct *p, int dest_cpu)
 2272{
 2273	/* Affinity changed (again). */
 2274	if (!is_cpu_allowed(p, dest_cpu))
 2275		return rq;
 2276
 2277	update_rq_clock(rq);
 2278	rq = move_queued_task(rq, rf, p, dest_cpu);
 2279
 2280	return rq;
 2281}
 2282
 2283/*
 2284 * migration_cpu_stop - this will be executed by a highprio stopper thread
 2285 * and performs thread migration by bumping thread off CPU then
 2286 * 'pushing' onto another runqueue.
 2287 */
 2288static int migration_cpu_stop(void *data)
 2289{
 2290	struct migration_arg *arg = data;
 2291	struct set_affinity_pending *pending = arg->pending;
 2292	struct task_struct *p = arg->task;
 2293	struct rq *rq = this_rq();
 2294	bool complete = false;
 2295	struct rq_flags rf;
 2296
 2297	/*
 2298	 * The original target CPU might have gone down and we might
 2299	 * be on another CPU but it doesn't matter.
 2300	 */
 2301	local_irq_save(rf.flags);
 2302	/*
 2303	 * We need to explicitly wake pending tasks before running
 2304	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2305	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2306	 */
 2307	flush_smp_call_function_from_idle();
 2308
 2309	raw_spin_lock(&p->pi_lock);
 2310	rq_lock(rq, &rf);
 2311
 2312	/*
 2313	 * If we were passed a pending, then ->stop_pending was set, thus
 2314	 * p->migration_pending must have remained stable.
 2315	 */
 2316	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2317
 2318	/*
 2319	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2320	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2321	 * we're holding p->pi_lock.
 2322	 */
 2323	if (task_rq(p) == rq) {
 2324		if (is_migration_disabled(p))
 2325			goto out;
 2326
 2327		if (pending) {
 2328			p->migration_pending = NULL;
 2329			complete = true;
 2330
 2331			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2332				goto out;
 2333		}
 2334
 2335		if (task_on_rq_queued(p))
 2336			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2337		else
 2338			p->wake_cpu = arg->dest_cpu;
 2339
 2340		/*
 2341		 * XXX __migrate_task() can fail, at which point we might end
 2342		 * up running on a dodgy CPU, AFAICT this can only happen
 2343		 * during CPU hotplug, at which point we'll get pushed out
 2344		 * anyway, so it's probably not a big deal.
 2345		 */
 2346
 2347	} else if (pending) {
 2348		/*
 2349		 * This happens when we get migrated between migrate_enable()'s
 2350		 * preempt_enable() and scheduling the stopper task. At that
 2351		 * point we're a regular task again and not current anymore.
 2352		 *
 2353		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2354		 * more likely.
 2355		 */
 2356
 2357		/*
 2358		 * The task moved before the stopper got to run. We're holding
 2359		 * ->pi_lock, so the allowed mask is stable - if it got
 2360		 * somewhere allowed, we're done.
 2361		 */
 2362		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2363			p->migration_pending = NULL;
 2364			complete = true;
 2365			goto out;
 2366		}
 2367
 2368		/*
 2369		 * When migrate_enable() hits a rq mis-match we can't reliably
 2370		 * determine is_migration_disabled() and so have to chase after
 2371		 * it.
 2372		 */
 2373		WARN_ON_ONCE(!pending->stop_pending);
 2374		task_rq_unlock(rq, p, &rf);
 2375		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2376				    &pending->arg, &pending->stop_work);
 2377		return 0;
 2378	}
 2379out:
 2380	if (pending)
 2381		pending->stop_pending = false;
 2382	task_rq_unlock(rq, p, &rf);
 2383
 2384	if (complete)
 2385		complete_all(&pending->done);
 2386
 2387	return 0;
 2388}
 2389
 2390int push_cpu_stop(void *arg)
 2391{
 2392	struct rq *lowest_rq = NULL, *rq = this_rq();
 2393	struct task_struct *p = arg;
 2394
 2395	raw_spin_lock_irq(&p->pi_lock);
 2396	raw_spin_rq_lock(rq);
 2397
 2398	if (task_rq(p) != rq)
 2399		goto out_unlock;
 2400
 2401	if (is_migration_disabled(p)) {
 2402		p->migration_flags |= MDF_PUSH;
 2403		goto out_unlock;
 2404	}
 2405
 2406	p->migration_flags &= ~MDF_PUSH;
 2407
 2408	if (p->sched_class->find_lock_rq)
 2409		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2410
 2411	if (!lowest_rq)
 2412		goto out_unlock;
 2413
 2414	// XXX validate p is still the highest prio task
 2415	if (task_rq(p) == rq) {
 2416		deactivate_task(rq, p, 0);
 2417		set_task_cpu(p, lowest_rq->cpu);
 2418		activate_task(lowest_rq, p, 0);
 2419		resched_curr(lowest_rq);
 2420	}
 2421
 2422	double_unlock_balance(rq, lowest_rq);
 2423
 2424out_unlock:
 2425	rq->push_busy = false;
 2426	raw_spin_rq_unlock(rq);
 2427	raw_spin_unlock_irq(&p->pi_lock);
 2428
 2429	put_task_struct(p);
 2430	return 0;
 2431}
 2432
 2433/*
 2434 * sched_class::set_cpus_allowed must do the below, but is not required to
 2435 * actually call this function.
 2436 */
 2437void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
 2438{
 2439	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2440		p->cpus_ptr = new_mask;
 2441		return;
 2442	}
 2443
 2444	cpumask_copy(&p->cpus_mask, new_mask);
 2445	p->nr_cpus_allowed = cpumask_weight(new_mask);
 2446}
 2447
 2448static void
 2449__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
 2450{
 2451	struct rq *rq = task_rq(p);
 2452	bool queued, running;
 2453
 2454	/*
 2455	 * This here violates the locking rules for affinity, since we're only
 2456	 * supposed to change these variables while holding both rq->lock and
 2457	 * p->pi_lock.
 2458	 *
 2459	 * HOWEVER, it magically works, because ttwu() is the only code that
 2460	 * accesses these variables under p->pi_lock and only does so after
 2461	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2462	 * before finish_task().
 2463	 *
 2464	 * XXX do further audits, this smells like something putrid.
 2465	 */
 2466	if (flags & SCA_MIGRATE_DISABLE)
 2467		SCHED_WARN_ON(!p->on_cpu);
 2468	else
 2469		lockdep_assert_held(&p->pi_lock);
 2470
 2471	queued = task_on_rq_queued(p);
 2472	running = task_current(rq, p);
 2473
 2474	if (queued) {
 2475		/*
 2476		 * Because __kthread_bind() calls this on blocked tasks without
 2477		 * holding rq->lock.
 2478		 */
 2479		lockdep_assert_rq_held(rq);
 2480		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2481	}
 2482	if (running)
 2483		put_prev_task(rq, p);
 2484
 2485	p->sched_class->set_cpus_allowed(p, new_mask, flags);
 2486
 2487	if (queued)
 2488		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2489	if (running)
 2490		set_next_task(rq, p);
 2491}
 2492
 2493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2494{
 2495	__do_set_cpus_allowed(p, new_mask, 0);
 2496}
 2497
 2498/*
 2499 * This function is wildly self concurrent; here be dragons.
 2500 *
 2501 *
 2502 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2503 * designated task is enqueued on an allowed CPU. If that task is currently
 2504 * running, we have to kick it out using the CPU stopper.
 2505 *
 2506 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2507 * Consider:
 2508 *
 2509 *     Initial conditions: P0->cpus_mask = [0, 1]
 2510 *
 2511 *     P0@CPU0                  P1
 2512 *
 2513 *     migrate_disable();
 2514 *     <preempted>
 2515 *                              set_cpus_allowed_ptr(P0, [1]);
 2516 *
 2517 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2518 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2519 * This means we need the following scheme:
 2520 *
 2521 *     P0@CPU0                  P1
 2522 *
 2523 *     migrate_disable();
 2524 *     <preempted>
 2525 *                              set_cpus_allowed_ptr(P0, [1]);
 2526 *                                <blocks>
 2527 *     <resumes>
 2528 *     migrate_enable();
 2529 *       __set_cpus_allowed_ptr();
 2530 *       <wakes local stopper>
 2531 *                         `--> <woken on migration completion>
 2532 *
 2533 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2534 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2535 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2536 * should come into effect at the end of the Migrate-Disable region is the last
 2537 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2538 * but we still need to properly signal those waiting tasks at the appropriate
 2539 * moment.
 2540 *
 2541 * This is implemented using struct set_affinity_pending. The first
 2542 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2543 * setup an instance of that struct and install it on the targeted task_struct.
 2544 * Any and all further callers will reuse that instance. Those then wait for
 2545 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2546 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2547 *
 2548 *
 2549 * (1) In the cases covered above. There is one more where the completion is
 2550 * signaled within affine_move_task() itself: when a subsequent affinity request
 2551 * occurs after the stopper bailed out due to the targeted task still being
 2552 * Migrate-Disable. Consider:
 2553 *
 2554 *     Initial conditions: P0->cpus_mask = [0, 1]
 2555 *
 2556 *     CPU0		  P1				P2
 2557 *     <P0>
 2558 *       migrate_disable();
 2559 *       <preempted>
 2560 *                        set_cpus_allowed_ptr(P0, [1]);
 2561 *                          <blocks>
 2562 *     <migration/0>
 2563 *       migration_cpu_stop()
 2564 *         is_migration_disabled()
 2565 *           <bails>
 2566 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2567 *                                                         <signal completion>
 2568 *                          <awakes>
 2569 *
 2570 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2571 * pending affinity completion is preceded by an uninstallation of
 2572 * p->migration_pending done with p->pi_lock held.
 2573 */
 2574static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2575			    int dest_cpu, unsigned int flags)
 2576{
 2577	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2578	bool stop_pending, complete = false;
 2579
 2580	/* Can the task run on the task's current CPU? If so, we're done */
 2581	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2582		struct task_struct *push_task = NULL;
 2583
 2584		if ((flags & SCA_MIGRATE_ENABLE) &&
 2585		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2586			rq->push_busy = true;
 2587			push_task = get_task_struct(p);
 2588		}
 2589
 2590		/*
 2591		 * If there are pending waiters, but no pending stop_work,
 2592		 * then complete now.
 2593		 */
 2594		pending = p->migration_pending;
 2595		if (pending && !pending->stop_pending) {
 2596			p->migration_pending = NULL;
 2597			complete = true;
 2598		}
 2599
 2600		task_rq_unlock(rq, p, rf);
 2601
 2602		if (push_task) {
 2603			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2604					    p, &rq->push_work);
 2605		}
 2606
 2607		if (complete)
 2608			complete_all(&pending->done);
 2609
 2610		return 0;
 2611	}
 2612
 2613	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2614		/* serialized by p->pi_lock */
 2615		if (!p->migration_pending) {
 2616			/* Install the request */
 2617			refcount_set(&my_pending.refs, 1);
 2618			init_completion(&my_pending.done);
 2619			my_pending.arg = (struct migration_arg) {
 2620				.task = p,
 2621				.dest_cpu = dest_cpu,
 2622				.pending = &my_pending,
 2623			};
 2624
 2625			p->migration_pending = &my_pending;
 2626		} else {
 2627			pending = p->migration_pending;
 2628			refcount_inc(&pending->refs);
 2629			/*
 2630			 * Affinity has changed, but we've already installed a
 2631			 * pending. migration_cpu_stop() *must* see this, else
 2632			 * we risk a completion of the pending despite having a
 2633			 * task on a disallowed CPU.
 2634			 *
 2635			 * Serialized by p->pi_lock, so this is safe.
 2636			 */
 2637			pending->arg.dest_cpu = dest_cpu;
 2638		}
 2639	}
 2640	pending = p->migration_pending;
 2641	/*
 2642	 * - !MIGRATE_ENABLE:
 2643	 *   we'll have installed a pending if there wasn't one already.
 2644	 *
 2645	 * - MIGRATE_ENABLE:
 2646	 *   we're here because the current CPU isn't matching anymore,
 2647	 *   the only way that can happen is because of a concurrent
 2648	 *   set_cpus_allowed_ptr() call, which should then still be
 2649	 *   pending completion.
 2650	 *
 2651	 * Either way, we really should have a @pending here.
 2652	 */
 2653	if (WARN_ON_ONCE(!pending)) {
 2654		task_rq_unlock(rq, p, rf);
 2655		return -EINVAL;
 2656	}
 2657
 2658	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 2659		/*
 2660		 * MIGRATE_ENABLE gets here because 'p == current', but for
 2661		 * anything else we cannot do is_migration_disabled(), punt
 2662		 * and have the stopper function handle it all race-free.
 2663		 */
 2664		stop_pending = pending->stop_pending;
 2665		if (!stop_pending)
 2666			pending->stop_pending = true;
 2667
 2668		if (flags & SCA_MIGRATE_ENABLE)
 2669			p->migration_flags &= ~MDF_PUSH;
 2670
 2671		task_rq_unlock(rq, p, rf);
 2672
 2673		if (!stop_pending) {
 2674			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 2675					    &pending->arg, &pending->stop_work);
 2676		}
 2677
 2678		if (flags & SCA_MIGRATE_ENABLE)
 2679			return 0;
 2680	} else {
 2681
 2682		if (!is_migration_disabled(p)) {
 2683			if (task_on_rq_queued(p))
 2684				rq = move_queued_task(rq, rf, p, dest_cpu);
 2685
 2686			if (!pending->stop_pending) {
 2687				p->migration_pending = NULL;
 2688				complete = true;
 2689			}
 2690		}
 2691		task_rq_unlock(rq, p, rf);
 2692
 2693		if (complete)
 2694			complete_all(&pending->done);
 2695	}
 2696
 2697	wait_for_completion(&pending->done);
 2698
 2699	if (refcount_dec_and_test(&pending->refs))
 2700		wake_up_var(&pending->refs); /* No UaF, just an address */
 2701
 2702	/*
 2703	 * Block the original owner of &pending until all subsequent callers
 2704	 * have seen the completion and decremented the refcount
 2705	 */
 2706	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 2707
 2708	/* ARGH */
 2709	WARN_ON_ONCE(my_pending.stop_pending);
 2710
 2711	return 0;
 2712}
 2713
 2714/*
 2715 * Change a given task's CPU affinity. Migrate the thread to a
 2716 * proper CPU and schedule it away if the CPU it's executing on
 2717 * is removed from the allowed bitmask.
 2718 *
 2719 * NOTE: the caller must have a valid reference to the task, the
 2720 * task must not exit() & deallocate itself prematurely. The
 2721 * call is not atomic; no spinlocks may be held.
 2722 */
 2723static int __set_cpus_allowed_ptr(struct task_struct *p,
 2724				  const struct cpumask *new_mask,
 2725				  u32 flags)
 2726{
 2727	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 2728	unsigned int dest_cpu;
 2729	struct rq_flags rf;
 2730	struct rq *rq;
 2731	int ret = 0;
 2732
 2733	rq = task_rq_lock(p, &rf);
 2734	update_rq_clock(rq);
 2735
 2736	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
 2737		/*
 2738		 * Kernel threads are allowed on online && !active CPUs,
 2739		 * however, during cpu-hot-unplug, even these might get pushed
 2740		 * away if not KTHREAD_IS_PER_CPU.
 2741		 *
 2742		 * Specifically, migration_disabled() tasks must not fail the
 2743		 * cpumask_any_and_distribute() pick below, esp. so on
 2744		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 2745		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 2746		 */
 2747		cpu_valid_mask = cpu_online_mask;
 2748	}
 2749
 2750	/*
 2751	 * Must re-check here, to close a race against __kthread_bind(),
 2752	 * sched_setaffinity() is not guaranteed to observe the flag.
 2753	 */
 2754	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 2755		ret = -EINVAL;
 2756		goto out;
 2757	}
 2758
 2759	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2760		if (cpumask_equal(&p->cpus_mask, new_mask))
 2761			goto out;
 2762
 2763		if (WARN_ON_ONCE(p == current &&
 2764				 is_migration_disabled(p) &&
 2765				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
 2766			ret = -EBUSY;
 2767			goto out;
 2768		}
 2769	}
 2770
 2771	/*
 2772	 * Picking a ~random cpu helps in cases where we are changing affinity
 2773	 * for groups of tasks (ie. cpuset), so that load balancing is not
 2774	 * immediately required to distribute the tasks within their new mask.
 2775	 */
 2776	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
 2777	if (dest_cpu >= nr_cpu_ids) {
 2778		ret = -EINVAL;
 2779		goto out;
 2780	}
 2781
 2782	__do_set_cpus_allowed(p, new_mask, flags);
 2783
 2784	return affine_move_task(rq, p, &rf, dest_cpu, flags);
 2785
 2786out:
 2787	task_rq_unlock(rq, p, &rf);
 2788
 2789	return ret;
 2790}
 2791
 2792int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 2793{
 2794	return __set_cpus_allowed_ptr(p, new_mask, 0);
 2795}
 2796EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 2797
 2798void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 2799{
 2800#ifdef CONFIG_SCHED_DEBUG
 2801	unsigned int state = READ_ONCE(p->__state);
 2802
 2803	/*
 2804	 * We should never call set_task_cpu() on a blocked task,
 2805	 * ttwu() will sort out the placement.
 2806	 */
 2807	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 2808
 2809	/*
 2810	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 2811	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 2812	 * time relying on p->on_rq.
 2813	 */
 2814	WARN_ON_ONCE(state == TASK_RUNNING &&
 2815		     p->sched_class == &fair_sched_class &&
 2816		     (p->on_rq && !task_on_rq_migrating(p)));
 2817
 2818#ifdef CONFIG_LOCKDEP
 2819	/*
 2820	 * The caller should hold either p->pi_lock or rq->lock, when changing
 2821	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 2822	 *
 2823	 * sched_move_task() holds both and thus holding either pins the cgroup,
 2824	 * see task_group().
 2825	 *
 2826	 * Furthermore, all task_rq users should acquire both locks, see
 2827	 * task_rq_lock().
 2828	 */
 2829	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 2830				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 2831#endif
 2832	/*
 2833	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 2834	 */
 2835	WARN_ON_ONCE(!cpu_online(new_cpu));
 2836
 2837	WARN_ON_ONCE(is_migration_disabled(p));
 2838#endif
 2839
 2840	trace_sched_migrate_task(p, new_cpu);
 2841
 2842	if (task_cpu(p) != new_cpu) {
 2843		if (p->sched_class->migrate_task_rq)
 2844			p->sched_class->migrate_task_rq(p, new_cpu);
 2845		p->se.nr_migrations++;
 2846		rseq_migrate(p);
 2847		perf_event_task_migrate(p);
 2848	}
 2849
 2850	__set_task_cpu(p, new_cpu);
 2851}
 2852
 2853#ifdef CONFIG_NUMA_BALANCING
 2854static void __migrate_swap_task(struct task_struct *p, int cpu)
 2855{
 2856	if (task_on_rq_queued(p)) {
 2857		struct rq *src_rq, *dst_rq;
 2858		struct rq_flags srf, drf;
 2859
 2860		src_rq = task_rq(p);
 2861		dst_rq = cpu_rq(cpu);
 2862
 2863		rq_pin_lock(src_rq, &srf);
 2864		rq_pin_lock(dst_rq, &drf);
 2865
 2866		deactivate_task(src_rq, p, 0);
 2867		set_task_cpu(p, cpu);
 2868		activate_task(dst_rq, p, 0);
 2869		check_preempt_curr(dst_rq, p, 0);
 2870
 2871		rq_unpin_lock(dst_rq, &drf);
 2872		rq_unpin_lock(src_rq, &srf);
 2873
 2874	} else {
 2875		/*
 2876		 * Task isn't running anymore; make it appear like we migrated
 2877		 * it before it went to sleep. This means on wakeup we make the
 2878		 * previous CPU our target instead of where it really is.
 2879		 */
 2880		p->wake_cpu = cpu;
 2881	}
 2882}
 2883
 2884struct migration_swap_arg {
 2885	struct task_struct *src_task, *dst_task;
 2886	int src_cpu, dst_cpu;
 2887};
 2888
 2889static int migrate_swap_stop(void *data)
 2890{
 2891	struct migration_swap_arg *arg = data;
 2892	struct rq *src_rq, *dst_rq;
 2893	int ret = -EAGAIN;
 2894
 2895	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 2896		return -EAGAIN;
 2897
 2898	src_rq = cpu_rq(arg->src_cpu);
 2899	dst_rq = cpu_rq(arg->dst_cpu);
 2900
 2901	double_raw_lock(&arg->src_task->pi_lock,
 2902			&arg->dst_task->pi_lock);
 2903	double_rq_lock(src_rq, dst_rq);
 2904
 2905	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 2906		goto unlock;
 2907
 2908	if (task_cpu(arg->src_task) != arg->src_cpu)
 2909		goto unlock;
 2910
 2911	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 2912		goto unlock;
 2913
 2914	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 2915		goto unlock;
 2916
 2917	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 2918	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 2919
 2920	ret = 0;
 2921
 2922unlock:
 2923	double_rq_unlock(src_rq, dst_rq);
 2924	raw_spin_unlock(&arg->dst_task->pi_lock);
 2925	raw_spin_unlock(&arg->src_task->pi_lock);
 2926
 2927	return ret;
 2928}
 2929
 2930/*
 2931 * Cross migrate two tasks
 2932 */
 2933int migrate_swap(struct task_struct *cur, struct task_struct *p,
 2934		int target_cpu, int curr_cpu)
 2935{
 2936	struct migration_swap_arg arg;
 2937	int ret = -EINVAL;
 2938
 2939	arg = (struct migration_swap_arg){
 2940		.src_task = cur,
 2941		.src_cpu = curr_cpu,
 2942		.dst_task = p,
 2943		.dst_cpu = target_cpu,
 2944	};
 2945
 2946	if (arg.src_cpu == arg.dst_cpu)
 2947		goto out;
 2948
 2949	/*
 2950	 * These three tests are all lockless; this is OK since all of them
 2951	 * will be re-checked with proper locks held further down the line.
 2952	 */
 2953	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 2954		goto out;
 2955
 2956	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 2957		goto out;
 2958
 2959	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 2960		goto out;
 2961
 2962	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 2963	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 2964
 2965out:
 2966	return ret;
 2967}
 2968#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 2969
 2970/*
 2971 * wait_task_inactive - wait for a thread to unschedule.
 2972 *
 2973 * If @match_state is nonzero, it's the @p->state value just checked and
 2974 * not expected to change.  If it changes, i.e. @p might have woken up,
 2975 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 2976 * we return a positive number (its total switch count).  If a second call
 2977 * a short while later returns the same number, the caller can be sure that
 2978 * @p has remained unscheduled the whole time.
 2979 *
 2980 * The caller must ensure that the task *will* unschedule sometime soon,
 2981 * else this function might spin for a *long* time. This function can't
 2982 * be called with interrupts off, or it may introduce deadlock with
 2983 * smp_call_function() if an IPI is sent by the same process we are
 2984 * waiting to become inactive.
 2985 */
 2986unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 2987{
 2988	int running, queued;
 2989	struct rq_flags rf;
 2990	unsigned long ncsw;
 2991	struct rq *rq;
 2992
 2993	for (;;) {
 2994		/*
 2995		 * We do the initial early heuristics without holding
 2996		 * any task-queue locks at all. We'll only try to get
 2997		 * the runqueue lock when things look like they will
 2998		 * work out!
 2999		 */
 3000		rq = task_rq(p);
 3001
 3002		/*
 3003		 * If the task is actively running on another CPU
 3004		 * still, just relax and busy-wait without holding
 3005		 * any locks.
 3006		 *
 3007		 * NOTE! Since we don't hold any locks, it's not
 3008		 * even sure that "rq" stays as the right runqueue!
 3009		 * But we don't care, since "task_running()" will
 3010		 * return false if the runqueue has changed and p
 3011		 * is actually now running somewhere else!
 3012		 */
 3013		while (task_running(rq, p)) {
 3014			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
 3015				return 0;
 3016			cpu_relax();
 3017		}
 3018
 3019		/*
 3020		 * Ok, time to look more closely! We need the rq
 3021		 * lock now, to be *sure*. If we're wrong, we'll
 3022		 * just go back and repeat.
 3023		 */
 3024		rq = task_rq_lock(p, &rf);
 3025		trace_sched_wait_task(p);
 3026		running = task_running(rq, p);
 3027		queued = task_on_rq_queued(p);
 3028		ncsw = 0;
 3029		if (!match_state || READ_ONCE(p->__state) == match_state)
 3030			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 3031		task_rq_unlock(rq, p, &rf);
 3032
 3033		/*
 3034		 * If it changed from the expected state, bail out now.
 3035		 */
 3036		if (unlikely(!ncsw))
 3037			break;
 3038
 3039		/*
 3040		 * Was it really running after all now that we
 3041		 * checked with the proper locks actually held?
 3042		 *
 3043		 * Oops. Go back and try again..
 3044		 */
 3045		if (unlikely(running)) {
 3046			cpu_relax();
 3047			continue;
 3048		}
 3049
 3050		/*
 3051		 * It's not enough that it's not actively running,
 3052		 * it must be off the runqueue _entirely_, and not
 3053		 * preempted!
 3054		 *
 3055		 * So if it was still runnable (but just not actively
 3056		 * running right now), it's preempted, and we should
 3057		 * yield - it could be a while.
 3058		 */
 3059		if (unlikely(queued)) {
 3060			ktime_t to = NSEC_PER_SEC / HZ;
 3061
 3062			set_current_state(TASK_UNINTERRUPTIBLE);
 3063			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
 3064			continue;
 3065		}
 3066
 3067		/*
 3068		 * Ahh, all good. It wasn't running, and it wasn't
 3069		 * runnable, which means that it will never become
 3070		 * running in the future either. We're all done!
 3071		 */
 3072		break;
 3073	}
 3074
 3075	return ncsw;
 3076}
 3077
 3078/***
 3079 * kick_process - kick a running thread to enter/exit the kernel
 3080 * @p: the to-be-kicked thread
 3081 *
 3082 * Cause a process which is running on another CPU to enter
 3083 * kernel-mode, without any delay. (to get signals handled.)
 3084 *
 3085 * NOTE: this function doesn't have to take the runqueue lock,
 3086 * because all it wants to ensure is that the remote task enters
 3087 * the kernel. If the IPI races and the task has been migrated
 3088 * to another CPU then no harm is done and the purpose has been
 3089 * achieved as well.
 3090 */
 3091void kick_process(struct task_struct *p)
 3092{
 3093	int cpu;
 3094
 3095	preempt_disable();
 3096	cpu = task_cpu(p);
 3097	if ((cpu != smp_processor_id()) && task_curr(p))
 3098		smp_send_reschedule(cpu);
 3099	preempt_enable();
 3100}
 3101EXPORT_SYMBOL_GPL(kick_process);
 
 3102
 
 3103/*
 3104 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3105 *
 3106 * A few notes on cpu_active vs cpu_online:
 3107 *
 3108 *  - cpu_active must be a subset of cpu_online
 3109 *
 3110 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3111 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3112 *    CPU isn't yet part of the sched domains, and balancing will not
 3113 *    see it.
 3114 *
 3115 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3116 *    avoid the load balancer to place new tasks on the to be removed
 3117 *    CPU. Existing tasks will remain running there and will be taken
 3118 *    off.
 3119 *
 3120 * This means that fallback selection must not select !active CPUs.
 3121 * And can assume that any active CPU must be online. Conversely
 3122 * select_task_rq() below may allow selection of !active CPUs in order
 3123 * to satisfy the above rules.
 3124 */
 3125static int select_fallback_rq(int cpu, struct task_struct *p)
 3126{
 3127	int nid = cpu_to_node(cpu);
 3128	const struct cpumask *nodemask = NULL;
 3129	enum { cpuset, possible, fail } state = cpuset;
 3130	int dest_cpu;
 3131
 3132	/*
 3133	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3134	 * will return -1. There is no CPU on the node, and we should
 3135	 * select the CPU on the other node.
 3136	 */
 3137	if (nid != -1) {
 3138		nodemask = cpumask_of_node(nid);
 3139
 3140		/* Look for allowed, online CPU in same node. */
 3141		for_each_cpu(dest_cpu, nodemask) {
 
 
 3142			if (!cpu_active(dest_cpu))
 3143				continue;
 3144			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
 3145				return dest_cpu;
 3146		}
 3147	}
 3148
 3149	for (;;) {
 3150		/* Any allowed, online CPU? */
 3151		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3152			if (!is_cpu_allowed(p, dest_cpu))
 
 
 3153				continue;
 3154
 3155			goto out;
 3156		}
 3157
 3158		/* No more Mr. Nice Guy. */
 3159		switch (state) {
 3160		case cpuset:
 3161			if (IS_ENABLED(CONFIG_CPUSETS)) {
 3162				cpuset_cpus_allowed_fallback(p);
 3163				state = possible;
 3164				break;
 3165			}
 3166			fallthrough;
 3167		case possible:
 3168			/*
 3169			 * XXX When called from select_task_rq() we only
 3170			 * hold p->pi_lock and again violate locking order.
 3171			 *
 3172			 * More yuck to audit.
 3173			 */
 3174			do_set_cpus_allowed(p, cpu_possible_mask);
 3175			state = fail;
 3176			break;
 3177
 3178		case fail:
 3179			BUG();
 3180			break;
 3181		}
 3182	}
 3183
 3184out:
 3185	if (state != cpuset) {
 3186		/*
 3187		 * Don't tell them about moving exiting tasks or
 3188		 * kernel threads (both mm NULL), since they never
 3189		 * leave kernel.
 3190		 */
 3191		if (p->mm && printk_ratelimit()) {
 3192			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3193					task_pid_nr(p), p->comm, cpu);
 3194		}
 3195	}
 3196
 3197	return dest_cpu;
 3198}
 3199
 3200/*
 3201 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3202 */
 3203static inline
 3204int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
 3205{
 3206	lockdep_assert_held(&p->pi_lock);
 3207
 3208	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
 3209		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
 3210	else
 3211		cpu = cpumask_any(p->cpus_ptr);
 3212
 3213	/*
 3214	 * In order not to call set_task_cpu() on a blocking task we need
 3215	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3216	 * CPU.
 3217	 *
 3218	 * Since this is common to all placement strategies, this lives here.
 3219	 *
 3220	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3221	 *   not worry about this generic constraint ]
 3222	 */
 3223	if (unlikely(!is_cpu_allowed(p, cpu)))
 
 3224		cpu = select_fallback_rq(task_cpu(p), p);
 3225
 3226	return cpu;
 3227}
 3228
 3229void sched_set_stop_task(int cpu, struct task_struct *stop)
 3230{
 3231	static struct lock_class_key stop_pi_lock;
 3232	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3233	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3234
 3235	if (stop) {
 3236		/*
 3237		 * Make it appear like a SCHED_FIFO task, its something
 3238		 * userspace knows about and won't get confused about.
 3239		 *
 3240		 * Also, it will make PI more or less work without too
 3241		 * much confusion -- but then, stop work should not
 3242		 * rely on PI working anyway.
 3243		 */
 3244		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3245
 3246		stop->sched_class = &stop_sched_class;
 3247
 3248		/*
 3249		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3250		 * adjust the effective priority of a task. As a result,
 3251		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3252		 * which can then trigger wakeups of the stop thread to push
 3253		 * around the current task.
 3254		 *
 3255		 * The stop task itself will never be part of the PI-chain, it
 3256		 * never blocks, therefore that ->pi_lock recursion is safe.
 3257		 * Tell lockdep about this by placing the stop->pi_lock in its
 3258		 * own class.
 3259		 */
 3260		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3261	}
 3262
 3263	cpu_rq(cpu)->stop = stop;
 3264
 3265	if (old_stop) {
 3266		/*
 3267		 * Reset it back to a normal scheduling class so that
 3268		 * it can die in pieces.
 3269		 */
 3270		old_stop->sched_class = &rt_sched_class;
 3271	}
 3272}
 3273
 3274#else /* CONFIG_SMP */
 3275
 3276static inline int __set_cpus_allowed_ptr(struct task_struct *p,
 3277					 const struct cpumask *new_mask,
 3278					 u32 flags)
 3279{
 3280	return set_cpus_allowed_ptr(p, new_mask);
 3281}
 3282
 3283static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3284
 3285static inline bool rq_has_pinned_tasks(struct rq *rq)
 3286{
 3287	return false;
 3288}
 3289
 3290#endif /* !CONFIG_SMP */
 3291
 3292static void
 3293ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3294{
 3295	struct rq *rq;
 
 3296
 3297	if (!schedstat_enabled())
 3298		return;
 3299
 3300	rq = this_rq();
 3301
 3302#ifdef CONFIG_SMP
 3303	if (cpu == rq->cpu) {
 3304		__schedstat_inc(rq->ttwu_local);
 3305		__schedstat_inc(p->se.statistics.nr_wakeups_local);
 3306	} else {
 3307		struct sched_domain *sd;
 3308
 3309		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
 3310		rcu_read_lock();
 3311		for_each_domain(rq->cpu, sd) {
 3312			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3313				__schedstat_inc(sd->ttwu_wake_remote);
 3314				break;
 3315			}
 3316		}
 3317		rcu_read_unlock();
 3318	}
 3319
 3320	if (wake_flags & WF_MIGRATED)
 3321		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
 
