Linux Audio

Check our new training course

Loading...
v3.15
 
  1/* kernel/rwsem.c: R/W semaphores, public implementation
  2 *
  3 * Written by David Howells (dhowells@redhat.com).
  4 * Derived from asm-i386/semaphore.h
 
 
 
 
 
 
 
 
 
 
  5 */
  6
  7#include <linux/types.h>
  8#include <linux/kernel.h>
  9#include <linux/sched.h>
 
 
 
 
 
 
 10#include <linux/export.h>
 11#include <linux/rwsem.h>
 12
 13#include <linux/atomic.h>
 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15/*
 16 * lock for reading
 17 */
 18void __sched down_read(struct rw_semaphore *sem)
 19{
 20	might_sleep();
 21	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
 22
 23	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
 24}
 25
 26EXPORT_SYMBOL(down_read);
 27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28/*
 29 * trylock for reading -- returns 1 if successful, 0 if contention
 30 */
 31int down_read_trylock(struct rw_semaphore *sem)
 32{
 33	int ret = __down_read_trylock(sem);
 34
 35	if (ret == 1)
 36		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
 37	return ret;
 38}
 39
 40EXPORT_SYMBOL(down_read_trylock);
 41
 42/*
 43 * lock for writing
 44 */
 45void __sched down_write(struct rw_semaphore *sem)
 46{
 47	might_sleep();
 48	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
 49
 50	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
 51}
 52
 53EXPORT_SYMBOL(down_write);
 54
 55/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56 * trylock for writing -- returns 1 if successful, 0 if contention
 57 */
 58int down_write_trylock(struct rw_semaphore *sem)
 59{
 60	int ret = __down_write_trylock(sem);
 61
 62	if (ret == 1)
 63		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
 
 64	return ret;
 65}
 66
 67EXPORT_SYMBOL(down_write_trylock);
 68
 69/*
 70 * release a read lock
 71 */
 72void up_read(struct rw_semaphore *sem)
 73{
 74	rwsem_release(&sem->dep_map, 1, _RET_IP_);
 75
 76	__up_read(sem);
 77}
 78
 79EXPORT_SYMBOL(up_read);
 80
 81/*
 82 * release a write lock
 83 */
 84void up_write(struct rw_semaphore *sem)
 85{
 86	rwsem_release(&sem->dep_map, 1, _RET_IP_);
 87
 88	__up_write(sem);
 89}
 90
 91EXPORT_SYMBOL(up_write);
 92
 93/*
 94 * downgrade write lock to read lock
 95 */
 96void downgrade_write(struct rw_semaphore *sem)
 97{
 98	/*
 99	 * lockdep: a downgraded write will live on as a write
100	 * dependency.
101	 */
102	__downgrade_write(sem);
103}
104
105EXPORT_SYMBOL(downgrade_write);
106
107#ifdef CONFIG_DEBUG_LOCK_ALLOC
108
109void down_read_nested(struct rw_semaphore *sem, int subclass)
110{
111	might_sleep();
112	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
113
114	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
115}
116
117EXPORT_SYMBOL(down_read_nested);
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
120{
121	might_sleep();
122	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
123
124	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
125}
126
127EXPORT_SYMBOL(_down_write_nest_lock);
128
129void down_read_non_owner(struct rw_semaphore *sem)
130{
131	might_sleep();
132
133	__down_read(sem);
 
134}
135
136EXPORT_SYMBOL(down_read_non_owner);
137
138void down_write_nested(struct rw_semaphore *sem, int subclass)
139{
140	might_sleep();
141	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
142
143	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
144}
145
146EXPORT_SYMBOL(down_write_nested);
147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148void up_read_non_owner(struct rw_semaphore *sem)
149{
 
150	__up_read(sem);
151}
152
153EXPORT_SYMBOL(up_read_non_owner);
154
155#endif
156
157
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* kernel/rwsem.c: R/W semaphores, public implementation
   3 *
   4 * Written by David Howells (dhowells@redhat.com).
   5 * Derived from asm-i386/semaphore.h
   6 *
   7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
   8 * and Michel Lespinasse <walken@google.com>
   9 *
  10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
  11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
  12 *
  13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
  14 * Waiman Long <longman@redhat.com> and
  15 * Peter Zijlstra <peterz@infradead.org>.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/kernel.h>
  20#include <linux/sched.h>
  21#include <linux/sched/rt.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/wake_q.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/clock.h>
  27#include <linux/export.h>
  28#include <linux/rwsem.h>
 
