Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *	linux/kernel/resource.c
   3 *
   4 * Copyright (C) 1999	Linus Torvalds
   5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   6 *
   7 * Arbitrary resource management.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/export.h>
  13#include <linux/errno.h>
  14#include <linux/ioport.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/proc_fs.h>
 
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/device.h>
  23#include <linux/pfn.h>
  24#include <linux/mm.h>
 
 
 
  25#include <asm/io.h>
  26
  27
  28struct resource ioport_resource = {
  29	.name	= "PCI IO",
  30	.start	= 0,
  31	.end	= IO_SPACE_LIMIT,
  32	.flags	= IORESOURCE_IO,
  33};
  34EXPORT_SYMBOL(ioport_resource);
  35
  36struct resource iomem_resource = {
  37	.name	= "PCI mem",
  38	.start	= 0,
  39	.end	= -1,
  40	.flags	= IORESOURCE_MEM,
  41};
  42EXPORT_SYMBOL(iomem_resource);
  43
  44/* constraints to be met while allocating resources */
  45struct resource_constraint {
  46	resource_size_t min, max, align;
  47	resource_size_t (*alignf)(void *, const struct resource *,
  48			resource_size_t, resource_size_t);
  49	void *alignf_data;
  50};
  51
  52static DEFINE_RWLOCK(resource_lock);
  53
  54/*
  55 * For memory hotplug, there is no way to free resource entries allocated
  56 * by boot mem after the system is up. So for reusing the resource entry
  57 * we need to remember the resource.
  58 */
  59static struct resource *bootmem_resource_free;
  60static DEFINE_SPINLOCK(bootmem_resource_lock);
  61
  62static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  63{
  64	struct resource *p = v;
  65	(*pos)++;
  66	if (p->child)
  67		return p->child;
  68	while (!p->sibling && p->parent)
  69		p = p->parent;
  70	return p->sibling;
  71}
  72
 
 
 
 
 
 
 
  73#ifdef CONFIG_PROC_FS
  74
  75enum { MAX_IORES_LEVEL = 5 };
  76
  77static void *r_start(struct seq_file *m, loff_t *pos)
  78	__acquires(resource_lock)
  79{
  80	struct resource *p = m->private;
  81	loff_t l = 0;
  82	read_lock(&resource_lock);
  83	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  84		;
  85	return p;
  86}
  87
  88static void r_stop(struct seq_file *m, void *v)
  89	__releases(resource_lock)
  90{
  91	read_unlock(&resource_lock);
  92}
  93
  94static int r_show(struct seq_file *m, void *v)
  95{
  96	struct resource *root = m->private;
  97	struct resource *r = v, *p;
 
  98	int width = root->end < 0x10000 ? 4 : 8;
  99	int depth;
 100
 101	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 102		if (p->parent == root)
 103			break;
 
 
 
 
 
 
 
 
 104	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 105			depth * 2, "",
 106			width, (unsigned long long) r->start,
 107			width, (unsigned long long) r->end,
 108			r->name ? r->name : "<BAD>");
 109	return 0;
 110}
 111
 112static const struct seq_operations resource_op = {
 113	.start	= r_start,
 114	.next	= r_next,
 115	.stop	= r_stop,
 116	.show	= r_show,
 117};
 118
 119static int ioports_open(struct inode *inode, struct file *file)
 120{
 121	int res = seq_open(file, &resource_op);
 122	if (!res) {
 123		struct seq_file *m = file->private_data;
 124		m->private = &ioport_resource;
 125	}
 126	return res;
 127}
 128
 129static int iomem_open(struct inode *inode, struct file *file)
 130{
 131	int res = seq_open(file, &resource_op);
 132	if (!res) {
 133		struct seq_file *m = file->private_data;
 134		m->private = &iomem_resource;
 135	}
 136	return res;
 137}
 138
 139static const struct file_operations proc_ioports_operations = {
 140	.open		= ioports_open,
 141	.read		= seq_read,
 142	.llseek		= seq_lseek,
 143	.release	= seq_release,
 144};
 145
 146static const struct file_operations proc_iomem_operations = {
 147	.open		= iomem_open,
 148	.read		= seq_read,
 149	.llseek		= seq_lseek,
 150	.release	= seq_release,
 151};
 152
 153static int __init ioresources_init(void)
 154{
 155	proc_create("ioports", 0, NULL, &proc_ioports_operations);
 156	proc_create("iomem", 0, NULL, &proc_iomem_operations);
 
 157	return 0;
 158}
 159__initcall(ioresources_init);
 160
 161#endif /* CONFIG_PROC_FS */
 162
 163static void free_resource(struct resource *res)
 164{
 165	if (!res)
 166		return;
 167
 168	if (!PageSlab(virt_to_head_page(res))) {
 169		spin_lock(&bootmem_resource_lock);
 170		res->sibling = bootmem_resource_free;
 171		bootmem_resource_free = res;
 172		spin_unlock(&bootmem_resource_lock);
 173	} else {
 174		kfree(res);
 175	}
 176}
 177
 178static struct resource *alloc_resource(gfp_t flags)
 179{
 180	struct resource *res = NULL;
 181
 182	spin_lock(&bootmem_resource_lock);
 183	if (bootmem_resource_free) {
 184		res = bootmem_resource_free;
 185		bootmem_resource_free = res->sibling;
 186	}
 187	spin_unlock(&bootmem_resource_lock);
 188
 189	if (res)
 190		memset(res, 0, sizeof(struct resource));
 191	else
 192		res = kzalloc(sizeof(struct resource), flags);
 193
 194	return res;
 195}
 196
 197/* Return the conflict entry if you can't request it */
 198static struct resource * __request_resource(struct resource *root, struct resource *new)
 199{
 200	resource_size_t start = new->start;
 201	resource_size_t end = new->end;
 202	struct resource *tmp, **p;
 203
 204	if (end < start)
 205		return root;
 206	if (start < root->start)
 207		return root;
 208	if (end > root->end)
 209		return root;
 210	p = &root->child;
 211	for (;;) {
 212		tmp = *p;
 213		if (!tmp || tmp->start > end) {
 214			new->sibling = tmp;
 215			*p = new;
 216			new->parent = root;
 217			return NULL;
 218		}
 219		p = &tmp->sibling;
 220		if (tmp->end < start)
 221			continue;
 222		return tmp;
 223	}
 224}
 225
 226static int __release_resource(struct resource *old)
 227{
 228	struct resource *tmp, **p;
 229
 230	p = &old->parent->child;
 231	for (;;) {
 232		tmp = *p;
 233		if (!tmp)
 234			break;
 235		if (tmp == old) {
 236			*p = tmp->sibling;
 
 
 
 
 
 
 
 
 
 
 237			old->parent = NULL;
 238			return 0;
 239		}
 240		p = &tmp->sibling;
 241	}
 242	return -EINVAL;
 243}
 244
 245static void __release_child_resources(struct resource *r)
 246{
 247	struct resource *tmp, *p;
 248	resource_size_t size;
 249
 250	p = r->child;
 251	r->child = NULL;
 252	while (p) {
 253		tmp = p;
 254		p = p->sibling;
 255
 256		tmp->parent = NULL;
 257		tmp->sibling = NULL;
 258		__release_child_resources(tmp);
 259
 260		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 261		/* need to restore size, and keep flags */
 262		size = resource_size(tmp);
 263		tmp->start = 0;
 264		tmp->end = size - 1;
 265	}
 266}
 267
 268void release_child_resources(struct resource *r)
 269{
 270	write_lock(&resource_lock);
 271	__release_child_resources(r);
 272	write_unlock(&resource_lock);
 273}
 274
 275/**
 276 * request_resource_conflict - request and reserve an I/O or memory resource
 277 * @root: root resource descriptor
 278 * @new: resource descriptor desired by caller
 279 *
 280 * Returns 0 for success, conflict resource on error.
 281 */
 282struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 283{
 284	struct resource *conflict;
 285
 286	write_lock(&resource_lock);
 287	conflict = __request_resource(root, new);
 288	write_unlock(&resource_lock);
 289	return conflict;
 290}
 291
 292/**
 293 * request_resource - request and reserve an I/O or memory resource
 294 * @root: root resource descriptor
 295 * @new: resource descriptor desired by caller
 296 *
 297 * Returns 0 for success, negative error code on error.
 298 */
 299int request_resource(struct resource *root, struct resource *new)
 300{
 301	struct resource *conflict;
 302
 303	conflict = request_resource_conflict(root, new);
 304	return conflict ? -EBUSY : 0;
 305}
 306
 307EXPORT_SYMBOL(request_resource);
 308
 309/**
 310 * release_resource - release a previously reserved resource
 311 * @old: resource pointer
 312 */
 313int release_resource(struct resource *old)
 314{
 315	int retval;
 316
 317	write_lock(&resource_lock);
 318	retval = __release_resource(old);
 319	write_unlock(&resource_lock);
 320	return retval;
 321}
 322
 323EXPORT_SYMBOL(release_resource);
 324
 325#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
 326/*
 327 * Finds the lowest memory reosurce exists within [res->start.res->end)
 328 * the caller must specify res->start, res->end, res->flags and "name".
 329 * If found, returns 0, res is overwritten, if not found, returns -1.
 330 */
 331static int find_next_system_ram(struct resource *res, char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 332{
 333	resource_size_t start, end;
 334	struct resource *p;
 335
 336	BUG_ON(!res);
 
 337
 338	start = res->start;
 339	end = res->end;
 340	BUG_ON(start >= end);
 341
 342	read_lock(&resource_lock);
 343	for (p = iomem_resource.child; p ; p = p->sibling) {
 344		/* system ram is just marked as IORESOURCE_MEM */
 345		if (p->flags != res->flags)
 346			continue;
 347		if (name && strcmp(p->name, name))
 348			continue;
 349		if (p->start > end) {
 350			p = NULL;
 351			break;
 352		}
 353		if ((p->end >= start) && (p->start < end))
 354			break;
 
 
 
 
 
 
 
 
 
 
 355	}
 
 
 
 
 
 
 
 
 
 
 
 
 356	read_unlock(&resource_lock);
 357	if (!p)
 358		return -1;
 359	/* copy data */
 360	if (res->start < p->start)
 361		res->start = p->start;
 362	if (res->end > p->end)
 363		res->end = p->end;
 364	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365}
 366
 367/*
 368 * This function calls callback against all memory range of "System RAM"
 369 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 370 * Now, this function is only for "System RAM".
 371 */
 372int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 373		void *arg, int (*func)(unsigned long, unsigned long, void *))
 374{
 
 
 375	struct resource res;
 376	unsigned long pfn, end_pfn;
 377	u64 orig_end;
 378	int ret = -1;
 379
 380	res.start = (u64) start_pfn << PAGE_SHIFT;
 381	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 382	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 383	orig_end = res.end;
 384	while ((res.start < res.end) &&
 385		(find_next_system_ram(&res, "System RAM") >= 0)) {
 386		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 387		end_pfn = (res.end + 1) >> PAGE_SHIFT;
 388		if (end_pfn > pfn)
 389			ret = (*func)(pfn, end_pfn - pfn, arg);
 390		if (ret)
 391			break;
 392		res.start = res.end + 1;
 393		res.end = orig_end;
 394	}
 395	return ret;
 396}
 397
 398#endif
 399
 400static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 401{
 402	return 1;
 403}
 