 3322#endif /* CONFIG_SMP */
 3323
 3324	__schedstat_inc(rq->ttwu_count);
 3325	__schedstat_inc(p->se.statistics.nr_wakeups);
 3326
 3327	if (wake_flags & WF_SYNC)
 3328		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
 
 
 
 
 
 
 
 
 
 
 
 
 3329}
 3330
 3331/*
 3332 * Mark the task runnable and perform wakeup-preemption.
 3333 */
 3334static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
 3335			   struct rq_flags *rf)
 3336{
 3337	check_preempt_curr(rq, p, wake_flags);
 3338	WRITE_ONCE(p->__state, TASK_RUNNING);
 3339	trace_sched_wakeup(p);
 3340
 
 3341#ifdef CONFIG_SMP
 3342	if (p->sched_class->task_woken) {
 3343		/*
 3344		 * Our task @p is fully woken up and running; so it's safe to
 3345		 * drop the rq->lock, hereafter rq is only used for statistics.
 3346		 */
 3347		rq_unpin_lock(rq, rf);
 3348		p->sched_class->task_woken(rq, p);
 3349		rq_repin_lock(rq, rf);
 3350	}
 3351
 3352	if (rq->idle_stamp) {
 3353		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3354		u64 max = 2*rq->max_idle_balance_cost;
 3355
 3356		update_avg(&rq->avg_idle, delta);
 3357
 3358		if (rq->avg_idle > max)
 3359			rq->avg_idle = max;
 3360
 3361		rq->wake_stamp = jiffies;
 3362		rq->wake_avg_idle = rq->avg_idle / 2;
 3363
 3364		rq->idle_stamp = 0;
 3365	}
 3366#endif
 3367}
 3368
 3369static void
 3370ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3371		 struct rq_flags *rf)
 3372{
 3373	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3374
 3375	lockdep_assert_rq_held(rq);
 3376
 3377	if (p->sched_contributes_to_load)
 3378		rq->nr_uninterruptible--;
 3379
 3380#ifdef CONFIG_SMP
 3381	if (wake_flags & WF_MIGRATED)
 3382		en_flags |= ENQUEUE_MIGRATED;
 3383	else
 3384#endif
 3385	if (p->in_iowait) {
 3386		delayacct_blkio_end(p);
 3387		atomic_dec(&task_rq(p)->nr_iowait);
 3388	}
 3389
 3390	activate_task(rq, p, en_flags);
 3391	ttwu_do_wakeup(rq, p, wake_flags, rf);
 3392}
 3393
 3394/*
 3395 * Consider @p being inside a wait loop:
 3396 *
 3397 *   for (;;) {
 3398 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3399 *
 3400 *      if (CONDITION)
 3401 *         break;
 3402 *
 3403 *      schedule();
 3404 *   }
 3405 *   __set_current_state(TASK_RUNNING);
 3406 *
 3407 * between set_current_state() and schedule(). In this case @p is still
 3408 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3409 * an atomic manner.
 3410 *
 3411 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3412 * then schedule() must still happen and p->state can be changed to
 3413 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3414 * need to do a full wakeup with enqueue.
 3415 *
 3416 * Returns: %true when the wakeup is done,
 3417 *          %false otherwise.
 3418 */
 3419static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3420{
 3421	struct rq_flags rf;
 3422	struct rq *rq;
 3423	int ret = 0;
 3424
 3425	rq = __task_rq_lock(p, &rf);
 3426	if (task_on_rq_queued(p)) {
 3427		/* check_preempt_curr() may use rq clock */
 3428		update_rq_clock(rq);
 3429		ttwu_do_wakeup(rq, p, wake_flags, &rf);
 3430		ret = 1;
 3431	}
 3432	__task_rq_unlock(rq, &rf);
 3433
 3434	return ret;
 3435}
 3436
 3437#ifdef CONFIG_SMP
 3438void sched_ttwu_pending(void *arg)
 3439{
 3440	struct llist_node *llist = arg;
 3441	struct rq *rq = this_rq();
 3442	struct task_struct *p, *t;
 3443	struct rq_flags rf;
 3444
 3445	if (!llist)
 3446		return;
 3447
 3448	/*
 3449	 * rq::ttwu_pending racy indication of out-standing wakeups.
 3450	 * Races such that false-negatives are possible, since they
 3451	 * are shorter lived that false-positives would be.
 3452	 */
 3453	WRITE_ONCE(rq->ttwu_pending, 0);
 3454
 3455	rq_lock_irqsave(rq, &rf);
 3456	update_rq_clock(rq);
 3457
 3458	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3459		if (WARN_ON_ONCE(p->on_cpu))
 3460			smp_cond_load_acquire(&p->on_cpu, !VAL);
 3461
 3462		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3463			set_task_cpu(p, cpu_of(rq));
 3464
 3465		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 
 
 
 3466	}
 3467
 3468	rq_unlock_irqrestore(rq, &rf);
 3469}
 3470
 3471void send_call_function_single_ipi(int cpu)
 3472{
 3473	struct rq *rq = cpu_rq(cpu);
 3474
 3475	if (!set_nr_if_polling(rq->idle))
 3476		arch_send_call_function_single_ipi(cpu);
 3477	else
 3478		trace_sched_wake_idle_without_ipi(cpu);
 3479}
 3480
 3481/*
 3482 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3483 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3484 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3485 * of the wakeup instead of the waker.
 3486 */
 3487static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3488{
 3489	struct rq *rq = cpu_rq(cpu);
 3490
 3491	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3492
 3493	WRITE_ONCE(rq->ttwu_pending, 1);
 3494	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 3495}
 3496
 3497void wake_up_if_idle(int cpu)
 3498{
 3499	struct rq *rq = cpu_rq(cpu);
 3500	struct rq_flags rf;
 3501
 3502	rcu_read_lock();
 3503
 3504	if (!is_idle_task(rcu_dereference(rq->curr)))
 3505		goto out;
 3506
 3507	if (set_nr_if_polling(rq->idle)) {
 3508		trace_sched_wake_idle_without_ipi(cpu);
 3509	} else {
 3510		rq_lock_irqsave(rq, &rf);
 3511		if (is_idle_task(rq->curr))
 3512			smp_send_reschedule(cpu);
 3513		/* Else CPU is not idle, do nothing here: */
 3514		rq_unlock_irqrestore(rq, &rf);
 3515	}
 3516
 3517out:
 3518	rcu_read_unlock();
 3519}
 3520
 3521bool cpus_share_cache(int this_cpu, int that_cpu)
 3522{
 3523	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3524}
 3525
 3526static inline bool ttwu_queue_cond(int cpu, int wake_flags)
 3527{
 3528	/*
 3529	 * Do not complicate things with the async wake_list while the CPU is
 3530	 * in hotplug state.
 
 3531	 */
 3532	if (!cpu_active(cpu))
 3533		return false;
 
 
 
 
 3534
 3535	/*
 3536	 * If the CPU does not share cache, then queue the task on the
 3537	 * remote rqs wakelist to avoid accessing remote data.
 
 
 
 
 
 
 
 
 
 3538	 */
 3539	if (!cpus_share_cache(smp_processor_id(), cpu))
 3540		return true;
 
 3541
 3542	/*
 3543	 * If the task is descheduling and the only running task on the
 3544	 * CPU then use the wakelist to offload the task activation to
 3545	 * the soon-to-be-idle CPU as the current CPU is likely busy.
 3546	 * nr_running is checked to avoid unnecessary task stacking.
 3547	 */
 3548	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
 3549		return true;
 3550
 3551	return false;
 
 3552}
 3553
 3554static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3555{
 3556	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
 3557		if (WARN_ON_ONCE(cpu == smp_processor_id()))
 3558			return false;
 3559
 3560		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 3561		__ttwu_queue_wakelist(p, cpu, wake_flags);
 3562		return true;
 3563	}
 3564
 3565	return false;
 3566}
 3567
 3568#else /* !CONFIG_SMP */
 3569
 3570static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3571{
 3572	return false;
 3573}
 3574
 3575#endif /* CONFIG_SMP */
 3576
 3577static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 3578{
 3579	struct rq *rq = cpu_rq(cpu);
 3580	struct rq_flags rf;
 3581
 3582	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 
 
 
 3583		return;
 
 
 3584
 3585	rq_lock(rq, &rf);
 3586	update_rq_clock(rq);
 3587	ttwu_do_activate(rq, p, wake_flags, &rf);
 3588	rq_unlock(rq, &rf);
 3589}
 3590
 3591/*
 3592 * Notes on Program-Order guarantees on SMP systems.
 3593 *
 3594 *  MIGRATION
 3595 *
 3596 * The basic program-order guarantee on SMP systems is that when a task [t]
 3597 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 3598 * execution on its new CPU [c1].
 3599 *
 3600 * For migration (of runnable tasks) this is provided by the following means:
 3601 *
 3602 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 3603 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 3604 *     rq(c1)->lock (if not at the same time, then in that order).
 3605 *  C) LOCK of the rq(c1)->lock scheduling in task
 3606 *
 3607 * Release/acquire chaining guarantees that B happens after A and C after B.
 3608 * Note: the CPU doing B need not be c0 or c1
 3609 *
 3610 * Example:
 3611 *
 3612 *   CPU0            CPU1            CPU2
 3613 *
 3614 *   LOCK rq(0)->lock
 3615 *   sched-out X
 3616 *   sched-in Y
 3617 *   UNLOCK rq(0)->lock
 3618 *
 3619 *                                   LOCK rq(0)->lock // orders against CPU0
 3620 *                                   dequeue X
 3621 *                                   UNLOCK rq(0)->lock
 3622 *
 3623 *                                   LOCK rq(1)->lock
 3624 *                                   enqueue X
 3625 *                                   UNLOCK rq(1)->lock
 3626 *
 3627 *                   LOCK rq(1)->lock // orders against CPU2
 3628 *                   sched-out Z
 3629 *                   sched-in X
 3630 *                   UNLOCK rq(1)->lock
 3631 *
 3632 *
 3633 *  BLOCKING -- aka. SLEEP + WAKEUP
 3634 *
 3635 * For blocking we (obviously) need to provide the same guarantee as for
 3636 * migration. However the means are completely different as there is no lock
 3637 * chain to provide order. Instead we do:
 3638 *
 3639 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 3640 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 3641 *
 3642 * Example:
 3643 *
 3644 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 3645 *
 3646 *   LOCK rq(0)->lock LOCK X->pi_lock
 3647 *   dequeue X
 3648 *   sched-out X
 3649 *   smp_store_release(X->on_cpu, 0);
 3650 *
 3651 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 3652 *                    X->state = WAKING
 3653 *                    set_task_cpu(X,2)
 3654 *
 3655 *                    LOCK rq(2)->lock
 3656 *                    enqueue X
 3657 *                    X->state = RUNNING
 3658 *                    UNLOCK rq(2)->lock
 3659 *
 3660 *                                          LOCK rq(2)->lock // orders against CPU1
 3661 *                                          sched-out Z
 3662 *                                          sched-in X
 3663 *                                          UNLOCK rq(2)->lock
 3664 *
 3665 *                    UNLOCK X->pi_lock
 3666 *   UNLOCK rq(0)->lock
 3667 *
 3668 *
 3669 * However, for wakeups there is a second guarantee we must provide, namely we
 3670 * must ensure that CONDITION=1 done by the caller can not be reordered with
 3671 * accesses to the task state; see try_to_wake_up() and set_current_state().
 3672 */
 3673
 3674/**
 3675 * try_to_wake_up - wake up a thread
 3676 * @p: the thread to be awakened
 3677 * @state: the mask of task states that can be woken
 3678 * @wake_flags: wake modifier flags (WF_*)
 3679 *
 3680 * Conceptually does:
 3681 *
 3682 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 3683 *
 3684 * If the task was not queued/runnable, also place it back on a runqueue.
 3685 *
 3686 * This function is atomic against schedule() which would dequeue the task.
 3687 *
 3688 * It issues a full memory barrier before accessing @p->state, see the comment
 3689 * with set_current_state().
 3690 *
 3691 * Uses p->pi_lock to serialize against concurrent wake-ups.
 3692 *
 3693 * Relies on p->pi_lock stabilizing:
 3694 *  - p->sched_class
 3695 *  - p->cpus_ptr
 3696 *  - p->sched_task_group
 3697 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 3698 *
 3699 * Tries really hard to only take one task_rq(p)->lock for performance.
 3700 * Takes rq->lock in:
 3701 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 3702 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 3703 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 3704 *
 3705 * As a consequence we race really badly with just about everything. See the
 3706 * many memory barriers and their comments for details.
 3707 *
 3708 * Return: %true if @p->state changes (an actual wakeup was done),
 3709 *	   %false otherwise.
 3710 */
 3711static int
 3712try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 3713{
 3714	unsigned long flags;
 3715	int cpu, success = 0;
 3716
 3717	preempt_disable();
 3718	if (p == current) {
 3719		/*
 3720		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 3721		 * == smp_processor_id()'. Together this means we can special
 3722		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 3723		 * without taking any locks.
 3724		 *
 3725		 * In particular:
 3726		 *  - we rely on Program-Order guarantees for all the ordering,
 3727		 *  - we're serialized against set_special_state() by virtue of
 3728		 *    it disabling IRQs (this allows not taking ->pi_lock).
 3729		 */
 3730		if (!(READ_ONCE(p->__state) & state))
 3731			goto out;
 3732
 3733		success = 1;
 3734		trace_sched_waking(p);
 3735		WRITE_ONCE(p->__state, TASK_RUNNING);
 3736		trace_sched_wakeup(p);
 3737		goto out;
 3738	}
 3739
 3740	/*
 3741	 * If we are going to wake up a thread waiting for CONDITION we
 3742	 * need to ensure that CONDITION=1 done by the caller can not be
 3743	 * reordered with p->state check below. This pairs with smp_store_mb()
 3744	 * in set_current_state() that the waiting thread does.
 3745	 */
 
 3746	raw_spin_lock_irqsave(&p->pi_lock, flags);
 3747	smp_mb__after_spinlock();
 3748	if (!(READ_ONCE(p->__state) & state))
 3749		goto unlock;
 3750
 3751	trace_sched_waking(p);
 
 3752
 3753	/* We're going to change ->state: */
 3754	success = 1;
 3755
 3756	/*
 3757	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 3758	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 3759	 * in smp_cond_load_acquire() below.
 3760	 *
 3761	 * sched_ttwu_pending()			try_to_wake_up()
 3762	 *   STORE p->on_rq = 1			  LOAD p->state
 3763	 *   UNLOCK rq->lock
 3764	 *
 3765	 * __schedule() (switch to task 'p')
 3766	 *   LOCK rq->lock			  smp_rmb();
 3767	 *   smp_mb__after_spinlock();
 3768	 *   UNLOCK rq->lock
 3769	 *
 3770	 * [task p]
 3771	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 3772	 *
 3773	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 3774	 * __schedule().  See the comment for smp_mb__after_spinlock().
 3775	 *
 3776	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
 3777	 */
 3778	smp_rmb();
 3779	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 3780		goto unlock;
 3781
 3782#ifdef CONFIG_SMP
 3783	/*
 3784	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 3785	 * possible to, falsely, observe p->on_cpu == 0.
 3786	 *
 3787	 * One must be running (->on_cpu == 1) in order to remove oneself
 3788	 * from the runqueue.
 3789	 *
 3790	 * __schedule() (switch to task 'p')	try_to_wake_up()
 3791	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 3792	 *   UNLOCK rq->lock
 3793	 *
 3794	 * __schedule() (put 'p' to sleep)
 3795	 *   LOCK rq->lock			  smp_rmb();
 3796	 *   smp_mb__after_spinlock();
 3797	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 3798	 *
 3799	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 3800	 * __schedule().  See the comment for smp_mb__after_spinlock().
 3801	 *
 3802	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 3803	 * schedule()'s deactivate_task() has 'happened' and p will no longer
 3804	 * care about it's own p->state. See the comment in __schedule().
 3805	 */
 3806	smp_acquire__after_ctrl_dep();
 3807
 3808	/*
 3809	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 3810	 * == 0), which means we need to do an enqueue, change p->state to
 3811	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 3812	 * enqueue, such as ttwu_queue_wakelist().
 3813	 */
 3814	WRITE_ONCE(p->__state, TASK_WAKING);
 3815
 3816	/*
 3817	 * If the owning (remote) CPU is still in the middle of schedule() with
 3818	 * this task as prev, considering queueing p on the remote CPUs wake_list
 3819	 * which potentially sends an IPI instead of spinning on p->on_cpu to
 3820	 * let the waker make forward progress. This is safe because IRQs are
 3821	 * disabled and the IPI will deliver after on_cpu is cleared.
 3822	 *
 3823	 * Ensure we load task_cpu(p) after p->on_cpu:
 3824	 *
 3825	 * set_task_cpu(p, cpu);
 3826	 *   STORE p->cpu = @cpu
 3827	 * __schedule() (switch to task 'p')
 3828	 *   LOCK rq->lock
 3829	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 3830	 *   STORE p->on_cpu = 1		LOAD p->cpu
 3831	 *
 3832	 * to ensure we observe the correct CPU on which the task is currently
 3833	 * scheduling.
 3834	 */
 3835	if (smp_load_acquire(&p->on_cpu) &&
 3836	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
 3837		goto unlock;
 3838
 3839	/*
 3840	 * If the owning (remote) CPU is still in the middle of schedule() with
 3841	 * this task as prev, wait until it's done referencing the task.
 3842	 *
 3843	 * Pairs with the smp_store_release() in finish_task().
 3844	 *
 3845	 * This ensures that tasks getting woken will be fully ordered against
 3846	 * their previous state and preserve Program Order.
 3847	 */
 3848	smp_cond_load_acquire(&p->on_cpu, !VAL);
 3849
 3850	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
 3851	if (task_cpu(p) != cpu) {
 3852		if (p->in_iowait) {
 3853			delayacct_blkio_end(p);
 3854			atomic_dec(&task_rq(p)->nr_iowait);
 3855		}
 3856
 3857		wake_flags |= WF_MIGRATED;
 3858		psi_ttwu_dequeue(p);
 3859		set_task_cpu(p, cpu);
 3860	}
 3861#else
 3862	cpu = task_cpu(p);
 3863#endif /* CONFIG_SMP */
 3864
 3865	ttwu_queue(p, cpu, wake_flags);
 3866unlock:
 
 
 3867	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 3868out:
 3869	if (success)
 3870		ttwu_stat(p, task_cpu(p), wake_flags);
 3871	preempt_enable();
 3872
 3873	return success;
 3874}
 3875
 3876/**
 3877 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
 3878 * @p: Process for which the function is to be invoked, can be @current.
 3879 * @func: Function to invoke.
 3880 * @arg: Argument to function.
 3881 *
 3882 * If the specified task can be quickly locked into a definite state
 3883 * (either sleeping or on a given runqueue), arrange to keep it in that
 3884 * state while invoking @func(@arg).  This function can use ->on_rq and
 3885 * task_curr() to work out what the state is, if required.  Given that
 3886 * @func can be invoked with a runqueue lock held, it had better be quite
 3887 * lightweight.
 3888 *
 3889 * Returns:
 3890 *	@false if the task slipped out from under the locks.
 3891 *	@true if the task was locked onto a runqueue or is sleeping.
 3892 *		However, @func can override this by returning @false.
 3893 */
 3894bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
 3895{
 3896	struct rq_flags rf;
 3897	bool ret = false;
 3898	struct rq *rq;
 
 
 
 
 3899
 3900	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 3901	if (p->on_rq) {
 3902		rq = __task_rq_lock(p, &rf);
 3903		if (task_rq(p) == rq)
 3904			ret = func(p, arg);
 3905		rq_unlock(rq, &rf);
 3906	} else {
 3907		switch (READ_ONCE(p->__state)) {
 3908		case TASK_RUNNING:
 3909		case TASK_WAKING:
 3910			break;
 3911		default:
 3912			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
 3913			if (!p->on_rq)
 3914				ret = func(p, arg);
 3915		}
 3916	}
 3917	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 3918	return ret;
 
 
 
 
 
 
 
 
 
 3919}
 3920
 3921/**
 3922 * wake_up_process - Wake up a specific process
 3923 * @p: The process to be woken up.
 3924 *
 3925 * Attempt to wake up the nominated process and move it to the set of runnable
 3926 * processes.
 3927 *
 3928 * Return: 1 if the process was woken up, 0 if it was already running.
 3929 *
 3930 * This function executes a full memory barrier before accessing the task state.
 
 3931 */
 3932int wake_up_process(struct task_struct *p)
 3933{
 
 3934	return try_to_wake_up(p, TASK_NORMAL, 0);
 3935}
 3936EXPORT_SYMBOL(wake_up_process);
 3937
 3938int wake_up_state(struct task_struct *p, unsigned int state)
 3939{
 3940	return try_to_wake_up(p, state, 0);
 3941}
 3942
 3943/*
 3944 * Perform scheduler related setup for a newly forked process p.
 3945 * p is forked by current.
 3946 *
 3947 * __sched_fork() is basic setup used by init_idle() too:
 3948 */
 3949static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 3950{
 3951	p->on_rq			= 0;
 3952
 3953	p->se.on_rq			= 0;
 3954	p->se.exec_start		= 0;
 3955	p->se.sum_exec_runtime		= 0;
 3956	p->se.prev_sum_exec_runtime	= 0;
 3957	p->se.nr_migrations		= 0;
 3958	p->se.vruntime			= 0;
 3959	INIT_LIST_HEAD(&p->se.group_node);
 3960
 3961#ifdef CONFIG_FAIR_GROUP_SCHED
 3962	p->se.cfs_rq			= NULL;
 3963#endif
 3964
 3965#ifdef CONFIG_SCHEDSTATS
 3966	/* Even if schedstat is disabled, there should not be garbage */
 3967	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
 3968#endif
 3969
 3970	RB_CLEAR_NODE(&p->dl.rb_node);
 3971	init_dl_task_timer(&p->dl);
 3972	init_dl_inactive_task_timer(&p->dl);
 3973	__dl_clear_params(p);
 
 
 3974
 3975	INIT_LIST_HEAD(&p->rt.run_list);
 3976	p->rt.timeout		= 0;
 3977	p->rt.time_slice	= sched_rr_timeslice;
 3978	p->rt.on_rq		= 0;
 3979	p->rt.on_list		= 0;
 3980
 3981#ifdef CONFIG_PREEMPT_NOTIFIERS
 3982	INIT_HLIST_HEAD(&p->preempt_notifiers);
 3983#endif
 3984
 3985#ifdef CONFIG_COMPACTION
 3986	p->capture_control = NULL;
 3987#endif
 3988	init_numa_balancing(clone_flags, p);
 3989#ifdef CONFIG_SMP
 3990	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 3991	p->migration_pending = NULL;
 3992#endif
 3993}
 3994
 3995DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 3996
 3997#ifdef CONFIG_NUMA_BALANCING
 
 
 
 
 3998
 3999void set_numabalancing_state(bool enabled)
 4000{
 4001	if (enabled)
 4002		static_branch_enable(&sched_numa_balancing);
 4003	else
 4004		static_branch_disable(&sched_numa_balancing);
 4005}
 4006
 4007#ifdef CONFIG_PROC_SYSCTL
 4008int sysctl_numa_balancing(struct ctl_table *table, int write,
 4009			  void *buffer, size_t *lenp, loff_t *ppos)
 4010{
 4011	struct ctl_table t;
 4012	int err;
 4013	int state = static_branch_likely(&sched_numa_balancing);
 4014
 4015	if (write && !capable(CAP_SYS_ADMIN))
 4016		return -EPERM;
 
 
 
 
 
 
 4017
 4018	t = *table;
 4019	t.data = &state;
 4020	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4021	if (err < 0)
 4022		return err;
 4023	if (write)
 4024		set_numabalancing_state(state);
 4025	return err;
 4026}
 4027#endif
 4028#endif
 4029
 4030#ifdef CONFIG_SCHEDSTATS
 4031
 4032DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 4033
 4034static void set_schedstats(bool enabled)
 4035{
 4036	if (enabled)
 4037		static_branch_enable(&sched_schedstats);
 4038	else
 4039		static_branch_disable(&sched_schedstats);
 4040}
 
 
 4041
 4042void force_schedstat_enabled(void)
 4043{
 4044	if (!schedstat_enabled()) {
 4045		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4046		static_branch_enable(&sched_schedstats);
 4047	}
 4048}
 4049
 4050static int __init setup_schedstats(char *str)
 4051{
 4052	int ret = 0;
 4053	if (!str)
 4054		goto out;
 4055
 4056	if (!strcmp(str, "enable")) {
 4057		set_schedstats(true);
 4058		ret = 1;
 4059	} else if (!strcmp(str, "disable")) {
 4060		set_schedstats(false);
 4061		ret = 1;
 4062	}
 4063out:
 4064	if (!ret)
 4065		pr_warn("Unable to parse schedstats=\n");
 4066
 4067	return ret;
 4068}
 4069__setup("schedstats=", setup_schedstats);
 4070
 4071#ifdef CONFIG_PROC_SYSCTL
 4072int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
 4073		size_t *lenp, loff_t *ppos)
 4074{
 4075	struct ctl_table t;
 4076	int err;
 4077	int state = static_branch_likely(&sched_schedstats);
 4078
 4079	if (write && !capable(CAP_SYS_ADMIN))
 4080		return -EPERM;
 4081
 4082	t = *table;
 4083	t.data = &state;
 4084	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4085	if (err < 0)
 4086		return err;
 4087	if (write)
 4088		set_schedstats(state);
 4089	return err;
 4090}
 4091#endif /* CONFIG_PROC_SYSCTL */
 4092#endif /* CONFIG_SCHEDSTATS */
 4093
 4094/*
 4095 * fork()/clone()-time setup:
 4096 */
 4097int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4098{
 4099	unsigned long flags;
 
 4100
 4101	__sched_fork(clone_flags, p);
 4102	/*
 4103	 * We mark the process as NEW here. This guarantees that
 4104	 * nobody will actually run it, and a signal or other external
 4105	 * event cannot wake it up and insert it on the runqueue either.
 4106	 */
 4107	p->__state = TASK_NEW;
 4108
 4109	/*
 4110	 * Make sure we do not leak PI boosting priority to the child.
 4111	 */
 4112	p->prio = current->normal_prio;
 4113
 4114	uclamp_fork(p);
 4115
 4116	/*
 4117	 * Revert to default priority/policy on fork if requested.
 4118	 */
 4119	if (unlikely(p->sched_reset_on_fork)) {
 4120		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4121			p->policy = SCHED_NORMAL;
 4122			p->static_prio = NICE_TO_PRIO(0);
 4123			p->rt_priority = 0;
 4124		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4125			p->static_prio = NICE_TO_PRIO(0);
 4126
 4127		p->prio = p->normal_prio = p->static_prio;
 4128		set_load_weight(p, false);
 4129
 4130		/*
 4131		 * We don't need the reset flag anymore after the fork. It has
 4132		 * fulfilled its duty:
 4133		 */
 4134		p->sched_reset_on_fork = 0;
 4135	}
 4136
 4137	if (dl_prio(p->prio))
 
 4138		return -EAGAIN;
 4139	else if (rt_prio(p->prio))
 4140		p->sched_class = &rt_sched_class;
 4141	else
 4142		p->sched_class = &fair_sched_class;
 
 4143
 4144	init_entity_runnable_average(&p->se);
 
 4145
 4146	/*
 4147	 * The child is not yet in the pid-hash so no cgroup attach races,
 4148	 * and the cgroup is pinned to this child due to cgroup_fork()
 4149	 * is ran before sched_fork().
 4150	 *
 4151	 * Silence PROVE_RCU.
 4152	 */
 4153	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4154	rseq_migrate(p);
 4155	/*
 4156	 * We're setting the CPU for the first time, we don't migrate,
 4157	 * so use __set_task_cpu().
 4158	 */
 4159	__set_task_cpu(p, smp_processor_id());
 4160	if (p->sched_class->task_fork)
 4161		p->sched_class->task_fork(p);
 4162	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4163
 4164#ifdef CONFIG_SCHED_INFO
 4165	if (likely(sched_info_on()))
 4166		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4167#endif
 4168#if defined(CONFIG_SMP)
 4169	p->on_cpu = 0;
 4170#endif
 4171	init_task_preempt_count(p);
 4172#ifdef CONFIG_SMP
 4173	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4174	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4175#endif
 
 
 4176	return 0;
 4177}
 4178
 4179void sched_post_fork(struct task_struct *p)
 4180{
 4181	uclamp_post_fork(p);
 4182}
 4183
 4184unsigned long to_ratio(u64 period, u64 runtime)
 4185{
 4186	if (runtime == RUNTIME_INF)
 4187		return BW_UNIT;
 4188
 4189	/*
 4190	 * Doing this here saves a lot of checks in all
 4191	 * the calling paths, and returning zero seems
 4192	 * safe for them anyway.
 4193	 */
 4194	if (period == 0)
 4195		return 0;
 4196
 4197	return div64_u64(runtime << BW_SHIFT, period);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4198}
 4199
 4200/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4201 * wake_up_new_task - wake up a newly created task for the first time.
 4202 *
 4203 * This function will do some initial scheduler statistics housekeeping
 4204 * that must be done for every newly created context, then puts the task
 4205 * on the runqueue and wakes it.
 4206 */
 4207void wake_up_new_task(struct task_struct *p)
 4208{
 4209	struct rq_flags rf;
 4210	struct rq *rq;
 4211
 4212	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4213	WRITE_ONCE(p->__state, TASK_RUNNING);
 4214#ifdef CONFIG_SMP
 4215	/*
 4216	 * Fork balancing, do it here and not earlier because:
 4217	 *  - cpus_ptr can change in the fork path
 4218	 *  - any previously selected CPU might disappear through hotplug
 4219	 *
 4220	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4221	 * as we're not fully set-up yet.
 4222	 */
 4223	p->recent_used_cpu = task_cpu(p);
 4224	rseq_migrate(p);
 4225	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
 4226#endif
 4227	rq = __task_rq_lock(p, &rf);
 4228	update_rq_clock(rq);
 4229	post_init_entity_util_avg(p);
 4230
 4231	activate_task(rq, p, ENQUEUE_NOCLOCK);
 4232	trace_sched_wakeup_new(p);
 
 
 