  29#include <linux/atomic.h>
  30
  31#include "lock_events.h"
  32
  33/*
  34 * The least significant 2 bits of the owner value has the following
  35 * meanings when set.
  36 *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
  37 *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
  38 *
  39 * When the rwsem is reader-owned and a spinning writer has timed out,
  40 * the nonspinnable bit will be set to disable optimistic spinning.
  41
  42 * When a writer acquires a rwsem, it puts its task_struct pointer
  43 * into the owner field. It is cleared after an unlock.
  44 *
  45 * When a reader acquires a rwsem, it will also puts its task_struct
  46 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
  47 * On unlock, the owner field will largely be left untouched. So
  48 * for a free or reader-owned rwsem, the owner value may contain
  49 * information about the last reader that acquires the rwsem.
  50 *
  51 * That information may be helpful in debugging cases where the system
  52 * seems to hang on a reader owned rwsem especially if only one reader
  53 * is involved. Ideally we would like to track all the readers that own
  54 * a rwsem, but the overhead is simply too big.
  55 *
  56 * A fast path reader optimistic lock stealing is supported when the rwsem
  57 * is previously owned by a writer and the following conditions are met:
  58 *  - OSQ is empty
  59 *  - rwsem is not currently writer owned
  60 *  - the handoff isn't set.
  61 */
  62#define RWSEM_READER_OWNED	(1UL << 0)
  63#define RWSEM_NONSPINNABLE	(1UL << 1)
  64#define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
  65
  66#ifdef CONFIG_DEBUG_RWSEMS
  67# define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
  68	if (!debug_locks_silent &&				\
  69	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
  70		#c, atomic_long_read(&(sem)->count),		\
  71		(unsigned long) sem->magic,			\
  72		atomic_long_read(&(sem)->owner), (long)current,	\
  73		list_empty(&(sem)->wait_list) ? "" : "not "))	\
  74			debug_locks_off();			\
  75	} while (0)
  76#else
  77# define DEBUG_RWSEMS_WARN_ON(c, sem)
  78#endif
  79
  80/*
  81 * On 64-bit architectures, the bit definitions of the count are:
  82 *
  83 * Bit  0    - writer locked bit
  84 * Bit  1    - waiters present bit
  85 * Bit  2    - lock handoff bit
  86 * Bits 3-7  - reserved
  87 * Bits 8-62 - 55-bit reader count
  88 * Bit  63   - read fail bit
  89 *
  90 * On 32-bit architectures, the bit definitions of the count are:
  91 *
  92 * Bit  0    - writer locked bit
  93 * Bit  1    - waiters present bit
  94 * Bit  2    - lock handoff bit
  95 * Bits 3-7  - reserved
  96 * Bits 8-30 - 23-bit reader count
  97 * Bit  31   - read fail bit
  98 *
  99 * It is not likely that the most significant bit (read fail bit) will ever
 100 * be set. This guard bit is still checked anyway in the down_read() fastpath
 101 * just in case we need to use up more of the reader bits for other purpose
 102 * in the future.
 103 *
 104 * atomic_long_fetch_add() is used to obtain reader lock, whereas
 105 * atomic_long_cmpxchg() will be used to obtain writer lock.
 106 *
 107 * There are three places where the lock handoff bit may be set or cleared.
 108 * 1) rwsem_mark_wake() for readers.
 109 * 2) rwsem_try_write_lock() for writers.
 110 * 3) Error path of rwsem_down_write_slowpath().
 111 *
 112 * For all the above cases, wait_lock will be held. A writer must also
 113 * be the first one in the wait_list to be eligible for setting the handoff
 114 * bit. So concurrent setting/clearing of handoff bit is not possible.
 115 */
 116#define RWSEM_WRITER_LOCKED	(1UL << 0)
 117#define RWSEM_FLAG_WAITERS	(1UL << 1)
 118#define RWSEM_FLAG_HANDOFF	(1UL << 2)
 119#define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
 120
 121#define RWSEM_READER_SHIFT	8
 122#define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
 123#define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
 124#define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
 125#define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
 126#define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
 127				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
 128
 129/*
 130 * All writes to owner are protected by WRITE_ONCE() to make sure that
 131 * store tearing can't happen as optimistic spinners may read and use
 132 * the owner value concurrently without lock. Read from owner, however,
 133 * may not need READ_ONCE() as long as the pointer value is only used
 134 * for comparison and isn't being dereferenced.
 135 */
 136static inline void rwsem_set_owner(struct rw_semaphore *sem)
 137{
 138	atomic_long_set(&sem->owner, (long)current);
 139}
 140
 141static inline void rwsem_clear_owner(struct rw_semaphore *sem)
 142{
 143	atomic_long_set(&sem->owner, 0);
 144}
 145
 146/*
 147 * Test the flags in the owner field.
 148 */
 149static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
 150{
 151	return atomic_long_read(&sem->owner) & flags;
 152}
 153
 154/*
 155 * The task_struct pointer of the last owning reader will be left in
 156 * the owner field.
 157 *
 158 * Note that the owner value just indicates the task has owned the rwsem
 159 * previously, it may not be the real owner or one of the real owners
 160 * anymore when that field is examined, so take it with a grain of salt.
 161 *
 162 * The reader non-spinnable bit is preserved.
 163 */
 164static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 165					    struct task_struct *owner)
 166{
 167	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
 168		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
 169
 170	atomic_long_set(&sem->owner, val);
 171}
 172
 173static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
 174{
 175	__rwsem_set_reader_owned(sem, current);
 176}
 177
 178/*
 179 * Return true if the rwsem is owned by a reader.
 180 */
 181static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 182{
 183#ifdef CONFIG_DEBUG_RWSEMS
 184	/*
 185	 * Check the count to see if it is write-locked.
 186	 */
 187	long count = atomic_long_read(&sem->count);
 188
 189	if (count & RWSEM_WRITER_MASK)
 190		return false;
 191#endif
 192	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
 193}
 194
 195#ifdef CONFIG_DEBUG_RWSEMS
 196/*
 197 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
 198 * is a task pointer in owner of a reader-owned rwsem, it will be the
 199 * real owner or one of the real owners. The only exception is when the
 200 * unlock is done by up_read_non_owner().
 201 */
 202static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 203{
 204	unsigned long val = atomic_long_read(&sem->owner);
 205
 206	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
 207		if (atomic_long_try_cmpxchg(&sem->owner, &val,
 208					    val & RWSEM_OWNER_FLAGS_MASK))
 209			return;
 210	}
 211}
 212#else
 213static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 214{
 215}
 216#endif
 217
 218/*
 219 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
 220 * remains set. Otherwise, the operation will be aborted.
 221 */
 222static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
 223{
 224	unsigned long owner = atomic_long_read(&sem->owner);
 225
 226	do {
 227		if (!(owner & RWSEM_READER_OWNED))
 228			break;
 229		if (owner & RWSEM_NONSPINNABLE)
 230			break;
 231	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
 232					  owner | RWSEM_NONSPINNABLE));
 233}
 234
 235static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
 236{
 237	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
 238
 239	if (WARN_ON_ONCE(*cntp < 0))
 240		rwsem_set_nonspinnable(sem);
 241
 242	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
 243		rwsem_set_reader_owned(sem);
 244		return true;
 245	}
 246
 247	return false;
 248}
 249
 250static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
 251{
 252	long tmp = RWSEM_UNLOCKED_VALUE;
 253
 254	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
 255		rwsem_set_owner(sem);
 256		return true;
 257	}
 258
 259	return false;
 260}
 261
 262/*
 263 * Return just the real task structure pointer of the owner
 264 */
 265static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
 266{
 267	return (struct task_struct *)
 268		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
 269}
 270
 271/*
 272 * Return the real task structure pointer of the owner and the embedded