 404/*
 405 * This generic page_is_ram() returns true if specified address is
 406 * registered as "System RAM" in iomem_resource list.
 407 */
 408int __weak page_is_ram(unsigned long pfn)
 409{
 410	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 411}
 412EXPORT_SYMBOL_GPL(page_is_ram);
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414void __weak arch_remove_reservations(struct resource *avail)
 415{
 416}
 417
 418static resource_size_t simple_align_resource(void *data,
 419					     const struct resource *avail,
 420					     resource_size_t size,
 421					     resource_size_t align)
 422{
 423	return avail->start;
 424}
 425
 426static void resource_clip(struct resource *res, resource_size_t min,
 427			  resource_size_t max)
 428{
 429	if (res->start < min)
 430		res->start = min;
 431	if (res->end > max)
 432		res->end = max;
 433}
 434
 435/*
 436 * Find empty slot in the resource tree with the given range and
 437 * alignment constraints
 438 */
 439static int __find_resource(struct resource *root, struct resource *old,
 440			 struct resource *new,
 441			 resource_size_t  size,
 442			 struct resource_constraint *constraint)
 443{
 444	struct resource *this = root->child;
 445	struct resource tmp = *new, avail, alloc;
 446
 447	tmp.start = root->start;
 448	/*
 449	 * Skip past an allocated resource that starts at 0, since the assignment
 450	 * of this->start - 1 to tmp->end below would cause an underflow.
 451	 */
 452	if (this && this->start == root->start) {
 453		tmp.start = (this == old) ? old->start : this->end + 1;
 454		this = this->sibling;
 455	}
 456	for(;;) {
 457		if (this)
 458			tmp.end = (this == old) ?  this->end : this->start - 1;
 459		else
 460			tmp.end = root->end;
 461
 462		if (tmp.end < tmp.start)
 463			goto next;
 464
 465		resource_clip(&tmp, constraint->min, constraint->max);
 466		arch_remove_reservations(&tmp);
 467
 468		/* Check for overflow after ALIGN() */
 469		avail.start = ALIGN(tmp.start, constraint->align);
 470		avail.end = tmp.end;
 471		avail.flags = new->flags & ~IORESOURCE_UNSET;
 472		if (avail.start >= tmp.start) {
 473			alloc.flags = avail.flags;
 474			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 475					size, constraint->align);
 476			alloc.end = alloc.start + size - 1;
 477			if (resource_contains(&avail, &alloc)) {
 
 478				new->start = alloc.start;
 479				new->end = alloc.end;
 480				return 0;
 481			}
 482		}
 483
 484next:		if (!this || this->end == root->end)
 485			break;
 486
 487		if (this != old)
 488			tmp.start = this->end + 1;
 489		this = this->sibling;
 490	}
 491	return -EBUSY;
 492}
 493
 494/*
 495 * Find empty slot in the resource tree given range and alignment.
 496 */
 497static int find_resource(struct resource *root, struct resource *new,
 498			resource_size_t size,
 499			struct resource_constraint  *constraint)
 500{
 501	return  __find_resource(root, NULL, new, size, constraint);
 502}
 503
 504/**
 505 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 506 *	The resource will be relocated if the new size cannot be reallocated in the
 507 *	current location.
 508 *
 509 * @root: root resource descriptor
 510 * @old:  resource descriptor desired by caller
 511 * @newsize: new size of the resource descriptor
 512 * @constraint: the size and alignment constraints to be met.
 513 */
 514static int reallocate_resource(struct resource *root, struct resource *old,
 515			resource_size_t newsize,
 516			struct resource_constraint  *constraint)
 517{
 518	int err=0;
 519	struct resource new = *old;
 520	struct resource *conflict;
 521
 522	write_lock(&resource_lock);
 523
 524	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 525		goto out;
 526
 527	if (resource_contains(&new, old)) {
 528		old->start = new.start;
 529		old->end = new.end;
 530		goto out;
 531	}
 532
 533	if (old->child) {
 534		err = -EBUSY;
 535		goto out;
 536	}
 537
 538	if (resource_contains(old, &new)) {
 539		old->start = new.start;
 540		old->end = new.end;
 541	} else {
 542		__release_resource(old);
 543		*old = new;
 544		conflict = __request_resource(root, old);
 545		BUG_ON(conflict);
 546	}
 547out:
 548	write_unlock(&resource_lock);
 549	return err;
 550}
 551
 552
 553/**
 554 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 555 * 	The resource will be reallocated with a new size if it was already allocated
 556 * @root: root resource descriptor
 557 * @new: resource descriptor desired by caller
 558 * @size: requested resource region size
 559 * @min: minimum boundary to allocate
 560 * @max: maximum boundary to allocate
 561 * @align: alignment requested, in bytes
 562 * @alignf: alignment function, optional, called if not NULL
 563 * @alignf_data: arbitrary data to pass to the @alignf function
 564 */
 565int allocate_resource(struct resource *root, struct resource *new,
 566		      resource_size_t size, resource_size_t min,
 567		      resource_size_t max, resource_size_t align,
 568		      resource_size_t (*alignf)(void *,
 569						const struct resource *,
 570						resource_size_t,
 571						resource_size_t),
 572		      void *alignf_data)
 573{
 574	int err;
 575	struct resource_constraint constraint;
 576
 577	if (!alignf)
 578		alignf = simple_align_resource;
 579
 580	constraint.min = min;
 581	constraint.max = max;
 582	constraint.align = align;
 583	constraint.alignf = alignf;
 584	constraint.alignf_data = alignf_data;
 585
 586	if ( new->parent ) {
 587		/* resource is already allocated, try reallocating with
 588		   the new constraints */
 589		return reallocate_resource(root, new, size, &constraint);
 590	}
 591
 592	write_lock(&resource_lock);
 593	err = find_resource(root, new, size, &constraint);
 594	if (err >= 0 && __request_resource(root, new))
 595		err = -EBUSY;
 596	write_unlock(&resource_lock);
 597	return err;
 598}
 599
 600EXPORT_SYMBOL(allocate_resource);
 601
 602/**
 603 * lookup_resource - find an existing resource by a resource start address
 604 * @root: root resource descriptor
 605 * @start: resource start address
 606 *
 607 * Returns a pointer to the resource if found, NULL otherwise
 608 */
 609struct resource *lookup_resource(struct resource *root, resource_size_t start)
 610{
 611	struct resource *res;
 612
 613	read_lock(&resource_lock);
 614	for (res = root->child; res; res = res->sibling) {
 615		if (res->start == start)
 616			break;
 617	}
 618	read_unlock(&resource_lock);
 619
 620	return res;
 621}
 622
 623/*
 624 * Insert a resource into the resource tree. If successful, return NULL,
 625 * otherwise return the conflicting resource (compare to __request_resource())
 626 */
 627static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 628{
 629	struct resource *first, *next;
 630
 631	for (;; parent = first) {
 632		first = __request_resource(parent, new);
 633		if (!first)
 634			return first;
 635
 636		if (first == parent)
 637			return first;
 638		if (WARN_ON(first == new))	/* duplicated insertion */
 639			return first;
 640
 641		if ((first->start > new->start) || (first->end < new->end))
 642			break;
 643		if ((first->start == new->start) && (first->end == new->end))
 644			break;
 645	}
 646
 647	for (next = first; ; next = next->sibling) {
 648		/* Partial overlap? Bad, and unfixable */
 649		if (next->start < new->start || next->end > new->end)
 650			return next;
 651		if (!next->sibling)
 652			break;
 653		if (next->sibling->start > new->end)
 654			break;
 655	}
 656
 657	new->parent = parent;
 658	new->sibling = next->sibling;
 659	new->child = first;
 660
 661	next->sibling = NULL;
 662	for (next = first; next; next = next->sibling)
 663		next->parent = new;
 664
 665	if (parent->child == first) {
 666		parent->child = new;
 667	} else {
 668		next = parent->child;
 669		while (next->sibling != first)
 670			next = next->sibling;
 671		next->sibling = new;
 672	}
 673	return NULL;
 674}
 675
 676/**
 677 * insert_resource_conflict - Inserts resource in the resource tree
 678 * @parent: parent of the new resource
 679 * @new: new resource to insert
 680 *
 681 * Returns 0 on success, conflict resource if the resource can't be inserted.
 682 *
 683 * This function is equivalent to request_resource_conflict when no conflict
 684 * happens. If a conflict happens, and the conflicting resources
 685 * entirely fit within the range of the new resource, then the new
 686 * resource is inserted and the conflicting resources become children of
 687 * the new resource.
 
 
 
 688 */
 689struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 690{
 691	struct resource *conflict;
 692
 693	write_lock(&resource_lock);
 694	conflict = __insert_resource(parent, new);
 695	write_unlock(&resource_lock);
 696	return conflict;
 697}
 698
 699/**
 700 * insert_resource - Inserts a resource in the resource tree
 701 * @parent: parent of the new resource
 702 * @new: new resource to insert
 703 *
 704 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 
 
 
 705 */
 706int insert_resource(struct resource *parent, struct resource *new)
 707{
 708	struct resource *conflict;
 709
 710	conflict = insert_resource_conflict(parent, new);
 711	return conflict ? -EBUSY : 0;
 712}
 
 713
 714/**
 715 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 716 * @root: root resource descriptor
 717 * @new: new resource to insert
 718 *
 719 * Insert a resource into the resource tree, possibly expanding it in order
 720 * to make it encompass any conflicting resources.
 721 */
 722void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 723{
 724	if (new->parent)
 725		return;
 726
 727	write_lock(&resource_lock);
 728	for (;;) {
 729		struct resource *conflict;
 730
 731		conflict = __insert_resource(root, new);
 732		if (!conflict)
 733			break;
 734		if (conflict == root)
 735			break;
 736
 737		/* Ok, expand resource to cover the conflict, then try again .. */
 738		if (conflict->start < new->start)
 739			new->start = conflict->start;
 740		if (conflict->end > new->end)
 741			new->end = conflict->end;
 742
 743		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 744	}
 745	write_unlock(&resource_lock);
 746}
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748static int __adjust_resource(struct resource *res, resource_size_t start,
 749				resource_size_t size)
 750{
 751	struct resource *tmp, *parent = res->parent;
 752	resource_size_t end = start + size - 1;
 753	int result = -EBUSY;
 754
 755	if (!parent)
 756		goto skip;
 757
 758	if ((start < parent->start) || (end > parent->end))
 759		goto out;
 760
 761	if (res->sibling && (res->sibling->start <= end))
 762		goto out;
 763
 764	tmp = parent->child;
 765	if (tmp != res) {
 766		while (tmp->sibling != res)
 767			tmp = tmp->sibling;
 768		if (start <= tmp->end)
 769			goto out;
 770	}
 771
 772skip:
 773	for (tmp = res->child; tmp; tmp = tmp->sibling)
 774		if ((tmp->start < start) || (tmp->end > end))
 775			goto out;
 776
 777	res->start = start;
 778	res->end = end;
 779	result = 0;
 780
 781 out:
 782	return result;
 783}
 784
 785/**
 786 * adjust_resource - modify a resource's start and size
 787 * @res: resource to modify
 788 * @start: new start value
 789 * @size: new size
 790 *
 791 * Given an existing resource, change its start and size to match the
 792 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 793 * Existing children of the resource are assumed to be immutable.
 794 */
 795int adjust_resource(struct resource *res, resource_size_t start,
 796			resource_size_t size)
 797{
 798	int result;
 799
 800	write_lock(&resource_lock);
 801	result = __adjust_resource(res, start, size);
 802	write_unlock(&resource_lock);
 803	return result;
 804}
 805EXPORT_SYMBOL(adjust_resource);
 806
 807static void __init __reserve_region_with_split(struct resource *root,
 808		resource_size_t start, resource_size_t end,
 809		const char *name)
 810{
 811	struct resource *parent = root;
 812	struct resource *conflict;
 813	struct resource *res = alloc_resource(GFP_ATOMIC);
 814	struct resource *next_res = NULL;
 
 815
 816	if (!res)
 817		return;
 818
 819	res->name = name;
 820	res->start = start;
 821	res->end = end;
 822	res->flags = IORESOURCE_BUSY;
 