 
 4233	check_preempt_curr(rq, p, WF_FORK);
 4234#ifdef CONFIG_SMP
 4235	if (p->sched_class->task_woken) {
 4236		/*
 4237		 * Nothing relies on rq->lock after this, so it's fine to
 4238		 * drop it.
 4239		 */
 4240		rq_unpin_lock(rq, &rf);
 4241		p->sched_class->task_woken(rq, p);
 4242		rq_repin_lock(rq, &rf);
 4243	}
 4244#endif
 4245	task_rq_unlock(rq, p, &rf);
 4246}
 4247
 4248#ifdef CONFIG_PREEMPT_NOTIFIERS
 4249
 4250static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4251
 4252void preempt_notifier_inc(void)
 4253{
 4254	static_branch_inc(&preempt_notifier_key);
 4255}
 4256EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4257
 4258void preempt_notifier_dec(void)
 4259{
 4260	static_branch_dec(&preempt_notifier_key);
 4261}
 4262EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4263
 4264/**
 4265 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4266 * @notifier: notifier struct to register
 4267 */
 4268void preempt_notifier_register(struct preempt_notifier *notifier)
 4269{
 4270	if (!static_branch_unlikely(&preempt_notifier_key))
 4271		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4272
 4273	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4274}
 4275EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4276
 4277/**
 4278 * preempt_notifier_unregister - no longer interested in preemption notifications
 4279 * @notifier: notifier struct to unregister
 4280 *
 4281 * This is *not* safe to call from within a preemption notifier.
 4282 */
 4283void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4284{
 4285	hlist_del(&notifier->link);
 4286}
 4287EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4288
 4289static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4290{
 4291	struct preempt_notifier *notifier;
 4292
 4293	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4294		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4295}
 4296
 4297static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4298{
 4299	if (static_branch_unlikely(&preempt_notifier_key))
 4300		__fire_sched_in_preempt_notifiers(curr);
 4301}
 4302
 4303static void
 4304__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4305				   struct task_struct *next)
 4306{
 4307	struct preempt_notifier *notifier;
 4308
 4309	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4310		notifier->ops->sched_out(notifier, next);
 4311}
 4312
 4313static __always_inline void
 4314fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4315				 struct task_struct *next)
 4316{
 4317	if (static_branch_unlikely(&preempt_notifier_key))
 4318		__fire_sched_out_preempt_notifiers(curr, next);
 4319}
 4320
 4321#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4322
 4323static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4324{
 4325}
 4326
 4327static inline void
 4328fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4329				 struct task_struct *next)
 4330{
 4331}
 4332
 4333#endif /* CONFIG_PREEMPT_NOTIFIERS */
 4334
 4335static inline void prepare_task(struct task_struct *next)
 4336{
 4337#ifdef CONFIG_SMP
 4338	/*
 4339	 * Claim the task as running, we do this before switching to it
 4340	 * such that any running task will have this set.
 4341	 *
 4342	 * See the ttwu() WF_ON_CPU case and its ordering comment.
 4343	 */
 4344	WRITE_ONCE(next->on_cpu, 1);
 4345#endif
 4346}
 4347
 4348static inline void finish_task(struct task_struct *prev)
 4349{
 4350#ifdef CONFIG_SMP
 4351	/*
 4352	 * This must be the very last reference to @prev from this CPU. After
 4353	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 4354	 * must ensure this doesn't happen until the switch is completely
 4355	 * finished.
 4356	 *
 4357	 * In particular, the load of prev->state in finish_task_switch() must
 4358	 * happen before this.
 4359	 *
 4360	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 4361	 */
 4362	smp_store_release(&prev->on_cpu, 0);
 4363#endif
 4364}
 4365
 4366#ifdef CONFIG_SMP
 4367
 4368static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
 4369{
 4370	void (*func)(struct rq *rq);
 4371	struct callback_head *next;
 4372
 4373	lockdep_assert_rq_held(rq);
 4374
 4375	while (head) {
 4376		func = (void (*)(struct rq *))head->func;
 4377		next = head->next;
 4378		head->next = NULL;
 4379		head = next;
 4380
 4381		func(rq);
 4382	}
 4383}
 4384
 4385static void balance_push(struct rq *rq);
 4386
 4387struct callback_head balance_push_callback = {
 4388	.next = NULL,
 4389	.func = (void (*)(struct callback_head *))balance_push,
 4390};
 4391
 4392static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
 4393{
 4394	struct callback_head *head = rq->balance_callback;
 4395
 4396	lockdep_assert_rq_held(rq);
 4397	if (head)
 4398		rq->balance_callback = NULL;
 4399
 4400	return head;
 4401}
 4402
 4403static void __balance_callbacks(struct rq *rq)
 4404{
 4405	do_balance_callbacks(rq, splice_balance_callbacks(rq));
 4406}
 4407
 4408static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
 4409{
 4410	unsigned long flags;
 4411
 4412	if (unlikely(head)) {
 4413		raw_spin_rq_lock_irqsave(rq, flags);
 4414		do_balance_callbacks(rq, head);
 4415		raw_spin_rq_unlock_irqrestore(rq, flags);
 4416	}
 4417}
 4418
 4419#else
 4420
 4421static inline void __balance_callbacks(struct rq *rq)
 4422{
 4423}
 4424
 4425static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
 4426{
 4427	return NULL;
 4428}
 4429
 4430static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
 4431{
 4432}
 4433
 4434#endif
 4435
 4436static inline void
 4437prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 4438{
 4439	/*
 4440	 * Since the runqueue lock will be released by the next
 4441	 * task (which is an invalid locking op but in the case
 4442	 * of the scheduler it's an obvious special-case), so we
 4443	 * do an early lockdep release here:
 4444	 */
 4445	rq_unpin_lock(rq, rf);
 4446	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 4447#ifdef CONFIG_DEBUG_SPINLOCK
 4448	/* this is a valid case when another task releases the spinlock */
 4449	rq_lockp(rq)->owner = next;
 4450#endif
 4451}
 4452
 4453static inline void finish_lock_switch(struct rq *rq)
 4454{
 4455	/*
 4456	 * If we are tracking spinlock dependencies then we have to
 4457	 * fix up the runqueue lock - which gets 'carried over' from
 4458	 * prev into current:
 4459	 */
 4460	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 4461	__balance_callbacks(rq);
 4462	raw_spin_rq_unlock_irq(rq);
 4463}
 4464
 4465/*
 4466 * NOP if the arch has not defined these:
 4467 */
 4468
 4469#ifndef prepare_arch_switch
 4470# define prepare_arch_switch(next)	do { } while (0)
 4471#endif
 4472
 4473#ifndef finish_arch_post_lock_switch
 4474# define finish_arch_post_lock_switch()	do { } while (0)
 4475#endif
 4476
 4477static inline void kmap_local_sched_out(void)
 4478{
 4479#ifdef CONFIG_KMAP_LOCAL
 4480	if (unlikely(current->kmap_ctrl.idx))
 4481		__kmap_local_sched_out();
 4482#endif
 4483}
 4484
 4485static inline void kmap_local_sched_in(void)
 4486{
 4487#ifdef CONFIG_KMAP_LOCAL
 4488	if (unlikely(current->kmap_ctrl.idx))
 4489		__kmap_local_sched_in();
 4490#endif
 4491}
 4492
 4493/**
 4494 * prepare_task_switch - prepare to switch tasks
 4495 * @rq: the runqueue preparing to switch
 4496 * @prev: the current task that is being switched out
 4497 * @next: the task we are going to switch to.
 4498 *
 4499 * This is called with the rq lock held and interrupts off. It must
 4500 * be paired with a subsequent finish_task_switch after the context
 4501 * switch.
 4502 *
 4503 * prepare_task_switch sets up locking and calls architecture specific
 4504 * hooks.
 4505 */
 4506static inline void
 4507prepare_task_switch(struct rq *rq, struct task_struct *prev,
 4508		    struct task_struct *next)
 4509{
 4510	kcov_prepare_switch(prev);
 4511	sched_info_switch(rq, prev, next);
 4512	perf_event_task_sched_out(prev, next);
 4513	rseq_preempt(prev);
 4514	fire_sched_out_preempt_notifiers(prev, next);
 4515	kmap_local_sched_out();
 4516	prepare_task(next);
 4517	prepare_arch_switch(next);
 4518}
 4519
 4520/**
 4521 * finish_task_switch - clean up after a task-switch
 
 4522 * @prev: the thread we just switched away from.
 4523 *
 4524 * finish_task_switch must be called after the context switch, paired
 4525 * with a prepare_task_switch call before the context switch.
 4526 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 4527 * and do any other architecture-specific cleanup actions.
 4528 *
 4529 * Note that we may have delayed dropping an mm in context_switch(). If
 4530 * so, we finish that here outside of the runqueue lock. (Doing it
 4531 * with the lock held can cause deadlocks; see schedule() for
 4532 * details.)
 4533 *
 4534 * The context switch have flipped the stack from under us and restored the
 4535 * local variables which were saved when this task called schedule() in the
 4536 * past. prev == current is still correct but we need to recalculate this_rq
 4537 * because prev may have moved to another CPU.
 4538 */
 4539static struct rq *finish_task_switch(struct task_struct *prev)
 4540	__releases(rq->lock)
 4541{
 4542	struct rq *rq = this_rq();
 4543	struct mm_struct *mm = rq->prev_mm;
 4544	long prev_state;
 4545
 4546	/*
 4547	 * The previous task will have left us with a preempt_count of 2
 4548	 * because it left us after:
 4549	 *
 4550	 *	schedule()
 4551	 *	  preempt_disable();			// 1
 4552	 *	  __schedule()
 4553	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 4554	 *
 4555	 * Also, see FORK_PREEMPT_COUNT.
 4556	 */
 4557	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 4558		      "corrupted preempt_count: %s/%d/0x%x\n",
 4559		      current->comm, current->pid, preempt_count()))
 4560		preempt_count_set(FORK_PREEMPT_COUNT);
 4561
 4562	rq->prev_mm = NULL;
 4563
 4564	/*
 4565	 * A task struct has one reference for the use as "current".
 4566	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 4567	 * schedule one last time. The schedule call will never return, and
 4568	 * the scheduled task must drop that reference.
 4569	 *
 4570	 * We must observe prev->state before clearing prev->on_cpu (in
 4571	 * finish_task), otherwise a concurrent wakeup can get prev
 4572	 * running on another CPU and we could rave with its RUNNING -> DEAD
 4573	 * transition, resulting in a double drop.
 4574	 */
 4575	prev_state = READ_ONCE(prev->__state);
 4576	vtime_task_switch(prev);
 
 4577	perf_event_task_sched_in(prev, current);
 4578	finish_task(prev);
 4579	tick_nohz_task_switch();
 4580	finish_lock_switch(rq);
 4581	finish_arch_post_lock_switch();
 4582	kcov_finish_switch(current);
 4583	/*
 4584	 * kmap_local_sched_out() is invoked with rq::lock held and
 4585	 * interrupts disabled. There is no requirement for that, but the
 4586	 * sched out code does not have an interrupt enabled section.
 4587	 * Restoring the maps on sched in does not require interrupts being
 4588	 * disabled either.
 4589	 */
 4590	kmap_local_sched_in();
 4591
 4592	fire_sched_in_preempt_notifiers(current);
 4593	/*
 4594	 * When switching through a kernel thread, the loop in
 4595	 * membarrier_{private,global}_expedited() may have observed that
 4596	 * kernel thread and not issued an IPI. It is therefore possible to
 4597	 * schedule between user->kernel->user threads without passing though
 4598	 * switch_mm(). Membarrier requires a barrier after storing to
 4599	 * rq->curr, before returning to userspace, so provide them here:
 4600	 *
 4601	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 4602	 *   provided by mmdrop(),
 4603	 * - a sync_core for SYNC_CORE.
 4604	 */
 4605	if (mm) {
 4606		membarrier_mm_sync_core_before_usermode(mm);
 4607		mmdrop(mm);
 4608	}
 4609	if (unlikely(prev_state == TASK_DEAD)) {
 4610		if (prev->sched_class->task_dead)
 4611			prev->sched_class->task_dead(prev);
 4612
 4613		/*
 4614		 * Remove function-return probe instances associated with this
 4615		 * task and put them back on the free list.
 4616		 */
 4617		kprobe_flush_task(prev);
 
 
 4618
 4619		/* Task is done with its stack. */
 4620		put_task_stack(prev);
 
 
 4621
 4622		put_task_struct_rcu_user(prev);
 
 
 
 
 
 
 
 
 
 
 
 4623	}
 
 
 
 4624
 4625	return rq;
 
 4626}
 4627
 
 
 4628/**
 4629 * schedule_tail - first thing a freshly forked thread must call.
 4630 * @prev: the thread we just switched away from.
 4631 */
 4632asmlinkage __visible void schedule_tail(struct task_struct *prev)
 4633	__releases(rq->lock)
 4634{
 
 
 
 
 4635	/*
 4636	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 4637	 * finish_task_switch() for details.
 4638	 *
 4639	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 4640	 * and the preempt_enable() will end up enabling preemption (on
 4641	 * PREEMPT_COUNT kernels).
 4642	 */
 
 4643
 4644	finish_task_switch(prev);
 
 4645	preempt_enable();
 4646
 4647	if (current->set_child_tid)
 4648		put_user(task_pid_vnr(current), current->set_child_tid);
 4649
 4650	calculate_sigpending();
 4651}
 4652
 4653/*
 4654 * context_switch - switch to the new MM and the new thread's register state.
 
 4655 */
 4656static __always_inline struct rq *
 4657context_switch(struct rq *rq, struct task_struct *prev,
 4658	       struct task_struct *next, struct rq_flags *rf)
 4659{
 
 
 4660	prepare_task_switch(rq, prev, next);
 4661
 
 
 4662	/*
 4663	 * For paravirt, this is coupled with an exit in switch_to to
 4664	 * combine the page table reload and the switch backend into
 4665	 * one hypercall.
 4666	 */
 4667	arch_start_context_switch(prev);
 4668
 
 
 
 
 
 
 
 
 
 
 
 4669	/*
 4670	 * kernel -> kernel   lazy + transfer active
 4671	 *   user -> kernel   lazy + mmgrab() active
 4672	 *
 4673	 * kernel ->   user   switch + mmdrop() active
 4674	 *   user ->   user   switch
 4675	 */
 4676	if (!next->mm) {                                // to kernel
 4677		enter_lazy_tlb(prev->active_mm, next);
 4678
 4679		next->active_mm = prev->active_mm;
 4680		if (prev->mm)                           // from user
 4681			mmgrab(prev->active_mm);
 4682		else
 4683			prev->active_mm = NULL;
 4684	} else {                                        // to user
 4685		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 4686		/*
 4687		 * sys_membarrier() requires an smp_mb() between setting
 4688		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 4689		 *
 4690		 * The below provides this either through switch_mm(), or in
 4691		 * case 'prev->active_mm == next->mm' through
 4692		 * finish_task_switch()'s mmdrop().
 4693		 */
 4694		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 4695
 4696		if (!prev->mm) {                        // from kernel
 4697			/* will mmdrop() in finish_task_switch(). */
 4698			rq->prev_mm = prev->active_mm;
 4699			prev->active_mm = NULL;
 4700		}
 4701	}
 4702
 4703	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 4704
 4705	prepare_lock_switch(rq, next, rf);
 4706
 
 4707	/* Here we just switch the register state and the stack. */
 4708	switch_to(prev, next, prev);
 
 4709	barrier();
 4710
 4711	return finish_task_switch(prev);
 
 
 
 
 4712}
 4713
 4714/*
 4715 * nr_running and nr_context_switches:
 4716 *
 4717 * externally visible scheduler statistics: current number of runnable
 4718 * threads, total number of context switches performed since bootup.
 4719 */
 4720unsigned int nr_running(void)
 4721{
 4722	unsigned int i, sum = 0;
 4723
 4724	for_each_online_cpu(i)
 4725		sum += cpu_rq(i)->nr_running;
 4726
 4727	return sum;
 4728}
 4729
 4730/*
 4731 * Check if only the current task is running on the CPU.
 4732 *
 4733 * Caution: this function does not check that the caller has disabled
 4734 * preemption, thus the result might have a time-of-check-to-time-of-use
 4735 * race.  The caller is responsible to use it correctly, for example:
 4736 *
 4737 * - from a non-preemptible section (of course)
 4738 *
 4739 * - from a thread that is bound to a single CPU
 4740 *
 4741 * - in a loop with very short iterations (e.g. a polling loop)
 4742 */
 4743bool single_task_running(void)
 4744{
 4745	return raw_rq()->nr_running == 1;
 4746}
 4747EXPORT_SYMBOL(single_task_running);
 4748
 4749unsigned long long nr_context_switches(void)
 4750{
 4751	int i;
 4752	unsigned long long sum = 0;
 4753
 4754	for_each_possible_cpu(i)
 4755		sum += cpu_rq(i)->nr_switches;
 4756
 4757	return sum;
 4758}
 4759
 4760/*
 4761 * Consumers of these two interfaces, like for example the cpuidle menu
 4762 * governor, are using nonsensical data. Preferring shallow idle state selection
 4763 * for a CPU that has IO-wait which might not even end up running the task when
 4764 * it does become runnable.
 4765 */
 4766
 4767unsigned int nr_iowait_cpu(int cpu)
 4768{
 4769	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 4770}
 4771
 4772/*
 4773 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 4774 *
 4775 * The idea behind IO-wait account is to account the idle time that we could
 4776 * have spend running if it were not for IO. That is, if we were to improve the
 4777 * storage performance, we'd have a proportional reduction in IO-wait time.
 4778 *
 4779 * This all works nicely on UP, where, when a task blocks on IO, we account
 4780 * idle time as IO-wait, because if the storage were faster, it could've been
 4781 * running and we'd not be idle.
 4782 *
 4783 * This has been extended to SMP, by doing the same for each CPU. This however
 4784 * is broken.
 4785 *
 4786 * Imagine for instance the case where two tasks block on one CPU, only the one
 4787 * CPU will have IO-wait accounted, while the other has regular idle. Even
 4788 * though, if the storage were faster, both could've ran at the same time,
 4789 * utilising both CPUs.
 4790 *
 4791 * This means, that when looking globally, the current IO-wait accounting on
 4792 * SMP is a lower bound, by reason of under accounting.
 4793 *
 4794 * Worse, since the numbers are provided per CPU, they are sometimes
 4795 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 4796 * associated with any one particular CPU, it can wake to another CPU than it
 4797 * blocked on. This means the per CPU IO-wait number is meaningless.
 4798 *
 4799 * Task CPU affinities can make all that even more 'interesting'.
 4800 */
 4801
 4802unsigned int nr_iowait(void)
 4803{
 4804	unsigned int i, sum = 0;
 4805
 4806	for_each_possible_cpu(i)
 4807		sum += nr_iowait_cpu(i);
 4808
 4809	return sum;
 4810}
 4811
 
 
 
 
 
 
 4812#ifdef CONFIG_SMP
 4813
 4814/*
 4815 * sched_exec - execve() is a valuable balancing opportunity, because at
 4816 * this point the task has the smallest effective memory and cache footprint.
 4817 */
 4818void sched_exec(void)
 4819{
 4820	struct task_struct *p = current;
 4821	unsigned long flags;
 4822	int dest_cpu;
 4823
 4824	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4825	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 4826	if (dest_cpu == smp_processor_id())
 4827		goto unlock;
 4828
 4829	if (likely(cpu_active(dest_cpu))) {
 4830		struct migration_arg arg = { p, dest_cpu };
 4831
 4832		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4833		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 4834		return;
 4835	}
 4836unlock:
 4837	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4838}
 4839
 4840#endif
 4841
 4842DEFINE_PER_CPU(struct kernel_stat, kstat);
 4843DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 4844
 4845EXPORT_PER_CPU_SYMBOL(kstat);
 4846EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 4847
 4848/*
 4849 * The function fair_sched_class.update_curr accesses the struct curr
 4850 * and its field curr->exec_start; when called from task_sched_runtime(),
 4851 * we observe a high rate of cache misses in practice.
 4852 * Prefetching this data results in improved performance.
 4853 */
 4854static inline void prefetch_curr_exec_start(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4855{
 4856#ifdef CONFIG_FAIR_GROUP_SCHED
 4857	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
 4858#else
 4859	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
 4860#endif
 4861	prefetch(curr);
 4862	prefetch(&curr->exec_start);
 
 
 4863}
 4864
 4865/*
 4866 * Return accounted runtime for the task.
 4867 * In case the task is currently running, return the runtime plus current's
 4868 * pending runtime that have not been accounted yet.
 4869 */
 4870unsigned long long task_sched_runtime(struct task_struct *p)
 4871{
 4872	struct rq_flags rf;
 4873	struct rq *rq;
 4874	u64 ns;
 4875
 4876#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 4877	/*
 4878	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 4879	 * So we have a optimization chance when the task's delta_exec is 0.
 4880	 * Reading ->on_cpu is racy, but this is ok.
 4881	 *
 4882	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 4883	 * If we race with it entering CPU, unaccounted time is 0. This is
 4884	 * indistinguishable from the read occurring a few cycles earlier.
 4885	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 4886	 * been accounted, so we're correct here as well.
 4887	 */
 4888	if (!p->on_cpu || !task_on_rq_queued(p))
 4889		return p->se.sum_exec_runtime;
 4890#endif
 4891
 4892	rq = task_rq_lock(p, &rf);
 4893	/*
 4894	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 4895	 * project cycles that may never be accounted to this
 4896	 * thread, breaking clock_gettime().
 4897	 */
 4898	if (task_current(rq, p) && task_on_rq_queued(p)) {
 4899		prefetch_curr_exec_start(p);
 4900		update_rq_clock(rq);
 4901		p->sched_class->update_curr(rq);
 4902	}
 4903	ns = p->se.sum_exec_runtime;
 4904	task_rq_unlock(rq, p, &rf);
 4905
 4906	return ns;
 4907}
 4908
 4909#ifdef CONFIG_SCHED_DEBUG
 4910static u64 cpu_resched_latency(struct rq *rq)
 4911{
 4912	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 4913	u64 resched_latency, now = rq_clock(rq);
 4914	static bool warned_once;
 4915
 4916	if (sysctl_resched_latency_warn_once && warned_once)
 4917		return 0;
 4918
 4919	if (!need_resched() || !latency_warn_ms)
 4920		return 0;
 4921
 4922	if (system_state == SYSTEM_BOOTING)
 4923		return 0;
 4924
 4925	if (!rq->last_seen_need_resched_ns) {
 4926		rq->last_seen_need_resched_ns = now;
 4927		rq->ticks_without_resched = 0;
 4928		return 0;
 4929	}
 4930
 4931	rq->ticks_without_resched++;
 4932	resched_latency = now - rq->last_seen_need_resched_ns;
 4933	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 4934		return 0;
 4935
 4936	warned_once = true;
 4937
 4938	return resched_latency;
 4939}
 4940
 4941static int __init setup_resched_latency_warn_ms(char *str)
 4942{
 4943	long val;
 4944
 4945	if ((kstrtol(str, 0, &val))) {
 4946		pr_warn("Unable to set resched_latency_warn_ms\n");
 4947		return 1;
 4948	}
 4949
 4950	sysctl_resched_latency_warn_ms = val;
 4951	return 1;
 4952}
 4953__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 4954#else
 4955static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 4956#endif /* CONFIG_SCHED_DEBUG */
 4957
 4958/*
 4959 * This function gets called by the timer code, with HZ frequency.
 4960 * We call it with interrupts disabled.
 4961 */
 4962void scheduler_tick(void)
 4963{
 4964	int cpu = smp_processor_id();
 4965	struct rq *rq = cpu_rq(cpu);
 4966	struct task_struct *curr = rq->curr;
 4967	struct rq_flags rf;
 4968	unsigned long thermal_pressure;
 4969	u64 resched_latency;
 4970
 4971	arch_scale_freq_tick();
 4972	sched_clock_tick();
 4973
 4974	rq_lock(rq, &rf);
 4975
 4976	update_rq_clock(rq);
 4977	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 4978	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
 4979	curr->sched_class->task_tick(rq, curr, 0);
 4980	if (sched_feat(LATENCY_WARN))
 4981		resched_latency = cpu_resched_latency(rq);
 4982	calc_global_load_tick(rq);
 4983
 4984	rq_unlock(rq, &rf);
 4985
 4986	if (sched_feat(LATENCY_WARN) && resched_latency)
 4987		resched_latency_warn(cpu, resched_latency);
 4988
 4989	perf_event_task_tick();
 4990
 4991#ifdef CONFIG_SMP
 4992	rq->idle_balance = idle_cpu(cpu);
 4993	trigger_load_balance(rq);
 4994#endif
 
 4995}
 4996
 4997#ifdef CONFIG_NO_HZ_FULL
 4998
 4999struct tick_work {
 5000	int			cpu;
 5001	atomic_t		state;
 5002	struct delayed_work	work;
 5003};
 5004/* Values for ->state, see diagram below. */
 5005#define TICK_SCHED_REMOTE_OFFLINE	0
 5006#define TICK_SCHED_REMOTE_OFFLINING	1
 5007#define TICK_SCHED_REMOTE_RUNNING	2
 5008
 5009/*
 5010 * State diagram for ->state:
 5011 *
 
 
 
 5012 *
 5013 *          TICK_SCHED_REMOTE_OFFLINE
 5014 *                    |   ^
 5015 *                    |   |
 5016 *                    |   | sched_tick_remote()
 5017 *                    |   |
 5018 *                    |   |
 5019 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5020 *                    |   ^
 5021 *                    |   |
 5022 * sched_tick_start() |   | sched_tick_stop()
 5023 *                    |   |
 5024 *                    V   |
 5025 *          TICK_SCHED_REMOTE_RUNNING
 5026 *
 5027 *
 5028 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5029 * and sched_tick_start() are happy to leave the state in RUNNING.
 5030 */
 5031
 5032static struct tick_work __percpu *tick_work_cpu;
 5033
 5034static void sched_tick_remote(struct work_struct *work)
 5035{
 5036	struct delayed_work *dwork = to_delayed_work(work);
 5037	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5038	int cpu = twork->cpu;
 5039	struct rq *rq = cpu_rq(cpu);
 5040	struct task_struct *curr;
 5041	struct rq_flags rf;
 5042	u64 delta;
 5043	int os;
 5044
 5045	/*
 5046	 * Handle the tick only if it appears the remote CPU is running in full
 5047	 * dynticks mode. The check is racy by nature, but missing a tick or
 5048	 * having one too much is no big deal because the scheduler tick updates
 5049	 * statistics and checks timeslices in a time-independent way, regardless
 5050	 * of when exactly it is running.
 5051	 */
 5052	if (!tick_nohz_tick_stopped_cpu(cpu))
 5053		goto out_requeue;
 5054
 5055	rq_lock_irq(rq, &rf);
 5056	curr = rq->curr;
 5057	if (cpu_is_offline(cpu))
 5058		goto out_unlock;
 5059
 5060	update_rq_clock(rq);
 5061
 5062	if (!is_idle_task(curr)) {
 5063		/*
 5064		 * Make sure the next tick runs within a reasonable
 5065		 * amount of time.
 5066		 */
 5067		delta = rq_clock_task(rq) - curr->se.exec_start;
 5068		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5069	}
 5070	curr->sched_class->task_tick(rq, curr, 0);
 5071
 5072	calc_load_nohz_remote(rq);
 5073out_unlock:
 5074	rq_unlock_irq(rq, &rf);
 5075out_requeue:
 5076
 5077	/*
 5078	 * Run the remote tick once per second (1Hz). This arbitrary
 5079	 * frequency is large enough to avoid overload but short enough
 5080	 * to keep scheduler internal stats reasonably up to date.  But
 5081	 * first update state to reflect hotplug activity if required.
 5082	 */
 5083	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5084	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5085	if (os == TICK_SCHED_REMOTE_RUNNING)
 5086		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5087}
 
 5088
 5089static void sched_tick_start(int cpu)
 5090{
 5091	int os;
 5092	struct tick_work *twork;
 5093
 5094	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
 5095		return;
 5096
 5097	WARN_ON_ONCE(!tick_work_cpu);
 5098
 5099	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5100	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5101	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5102	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5103		twork->cpu = cpu;
 5104		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5105		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5106	}
 
 5107}
 5108
 5109#ifdef CONFIG_HOTPLUG_CPU
 5110static void sched_tick_stop(int cpu)
 5111{
 5112	struct tick_work *twork;
 5113	int os;
 5114
 5115	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
 5116		return;
 5117
 5118	WARN_ON_ONCE(!tick_work_cpu);
 5119
 5120	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5121	/* There cannot be competing actions, but don't rely on stop-machine. */
 5122	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5123	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5124	/* Don't cancel, as this would mess up the state machine. */
 5125}
 5126#endif /* CONFIG_HOTPLUG_CPU */
 5127
 5128int __init sched_tick_offload_init(void)
 5129{
 5130	tick_work_cpu = alloc_percpu(struct tick_work);
 5131	BUG_ON(!tick_work_cpu);
 5132	return 0;
 5133}
 5134
 5135#else /* !CONFIG_NO_HZ_FULL */
 5136static inline void sched_tick_start(int cpu) { }
 5137static inline void sched_tick_stop(int cpu) { }
 5138#endif
 5139
 5140#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5141				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5142/*
 5143 * If the value passed in is equal to the current preempt count
 5144 * then we just disabled preemption. Start timing the latency.
 5145 */
 5146static inline void preempt_latency_start(int val)
 5147{
 5148	if (preempt_count() == val) {
 5149		unsigned long ip = get_lock_parent_ip();
 5150#ifdef CONFIG_DEBUG_PREEMPT
 5151		current->preempt_disable_ip = ip;
 5152#endif
 5153		trace_preempt_off(CALLER_ADDR0, ip);
 5154	}
 5155}
 5156
 5157void preempt_count_add(int val)
 5158{
 5159#ifdef CONFIG_DEBUG_PREEMPT
 5160	/*
 5161	 * Underflow?
 5162	 */
 5163	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5164		return;
 5165#endif
 5166	__preempt_count_add(val);
 5167#ifdef CONFIG_DEBUG_PREEMPT
 5168	/*
 5169	 * Spinlock count overflowing soon?
 5170	 */
 5171	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5172				PREEMPT_MASK - 10);
 5173#endif
 5174	preempt_latency_start(val);
 
 
 
 
 
 
 5175}
 5176EXPORT_SYMBOL(preempt_count_add);
 5177NOKPROBE_SYMBOL(preempt_count_add);
 5178
 5179/*
 5180 * If the value passed in equals to the current preempt count
 5181 * then we just enabled preemption. Stop timing the latency.
 5182 */
 5183static inline void preempt_latency_stop(int val)
 5184{
 5185	if (preempt_count() == val)
 5186		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5187}
 5188
 5189void preempt_count_sub(int val)
 5190{
 5191#ifdef CONFIG_DEBUG_PREEMPT
 5192	/*
 5193	 * Underflow?
 5194	 */
 5195	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5196		return;
 5197	/*
 5198	 * Is the spinlock portion underflowing?
 5199	 */
 5200	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5201			!(preempt_count() & PREEMPT_MASK)))
 5202		return;
 5203#endif
 5204
 5205	preempt_latency_stop(val);
 
 5206	__preempt_count_sub(val);
 5207}
 5208EXPORT_SYMBOL(preempt_count_sub);
 5209NOKPROBE_SYMBOL(preempt_count_sub);
 5210
 5211#else
 5212static inline void preempt_latency_start(int val) { }
 5213static inline void preempt_latency_stop(int val) { }
 5214#endif
 5215
 5216static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5217{
 5218#ifdef CONFIG_DEBUG_PREEMPT
 5219	return p->preempt_disable_ip;
 5220#else
 5221	return 0;
 5222#endif
 5223}
 5224
 5225/*
 5226 * Print scheduling while atomic bug:
 5227 */
 5228static noinline void __schedule_bug(struct task_struct *prev)
 5229{
 5230	/* Save this before calling printk(), since that will clobber it */
 5231	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5232
 5233	if (oops_in_progress)
 5234		return;
 5235
 5236	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5237		prev->comm, prev->pid, preempt_count());
 5238
 5239	debug_show_held_locks(prev);
 5240	print_modules();
 5241	if (irqs_disabled())
 5242		print_irqtrace_events(prev);
 5243	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
 5244	    && in_atomic_preempt_off()) {
 5245		pr_err("Preemption disabled at:");
 5246		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
 5247	}
 5248	if (panic_on_warn)
 5249		panic("scheduling while atomic\n");
 5250
 5251	dump_stack();
 5252	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5253}
 5254
 5255/*
 5256 * Various schedule()-time debugging checks and statistics:
 5257 */
 5258static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5259{
 5260#ifdef CONFIG_SCHED_STACK_END_CHECK
 5261	if (task_stack_end_corrupted(prev))
 5262		panic("corrupted stack end detected inside scheduler\n");
 5263
 5264	if (task_scs_end_corrupted(prev))
 5265		panic("corrupted shadow stack detected inside scheduler\n");
 5266#endif
 5267
 5268#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5269	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5270		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5271			prev->comm, prev->pid, prev->non_block_count);
 5272		dump_stack();
 5273		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5274	}
 5275#endif
 5276
 5277	if (unlikely(in_atomic_preempt_off())) {
 5278		__schedule_bug(prev);
 5279		preempt_count_set(PREEMPT_DISABLED);
 5280	}
 5281	rcu_sleep_check();
 5282	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
 5283
 5284	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5285
 5286	schedstat_inc(this_rq()->sched_count);
 5287}
 5288
 5289static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
 5290				  struct rq_flags *rf)
 5291{
 5292#ifdef CONFIG_SMP
 5293	const struct sched_class *class;
 5294	/*
 5295	 * We must do the balancing pass before put_prev_task(), such
 5296	 * that when we release the rq->lock the task is in the same
 5297	 * state as before we took rq->lock.
 5298	 *
 5299	 * We can terminate the balance pass as soon as we know there is
 5300	 * a runnable task of @class priority or higher.
 5301	 */
 5302	for_class_range(class, prev->sched_class, &idle_sched_class) {
 5303		if (class->balance(rq, prev, rf))
 5304			break;
 5305	}
 5306#endif
 5307
 5308	put_prev_task(rq, prev);
 5309}
 5310
 5311/*
 5312 * Pick up the highest-prio task:
 5313 */
 5314static inline struct task_struct *
 5315__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5316{
 5317	const struct sched_class *class;
 5318	struct task_struct *p;
 5319
 5320	/*
 5321	 * Optimization: we know that if all tasks are in the fair class we can
 5322	 * call that function directly, but only if the @prev task wasn't of a
 5323	 * higher scheduling class, because otherwise those lose the
 5324	 * opportunity to pull in more work from other CPUs.
 5325	 */
 5326	if (likely(prev->sched_class <= &fair_sched_class &&
 5327		   rq->nr_running == rq->cfs.h_nr_running)) {
 5328
 5329		p = pick_next_task_fair(rq, prev, rf);
 5330		if (unlikely(p == RETRY_TASK))
 5331			goto restart;
 5332
 5333		/* Assume the next prioritized class is idle_sched_class */
 5334		if (!p) {
 5335			put_prev_task(rq, prev);
 5336			p = pick_next_task_idle(rq);
 5337		}
 5338
 5339		return p;
 5340	}
 5341
 5342restart:
 5343	put_prev_task_balance(rq, prev, rf);
 5344
 5345	for_each_class(class) {
 5346		p = class->pick_next_task(rq);
 5347		if (p)
 