 273 * flags in the owner. pflags must be non-NULL.
 274 */
 275static inline struct task_struct *
 276rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
 277{
 278	unsigned long owner = atomic_long_read(&sem->owner);
 279
 280	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
 281	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
 282}
 283
 284/*
 285 * Guide to the rw_semaphore's count field.
 286 *
 287 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
 288 * by a writer.
 289 *
 290 * The lock is owned by readers when
 291 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
 292 * (2) some of the reader bits are set in count, and
 293 * (3) the owner field has RWSEM_READ_OWNED bit set.
 294 *
 295 * Having some reader bits set is not enough to guarantee a readers owned
 296 * lock as the readers may be in the process of backing out from the count
 297 * and a writer has just released the lock. So another writer may steal
 298 * the lock immediately after that.
 299 */
 300
 301/*
 302 * Initialize an rwsem:
 303 */
 304void __init_rwsem(struct rw_semaphore *sem, const char *name,
 305		  struct lock_class_key *key)
 306{
 307#ifdef CONFIG_DEBUG_LOCK_ALLOC
 308	/*
 309	 * Make sure we are not reinitializing a held semaphore:
 310	 */
 311	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 312	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
 313#endif
 314#ifdef CONFIG_DEBUG_RWSEMS
 315	sem->magic = sem;
 316#endif
 317	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
 318	raw_spin_lock_init(&sem->wait_lock);
 319	INIT_LIST_HEAD(&sem->wait_list);
 320	atomic_long_set(&sem->owner, 0L);
 321#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 322	osq_lock_init(&sem->osq);
 323#endif
 324}
 325EXPORT_SYMBOL(__init_rwsem);
 326
 327enum rwsem_waiter_type {
 328	RWSEM_WAITING_FOR_WRITE,
 329	RWSEM_WAITING_FOR_READ
 330};
 331
 332struct rwsem_waiter {
 333	struct list_head list;
 334	struct task_struct *task;
 335	enum rwsem_waiter_type type;
 336	unsigned long timeout;
 337};
 338#define rwsem_first_waiter(sem) \
 339	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
 340
 341enum rwsem_wake_type {
 342	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
 343	RWSEM_WAKE_READERS,	/* Wake readers only */
 344	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
 345};
 346
 347enum writer_wait_state {
 348	WRITER_NOT_FIRST,	/* Writer is not first in wait list */
 349	WRITER_FIRST,		/* Writer is first in wait list     */
 350	WRITER_HANDOFF		/* Writer is first & handoff needed */
 351};
 352
 353/*
 354 * The typical HZ value is either 250 or 1000. So set the minimum waiting
 355 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
 356 * queue before initiating the handoff protocol.
 357 */
 358#define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
 359
 360/*
 361 * Magic number to batch-wakeup waiting readers, even when writers are
 362 * also present in the queue. This both limits the amount of work the
 363 * waking thread must do and also prevents any potential counter overflow,
 364 * however unlikely.
 365 */
 366#define MAX_READERS_WAKEUP	0x100
 367
 368/*
 369 * handle the lock release when processes blocked on it that can now run
 370 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
 371 *   have been set.
 372 * - there must be someone on the queue
 373 * - the wait_lock must be held by the caller
 374 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 375 *   to actually wakeup the blocked task(s) and drop the reference count,
 376 *   preferably when the wait_lock is released
 377 * - woken process blocks are discarded from the list after having task zeroed
 378 * - writers are only marked woken if downgrading is false
 379 */
 380static void rwsem_mark_wake(struct rw_semaphore *sem,
 381			    enum rwsem_wake_type wake_type,
 382			    struct wake_q_head *wake_q)
 383{
 384	struct rwsem_waiter *waiter, *tmp;
 385	long oldcount, woken = 0, adjustment = 0;
 386	struct list_head wlist;
 387
 388	lockdep_assert_held(&sem->wait_lock);
 389
 390	/*
 391	 * Take a peek at the queue head waiter such that we can determine
 392	 * the wakeup(s) to perform.
 393	 */
 394	waiter = rwsem_first_waiter(sem);
 395
 396	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 397		if (wake_type == RWSEM_WAKE_ANY) {
 398			/*
 399			 * Mark writer at the front of the queue for wakeup.
 400			 * Until the task is actually later awoken later by
 401			 * the caller, other writers are able to steal it.
 402			 * Readers, on the other hand, will block as they
 403			 * will notice the queued writer.
 404			 */
 405			wake_q_add(wake_q, waiter->task);
 406			lockevent_inc(rwsem_wake_writer);
 407		}
 408
 409		return;
 410	}
 411
 412	/*
 413	 * No reader wakeup if there are too many of them already.
 414	 */
 415	if (unlikely(atomic_long_read(&sem->count) < 0))
 416		return;
 417
 418	/*
 419	 * Writers might steal the lock before we grant it to the next reader.
 420	 * We prefer to do the first reader grant before counting readers
 421	 * so we can bail out early if a writer stole the lock.
 422	 */
 423	if (wake_type != RWSEM_WAKE_READ_OWNED) {
 424		struct task_struct *owner;
 425
 426		adjustment = RWSEM_READER_BIAS;
 427		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 428		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
 429			/*
 430			 * When we've been waiting "too" long (for writers
 431			 * to give up the lock), request a HANDOFF to
 432			 * force the issue.
 433			 */
 434			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
 435			    time_after(jiffies, waiter->timeout)) {
 436				adjustment -= RWSEM_FLAG_HANDOFF;
 437				lockevent_inc(rwsem_rlock_handoff);
 438			}
 439
 440			atomic_long_add(-adjustment, &sem->count);
 441			return;
 442		}
 443		/*
 444		 * Set it to reader-owned to give spinners an early
 445		 * indication that readers now have the lock.
 446		 * The reader nonspinnable bit seen at slowpath entry of
 447		 * the reader is copied over.
 448		 */
 449		owner = waiter->task;
 450		__rwsem_set_reader_owned(sem, owner);
 451	}
 452
 453	/*
 454	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
 455	 * queue. We know that the woken will be at least 1 as we accounted
 456	 * for above. Note we increment the 'active part' of the count by the
 457	 * number of readers before waking any processes up.
 458	 *
 459	 * This is an adaptation of the phase-fair R/W locks where at the
 460	 * reader phase (first waiter is a reader), all readers are eligible
 461	 * to acquire the lock at the same time irrespective of their order
 462	 * in the queue. The writers acquire the lock according to their
 463	 * order in the queue.
 464	 *
 465	 * We have to do wakeup in 2 passes to prevent the possibility that
 466	 * the reader count may be decremented before it is incremented. It
 467	 * is because the to-be-woken waiter may not have slept yet. So it
 468	 * may see waiter->task got cleared, finish its critical section and
 469	 * do an unlock before the reader count increment.
 470	 *
 471	 * 1) Collect the read-waiters in a separate list, count them and
 472	 *    fully increment the reader count in rwsem.
 473	 * 2) For each waiters in the new list, clear waiter->task and
 474	 *    put them into wake_q to be woken up later.
 475	 */
 476	INIT_LIST_HEAD(&wlist);
 477	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 478		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 479			continue;
 480
 481		woken++;
 482		list_move_tail(&waiter->list, &wlist);
 483
 484		/*
 485		 * Limit # of readers that can be woken up per wakeup call.
 486		 */
 487		if (woken >= MAX_READERS_WAKEUP)
 488			break;
 489	}
 490
 491	adjustment = woken * RWSEM_READER_BIAS - adjustment;
 492	lockevent_cond_inc(rwsem_wake_reader, woken);
 493	if (list_empty(&sem->wait_list)) {
 494		/* hit end of list above */
 495		adjustment -= RWSEM_FLAG_WAITERS;
 496	}
 497
 498	/*
 499	 * When we've woken a reader, we no longer need to force writers
 500	 * to give up the lock and we can clear HANDOFF.
 501	 */
 502	if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
 503		adjustment -= RWSEM_FLAG_HANDOFF;
 504
 505	if (adjustment)
 506		atomic_long_add(adjustment, &sem->count);
 507
 508	/* 2nd pass */
 509	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
 510		struct task_struct *tsk;
 511
 512		tsk = waiter->task;
 513		get_task_struct(tsk);
 514
 515		/*