 823
 824	while (1) {
 825
 826		conflict = __request_resource(parent, res);
 827		if (!conflict) {
 828			if (!next_res)
 829				break;
 830			res = next_res;
 831			next_res = NULL;
 832			continue;
 833		}
 834
 835		/* conflict covered whole area */
 836		if (conflict->start <= res->start &&
 837				conflict->end >= res->end) {
 838			free_resource(res);
 839			WARN_ON(next_res);
 840			break;
 841		}
 842
 843		/* failed, split and try again */
 844		if (conflict->start > res->start) {
 845			end = res->end;
 846			res->end = conflict->start - 1;
 847			if (conflict->end < end) {
 848				next_res = alloc_resource(GFP_ATOMIC);
 849				if (!next_res) {
 850					free_resource(res);
 851					break;
 852				}
 853				next_res->name = name;
 854				next_res->start = conflict->end + 1;
 855				next_res->end = end;
 856				next_res->flags = IORESOURCE_BUSY;
 
 857			}
 858		} else {
 859			res->start = conflict->end + 1;
 860		}
 861	}
 862
 863}
 864
 865void __init reserve_region_with_split(struct resource *root,
 866		resource_size_t start, resource_size_t end,
 867		const char *name)
 868{
 869	int abort = 0;
 870
 871	write_lock(&resource_lock);
 872	if (root->start > start || root->end < end) {
 873		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
 874		       (unsigned long long)start, (unsigned long long)end,
 875		       root);
 876		if (start > root->end || end < root->start)
 877			abort = 1;
 878		else {
 879			if (end > root->end)
 880				end = root->end;
 881			if (start < root->start)
 882				start = root->start;
 883			pr_err("fixing request to [0x%llx-0x%llx]\n",
 884			       (unsigned long long)start,
 885			       (unsigned long long)end);
 886		}
 887		dump_stack();
 888	}
 889	if (!abort)
 890		__reserve_region_with_split(root, start, end, name);
 891	write_unlock(&resource_lock);
 892}
 893
 894/**
 895 * resource_alignment - calculate resource's alignment
 896 * @res: resource pointer
 897 *
 898 * Returns alignment on success, 0 (invalid alignment) on failure.
 899 */
 900resource_size_t resource_alignment(struct resource *res)
 901{
 902	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
 903	case IORESOURCE_SIZEALIGN:
 904		return resource_size(res);
 905	case IORESOURCE_STARTALIGN:
 906		return res->start;
 907	default:
 908		return 0;
 909	}
 910}
 911
 912/*
 913 * This is compatibility stuff for IO resources.
 914 *
 915 * Note how this, unlike the above, knows about
 916 * the IO flag meanings (busy etc).
 917 *
 918 * request_region creates a new busy region.
 919 *
 920 * check_region returns non-zero if the area is already busy.
 921 *
 922 * release_region releases a matching busy region.
 923 */
 924
 925static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
 926
 927/**
 928 * __request_region - create a new busy resource region
 929 * @parent: parent resource descriptor
 930 * @start: resource start address
 931 * @n: resource region size
 932 * @name: reserving caller's ID string
 933 * @flags: IO resource flags
 934 */
 935struct resource * __request_region(struct resource *parent,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936				   resource_size_t start, resource_size_t n,
 937				   const char *name, int flags)
 938{
 939	DECLARE_WAITQUEUE(wait, current);
 940	struct resource *res = alloc_resource(GFP_KERNEL);
 941
 942	if (!res)
 943		return NULL;
 944
 945	res->name = name;
 946	res->start = start;
 947	res->end = start + n - 1;
 948	res->flags = resource_type(parent);
 949	res->flags |= IORESOURCE_BUSY | flags;
 950
 951	write_lock(&resource_lock);
 952
 953	for (;;) {
 954		struct resource *conflict;
 955
 
 
 
 
 956		conflict = __request_resource(parent, res);
 957		if (!conflict)
 958			break;
 
 
 
 
 
 
 
 
 
 959		if (conflict != parent) {
 960			parent = conflict;
 961			if (!(conflict->flags & IORESOURCE_BUSY))
 962				continue;
 
 963		}
 964		if (conflict->flags & flags & IORESOURCE_MUXED) {
 965			add_wait_queue(&muxed_resource_wait, &wait);
 966			write_unlock(&resource_lock);
 967			set_current_state(TASK_UNINTERRUPTIBLE);
 968			schedule();
 969			remove_wait_queue(&muxed_resource_wait, &wait);
 970			write_lock(&resource_lock);
 971			continue;
 972		}
 973		/* Uhhuh, that didn't work out.. */
 974		free_resource(res);
 975		res = NULL;
 976		break;
 977	}
 978	write_unlock(&resource_lock);
 979	return res;
 980}
 981EXPORT_SYMBOL(__request_region);
 982
 983/**
 984 * __check_region - check if a resource region is busy or free
 985 * @parent: parent resource descriptor
 986 * @start: resource start address
 987 * @n: resource region size
 988 *
 989 * Returns 0 if the region is free at the moment it is checked,
 990 * returns %-EBUSY if the region is busy.
 991 *
 992 * NOTE:
 993 * This function is deprecated because its use is racy.
 994 * Even if it returns 0, a subsequent call to request_region()
 995 * may fail because another driver etc. just allocated the region.
 996 * Do NOT use it.  It will be removed from the kernel.
 997 */
 998int __check_region(struct resource *parent, resource_size_t start,
 999			resource_size_t n)
 
1000{
1001	struct resource * res;
 
1002
1003	res = __request_region(parent, start, n, "check-region", 0);
1004	if (!res)
1005		return -EBUSY;
1006
1007	release_resource(res);
1008	free_resource(res);
1009	return 0;
 
 
 
 
 
 
 
 
 
 
1010}
1011EXPORT_SYMBOL(__check_region);
1012
1013/**
1014 * __release_region - release a previously reserved resource region
1015 * @parent: parent resource descriptor
1016 * @start: resource start address
1017 * @n: resource region size
1018 *
1019 * The described resource region must match a currently busy region.
1020 */
1021void __release_region(struct resource *parent, resource_size_t start,
1022			resource_size_t n)
1023{
1024	struct resource **p;
1025	resource_size_t end;
1026
1027	p = &parent->child;
1028	end = start + n - 1;
1029
1030	write_lock(&resource_lock);
1031
1032	for (;;) {
1033		struct resource *res = *p;
1034
1035		if (!res)
1036			break;
1037		if (res->start <= start && res->end >= end) {
1038			if (!(res->flags & IORESOURCE_BUSY)) {
1039				p = &res->child;
1040				continue;
1041			}
1042			if (res->start != start || res->end != end)
1043				break;
1044			*p = res->sibling;
1045			write_unlock(&resource_lock);
1046			if (res->flags & IORESOURCE_MUXED)
1047				wake_up(&muxed_resource_wait);
1048			free_resource(res);
1049			return;
1050		}
1051		p = &res->sibling;
1052	}
1053
1054	write_unlock(&resource_lock);
1055
1056	printk(KERN_WARNING "Trying to free nonexistent resource "
1057		"<%016llx-%016llx>\n", (unsigned long long)start,
1058		(unsigned long long)end);
1059}
1060EXPORT_SYMBOL(__release_region);
1061
1062#ifdef CONFIG_MEMORY_HOTREMOVE
1063/**
1064 * release_mem_region_adjustable - release a previously reserved memory region
1065 * @parent: parent resource descriptor
1066 * @start: resource start address
1067 * @size: resource region size
1068 *
1069 * This interface is intended for memory hot-delete.  The requested region
1070 * is released from a currently busy memory resource.  The requested region
1071 * must either match exactly or fit into a single busy resource entry.  In
1072 * the latter case, the remaining resource is adjusted accordingly.
1073 * Existing children of the busy memory resource must be immutable in the
1074 * request.
1075 *
1076 * Note:
1077 * - Additional release conditions, such as overlapping region, can be
1078 *   supported after they are confirmed as valid cases.
1079 * - When a busy memory resource gets split into two entries, the code
1080 *   assumes that all children remain in the lower address entry for
1081 *   simplicity.  Enhance this logic when necessary.
1082 */
1083int release_mem_region_adjustable(struct resource *parent,
1084			resource_size_t start, resource_size_t size)
1085{
 
 
 
1086	struct resource **p;
1087	struct resource *res;
1088	struct resource *new_res;
1089	resource_size_t end;
1090	int ret = -EINVAL;
1091
1092	end = start + size - 1;
1093	if ((start < parent->start) || (end > parent->end))
1094		return ret;
1095
1096	/* The alloc_resource() result gets checked later */
1097	new_res = alloc_resource(GFP_KERNEL);
 
 
 
 
 
 
 
1098
1099	p = &parent->child;
1100	write_lock(&resource_lock);
1101
1102	while ((res = *p)) {
1103		if (res->start >= end)
1104			break;
1105
1106		/* look for the next resource if it does not fit into */
1107		if (res->start > start || res->end < end) {
1108			p = &res->sibling;
1109			continue;
1110		}
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		if (!(res->flags & IORESOURCE_MEM))
1113			break;
1114
1115		if (!(res->flags & IORESOURCE_BUSY)) {
1116			p = &res->child;
1117			continue;
1118		}
1119
1120		/* found the target resource; let's adjust accordingly */
1121		if (res->start == start && res->end == end) {
1122			/* free the whole entry */
1123			*p = res->sibling;
1124			free_resource(res);
1125			ret = 0;
1126		} else if (res->start == start && res->end != end) {
1127			/* adjust the start */
1128			ret = __adjust_resource(res, end + 1,
1129						res->end - end);
1130		} else if (res->start != start && res->end == end) {
1131			/* adjust the end */
1132			ret = __adjust_resource(res, res->start,
1133						start - res->start);
1134		} else {
1135			/* split into two entries */
1136			if (!new_res) {
1137				ret = -ENOMEM;
1138				break;
 
 
 
 
1139			}
1140			new_res->name = res->name;
1141			new_res->start = end + 1;
1142			new_res->end = res->end;
1143			new_res->flags = res->flags;
 
1144			new_res->parent = res->parent;
1145			new_res->sibling = res->sibling;
1146			new_res->child = NULL;
1147
1148			ret = __adjust_resource(res, res->start,
1149						start - res->start);
1150			if (ret)
1151				break;
1152			res->sibling = new_res;
1153			new_res = NULL;
1154		}
1155
1156		break;
1157	}
1158
1159	write_unlock(&resource_lock);
1160	free_resource(new_res);
1161	return ret;
1162}
1163#endif	/* CONFIG_MEMORY_HOTREMOVE */
1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165/*
1166 * Managed region resource
1167 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168struct region_devres {
1169	struct resource *parent;
1170	resource_size_t start;
1171	resource_size_t n;
1172};
1173
1174static void devm_region_release(struct device *dev, void *res)
1175{
1176	struct region_devres *this = res;
1177
1178	__release_region(this->parent, this->start, this->n);
1179}
1180
1181static int devm_region_match(struct device *dev, void *res, void *match_data)
1182{
1183	struct region_devres *this = res, *match = match_data;
1184
1185	return this->parent == match->parent &&
1186		this->start == match->start && this->n == match->n;
1187}
1188
1189struct resource * __devm_request_region(struct device *dev,
1190				struct resource *parent, resource_size_t start,
1191				resource_size_t n, const char *name)
1192{
1193	struct region_devres *dr = NULL;
1194	struct resource *res;
1195
1196	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1197			  GFP_KERNEL);
1198	if (!dr)
1199		return NULL;
1200
1201	dr->parent = parent;
1202	dr->start = start;
1203	dr->n = n;
1204
1205	res = __request_region(parent, start, n, name, 0);
1206	if (res)
1207		devres_add(dev, dr);
1208	else
1209		devres_free(dr);
1210
1211	return res;
1212}
1213EXPORT_SYMBOL(__devm_request_region);
1214
1215void __devm_release_region(struct device *dev, struct resource *parent,
1216			   resource_size_t start, resource_size_t n)
1217{
1218	struct region_devres match_data = { parent, start, n };
1219
1220	__release_region(parent, start, n);
1221	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1222			       &match_data));
1223}
1224EXPORT_SYMBOL(__devm_release_region);
1225
1226/*
1227 * Called from init/main.c to reserve IO ports.
1228 */
1229#define MAXRESERVE 4
1230static int __init reserve_setup(char *str)
1231{
1232	static int reserved;
1233	static struct resource reserve[MAXRESERVE];
1234
1235	for (;;) {
1236		unsigned int io_start, io_num;
1237		int x = reserved;
 