 
 5348			return p;
 5349	}
 5350
 5351	/* The idle class should always have a runnable task: */
 5352	BUG();
 5353}
 5354
 5355#ifdef CONFIG_SCHED_CORE
 5356static inline bool is_task_rq_idle(struct task_struct *t)
 5357{
 5358	return (task_rq(t)->idle == t);
 5359}
 5360
 5361static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 5362{
 5363	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 5364}
 5365
 5366static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 5367{
 5368	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 5369		return true;
 5370
 5371	return a->core_cookie == b->core_cookie;
 5372}
 5373
 5374// XXX fairness/fwd progress conditions
 5375/*
 5376 * Returns
 5377 * - NULL if there is no runnable task for this class.
 5378 * - the highest priority task for this runqueue if it matches
 5379 *   rq->core->core_cookie or its priority is greater than max.
 5380 * - Else returns idle_task.
 5381 */
 5382static struct task_struct *
 5383pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
 5384{
 5385	struct task_struct *class_pick, *cookie_pick;
 5386	unsigned long cookie = rq->core->core_cookie;
 5387
 5388	class_pick = class->pick_task(rq);
 5389	if (!class_pick)
 5390		return NULL;
 5391
 5392	if (!cookie) {
 5393		/*
 5394		 * If class_pick is tagged, return it only if it has
 5395		 * higher priority than max.
 5396		 */
 5397		if (max && class_pick->core_cookie &&
 5398		    prio_less(class_pick, max, in_fi))
 5399			return idle_sched_class.pick_task(rq);
 5400
 5401		return class_pick;
 5402	}
 5403
 5404	/*
 5405	 * If class_pick is idle or matches cookie, return early.
 5406	 */
 5407	if (cookie_equals(class_pick, cookie))
 5408		return class_pick;
 5409
 5410	cookie_pick = sched_core_find(rq, cookie);
 5411
 5412	/*
 5413	 * If class > max && class > cookie, it is the highest priority task on
 5414	 * the core (so far) and it must be selected, otherwise we must go with
 5415	 * the cookie pick in order to satisfy the constraint.
 5416	 */
 5417	if (prio_less(cookie_pick, class_pick, in_fi) &&
 5418	    (!max || prio_less(max, class_pick, in_fi)))
 5419		return class_pick;
 5420
 5421	return cookie_pick;
 5422}
 5423
 5424extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 5425
 5426static struct task_struct *
 5427pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5428{
 5429	struct task_struct *next, *max = NULL;
 5430	const struct sched_class *class;
 5431	const struct cpumask *smt_mask;
 5432	bool fi_before = false;
 5433	int i, j, cpu, occ = 0;
 5434	bool need_sync;
 5435
 5436	if (!sched_core_enabled(rq))
 5437		return __pick_next_task(rq, prev, rf);
 5438
 5439	cpu = cpu_of(rq);
 5440
 5441	/* Stopper task is switching into idle, no need core-wide selection. */
 5442	if (cpu_is_offline(cpu)) {
 5443		/*
 5444		 * Reset core_pick so that we don't enter the fastpath when
 5445		 * coming online. core_pick would already be migrated to
 5446		 * another cpu during offline.
 5447		 */
 5448		rq->core_pick = NULL;
 5449		return __pick_next_task(rq, prev, rf);
 5450	}
 5451
 5452	/*
 5453	 * If there were no {en,de}queues since we picked (IOW, the task
 5454	 * pointers are all still valid), and we haven't scheduled the last
 5455	 * pick yet, do so now.
 5456	 *
 5457	 * rq->core_pick can be NULL if no selection was made for a CPU because
 5458	 * it was either offline or went offline during a sibling's core-wide
 5459	 * selection. In this case, do a core-wide selection.
 5460	 */
 5461	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 5462	    rq->core->core_pick_seq != rq->core_sched_seq &&
 5463	    rq->core_pick) {
 5464		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 5465
 5466		next = rq->core_pick;
 5467		if (next != prev) {
 5468			put_prev_task(rq, prev);
 5469			set_next_task(rq, next);
 5470		}
 5471
 5472		rq->core_pick = NULL;
 5473		return next;
 5474	}
 5475
 5476	put_prev_task_balance(rq, prev, rf);
 5477
 5478	smt_mask = cpu_smt_mask(cpu);
 5479	need_sync = !!rq->core->core_cookie;
 5480
 5481	/* reset state */
 5482	rq->core->core_cookie = 0UL;
 5483	if (rq->core->core_forceidle) {
 5484		need_sync = true;
 5485		fi_before = true;
 5486		rq->core->core_forceidle = false;
 5487	}
 5488
 5489	/*
 5490	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 5491	 *
 5492	 * @task_seq guards the task state ({en,de}queues)
 5493	 * @pick_seq is the @task_seq we did a selection on
 5494	 * @sched_seq is the @pick_seq we scheduled
 5495	 *
 5496	 * However, preemptions can cause multiple picks on the same task set.
 5497	 * 'Fix' this by also increasing @task_seq for every pick.
 5498	 */
 5499	rq->core->core_task_seq++;
 5500
 5501	/*
 5502	 * Optimize for common case where this CPU has no cookies
 5503	 * and there are no cookied tasks running on siblings.
 5504	 */
 5505	if (!need_sync) {
 5506		for_each_class(class) {
 5507			next = class->pick_task(rq);
 5508			if (next)
 5509				break;
 5510		}
 5511
 5512		if (!next->core_cookie) {
 5513			rq->core_pick = NULL;
 5514			/*
 5515			 * For robustness, update the min_vruntime_fi for
 5516			 * unconstrained picks as well.
 5517			 */
 5518			WARN_ON_ONCE(fi_before);
 5519			task_vruntime_update(rq, next, false);
 5520			goto done;
 5521		}
 5522	}
 5523
 5524	for_each_cpu(i, smt_mask) {
 5525		struct rq *rq_i = cpu_rq(i);
 5526
 5527		rq_i->core_pick = NULL;
 5528
 5529		if (i != cpu)
 5530			update_rq_clock(rq_i);
 5531	}
 5532
 5533	/*
 5534	 * Try and select tasks for each sibling in descending sched_class
 5535	 * order.
 5536	 */
 5537	for_each_class(class) {
 5538again:
 5539		for_each_cpu_wrap(i, smt_mask, cpu) {
 5540			struct rq *rq_i = cpu_rq(i);
 5541			struct task_struct *p;
 5542
 5543			if (rq_i->core_pick)
 5544				continue;
 5545
 5546			/*
 5547			 * If this sibling doesn't yet have a suitable task to
 5548			 * run; ask for the most eligible task, given the
 5549			 * highest priority task already selected for this
 5550			 * core.
 5551			 */
 5552			p = pick_task(rq_i, class, max, fi_before);
 5553			if (!p)
 5554				continue;
 5555
 5556			if (!is_task_rq_idle(p))
 5557				occ++;
 5558
 5559			rq_i->core_pick = p;
 5560			if (rq_i->idle == p && rq_i->nr_running) {
 5561				rq->core->core_forceidle = true;
 5562				if (!fi_before)
 5563					rq->core->core_forceidle_seq++;
 5564			}
 5565
 5566			/*
 5567			 * If this new candidate is of higher priority than the
 5568			 * previous; and they're incompatible; we need to wipe
 5569			 * the slate and start over. pick_task makes sure that
 5570			 * p's priority is more than max if it doesn't match
 5571			 * max's cookie.
 5572			 *
 5573			 * NOTE: this is a linear max-filter and is thus bounded
 5574			 * in execution time.
 5575			 */
 5576			if (!max || !cookie_match(max, p)) {
 5577				struct task_struct *old_max = max;
 5578
 5579				rq->core->core_cookie = p->core_cookie;
 5580				max = p;
 5581
 5582				if (old_max) {
 5583					rq->core->core_forceidle = false;
 5584					for_each_cpu(j, smt_mask) {
 5585						if (j == i)
 5586							continue;
 5587
 5588						cpu_rq(j)->core_pick = NULL;
 5589					}
 5590					occ = 1;
 5591					goto again;
 5592				}
 5593			}
 5594		}
 5595	}
 5596
 5597	rq->core->core_pick_seq = rq->core->core_task_seq;
 5598	next = rq->core_pick;
 5599	rq->core_sched_seq = rq->core->core_pick_seq;
 5600
 5601	/* Something should have been selected for current CPU */
 5602	WARN_ON_ONCE(!next);
 5603
 5604	/*
 5605	 * Reschedule siblings
 5606	 *
 5607	 * NOTE: L1TF -- at this point we're no longer running the old task and
 5608	 * sending an IPI (below) ensures the sibling will no longer be running
 5609	 * their task. This ensures there is no inter-sibling overlap between
 5610	 * non-matching user state.
 5611	 */
 5612	for_each_cpu(i, smt_mask) {
 5613		struct rq *rq_i = cpu_rq(i);
 5614
 5615		/*
 5616		 * An online sibling might have gone offline before a task
 5617		 * could be picked for it, or it might be offline but later
 5618		 * happen to come online, but its too late and nothing was
 5619		 * picked for it.  That's Ok - it will pick tasks for itself,
 5620		 * so ignore it.
 5621		 */
 5622		if (!rq_i->core_pick)
 5623			continue;
 5624
 5625		/*
 5626		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 5627		 * fi_before     fi      update?
 5628		 *  0            0       1
 5629		 *  0            1       1
 5630		 *  1            0       1
 5631		 *  1            1       0
 5632		 */
 5633		if (!(fi_before && rq->core->core_forceidle))
 5634			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
 5635
 5636		rq_i->core_pick->core_occupation = occ;
 5637
 5638		if (i == cpu) {
 5639			rq_i->core_pick = NULL;
 5640			continue;
 5641		}
 5642
 5643		/* Did we break L1TF mitigation requirements? */
 5644		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 5645
 5646		if (rq_i->curr == rq_i->core_pick) {
 5647			rq_i->core_pick = NULL;
 5648			continue;
 5649		}
 5650
 5651		resched_curr(rq_i);
 5652	}
 5653
 5654done:
 5655	set_next_task(rq, next);
 5656	return next;
 5657}
 5658
 5659static bool try_steal_cookie(int this, int that)
 5660{
 5661	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 5662	struct task_struct *p;
 5663	unsigned long cookie;
 5664	bool success = false;
 5665
 5666	local_irq_disable();
 5667	double_rq_lock(dst, src);
 5668
 5669	cookie = dst->core->core_cookie;
 5670	if (!cookie)
 5671		goto unlock;
 5672
 5673	if (dst->curr != dst->idle)
 5674		goto unlock;
 5675
 5676	p = sched_core_find(src, cookie);
 5677	if (p == src->idle)
 5678		goto unlock;
 5679
 5680	do {
 5681		if (p == src->core_pick || p == src->curr)
 5682			goto next;
 5683
 5684		if (!cpumask_test_cpu(this, &p->cpus_mask))
 5685			goto next;
 5686
 5687		if (p->core_occupation > dst->idle->core_occupation)
 5688			goto next;
 5689
 5690		p->on_rq = TASK_ON_RQ_MIGRATING;
 5691		deactivate_task(src, p, 0);
 5692		set_task_cpu(p, this);
 5693		activate_task(dst, p, 0);
 5694		p->on_rq = TASK_ON_RQ_QUEUED;
 5695
 5696		resched_curr(dst);
 5697
 5698		success = true;
 5699		break;
 5700
 5701next:
 5702		p = sched_core_next(p, cookie);
 5703	} while (p);
 5704
 5705unlock:
 5706	double_rq_unlock(dst, src);
 5707	local_irq_enable();
 5708
 5709	return success;
 5710}
 5711
 5712static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 5713{
 5714	int i;
 5715
 5716	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
 5717		if (i == cpu)
 5718			continue;
 5719
 5720		if (need_resched())
 5721			break;
 5722
 5723		if (try_steal_cookie(cpu, i))
 5724			return true;
 5725	}
 5726
 5727	return false;
 5728}
 5729
 5730static void sched_core_balance(struct rq *rq)
 5731{
 5732	struct sched_domain *sd;
 5733	int cpu = cpu_of(rq);
 5734
 5735	preempt_disable();
 5736	rcu_read_lock();
 5737	raw_spin_rq_unlock_irq(rq);
 5738	for_each_domain(cpu, sd) {
 5739		if (need_resched())
 5740			break;
 5741
 5742		if (steal_cookie_task(cpu, sd))
 5743			break;
 5744	}
 5745	raw_spin_rq_lock_irq(rq);
 5746	rcu_read_unlock();
 5747	preempt_enable();
 5748}
 5749
 5750static DEFINE_PER_CPU(struct callback_head, core_balance_head);
 5751
 5752void queue_core_balance(struct rq *rq)
 5753{
 5754	if (!sched_core_enabled(rq))
 5755		return;
 5756
 5757	if (!rq->core->core_cookie)
 5758		return;
 5759
 5760	if (!rq->nr_running) /* not forced idle */
 5761		return;
 5762
 5763	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 5764}
 5765
 5766static void sched_core_cpu_starting(unsigned int cpu)
 5767{
 5768	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 5769	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 5770	unsigned long flags;
 5771	int t;
 5772
 5773	sched_core_lock(cpu, &flags);
 5774
 5775	WARN_ON_ONCE(rq->core != rq);
 5776
 5777	/* if we're the first, we'll be our own leader */
 5778	if (cpumask_weight(smt_mask) == 1)
 5779		goto unlock;
 5780
 5781	/* find the leader */
 5782	for_each_cpu(t, smt_mask) {
 5783		if (t == cpu)
 5784			continue;
 5785		rq = cpu_rq(t);
 5786		if (rq->core == rq) {
 5787			core_rq = rq;
 5788			break;
 5789		}
 5790	}
 5791
 5792	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 5793		goto unlock;
 5794
 5795	/* install and validate core_rq */
 5796	for_each_cpu(t, smt_mask) {
 5797		rq = cpu_rq(t);
 5798
 5799		if (t == cpu)
 5800			rq->core = core_rq;
 5801
 5802		WARN_ON_ONCE(rq->core != core_rq);
 5803	}
 5804
 5805unlock:
 5806	sched_core_unlock(cpu, &flags);
 5807}
 5808
 5809static void sched_core_cpu_deactivate(unsigned int cpu)
 5810{
 5811	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 5812	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 5813	unsigned long flags;
 5814	int t;
 5815
 5816	sched_core_lock(cpu, &flags);
 5817
 5818	/* if we're the last man standing, nothing to do */
 5819	if (cpumask_weight(smt_mask) == 1) {
 5820		WARN_ON_ONCE(rq->core != rq);
 5821		goto unlock;
 5822	}
 5823
 5824	/* if we're not the leader, nothing to do */
 5825	if (rq->core != rq)
 5826		goto unlock;
 5827
 5828	/* find a new leader */
 5829	for_each_cpu(t, smt_mask) {
 5830		if (t == cpu)
 5831			continue;
 5832		core_rq = cpu_rq(t);
 5833		break;
 5834	}
 5835
 5836	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 5837		goto unlock;
 5838
 5839	/* copy the shared state to the new leader */
 5840	core_rq->core_task_seq      = rq->core_task_seq;
 5841	core_rq->core_pick_seq      = rq->core_pick_seq;
 5842	core_rq->core_cookie        = rq->core_cookie;
 5843	core_rq->core_forceidle     = rq->core_forceidle;
 5844	core_rq->core_forceidle_seq = rq->core_forceidle_seq;
 5845
 5846	/* install new leader */
 5847	for_each_cpu(t, smt_mask) {
 5848		rq = cpu_rq(t);
 5849		rq->core = core_rq;
 5850	}
 5851
 5852unlock:
 5853	sched_core_unlock(cpu, &flags);
 5854}
 5855
 5856static inline void sched_core_cpu_dying(unsigned int cpu)
 5857{
 5858	struct rq *rq = cpu_rq(cpu);
 5859
 5860	if (rq->core != rq)
 5861		rq->core = rq;
 5862}
 5863
 5864#else /* !CONFIG_SCHED_CORE */
 5865
 5866static inline void sched_core_cpu_starting(unsigned int cpu) {}
 5867static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 5868static inline void sched_core_cpu_dying(unsigned int cpu) {}
 5869
 5870static struct task_struct *
 5871pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5872{
 5873	return __pick_next_task(rq, prev, rf);
 5874}
 5875
 5876#endif /* CONFIG_SCHED_CORE */
 5877
 5878/*
 5879 * __schedule() is the main scheduler function.
 5880 *
 5881 * The main means of driving the scheduler and thus entering this function are:
 5882 *
 5883 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 5884 *
 5885 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 5886 *      paths. For example, see arch/x86/entry_64.S.
 5887 *
 5888 *      To drive preemption between tasks, the scheduler sets the flag in timer
 5889 *      interrupt handler scheduler_tick().
 5890 *
 5891 *   3. Wakeups don't really cause entry into schedule(). They add a
 5892 *      task to the run-queue and that's it.
 5893 *
 5894 *      Now, if the new task added to the run-queue preempts the current
 5895 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 5896 *      called on the nearest possible occasion:
 5897 *
 5898 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 5899 *
 5900 *         - in syscall or exception context, at the next outmost
 5901 *           preempt_enable(). (this might be as soon as the wake_up()'s
 5902 *           spin_unlock()!)
 5903 *
 5904 *         - in IRQ context, return from interrupt-handler to
 5905 *           preemptible context
 5906 *
 5907 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 5908 *         then at the next:
 5909 *
 5910 *          - cond_resched() call
 5911 *          - explicit schedule() call
 5912 *          - return from syscall or exception to user-space
 5913 *          - return from interrupt-handler to user-space
 5914 *
 5915 * WARNING: must be called with preemption disabled!
 5916 */
 5917static void __sched notrace __schedule(bool preempt)
 5918{
 5919	struct task_struct *prev, *next;
 5920	unsigned long *switch_count;
 5921	unsigned long prev_state;
 5922	struct rq_flags rf;
 5923	struct rq *rq;
 5924	int cpu;
 5925
 
 
 5926	cpu = smp_processor_id();
 5927	rq = cpu_rq(cpu);
 
 5928	prev = rq->curr;
 5929
 5930	schedule_debug(prev, preempt);
 5931
 5932	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 5933		hrtick_clear(rq);
 5934
 5935	local_irq_disable();
 5936	rcu_note_context_switch(preempt);
 5937
 5938	/*
 5939	 * Make sure that signal_pending_state()->signal_pending() below
 5940	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 5941	 * done by the caller to avoid the race with signal_wake_up():
 5942	 *
 5943	 * __set_current_state(@state)		signal_wake_up()
 5944	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 5945	 *					  wake_up_state(p, state)
 5946	 *   LOCK rq->lock			    LOCK p->pi_state
 5947	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 5948	 *     if (signal_pending_state())	    if (p->state & @state)
 5949	 *
 5950	 * Also, the membarrier system call requires a full memory barrier
 5951	 * after coming from user-space, before storing to rq->curr.
 5952	 */
 5953	rq_lock(rq, &rf);
 5954	smp_mb__after_spinlock();
 5955
 5956	/* Promote REQ to ACT */
 5957	rq->clock_update_flags <<= 1;
 5958	update_rq_clock(rq);
 5959
 5960	switch_count = &prev->nivcsw;
 5961
 5962	/*
 5963	 * We must load prev->state once (task_struct::state is volatile), such
 5964	 * that:
 5965	 *
 5966	 *  - we form a control dependency vs deactivate_task() below.
 5967	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
 5968	 */
 5969	prev_state = READ_ONCE(prev->__state);
 5970	if (!preempt && prev_state) {
 5971		if (signal_pending_state(prev_state, prev)) {
 5972			WRITE_ONCE(prev->__state, TASK_RUNNING);
 5973		} else {
 5974			prev->sched_contributes_to_load =
 5975				(prev_state & TASK_UNINTERRUPTIBLE) &&
 5976				!(prev_state & TASK_NOLOAD) &&
 5977				!(prev->flags & PF_FROZEN);
 5978
 5979			if (prev->sched_contributes_to_load)
 5980				rq->nr_uninterruptible++;
 5981
 5982			/*
 5983			 * __schedule()			ttwu()
 5984			 *   prev_state = prev->state;    if (p->on_rq && ...)
 5985			 *   if (prev_state)		    goto out;
 5986			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 5987			 *				  p->state = TASK_WAKING
 5988			 *
 5989			 * Where __schedule() and ttwu() have matching control dependencies.
 5990			 *
 5991			 * After this, schedule() must not care about p->state any more.
 5992			 */
 5993			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 
 5994
 5995			if (prev->in_iowait) {
 5996				atomic_inc(&rq->nr_iowait);
 5997				delayacct_blkio_start();
 5998			}
 5999		}
 6000		switch_count = &prev->nvcsw;
 6001	}
 6002
 6003	next = pick_next_task(rq, prev, &rf);
 
 
 
 6004	clear_tsk_need_resched(prev);
 6005	clear_preempt_need_resched();
 6006#ifdef CONFIG_SCHED_DEBUG
 6007	rq->last_seen_need_resched_ns = 0;
 6008#endif
 6009
 6010	if (likely(prev != next)) {
 6011		rq->nr_switches++;
 6012		/*
 6013		 * RCU users of rcu_dereference(rq->curr) may not see
 6014		 * changes to task_struct made by pick_next_task().
 6015		 */
 6016		RCU_INIT_POINTER(rq->curr, next);
 6017		/*
 6018		 * The membarrier system call requires each architecture
 6019		 * to have a full memory barrier after updating
 6020		 * rq->curr, before returning to user-space.
 6021		 *
 6022		 * Here are the schemes providing that barrier on the
 6023		 * various architectures:
 6024		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
 6025		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
 6026		 * - finish_lock_switch() for weakly-ordered
 6027		 *   architectures where spin_unlock is a full barrier,
 6028		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6029		 *   is a RELEASE barrier),
 6030		 */
 6031		++*switch_count;
 6032
 6033		migrate_disable_switch(rq, prev);
 6034		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
 
 
 
 
 
 
 
 
 
 6035
 6036		trace_sched_switch(preempt, prev, next);
 6037
 6038		/* Also unlocks the rq: */
 6039		rq = context_switch(rq, prev, next, &rf);
 6040	} else {
 6041		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 6042
 6043		rq_unpin_lock(rq, &rf);
 6044		__balance_callbacks(rq);
 6045		raw_spin_rq_unlock_irq(rq);
 6046	}
 6047}
 6048
 6049void __noreturn do_task_dead(void)
 6050{
 6051	/* Causes final put_task_struct in finish_task_switch(): */
 6052	set_special_state(TASK_DEAD);
 6053
 6054	/* Tell freezer to ignore us: */
 6055	current->flags |= PF_NOFREEZE;
 6056
 6057	__schedule(false);
 6058	BUG();
 6059
 6060	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6061	for (;;)
 6062		cpu_relax();
 6063}
 6064
 6065static inline void sched_submit_work(struct task_struct *tsk)
 6066{
 6067	unsigned int task_flags;
 6068
 6069	if (task_is_running(tsk))
 6070		return;
 6071
 6072	task_flags = tsk->flags;
 6073	/*
 6074	 * If a worker went to sleep, notify and ask workqueue whether
 6075	 * it wants to wake up a task to maintain concurrency.
 6076	 * As this function is called inside the schedule() context,
 6077	 * we disable preemption to avoid it calling schedule() again
 6078	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
 6079	 * requires it.
 6080	 */
 6081	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6082		preempt_disable();
 6083		if (task_flags & PF_WQ_WORKER)
 6084			wq_worker_sleeping(tsk);
 6085		else
 6086			io_wq_worker_sleeping(tsk);
 6087		preempt_enable_no_resched();
 6088	}
 6089
 6090	if (tsk_is_pi_blocked(tsk))
 6091		return;
 6092
 6093	/*
 6094	 * If we are going to sleep and we have plugged IO queued,
 6095	 * make sure to submit it to avoid deadlocks.
 6096	 */
 6097	if (blk_needs_flush_plug(tsk))
 6098		blk_schedule_flush_plug(tsk);
 6099}
 6100
 6101static void sched_update_worker(struct task_struct *tsk)
 6102{
 6103	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6104		if (tsk->flags & PF_WQ_WORKER)
 6105			wq_worker_running(tsk);
 6106		else
 6107			io_wq_worker_running(tsk);
 6108	}
 6109}
 6110
 6111asmlinkage __visible void __sched schedule(void)
 6112{
 6113	struct task_struct *tsk = current;
 6114
 6115	sched_submit_work(tsk);
 6116	do {
 6117		preempt_disable();
 6118		__schedule(false);
 6119		sched_preempt_enable_no_resched();
 6120	} while (need_resched());
 6121	sched_update_worker(tsk);
 6122}
 6123EXPORT_SYMBOL(schedule);
 6124
 6125/*
 6126 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6127 * state (have scheduled out non-voluntarily) by making sure that all
 6128 * tasks have either left the run queue or have gone into user space.
 6129 * As idle tasks do not do either, they must not ever be preempted
 6130 * (schedule out non-voluntarily).
 6131 *
 6132 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6133 * never enables preemption because it does not call sched_submit_work().
 6134 */
 6135void __sched schedule_idle(void)
 6136{
 6137	/*
 6138	 * As this skips calling sched_submit_work(), which the idle task does
 6139	 * regardless because that function is a nop when the task is in a
 6140	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6141	 * current task can be in any other state. Note, idle is always in the
 6142	 * TASK_RUNNING state.
 6143	 */
 6144	WARN_ON_ONCE(current->__state);
 6145	do {
 6146		__schedule(false);
 6147	} while (need_resched());
 6148}
 6149
 6150#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
 6151asmlinkage __visible void __sched schedule_user(void)
 6152{
 6153	/*
 6154	 * If we come here after a random call to set_need_resched(),
 6155	 * or we have been woken up remotely but the IPI has not yet arrived,
 6156	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6157	 * we find a better solution.
 6158	 *
 6159	 * NB: There are buggy callers of this function.  Ideally we
 6160	 * should warn if prev_state != CONTEXT_USER, but that will trigger
 6161	 * too frequently to make sense yet.
 6162	 */
 6163	enum ctx_state prev_state = exception_enter();
 6164	schedule();
 6165	exception_exit(prev_state);
 6166}
 6167#endif
 6168
 6169/**
 6170 * schedule_preempt_disabled - called with preemption disabled
 6171 *
 6172 * Returns with preemption disabled. Note: preempt_count must be 1
 6173 */
 6174void __sched schedule_preempt_disabled(void)
 6175{
 6176	sched_preempt_enable_no_resched();
 6177	schedule();
 6178	preempt_disable();
 6179}
 6180
 6181static void __sched notrace preempt_schedule_common(void)
 6182{
 6183	do {
 6184		/*
 6185		 * Because the function tracer can trace preempt_count_sub()
 6186		 * and it also uses preempt_enable/disable_notrace(), if
 6187		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6188		 * by the function tracer will call this function again and
 6189		 * cause infinite recursion.
 6190		 *
 6191		 * Preemption must be disabled here before the function
 6192		 * tracer can trace. Break up preempt_disable() into two
 6193		 * calls. One to disable preemption without fear of being
 6194		 * traced. The other to still record the preemption latency,
 6195		 * which can also be traced by the function tracer.
 6196		 */
 6197		preempt_disable_notrace();
 6198		preempt_latency_start(1);
 6199		__schedule(true);
 6200		preempt_latency_stop(1);
 6201		preempt_enable_no_resched_notrace();
 6202
 6203		/*
 6204		 * Check again in case we missed a preemption opportunity
 6205		 * between schedule and now.
 6206		 */
 6207	} while (need_resched());
 6208}
 6209
 6210#ifdef CONFIG_PREEMPTION
 6211/*
 6212 * This is the entry point to schedule() from in-kernel preemption
 6213 * off of preempt_enable.
 
 6214 */
 6215asmlinkage __visible void __sched notrace preempt_schedule(void)
 6216{
 6217	/*
 6218	 * If there is a non-zero preempt_count or interrupts are disabled,
 6219	 * we do not want to preempt the current task. Just return..
 6220	 */
 6221	if (likely(!preemptible()))
 6222		return;
 6223
 6224	preempt_schedule_common();
 6225}
 6226NOKPROBE_SYMBOL(preempt_schedule);
 6227EXPORT_SYMBOL(preempt_schedule);
 6228
 6229#ifdef CONFIG_PREEMPT_DYNAMIC
 6230DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
 6231EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6232#endif
 6233
 6234
 6235/**
 6236 * preempt_schedule_notrace - preempt_schedule called by tracing
 6237 *
 6238 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6239 * recursion and tracing preempt enabling caused by the tracing
 6240 * infrastructure itself. But as tracing can happen in areas coming
 6241 * from userspace or just about to enter userspace, a preempt enable
 6242 * can occur before user_exit() is called. This will cause the scheduler
 6243 * to be called when the system is still in usermode.
 6244 *
 6245 * To prevent this, the preempt_enable_notrace will use this function
 6246 * instead of preempt_schedule() to exit user context if needed before
 6247 * calling the scheduler.
 6248 */
 6249asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 6250{
 6251	enum ctx_state prev_ctx;
 6252
 6253	if (likely(!preemptible()))
 6254		return;
 6255
 6256	do {
 6257		/*
 6258		 * Because the function tracer can trace preempt_count_sub()
 6259		 * and it also uses preempt_enable/disable_notrace(), if
 6260		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6261		 * by the function tracer will call this function again and
 6262		 * cause infinite recursion.
 6263		 *
 6264		 * Preemption must be disabled here before the function
 6265		 * tracer can trace. Break up preempt_disable() into two
 6266		 * calls. One to disable preemption without fear of being
 6267		 * traced. The other to still record the preemption latency,
 6268		 * which can also be traced by the function tracer.
 6269		 */
 6270		preempt_disable_notrace();
 6271		preempt_latency_start(1);
 6272		/*
 6273		 * Needs preempt disabled in case user_exit() is traced
 6274		 * and the tracer calls preempt_enable_notrace() causing
 6275		 * an infinite recursion.
 6276		 */
 6277		prev_ctx = exception_enter();
 6278		__schedule(true);
 6279		exception_exit(prev_ctx);
 6280
 6281		preempt_latency_stop(1);
 6282		preempt_enable_no_resched_notrace();
 6283	} while (need_resched());
 6284}
 6285EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 6286
 6287#ifdef CONFIG_PREEMPT_DYNAMIC
 6288DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
 6289EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 6290#endif
 6291
 6292#endif /* CONFIG_PREEMPTION */
 6293
 6294#ifdef CONFIG_PREEMPT_DYNAMIC
 6295
 6296#include <linux/entry-common.h>
 6297
 6298/*
 6299 * SC:cond_resched
 6300 * SC:might_resched
 6301 * SC:preempt_schedule
 6302 * SC:preempt_schedule_notrace
 6303 * SC:irqentry_exit_cond_resched
 6304 *
 6305 *
 6306 * NONE:
 6307 *   cond_resched               <- __cond_resched
 6308 *   might_resched              <- RET0
 6309 *   preempt_schedule           <- NOP
 6310 *   preempt_schedule_notrace   <- NOP
 6311 *   irqentry_exit_cond_resched <- NOP
 6312 *
 6313 * VOLUNTARY:
 6314 *   cond_resched               <- __cond_resched
 6315 *   might_resched              <- __cond_resched
 6316 *   preempt_schedule           <- NOP
 6317 *   preempt_schedule_notrace   <- NOP
 6318 *   irqentry_exit_cond_resched <- NOP
 6319 *
 6320 * FULL:
 6321 *   cond_resched               <- RET0
 6322 *   might_resched              <- RET0
 6323 *   preempt_schedule           <- preempt_schedule
 6324 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 6325 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 6326 */
 6327
 6328enum {
 6329	preempt_dynamic_none = 0,
 6330	preempt_dynamic_voluntary,
 6331	preempt_dynamic_full,
 6332};
 6333
 6334int preempt_dynamic_mode = preempt_dynamic_full;
 6335
 6336int sched_dynamic_mode(const char *str)
 6337{
 6338	if (!strcmp(str, "none"))
 6339		return preempt_dynamic_none;
 6340
 6341	if (!strcmp(str, "voluntary"))
 6342		return preempt_dynamic_voluntary;
 6343
 6344	if (!strcmp(str, "full"))
 6345		return preempt_dynamic_full;
 6346
 6347	return -EINVAL;
 6348}
 6349
 6350void sched_dynamic_update(int mode)
 6351{
 6352	/*
 6353	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 6354	 * the ZERO state, which is invalid.
 6355	 */
 6356	static_call_update(cond_resched, __cond_resched);
 6357	static_call_update(might_resched, __cond_resched);
 6358	static_call_update(preempt_schedule, __preempt_schedule_func);
 6359	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
 6360	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
 6361
 6362	switch (mode) {
 6363	case preempt_dynamic_none:
 6364		static_call_update(cond_resched, __cond_resched);
 6365		static_call_update(might_resched, (void *)&__static_call_return0);
 6366		static_call_update(preempt_schedule, NULL);
 6367		static_call_update(preempt_schedule_notrace, NULL);
 6368		static_call_update(irqentry_exit_cond_resched, NULL);
 6369		pr_info("Dynamic Preempt: none\n");
 6370		break;
 6371
 6372	case preempt_dynamic_voluntary:
 6373		static_call_update(cond_resched, __cond_resched);
 6374		static_call_update(might_resched, __cond_resched);
 6375		static_call_update(preempt_schedule, NULL);
 6376		static_call_update(preempt_schedule_notrace, NULL);
 6377		static_call_update(irqentry_exit_cond_resched, NULL);
 6378		pr_info("Dynamic Preempt: voluntary\n");
 6379		break;
 6380
 6381	case preempt_dynamic_full:
 6382		static_call_update(cond_resched, (void *)&__static_call_return0);
 6383		static_call_update(might_resched, (void *)&__static_call_return0);
 6384		static_call_update(preempt_schedule, __preempt_schedule_func);
 6385		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
 6386		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
 6387		pr_info("Dynamic Preempt: full\n");
 6388		break;
 6389	}
 6390
 6391	preempt_dynamic_mode = mode;
 6392}
 6393
 6394static int __init setup_preempt_mode(char *str)
 6395{
 6396	int mode = sched_dynamic_mode(str);
 6397	if (mode < 0) {
 6398		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 6399		return 1;
 6400	}
 6401
 6402	sched_dynamic_update(mode);
 6403	return 0;
 6404}
 6405__setup("preempt=", setup_preempt_mode);
 6406
 6407#endif /* CONFIG_PREEMPT_DYNAMIC */
 6408
 6409/*
 6410 * This is the entry point to schedule() from kernel preemption
 6411 * off of irq context.
 6412 * Note, that this is called and return with irqs disabled. This will
 6413 * protect us against recursive calling from irq.
 6414 */
 6415asmlinkage __visible void __sched preempt_schedule_irq(void)
 6416{
 6417	enum ctx_state prev_state;
 6418
 6419	/* Catch callers which need to be fixed */
 6420	BUG_ON(preempt_count() || !irqs_disabled());
 6421
 6422	prev_state = exception_enter();
 6423
 6424	do {
 6425		preempt_disable();
 6426		local_irq_enable();
 6427		__schedule(true);
 6428		local_irq_disable();
 6429		sched_preempt_enable_no_resched();
 