 516		 * Ensure calling get_task_struct() before setting the reader
 517		 * waiter to nil such that rwsem_down_read_slowpath() cannot
 518		 * race with do_exit() by always holding a reference count
 519		 * to the task to wakeup.
 520		 */
 521		smp_store_release(&waiter->task, NULL);
 522		/*
 523		 * Ensure issuing the wakeup (either by us or someone else)
 524		 * after setting the reader waiter to nil.
 525		 */
 526		wake_q_add_safe(wake_q, tsk);
 527	}
 528}
 529
 530/*
 531 * This function must be called with the sem->wait_lock held to prevent
 532 * race conditions between checking the rwsem wait list and setting the
 533 * sem->count accordingly.
 534 *
 535 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
 536 * bit is set or the lock is acquired with handoff bit cleared.
 537 */
 538static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
 539					enum writer_wait_state wstate)
 540{
 541	long count, new;
 542
 543	lockdep_assert_held(&sem->wait_lock);
 544
 545	count = atomic_long_read(&sem->count);
 546	do {
 547		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
 548
 549		if (has_handoff && wstate == WRITER_NOT_FIRST)
 550			return false;
 551
 552		new = count;
 553
 554		if (count & RWSEM_LOCK_MASK) {
 555			if (has_handoff || (wstate != WRITER_HANDOFF))
 556				return false;
 557
 558			new |= RWSEM_FLAG_HANDOFF;
 559		} else {
 560			new |= RWSEM_WRITER_LOCKED;
 561			new &= ~RWSEM_FLAG_HANDOFF;
 562
 563			if (list_is_singular(&sem->wait_list))
 564				new &= ~RWSEM_FLAG_WAITERS;
 565		}
 566	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
 567
 568	/*
 569	 * We have either acquired the lock with handoff bit cleared or
 570	 * set the handoff bit.
 571	 */
 572	if (new & RWSEM_FLAG_HANDOFF)
 573		return false;
 574
 575	rwsem_set_owner(sem);
 576	return true;
 577}
 578
 579#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 580/*
 581 * Try to acquire write lock before the writer has been put on wait queue.
 582 */
 583static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 584{
 585	long count = atomic_long_read(&sem->count);
 586
 587	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
 588		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
 589					count | RWSEM_WRITER_LOCKED)) {
 590			rwsem_set_owner(sem);
 591			lockevent_inc(rwsem_opt_lock);
 592			return true;
 593		}
 594	}
 595	return false;
 596}
 597
 598static inline bool owner_on_cpu(struct task_struct *owner)
 599{
 600	/*
 601	 * As lock holder preemption issue, we both skip spinning if
 602	 * task is not on cpu or its cpu is preempted
 603	 */
 604	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 605}
 606
 607static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 608{
 609	struct task_struct *owner;
 610	unsigned long flags;
 611	bool ret = true;
 612
 613	if (need_resched()) {
 614		lockevent_inc(rwsem_opt_fail);
 615		return false;
 616	}
 617
 618	preempt_disable();
 619	rcu_read_lock();
 620	owner = rwsem_owner_flags(sem, &flags);
 621	/*
 622	 * Don't check the read-owner as the entry may be stale.
 623	 */
 624	if ((flags & RWSEM_NONSPINNABLE) ||
 625	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
 626		ret = false;
 627	rcu_read_unlock();
 628	preempt_enable();
 629
 630	lockevent_cond_inc(rwsem_opt_fail, !ret);
 631	return ret;
 632}
 633
 634/*
 635 * The rwsem_spin_on_owner() function returns the following 4 values
 636 * depending on the lock owner state.
 637 *   OWNER_NULL  : owner is currently NULL
 638 *   OWNER_WRITER: when owner changes and is a writer
 639 *   OWNER_READER: when owner changes and the new owner may be a reader.
 640 *   OWNER_NONSPINNABLE:
 641 *		   when optimistic spinning has to stop because either the
 642 *		   owner stops running, is unknown, or its timeslice has
 643 *		   been used up.
 644 */
 645enum owner_state {
 646	OWNER_NULL		= 1 << 0,
 647	OWNER_WRITER		= 1 << 1,
 648	OWNER_READER		= 1 << 2,
 649	OWNER_NONSPINNABLE	= 1 << 3,
 650};
 651#define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
 652
 653static inline enum owner_state
 654rwsem_owner_state(struct task_struct *owner, unsigned long flags)
 655{
 656	if (flags & RWSEM_NONSPINNABLE)
 657		return OWNER_NONSPINNABLE;
 658
 659	if (flags & RWSEM_READER_OWNED)
 660		return OWNER_READER;
 661
 662	return owner ? OWNER_WRITER : OWNER_NULL;
 663}
 664
 665static noinline enum owner_state
 666rwsem_spin_on_owner(struct rw_semaphore *sem)
 667{
 668	struct task_struct *new, *owner;
 669	unsigned long flags, new_flags;
 670	enum owner_state state;
 671
 672	owner = rwsem_owner_flags(sem, &flags);
 673	state = rwsem_owner_state(owner, flags);
 674	if (state != OWNER_WRITER)
 675		return state;
 676
 677	rcu_read_lock();
 678	for (;;) {
 679		/*
 680		 * When a waiting writer set the handoff flag, it may spin
 681		 * on the owner as well. Once that writer acquires the lock,
 682		 * we can spin on it. So we don't need to quit even when the
 683		 * handoff bit is set.
 684		 */
 685		new = rwsem_owner_flags(sem, &new_flags);
 686		if ((new != owner) || (new_flags != flags)) {
 687			state = rwsem_owner_state(new, new_flags);
 688			break;
 689		}
 690
 691		/*
 692		 * Ensure we emit the owner->on_cpu, dereference _after_
 693		 * checking sem->owner still matches owner, if that fails,
 694		 * owner might point to free()d memory, if it still matches,
 695		 * the rcu_read_lock() ensures the memory stays valid.
 696		 */
 697		barrier();
 698
 699		if (need_resched() || !owner_on_cpu(owner)) {
 700			state = OWNER_NONSPINNABLE;
 701			break;
 702		}
 703
 704		cpu_relax();
 705	}
 706	rcu_read_unlock();
 707
 708	return state;
 709}
 710
 711/*
 712 * Calculate reader-owned rwsem spinning threshold for writer
 713 *
 714 * The more readers own the rwsem, the longer it will take for them to
 715 * wind down and free the rwsem. So the empirical formula used to
 716 * determine the actual spinning time limit here is:
 717 *
 718 *   Spinning threshold = (10 + nr_readers/2)us
 719 *
 720 * The limit is capped to a maximum of 25us (30 readers). This is just
 721 * a heuristic and is subjected to change in the future.
 722 */
 723static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
 724{
 725	long count = atomic_long_read(&sem->count);
 726	int readers = count >> RWSEM_READER_SHIFT;
 727	u64 delta;
 728
 729	if (readers > 30)
 730		readers = 30;
 731	delta = (20 + readers) * NSEC_PER_USEC / 2;
 732
 733	return sched_clock() + delta;
 734}
 735
 736static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 737{
 738	bool taken = false;
 739	int prev_owner_state = OWNER_NULL;
 740	int loop = 0;
 741	u64 rspin_threshold = 0;
 742
 743	preempt_disable();
 744
 745	/* sem->wait_lock should not be held when doing optimistic spinning */
 746	if (!osq_lock(&sem->osq))
 747		goto done;
 748
 749	/*
 750	 * Optimistically spin on the owner field and attempt to acquire the
 751	 * lock whenever the owner changes. Spinning will be stopped when:
 752	 *  1) the owning writer isn't running; or
 753	 *  2) readers own the lock and spinning time has exceeded limit.
 754	 */
 755	for (;;) {
 756		enum owner_state owner_state;
 757
 758		owner_state = rwsem_spin_on_owner(sem);
 759		if (!(owner_state & OWNER_SPINNABLE))
 760			break;
 761
 762		/*
 763		 * Try to acquire the lock
 764		 */
 765		taken = rwsem_try_write_lock_unqueued(sem);
 766
 767		if (taken)
 768			break;
 769
 770		/*
 771		 * Time-based reader-owned rwsem optimistic spinning
 772		 */
 773		if (owner_state == OWNER_READER) {
 774			/*
 775			 * Re-initialize rspin_threshold every time when
 776			 * the owner state changes from non-reader to reader.
 777			 * This allows a writer to steal the lock in between
 778			 * 2 reader phases and have the threshold reset at
 779			 * the beginning of the 2nd reader phase.
 780			 */
 781			if (prev_owner_state != OWNER_READER) {
 782				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
 783					break;
 784				rspin_threshold = rwsem_rspin_threshold(sem);
 785				loop = 0;
 786			}
 787
 788			/*
 789			 * Check time threshold once every 16 iterations to
 790			 * avoid calling sched_clock() too frequently so
 791			 * as to reduce the average latency between the times
 792			 * when the lock becomes free and when the spinner
 793			 * is ready to do a trylock.
 794			 */
 795			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
 796				rwsem_set_nonspinnable(sem);
 797				lockevent_inc(rwsem_opt_nospin);