1238
1239		if (get_option (&str, &io_start) != 2)
1240			break;
1241		if (get_option (&str, &io_num)   == 0)
1242			break;
1243		if (x < MAXRESERVE) {
1244			struct resource *res = reserve + x;
 
 
 
 
 
 
 
 
 
 
 
 
1245			res->name = "reserved";
1246			res->start = io_start;
1247			res->end = io_start + io_num - 1;
1248			res->flags = IORESOURCE_BUSY;
 
1249			res->child = NULL;
1250			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1251				reserved = x+1;
1252		}
1253	}
1254	return 1;
1255}
1256
1257__setup("reserve=", reserve_setup);
1258
1259/*
1260 * Check if the requested addr and size spans more than any slot in the
1261 * iomem resource tree.
1262 */
1263int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1264{
1265	struct resource *p = &iomem_resource;
1266	int err = 0;
1267	loff_t l;
1268
1269	read_lock(&resource_lock);
1270	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1271		/*
1272		 * We can probably skip the resources without
1273		 * IORESOURCE_IO attribute?
1274		 */
1275		if (p->start >= addr + size)
1276			continue;
1277		if (p->end < addr)
1278			continue;
1279		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1280		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1281			continue;
1282		/*
1283		 * if a resource is "BUSY", it's not a hardware resource
1284		 * but a driver mapping of such a resource; we don't want
1285		 * to warn for those; some drivers legitimately map only
1286		 * partial hardware resources. (example: vesafb)
1287		 */
1288		if (p->flags & IORESOURCE_BUSY)
1289			continue;
1290
1291		printk(KERN_WARNING "resource map sanity check conflict: "
1292		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1293		       (unsigned long long)addr,
1294		       (unsigned long long)(addr + size - 1),
1295		       (unsigned long long)p->start,
1296		       (unsigned long long)p->end,
1297		       p->name);
1298		err = -1;
1299		break;
1300	}
1301	read_unlock(&resource_lock);
1302
1303	return err;
1304}
1305
1306#ifdef CONFIG_STRICT_DEVMEM
1307static int strict_iomem_checks = 1;
1308#else
1309static int strict_iomem_checks;
1310#endif
1311
1312/*
1313 * check if an address is reserved in the iomem resource tree
1314 * returns 1 if reserved, 0 if not reserved.
1315 */
1316int iomem_is_exclusive(u64 addr)
1317{
1318	struct resource *p = &iomem_resource;
1319	int err = 0;
1320	loff_t l;
1321	int size = PAGE_SIZE;
1322
1323	if (!strict_iomem_checks)
1324		return 0;
1325
1326	addr = addr & PAGE_MASK;
1327
1328	read_lock(&resource_lock);
1329	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1330		/*
1331		 * We can probably skip the resources without
1332		 * IORESOURCE_IO attribute?
1333		 */
1334		if (p->start >= addr + size)
1335			break;
1336		if (p->end < addr)
1337			continue;
1338		if (p->flags & IORESOURCE_BUSY &&
1339		     p->flags & IORESOURCE_EXCLUSIVE) {
1340			err = 1;
 
 
 
 
 
 
 
1341			break;
1342		}
1343	}
1344	read_unlock(&resource_lock);
1345
1346	return err;
1347}
1348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349static int __init strict_iomem(char *str)
1350{
1351	if (strstr(str, "relaxed"))
1352		strict_iomem_checks = 0;
1353	if (strstr(str, "strict"))
1354		strict_iomem_checks = 1;
1355	return 1;
1356}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358__setup("iomem=", strict_iomem);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/sched.h>
  23#include <linux/seq_file.h>
  24#include <linux/device.h>
  25#include <linux/pfn.h>
  26#include <linux/mm.h>
  27#include <linux/mount.h>
  28#include <linux/resource_ext.h>
  29#include <uapi/linux/magic.h>
  30#include <asm/io.h>
  31
  32
  33struct resource ioport_resource = {
  34	.name	= "PCI IO",
  35	.start	= 0,
  36	.end	= IO_SPACE_LIMIT,
  37	.flags	= IORESOURCE_IO,
  38};
  39EXPORT_SYMBOL(ioport_resource);
  40
  41struct resource iomem_resource = {
  42	.name	= "PCI mem",
  43	.start	= 0,
  44	.end	= -1,
  45	.flags	= IORESOURCE_MEM,
  46};
  47EXPORT_SYMBOL(iomem_resource);
  48
  49/* constraints to be met while allocating resources */
  50struct resource_constraint {
  51	resource_size_t min, max, align;
  52	resource_size_t (*alignf)(void *, const struct resource *,
  53			resource_size_t, resource_size_t);
  54	void *alignf_data;
  55};
  56
  57static DEFINE_RWLOCK(resource_lock);
  58
  59/*
  60 * For memory hotplug, there is no way to free resource entries allocated
  61 * by boot mem after the system is up. So for reusing the resource entry
  62 * we need to remember the resource.
  63 */
  64static struct resource *bootmem_resource_free;
  65static DEFINE_SPINLOCK(bootmem_resource_lock);
  66
  67static struct resource *next_resource(struct resource *p)
  68{
 
 
  69	if (p->child)
  70		return p->child;
  71	while (!p->sibling && p->parent)
  72		p = p->parent;
  73	return p->sibling;
  74}
  75
  76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  77{
  78	struct resource *p = v;
  79	(*pos)++;
  80	return (void *)next_resource(p);
  81}
  82
  83#ifdef CONFIG_PROC_FS
  84
  85enum { MAX_IORES_LEVEL = 5 };
  86
  87static void *r_start(struct seq_file *m, loff_t *pos)
  88	__acquires(resource_lock)
  89{
  90	struct resource *p = PDE_DATA(file_inode(m->file));
  91	loff_t l = 0;
  92	read_lock(&resource_lock);
  93	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  94		;
  95	return p;
  96}
  97
  98static void r_stop(struct seq_file *m, void *v)
  99	__releases(resource_lock)
 100{
 101	read_unlock(&resource_lock);
 102}
 103
 104static int r_show(struct seq_file *m, void *v)
 105{
 106	struct resource *root = PDE_DATA(file_inode(m->file));
 107	struct resource *r = v, *p;
 108	unsigned long long start, end;
 109	int width = root->end < 0x10000 ? 4 : 8;
 110	int depth;
 111
 112	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 113		if (p->parent == root)
 114			break;
 115
 116	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 117		start = r->start;
 118		end = r->end;
 119	} else {
 120		start = end = 0;
 121	}
 122
 123	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 124			depth * 2, "",
 125			width, start,
 126			width, end,
 127			r->name ? r->name : "<BAD>");
 128	return 0;
 129}
 130
 131static const struct seq_operations resource_op = {
 132	.start	= r_start,
 133	.next	= r_next,
 134	.stop	= r_stop,
 135	.show	= r_show,
 136};
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138static int __init ioresources_init(void)
 139{
 140	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 141			&ioport_resource);
 142	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 143	return 0;
 144}
 145__initcall(ioresources_init);
 146
 147#endif /* CONFIG_PROC_FS */
 148
 149static void free_resource(struct resource *res)
 150{
 151	if (!res)
 152		return;
 153
 154	if (!PageSlab(virt_to_head_page(res))) {
 155		spin_lock(&bootmem_resource_lock);
 156		res->sibling = bootmem_resource_free;
 157		bootmem_resource_free = res;
 158		spin_unlock(&bootmem_resource_lock);
 159	} else {
 160		kfree(res);
 161	}
 162}
 163
 164static struct resource *alloc_resource(gfp_t flags)
 165{
 166	struct resource *res = NULL;
 167
 168	spin_lock(&bootmem_resource_lock);
 169	if (bootmem_resource_free) {
 170		res = bootmem_resource_free;
 171		bootmem_resource_free = res->sibling;
 172	}
 173	spin_unlock(&bootmem_resource_lock);
 174
 175	if (res)
 176		memset(res, 0, sizeof(struct resource));
 177	else
 178		res = kzalloc(sizeof(struct resource), flags);
 179
 180	return res;
 181}
 182
 183/* Return the conflict entry if you can't request it */
 184static struct resource * __request_resource(struct resource *root, struct resource *new)
 185{
 186	resource_size_t start = new->start;
 187	resource_size_t end = new->end;
 188	struct resource *tmp, **p;
 189
 190	if (end < start)
 191		return root;
 192	if (start < root->start)
 193		return root;
 194	if (end > root->end)
 195		return root;
 196	p = &root->child;
 197	for (;;) {
 198		tmp = *p;
 199		if (!tmp || tmp->start > end) {
 200			new->sibling = tmp;
 201			*p = new;
 202			new->parent = root;
 203			return NULL;
 204		}
 205		p = &tmp->sibling;
 206		if (tmp->end < start)
 207			continue;
 208		return tmp;
 209	}
 210}
 211
 212static int __release_resource(struct resource *old, bool release_child)
 213{
 214	struct resource *tmp, **p, *chd;
 215
 216	p = &old->parent->child;
 217	for (;;) {
 218		tmp = *p;
 219		if (!tmp)
 220			break;
 221		if (tmp == old) {
 222			if (release_child || !(tmp->child)) {
 223				*p = tmp->sibling;
 224			} else {
 225				for (chd = tmp->child;; chd = chd->sibling) {
 226					chd->parent = tmp->parent;
 227					if (!(chd->sibling))
 228						break;
 229				}
 230				*p = tmp->child;
 231				chd->sibling = tmp->sibling;
 232			}
 233			old->parent = NULL;
 234			return 0;
 235		}
 236		p = &tmp->sibling;
 237	}
 238	return -EINVAL;
 239}
 240
 241static void __release_child_resources(struct resource *r)
 242{
 243	struct resource *tmp, *p;
 244	resource_size_t size;
 245
 246	p = r->child;
 247	r->child = NULL;
 248	while (p) {
 249		tmp = p;
 250		p = p->sibling;
 251
 252		tmp->parent = NULL;
 253		tmp->sibling = NULL;
 254		__release_child_resources(tmp);
 255
 256		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 257		/* need to restore size, and keep flags */
 258		size = resource_size(tmp);
 259		tmp->start = 0;
 260		tmp->end = size - 1;
 261	}
 262}
 263
 264void release_child_resources(struct resource *r)
 265{
 266	write_lock(&resource_lock);
 267	__release_child_resources(r);
 268	write_unlock(&resource_lock);
 269}
 270
 271/**
 272 * request_resource_conflict - request and reserve an I/O or memory resource
 273 * @root: root resource descriptor
 274 * @new: resource descriptor desired by caller
 275 *
 276 * Returns 0 for success, conflict resource on error.
 277 */
 278struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 279{
 280	struct resource *conflict;
 281
 282	write_lock(&resource_lock);
 283	conflict = __request_resource(root, new);
 284	write_unlock(&resource_lock);
 285	return conflict;
 286}
 287
 288/**
 289 * request_resource - request and reserve an I/O or memory resource
 290 * @root: root resource descriptor
 291 * @new: resource descriptor desired by caller
 292 *
 293 * Returns 0 for success, negative error code on error.
 294 */
 295int request_resource(struct resource *root, struct resource *new)
 296{
 297	struct resource *conflict;
 298
 299	conflict = request_resource_conflict(root, new);
 300	return conflict ? -EBUSY : 0;
 301}
 302
 303EXPORT_SYMBOL(request_resource);
 304
 305/**
 306 * release_resource - release a previously reserved resource
 307 * @old: resource pointer
 308 */
 309int release_resource(struct resource *old)
 310{
 311	int retval;
 312
 313	write_lock(&resource_lock);
 314	retval = __release_resource(old, true);
 315	write_unlock(&resource_lock);
 316	return retval;
 317}
 318
 319EXPORT_SYMBOL(release_resource);
 320
 321/**
 322 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
 323 *			 [@start..@end].
 324 *
 325 * If a resource is found, returns 0 and @*res is overwritten with the part
 326 * of the resource that's within [@start..@end]; if none is found, returns
 327 * -ENODEV.  Returns -EINVAL for invalid parameters.
 328 *
 329 * @start:	start address of the resource searched for
 330 * @end:	end address of same resource
 331 * @flags:	flags which the resource must have
 332 * @desc:	descriptor the resource must have
 333 * @res:	return ptr, if resource found
 334 *
 335 * The caller must specify @start, @end, @flags, and @desc
 336 * (which may be IORES_DESC_NONE).
 337 */
 338static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 339			       unsigned long flags, unsigned long desc,
 340			       struct resource *res)
 341{
 