 
 
 
 
 
 6430	} while (need_resched());
 6431
 6432	exception_exit(prev_state);
 6433}
 6434
 6435int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 6436			  void *key)
 6437{
 6438	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
 6439	return try_to_wake_up(curr->private, mode, wake_flags);
 6440}
 6441EXPORT_SYMBOL(default_wake_function);
 6442
 6443static void __setscheduler_prio(struct task_struct *p, int prio)
 6444{
 6445	if (dl_prio(prio))
 6446		p->sched_class = &dl_sched_class;
 6447	else if (rt_prio(prio))
 6448		p->sched_class = &rt_sched_class;
 6449	else
 6450		p->sched_class = &fair_sched_class;
 6451
 6452	p->prio = prio;
 6453}
 6454
 6455#ifdef CONFIG_RT_MUTEXES
 6456
 6457static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
 6458{
 6459	if (pi_task)
 6460		prio = min(prio, pi_task->prio);
 6461
 6462	return prio;
 6463}
 6464
 6465static inline int rt_effective_prio(struct task_struct *p, int prio)
 6466{
 6467	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 6468
 6469	return __rt_effective_prio(pi_task, prio);
 6470}
 6471
 6472/*
 6473 * rt_mutex_setprio - set the current priority of a task
 6474 * @p: task to boost
 6475 * @pi_task: donor task
 6476 *
 6477 * This function changes the 'effective' priority of a task. It does
 6478 * not touch ->normal_prio like __setscheduler().
 6479 *
 6480 * Used by the rt_mutex code to implement priority inheritance
 6481 * logic. Call site only calls if the priority of the task changed.
 6482 */
 6483void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 6484{
 6485	int prio, oldprio, queued, running, queue_flag =
 6486		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 6487	const struct sched_class *prev_class;
 6488	struct rq_flags rf;
 6489	struct rq *rq;
 6490
 6491	/* XXX used to be waiter->prio, not waiter->task->prio */
 6492	prio = __rt_effective_prio(pi_task, p->normal_prio);
 6493
 6494	/*
 6495	 * If nothing changed; bail early.
 6496	 */
 6497	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 6498		return;
 6499
 6500	rq = __task_rq_lock(p, &rf);
 6501	update_rq_clock(rq);
 6502	/*
 6503	 * Set under pi_lock && rq->lock, such that the value can be used under
 6504	 * either lock.
 6505	 *
 6506	 * Note that there is loads of tricky to make this pointer cache work
 6507	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 6508	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 6509	 * task is allowed to run again (and can exit). This ensures the pointer
 6510	 * points to a blocked task -- which guarantees the task is present.
 6511	 */
 6512	p->pi_top_task = pi_task;
 6513
 6514	/*
 6515	 * For FIFO/RR we only need to set prio, if that matches we're done.
 6516	 */
 6517	if (prio == p->prio && !dl_prio(prio))
 6518		goto out_unlock;
 6519
 6520	/*
 6521	 * Idle task boosting is a nono in general. There is one
 6522	 * exception, when PREEMPT_RT and NOHZ is active:
 6523	 *
 6524	 * The idle task calls get_next_timer_interrupt() and holds
 6525	 * the timer wheel base->lock on the CPU and another CPU wants
 6526	 * to access the timer (probably to cancel it). We can safely
 6527	 * ignore the boosting request, as the idle CPU runs this code
 6528	 * with interrupts disabled and will complete the lock
 6529	 * protected section without being interrupted. So there is no
 6530	 * real need to boost.
 6531	 */
 6532	if (unlikely(p == rq->idle)) {
 6533		WARN_ON(p != rq->curr);
 6534		WARN_ON(p->pi_blocked_on);
 6535		goto out_unlock;
 6536	}
 6537
 6538	trace_sched_pi_setprio(p, pi_task);
 
 6539	oldprio = p->prio;
 6540
 6541	if (oldprio == prio)
 6542		queue_flag &= ~DEQUEUE_MOVE;
 6543
 6544	prev_class = p->sched_class;
 6545	queued = task_on_rq_queued(p);
 6546	running = task_current(rq, p);
 6547	if (queued)
 6548		dequeue_task(rq, p, queue_flag);
 6549	if (running)
 6550		put_prev_task(rq, p);
 6551
 6552	/*
 6553	 * Boosting condition are:
 6554	 * 1. -rt task is running and holds mutex A
 6555	 *      --> -dl task blocks on mutex A
 6556	 *
 6557	 * 2. -dl task is running and holds mutex A
 6558	 *      --> -dl task blocks on mutex A and could preempt the
 6559	 *          running task
 6560	 */
 6561	if (dl_prio(prio)) {
 6562		if (!dl_prio(p->normal_prio) ||
 6563		    (pi_task && dl_prio(pi_task->prio) &&
 6564		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 6565			p->dl.pi_se = pi_task->dl.pi_se;
 6566			queue_flag |= ENQUEUE_REPLENISH;
 6567		} else {
 6568			p->dl.pi_se = &p->dl;
 6569		}
 6570	} else if (rt_prio(prio)) {
 6571		if (dl_prio(oldprio))
 6572			p->dl.pi_se = &p->dl;
 6573		if (oldprio < prio)
 6574			queue_flag |= ENQUEUE_HEAD;
 
 6575	} else {
 6576		if (dl_prio(oldprio))
 6577			p->dl.pi_se = &p->dl;
 6578		if (rt_prio(oldprio))
 6579			p->rt.timeout = 0;
 6580	}
 6581
 6582	__setscheduler_prio(p, prio);
 6583
 6584	if (queued)
 6585		enqueue_task(rq, p, queue_flag);
 6586	if (running)
 6587		set_next_task(rq, p);
 
 
 6588
 6589	check_class_changed(rq, p, prev_class, oldprio);
 6590out_unlock:
 6591	/* Avoid rq from going away on us: */
 6592	preempt_disable();
 6593
 6594	rq_unpin_lock(rq, &rf);
 6595	__balance_callbacks(rq);
 6596	raw_spin_rq_unlock(rq);
 6597
 6598	preempt_enable();
 6599}
 6600#else
 6601static inline int rt_effective_prio(struct task_struct *p, int prio)
 6602{
 6603	return prio;
 6604}
 6605#endif
 6606
 6607void set_user_nice(struct task_struct *p, long nice)
 6608{
 6609	bool queued, running;
 6610	int old_prio;
 6611	struct rq_flags rf;
 6612	struct rq *rq;
 6613
 6614	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
 6615		return;
 6616	/*
 6617	 * We have to be careful, if called from sys_setpriority(),
 6618	 * the task might be in the middle of scheduling on another CPU.
 6619	 */
 6620	rq = task_rq_lock(p, &rf);
 6621	update_rq_clock(rq);
 6622
 6623	/*
 6624	 * The RT priorities are set via sched_setscheduler(), but we still
 6625	 * allow the 'normal' nice value to be set - but as expected
 6626	 * it won't have any effect on scheduling until the task is
 6627	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
 6628	 */
 6629	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 6630		p->static_prio = NICE_TO_PRIO(nice);
 6631		goto out_unlock;
 6632	}
 6633	queued = task_on_rq_queued(p);
 6634	running = task_current(rq, p);
 6635	if (queued)
 6636		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 6637	if (running)
 6638		put_prev_task(rq, p);
 6639
 6640	p->static_prio = NICE_TO_PRIO(nice);
 6641	set_load_weight(p, true);
 6642	old_prio = p->prio;
 6643	p->prio = effective_prio(p);
 
 6644
 6645	if (queued)
 6646		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 6647	if (running)
 6648		set_next_task(rq, p);
 6649
 6650	/*
 6651	 * If the task increased its priority or is running and
 6652	 * lowered its priority, then reschedule its CPU:
 6653	 */
 6654	p->sched_class->prio_changed(rq, p, old_prio);
 6655
 6656out_unlock:
 6657	task_rq_unlock(rq, p, &rf);
 6658}
 6659EXPORT_SYMBOL(set_user_nice);
 6660
 6661/*
 6662 * can_nice - check if a task can reduce its nice value
 6663 * @p: task
 6664 * @nice: nice value
 6665 */
 6666int can_nice(const struct task_struct *p, const int nice)
 6667{
 6668	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
 6669	int nice_rlim = nice_to_rlimit(nice);
 6670
 6671	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
 6672		capable(CAP_SYS_NICE));
 6673}
 6674
 6675#ifdef __ARCH_WANT_SYS_NICE
 6676
 6677/*
 6678 * sys_nice - change the priority of the current process.
 6679 * @increment: priority increment
 6680 *
 6681 * sys_setpriority is a more generic, but much slower function that
 6682 * does similar things.
 6683 */
 6684SYSCALL_DEFINE1(nice, int, increment)
 6685{
 6686	long nice, retval;
 6687
 6688	/*
 6689	 * Setpriority might change our priority at the same moment.
 6690	 * We don't have to worry. Conceptually one call occurs first
 6691	 * and we have a single winner.
 6692	 */
 6693	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
 
 
 
 
 6694	nice = task_nice(current) + increment;
 
 
 
 
 6695
 6696	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
 6697	if (increment < 0 && !can_nice(current, nice))
 6698		return -EPERM;
 6699
 6700	retval = security_task_setnice(current, nice);
 6701	if (retval)
 6702		return retval;
 6703
 6704	set_user_nice(current, nice);
 6705	return 0;
 6706}
 6707
 6708#endif
 6709
 6710/**
 6711 * task_prio - return the priority value of a given task.
 6712 * @p: the task in question.
 6713 *
 6714 * Return: The priority value as seen by users in /proc.
 6715 *
 6716 * sched policy         return value   kernel prio    user prio/nice
 6717 *
 6718 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 6719 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 6720 * deadline                     -101             -1           0
 6721 */
 6722int task_prio(const struct task_struct *p)
 6723{
 6724	return p->prio - MAX_RT_PRIO;
 6725}
 6726
 6727/**
 6728 * idle_cpu - is a given CPU idle currently?
 6729 * @cpu: the processor in question.
 6730 *
 6731 * Return: 1 if the CPU is currently idle. 0 otherwise.
 6732 */
 6733int idle_cpu(int cpu)
 6734{
 6735	struct rq *rq = cpu_rq(cpu);
 6736
 6737	if (rq->curr != rq->idle)
 6738		return 0;
 6739
 6740	if (rq->nr_running)
 6741		return 0;
 6742
 6743#ifdef CONFIG_SMP
 6744	if (rq->ttwu_pending)
 6745		return 0;
 6746#endif
 6747
 6748	return 1;
 6749}
 6750
 6751/**
 6752 * available_idle_cpu - is a given CPU idle for enqueuing work.
 6753 * @cpu: the CPU in question.
 6754 *
 6755 * Return: 1 if the CPU is currently idle. 0 otherwise.
 6756 */
 6757int available_idle_cpu(int cpu)
 6758{
 6759	if (!idle_cpu(cpu))
 6760		return 0;
 6761
 6762	if (vcpu_is_preempted(cpu))
 6763		return 0;
 6764
 6765	return 1;
 6766}
 6767
 6768/**
 6769 * idle_task - return the idle task for a given CPU.
 6770 * @cpu: the processor in question.
 6771 *
 6772 * Return: The idle task for the CPU @cpu.
 6773 */
 6774struct task_struct *idle_task(int cpu)
 6775{
 6776	return cpu_rq(cpu)->idle;
 6777}
 6778
 6779#ifdef CONFIG_SMP
 6780/*
 6781 * This function computes an effective utilization for the given CPU, to be
 6782 * used for frequency selection given the linear relation: f = u * f_max.
 6783 *
 6784 * The scheduler tracks the following metrics:
 6785 *
 6786 *   cpu_util_{cfs,rt,dl,irq}()
 6787 *   cpu_bw_dl()
 6788 *
 6789 * Where the cfs,rt and dl util numbers are tracked with the same metric and
 6790 * synchronized windows and are thus directly comparable.
 6791 *
 6792 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 6793 * which excludes things like IRQ and steal-time. These latter are then accrued
 6794 * in the irq utilization.
 6795 *
 6796 * The DL bandwidth number otoh is not a measured metric but a value computed
 6797 * based on the task model parameters and gives the minimal utilization
 6798 * required to meet deadlines.
 6799 */
 6800unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 6801				 unsigned long max, enum cpu_util_type type,
 6802				 struct task_struct *p)
 6803{
 6804	unsigned long dl_util, util, irq;
 6805	struct rq *rq = cpu_rq(cpu);
 6806
 6807	if (!uclamp_is_used() &&
 6808	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
 6809		return max;
 6810	}
 6811
 6812	/*
 6813	 * Early check to see if IRQ/steal time saturates the CPU, can be
 6814	 * because of inaccuracies in how we track these -- see
 6815	 * update_irq_load_avg().
 6816	 */
 6817	irq = cpu_util_irq(rq);
 6818	if (unlikely(irq >= max))
 6819		return max;
 6820
 6821	/*
 6822	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 6823	 * CFS tasks and we use the same metric to track the effective
 6824	 * utilization (PELT windows are synchronized) we can directly add them
 6825	 * to obtain the CPU's actual utilization.
 6826	 *
 6827	 * CFS and RT utilization can be boosted or capped, depending on
 6828	 * utilization clamp constraints requested by currently RUNNABLE
 6829	 * tasks.
 6830	 * When there are no CFS RUNNABLE tasks, clamps are released and
 6831	 * frequency will be gracefully reduced with the utilization decay.
 6832	 */
 6833	util = util_cfs + cpu_util_rt(rq);
 6834	if (type == FREQUENCY_UTIL)
 6835		util = uclamp_rq_util_with(rq, util, p);
 6836
 6837	dl_util = cpu_util_dl(rq);
 6838
 6839	/*
 6840	 * For frequency selection we do not make cpu_util_dl() a permanent part
 6841	 * of this sum because we want to use cpu_bw_dl() later on, but we need
 6842	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
 6843	 * that we select f_max when there is no idle time.
 6844	 *
 6845	 * NOTE: numerical errors or stop class might cause us to not quite hit
 6846	 * saturation when we should -- something for later.
 6847	 */
 6848	if (util + dl_util >= max)
 6849		return max;
 6850
 6851	/*
 6852	 * OTOH, for energy computation we need the estimated running time, so
 6853	 * include util_dl and ignore dl_bw.
 6854	 */
 6855	if (type == ENERGY_UTIL)
 6856		util += dl_util;
 6857
 6858	/*
 6859	 * There is still idle time; further improve the number by using the
 6860	 * irq metric. Because IRQ/steal time is hidden from the task clock we
 6861	 * need to scale the task numbers:
 6862	 *
 6863	 *              max - irq
 6864	 *   U' = irq + --------- * U
 6865	 *                 max
 6866	 */
 6867	util = scale_irq_capacity(util, irq, max);
 6868	util += irq;
 6869
 6870	/*
 6871	 * Bandwidth required by DEADLINE must always be granted while, for
 6872	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
 6873	 * to gracefully reduce the frequency when no tasks show up for longer
 6874	 * periods of time.
 6875	 *
 6876	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
 6877	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
 6878	 * an interface. So, we only do the latter for now.
 6879	 */
 6880	if (type == FREQUENCY_UTIL)
 6881		util += cpu_bw_dl(rq);
 6882
 6883	return min(max, util);
 6884}
 6885
 6886unsigned long sched_cpu_util(int cpu, unsigned long max)
 6887{
 6888	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
 6889				  ENERGY_UTIL, NULL);
 6890}
 6891#endif /* CONFIG_SMP */
 6892
 6893/**
 6894 * find_process_by_pid - find a process with a matching PID value.
 6895 * @pid: the pid in question.
 6896 *
 6897 * The task of @pid, if found. %NULL otherwise.
 6898 */
 6899static struct task_struct *find_process_by_pid(pid_t pid)
 6900{
 6901	return pid ? find_task_by_vpid(pid) : current;
 6902}
 6903
 6904/*
 6905 * sched_setparam() passes in -1 for its policy, to let the functions
 6906 * it calls know not to change it.
 
 
 
 
 6907 */
 6908#define SETPARAM_POLICY	-1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6909
 6910static void __setscheduler_params(struct task_struct *p,
 6911		const struct sched_attr *attr)
 6912{
 6913	int policy = attr->sched_policy;
 6914
 6915	if (policy == SETPARAM_POLICY)
 6916		policy = p->policy;
 6917
 6918	p->policy = policy;
 6919
 6920	if (dl_policy(policy))
 6921		__setparam_dl(p, attr);
 6922	else if (fair_policy(policy))
 6923		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
 6924
 6925	/*
 6926	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
 6927	 * !rt_policy. Always setting this ensures that things like
 6928	 * getparam()/getattr() don't report silly values for !rt tasks.
 6929	 */
 6930	p->rt_priority = attr->sched_priority;
 6931	p->normal_prio = normal_prio(p);
 6932	set_load_weight(p, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6933}
 6934
 6935/*
 6936 * Check the target process has a UID that matches the current process's:
 6937 */
 6938static bool check_same_owner(struct task_struct *p)
 6939{
 6940	const struct cred *cred = current_cred(), *pcred;
 6941	bool match;
 6942
 6943	rcu_read_lock();
 6944	pcred = __task_cred(p);
 6945	match = (uid_eq(cred->euid, pcred->euid) ||
 6946		 uid_eq(cred->euid, pcred->uid));
 6947	rcu_read_unlock();
 6948	return match;
 6949}
 6950
 6951static int __sched_setscheduler(struct task_struct *p,
 6952				const struct sched_attr *attr,
 6953				bool user, bool pi)
 6954{
 6955	int oldpolicy = -1, policy = attr->sched_policy;
 6956	int retval, oldprio, newprio, queued, running;
 
 
 
 6957	const struct sched_class *prev_class;
 6958	struct callback_head *head;
 6959	struct rq_flags rf;
 6960	int reset_on_fork;
 6961	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 6962	struct rq *rq;
 6963
 6964	/* The pi code expects interrupts enabled */
 6965	BUG_ON(pi && in_interrupt());
 6966recheck:
 6967	/* Double check policy once rq lock held: */
 6968	if (policy < 0) {
 6969		reset_on_fork = p->sched_reset_on_fork;
 6970		policy = oldpolicy = p->policy;
 6971	} else {
 6972		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 6973
 6974		if (!valid_policy(policy))
 
 
 
 6975			return -EINVAL;
 6976	}
 6977
 6978	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
 6979		return -EINVAL;
 6980
 6981	/*
 6982	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 6983	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
 6984	 * SCHED_BATCH and SCHED_IDLE is 0.
 6985	 */
 6986	if (attr->sched_priority > MAX_RT_PRIO-1)
 
 6987		return -EINVAL;
 6988	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
 6989	    (rt_policy(policy) != (attr->sched_priority != 0)))
 6990		return -EINVAL;
 6991
 6992	/*
 6993	 * Allow unprivileged RT tasks to decrease priority:
 6994	 */
 6995	if (user && !capable(CAP_SYS_NICE)) {
 6996		if (fair_policy(policy)) {
 6997			if (attr->sched_nice < task_nice(p) &&
 6998			    !can_nice(p, attr->sched_nice))
 6999				return -EPERM;
 7000		}
 7001
 7002		if (rt_policy(policy)) {
 7003			unsigned long rlim_rtprio =
 7004					task_rlimit(p, RLIMIT_RTPRIO);
 7005
 7006			/* Can't set/change the rt policy: */
 7007			if (policy != p->policy && !rlim_rtprio)
 7008				return -EPERM;
 7009
 7010			/* Can't increase priority: */
 7011			if (attr->sched_priority > p->rt_priority &&
 7012			    attr->sched_priority > rlim_rtprio)
 7013				return -EPERM;
 7014		}
 7015
 7016		 /*
 7017		  * Can't set/change SCHED_DEADLINE policy at all for now
 7018		  * (safest behavior); in the future we would like to allow
 7019		  * unprivileged DL tasks to increase their relative deadline
 7020		  * or reduce their runtime (both ways reducing utilization)
 7021		  */
 7022		if (dl_policy(policy))
 7023			return -EPERM;
 7024
 7025		/*
 7026		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 7027		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 7028		 */
 7029		if (task_has_idle_policy(p) && !idle_policy(policy)) {
 7030			if (!can_nice(p, task_nice(p)))
 7031				return -EPERM;
 7032		}
 7033
 7034		/* Can't change other user's priorities: */
 7035		if (!check_same_owner(p))
 7036			return -EPERM;
 7037
 7038		/* Normal users shall not reset the sched_reset_on_fork flag: */
 7039		if (p->sched_reset_on_fork && !reset_on_fork)
 7040			return -EPERM;
 7041	}
 7042
 7043	if (user) {
 7044		if (attr->sched_flags & SCHED_FLAG_SUGOV)
 7045			return -EINVAL;
 7046
 7047		retval = security_task_setscheduler(p);
 7048		if (retval)
 7049			return retval;
 7050	}
 7051
 7052	/* Update task specific "requested" clamps */
 7053	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
 7054		retval = uclamp_validate(p, attr);
 7055		if (retval)
 7056			return retval;
 7057	}
 7058
 7059	if (pi)
 7060		cpuset_read_lock();
 7061
 7062	/*
 7063	 * Make sure no PI-waiters arrive (or leave) while we are
 7064	 * changing the priority of the task:
 7065	 *
 7066	 * To be able to change p->policy safely, the appropriate
 7067	 * runqueue lock must be held.
 7068	 */
 7069	rq = task_rq_lock(p, &rf);
 7070	update_rq_clock(rq);
 7071
 7072	/*
 7073	 * Changing the policy of the stop threads its a very bad idea:
 7074	 */
 7075	if (p == rq->stop) {
 7076		retval = -EINVAL;
 7077		goto unlock;
 7078	}
 7079
 7080	/*
 7081	 * If not changing anything there's no need to proceed further,
 7082	 * but store a possible modification of reset_on_fork.
 7083	 */
 7084	if (unlikely(policy == p->policy)) {
 7085		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
 7086			goto change;
 7087		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 7088			goto change;
 7089		if (dl_policy(policy) && dl_param_changed(p, attr))
 7090			goto change;
 7091		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
 7092			goto change;
 7093
 7094		p->sched_reset_on_fork = reset_on_fork;
 7095		retval = 0;
 7096		goto unlock;
 7097	}
 7098change:
 7099
 7100	if (user) {
 7101#ifdef CONFIG_RT_GROUP_SCHED
 7102		/*
 7103		 * Do not allow realtime tasks into groups that have no runtime
 7104		 * assigned.
 7105		 */
 7106		if (rt_bandwidth_enabled() && rt_policy(policy) &&
 7107				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 7108				!task_group_is_autogroup(task_group(p))) {
 7109			retval = -EPERM;
 7110			goto unlock;
 7111		}
 7112#endif
 7113#ifdef CONFIG_SMP
 7114		if (dl_bandwidth_enabled() && dl_policy(policy) &&
 7115				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
 7116			cpumask_t *span = rq->rd->span;
 7117
 7118			/*
 7119			 * Don't allow tasks with an affinity mask smaller than
 7120			 * the entire root_domain to become SCHED_DEADLINE. We
 7121			 * will also fail if there's no bandwidth available.
 7122			 */
 7123			if (!cpumask_subset(span, p->cpus_ptr) ||
 7124			    rq->rd->dl_bw.bw == 0) {
 7125				retval = -EPERM;
 7126				goto unlock;
 7127			}
 7128		}
 7129#endif
 7130	}
 7131
 7132	/* Re-check policy now with rq lock held: */
 7133	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 7134		policy = oldpolicy = -1;
 7135		task_rq_unlock(rq, p, &rf);
 7136		if (pi)
 7137			cpuset_read_unlock();
 7138		goto recheck;
 7139	}
 7140
 7141	/*
 7142	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
 7143	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
 7144	 * is available.
 7145	 */
 7146	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
 7147		retval = -EBUSY;
 7148		goto unlock;
 7149	}
 7150
 7151	p->sched_reset_on_fork = reset_on_fork;
 7152	oldprio = p->prio;
 7153
 7154	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
 7155	if (pi) {
 7156		/*
 7157		 * Take priority boosted tasks into account. If the new
 7158		 * effective priority is unchanged, we just store the new
 7159		 * normal parameters and do not touch the scheduler class and
 7160		 * the runqueue. This will be done when the task deboost
 7161		 * itself.
 7162		 */
 7163		newprio = rt_effective_prio(p, newprio);
 7164		if (newprio == oldprio)
 7165			queue_flags &= ~DEQUEUE_MOVE;
 
 7166	}
 7167
 7168	queued = task_on_rq_queued(p);
 7169	running = task_current(rq, p);
 7170	if (queued)
 7171		dequeue_task(rq, p, queue_flags);
 7172	if (running)
 7173		put_prev_task(rq, p);
 7174
 7175	prev_class = p->sched_class;
 
 7176
 7177	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
 7178		__setscheduler_params(p, attr);
 7179		__setscheduler_prio(p, newprio);
 7180	}
 7181	__setscheduler_uclamp(p, attr);
 7182
 7183	if (queued) {
 7184		/*
 7185		 * We enqueue to tail when the priority of a task is
 7186		 * increased (user space view).
 7187		 */
 7188		if (oldprio < p->prio)
 7189			queue_flags |= ENQUEUE_HEAD;
 7190
 7191		enqueue_task(rq, p, queue_flags);
 7192	}
 7193	if (running)
 7194		set_next_task(rq, p);
 7195
 7196	check_class_changed(rq, p, prev_class, oldprio);
 
 7197
 7198	/* Avoid rq from going away on us: */
 7199	preempt_disable();
 7200	head = splice_balance_callbacks(rq);
 7201	task_rq_unlock(rq, p, &rf);
 7202
 7203	if (pi) {
 7204		cpuset_read_unlock();
 7205		rt_mutex_adjust_pi(p);
 7206	}
 7207
 7208	/* Run balance callbacks after we've adjusted the PI chain: */
 7209	balance_callbacks(rq, head);
 7210	preempt_enable();
 7211
 7212	return 0;
 7213
 7214unlock:
 7215	task_rq_unlock(rq, p, &rf);
 7216	if (pi)
 7217		cpuset_read_unlock();
 7218	return retval;
 7219}
 7220
 7221static int _sched_setscheduler(struct task_struct *p, int policy,
 7222			       const struct sched_param *param, bool check)
 7223{
 7224	struct sched_attr attr = {
 7225		.sched_policy   = policy,
 7226		.sched_priority = param->sched_priority,
 7227		.sched_nice	= PRIO_TO_NICE(p->static_prio),
 7228	};
 7229
 7230	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
 7231	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
 
 
 7232		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 7233		policy &= ~SCHED_RESET_ON_FORK;
 7234		attr.sched_policy = policy;
 7235	}
 7236
 7237	return __sched_setscheduler(p, &attr, check, true);
 7238}
 7239/**
 7240 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 7241 * @p: the task in question.
 7242 * @policy: new policy.
 7243 * @param: structure containing the new RT priority.
 7244 *
 7245 * Use sched_set_fifo(), read its comment.
 7246 *
 7247 * Return: 0 on success. An error code otherwise.
 7248 *
 7249 * NOTE that the task may be already dead.
 7250 */
 7251int sched_setscheduler(struct task_struct *p, int policy,
 7252		       const struct sched_param *param)
 7253{
 7254	return _sched_setscheduler(p, policy, param, true);
 7255}
 
 7256
 7257int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
 7258{
 7259	return __sched_setscheduler(p, attr, true, true);
 7260}
 7261
 7262int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
 7263{
 7264	return __sched_setscheduler(p, attr, false, true);
 7265}
 7266EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
 7267
 7268/**
 7269 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 7270 * @p: the task in question.
 7271 * @policy: new policy.
 7272 * @param: structure containing the new RT priority.
 7273 *
 7274 * Just like sched_setscheduler, only don't bother checking if the
 7275 * current context has permission.  For example, this is needed in
 7276 * stop_machine(): we create temporary high priority worker threads,
 7277 * but our caller might not have that capability.
 7278 *
 7279 * Return: 0 on success. An error code otherwise.
 7280 */
 7281int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 7282			       const struct sched_param *param)
 7283{
 7284	return _sched_setscheduler(p, policy, param, false);
 7285}
 7286
 7287/*
 7288 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 7289 * incapable of resource management, which is the one thing an OS really should
 7290 * be doing.
 7291 *
 7292 * This is of course the reason it is limited to privileged users only.
 7293 *
 7294 * Worse still; it is fundamentally impossible to compose static priority
 7295 * workloads. You cannot take two correctly working static prio workloads
 7296 * and smash them together and still expect them to work.
 7297 *
 7298 * For this reason 'all' FIFO tasks the kernel creates are basically at:
 7299 *
 7300 *   MAX_RT_PRIO / 2
 7301 *
 7302 * The administrator _MUST_ configure the system, the kernel simply doesn't
 7303 * know enough information to make a sensible choice.
 7304 */
 7305void sched_set_fifo(struct task_struct *p)
 7306{
 7307	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
 7308	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7309}
 7310EXPORT_SYMBOL_GPL(sched_set_fifo);
 7311
 7312/*
 7313 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 7314 */
 7315void sched_set_fifo_low(struct task_struct *p)
 7316{
 7317	struct sched_param sp = { .sched_priority = 1 };
 7318	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7319}
 7320EXPORT_SYMBOL_GPL(sched_set_fifo_low);
 7321
 7322void sched_set_normal(struct task_struct *p, int nice)
 7323{
 7324	struct sched_attr attr = {
 7325		.sched_policy = SCHED_NORMAL,
 7326		.sched_nice = nice,
 7327	};
 7328	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
 7329}
 7330EXPORT_SYMBOL_GPL(sched_set_normal);
 7331
 7332static int
 7333do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 7334{
 7335	struct sched_param lparam;
 7336	struct task_struct *p;
 7337	int retval;
 7338
 7339	if (!param || pid < 0)
 7340		return -EINVAL;
 7341	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 7342		return -EFAULT;
 7343
 7344	rcu_read_lock();
 7345	retval = -ESRCH;
 7346	p = find_process_by_pid(pid);
 7347	if (likely(p))
 7348		get_task_struct(p);
 7349	rcu_read_unlock();
 7350
 7351	if (likely(p)) {
 7352		retval = sched_setscheduler(p, policy, &lparam);
 7353		put_task_struct(p);
 7354	}
 7355
 7356	return retval;
 7357}
 7358
 7359/*
 7360 * Mimics kernel/events/core.c perf_copy_attr().
 7361 */
 7362static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 
 7363{
 7364	u32 size;
 7365	int ret;
 7366
 7367	/* Zero the full structure, so that a short copy will be nice: */
 
 
 
 
 
 7368	memset(attr, 0, sizeof(*attr));
 7369
 7370	ret = get_user(size, &uattr->size);
 7371	if (ret)
 7372		return ret;
 7373
 7374	/* ABI compatibility quirk: */
 7375	if (!size)
 
 
 7376		size = SCHED_ATTR_SIZE_VER0;
 7377	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 
 7378		goto err_size;
 7379
 7380	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 7381	if (ret) {
 7382		if (ret == -E2BIG)
 7383			goto err_size;
 7384		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7385	}
 7386
 7387	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
 7388	    size < SCHED_ATTR_SIZE_VER1)
 7389		return -EINVAL;
 7390
 7391	/*
 7392	 * XXX: Do we want to be lenient like existing syscalls; or do we want
 7393	 * to be strict and return an error on out-of-bounds values?
 7394	 */
 7395	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
 7396
 7397	return 0;
 
 7398
 7399err_size:
 7400	put_user(sizeof(*attr), &uattr->size);
 7401	return -E2BIG;
 
 7402}
 7403
 7404/**
 7405 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 7406 * @pid: the pid in question.
 7407 * @policy: new policy.
 7408 * @param: structure containing the new RT priority.
 7409 *
 7410 * Return: 0 on success. An error code otherwise.
 7411 */
 7412SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 
 7413{
 