 798				break;
 799			}
 800		}
 801
 802		/*
 803		 * An RT task cannot do optimistic spinning if it cannot
 804		 * be sure the lock holder is running or live-lock may
 805		 * happen if the current task and the lock holder happen
 806		 * to run in the same CPU. However, aborting optimistic
 807		 * spinning while a NULL owner is detected may miss some
 808		 * opportunity where spinning can continue without causing
 809		 * problem.
 810		 *
 811		 * There are 2 possible cases where an RT task may be able
 812		 * to continue spinning.
 813		 *
 814		 * 1) The lock owner is in the process of releasing the
 815		 *    lock, sem->owner is cleared but the lock has not
 816		 *    been released yet.
 817		 * 2) The lock was free and owner cleared, but another
 818		 *    task just comes in and acquire the lock before
 819		 *    we try to get it. The new owner may be a spinnable
 820		 *    writer.
 821		 *
 822		 * To take advantage of two scenarios listed above, the RT
 823		 * task is made to retry one more time to see if it can
 824		 * acquire the lock or continue spinning on the new owning
 825		 * writer. Of course, if the time lag is long enough or the
 826		 * new owner is not a writer or spinnable, the RT task will
 827		 * quit spinning.
 828		 *
 829		 * If the owner is a writer, the need_resched() check is
 830		 * done inside rwsem_spin_on_owner(). If the owner is not
 831		 * a writer, need_resched() check needs to be done here.
 832		 */
 833		if (owner_state != OWNER_WRITER) {
 834			if (need_resched())
 835				break;
 836			if (rt_task(current) &&
 837			   (prev_owner_state != OWNER_WRITER))
 838				break;
 839		}
 840		prev_owner_state = owner_state;
 841
 842		/*
 843		 * The cpu_relax() call is a compiler barrier which forces
 844		 * everything in this loop to be re-loaded. We don't need
 845		 * memory barriers as we'll eventually observe the right
 846		 * values at the cost of a few extra spins.
 847		 */
 848		cpu_relax();
 849	}
 850	osq_unlock(&sem->osq);
 851done:
 852	preempt_enable();
 853	lockevent_cond_inc(rwsem_opt_fail, !taken);
 854	return taken;
 855}
 856
 857/*
 858 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
 859 * only be called when the reader count reaches 0.
 860 */
 861static inline void clear_nonspinnable(struct rw_semaphore *sem)
 862{
 863	if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
 864		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
 865}
 866
 867#else
 868static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 869{
 870	return false;
 871}
 872
 873static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 874{
 875	return false;
 876}
 877
 878static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
 879
 880static inline int
 881rwsem_spin_on_owner(struct rw_semaphore *sem)
 882{
 883	return 0;
 884}
 885#define OWNER_NULL	1
 886#endif
 887
 888/*
 889 * Wait for the read lock to be granted
 890 */
 891static struct rw_semaphore __sched *
 892rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
 893{
 894	long adjustment = -RWSEM_READER_BIAS;
 895	long rcnt = (count >> RWSEM_READER_SHIFT);
 896	struct rwsem_waiter waiter;
 897	DEFINE_WAKE_Q(wake_q);
 898	bool wake = false;
 899
 900	/*
 901	 * To prevent a constant stream of readers from starving a sleeping
 902	 * waiter, don't attempt optimistic lock stealing if the lock is
 903	 * currently owned by readers.
 904	 */
 905	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
 906	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
 907		goto queue;
 908
 909	/*
 910	 * Reader optimistic lock stealing.
 911	 */
 912	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
 913		rwsem_set_reader_owned(sem);
 914		lockevent_inc(rwsem_rlock_steal);
 915
 916		/*
 917		 * Wake up other readers in the wait queue if it is
 918		 * the first reader.
 919		 */
 920		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
 921			raw_spin_lock_irq(&sem->wait_lock);
 922			if (!list_empty(&sem->wait_list))
 923				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
 924						&wake_q);
 925			raw_spin_unlock_irq(&sem->wait_lock);
 926			wake_up_q(&wake_q);
 927		}
 928		return sem;
 929	}
 930
 931queue:
 932	waiter.task = current;
 933	waiter.type = RWSEM_WAITING_FOR_READ;
 934	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
 935
 936	raw_spin_lock_irq(&sem->wait_lock);
 937	if (list_empty(&sem->wait_list)) {
 938		/*
 939		 * In case the wait queue is empty and the lock isn't owned
 940		 * by a writer or has the handoff bit set, this reader can
 941		 * exit the slowpath and return immediately as its
 942		 * RWSEM_READER_BIAS has already been set in the count.
 943		 */
 944		if (!(atomic_long_read(&sem->count) &
 945		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
 946			/* Provide lock ACQUIRE */
 947			smp_acquire__after_ctrl_dep();
 948			raw_spin_unlock_irq(&sem->wait_lock);
 949			rwsem_set_reader_owned(sem);
 950			lockevent_inc(rwsem_rlock_fast);
 951			return sem;
 952		}
 953		adjustment += RWSEM_FLAG_WAITERS;
 954	}
 955	list_add_tail(&waiter.list, &sem->wait_list);
 956
 957	/* we're now waiting on the lock, but no longer actively locking */
 958	count = atomic_long_add_return(adjustment, &sem->count);
 959
 960	/*
 961	 * If there are no active locks, wake the front queued process(es).
 962	 *
 963	 * If there are no writers and we are first in the queue,
 964	 * wake our own waiter to join the existing active readers !
 965	 */
 966	if (!(count & RWSEM_LOCK_MASK)) {
 967		clear_nonspinnable(sem);
 968		wake = true;
 969	}
 970	if (wake || (!(count & RWSEM_WRITER_MASK) &&
 971		    (adjustment & RWSEM_FLAG_WAITERS)))
 972		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 973
 974	raw_spin_unlock_irq(&sem->wait_lock);
 975	wake_up_q(&wake_q);
 976
 977	/* wait to be given the lock */
 978	for (;;) {
 979		set_current_state(state);
 980		if (!smp_load_acquire(&waiter.task)) {
 981			/* Matches rwsem_mark_wake()'s smp_store_release(). */
 982			break;
 983		}
 984		if (signal_pending_state(state, current)) {
 985			raw_spin_lock_irq(&sem->wait_lock);
 986			if (waiter.task)
 987				goto out_nolock;
 988			raw_spin_unlock_irq(&sem->wait_lock);
 989			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
 990			break;
 991		}
 992		schedule();
 993		lockevent_inc(rwsem_sleep_reader);
 994	}
 995
 996	__set_current_state(TASK_RUNNING);
 997	lockevent_inc(rwsem_rlock);
 998	return sem;
 999
1000out_nolock:
1001	list_del(&waiter.list);
1002	if (list_empty(&sem->wait_list)) {
1003		atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1004				   &sem->count);
1005	}
1006	raw_spin_unlock_irq(&sem->wait_lock);
1007	__set_current_state(TASK_RUNNING);
1008	lockevent_inc(rwsem_rlock_fail);
1009	return ERR_PTR(-EINTR);
1010}
1011
1012/*
1013 * Wait until we successfully acquire the write lock
1014 */
1015static struct rw_semaphore *
1016rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1017{
1018	long count;
1019	enum writer_wait_state wstate;
1020	struct rwsem_waiter waiter;
1021	struct rw_semaphore *ret = sem;
1022	DEFINE_WAKE_Q(wake_q);
1023
1024	/* do optimistic spinning and steal lock if possible */
1025	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1026		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1027		return sem;
1028	}
1029
1030	/*
1031	 * Optimistic spinning failed, proceed to the slowpath
1032	 * and block until we can acquire the sem.
1033	 */
1034	waiter.task = current;
1035	waiter.type = RWSEM_WAITING_FOR_WRITE;
1036	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1037
1038	raw_spin_lock_irq(&sem->wait_lock);
1039
1040	/* account for this before adding a new element to the list */
1041	wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1042
1043	list_add_tail(&waiter.list, &sem->wait_list);
1044
1045	/* we're now waiting on the lock */
1046	if (wstate == WRITER_NOT_FIRST) {
1047		count = atomic_long_read(&sem->count);
1048
1049		/*
1050		 * If there were already threads queued before us and:
1051		 *  1) there are no active locks, wake the front
1052		 *     queued process(es) as the handoff bit might be set.
1053		 *  2) there are no active writers and some readers, the lock
1054		 *     must be read owned; so we try to wake any read lock
1055		 *     waiters that were queued ahead of us.
1056		 */
1057		if (count & RWSEM_WRITER_MASK)
1058			goto wait;
1059
1060		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1061					? RWSEM_WAKE_READERS