 342	struct resource *p;
 343
 344	if (!res)
 345		return -EINVAL;
 346
 347	if (start >= end)
 348		return -EINVAL;
 
 349
 350	read_lock(&resource_lock);
 351
 352	for (p = iomem_resource.child; p; p = next_resource(p)) {
 353		/* If we passed the resource we are looking for, stop */
 
 
 
 354		if (p->start > end) {
 355			p = NULL;
 356			break;
 357		}
 358
 359		/* Skip until we find a range that matches what we look for */
 360		if (p->end < start)
 361			continue;
 362
 363		if ((p->flags & flags) != flags)
 364			continue;
 365		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 366			continue;
 367
 368		/* Found a match, break */
 369		break;
 370	}
 371
 372	if (p) {
 373		/* copy data */
 374		*res = (struct resource) {
 375			.start = max(start, p->start),
 376			.end = min(end, p->end),
 377			.flags = p->flags,
 378			.desc = p->desc,
 379			.parent = p->parent,
 380		};
 381	}
 382
 383	read_unlock(&resource_lock);
 384	return p ? 0 : -ENODEV;
 385}
 386
 387static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 388				 unsigned long flags, unsigned long desc,
 389				 void *arg,
 390				 int (*func)(struct resource *, void *))
 391{
 392	struct resource res;
 393	int ret = -EINVAL;
 394
 395	while (start < end &&
 396	       !find_next_iomem_res(start, end, flags, desc, &res)) {
 397		ret = (*func)(&res, arg);
 398		if (ret)
 399			break;
 400
 401		start = res.end + 1;
 402	}
 403
 404	return ret;
 405}
 406
 407/**
 408 * walk_iomem_res_desc - Walks through iomem resources and calls func()
 409 *			 with matching resource ranges.
 410 * *
 411 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 412 * @flags: I/O resource flags
 413 * @start: start addr
 414 * @end: end addr
 415 * @arg: function argument for the callback @func
 416 * @func: callback function that is called for each qualifying resource area
 417 *
 418 * All the memory ranges which overlap start,end and also match flags and
 419 * desc are valid candidates.
 420 *
 421 * NOTE: For a new descriptor search, define a new IORES_DESC in
 422 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 423 */
 424int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 425		u64 end, void *arg, int (*func)(struct resource *, void *))
 426{
 427	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
 428}
 429EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 430
 431/*
 432 * This function calls the @func callback against all memory ranges of type
 433 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 434 * Now, this function is only for System RAM, it deals with full ranges and
 435 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 436 * ranges.
 437 */
 438int walk_system_ram_res(u64 start, u64 end, void *arg,
 439			int (*func)(struct resource *, void *))
 440{
 441	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 442
 443	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 444				     func);
 445}
 446
 447/*
 448 * This function calls the @func callback against all memory ranges, which
 449 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 450 */
 451int walk_mem_res(u64 start, u64 end, void *arg,
 452		 int (*func)(struct resource *, void *))
 453{
 454	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 455
 456	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 457				     func);
 458}
 459
 460/*
 461 * This function calls the @func callback against all memory ranges of type
 462 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 463 * It is to be used only for System RAM.
 464 */
 465int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 466			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 467{
 468	resource_size_t start, end;
 469	unsigned long flags;
 470	struct resource res;
 471	unsigned long pfn, end_pfn;
 472	int ret = -EINVAL;
 
 473
 474	start = (u64) start_pfn << PAGE_SHIFT;
 475	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 476	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 477	while (start < end &&
 478	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
 479		pfn = PFN_UP(res.start);
 480		end_pfn = PFN_DOWN(res.end + 1);
 
 481		if (end_pfn > pfn)
 482			ret = (*func)(pfn, end_pfn - pfn, arg);
 483		if (ret)
 484			break;
 485		start = res.end + 1;
 