 7414	if (policy < 0)
 7415		return -EINVAL;
 7416
 7417	return do_sched_setscheduler(pid, policy, param);
 7418}
 7419
 7420/**
 7421 * sys_sched_setparam - set/change the RT priority of a thread
 7422 * @pid: the pid in question.
 7423 * @param: structure containing the new RT priority.
 7424 *
 7425 * Return: 0 on success. An error code otherwise.
 7426 */
 7427SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 7428{
 7429	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
 7430}
 7431
 7432/**
 7433 * sys_sched_setattr - same as above, but with extended sched_attr
 7434 * @pid: the pid in question.
 7435 * @uattr: structure containing the extended parameters.
 7436 * @flags: for future extension.
 7437 */
 7438SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
 7439			       unsigned int, flags)
 7440{
 7441	struct sched_attr attr;
 7442	struct task_struct *p;
 7443	int retval;
 7444
 7445	if (!uattr || pid < 0 || flags)
 7446		return -EINVAL;
 7447
 7448	retval = sched_copy_attr(uattr, &attr);
 7449	if (retval)
 7450		return retval;
 7451
 7452	if ((int)attr.sched_policy < 0)
 7453		return -EINVAL;
 7454	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
 7455		attr.sched_policy = SETPARAM_POLICY;
 7456
 7457	rcu_read_lock();
 7458	retval = -ESRCH;
 7459	p = find_process_by_pid(pid);
 7460	if (likely(p))
 7461		get_task_struct(p);
 7462	rcu_read_unlock();
 7463
 7464	if (likely(p)) {
 7465		retval = sched_setattr(p, &attr);
 7466		put_task_struct(p);
 7467	}
 7468
 7469	return retval;
 7470}
 7471
 7472/**
 7473 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 7474 * @pid: the pid in question.
 7475 *
 7476 * Return: On success, the policy of the thread. Otherwise, a negative error
 7477 * code.
 7478 */
 7479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 7480{
 7481	struct task_struct *p;
 7482	int retval;
 7483
 7484	if (pid < 0)
 7485		return -EINVAL;
 7486
 7487	retval = -ESRCH;
 7488	rcu_read_lock();
 7489	p = find_process_by_pid(pid);
 7490	if (p) {
 7491		retval = security_task_getscheduler(p);
 7492		if (!retval)
 7493			retval = p->policy
 7494				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
 7495	}
 7496	rcu_read_unlock();
 7497	return retval;
 7498}
 7499
 7500/**
 7501 * sys_sched_getparam - get the RT priority of a thread
 7502 * @pid: the pid in question.
 7503 * @param: structure containing the RT priority.
 7504 *
 7505 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 7506 * code.
 7507 */
 7508SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 7509{
 7510	struct sched_param lp = { .sched_priority = 0 };
 7511	struct task_struct *p;
 7512	int retval;
 7513
 7514	if (!param || pid < 0)
 7515		return -EINVAL;
 7516
 7517	rcu_read_lock();
 7518	p = find_process_by_pid(pid);
 7519	retval = -ESRCH;
 7520	if (!p)
 7521		goto out_unlock;
 7522
 7523	retval = security_task_getscheduler(p);
 7524	if (retval)
 7525		goto out_unlock;
 7526
 7527	if (task_has_rt_policy(p))
 7528		lp.sched_priority = p->rt_priority;
 7529	rcu_read_unlock();
 7530
 7531	/*
 7532	 * This one might sleep, we cannot do it with a spinlock held ...
 7533	 */
 7534	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 7535
 7536	return retval;
 7537
 7538out_unlock:
 7539	rcu_read_unlock();
 7540	return retval;
 7541}
 7542
 7543/*
 7544 * Copy the kernel size attribute structure (which might be larger
 7545 * than what user-space knows about) to user-space.
 7546 *
 7547 * Note that all cases are valid: user-space buffer can be larger or
 7548 * smaller than the kernel-space buffer. The usual case is that both
 7549 * have the same size.
 7550 */
 7551static int
 7552sched_attr_copy_to_user(struct sched_attr __user *uattr,
 7553			struct sched_attr *kattr,
 7554			unsigned int usize)
 7555{
 7556	unsigned int ksize = sizeof(*kattr);
 7557
 7558	if (!access_ok(uattr, usize))
 7559		return -EFAULT;
 7560
 7561	/*
 7562	 * sched_getattr() ABI forwards and backwards compatibility:
 7563	 *
 7564	 * If usize == ksize then we just copy everything to user-space and all is good.
 7565	 *
 7566	 * If usize < ksize then we only copy as much as user-space has space for,
 7567	 * this keeps ABI compatibility as well. We skip the rest.
 7568	 *
 7569	 * If usize > ksize then user-space is using a newer version of the ABI,
 7570	 * which part the kernel doesn't know about. Just ignore it - tooling can
 7571	 * detect the kernel's knowledge of attributes from the attr->size value
 7572	 * which is set to ksize in this case.
 7573	 */
 7574	kattr->size = min(usize, ksize);
 
 
 7575
 7576	if (copy_to_user(uattr, kattr, kattr->size))
 
 
 
 
 
 
 
 
 
 
 
 
 7577		return -EFAULT;
 7578
 7579	return 0;
 
 
 
 
 
 7580}
 7581
 7582/**
 7583 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 7584 * @pid: the pid in question.
 7585 * @uattr: structure containing the extended parameters.
 7586 * @usize: sizeof(attr) for fwd/bwd comp.
 7587 * @flags: for future extension.
 7588 */
 7589SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
 7590		unsigned int, usize, unsigned int, flags)
 7591{
 7592	struct sched_attr kattr = { };
 
 
 7593	struct task_struct *p;
 7594	int retval;
 7595
 7596	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
 7597	    usize < SCHED_ATTR_SIZE_VER0 || flags)
 7598		return -EINVAL;
 7599
 7600	rcu_read_lock();
 7601	p = find_process_by_pid(pid);
 7602	retval = -ESRCH;
 7603	if (!p)
 7604		goto out_unlock;
 7605
 7606	retval = security_task_getscheduler(p);
 7607	if (retval)
 7608		goto out_unlock;
 7609
 7610	kattr.sched_policy = p->policy;
 7611	if (p->sched_reset_on_fork)
 7612		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 7613	if (task_has_dl_policy(p))
 7614		__getparam_dl(p, &kattr);
 7615	else if (task_has_rt_policy(p))
 7616		kattr.sched_priority = p->rt_priority;
 7617	else
 7618		kattr.sched_nice = task_nice(p);
 7619
 7620#ifdef CONFIG_UCLAMP_TASK
 7621	/*
 7622	 * This could race with another potential updater, but this is fine
 7623	 * because it'll correctly read the old or the new value. We don't need
 7624	 * to guarantee who wins the race as long as it doesn't return garbage.
 7625	 */
 7626	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
 7627	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
 7628#endif
 7629
 7630	rcu_read_unlock();
 7631
 7632	return sched_attr_copy_to_user(uattr, &kattr, usize);
 
 7633
 7634out_unlock:
 7635	rcu_read_unlock();
 7636	return retval;
 7637}
 7638
 7639long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 7640{
 7641	cpumask_var_t cpus_allowed, new_mask;
 7642	struct task_struct *p;
 7643	int retval;
 7644
 7645	rcu_read_lock();
 7646
 7647	p = find_process_by_pid(pid);
 7648	if (!p) {
 7649		rcu_read_unlock();
 7650		return -ESRCH;
 7651	}
 7652
 7653	/* Prevent p going away */
 7654	get_task_struct(p);
 7655	rcu_read_unlock();
 7656
 7657	if (p->flags & PF_NO_SETAFFINITY) {
 7658		retval = -EINVAL;
 7659		goto out_put_task;
 7660	}
 7661	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
 7662		retval = -ENOMEM;
 7663		goto out_put_task;
 7664	}
 7665	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 7666		retval = -ENOMEM;
 7667		goto out_free_cpus_allowed;
 7668	}
 7669	retval = -EPERM;
 7670	if (!check_same_owner(p)) {
 7671		rcu_read_lock();
 7672		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
 7673			rcu_read_unlock();
 7674			goto out_free_new_mask;
 7675		}
 7676		rcu_read_unlock();
 7677	}
 7678
 7679	retval = security_task_setscheduler(p);
 7680	if (retval)
 7681		goto out_free_new_mask;
 7682
 7683
 7684	cpuset_cpus_allowed(p, cpus_allowed);
 7685	cpumask_and(new_mask, in_mask, cpus_allowed);
 7686
 7687	/*
 7688	 * Since bandwidth control happens on root_domain basis,
 7689	 * if admission test is enabled, we only admit -deadline
 7690	 * tasks allowed to run on all the CPUs in the task's
 7691	 * root_domain.
 7692	 */
 7693#ifdef CONFIG_SMP
 7694	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 7695		rcu_read_lock();
 7696		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
 
 7697			retval = -EBUSY;
 7698			rcu_read_unlock();
 7699			goto out_free_new_mask;
 7700		}
 7701		rcu_read_unlock();
 7702	}
 7703#endif
 7704again:
 7705	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
 7706
 7707	if (!retval) {
 7708		cpuset_cpus_allowed(p, cpus_allowed);
 7709		if (!cpumask_subset(new_mask, cpus_allowed)) {
 7710			/*
 7711			 * We must have raced with a concurrent cpuset
 7712			 * update. Just reset the cpus_allowed to the
 7713			 * cpuset's cpus_allowed
 7714			 */
 7715			cpumask_copy(new_mask, cpus_allowed);
 7716			goto again;
 7717		}
 7718	}
 7719out_free_new_mask:
 7720	free_cpumask_var(new_mask);
 7721out_free_cpus_allowed:
 7722	free_cpumask_var(cpus_allowed);
 7723out_put_task:
 7724	put_task_struct(p);
 7725	return retval;
 7726}
 7727
 7728static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 7729			     struct cpumask *new_mask)
 7730{
 7731	if (len < cpumask_size())
 7732		cpumask_clear(new_mask);
 7733	else if (len > cpumask_size())
 7734		len = cpumask_size();
 7735
 7736	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 7737}
 7738
 7739/**
 7740 * sys_sched_setaffinity - set the CPU affinity of a process
 7741 * @pid: pid of the process
 7742 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 7743 * @user_mask_ptr: user-space pointer to the new CPU mask
 7744 *
 7745 * Return: 0 on success. An error code otherwise.
 7746 */
 7747SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 7748		unsigned long __user *, user_mask_ptr)
 7749{
 7750	cpumask_var_t new_mask;
 7751	int retval;
 7752
 7753	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 7754		return -ENOMEM;
 7755
 7756	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 7757	if (retval == 0)
 7758		retval = sched_setaffinity(pid, new_mask);
 7759	free_cpumask_var(new_mask);
 7760	return retval;
 7761}
 7762
 7763long sched_getaffinity(pid_t pid, struct cpumask *mask)
 7764{
 7765	struct task_struct *p;
 7766	unsigned long flags;
 7767	int retval;
 7768
 7769	rcu_read_lock();
 7770
 7771	retval = -ESRCH;
 7772	p = find_process_by_pid(pid);
 7773	if (!p)
 7774		goto out_unlock;
 7775
 7776	retval = security_task_getscheduler(p);
 7777	if (retval)
 7778		goto out_unlock;
 7779
 7780	raw_spin_lock_irqsave(&p->pi_lock, flags);
 7781	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
 7782	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 7783
 7784out_unlock:
 7785	rcu_read_unlock();
 7786
 7787	return retval;
 7788}
 7789
 7790/**
 7791 * sys_sched_getaffinity - get the CPU affinity of a process
 7792 * @pid: pid of the process
 7793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 7794 * @user_mask_ptr: user-space pointer to hold the current CPU mask
 7795 *
 7796 * Return: size of CPU mask copied to user_mask_ptr on success. An
 7797 * error code otherwise.
 7798 */
 7799SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 7800		unsigned long __user *, user_mask_ptr)
 7801{
 7802	int ret;
 7803	cpumask_var_t mask;
 7804
 7805	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 7806		return -EINVAL;
 7807	if (len & (sizeof(unsigned long)-1))
 7808		return -EINVAL;
 7809
 7810	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 7811		return -ENOMEM;
 7812
 7813	ret = sched_getaffinity(pid, mask);
 7814	if (ret == 0) {
 7815		unsigned int retlen = min(len, cpumask_size());
 7816
 7817		if (copy_to_user(user_mask_ptr, mask, retlen))
 7818			ret = -EFAULT;
 7819		else
 7820			ret = retlen;
 7821	}
 7822	free_cpumask_var(mask);
 7823
 7824	return ret;
 7825}
 7826
 7827static void do_sched_yield(void)
 7828{
 7829	struct rq_flags rf;
 7830	struct rq *rq;
 7831
 7832	rq = this_rq_lock_irq(&rf);
 7833
 7834	schedstat_inc(rq->yld_count);
 7835	current->sched_class->yield_task(rq);
 7836
 7837	preempt_disable();
 7838	rq_unlock_irq(rq, &rf);
 7839	sched_preempt_enable_no_resched();
 7840
 7841	schedule();
 7842}
 7843
 7844/**
 7845 * sys_sched_yield - yield the current processor to other threads.
 7846 *
 7847 * This function yields the current CPU to other tasks. If there are no
 7848 * other threads running on this CPU then this function will return.
 7849 *
 7850 * Return: 0.
 7851 */
 7852SYSCALL_DEFINE0(sched_yield)
 7853{
 7854	do_sched_yield();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7855	return 0;
 7856}
 7857
 7858#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 7859int __sched __cond_resched(void)
 7860{
 7861	if (should_resched(0)) {
 7862		preempt_schedule_common();
 
 
 
 
 
 
 
 7863		return 1;
 7864	}
 7865#ifndef CONFIG_PREEMPT_RCU
 7866	rcu_all_qs();
 7867#endif
 7868	return 0;
 7869}
 7870EXPORT_SYMBOL(__cond_resched);
 7871#endif
 7872
 7873#ifdef CONFIG_PREEMPT_DYNAMIC
 7874DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 7875EXPORT_STATIC_CALL_TRAMP(cond_resched);
 7876
 7877DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 7878EXPORT_STATIC_CALL_TRAMP(might_resched);
 7879#endif
 7880
 7881/*
 7882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 7883 * call schedule, and on return reacquire the lock.
 7884 *
 7885 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 7886 * operations here to prevent schedule() from being called twice (once via
 7887 * spin_unlock(), once by hand).
 7888 */
 7889int __cond_resched_lock(spinlock_t *lock)
 7890{
 7891	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7892	int ret = 0;
 7893
 7894	lockdep_assert_held(lock);
 7895
 7896	if (spin_needbreak(lock) || resched) {
 7897		spin_unlock(lock);
 7898		if (resched)
 7899			preempt_schedule_common();
 7900		else
 7901			cpu_relax();
 7902		ret = 1;
 7903		spin_lock(lock);
 7904	}
 7905	return ret;
 7906}
 7907EXPORT_SYMBOL(__cond_resched_lock);
 7908
 7909int __cond_resched_rwlock_read(rwlock_t *lock)
 7910{
 7911	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7912	int ret = 0;
 7913
 7914	lockdep_assert_held_read(lock);
 7915
 7916	if (rwlock_needbreak(lock) || resched) {
 7917		read_unlock(lock);
 7918		if (resched)
 7919			preempt_schedule_common();
 7920		else
 7921			cpu_relax();
 7922		ret = 1;
 7923		read_lock(lock);
 7924	}
 7925	return ret;
 7926}
 7927EXPORT_SYMBOL(__cond_resched_rwlock_read);
 7928
 7929int __cond_resched_rwlock_write(rwlock_t *lock)
 7930{
 7931	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7932	int ret = 0;
 7933
 7934	lockdep_assert_held_write(lock);
 7935
 7936	if (rwlock_needbreak(lock) || resched) {
 7937		write_unlock(lock);
 7938		if (resched)
 7939			preempt_schedule_common();
 7940		else
 7941			cpu_relax();
 7942		ret = 1;
 7943		write_lock(lock);
 7944	}
 7945	return ret;
 7946}
 7947EXPORT_SYMBOL(__cond_resched_rwlock_write);
 7948
 7949/**
 7950 * yield - yield the current processor to other threads.
 7951 *
 7952 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 7953 *
 7954 * The scheduler is at all times free to pick the calling task as the most
 7955 * eligible task to run, if removing the yield() call from your code breaks
 7956 * it, it's already broken.
 7957 *
 7958 * Typical broken usage is:
 7959 *
 7960 * while (!event)
 7961 *	yield();
 7962 *
 7963 * where one assumes that yield() will let 'the other' process run that will
 7964 * make event true. If the current task is a SCHED_FIFO task that will never
 7965 * happen. Never use yield() as a progress guarantee!!
 7966 *
 7967 * If you want to use yield() to wait for something, use wait_event().
 7968 * If you want to use yield() to be 'nice' for others, use cond_resched().
 7969 * If you still want to use yield(), do not!
 7970 */
 7971void __sched yield(void)
 7972{
 7973	set_current_state(TASK_RUNNING);
 7974	do_sched_yield();
 7975}
 7976EXPORT_SYMBOL(yield);
 7977
 7978/**
 7979 * yield_to - yield the current processor to another thread in
 7980 * your thread group, or accelerate that thread toward the
 7981 * processor it's on.
 7982 * @p: target task
 7983 * @preempt: whether task preemption is allowed or not
 7984 *
 7985 * It's the caller's job to ensure that the target task struct
 7986 * can't go away on us before we can do any checks.
 7987 *
 7988 * Return:
 7989 *	true (>0) if we indeed boosted the target task.
 7990 *	false (0) if we failed to boost the target.
 7991 *	-ESRCH if there's no task to yield to.
 7992 */
 7993int __sched yield_to(struct task_struct *p, bool preempt)
 7994{
 7995	struct task_struct *curr = current;
 7996	struct rq *rq, *p_rq;
 7997	unsigned long flags;
 7998	int yielded = 0;
 7999
 8000	local_irq_save(flags);
 8001	rq = this_rq();
 8002
 8003again:
 8004	p_rq = task_rq(p);
 8005	/*
 8006	 * If we're the only runnable task on the rq and target rq also
 8007	 * has only one task, there's absolutely no point in yielding.
 8008	 */
 8009	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
 8010		yielded = -ESRCH;
 8011		goto out_irq;
 8012	}
 8013
 8014	double_rq_lock(rq, p_rq);
 8015	if (task_rq(p) != p_rq) {
 8016		double_rq_unlock(rq, p_rq);
 8017		goto again;
 8018	}
 8019
 8020	if (!curr->sched_class->yield_to_task)
 8021		goto out_unlock;
 8022
 8023	if (curr->sched_class != p->sched_class)
 8024		goto out_unlock;
 8025
 8026	if (task_running(p_rq, p) || !task_is_running(p))
 8027		goto out_unlock;
 8028
 8029	yielded = curr->sched_class->yield_to_task(rq, p);
 8030	if (yielded) {
 8031		schedstat_inc(rq->yld_count);
 8032		/*
 8033		 * Make p's CPU reschedule; pick_next_entity takes care of
 8034		 * fairness.
 8035		 */
 8036		if (preempt && rq != p_rq)
 8037			resched_curr(p_rq);
 8038	}
 8039
 8040out_unlock:
 8041	double_rq_unlock(rq, p_rq);
 8042out_irq:
 8043	local_irq_restore(flags);
 8044
 8045	if (yielded > 0)
 8046		schedule();
 8047
 8048	return yielded;
 8049}
 8050EXPORT_SYMBOL_GPL(yield_to);
 8051
 8052int io_schedule_prepare(void)
 
 
 
 
 8053{
 8054	int old_iowait = current->in_iowait;
 8055
 
 
 
 8056	current->in_iowait = 1;
 8057	blk_schedule_flush_plug(current);
 8058
 8059	return old_iowait;
 
 8060}
 
 8061
 8062void io_schedule_finish(int token)
 8063{
 8064	current->in_iowait = token;
 8065}
 8066
 8067/*
 8068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 8069 * that process accounting knows that this is a task in IO wait state.
 8070 */
 8071long __sched io_schedule_timeout(long timeout)
 8072{
 8073	int token;
 8074	long ret;
 8075
 8076	token = io_schedule_prepare();
 
 
 
 8077	ret = schedule_timeout(timeout);
 8078	io_schedule_finish(token);
 8079
 
 8080	return ret;
 8081}
 8082EXPORT_SYMBOL(io_schedule_timeout);
 8083
 8084void __sched io_schedule(void)
 8085{
 8086	int token;
 8087
 8088	token = io_schedule_prepare();
 8089	schedule();
 8090	io_schedule_finish(token);
 8091}
 8092EXPORT_SYMBOL(io_schedule);
 8093
 8094/**
 8095 * sys_sched_get_priority_max - return maximum RT priority.
 8096 * @policy: scheduling class.
 8097 *
 8098 * Return: On success, this syscall returns the maximum
 8099 * rt_priority that can be used by a given scheduling class.
 8100 * On failure, a negative error code is returned.
 8101 */
 8102SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 8103{
 8104	int ret = -EINVAL;
 8105
 8106	switch (policy) {
 8107	case SCHED_FIFO:
 8108	case SCHED_RR:
 8109		ret = MAX_RT_PRIO-1;
 8110		break;
 8111	case SCHED_DEADLINE:
 8112	case SCHED_NORMAL:
 8113	case SCHED_BATCH:
 8114	case SCHED_IDLE:
 8115		ret = 0;
 8116		break;
 8117	}
 8118	return ret;
 8119}
 8120
 8121/**
 8122 * sys_sched_get_priority_min - return minimum RT priority.
 8123 * @policy: scheduling class.
 8124 *
 8125 * Return: On success, this syscall returns the minimum
 8126 * rt_priority that can be used by a given scheduling class.
 8127 * On failure, a negative error code is returned.
 8128 */
 8129SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 8130{
 8131	int ret = -EINVAL;
 8132
 8133	switch (policy) {
 8134	case SCHED_FIFO:
 8135	case SCHED_RR:
 8136		ret = 1;
 8137		break;
 8138	case SCHED_DEADLINE:
 8139	case SCHED_NORMAL:
 8140	case SCHED_BATCH:
 8141	case SCHED_IDLE:
 8142		ret = 0;
 8143	}
 8144	return ret;
 8145}
 8146
 8147static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 
 
 
 
 
 
 
 
 
 
 
 
 8148{
 8149	struct task_struct *p;
 8150	unsigned int time_slice;
 8151	struct rq_flags rf;
 8152	struct rq *rq;
 8153	int retval;
 
 8154
 8155	if (pid < 0)
 8156		return -EINVAL;
 8157
 8158	retval = -ESRCH;
 8159	rcu_read_lock();
 8160	p = find_process_by_pid(pid);
 8161	if (!p)
 8162		goto out_unlock;
 8163
 8164	retval = security_task_getscheduler(p);
 8165	if (retval)
 8166		goto out_unlock;
 8167
 8168	rq = task_rq_lock(p, &rf);
 8169	time_slice = 0;
 8170	if (p->sched_class->get_rr_interval)
 8171		time_slice = p->sched_class->get_rr_interval(rq, p);
 8172	task_rq_unlock(rq, p, &rf);
 8173
 8174	rcu_read_unlock();
 8175	jiffies_to_timespec64(time_slice, t);
 8176	return 0;
 
 8177
 8178out_unlock:
 8179	rcu_read_unlock();
 8180	return retval;
 8181}
 8182
 8183/**
 8184 * sys_sched_rr_get_interval - return the default timeslice of a process.
 8185 * @pid: pid of the process.
 8186 * @interval: userspace pointer to the timeslice value.
 8187 *
 8188 * this syscall writes the default timeslice value of a given process
 8189 * into the user-space timespec buffer. A value of '0' means infinity.
 8190 *
 8191 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 8192 * an error code.
 8193 */
 8194SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 8195		struct __kernel_timespec __user *, interval)
 8196{
 8197	struct timespec64 t;
 8198	int retval = sched_rr_get_interval(pid, &t);
 8199
 8200	if (retval == 0)
 8201		retval = put_timespec64(&t, interval);
 8202
 8203	return retval;
 8204}
 8205
 8206#ifdef CONFIG_COMPAT_32BIT_TIME
 8207SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
 8208		struct old_timespec32 __user *, interval)
 8209{
 8210	struct timespec64 t;
 8211	int retval = sched_rr_get_interval(pid, &t);
 8212
 8213	if (retval == 0)
 8214		retval = put_old_timespec32(&t, interval);
 8215	return retval;
 8216}
 8217#endif
 8218
 8219void sched_show_task(struct task_struct *p)
 8220{
 8221	unsigned long free = 0;
 8222	int ppid;
 
 8223
 8224	if (!try_get_task_stack(p))
 8225		return;
 8226
 8227	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 8228
 8229	if (task_is_running(p))
 8230		pr_cont("  running task    ");
 
 
 
 
 
 
 
 8231#ifdef CONFIG_DEBUG_STACK_USAGE
 8232	free = stack_not_used(p);
 8233#endif
 8234	ppid = 0;
 8235	rcu_read_lock();
 8236	if (pid_alive(p))
 8237		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 8238	rcu_read_unlock();
 8239	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
 8240		free, task_pid_nr(p), ppid,
 8241		(unsigned long)task_thread_info(p)->flags);
 8242
 8243	print_worker_info(KERN_INFO, p);
 8244	print_stop_info(KERN_INFO, p);
 8245	show_stack(p, NULL, KERN_INFO);
 8246	put_task_stack(p);
 8247}
 8248EXPORT_SYMBOL_GPL(sched_show_task);
 8249
 8250static inline bool
 8251state_filter_match(unsigned long state_filter, struct task_struct *p)
 8252{
 8253	unsigned int state = READ_ONCE(p->__state);
 8254
 8255	/* no filter, everything matches */
 8256	if (!state_filter)
 8257		return true;
 8258
 8259	/* filter, but doesn't match */
 8260	if (!(state & state_filter))
 8261		return false;
 8262
 8263	/*
 8264	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 8265	 * TASK_KILLABLE).
 8266	 */
 8267	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
 8268		return false;
 8269
 8270	return true;
 8271}
 8272
 8273
 8274void show_state_filter(unsigned int state_filter)
 8275{
 8276	struct task_struct *g, *p;
 8277
 
 
 
 
 
 
 
 8278	rcu_read_lock();
 8279	for_each_process_thread(g, p) {
 8280		/*
 8281		 * reset the NMI-timeout, listing all files on a slow
 8282		 * console might take a lot of time:
 8283		 * Also, reset softlockup watchdogs on all CPUs, because
 8284		 * another CPU might be blocked waiting for us to process
 8285		 * an IPI.
 8286		 */
 8287		touch_nmi_watchdog();
 8288		touch_all_softlockup_watchdogs();
 8289		if (state_filter_match(state_filter, p))
 8290			sched_show_task(p);
 8291	}
 
 
 8292
 8293#ifdef CONFIG_SCHED_DEBUG
 8294	if (!state_filter)
 8295		sysrq_sched_debug_show();
 8296#endif
 8297	rcu_read_unlock();
 8298	/*
 8299	 * Only show locks if all tasks are dumped:
 8300	 */
 8301	if (!state_filter)
 8302		debug_show_all_locks();
 8303}
 8304
 
 
 
 
 
 8305/**
 8306 * init_idle - set up an idle thread for a given CPU
 8307 * @idle: task in question
 8308 * @cpu: CPU the idle task belongs to
 8309 *
 8310 * NOTE: this function does not set the idle thread's NEED_RESCHED
 8311 * flag, to make booting more robust.
 8312 */
 8313void __init init_idle(struct task_struct *idle, int cpu)
 8314{
 8315	struct rq *rq = cpu_rq(cpu);
 8316	unsigned long flags;
 8317
 
 
 8318	__sched_fork(0, idle);
 8319
 8320	/*
 8321	 * The idle task doesn't need the kthread struct to function, but it
 8322	 * is dressed up as a per-CPU kthread and thus needs to play the part
 8323	 * if we want to avoid special-casing it in code that deals with per-CPU
 8324	 * kthreads.
 8325	 */
 8326	set_kthread_struct(idle);
 8327
 8328	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 8329	raw_spin_rq_lock(rq);
 8330
 8331	idle->__state = TASK_RUNNING;
 8332	idle->se.exec_start = sched_clock();
 8333	/*
 8334	 * PF_KTHREAD should already be set at this point; regardless, make it
 8335	 * look like a proper per-CPU kthread.
 8336	 */
 8337	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
 8338	kthread_set_per_cpu(idle, cpu);
 8339
 8340	scs_task_reset(idle);
 8341	kasan_unpoison_task_stack(idle);
 8342
 8343#ifdef CONFIG_SMP
 8344	/*
 8345	 * It's possible that init_idle() gets called multiple times on a task,
 8346	 * in that case do_set_cpus_allowed() will not do the right thing.
 8347	 *
 8348	 * And since this is boot we can forgo the serialization.
 8349	 */
 8350	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
 8351#endif
 8352	/*
 8353	 * We're having a chicken and egg problem, even though we are
 8354	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 8355	 * lockdep check in task_group() will fail.
 8356	 *
 8357	 * Similar case to sched_fork(). / Alternatively we could
 8358	 * use task_rq_lock() here and obtain the other rq->lock.
 8359	 *
 8360	 * Silence PROVE_RCU
 8361	 */
 8362	rcu_read_lock();
 8363	__set_task_cpu(idle, cpu);
 8364	rcu_read_unlock();
 8365
 8366	rq->idle = idle;
 8367	rcu_assign_pointer(rq->curr, idle);
 8368	idle->on_rq = TASK_ON_RQ_QUEUED;
 8369#ifdef CONFIG_SMP
 8370	idle->on_cpu = 1;
 8371#endif
 8372	raw_spin_rq_unlock(rq);
 8373	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 8374
 8375	/* Set the preempt count _outside_ the spinlocks! */
 8376	init_idle_preempt_count(idle, cpu);
 8377
 8378	/*
 8379	 * The idle tasks have their own, simple scheduling class:
 8380	 */
 8381	idle->sched_class = &idle_sched_class;
 8382	ftrace_graph_init_idle_task(idle, cpu);
 8383	vtime_init_idle(idle, cpu);
 8384#ifdef CONFIG_SMP
 8385	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 8386#endif
 8387}
 8388
 8389#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8390
 8391int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 8392			      const struct cpumask *trial)
 
 
 
 
 
 
 
 
 8393{
 8394	int ret = 1;
 
 
 
 
 
 
 
 
 8395
 8396	if (!cpumask_weight(cur))
 8397		return ret;
 
 
 
 
 
 
 
 
 8398
 8399	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 
 
 
 
 
 
 
 
 
 
 8400
 8401	return ret;
 8402}
 
 8403
 8404int task_can_attach(struct task_struct *p,
 8405		    const struct cpumask *cs_cpus_allowed)
 
 
 
 
 
 
 
 
 
 
 8406{
 
 8407	int ret = 0;
 8408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8409	/*
 8410	 * Kthreads which disallow setaffinity shouldn't be moved
 8411	 * to a new cpuset; we don't want to change their CPU
 8412	 * affinity and isolating such threads by their set of
 8413	 * allowed nodes is unnecessary.  Thus, cpusets are not
 8414	 * applicable for such threads.  This prevents checking for
 8415	 * success of set_cpus_allowed_ptr() on all attached tasks
 8416	 * before cpus_mask may be changed.
 8417	 */
 8418	if (p->flags & PF_NO_SETAFFINITY) {
 8419		ret = -EINVAL;
 8420		goto out;
 
 
 8421	}
 8422
 8423	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
 8424					      cs_cpus_allowed))
 8425		ret = dl_task_can_attach(p, cs_cpus_allowed);
 8426
 8427out:
 8428	return ret;
 8429}
 8430
 8431bool sched_smp_initialized __read_mostly;
 8432
 8433#ifdef CONFIG_NUMA_BALANCING
 8434/* Migrate current task p to target_cpu */
 8435int migrate_task_to(struct task_struct *p, int target_cpu)
 8436{
 8437	struct migration_arg arg = { p, target_cpu };
 8438	int curr_cpu = task_cpu(p);
 8439
 8440	if (curr_cpu == target_cpu)
 8441		return 0;
 8442
 8443	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 8444		return -EINVAL;
 8445
 8446	/* TODO: This is not properly updating schedstats */
 8447
 8448	trace_sched_move_numa(p, curr_cpu, target_cpu);
 8449	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 8450}
 8451
 8452/*
 8453 * Requeue a task on a given node and accurately track the number of NUMA
 8454 * tasks on the runqueues
 8455 */
 8456void sched_setnuma(struct task_struct *p, int nid)
 8457{
 8458	bool queued, running;
 8459	struct rq_flags rf;
 8460	struct rq *rq;
 
 
 8461
 8462	rq = task_rq_lock(p, &rf);
 8463	queued = task_on_rq_queued(p);
 8464	running = task_current(rq, p);
 8465
 8466	if (queued)
 8467		dequeue_task(rq, p, DEQUEUE_SAVE);
 8468	if (running)
 8469		put_prev_task(rq, p);
 8470
 8471	p->numa_preferred_nid = nid;
 8472
 8473	if (queued)
 8474		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 8475	if (running)
 8476		set_next_task(rq, p);
 8477	task_rq_unlock(rq, p, &rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8478}
 8479#endif /* CONFIG_NUMA_BALANCING */
 8480
 8481#ifdef CONFIG_HOTPLUG_CPU
 
 8482/*
 8483 * Ensure that the idle task is using init_mm right before its CPU goes
 8484 * offline.
 8485 */
 8486void idle_task_exit(void)
 8487{
 8488	struct mm_struct *mm = current->active_mm;
 8489
 8490	BUG_ON(cpu_online(smp_processor_id()));
 8491	BUG_ON(current != this_rq()->idle);
 8492
 8493	if (mm != &init_mm) {
 8494		switch_mm(mm, &init_mm, current);
 8495		finish_arch_post_lock_switch();
 8496	}
 
 
 8497
 8498	scs_task_reset(current);
 8499	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 
 
 
 
 
 
 
 
 
 
 8500}
 8501
 8502static int __balance_push_cpu_stop(void *arg)
 8503{
 8504	struct task_struct *p = arg;
 8505	struct rq *rq = this_rq();
 8506	struct rq_flags rf;
 8507	int cpu;
 8508
 8509	raw_spin_lock_irq(&p->pi_lock);
 8510	rq_lock(rq, &rf);
 
 8511
 8512	update_rq_clock(rq);
 8513
 8514	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 8515		cpu = select_fallback_rq(rq->cpu, p);
 8516		rq = __migrate_task(rq, &rf, p, cpu);
 8517	}
 8518
 8519	rq_unlock(rq, &rf);
 8520	raw_spin_unlock_irq(&p->pi_lock);
 8521
 8522	put_task_struct(p);
 8523
 8524	return 0;
 8525}
 8526
 8527static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 8528
 8529/*
 8530 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 
 8531 *
 8532 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 8533 * effective when the hotplug motion is down.
 