1062					: RWSEM_WAKE_ANY, &wake_q);
1063
1064		if (!wake_q_empty(&wake_q)) {
1065			/*
1066			 * We want to minimize wait_lock hold time especially
1067			 * when a large number of readers are to be woken up.
1068			 */
1069			raw_spin_unlock_irq(&sem->wait_lock);
1070			wake_up_q(&wake_q);
1071			wake_q_init(&wake_q);	/* Used again, reinit */
1072			raw_spin_lock_irq(&sem->wait_lock);
1073		}
1074	} else {
1075		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1076	}
1077
1078wait:
1079	/* wait until we successfully acquire the lock */
1080	set_current_state(state);
1081	for (;;) {
1082		if (rwsem_try_write_lock(sem, wstate)) {
1083			/* rwsem_try_write_lock() implies ACQUIRE on success */
1084			break;
1085		}
1086
1087		raw_spin_unlock_irq(&sem->wait_lock);
1088
1089		/*
1090		 * After setting the handoff bit and failing to acquire
1091		 * the lock, attempt to spin on owner to accelerate lock
1092		 * transfer. If the previous owner is a on-cpu writer and it
1093		 * has just released the lock, OWNER_NULL will be returned.
1094		 * In this case, we attempt to acquire the lock again
1095		 * without sleeping.
1096		 */
1097		if (wstate == WRITER_HANDOFF &&
1098		    rwsem_spin_on_owner(sem) == OWNER_NULL)
1099			goto trylock_again;
1100
1101		/* Block until there are no active lockers. */
1102		for (;;) {
1103			if (signal_pending_state(state, current))
1104				goto out_nolock;
1105
1106			schedule();
1107			lockevent_inc(rwsem_sleep_writer);
1108			set_current_state(state);
1109			/*
1110			 * If HANDOFF bit is set, unconditionally do
1111			 * a trylock.
1112			 */
1113			if (wstate == WRITER_HANDOFF)
1114				break;
1115
1116			if ((wstate == WRITER_NOT_FIRST) &&
1117			    (rwsem_first_waiter(sem) == &waiter))
1118				wstate = WRITER_FIRST;
1119
1120			count = atomic_long_read(&sem->count);
1121			if (!(count & RWSEM_LOCK_MASK))
1122				break;
1123
1124			/*
1125			 * The setting of the handoff bit is deferred
1126			 * until rwsem_try_write_lock() is called.
1127			 */
1128			if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1129			    time_after(jiffies, waiter.timeout))) {
1130				wstate = WRITER_HANDOFF;
1131				lockevent_inc(rwsem_wlock_handoff);
1132				break;
1133			}
1134		}
1135trylock_again:
1136		raw_spin_lock_irq(&sem->wait_lock);
1137	}
1138	__set_current_state(TASK_RUNNING);
1139	list_del(&waiter.list);
1140	raw_spin_unlock_irq(&sem->wait_lock);
1141	lockevent_inc(rwsem_wlock);
1142
1143	return ret;
1144
1145out_nolock:
1146	__set_current_state(TASK_RUNNING);
1147	raw_spin_lock_irq(&sem->wait_lock);
1148	list_del(&waiter.list);
1149
1150	if (unlikely(wstate == WRITER_HANDOFF))
1151		atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1152
1153	if (list_empty(&sem->wait_list))
1154		atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1155	else
1156		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1157	raw_spin_unlock_irq(&sem->wait_lock);
1158	wake_up_q(&wake_q);
1159	lockevent_inc(rwsem_wlock_fail);
1160
1161	return ERR_PTR(-EINTR);
1162}
1163
1164/*
1165 * handle waking up a waiter on the semaphore
1166 * - up_read/up_write has decremented the active part of count if we come here
1167 */
1168static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1169{
1170	unsigned long flags;
1171	DEFINE_WAKE_Q(wake_q);
1172
1173	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1174
1175	if (!list_empty(&sem->wait_list))
1176		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1177
1178	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1179	wake_up_q(&wake_q);
1180
1181	return sem;
1182}
1183
1184/*
1185 * downgrade a write lock into a read lock
1186 * - caller incremented waiting part of count and discovered it still negative
1187 * - just wake up any readers at the front of the queue
1188 */
1189static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1190{
1191	unsigned long flags;
1192	DEFINE_WAKE_Q(wake_q);
1193
1194	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1195
1196	if (!list_empty(&sem->wait_list))
1197		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1198
1199	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1200	wake_up_q(&wake_q);
1201
1202	return sem;
1203}
1204
1205/*
1206 * lock for reading
1207 */
1208static inline int __down_read_common(struct rw_semaphore *sem, int state)
1209{
1210	long count;
1211
1212	if (!rwsem_read_trylock(sem, &count)) {
1213		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1214			return -EINTR;
1215		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1216	}
1217	return 0;
1218}
1219
1220static inline void __down_read(struct rw_semaphore *sem)
1221{
1222	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1223}
1224
1225static inline int __down_read_interruptible(struct rw_semaphore *sem)
1226{
1227	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1228}
1229
1230static inline int __down_read_killable(struct rw_semaphore *sem)
1231{
1232	return __down_read_common(sem, TASK_KILLABLE);
1233}
1234
1235static inline int __down_read_trylock(struct rw_semaphore *sem)
1236{
1237	long tmp;
1238
1239	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1240
1241	/*
1242	 * Optimize for the case when the rwsem is not locked at all.
1243	 */
1244	tmp = RWSEM_UNLOCKED_VALUE;
1245	do {
1246		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1247					tmp + RWSEM_READER_BIAS)) {
1248			rwsem_set_reader_owned(sem);
1249			return 1;
1250		}
1251	} while (!(tmp & RWSEM_READ_FAILED_MASK));
1252	return 0;
1253}
1254
1255/*
1256 * lock for writing
1257 */
1258static inline int __down_write_common(struct rw_semaphore *sem, int state)
1259{
1260	if (unlikely(!rwsem_write_trylock(sem))) {
1261		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1262			return -EINTR;
1263	}
1264
1265	return 0;
1266}
1267
1268static inline void __down_write(struct rw_semaphore *sem)
1269{
1270	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1271}
1272
1273static inline int __down_write_killable(struct rw_semaphore *sem)
1274{
1275	return __down_write_common(sem, TASK_KILLABLE);
1276}
1277
1278static inline int __down_write_trylock(struct rw_semaphore *sem)
1279{
1280	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1281	return rwsem_write_trylock(sem);
1282}
1283
1284/*
1285 * unlock after reading
1286 */
1287static inline void __up_read(struct rw_semaphore *sem)
1288{
1289	long tmp;
1290
1291	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1292	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1293
1294	rwsem_clear_reader_owned(sem);
1295	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1296	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1297	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1298		      RWSEM_FLAG_WAITERS)) {
1299		clear_nonspinnable(sem);
1300		rwsem_wake(sem, tmp);
1301	}
1302}
1303
1304/*
1305 * unlock after writing
1306 */
1307static inline void __up_write(struct rw_semaphore *sem)
1308{
1309	long tmp;
1310
1311	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1312	/*
1313	 * sem->owner may differ from current if the ownership is transferred
1314	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1315	 */
1316	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1317			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1318
1319	rwsem_clear_owner(sem);
1320	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1321	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1322		rwsem_wake(sem, tmp);
1323}
1324
1325/*
1326 * downgrade write lock to read lock
1327 */
1328static inline void __downgrade_write(struct rw_semaphore *sem)
1329{
1330	long tmp;
1331
1332	/*
1333	 * When downgrading from exclusive to shared ownership,
1334	 * anything inside the write-locked region cannot leak
1335	 * into the read side. In contrast, anything in the
1336	 * read-locked region is ok to be re-ordered into the
1337	 * write side. As such, rely on RELEASE semantics.
1338	 */
1339	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1340	tmp = atomic_long_fetch_add_release(
1341		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1342	rwsem_set_reader_owned(sem);
1343	if (tmp & RWSEM_FLAG_WAITERS)
1344		rwsem_downgrade_wake(sem);
1345}
1346
1347/*
1348 * lock for reading
1349 */
1350void __sched down_read(struct rw_semaphore *sem)
1351{
1352	might_sleep();
1353	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1354
1355	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1356}
 