 486	}
 487	return ret;
 488}
 489
 
 
 490static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 491{
 492	return 1;
 493}
 494
 495/*
 496 * This generic page_is_ram() returns true if specified address is
 497 * registered as System RAM in iomem_resource list.
 498 */
 499int __weak page_is_ram(unsigned long pfn)
 500{
 501	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 502}
 503EXPORT_SYMBOL_GPL(page_is_ram);
 504
 505static int __region_intersects(resource_size_t start, size_t size,
 506			unsigned long flags, unsigned long desc)
 507{
 508	struct resource res;
 509	int type = 0; int other = 0;
 510	struct resource *p;
 511
 512	res.start = start;
 513	res.end = start + size - 1;
 514
 515	for (p = iomem_resource.child; p ; p = p->sibling) {
 516		bool is_type = (((p->flags & flags) == flags) &&
 517				((desc == IORES_DESC_NONE) ||
 518				 (desc == p->desc)));
 519
 520		if (resource_overlaps(p, &res))
 521			is_type ? type++ : other++;
 522	}
 523
 524	if (type == 0)
 525		return REGION_DISJOINT;
 526
 527	if (other == 0)
 528		return REGION_INTERSECTS;
 529
 530	return REGION_MIXED;
 531}
 532
 533/**
 534 * region_intersects() - determine intersection of region with known resources
 535 * @start: region start address
 536 * @size: size of region
 537 * @flags: flags of resource (in iomem_resource)
 538 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 539 *
 540 * Check if the specified region partially overlaps or fully eclipses a
 541 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 542 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 543 * return REGION_MIXED if the region overlaps @flags/@desc and another
 544 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 545 * and no other defined resource. Note that REGION_INTERSECTS is also
 546 * returned in the case when the specified region overlaps RAM and undefined
 547 * memory holes.
 548 *
 549 * region_intersect() is used by memory remapping functions to ensure
 550 * the user is not remapping RAM and is a vast speed up over walking
 551 * through the resource table page by page.
 552 */
 553int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 554		      unsigned long desc)
 555{
 556	int ret;
 557
 558	read_lock(&resource_lock);
 559	ret = __region_intersects(start, size, flags, desc);
 560	read_unlock(&resource_lock);
 561
 562	return ret;
 563}
 564EXPORT_SYMBOL_GPL(region_intersects);
 565
 566void __weak arch_remove_reservations(struct resource *avail)
 567{
 568}
 569
 570static resource_size_t simple_align_resource(void *data,
 571					     const struct resource *avail,
 572					     resource_size_t size,
 573					     resource_size_t align)
 574{
 575	return avail->start;
 576}
 577
 578static void resource_clip(struct resource *res, resource_size_t min,
 579			  resource_size_t max)
 580{
 581	if (res->start < min)
 582		res->start = min;
 583	if (res->end > max)
 584		res->end = max;
 585}
 586
 587/*
 588 * Find empty slot in the resource tree with the given range and
 589 * alignment constraints
 590 */
 591static int __find_resource(struct resource *root, struct resource *old,
 592			 struct resource *new,
 593			 resource_size_t  size,
 594			 struct resource_constraint *constraint)
 595{
 596	struct resource *this = root->child;
 597	struct resource tmp = *new, avail, alloc;
 598
 599	tmp.start = root->start;
 600	/*
 601	 * Skip past an allocated resource that starts at 0, since the assignment
 602	 * of this->start - 1 to tmp->end below would cause an underflow.
 603	 */
 604	if (this && this->start == root->start) {
 605		tmp.start = (this == old) ? old->start : this->end + 1;
 606		this = this->sibling;
 607	}
 608	for(;;) {
 609		if (this)
 610			tmp.end = (this == old) ?  this->end : this->start - 1;
 611		else
 612			tmp.end = root->end;
 613
 614		if (tmp.end < tmp.start)
 615			goto next;
 616
 617		resource_clip(&tmp, constraint->min, constraint->max);
 618		arch_remove_reservations(&tmp);
 619
 620		/* Check for overflow after ALIGN() */
 621		avail.start = ALIGN(tmp.start, constraint->align);
 622		avail.end = tmp.end;
 623		avail.flags = new->flags & ~IORESOURCE_UNSET;
 624		if (avail.start >= tmp.start) {
 625			alloc.flags = avail.flags;
 626			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 627					size, constraint->align);
 628			alloc.end = alloc.start + size - 1;
 629			if (alloc.start <= alloc.end &&
 630			    resource_contains(&avail, &alloc)) {
 631				new->start = alloc.start;
 632				new->end = alloc.end;
 633				return 0;
 634			}
 635		}
 636
 637next:		if (!this || this->end == root->end)
 638			break;
 639
 640		if (this != old)
 641			tmp.start = this->end + 1;
 642		this = this->sibling;
 643	}
 644	return -EBUSY;
 645}
 646
 647/*
 648 * Find empty slot in the resource tree given range and alignment.
 649 */
 650static int find_resource(struct resource *root, struct resource *new,
 651			resource_size_t size,
 652			struct resource_constraint  *constraint)
 653{
 654	return  __find_resource(root, NULL, new, size, constraint);
 655}
 656
 657/**
 658 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 659 *	The resource will be relocated if the new size cannot be reallocated in the
 660 *	current location.
 661 *
 662 * @root: root resource descriptor
 663 * @old:  resource descriptor desired by caller
 664 * @newsize: new size of the resource descriptor
 665 * @constraint: the size and alignment constraints to be met.
 666 */
 667static int reallocate_resource(struct resource *root, struct resource *old,
 668			       resource_size_t newsize,
 669			       struct resource_constraint *constraint)
 670{
 671	int err=0;
 672	struct resource new = *old;
 673	struct resource *conflict;
 674
 675	write_lock(&resource_lock);
 676
 677	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 678		goto out;
 679
 680	if (resource_contains(&new, old)) {
 681		old->start = new.start;
 682		old->end = new.end;
 683		goto out;
 684	}
 685
 686	if (old->child) {
 687		err = -EBUSY;
 688		goto out;
 689	}
 690
 691	if (resource_contains(old, &new)) {
 692		old->start = new.start;
 693		old->end = new.end;
 694	} else {
 695		__release_resource(old, true);
 696		*old = new;
 697		conflict = __request_resource(root, old);
 698		BUG_ON(conflict);
 699	}
 700out:
 701	write_unlock(&resource_lock);
 702	return err;
 703}
 704
 705
 706/**
 707 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 708 * 	The resource will be reallocated with a new size if it was already allocated
 709 * @root: root resource descriptor
 710 * @new: resource descriptor desired by caller
 711 * @size: requested resource region size
 712 * @min: minimum boundary to allocate
 713 * @max: maximum boundary to allocate
 714 * @align: alignment requested, in bytes
 715 * @alignf: alignment function, optional, called if not NULL
 716 * @alignf_data: arbitrary data to pass to the @alignf function
 717 */
 718int allocate_resource(struct resource *root, struct resource *new,
 719		      resource_size_t size, resource_size_t min,
 720		      resource_size_t max, resource_size_t align,
 721		      resource_size_t (*alignf)(void *,
 722						const struct resource *,
 723						resource_size_t,
 724						resource_size_t),
 725		      void *alignf_data)
 726{
 727	int err;
 728	struct resource_constraint constraint;
 729
 730	if (!alignf)
 731		alignf = simple_align_resource;
 732
 733	constraint.min = min;
 734	constraint.max = max;
 735	constraint.align = align;
 736	constraint.alignf = alignf;
 737	constraint.alignf_data = alignf_data;
 738
 739	if ( new->parent ) {
 740		/* resource is already allocated, try reallocating with
 741		   the new constraints */
 742		return reallocate_resource(root, new, size, &constraint);
 743	}
 744
 745	write_lock(&resource_lock);
 746	err = find_resource(root, new, size, &constraint);
 747	if (err >= 0 && __request_resource(root, new))
 748		err = -EBUSY;
 749	write_unlock(&resource_lock);
 750	return err;
 751}
 752
 753EXPORT_SYMBOL(allocate_resource);
 754
 755/**
 756 * lookup_resource - find an existing resource by a resource start address
 757 * @root: root resource descriptor
 758 * @start: resource start address
 759 *
 760 * Returns a pointer to the resource if found, NULL otherwise
 761 */
 762struct resource *lookup_resource(struct resource *root, resource_size_t start)
 763{
 764	struct resource *res;
 765
 766	read_lock(&resource_lock);
 767	for (res = root->child; res; res = res->sibling) {
 768		if (res->start == start)
 769			break;
 770	}
 771	read_unlock(&resource_lock);
 772
 773	return res;
 774}
 775
 776/*
 777 * Insert a resource into the resource tree. If successful, return NULL,
 778 * otherwise return the conflicting resource (compare to __request_resource())
 779 */
 780static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 781{
 782	struct resource *first, *next;
 783
 784	for (;; parent = first) {
 785		first = __request_resource(parent, new);
 786		if (!first)
 787			return first;
 788
 789		if (first == parent)
 790			return first;
 791		if (WARN_ON(first == new))	/* duplicated insertion */
 792			return first;
 793
 794		if ((first->start > new->start) || (first->end < new->end))
 795			break;
 796		if ((first->start == new->start) && (first->end == new->end))
 797			break;
 798	}
 799
 800	for (next = first; ; next = next->sibling) {
 801		/* Partial overlap? Bad, and unfixable */
 802		if (next->start < new->start || next->end > new->end)
 803			return next;
 804		if (!next->sibling)
 805			break;
 806		if (next->sibling->start > new->end)
 807			break;
 808	}
 809
 810	new->parent = parent;
 811	new->sibling = next->sibling;
 812	new->child = first;
 813
 814	next->sibling = NULL;
 815	for (next = first; next; next = next->sibling)
 816		next->parent = new;
 817
 818	if (parent->child == first) {
 819		parent->child = new;
 820	} else {
 821		next = parent->child;
 822		while (next->sibling != first)
 823			next = next->sibling;
 824		next->sibling = new;
 825	}
 826	return NULL;
 827}
 828
 829/**
 830 * insert_resource_conflict - Inserts resource in the resource tree
 831 * @parent: parent of the new resource
 832 * @new: new resource to insert
 833 *
 834 * Returns 0 on success, conflict resource if the resource can't be inserted.
 835 *
 836 * This function is equivalent to request_resource_conflict when no conflict
 837 * happens. If a conflict happens, and the conflicting resources
 838 * entirely fit within the range of the new resource, then the new
 839 * resource is inserted and the conflicting resources become children of
 840 * the new resource.
 841 *
 842 * This function is intended for producers of resources, such as FW modules
 843 * and bus drivers.
 844 */
 845struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 846{
 847	struct resource *conflict;
 848
 849	write_lock(&resource_lock);
 850	conflict = __insert_resource(parent, new);
 851	write_unlock(&resource_lock);
 852	return conflict;
 853}
 854
 855/**
 856 * insert_resource - Inserts a resource in the resource tree
 857 * @parent: parent of the new resource
 858 * @new: new resource to insert
 859 *
 860 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 861 *
 862 * This function is intended for producers of resources, such as FW modules
 863 * and bus drivers.
 864 */
 865int insert_resource(struct resource *parent, struct resource *new)
 866{
 867	struct resource *conflict;
 868
 869	conflict = insert_resource_conflict(parent, new);
 870	return conflict ? -EBUSY : 0;
 871}
 872EXPORT_SYMBOL_GPL(insert_resource);
 873
 874/**
 875 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 876 * @root: root resource descriptor
 877 * @new: new resource to insert
 878 *
 879 * Insert a resource into the resource tree, possibly expanding it in order
 880 * to make it encompass any conflicting resources.
 881 */
 882void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 883{
 884	if (new->parent)
 885		return;
 886
 887	write_lock(&resource_lock);
 888	for (;;) {
 889		struct resource *conflict;
 890
 891		conflict = __insert_resource(root, new);
 892		if (!conflict)
 893			break;
 894		if (conflict == root)
 895			break;
 896
 897		/* Ok, expand resource to cover the conflict, then try again .. */
 898		if (conflict->start < new->start)
 899			new->start = conflict->start;
 900		if (conflict->end > new->end)
 901			new->end = conflict->end;
 902
 903		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 904	}
 905	write_unlock(&resource_lock);
 906}
 907
 908/**
 909 * remove_resource - Remove a resource in the resource tree
 910 * @old: resource to remove
 911 *
 912 * Returns 0 on success, -EINVAL if the resource is not valid.
 913 *
 914 * This function removes a resource previously inserted by insert_resource()
 915 * or insert_resource_conflict(), and moves the children (if any) up to
 916 * where they were before.  insert_resource() and insert_resource_conflict()
 917 * insert a new resource, and move any conflicting resources down to the
 918 * children of the new resource.
 919 *
 920 * insert_resource(), insert_resource_conflict() and remove_resource() are
 921 * intended for producers of resources, such as FW modules and bus drivers.
 922 */
 923int remove_resource(struct resource *old)
 924{
 925	int retval;
 926
 927	write_lock(&resource_lock);
 928	retval = __release_resource(old, false);
 929	write_unlock(&resource_lock);
 930	return retval;
 931}
 932EXPORT_SYMBOL_GPL(remove_resource);
 933
 934static int __adjust_resource(struct resource *res, resource_size_t start,
 935				resource_size_t size)
 936{
 937	struct resource *tmp, *parent = res->parent;
 938	resource_size_t end = start + size - 1;
 939	int result = -EBUSY;
 940
 941	if (!parent)
 942		goto skip;
 943
 944	if ((start < parent->start) || (end > parent->end))
 945		goto out;
 946
 947	if (res->sibling && (res->sibling->start <= end))
 948		goto out;
 949
 950	tmp = parent->child;
 951	if (tmp != res) {
 952		while (tmp->sibling != res)
 953			tmp = tmp->sibling;
 954		if (start <= tmp->end)
 955			goto out;
 956	}
 957
 958skip:
 959	for (tmp = res->child; tmp; tmp = tmp->sibling)
 960		if ((tmp->start < start) || (tmp->end > end))
 961			goto out;
 962
 963	res->start = start;
 964	res->end = end;
 965	result = 0;
 966
 967 out:
 968	return result;
 969}
 970
 971/**
 972 * adjust_resource - modify a resource's start and size
 973 * @res: resource to modify
 974 * @start: new start value
 975 * @size: new size
 976 *
 977 * Given an existing resource, change its start and size to match the
 978 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 979 * Existing children of the resource are assumed to be immutable.
 980 */
 981int adjust_resource(struct resource *res, resource_size_t start,
 982		    resource_size_t size)
 983{
 984	int result;
 985
 986	write_lock(&resource_lock);
 987	result = __adjust_resource(res, start, size);
 988	write_unlock(&resource_lock);
 989	return result;
 990}
 991EXPORT_SYMBOL(adjust_resource);
 992
 993static void __init
 994__reserve_region_with_split(struct resource *root, resource_size_t start,
 995			    resource_size_t end, const char *name)
 996{
 997	struct resource *parent = root;
 998	struct resource *conflict;
 999	struct resource *res = alloc_resource(GFP_ATOMIC);
1000	struct resource *next_res = NULL;
1001	int type = resource_type(root);
1002
1003	if (!res)
1004		return;
1005
1006	res->name = name;
1007	res->start = start;
1008	res->end = end;
1009	res->flags = type | IORESOURCE_BUSY;
1010	res->desc = IORES_DESC_NONE;
1011
1012	while (1) {
1013
1014		conflict = __request_resource(parent, res);
1015		if (!conflict) {
1016			if (!next_res)
1017				break;
1018			res = next_res;
1019			next_res = NULL;
1020			continue;
1021		}
1022
1023		/* conflict covered whole area */
1024		if (conflict->start <= res->start &&
1025				conflict->end >= res->end) {
1026			free_resource(res);
1027			WARN_ON(next_res);
1028			break;
1029		}
1030
1031		/* failed, split and try again */
1032		if (conflict->start > res->start) {
1033			end = res->end;
1034			res->end = conflict->start - 1;
1035			if (conflict->end < end) {
1036				next_res = alloc_resource(GFP_ATOMIC);
1037				if (!next_res) {
1038					free_resource(res);
1039					break;
1040				}
1041				next_res->name = name;
1042				next_res->start = conflict->end + 1;
1043				next_res->end = end;
1044				next_res->flags = type | IORESOURCE_BUSY;
1045				next_res->desc = IORES_DESC_NONE;
1046			}
1047		} else {
1048			res->start = conflict->end + 1;
1049		}
1050	}
1051
1052}
1053
1054void __init
1055reserve_region_with_split(struct resource *root, resource_size_t start,
1056			  resource_size_t end, const char *name)
1057{
1058	int abort = 0;
1059
1060	write_lock(&resource_lock);
1061	if (root->start > start || root->end < end) {
1062		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1063		       (unsigned long long)start, (unsigned long long)end,
1064		       root);
1065		if (start > root->end || end < root->start)
1066			abort = 1;
1067		else {
1068			if (end > root->end)
1069				end = root->end;
1070			if (start < root->start)
1071				start = root->start;
1072			pr_err("fixing request to [0x%llx-0x%llx]\n",
1073			       (unsigned long long)start,
1074			       (unsigned long long)end);
1075		}
1076		dump_stack();
1077	}
1078	if (!abort)
1079		__reserve_region_with_split(root, start, end, name);
1080	write_unlock(&resource_lock);
1081}
1082
1083/**
1084 * resource_alignment - calculate resource's alignment
1085 * @res: resource pointer
1086 *
1087 * Returns alignment on success, 0 (invalid alignment) on failure.
1088 */
1089resource_size_t resource_alignment(struct resource *res)
1090{
1091	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1092	case IORESOURCE_SIZEALIGN:
1093		return resource_size(res);
1094	case IORESOURCE_STARTALIGN:
1095		return res->start;
1096	default:
1097		return 0;
1098	}
1099}
1100
1101/*
1102 * This is compatibility stuff for IO resources.
1103 *
1104 * Note how this, unlike the above, knows about
1105 * the IO flag meanings (busy etc).
1106 *
1107 * request_region creates a new busy region.
1108 *
 