 8534 */
 8535static void balance_push(struct rq *rq)
 8536{
 8537	struct task_struct *push_task = rq->curr;
 8538
 8539	lockdep_assert_rq_held(rq);
 8540
 8541	/*
 8542	 * Ensure the thing is persistent until balance_push_set(.on = false);
 
 
 
 
 
 
 8543	 */
 8544	rq->balance_callback = &balance_push_callback;
 8545
 8546	/*
 8547	 * Only active while going offline and when invoked on the outgoing
 8548	 * CPU.
 
 8549	 */
 8550	if (!cpu_dying(rq->cpu) || rq != this_rq())
 8551		return;
 8552
 8553	/*
 8554	 * Both the cpu-hotplug and stop task are in this case and are
 8555	 * required to complete the hotplug process.
 8556	 */
 8557	if (kthread_is_per_cpu(push_task) ||
 8558	    is_migration_disabled(push_task)) {
 8559
 
 8560		/*
 8561		 * If this is the idle task on the outgoing CPU try to wake
 8562		 * up the hotplug control thread which might wait for the
 8563		 * last task to vanish. The rcuwait_active() check is
 8564		 * accurate here because the waiter is pinned on this CPU
 8565		 * and can't obviously be running in parallel.
 8566		 *
 8567		 * On RT kernels this also has to check whether there are
 8568		 * pinned and scheduled out tasks on the runqueue. They
 8569		 * need to leave the migrate disabled section first.
 8570		 */
 8571		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 8572		    rcuwait_active(&rq->hotplug_wait)) {
 8573			raw_spin_rq_unlock(rq);
 8574			rcuwait_wake_up(&rq->hotplug_wait);
 8575			raw_spin_rq_lock(rq);
 8576		}
 8577		return;
 
 
 
 
 
 
 
 8578	}
 8579
 8580	get_task_struct(push_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8581	/*
 8582	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 8583	 * Both preemption and IRQs are still disabled.
 
 
 8584	 */
 8585	raw_spin_rq_unlock(rq);
 8586	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 8587			    this_cpu_ptr(&push_work));
 8588	/*
 8589	 * At this point need_resched() is true and we'll take the loop in
 8590	 * schedule(). The next pick is obviously going to be the stop task
 8591	 * which kthread_is_per_cpu() and will push this task away.
 8592	 */
 8593	raw_spin_rq_lock(rq);
 8594}
 8595
 8596static void balance_push_set(int cpu, bool on)
 
 
 
 
 
 
 
 8597{
 8598	struct rq *rq = cpu_rq(cpu);
 8599	struct rq_flags rf;
 
 
 
 8600
 8601	rq_lock_irqsave(rq, &rf);
 8602	if (on) {
 8603		WARN_ON_ONCE(rq->balance_callback);
 8604		rq->balance_callback = &balance_push_callback;
 8605	} else if (rq->balance_callback == &balance_push_callback) {
 8606		rq->balance_callback = NULL;
 8607	}
 8608	rq_unlock_irqrestore(rq, &rf);
 8609}
 8610
 8611/*
 8612 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 8613 * inactive. All tasks which are not per CPU kernel threads are either
 8614 * pushed off this CPU now via balance_push() or placed on a different CPU
 8615 * during wakeup. Wait until the CPU is quiescent.
 8616 */
 8617static void balance_hotplug_wait(void)
 8618{
 8619	struct rq *rq = this_rq();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8620
 8621	rcuwait_wait_event(&rq->hotplug_wait,
 8622			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 8623			   TASK_UNINTERRUPTIBLE);
 8624}
 8625
 8626#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8627
 8628static inline void balance_push(struct rq *rq)
 
 8629{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8630}
 8631
 8632static inline void balance_push_set(int cpu, bool on)
 
 8633{
 
 
 
 
 
 8634}
 8635
 8636static inline void balance_hotplug_wait(void)
 
 
 
 8637{
 8638}
 
 8639
 8640#endif /* CONFIG_HOTPLUG_CPU */
 8641
 8642void set_rq_online(struct rq *rq)
 8643{
 8644	if (!rq->online) {
 8645		const struct sched_class *class;
 8646
 8647		cpumask_set_cpu(rq->cpu, rq->rd->online);
 8648		rq->online = 1;
 8649
 8650		for_each_class(class) {
 8651			if (class->rq_online)
 8652				class->rq_online(rq);
 8653		}
 8654	}
 8655}
 8656
 8657void set_rq_offline(struct rq *rq)
 8658{
 8659	if (rq->online) {
 8660		const struct sched_class *class;
 8661
 8662		for_each_class(class) {
 8663			if (class->rq_offline)
 8664				class->rq_offline(rq);
 8665		}
 8666
 8667		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 8668		rq->online = 0;
 8669	}
 8670}
 8671
 8672/*
 8673 * used to mark begin/end of suspend/resume:
 
 8674 */
 8675static int num_cpus_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8676
 8677/*
 8678 * Update cpusets according to cpu_active mask.  If cpusets are
 8679 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 8680 * around partition_sched_domains().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8681 *
 8682 * If we come here as part of a suspend/resume, don't touch cpusets because we
 8683 * want to restore it back to its original state upon resume anyway.
 8684 */
 8685static void cpuset_cpu_active(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8686{
 8687	if (cpuhp_tasks_frozen) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8688		/*
 8689		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 8690		 * resume sequence. As long as this is not the last online
 8691		 * operation in the resume sequence, just build a single sched
 8692		 * domain, ignoring cpusets.
 8693		 */
 8694		partition_sched_domains(1, NULL, NULL);
 8695		if (--num_cpus_frozen)
 8696			return;
 8697		/*
 8698		 * This is the last CPU online operation. So fall through and
 8699		 * restore the original sched domains by considering the
 8700		 * cpuset configurations.
 8701		 */
 8702		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
 8703	}
 8704	cpuset_update_active_cpus();
 
 
 
 
 
 
 
 8705}
 8706
 8707static int cpuset_cpu_inactive(unsigned int cpu)
 8708{
 8709	if (!cpuhp_tasks_frozen) {
 8710		if (dl_cpu_busy(cpu))
 8711			return -EBUSY;
 8712		cpuset_update_active_cpus();
 8713	} else {
 8714		num_cpus_frozen++;
 8715		partition_sched_domains(1, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8716	}
 
 
 8717	return 0;
 8718}
 8719
 8720int sched_cpu_activate(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8721{
 8722	struct rq *rq = cpu_rq(cpu);
 8723	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 8724
 8725	/*
 8726	 * Clear the balance_push callback and prepare to schedule
 8727	 * regular tasks.
 8728	 */
 8729	balance_push_set(cpu, false);
 
 
 
 
 
 8730
 
 8731#ifdef CONFIG_SCHED_SMT
 8732	/*
 8733	 * When going up, increment the number of cores with SMT present.
 8734	 */
 8735	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8736		static_branch_inc_cpuslocked(&sched_smt_present);
 
 
 8737#endif
 8738	set_cpu_active(cpu, true);
 8739
 8740	if (sched_smp_initialized) {
 8741		sched_domains_numa_masks_set(cpu);
 8742		cpuset_cpu_active();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8743	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8744
 8745	/*
 8746	 * Put the rq online, if not already. This happens:
 8747	 *
 8748	 * 1) In the early boot process, because we build the real domains
 8749	 *    after all CPUs have been brought up.
 8750	 *
 8751	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 8752	 *    domains.
 8753	 */
 8754	rq_lock_irqsave(rq, &rf);
 8755	if (rq->rd) {
 8756		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 8757		set_rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8758	}
 8759	rq_unlock_irqrestore(rq, &rf);
 8760
 8761	return 0;
 8762}
 8763
 8764int sched_cpu_deactivate(unsigned int cpu)
 8765{
 8766	struct rq *rq = cpu_rq(cpu);
 8767	struct rq_flags rf;
 8768	int ret;
 
 
 
 
 
 8769
 8770	/*
 8771	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 8772	 * load balancing when not active
 
 
 
 8773	 */
 8774	nohz_balance_exit_idle(rq);
 
 
 
 
 
 
 
 
 
 8775
 8776	set_cpu_active(cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8777
 
 
 
 
 
 
 8778	/*
 8779	 * From this point forward, this CPU will refuse to run any task that
 8780	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 8781	 * push those tasks away until this gets cleared, see
 8782	 * sched_cpu_dying().
 
 8783	 */
 8784	balance_push_set(cpu, true);
 8785
 8786	/*
 8787	 * We've cleared cpu_active_mask / set balance_push, wait for all
 8788	 * preempt-disabled and RCU users of this state to go away such that
 8789	 * all new such users will observe it.
 
 
 8790	 *
 8791	 * Specifically, we rely on ttwu to no longer target this CPU, see
 8792	 * ttwu_queue_cond() and is_cpu_allowed().
 8793	 *
 8794	 * Do sync before park smpboot threads to take care the rcu boost case.
 
 
 
 
 
 
 
 8795	 */
 8796	synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8797
 8798	rq_lock_irqsave(rq, &rf);
 8799	if (rq->rd) {
 8800		update_rq_clock(rq);
 8801		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 8802		set_rq_offline(rq);
 8803	}
 8804	rq_unlock_irqrestore(rq, &rf);
 8805
 8806#ifdef CONFIG_SCHED_SMT
 
 
 
 
 
 
 
 
 
 
 8807	/*
 8808	 * When going down, decrement the number of cores with SMT present.
 8809	 */
 8810	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8811		static_branch_dec_cpuslocked(&sched_smt_present);
 
 
 
 
 
 
 
 
 
 
 
 8812
 8813	sched_core_cpu_deactivate(cpu);
 8814#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8815
 8816	if (!sched_smp_initialized)
 8817		return 0;
 
 
 8818
 8819	ret = cpuset_cpu_inactive(cpu);
 8820	if (ret) {
 8821		balance_push_set(cpu, false);
 8822		set_cpu_active(cpu, true);
 8823		return ret;
 8824	}
 8825	sched_domains_numa_masks_clear(cpu);
 8826	return 0;
 8827}
 8828
 8829static void sched_rq_cpu_starting(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8830{
 8831	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8832
 8833	rq->calc_load_update = calc_load_update;
 8834	update_max_interval();
 
 
 8835}
 8836
 8837int sched_cpu_starting(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8838{
 8839	sched_core_cpu_starting(cpu);
 8840	sched_rq_cpu_starting(cpu);
 8841	sched_tick_start(cpu);
 8842	return 0;
 8843}
 8844
 8845#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8846
 8847/*
 8848 * Invoked immediately before the stopper thread is invoked to bring the
 8849 * CPU down completely. At this point all per CPU kthreads except the
 8850 * hotplug thread (current) and the stopper thread (inactive) have been
 8851 * either parked or have been unbound from the outgoing CPU. Ensure that
 8852 * any of those which might be on the way out are gone.
 8853 *
 8854 * If after this point a bound task is being woken on this CPU then the
 8855 * responsible hotplug callback has failed to do it's job.
 8856 * sched_cpu_dying() will catch it with the appropriate fireworks.
 8857 */
 8858int sched_cpu_wait_empty(unsigned int cpu)
 8859{
 8860	balance_hotplug_wait();
 8861	return 0;
 
 
 
 
 
 
 
 
 
 
 8862}
 8863
 8864/*
 8865 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 8866 * might have. Called from the CPU stopper task after ensuring that the
 8867 * stopper is the last running task on the CPU, so nr_active count is
 8868 * stable. We need to take the teardown thread which is calling this into
 8869 * account, so we hand in adjust = 1 to the load calculation.
 8870 *
 8871 * Also see the comment "Global load-average calculations".
 8872 */
 8873static void calc_load_migrate(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 8874{
 8875	long delta = calc_load_fold_active(rq, 1);
 8876
 8877	if (delta)
 8878		atomic_long_add(delta, &calc_load_tasks);
 
 
 
 
 
 
 8879}
 8880
 8881static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8882{
 8883	struct task_struct *g, *p;
 8884	int cpu = cpu_of(rq);
 
 
 
 
 
 
 
 
 8885
 8886	lockdep_assert_rq_held(rq);
 8887
 8888	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 8889	for_each_process_thread(g, p) {
 8890		if (task_cpu(p) != cpu)
 8891			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8892
 8893		if (!task_on_rq_queued(p))
 8894			continue;
 8895
 8896		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 8897	}
 8898}
 8899
 8900int sched_cpu_dying(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 8901{
 8902	struct rq *rq = cpu_rq(cpu);
 8903	struct rq_flags rf;
 
 8904
 8905	/* Handle pending wakeups and then migrate everything off */
 8906	sched_tick_stop(cpu);
 
 
 
 
 
 
 
 
 
 8907
 8908	rq_lock_irqsave(rq, &rf);
 8909	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 8910		WARN(true, "Dying CPU not properly vacated!");
 8911		dump_rq_tasks(rq, KERN_WARNING);
 
 
 
 
 
 
 
 
 8912	}
 8913	rq_unlock_irqrestore(rq, &rf);
 
 8914
 8915	calc_load_migrate(rq);
 8916	update_max_interval();
 8917	hrtick_clear(rq);
 8918	sched_core_cpu_dying(cpu);
 8919	return 0;
 
 
 
 
 
 
 
 
 
 
 8920}
 8921#endif
 8922
 8923void __init sched_init_smp(void)
 8924{
 
 
 
 
 
 8925	sched_init_numa();
 8926
 8927	/*
 8928	 * There's no userspace yet to cause hotplug operations; hence all the
 8929	 * CPU masks are stable and all blatant races in the below code cannot
 8930	 * happen.
 8931	 */
 8932	mutex_lock(&sched_domains_mutex);
 8933	sched_init_domains(cpu_active_mask);
 
 
 
 8934	mutex_unlock(&sched_domains_mutex);
 8935
 
 
 
 
 
 
 8936	/* Move init over to a non-isolated CPU */
 8937	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
 8938		BUG();
 8939	current->flags &= ~PF_NO_SETAFFINITY;
 8940	sched_init_granularity();
 
 8941
 8942	init_sched_rt_class();
 8943	init_sched_dl_class();
 8944
 8945	sched_smp_initialized = true;
 8946}
 8947
 8948static int __init migration_init(void)
 8949{
 8950	sched_cpu_starting(smp_processor_id());
 8951	return 0;
 8952}
 8953early_initcall(migration_init);
 8954
 8955#else
 8956void __init sched_init_smp(void)
 8957{
 8958	sched_init_granularity();
 8959}
 8960#endif /* CONFIG_SMP */
 8961
 
 
 8962int in_sched_functions(unsigned long addr)
 8963{
 8964	return in_lock_functions(addr) ||
 8965		(addr >= (unsigned long)__sched_text_start
 8966		&& addr < (unsigned long)__sched_text_end);
 8967}
 8968
 8969#ifdef CONFIG_CGROUP_SCHED
 8970/*
 8971 * Default task group.
 8972 * Every task in system belongs to this group at bootup.
 8973 */
 8974struct task_group root_task_group;
 8975LIST_HEAD(task_groups);
 8976
 8977/* Cacheline aligned slab cache for task_group */
 8978static struct kmem_cache *task_group_cache __read_mostly;
 8979#endif
 8980
 8981DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
 8982DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
 8983
 8984void __init sched_init(void)
 8985{
 8986	unsigned long ptr = 0;
 8987	int i;
 8988
 8989	/* Make sure the linker didn't screw up */
 8990	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
 8991	       &fair_sched_class + 1 != &rt_sched_class ||
 8992	       &rt_sched_class + 1   != &dl_sched_class);
 8993#ifdef CONFIG_SMP
 8994	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
 8995#endif
 8996
 8997	wait_bit_init();
 8998
 8999#ifdef CONFIG_FAIR_GROUP_SCHED
 9000	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9001#endif
 9002#ifdef CONFIG_RT_GROUP_SCHED
 9003	ptr += 2 * nr_cpu_ids * sizeof(void **);
 
 
 
 9004#endif
 9005	if (ptr) {
 9006		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 9007
 9008#ifdef CONFIG_FAIR_GROUP_SCHED
 9009		root_task_group.se = (struct sched_entity **)ptr;
 9010		ptr += nr_cpu_ids * sizeof(void **);
 9011
 9012		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 9013		ptr += nr_cpu_ids * sizeof(void **);
 9014
 9015		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 9016		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
 9017#endif /* CONFIG_FAIR_GROUP_SCHED */
 9018#ifdef CONFIG_RT_GROUP_SCHED
 9019		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 9020		ptr += nr_cpu_ids * sizeof(void **);
 9021
 9022		root_task_group.rt_rq = (struct rt_rq **)ptr;
 9023		ptr += nr_cpu_ids * sizeof(void **);
 9024
 9025#endif /* CONFIG_RT_GROUP_SCHED */
 9026	}
 9027#ifdef CONFIG_CPUMASK_OFFSTACK
 9028	for_each_possible_cpu(i) {
 9029		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
 9030			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
 9031		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
 9032			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
 9033	}
 9034#endif /* CONFIG_CPUMASK_OFFSTACK */
 9035
 9036	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
 9037	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
 
 
 9038
 9039#ifdef CONFIG_SMP
 9040	init_defrootdomain();
 9041#endif
 9042
 9043#ifdef CONFIG_RT_GROUP_SCHED
 9044	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 9045			global_rt_period(), global_rt_runtime());
 9046#endif /* CONFIG_RT_GROUP_SCHED */
 9047
 9048#ifdef CONFIG_CGROUP_SCHED
 9049	task_group_cache = KMEM_CACHE(task_group, 0);
 9050
 9051	list_add(&root_task_group.list, &task_groups);
 9052	INIT_LIST_HEAD(&root_task_group.children);
 9053	INIT_LIST_HEAD(&root_task_group.siblings);
 9054	autogroup_init(&init_task);
 
 9055#endif /* CONFIG_CGROUP_SCHED */
 9056
 9057	for_each_possible_cpu(i) {
 9058		struct rq *rq;
 9059
 9060		rq = cpu_rq(i);
 9061		raw_spin_lock_init(&rq->__lock);
 9062		rq->nr_running = 0;
 9063		rq->calc_load_active = 0;
 9064		rq->calc_load_update = jiffies + LOAD_FREQ;
 9065		init_cfs_rq(&rq->cfs);
 9066		init_rt_rq(&rq->rt);
 9067		init_dl_rq(&rq->dl);
 9068#ifdef CONFIG_FAIR_GROUP_SCHED
 
 9069		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 9070		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 9071		/*
 9072		 * How much CPU bandwidth does root_task_group get?
 9073		 *
 9074		 * In case of task-groups formed thr' the cgroup filesystem, it
 9075		 * gets 100% of the CPU resources in the system. This overall
 9076		 * system CPU resource is divided among the tasks of
 9077		 * root_task_group and its child task-groups in a fair manner,
 9078		 * based on each entity's (task or task-group's) weight
 9079		 * (se->load.weight).
 9080		 *
 9081		 * In other words, if root_task_group has 10 tasks of weight
 9082		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 9083		 * then A0's share of the CPU resource is:
 9084		 *
 9085		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 9086		 *
 9087		 * We achieve this by letting root_task_group's tasks sit
 9088		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 9089		 */
 
 9090		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 9091#endif /* CONFIG_FAIR_GROUP_SCHED */
 9092
 9093		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
 9094#ifdef CONFIG_RT_GROUP_SCHED
 9095		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 9096#endif
 
 
 
 
 
 
 9097#ifdef CONFIG_SMP
 9098		rq->sd = NULL;
 9099		rq->rd = NULL;
 9100		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
 9101		rq->balance_callback = &balance_push_callback;
 9102		rq->active_balance = 0;
 9103		rq->next_balance = jiffies;
 9104		rq->push_cpu = 0;
 9105		rq->cpu = i;
 9106		rq->online = 0;
 9107		rq->idle_stamp = 0;
 9108		rq->avg_idle = 2*sysctl_sched_migration_cost;
 9109		rq->wake_stamp = jiffies;
 9110		rq->wake_avg_idle = rq->avg_idle;
 9111		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
 9112
 9113		INIT_LIST_HEAD(&rq->cfs_tasks);
 9114
 9115		rq_attach_root(rq, &def_root_domain);
 9116#ifdef CONFIG_NO_HZ_COMMON
 9117		rq->last_blocked_load_update_tick = jiffies;
 9118		atomic_set(&rq->nohz_flags, 0);
 9119
 9120		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
 9121#endif
 9122#ifdef CONFIG_HOTPLUG_CPU
 9123		rcuwait_init(&rq->hotplug_wait);
 9124#endif
 9125#endif /* CONFIG_SMP */
 9126		hrtick_rq_init(rq);
 9127		atomic_set(&rq->nr_iowait, 0);
 
 9128
 9129#ifdef CONFIG_SCHED_CORE
 9130		rq->core = rq;
 9131		rq->core_pick = NULL;
 9132		rq->core_enabled = 0;
 9133		rq->core_tree = RB_ROOT;
 9134		rq->core_forceidle = false;
 9135
 9136		rq->core_cookie = 0UL;
 
 9137#endif
 9138	}
 9139
 9140	set_load_weight(&init_task, false);
 9141
 9142	/*
 9143	 * The boot idle thread does lazy MMU switching as well:
 9144	 */
 9145	mmgrab(&init_mm);
 9146	enter_lazy_tlb(&init_mm, current);
 9147
 9148	/*
 9149	 * Make us the idle thread. Technically, schedule() should not be
 9150	 * called from this thread, however somewhere below it might be,
 9151	 * but because we are the idle thread, we just pick up running again
 9152	 * when this runqueue becomes "idle".
 9153	 */
 9154	init_idle(current, smp_processor_id());
 9155
 9156	calc_load_update = jiffies + LOAD_FREQ;
 9157
 
 
 
 
 
 9158#ifdef CONFIG_SMP
 
 
 
 
 9159	idle_thread_set_boot_cpu();
 9160	balance_push_set(smp_processor_id(), false);
 9161#endif
 9162	init_sched_fair_class();
 9163
 9164	psi_init();
 9165
 9166	init_uclamp();
 9167
 9168	scheduler_running = 1;
 9169}
 9170
 9171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 9172static inline int preempt_count_equals(int preempt_offset)
 9173{
 9174	int nested = preempt_count() + rcu_preempt_depth();
 9175
 9176	return (nested == preempt_offset);
 9177}
 9178
 9179void __might_sleep(const char *file, int line, int preempt_offset)
 9180{
 9181	unsigned int state = get_current_state();
 9182	/*
 9183	 * Blocking primitives will set (and therefore destroy) current->state,
 9184	 * since we will exit with TASK_RUNNING make sure we enter with it,
 9185	 * otherwise we will destroy state.
 9186	 */
 9187	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
 9188			"do not call blocking ops when !TASK_RUNNING; "
 9189			"state=%x set at [<%p>] %pS\n", state,
 9190			(void *)current->task_state_change,
 9191			(void *)current->task_state_change);
 9192
 9193	___might_sleep(file, line, preempt_offset);
 9194}
 9195EXPORT_SYMBOL(__might_sleep);
 9196
 9197void ___might_sleep(const char *file, int line, int preempt_offset)
 9198{
 9199	/* Ratelimiting timestamp: */
 9200	static unsigned long prev_jiffy;
 9201
 9202	unsigned long preempt_disable_ip;
 9203
 9204	/* WARN_ON_ONCE() by default, no rate limit required: */
 9205	rcu_sleep_check();
 9206
 
 9207	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
 9208	     !is_idle_task(current) && !current->non_block_count) ||
 9209	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
 9210	    oops_in_progress)
 9211		return;
 9212
 9213	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 9214		return;
 9215	prev_jiffy = jiffies;
 9216
 9217	/* Save this before calling printk(), since that will clobber it: */
 9218	preempt_disable_ip = get_preempt_disable_ip(current);
 9219
 9220	printk(KERN_ERR
 9221		"BUG: sleeping function called from invalid context at %s:%d\n",
 9222			file, line);
 9223	printk(KERN_ERR
 9224		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
 9225			in_atomic(), irqs_disabled(), current->non_block_count,
 9226			current->pid, current->comm);
 9227
 9228	if (task_stack_end_corrupted(current))
 9229		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 9230
 9231	debug_show_held_locks(current);
 9232	if (irqs_disabled())
 9233		print_irqtrace_events(current);
 9234	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
 9235	    && !preempt_count_equals(preempt_offset)) {
 9236		pr_err("Preemption disabled at:");
 9237		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
 9238	}
 
 9239	dump_stack();
 9240	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 9241}
 9242EXPORT_SYMBOL(___might_sleep);
 
 9243
 9244void __cant_sleep(const char *file, int line, int preempt_offset)
 
 9245{
 9246	static unsigned long prev_jiffy;
 
 
 
 
 
 9247
 9248	if (irqs_disabled())
 9249		return;
 9250
 9251	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 9252		return;
 9253
 9254	if (preempt_count() > preempt_offset)
 9255		return;
 9256
 9257	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 9258		return;
 9259	prev_jiffy = jiffies;
 9260
 9261	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
 9262	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
 9263			in_atomic(), irqs_disabled(),
 9264			current->pid, current->comm);
 9265
 9266	debug_show_held_locks(current);
 9267	dump_stack();
 9268	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 9269}
 9270EXPORT_SYMBOL_GPL(__cant_sleep);
 9271
 9272#ifdef CONFIG_SMP
 9273void __cant_migrate(const char *file, int line)
 9274{
 9275	static unsigned long prev_jiffy;
 9276
 9277	if (irqs_disabled())
 9278		return;
 9279
 9280	if (is_migration_disabled(current))
 9281		return;
 9282
 9283	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 9284		return;
 9285
 9286	if (preempt_count() > 0)
 9287		return;
 9288
 9289	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 9290		return;
 9291	prev_jiffy = jiffies;
 9292
 9293	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
 9294	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
 9295	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
 9296	       current->pid, current->comm);
 9297
 9298	debug_show_held_locks(current);
 9299	dump_stack();
 9300	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 9301}
 9302EXPORT_SYMBOL_GPL(__cant_migrate);
 9303#endif
 9304#endif
 9305
 9306#ifdef CONFIG_MAGIC_SYSRQ
 9307void normalize_rt_tasks(void)
 9308{
 9309	struct task_struct *g, *p;
 9310	struct sched_attr attr = {
 9311		.sched_policy = SCHED_NORMAL,
 9312	};
 9313
 9314	read_lock(&tasklist_lock);
 9315	for_each_process_thread(g, p) {
 9316		/*
 9317		 * Only normalize user tasks:
 9318		 */
 9319		if (p->flags & PF_KTHREAD)
 9320			continue;
 9321
 9322		p->se.exec_start = 0;
 9323		schedstat_set(p->se.statistics.wait_start,  0);
 9324		schedstat_set(p->se.statistics.sleep_start, 0);
 9325		schedstat_set(p->se.statistics.block_start, 0);
 
 
 9326
 9327		if (!dl_task(p) && !rt_task(p)) {
 9328			/*
 9329			 * Renice negative nice level userspace
 9330			 * tasks back to 0:
 9331			 */
 9332			if (task_nice(p) < 0)
 9333				set_user_nice(p, 0);
 9334			continue;
 9335		}
 9336
 9337		__sched_setscheduler(p, &attr, false, false);
 9338	}
 9339	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 9340}
 9341
 9342#endif /* CONFIG_MAGIC_SYSRQ */
 9343
 9344#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
 9345/*
 9346 * These functions are only useful for the IA64 MCA handling, or kdb.
 9347 *
 9348 * They can only be called when the whole system has been
 9349 * stopped - every CPU needs to be quiescent, and no scheduling
 9350 * activity can take place. Using them for anything else would
 9351 * be a serious bug, and as a result, they aren't even visible
 9352 * under any other configuration.
 9353 */
 9354
 9355/**
 9356 * curr_task - return the current task for a given CPU.
 9357 * @cpu: the processor in question.
 9358 *
 9359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 9360 *
 9361 * Return: The current task for @cpu.
 9362 */
 9363struct task_struct *curr_task(int cpu)
 9364{
 9365	return cpu_curr(cpu);
 9366}
 9367
 9368#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
 9369
 9370#ifdef CONFIG_IA64
 9371/**
 9372 * ia64_set_curr_task - set the current task for a given CPU.
 9373 * @cpu: the processor in question.
 9374 * @p: the task pointer to set.
 9375 *
 9376 * Description: This function must only be used when non-maskable interrupts
 9377 * are serviced on a separate stack. It allows the architecture to switch the
 9378 * notion of the current task on a CPU in a non-blocking manner. This function
 9379 * must be called with all CPU's synchronized, and interrupts disabled, the
 9380 * and caller must save the original value of the current task (see
 9381 * curr_task() above) and restore that value before reenabling interrupts and
 9382 * re-starting the system.
 9383 *
 9384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 9385 */
 9386void ia64_set_curr_task(int cpu, struct task_struct *p)
 9387{
 9388	cpu_curr(cpu) = p;
 9389}
 9390
 9391#endif
 9392
 9393#ifdef CONFIG_CGROUP_SCHED
 9394/* task_group_lock serializes the addition/removal of task groups */
 9395static DEFINE_SPINLOCK(task_group_lock);
 9396
 9397static inline void alloc_uclamp_sched_group(struct task_group *tg,
 9398					    struct task_group *parent)
 9399{
 9400#ifdef CONFIG_UCLAMP_TASK_GROUP
 9401	enum uclamp_id clamp_id;
 9402
 9403	for_each_clamp_id(clamp_id) {
 9404		uclamp_se_set(&tg->uclamp_req[clamp_id],
 9405			      uclamp_none(clamp_id), false);
 9406		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
 9407	}
 9408#endif
 9409}
 9410
 9411static void sched_free_group(struct task_group *tg)
 9412{
 9413	free_fair_sched_group(tg);
 9414	free_rt_sched_group(tg);
 9415	autogroup_free(tg);
 9416	kmem_cache_free(task_group_cache, tg);
 9417}
 9418
 9419/* allocate runqueue etc for a new task group */
 9420struct task_group *sched_create_group(struct task_group *parent)
 9421{
 9422	struct task_group *tg;
 9423
 9424	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
 9425	if (!tg)
 9426		return ERR_PTR(-ENOMEM);
 9427
 9428	if (!alloc_fair_sched_group(tg, parent))
 9429		goto err;
 9430
 9431	if (!alloc_rt_sched_group(tg, parent))
 9432		goto err;
 9433
 9434	alloc_uclamp_sched_group(tg, parent);
 9435
 9436	return tg;
 9437
 9438err:
 9439	sched_free_group(tg);
 9440	return ERR_PTR(-ENOMEM);
 9441}
 9442
 9443void sched_online_group(struct task_group *tg, struct task_group *parent)
 9444{
 9445	unsigned long flags;
 9446
 9447	spin_lock_irqsave(&task_group_lock, flags);
 9448	list_add_rcu(&tg->list, &task_groups);
 9449
 9450	/* Root should already exist: */
 9451	WARN_ON(!parent);
 9452
 9453	tg->parent = parent;
 9454	INIT_LIST_HEAD(&tg->children);
 9455	list_add_rcu(&tg->siblings, &parent->children);
 9456	spin_unlock_irqrestore(&task_group_lock, flags);
 9457
 9458	online_fair_sched_group(tg);
 9459}
 9460
 9461/* rcu callback to free various structures associated with a task group */
 9462static void sched_free_group_rcu(struct rcu_head *rhp)
 9463{
 9464	/* Now it should be safe to free those cfs_rqs: */
 9465	sched_free_group(container_of(rhp, struct task_group, rcu));
 9466}
 9467
 