1357EXPORT_SYMBOL(down_read);
1358
1359int __sched down_read_interruptible(struct rw_semaphore *sem)
1360{
1361	might_sleep();
1362	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1363
1364	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1365		rwsem_release(&sem->dep_map, _RET_IP_);
1366		return -EINTR;
1367	}
1368
1369	return 0;
1370}
1371EXPORT_SYMBOL(down_read_interruptible);
1372
1373int __sched down_read_killable(struct rw_semaphore *sem)
1374{
1375	might_sleep();
1376	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1377
1378	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1379		rwsem_release(&sem->dep_map, _RET_IP_);
1380		return -EINTR;
1381	}
1382
1383	return 0;
1384}
1385EXPORT_SYMBOL(down_read_killable);
1386
1387/*
1388 * trylock for reading -- returns 1 if successful, 0 if contention
1389 */
1390int down_read_trylock(struct rw_semaphore *sem)
1391{
1392	int ret = __down_read_trylock(sem);
1393
1394	if (ret == 1)
1395		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1396	return ret;
1397}
 
1398EXPORT_SYMBOL(down_read_trylock);
1399
1400/*
1401 * lock for writing
1402 */
1403void __sched down_write(struct rw_semaphore *sem)
1404{
1405	might_sleep();
1406	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
 