 
1109 * release_region releases a matching busy region.
1110 */
1111
1112static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1113
1114static struct inode *iomem_inode;
1115
1116#ifdef CONFIG_IO_STRICT_DEVMEM
1117static void revoke_iomem(struct resource *res)
1118{
1119	/* pairs with smp_store_release() in iomem_init_inode() */
1120	struct inode *inode = smp_load_acquire(&iomem_inode);
1121
1122	/*
1123	 * Check that the initialization has completed. Losing the race
1124	 * is ok because it means drivers are claiming resources before
1125	 * the fs_initcall level of init and prevent iomem_get_mapping users
1126	 * from establishing mappings.
1127	 */
1128	if (!inode)
1129		return;
1130
1131	/*
1132	 * The expectation is that the driver has successfully marked
1133	 * the resource busy by this point, so devmem_is_allowed()
1134	 * should start returning false, however for performance this
1135	 * does not iterate the entire resource range.
1136	 */
1137	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1138	    devmem_is_allowed(PHYS_PFN(res->end))) {
1139		/*
1140		 * *cringe* iomem=relaxed says "go ahead, what's the
1141		 * worst that can happen?"
1142		 */
1143		return;
1144	}
1145
1146	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1147}
1148#else
1149static void revoke_iomem(struct resource *res) {}
1150#endif
1151
1152struct address_space *iomem_get_mapping(void)
1153{
1154	/*
1155	 * This function is only called from file open paths, hence guaranteed
1156	 * that fs_initcalls have completed and no need to check for NULL. But
1157	 * since revoke_iomem can be called before the initcall we still need
1158	 * the barrier to appease checkers.
1159	 */
1160	return smp_load_acquire(&iomem_inode)->i_mapping;
1161}
1162
1163static int __request_region_locked(struct resource *res, struct resource *parent,
1164				   resource_size_t start, resource_size_t n,
1165				   const char *name, int flags)
1166{
1167	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
1168
1169	res->name = name;
1170	res->start = start;
1171	res->end = start + n - 1;
 
 
 
 
1172
1173	for (;;) {
1174		struct resource *conflict;
1175
1176		res->flags = resource_type(parent) | resource_ext_type(parent);
1177		res->flags |= IORESOURCE_BUSY | flags;
1178		res->desc = parent->desc;
1179
1180		conflict = __request_resource(parent, res);
1181		if (!conflict)
1182			break;
1183		/*
1184		 * mm/hmm.c reserves physical addresses which then
1185		 * become unavailable to other users.  Conflicts are
1186		 * not expected.  Warn to aid debugging if encountered.
1187		 */
1188		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1189			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1190				conflict->name, conflict, res);
1191		}
1192		if (conflict != parent) {
1193			if (!(conflict->flags & IORESOURCE_BUSY)) {
1194				parent = conflict;
1195				continue;
1196			}
1197		}
1198		if (conflict->flags & flags & IORESOURCE_MUXED) {
1199			add_wait_queue(&muxed_resource_wait, &wait);
1200			write_unlock(&resource_lock);
1201			set_current_state(TASK_UNINTERRUPTIBLE);
1202			schedule();
1203			remove_wait_queue(&muxed_resource_wait, &wait);
1204			write_lock(&resource_lock);
1205			continue;
1206		}
1207		/* Uhhuh, that didn't work out.. */
1208		return -EBUSY;
 
 
1209	}
1210
1211	return 0;
1212}
 
1213
1214/**
1215 * __request_region - create a new busy resource region
1216 * @parent: parent resource descriptor
1217 * @start: resource start address
1218 * @n: resource region size
1219 * @name: reserving caller's ID string
1220 * @flags: IO resource flags
 
 
 
 
 
 
 
1221 */
1222struct resource *__request_region(struct resource *parent,
1223				  resource_size_t start, resource_size_t n,
1224				  const char *name, int flags)
1225{
1226	struct resource *res = alloc_resource(GFP_KERNEL);
1227	int ret;
1228
 
1229	if (!res)
1230		return NULL;
1231
1232	write_lock(&resource_lock);
1233	ret = __request_region_locked(res, parent, start, n, name, flags);
1234	write_unlock(&resource_lock);
1235
1236	if (ret) {
1237		free_resource(res);
1238		return NULL;
1239	}
1240
1241	if (parent == &iomem_resource)
1242		revoke_iomem(res);
1243
1244	return res;
1245}
1246EXPORT_SYMBOL(__request_region);
1247
1248/**
1249 * __release_region - release a previously reserved resource region
1250 * @parent: parent resource descriptor
1251 * @start: resource start address
1252 * @n: resource region size
1253 *
1254 * The described resource region must match a currently busy region.
1255 */
1256void __release_region(struct resource *parent, resource_size_t start,
1257		      resource_size_t n)
1258{
1259	struct resource **p;
1260	resource_size_t end;
1261
1262	p = &parent->child;
1263	end = start + n - 1;
1264
1265	write_lock(&resource_lock);
1266
1267	for (;;) {
1268		struct resource *res = *p;
1269
1270		if (!res)
1271			break;
1272		if (res->start <= start && res->end >= end) {
1273			if (!(res->flags & IORESOURCE_BUSY)) {
1274				p = &res->child;
1275				continue;
1276			}
1277			if (res->start != start || res->end != end)
1278				break;
1279			*p = res->sibling;
1280			write_unlock(&resource_lock);
1281			if (res->flags & IORESOURCE_MUXED)
1282				wake_up(&muxed_resource_wait);
1283			free_resource(res);
1284			return;
1285		}
1286		p = &res->sibling;
1287	}
1288
1289	write_unlock(&resource_lock);
1290
1291	printk(KERN_WARNING "Trying to free nonexistent resource "
1292		"<%016llx-%016llx>\n", (unsigned long long)start,
1293		(unsigned long long)end);
1294}
1295EXPORT_SYMBOL(__release_region);
1296
1297#ifdef CONFIG_MEMORY_HOTREMOVE
1298/**
1299 * release_mem_region_adjustable - release a previously reserved memory region
 
1300 * @start: resource start address
1301 * @size: resource region size
1302 *
1303 * This interface is intended for memory hot-delete.  The requested region
1304 * is released from a currently busy memory resource.  The requested region
1305 * must either match exactly or fit into a single busy resource entry.  In
1306 * the latter case, the remaining resource is adjusted accordingly.
1307 * Existing children of the busy memory resource must be immutable in the
1308 * request.
1309 *
1310 * Note:
1311 * - Additional release conditions, such as overlapping region, can be
1312 *   supported after they are confirmed as valid cases.
1313 * - When a busy memory resource gets split into two entries, the code
1314 *   assumes that all children remain in the lower address entry for
1315 *   simplicity.  Enhance this logic when necessary.
1316 */
1317void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
 
1318{
1319	struct resource *parent = &iomem_resource;
1320	struct resource *new_res = NULL;
1321	bool alloc_nofail = false;
1322	struct resource **p;
1323	struct resource *res;
 
1324	resource_size_t end;
 
1325
1326	end = start + size - 1;
1327	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1328		return;
1329
1330	/*
1331	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1332	 * just before releasing the region. This is highly unlikely to
1333	 * fail - let's play save and make it never fail as the caller cannot
1334	 * perform any error handling (e.g., trying to re-add memory will fail
1335	 * similarly).
1336	 */
1337retry:
1338	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1339
1340	p = &parent->child;
1341	write_lock(&resource_lock);
1342
1343	while ((res = *p)) {
1344		if (res->start >= end)
1345			break;
1346
1347		/* look for the next resource if it does not fit into */
1348		if (res->start > start || res->end < end) {
1349			p = &res->sibling;
1350			continue;
1351		}
1352
1353		/*
1354		 * All memory regions added from memory-hotplug path have the
1355		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1356		 * this flag, we know that we are dealing with a resource coming
1357		 * from HMM/devm. HMM/devm use another mechanism to add/release
1358		 * a resource. This goes via devm_request_mem_region and
1359		 * devm_release_mem_region.
1360		 * HMM/devm take care to release their resources when they want,
1361		 * so if we are dealing with them, let us just back off here.
1362		 */
1363		if (!(res->flags & IORESOURCE_SYSRAM)) {
1364			break;
1365		}
1366
1367		if (!(res->flags & IORESOURCE_MEM))
1368			break;
1369
1370		if (!(res->flags & IORESOURCE_BUSY)) {
1371			p = &res->child;
1372			continue;
1373		}
1374
1375		/* found the target resource; let's adjust accordingly */
1376		if (res->start == start && res->end == end) {
1377			/* free the whole entry */
1378			*p = res->sibling;
1379			free_resource(res);
 
1380		} else if (res->start == start && res->end != end) {
1381			/* adjust the start */
1382			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1383						       res->end - end));
1384		} else if (res->start != start && res->end == end) {
1385			/* adjust the end */
1386			WARN_ON_ONCE(__adjust_resource(res, res->start,
1387						       start - res->start));
1388		} else {
1389			/* split into two entries - we need a new resource */
1390			if (!new_res) {
1391				new_res = alloc_resource(GFP_ATOMIC);
1392				if (!new_res) {
1393					alloc_nofail = true;
1394					write_unlock(&resource_lock);
1395					goto retry;
1396				}
1397			}
1398			new_res->name = res->name;
1399			new_res->start = end + 1;
1400			new_res->end = res->end;
1401			new_res->flags = res->flags;
1402			new_res->desc = res->desc;
1403			new_res->parent = res->parent;
1404			new_res->sibling = res->sibling;
1405			new_res->child = NULL;
1406
1407			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1408							   start - res->start)))
 
1409				break;
1410			res->sibling = new_res;
1411			new_res = NULL;
1412		}
1413
1414		break;
1415	}
1416
1417	write_unlock(&resource_lock);
1418	free_resource(new_res);
 