 9468void sched_destroy_group(struct task_group *tg)
 9469{
 9470	/* Wait for possible concurrent references to cfs_rqs complete: */
 9471	call_rcu(&tg->rcu, sched_free_group_rcu);
 9472}
 9473
 9474void sched_offline_group(struct task_group *tg)
 9475{
 9476	unsigned long flags;
 
 9477
 9478	/* End participation in shares distribution: */
 9479	unregister_fair_sched_group(tg);
 
 9480
 9481	spin_lock_irqsave(&task_group_lock, flags);
 9482	list_del_rcu(&tg->list);
 9483	list_del_rcu(&tg->siblings);
 9484	spin_unlock_irqrestore(&task_group_lock, flags);
 9485}
 9486
 9487static void sched_change_group(struct task_struct *tsk, int type)
 
 
 
 
 
 9488{
 9489	struct task_group *tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 9490
 9491	/*
 9492	 * All callers are synchronized by task_rq_lock(); we do not use RCU
 9493	 * which is pointless here. Thus, we pass "true" to task_css_check()
 9494	 * to prevent lockdep warnings.
 9495	 */
 9496	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
 9497			  struct task_group, css);
 9498	tg = autogroup_task_group(tsk, tg);
 9499	tsk->sched_task_group = tg;
 9500
 9501#ifdef CONFIG_FAIR_GROUP_SCHED
 9502	if (tsk->sched_class->task_change_group)
 9503		tsk->sched_class->task_change_group(tsk, type);
 9504	else
 9505#endif
 9506		set_task_rq(tsk, task_cpu(tsk));
 
 
 
 
 
 
 
 9507}
 
 9508
 
 9509/*
 9510 * Change task's runqueue when it moves between groups.
 9511 *
 9512 * The caller of this function should have put the task in its new group by
 9513 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 9514 * its new group.
 9515 */
 9516void sched_move_task(struct task_struct *tsk)
 
 
 
 9517{
 9518	int queued, running, queue_flags =
 9519		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 9520	struct rq_flags rf;
 9521	struct rq *rq;
 
 
 9522
 9523	rq = task_rq_lock(tsk, &rf);
 9524	update_rq_clock(rq);
 9525
 9526	running = task_current(rq, tsk);
 9527	queued = task_on_rq_queued(tsk);
 
 
 
 9528
 9529	if (queued)
 9530		dequeue_task(rq, tsk, queue_flags);
 9531	if (running)
 9532		put_prev_task(rq, tsk);
 
 
 9533
 9534	sched_change_group(tsk, TASK_MOVE_GROUP);
 
 9535
 9536	if (queued)
 9537		enqueue_task(rq, tsk, queue_flags);
 9538	if (running) {
 9539		set_next_task(rq, tsk);
 9540		/*
 9541		 * After changing group, the running task may have joined a
 9542		 * throttled one but it's still the running task. Trigger a
 9543		 * resched to make sure that task can still run.
 9544		 */
 9545		resched_curr(rq);
 9546	}
 9547
 9548	task_rq_unlock(rq, tsk, &rf);
 9549}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9550
 9551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
 9552{
 9553	return css ? container_of(css, struct task_group, css) : NULL;
 9554}
 
 
 9555
 9556static struct cgroup_subsys_state *
 9557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 9558{
 9559	struct task_group *parent = css_tg(parent_css);
 9560	struct task_group *tg;
 9561
 9562	if (!parent) {
 9563		/* This is early initialization for the top cgroup */
 9564		return &root_task_group.css;
 9565	}
 9566
 9567	tg = sched_create_group(parent);
 9568	if (IS_ERR(tg))
 9569		return ERR_PTR(-ENOMEM);
 9570
 9571	return &tg->css;
 9572}
 9573
 9574/* Expose task group only after completing cgroup initialization */
 9575static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
 9576{
 9577	struct task_group *tg = css_tg(css);
 9578	struct task_group *parent = css_tg(css->parent);
 9579
 9580	if (parent)
 9581		sched_online_group(tg, parent);
 
 
 
 9582
 9583#ifdef CONFIG_UCLAMP_TASK_GROUP
 9584	/* Propagate the effective uclamp value for the new group */
 9585	mutex_lock(&uclamp_mutex);
 9586	rcu_read_lock();
 9587	cpu_util_update_eff(css);
 9588	rcu_read_unlock();
 9589	mutex_unlock(&uclamp_mutex);
 9590#endif
 9591
 9592	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9593}
 9594
 9595static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
 9596{
 9597	struct task_group *tg = css_tg(css);
 
 
 
 
 
 9598
 9599	sched_offline_group(tg);
 9600}
 9601
 9602static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
 9603{
 9604	struct task_group *tg = css_tg(css);
 
 
 
 9605
 9606	/*
 9607	 * Relies on the RCU grace period between css_released() and this.
 9608	 */
 9609	sched_free_group(tg);
 9610}
 9611
 9612/*
 9613 * This is called before wake_up_new_task(), therefore we really only
 9614 * have to set its group bits, all the other stuff does not apply.
 9615 */
 9616static void cpu_cgroup_fork(struct task_struct *task)
 9617{
 9618	struct rq_flags rf;
 9619	struct rq *rq;
 9620
 9621	rq = task_rq_lock(task, &rf);
 
 9622
 9623	update_rq_clock(rq);
 9624	sched_change_group(task, TASK_SET_GROUP);
 9625
 9626	task_rq_unlock(rq, task, &rf);
 9627}
 9628
 9629static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
 
 
 
 
 
 
 
 
 
 9630{
 9631	struct task_struct *task;
 9632	struct cgroup_subsys_state *css;
 9633	int ret = 0;
 9634
 9635	cgroup_taskset_for_each(task, css, tset) {
 9636#ifdef CONFIG_RT_GROUP_SCHED
 9637		if (!sched_rt_can_attach(css_tg(css), task))
 9638			return -EINVAL;
 9639#endif
 9640		/*
 9641		 * Serialize against wake_up_new_task() such that if it's
 9642		 * running, we're sure to observe its full state.
 9643		 */
 9644		raw_spin_lock_irq(&task->pi_lock);
 9645		/*
 9646		 * Avoid calling sched_move_task() before wake_up_new_task()
 9647		 * has happened. This would lead to problems with PELT, due to
 9648		 * move wanting to detach+attach while we're not attached yet.
 9649		 */
 9650		if (READ_ONCE(task->__state) == TASK_NEW)
 9651			ret = -EINVAL;
 9652		raw_spin_unlock_irq(&task->pi_lock);
 9653
 9654		if (ret)
 9655			break;
 9656	}
 9657	return ret;
 9658}
 9659
 9660static void cpu_cgroup_attach(struct cgroup_taskset *tset)
 9661{
 9662	struct task_struct *task;
 9663	struct cgroup_subsys_state *css;
 
 9664
 9665	cgroup_taskset_for_each(task, css, tset)
 9666		sched_move_task(task);
 9667}
 9668
 9669#ifdef CONFIG_UCLAMP_TASK_GROUP
 9670static void cpu_util_update_eff(struct cgroup_subsys_state *css)
 9671{
 9672	struct cgroup_subsys_state *top_css = css;
 9673	struct uclamp_se *uc_parent = NULL;
 9674	struct uclamp_se *uc_se = NULL;
 9675	unsigned int eff[UCLAMP_CNT];
 9676	enum uclamp_id clamp_id;
 9677	unsigned int clamps;
 9678
 9679	lockdep_assert_held(&uclamp_mutex);
 9680	SCHED_WARN_ON(!rcu_read_lock_held());
 9681
 9682	css_for_each_descendant_pre(css, top_css) {
 9683		uc_parent = css_tg(css)->parent
 9684			? css_tg(css)->parent->uclamp : NULL;
 9685
 9686		for_each_clamp_id(clamp_id) {
 9687			/* Assume effective clamps matches requested clamps */
 9688			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
 9689			/* Cap effective clamps with parent's effective clamps */
 9690			if (uc_parent &&
 9691			    eff[clamp_id] > uc_parent[clamp_id].value) {
 9692				eff[clamp_id] = uc_parent[clamp_id].value;
 9693			}
 9694		}
 9695		/* Ensure protection is always capped by limit */
 9696		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
 9697
 9698		/* Propagate most restrictive effective clamps */
 9699		clamps = 0x0;
 9700		uc_se = css_tg(css)->uclamp;
 9701		for_each_clamp_id(clamp_id) {
 9702			if (eff[clamp_id] == uc_se[clamp_id].value)
 9703				continue;
 9704			uc_se[clamp_id].value = eff[clamp_id];
 9705			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
 9706			clamps |= (0x1 << clamp_id);
 9707		}
 9708		if (!clamps) {
 9709			css = css_rightmost_descendant(css);
 9710			continue;
 9711		}
 9712
 9713		/* Immediately update descendants RUNNABLE tasks */
 9714		uclamp_update_active_tasks(css);
 
 9715	}
 
 
 
 9716}
 
 9717
 9718/*
 9719 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
 9720 * C expression. Since there is no way to convert a macro argument (N) into a
 9721 * character constant, use two levels of macros.
 9722 */
 9723#define _POW10(exp) ((unsigned int)1e##exp)
 9724#define POW10(exp) _POW10(exp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9725
 9726struct uclamp_request {
 9727#define UCLAMP_PERCENT_SHIFT	2
 9728#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
 9729	s64 percent;
 9730	u64 util;
 9731	int ret;
 9732};
 9733
 9734static inline struct uclamp_request
 9735capacity_from_percent(char *buf)
 9736{
 9737	struct uclamp_request req = {
 9738		.percent = UCLAMP_PERCENT_SCALE,
 9739		.util = SCHED_CAPACITY_SCALE,
 9740		.ret = 0,
 9741	};
 
 
 
 
 9742
 9743	buf = strim(buf);
 9744	if (strcmp(buf, "max")) {
 9745		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
 9746					     &req.percent);
 9747		if (req.ret)
 9748			return req;
 9749		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
 9750			req.ret = -ERANGE;
 9751			return req;
 9752		}
 9753
 9754		req.util = req.percent << SCHED_CAPACITY_SHIFT;
 9755		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
 
 9756	}
 
 
 
 
 
 
 
 
 
 
 9757
 9758	return req;
 9759}
 9760
 9761static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
 9762				size_t nbytes, loff_t off,
 9763				enum uclamp_id clamp_id)
 9764{
 9765	struct uclamp_request req;
 9766	struct task_group *tg;
 
 9767
 9768	req = capacity_from_percent(buf);
 9769	if (req.ret)
 9770		return req.ret;
 
 
 
 
 9771
 9772	static_branch_enable(&sched_uclamp_used);
 
 
 9773
 9774	mutex_lock(&uclamp_mutex);
 9775	rcu_read_lock();
 9776
 9777	tg = css_tg(of_css(of));
 9778	if (tg->uclamp_req[clamp_id].value != req.util)
 9779		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
 
 9780
 9781	/*
 9782	 * Because of not recoverable conversion rounding we keep track of the
 9783	 * exact requested value
 9784	 */
 9785	tg->uclamp_pct[clamp_id] = req.percent;
 9786
 9787	/* Update effective clamps to track the most restrictive value */
 9788	cpu_util_update_eff(of_css(of));
 
 9789
 9790	rcu_read_unlock();
 9791	mutex_unlock(&uclamp_mutex);
 
 
 
 
 
 
 
 9792
 9793	return nbytes;
 9794}
 9795
 9796static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
 9797				    char *buf, size_t nbytes,
 9798				    loff_t off)
 9799{
 9800	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 
 
 
 
 
 
 
 
 
 
 
 
 9801}
 9802
 9803static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
 9804				    char *buf, size_t nbytes,
 9805				    loff_t off)
 9806{
 9807	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
 9808}
 9809
 9810static inline void cpu_uclamp_print(struct seq_file *sf,
 9811				    enum uclamp_id clamp_id)
 9812{
 
 9813	struct task_group *tg;
 9814	u64 util_clamp;
 9815	u64 percent;
 9816	u32 rem;
 9817
 9818	rcu_read_lock();
 9819	tg = css_tg(seq_css(sf));
 9820	util_clamp = tg->uclamp_req[clamp_id].value;
 9821	rcu_read_unlock();
 9822
 9823	if (util_clamp == SCHED_CAPACITY_SCALE) {
 9824		seq_puts(sf, "max\n");
 9825		return;
 9826	}
 9827
 9828	percent = tg->uclamp_pct[clamp_id];
 9829	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
 9830	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
 9831}
 9832
 9833static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
 9834{
 9835	cpu_uclamp_print(sf, UCLAMP_MIN);
 
 
 
 
 9836	return 0;
 9837}
 9838
 9839static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
 9840{
 9841	cpu_uclamp_print(sf, UCLAMP_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9842	return 0;
 9843}
 9844#endif /* CONFIG_UCLAMP_TASK_GROUP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9845
 9846#ifdef CONFIG_FAIR_GROUP_SCHED
 9847static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
 9848				struct cftype *cftype, u64 shareval)
 9849{
 9850	if (shareval > scale_load_down(ULONG_MAX))
 9851		shareval = MAX_SHARES;
 9852	return sched_group_set_shares(css_tg(css), scale_load(shareval));
 9853}
 9854
 9855static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
 9856			       struct cftype *cft)
 9857{
 9858	struct task_group *tg = css_tg(css);
 9859
 9860	return (u64) scale_load_down(tg->shares);
 9861}
 9862
 9863#ifdef CONFIG_CFS_BANDWIDTH
 9864static DEFINE_MUTEX(cfs_constraints_mutex);
 9865
 9866const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
 9867static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 9868/* More than 203 days if BW_SHIFT equals 20. */
 9869static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
 9870
 9871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
 9872
 9873static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
 9874				u64 burst)
 9875{
 9876	int i, ret = 0, runtime_enabled, runtime_was_enabled;
 9877	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9878
 9879	if (tg == &root_task_group)
 9880		return -EINVAL;
 9881
 9882	/*
 9883	 * Ensure we have at some amount of bandwidth every period.  This is
 9884	 * to prevent reaching a state of large arrears when throttled via
 9885	 * entity_tick() resulting in prolonged exit starvation.
 9886	 */
 9887	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
 9888		return -EINVAL;
 9889
 9890	/*
 9891	 * Likewise, bound things on the other side by preventing insane quota
 9892	 * periods.  This also allows us to normalize in computing quota
 9893	 * feasibility.
 9894	 */
 9895	if (period > max_cfs_quota_period)
 9896		return -EINVAL;
 9897
 9898	/*
 9899	 * Bound quota to defend quota against overflow during bandwidth shift.
 9900	 */
 9901	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
 9902		return -EINVAL;
 9903
 9904	if (quota != RUNTIME_INF && (burst > quota ||
 9905				     burst + quota > max_cfs_runtime))
 9906		return -EINVAL;
 9907
 9908	/*
 9909	 * Prevent race between setting of cfs_rq->runtime_enabled and
 9910	 * unthrottle_offline_cfs_rqs().
 9911	 */
 9912	get_online_cpus();
 9913	mutex_lock(&cfs_constraints_mutex);
 9914	ret = __cfs_schedulable(tg, period, quota);
 9915	if (ret)
 9916		goto out_unlock;
 9917
 9918	runtime_enabled = quota != RUNTIME_INF;
 9919	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
 9920	/*
 9921	 * If we need to toggle cfs_bandwidth_used, off->on must occur
 9922	 * before making related changes, and on->off must occur afterwards
 9923	 */
 9924	if (runtime_enabled && !runtime_was_enabled)
 9925		cfs_bandwidth_usage_inc();
 9926	raw_spin_lock_irq(&cfs_b->lock);
 9927	cfs_b->period = ns_to_ktime(period);
 9928	cfs_b->quota = quota;
 9929	cfs_b->burst = burst;
 9930
 9931	__refill_cfs_bandwidth_runtime(cfs_b);
 9932
 9933	/* Restart the period timer (if active) to handle new period expiry: */
 9934	if (runtime_enabled)
 9935		start_cfs_bandwidth(cfs_b);
 9936
 9937	raw_spin_unlock_irq(&cfs_b->lock);
 9938
 9939	for_each_online_cpu(i) {
 9940		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
 9941		struct rq *rq = cfs_rq->rq;
 9942		struct rq_flags rf;
 9943
 9944		rq_lock_irq(rq, &rf);
 9945		cfs_rq->runtime_enabled = runtime_enabled;
 9946		cfs_rq->runtime_remaining = 0;
 9947
 9948		if (cfs_rq->throttled)
 9949			unthrottle_cfs_rq(cfs_rq);
 9950		rq_unlock_irq(rq, &rf);
 9951	}
 9952	if (runtime_was_enabled && !runtime_enabled)
 9953		cfs_bandwidth_usage_dec();
 9954out_unlock:
 9955	mutex_unlock(&cfs_constraints_mutex);
 9956	put_online_cpus();
 9957
 9958	return ret;
 9959}
 9960
 9961static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
 9962{
 9963	u64 quota, period, burst;
 9964
 9965	period = ktime_to_ns(tg->cfs_bandwidth.period);
 9966	burst = tg->cfs_bandwidth.burst;
 9967	if (cfs_quota_us < 0)
 9968		quota = RUNTIME_INF;
 9969	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
 9970		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 9971	else
 9972		return -EINVAL;
 9973
 9974	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9975}
 9976
 9977static long tg_get_cfs_quota(struct task_group *tg)
 9978{
 9979	u64 quota_us;
 9980
 9981	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
 9982		return -1;
 9983
 9984	quota_us = tg->cfs_bandwidth.quota;
 9985	do_div(quota_us, NSEC_PER_USEC);
 9986
 9987	return quota_us;
 9988}
 9989
 9990static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
 9991{
 9992	u64 quota, period, burst;
 9993
 9994	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
 9995		return -EINVAL;
 9996
 9997	period = (u64)cfs_period_us * NSEC_PER_USEC;
 9998	quota = tg->cfs_bandwidth.quota;
 9999	burst = tg->cfs_bandwidth.burst;
10000
10001	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10002}
10003
10004static long tg_get_cfs_period(struct task_group *tg)
10005{
10006	u64 cfs_period_us;
10007
10008	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10009	do_div(cfs_period_us, NSEC_PER_USEC);
10010
10011	return cfs_period_us;
10012}
10013
10014static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10015{
10016	u64 quota, period, burst;
10017
10018	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10019		return -EINVAL;
10020
10021	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10022	period = ktime_to_ns(tg->cfs_bandwidth.period);
10023	quota = tg->cfs_bandwidth.quota;
10024
10025	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10026}
10027
10028static long tg_get_cfs_burst(struct task_group *tg)
10029{
10030	u64 burst_us;
10031
10032	burst_us = tg->cfs_bandwidth.burst;
10033	do_div(burst_us, NSEC_PER_USEC);
10034
10035	return burst_us;
10036}
10037
10038static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10039				  struct cftype *cft)
10040{
10041	return tg_get_cfs_quota(css_tg(css));
10042}
10043
10044static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10045				   struct cftype *cftype, s64 cfs_quota_us)
10046{
10047	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10048}
10049
10050static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10051				   struct cftype *cft)
10052{
10053	return tg_get_cfs_period(css_tg(css));
10054}
10055
10056static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10057				    struct cftype *cftype, u64 cfs_period_us)
10058{
10059	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10060}
10061
10062static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10063				  struct cftype *cft)
10064{
10065	return tg_get_cfs_burst(css_tg(css));
10066}
10067
10068static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10069				   struct cftype *cftype, u64 cfs_burst_us)
10070{
10071	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10072}
10073
10074struct cfs_schedulable_data {
10075	struct task_group *tg;
10076	u64 period, quota;
10077};
10078
10079/*
10080 * normalize group quota/period to be quota/max_period
10081 * note: units are usecs
10082 */
10083static u64 normalize_cfs_quota(struct task_group *tg,
10084			       struct cfs_schedulable_data *d)
10085{
10086	u64 quota, period;
10087
10088	if (tg == d->tg) {
10089		period = d->period;
10090		quota = d->quota;
10091	} else {
10092		period = tg_get_cfs_period(tg);
10093		quota = tg_get_cfs_quota(tg);
10094	}
10095
10096	/* note: these should typically be equivalent */
10097	if (quota == RUNTIME_INF || quota == -1)
10098		return RUNTIME_INF;
10099
10100	return to_ratio(period, quota);
10101}
10102
10103static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10104{
10105	struct cfs_schedulable_data *d = data;
10106	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10107	s64 quota = 0, parent_quota = -1;
10108
10109	if (!tg->parent) {
10110		quota = RUNTIME_INF;
10111	} else {
10112		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10113
10114		quota = normalize_cfs_quota(tg, d);
10115		parent_quota = parent_b->hierarchical_quota;
10116
10117		/*
10118		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10119		 * always take the min.  On cgroup1, only inherit when no
10120		 * limit is set:
10121		 */
10122		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10123			quota = min(quota, parent_quota);
10124		} else {
10125			if (quota == RUNTIME_INF)
10126				quota = parent_quota;
10127			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10128				return -EINVAL;
10129		}
10130	}
10131	cfs_b->hierarchical_quota = quota;
10132
10133	return 0;
10134}
10135
10136static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10137{
10138	int ret;
10139	struct cfs_schedulable_data data = {
10140		.tg = tg,
10141		.period = period,
10142		.quota = quota,
10143	};
10144
10145	if (quota != RUNTIME_INF) {
10146		do_div(data.period, NSEC_PER_USEC);
10147		do_div(data.quota, NSEC_PER_USEC);
10148	}
10149
10150	rcu_read_lock();
10151	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10152	rcu_read_unlock();
10153
10154	return ret;
10155}
10156
10157static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10158{
10159	struct task_group *tg = css_tg(seq_css(sf));
10160	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10161
10162	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10163	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10164	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10165
10166	if (schedstat_enabled() && tg != &root_task_group) {
10167		u64 ws = 0;
10168		int i;
10169
10170		for_each_possible_cpu(i)
10171			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10172
10173		seq_printf(sf, "wait_sum %llu\n", ws);
10174	}
10175
10176	return 0;
10177}
10178#endif /* CONFIG_CFS_BANDWIDTH */
10179#endif /* CONFIG_FAIR_GROUP_SCHED */
10180
10181#ifdef CONFIG_RT_GROUP_SCHED
10182static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10183				struct cftype *cft, s64 val)
10184{
10185	return sched_group_set_rt_runtime(css_tg(css), val);
10186}
10187
10188static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10189			       struct cftype *cft)
10190{
10191	return sched_group_rt_runtime(css_tg(css));
10192}
10193
10194static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10195				    struct cftype *cftype, u64 rt_period_us)
10196{
10197	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10198}
10199
10200static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10201				   struct cftype *cft)
10202{
10203	return sched_group_rt_period(css_tg(css));
10204}
10205#endif /* CONFIG_RT_GROUP_SCHED */
10206
10207static struct cftype cpu_legacy_files[] = {
10208#ifdef CONFIG_FAIR_GROUP_SCHED
10209	{
10210		.name = "shares",
10211		.read_u64 = cpu_shares_read_u64,
10212		.write_u64 = cpu_shares_write_u64,
10213	},
10214#endif
10215#ifdef CONFIG_CFS_BANDWIDTH
10216	{
10217		.name = "cfs_quota_us",
10218		.read_s64 = cpu_cfs_quota_read_s64,
10219		.write_s64 = cpu_cfs_quota_write_s64,
10220	},
10221	{
10222		.name = "cfs_period_us",
10223		.read_u64 = cpu_cfs_period_read_u64,
10224		.write_u64 = cpu_cfs_period_write_u64,
10225	},
10226	{
10227		.name = "cfs_burst_us",
10228		.read_u64 = cpu_cfs_burst_read_u64,
10229		.write_u64 = cpu_cfs_burst_write_u64,
10230	},
10231	{
10232		.name = "stat",
10233		.seq_show = cpu_cfs_stat_show,
10234	},
10235#endif
10236#ifdef CONFIG_RT_GROUP_SCHED
10237	{
10238		.name = "rt_runtime_us",
10239		.read_s64 = cpu_rt_runtime_read,
10240		.write_s64 = cpu_rt_runtime_write,
10241	},
10242	{
10243		.name = "rt_period_us",
10244		.read_u64 = cpu_rt_period_read_uint,
10245		.write_u64 = cpu_rt_period_write_uint,
10246	},
10247#endif
10248#ifdef CONFIG_UCLAMP_TASK_GROUP
10249	{
10250		.name = "uclamp.min",
10251		.flags = CFTYPE_NOT_ON_ROOT,
10252		.seq_show = cpu_uclamp_min_show,
10253		.write = cpu_uclamp_min_write,
10254	},
10255	{
10256		.name = "uclamp.max",
10257		.flags = CFTYPE_NOT_ON_ROOT,
10258		.seq_show = cpu_uclamp_max_show,
10259		.write = cpu_uclamp_max_write,
10260	},
10261#endif
10262	{ }	/* Terminate */
10263};
10264
10265static int cpu_extra_stat_show(struct seq_file *sf,
10266			       struct cgroup_subsys_state *css)
10267{
10268#ifdef CONFIG_CFS_BANDWIDTH
10269	{
10270		struct task_group *tg = css_tg(css);
10271		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10272		u64 throttled_usec;
10273
10274		throttled_usec = cfs_b->throttled_time;
10275		do_div(throttled_usec, NSEC_PER_USEC);
10276
10277		seq_printf(sf, "nr_periods %d\n"
10278			   "nr_throttled %d\n"
10279			   "throttled_usec %llu\n",
10280			   cfs_b->nr_periods, cfs_b->nr_throttled,
10281			   throttled_usec);
10282	}
10283#endif
10284	return 0;
10285}
10286
10287#ifdef CONFIG_FAIR_GROUP_SCHED
10288static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10289			       struct cftype *cft)
10290{
10291	struct task_group *tg = css_tg(css);
10292	u64 weight = scale_load_down(tg->shares);
10293
10294	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10295}
10296
10297static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10298				struct cftype *cft, u64 weight)
10299{
10300	/*
10301	 * cgroup weight knobs should use the common MIN, DFL and MAX
10302	 * values which are 1, 100 and 10000 respectively.  While it loses
10303	 * a bit of range on both ends, it maps pretty well onto the shares
10304	 * value used by scheduler and the round-trip conversions preserve
10305	 * the original value over the entire range.
10306	 */
10307	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10308		return -ERANGE;
10309
10310	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10311
10312	return sched_group_set_shares(css_tg(css), scale_load(weight));
10313}
10314
10315static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10316				    struct cftype *cft)
10317{
10318	unsigned long weight = scale_load_down(css_tg(css)->shares);
10319	int last_delta = INT_MAX;
10320	int prio, delta;
10321
10322	/* find the closest nice value to the current weight */
10323	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10324		delta = abs(sched_prio_to_weight[prio] - weight);
10325		if (delta >= last_delta)
10326			break;
10327		last_delta = delta;
10328	}
10329
10330	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10331}
10332
10333static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10334				     struct cftype *cft, s64 nice)
10335{
10336	unsigned long weight;
10337	int idx;
10338
10339	if (nice < MIN_NICE || nice > MAX_NICE)
10340		return -ERANGE;
10341
10342	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10343	idx = array_index_nospec(idx, 40);
10344	weight = sched_prio_to_weight[idx];
10345
10346	return sched_group_set_shares(css_tg(css), scale_load(weight));
10347}
10348#endif
10349
10350static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10351						  long period, long quota)
10352{
10353	if (quota < 0)
10354		seq_puts(sf, "max");
10355	else
10356		seq_printf(sf, "%ld", quota);
10357
10358	seq_printf(sf, " %ld\n", period);
10359}
10360
10361/* caller should put the current value in *@periodp before calling */
10362static int __maybe_unused cpu_period_quota_parse(char *buf,
10363						 u64 *periodp, u64 *quotap)
10364{
10365	char tok[21];	/* U64_MAX */
10366
10367	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10368		return -EINVAL;
10369
10370	*periodp *= NSEC_PER_USEC;
10371
10372	if (sscanf(tok, "%llu", quotap))
10373		*quotap *= NSEC_PER_USEC;
10374	else if (!strcmp(tok, "max"))
10375		*quotap = RUNTIME_INF;
10376	else
10377		return -EINVAL;
10378
10379	return 0;
10380}
10381
10382#ifdef CONFIG_CFS_BANDWIDTH
10383static int cpu_max_show(struct seq_file *sf, void *v)
10384{
10385	struct task_group *tg = css_tg(seq_css(sf));
10386
10387	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10388	return 0;
10389}
10390
10391static ssize_t cpu_max_write(struct kernfs_open_file *of,
10392			     char *buf, size_t nbytes, loff_t off)
10393{
10394	struct task_group *tg = css_tg(of_css(of));
10395	u64 period = tg_get_cfs_period(tg);
10396	u64 burst = tg_get_cfs_burst(tg);
10397	u64 quota;
10398	int ret;
10399
10400	ret = cpu_period_quota_parse(buf, &period, &quota);
10401	if (!ret)
10402		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10403	return ret ?: nbytes;
10404}
10405#endif
10406
10407static struct cftype cpu_files[] = {
10408#ifdef CONFIG_FAIR_GROUP_SCHED
10409	{
10410		.name = "weight",
10411		.flags = CFTYPE_NOT_ON_ROOT,
10412		.read_u64 = cpu_weight_read_u64,
10413		.write_u64 = cpu_weight_write_u64,
10414	},
10415	{
10416		.name = "weight.nice",
10417		.flags = CFTYPE_NOT_ON_ROOT,
10418		.read_s64 = cpu_weight_nice_read_s64,
10419		.write_s64 = cpu_weight_nice_write_s64,
10420	},
10421#endif
10422#ifdef CONFIG_CFS_BANDWIDTH
10423	{
10424		.name = "max",
10425		.flags = CFTYPE_NOT_ON_ROOT,
10426		.seq_show = cpu_max_show,
10427		.write = cpu_max_write,
10428	},
10429	{
10430		.name = "max.burst",
10431		.flags = CFTYPE_NOT_ON_ROOT,
10432		.read_u64 = cpu_cfs_burst_read_u64,
10433		.write_u64 = cpu_cfs_burst_write_u64,
10434	},
10435#endif
10436#ifdef CONFIG_UCLAMP_TASK_GROUP
10437	{
10438		.name = "uclamp.min",
10439		.flags = CFTYPE_NOT_ON_ROOT,
10440		.seq_show = cpu_uclamp_min_show,
10441		.write = cpu_uclamp_min_write,
10442	},
10443	{
10444		.name = "uclamp.max",
10445		.flags = CFTYPE_NOT_ON_ROOT,
10446		.seq_show = cpu_uclamp_max_show,
10447		.write = cpu_uclamp_max_write,
10448	},
10449#endif
10450	{ }	/* terminate */
10451};
10452
10453struct cgroup_subsys cpu_cgrp_subsys = {
10454	.css_alloc	= cpu_cgroup_css_alloc,
 
10455	.css_online	= cpu_cgroup_css_online,
10456	.css_released	= cpu_cgroup_css_released,
10457	.css_free	= cpu_cgroup_css_free,
10458	.css_extra_stat_show = cpu_extra_stat_show,
10459	.fork		= cpu_cgroup_fork,
10460	.can_attach	= cpu_cgroup_can_attach,
10461	.attach		= cpu_cgroup_attach,
10462	.legacy_cftypes	= cpu_legacy_files,
10463	.dfl_cftypes	= cpu_files,
10464	.early_init	= true,
10465	.threaded	= true,
10466};
10467
10468#endif	/* CONFIG_CGROUP_SCHED */
10469
10470void dump_cpu_task(int cpu)
10471{
10472	pr_info("Task dump for CPU %d:\n", cpu);
10473	sched_show_task(cpu_curr(cpu));
10474}
10475
10476/*
10477 * Nice levels are multiplicative, with a gentle 10% change for every
10478 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10479 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10480 * that remained on nice 0.
10481 *
10482 * The "10% effect" is relative and cumulative: from _any_ nice level,
10483 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10484 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10485 * If a task goes up by ~10% and another task goes down by ~10% then
10486 * the relative distance between them is ~25%.)
10487 */
10488const int sched_prio_to_weight[40] = {
10489 /* -20 */     88761,     71755,     56483,     46273,     36291,
10490 /* -15 */     29154,     23254,     18705,     14949,     11916,
10491 /* -10 */      9548,      7620,      6100,      4904,      3906,
10492 /*  -5 */      3121,      2501,      1991,      1586,      1277,
10493 /*   0 */      1024,       820,       655,       526,       423,
10494 /*   5 */       335,       272,       215,       172,       137,
10495 /*  10 */       110,        87,        70,        56,        45,
10496 /*  15 */        36,        29,        23,        18,        15,
10497};
10498
10499/*
10500 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10501 *
10502 * In cases where the weight does not change often, we can use the
10503 * precalculated inverse to speed up arithmetics by turning divisions
10504 * into multiplications:
10505 */
10506const u32 sched_prio_to_wmult[40] = {
10507 /* -20 */     48388,     59856,     76040,     92818,    118348,
10508 /* -15 */    147320,    184698,    229616,    287308,    360437,
10509 /* -10 */    449829,    563644,    704093,    875809,   1099582,
10510 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10511 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10512 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10513 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10514 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10515};
10516
10517void call_trace_sched_update_nr_running(struct rq *rq, int count)
10518{
10519        trace_sched_update_nr_running_tp(rq, count);
10520}