1407	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1408}
 
1409EXPORT_SYMBOL(down_write);
1410
1411/*
1412 * lock for writing
1413 */
1414int __sched down_write_killable(struct rw_semaphore *sem)
1415{
1416	might_sleep();
1417	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1418
1419	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1420				  __down_write_killable)) {
1421		rwsem_release(&sem->dep_map, _RET_IP_);
1422		return -EINTR;
1423	}
1424
1425	return 0;
1426}
1427EXPORT_SYMBOL(down_write_killable);
1428
1429/*
1430 * trylock for writing -- returns 1 if successful, 0 if contention
1431 */
1432int down_write_trylock(struct rw_semaphore *sem)
1433{
1434	int ret = __down_write_trylock(sem);
1435
1436	if (ret == 1)
1437		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1438
1439	return ret;
1440}
 
1441EXPORT_SYMBOL(down_write_trylock);
1442
1443/*
1444 * release a read lock
1445 */
1446void up_read(struct rw_semaphore *sem)
1447{
1448	rwsem_release(&sem->dep_map, _RET_IP_);
 
1449	__up_read(sem);
1450}
 
1451EXPORT_SYMBOL(up_read);
1452
1453/*
1454 * release a write lock
1455 */
1456void up_write(struct rw_semaphore *sem)
1457{
1458	rwsem_release(&sem->dep_map, _RET_IP_);
 
1459	__up_write(sem);
1460}
 
1461EXPORT_SYMBOL(up_write);
1462
1463/*
1464 * downgrade write lock to read lock
1465 */
1466void downgrade_write(struct rw_semaphore *sem)
1467{
1468	lock_downgrade(&sem->dep_map, _RET_IP_);
 
 
 
1469	__downgrade_write(sem);
1470}
 
1471EXPORT_SYMBOL(downgrade_write);
1472
1473#ifdef CONFIG_DEBUG_LOCK_ALLOC
1474
1475void down_read_nested(struct rw_semaphore *sem, int subclass)
1476{
1477	might_sleep();
1478	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
 
1479	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1480}
 
1481EXPORT_SYMBOL(down_read_nested);
1482
1483int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1484{
1485	might_sleep();
1486	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1487
1488	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1489		rwsem_release(&sem->dep_map, _RET_IP_);
1490		return -EINTR;
1491	}
1492
1493	return 0;
1494}
1495EXPORT_SYMBOL(down_read_killable_nested);
1496
1497void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1498{
1499	might_sleep();
1500	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
 
1501	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1502}
 
1503EXPORT_SYMBOL(_down_write_nest_lock);
1504
1505void down_read_non_owner(struct rw_semaphore *sem)
1506{
1507	might_sleep();
 
1508	__down_read(sem);
1509	__rwsem_set_reader_owned(sem, NULL);
1510}
 
1511EXPORT_SYMBOL(down_read_non_owner);
1512
1513void down_write_nested(struct rw_semaphore *sem, int subclass)
1514{
1515	might_sleep();
1516	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
 
1517	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1518}
 
1519EXPORT_SYMBOL(down_write_nested);
1520
1521int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1522{
1523	might_sleep();
1524	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1525
1526	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1527				  __down_write_killable)) {
1528		rwsem_release(&sem->dep_map, _RET_IP_);
1529		return -EINTR;
1530	}
1531
1532	return 0;
1533}
1534EXPORT_SYMBOL(down_write_killable_nested);
1535
1536void up_read_non_owner(struct rw_semaphore *sem)
1537{
1538	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1539	__up_read(sem);
1540}
 
1541EXPORT_SYMBOL(up_read_non_owner);
1542
1543#endif