1419}
1420#endif	/* CONFIG_MEMORY_HOTREMOVE */
1421
1422#ifdef CONFIG_MEMORY_HOTPLUG
1423static bool system_ram_resources_mergeable(struct resource *r1,
1424					   struct resource *r2)
1425{
1426	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1427	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1428	       r1->name == r2->name && r1->desc == r2->desc &&
1429	       !r1->child && !r2->child;
1430}
1431
1432/**
1433 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1434 *	merge it with adjacent, mergeable resources
1435 * @res: resource descriptor
1436 *
1437 * This interface is intended for memory hotplug, whereby lots of contiguous
1438 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1439 * the actual resource boundaries are not of interest (e.g., it might be
1440 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1441 * same parent, and that don't have any children are considered. All mergeable
1442 * resources must be immutable during the request.
1443 *
1444 * Note:
1445 * - The caller has to make sure that no pointers to resources that are
1446 *   marked mergeable are used anymore after this call - the resource might
1447 *   be freed and the pointer might be stale!
1448 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1449 */
1450void merge_system_ram_resource(struct resource *res)
1451{
1452	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1453	struct resource *cur;
1454
1455	if (WARN_ON_ONCE((res->flags & flags) != flags))
1456		return;
1457
1458	write_lock(&resource_lock);
1459	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1460
1461	/* Try to merge with next item in the list. */
1462	cur = res->sibling;
1463	if (cur && system_ram_resources_mergeable(res, cur)) {
1464		res->end = cur->end;
1465		res->sibling = cur->sibling;
1466		free_resource(cur);
1467	}
1468
1469	/* Try to merge with previous item in the list. */
1470	cur = res->parent->child;
1471	while (cur && cur->sibling != res)
1472		cur = cur->sibling;
1473	if (cur && system_ram_resources_mergeable(cur, res)) {
1474		cur->end = res->end;
1475		cur->sibling = res->sibling;
1476		free_resource(res);
1477	}
1478	write_unlock(&resource_lock);
1479}
1480#endif	/* CONFIG_MEMORY_HOTPLUG */
1481
1482/*
1483 * Managed region resource
1484 */
1485static void devm_resource_release(struct device *dev, void *ptr)
1486{
1487	struct resource **r = ptr;
1488
1489	release_resource(*r);
1490}
1491
1492/**
1493 * devm_request_resource() - request and reserve an I/O or memory resource
1494 * @dev: device for which to request the resource
1495 * @root: root of the resource tree from which to request the resource
1496 * @new: descriptor of the resource to request
1497 *
1498 * This is a device-managed version of request_resource(). There is usually
1499 * no need to release resources requested by this function explicitly since
1500 * that will be taken care of when the device is unbound from its driver.
1501 * If for some reason the resource needs to be released explicitly, because
1502 * of ordering issues for example, drivers must call devm_release_resource()
1503 * rather than the regular release_resource().
1504 *
1505 * When a conflict is detected between any existing resources and the newly
1506 * requested resource, an error message will be printed.
1507 *
1508 * Returns 0 on success or a negative error code on failure.
1509 */
1510int devm_request_resource(struct device *dev, struct resource *root,
1511			  struct resource *new)
1512{
1513	struct resource *conflict, **ptr;
1514
1515	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1516	if (!ptr)
1517		return -ENOMEM;
1518
1519	*ptr = new;
1520
1521	conflict = request_resource_conflict(root, new);
1522	if (conflict) {
1523		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1524			new, conflict->name, conflict);
1525		devres_free(ptr);
1526		return -EBUSY;
1527	}
1528
1529	devres_add(dev, ptr);
1530	return 0;
1531}
1532EXPORT_SYMBOL(devm_request_resource);
1533
1534static int devm_resource_match(struct device *dev, void *res, void *data)
1535{
1536	struct resource **ptr = res;
1537
1538	return *ptr == data;
1539}
1540
1541/**
1542 * devm_release_resource() - release a previously requested resource
1543 * @dev: device for which to release the resource
1544 * @new: descriptor of the resource to release
1545 *
1546 * Releases a resource previously requested using devm_request_resource().
1547 */
1548void devm_release_resource(struct device *dev, struct resource *new)
1549{
1550	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1551			       new));
1552}
1553EXPORT_SYMBOL(devm_release_resource);
1554
1555struct region_devres {
1556	struct resource *parent;
1557	resource_size_t start;
1558	resource_size_t n;
1559};
1560
1561static void devm_region_release(struct device *dev, void *res)
1562{
1563	struct region_devres *this = res;
1564
1565	__release_region(this->parent, this->start, this->n);
1566}
1567
1568static int devm_region_match(struct device *dev, void *res, void *match_data)
1569{
1570	struct region_devres *this = res, *match = match_data;
1571
1572	return this->parent == match->parent &&
1573		this->start == match->start && this->n == match->n;
1574}
1575
1576struct resource *
1577__devm_request_region(struct device *dev, struct resource *parent,
1578		      resource_size_t start, resource_size_t n, const char *name)
1579{
1580	struct region_devres *dr = NULL;
1581	struct resource *res;
1582
1583	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1584			  GFP_KERNEL);
1585	if (!dr)
1586		return NULL;
1587
1588	dr->parent = parent;
1589	dr->start = start;
1590	dr->n = n;
1591
1592	res = __request_region(parent, start, n, name, 0);
1593	if (res)
1594		devres_add(dev, dr);
1595	else
1596		devres_free(dr);
1597
1598	return res;
1599}
1600EXPORT_SYMBOL(__devm_request_region);
1601
1602void __devm_release_region(struct device *dev, struct resource *parent,
1603			   resource_size_t start, resource_size_t n)
1604{
1605	struct region_devres match_data = { parent, start, n };
1606
1607	__release_region(parent, start, n);
1608	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1609			       &match_data));
1610}
1611EXPORT_SYMBOL(__devm_release_region);
1612
1613/*
1614 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1615 */
1616#define MAXRESERVE 4
1617static int __init reserve_setup(char *str)
1618{
1619	static int reserved;
1620	static struct resource reserve[MAXRESERVE];
1621
1622	for (;;) {
1623		unsigned int io_start, io_num;
1624		int x = reserved;
1625		struct resource *parent;
1626
1627		if (get_option(&str, &io_start) != 2)
1628			break;
1629		if (get_option(&str, &io_num) == 0)
1630			break;
1631		if (x < MAXRESERVE) {
1632			struct resource *res = reserve + x;
1633
1634			/*
1635			 * If the region starts below 0x10000, we assume it's
1636			 * I/O port space; otherwise assume it's memory.
1637			 */
1638			if (io_start < 0x10000) {
1639				res->flags = IORESOURCE_IO;
1640				parent = &ioport_resource;
1641			} else {
1642				res->flags = IORESOURCE_MEM;
1643				parent = &iomem_resource;
1644			}
1645			res->name = "reserved";
1646			res->start = io_start;
1647			res->end = io_start + io_num - 1;
1648			res->flags |= IORESOURCE_BUSY;
1649			res->desc = IORES_DESC_NONE;
1650			res->child = NULL;
1651			if (request_resource(parent, res) == 0)
1652				reserved = x+1;
1653		}
1654	}
1655	return 1;
1656}
 
1657__setup("reserve=", reserve_setup);
1658
1659/*
1660 * Check if the requested addr and size spans more than any slot in the
1661 * iomem resource tree.
1662 */
1663int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1664{
1665	struct resource *p = &iomem_resource;
1666	int err = 0;
1667	loff_t l;
1668
1669	read_lock(&resource_lock);
1670	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1671		/*
1672		 * We can probably skip the resources without
1673		 * IORESOURCE_IO attribute?
1674		 */
1675		if (p->start >= addr + size)
1676			continue;
1677		if (p->end < addr)
1678			continue;
1679		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1680		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1681			continue;
1682		/*
1683		 * if a resource is "BUSY", it's not a hardware resource
1684		 * but a driver mapping of such a resource; we don't want
1685		 * to warn for those; some drivers legitimately map only
1686		 * partial hardware resources. (example: vesafb)
1687		 */
1688		if (p->flags & IORESOURCE_BUSY)
1689			continue;
1690
1691		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
 
1692		       (unsigned long long)addr,
1693		       (unsigned long long)(addr + size - 1),
1694		       p->name, p);
 
 
1695		err = -1;
1696		break;
1697	}
1698	read_unlock(&resource_lock);
1699
1700	return err;
1701}
1702
1703#ifdef CONFIG_STRICT_DEVMEM
1704static int strict_iomem_checks = 1;
1705#else
1706static int strict_iomem_checks;
1707#endif
1708
1709/*
1710 * check if an address is reserved in the iomem resource tree
1711 * returns true if reserved, false if not reserved.
1712 */
1713bool iomem_is_exclusive(u64 addr)
1714{
1715	struct resource *p = &iomem_resource;
1716	bool err = false;
1717	loff_t l;
1718	int size = PAGE_SIZE;
1719
1720	if (!strict_iomem_checks)
1721		return false;
1722
1723	addr = addr & PAGE_MASK;
1724
1725	read_lock(&resource_lock);
1726	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1727		/*
1728		 * We can probably skip the resources without
1729		 * IORESOURCE_IO attribute?
1730		 */
1731		if (p->start >= addr + size)
1732			break;
1733		if (p->end < addr)
1734			continue;
1735		/*
1736		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1737		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1738		 * resource is busy.
1739		 */
1740		if ((p->flags & IORESOURCE_BUSY) == 0)
1741			continue;
1742		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1743				|| p->flags & IORESOURCE_EXCLUSIVE) {
1744			err = true;
1745			break;
1746		}
1747	}
1748	read_unlock(&resource_lock);
1749
1750	return err;
1751}
1752
1753struct resource_entry *resource_list_create_entry(struct resource *res,
1754						  size_t extra_size)
1755{
1756	struct resource_entry *entry;
1757
1758	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1759	if (entry) {
1760		INIT_LIST_HEAD(&entry->node);
1761		entry->res = res ? res : &entry->__res;
1762	}
1763
1764	return entry;
1765}
1766EXPORT_SYMBOL(resource_list_create_entry);
1767
1768void resource_list_free(struct list_head *head)
1769{
1770	struct resource_entry *entry, *tmp;
1771
1772	list_for_each_entry_safe(entry, tmp, head, node)
1773		resource_list_destroy_entry(entry);
1774}
1775EXPORT_SYMBOL(resource_list_free);
1776
1777#ifdef CONFIG_DEVICE_PRIVATE
1778static struct resource *__request_free_mem_region(struct device *dev,
1779		struct resource *base, unsigned long size, const char *name)
1780{
1781	resource_size_t end, addr;
1782	struct resource *res;
1783	struct region_devres *dr = NULL;
1784
1785	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1786	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1787	addr = end - size + 1UL;
1788
1789	res = alloc_resource(GFP_KERNEL);
1790	if (!res)
1791		return ERR_PTR(-ENOMEM);
1792
1793	if (dev) {
1794		dr = devres_alloc(devm_region_release,
1795				sizeof(struct region_devres), GFP_KERNEL);
1796		if (!dr) {
1797			free_resource(res);
1798			return ERR_PTR(-ENOMEM);
1799		}
1800	}
1801
1802	write_lock(&resource_lock);
1803	for (; addr > size && addr >= base->start; addr -= size) {
1804		if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1805				REGION_DISJOINT)
1806			continue;
1807
1808		if (__request_region_locked(res, &iomem_resource, addr, size,
1809						name, 0))
1810			break;
1811
1812		if (dev) {
1813			dr->parent = &iomem_resource;
1814			dr->start = addr;
1815			dr->n = size;
1816			devres_add(dev, dr);
1817		}
1818
1819		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1820		write_unlock(&resource_lock);
1821
1822		/*
1823		 * A driver is claiming this region so revoke any mappings.
1824		 */
1825		revoke_iomem(res);
1826		return res;
1827	}
1828	write_unlock(&resource_lock);
1829
1830	free_resource(res);
1831	if (dr)
1832		devres_free(dr);
1833
1834	return ERR_PTR(-ERANGE);
1835}
1836
1837/**
1838 * devm_request_free_mem_region - find free region for device private memory
1839 *
1840 * @dev: device struct to bind the resource to
1841 * @size: size in bytes of the device memory to add
1842 * @base: resource tree to look in
1843 *
1844 * This function tries to find an empty range of physical address big enough to
1845 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1846 * memory, which in turn allocates struct pages.
1847 */
1848struct resource *devm_request_free_mem_region(struct device *dev,
1849		struct resource *base, unsigned long size)
1850{
1851	return __request_free_mem_region(dev, base, size, dev_name(dev));
1852}
1853EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1854
1855struct resource *request_free_mem_region(struct resource *base,
1856		unsigned long size, const char *name)
1857{
1858	return __request_free_mem_region(NULL, base, size, name);
1859}
1860EXPORT_SYMBOL_GPL(request_free_mem_region);
1861
1862#endif /* CONFIG_DEVICE_PRIVATE */
1863
1864static int __init strict_iomem(char *str)
1865{
1866	if (strstr(str, "relaxed"))
1867		strict_iomem_checks = 0;
1868	if (strstr(str, "strict"))
1869		strict_iomem_checks = 1;
1870	return 1;
1871}
1872
1873static int iomem_fs_init_fs_context(struct fs_context *fc)
1874{
1875	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1876}
1877
1878static struct file_system_type iomem_fs_type = {
1879	.name		= "iomem",
1880	.owner		= THIS_MODULE,
1881	.init_fs_context = iomem_fs_init_fs_context,
1882	.kill_sb	= kill_anon_super,
1883};
1884
1885static int __init iomem_init_inode(void)
1886{
1887	static struct vfsmount *iomem_vfs_mount;
1888	static int iomem_fs_cnt;
1889	struct inode *inode;
1890	int rc;
1891
1892	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1893	if (rc < 0) {
1894		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1895		return rc;
1896	}
1897
1898	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1899	if (IS_ERR(inode)) {
1900		rc = PTR_ERR(inode);
1901		pr_err("Cannot allocate inode for iomem: %d\n", rc);
1902		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1903		return rc;
1904	}
1905
1906	/*
1907	 * Publish iomem revocation inode initialized.
1908	 * Pairs with smp_load_acquire() in revoke_iomem().
1909	 */
1910	smp_store_release(&iomem_inode, inode);
1911
1912	return 0;
1913}
1914
1915fs_initcall(iomem_init_inode);
1916
1917__setup("iomem=", strict_iomem);