Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 * kernel/lockdep.c
   3 *
   4 * Runtime locking correctness validator
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  10 *
  11 * this code maps all the lock dependencies as they occur in a live kernel
  12 * and will warn about the following classes of locking bugs:
  13 *
  14 * - lock inversion scenarios
  15 * - circular lock dependencies
  16 * - hardirq/softirq safe/unsafe locking bugs
  17 *
  18 * Bugs are reported even if the current locking scenario does not cause
  19 * any deadlock at this point.
  20 *
  21 * I.e. if anytime in the past two locks were taken in a different order,
  22 * even if it happened for another task, even if those were different
  23 * locks (but of the same class as this lock), this code will detect it.
  24 *
  25 * Thanks to Arjan van de Ven for coming up with the initial idea of
  26 * mapping lock dependencies runtime.
  27 */
  28#define DISABLE_BRANCH_PROFILING
  29#include <linux/mutex.h>
  30#include <linux/sched.h>
 
 
 
  31#include <linux/delay.h>
  32#include <linux/module.h>
  33#include <linux/proc_fs.h>
  34#include <linux/seq_file.h>
  35#include <linux/spinlock.h>
  36#include <linux/kallsyms.h>
  37#include <linux/interrupt.h>
  38#include <linux/stacktrace.h>
  39#include <linux/debug_locks.h>
  40#include <linux/irqflags.h>
  41#include <linux/utsname.h>
  42#include <linux/hash.h>
  43#include <linux/ftrace.h>
  44#include <linux/stringify.h>
 
  45#include <linux/bitops.h>
  46#include <linux/gfp.h>
  47#include <linux/kmemcheck.h>
 
 
 
 
 
  48
  49#include <asm/sections.h>
  50
  51#include "lockdep_internals.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/lock.h>
  55
  56#ifdef CONFIG_PROVE_LOCKING
  57int prove_locking = 1;
  58module_param(prove_locking, int, 0644);
  59#else
  60#define prove_locking 0
  61#endif
  62
  63#ifdef CONFIG_LOCK_STAT
  64int lock_stat = 1;
  65module_param(lock_stat, int, 0644);
  66#else
  67#define lock_stat 0
  68#endif
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70/*
  71 * lockdep_lock: protects the lockdep graph, the hashes and the
  72 *               class/list/hash allocators.
  73 *
  74 * This is one of the rare exceptions where it's justified
  75 * to use a raw spinlock - we really dont want the spinlock
  76 * code to recurse back into the lockdep code...
  77 */
  78static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80static int graph_lock(void)
  81{
  82	arch_spin_lock(&lockdep_lock);
  83	/*
  84	 * Make sure that if another CPU detected a bug while
  85	 * walking the graph we dont change it (while the other
  86	 * CPU is busy printing out stuff with the graph lock
  87	 * dropped already)
  88	 */
  89	if (!debug_locks) {
  90		arch_spin_unlock(&lockdep_lock);
  91		return 0;
  92	}
  93	/* prevent any recursions within lockdep from causing deadlocks */
  94	current->lockdep_recursion++;
  95	return 1;
  96}
  97
  98static inline int graph_unlock(void)
  99{
 100	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
 101		/*
 102		 * The lockdep graph lock isn't locked while we expect it to
 103		 * be, we're confused now, bye!
 104		 */
 105		return DEBUG_LOCKS_WARN_ON(1);
 106	}
 107
 108	current->lockdep_recursion--;
 109	arch_spin_unlock(&lockdep_lock);
 110	return 0;
 111}
 112
 113/*
 114 * Turn lock debugging off and return with 0 if it was off already,
 115 * and also release the graph lock:
 116 */
 117static inline int debug_locks_off_graph_unlock(void)
 118{
 119	int ret = debug_locks_off();
 120
 121	arch_spin_unlock(&lockdep_lock);
 122
 123	return ret;
 124}
 125
 126static int lockdep_initialized;
 127
 128unsigned long nr_list_entries;
 129static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 
 130
 131/*
 132 * All data structures here are protected by the global debug_lock.
 133 *
 134 * Mutex key structs only get allocated, once during bootup, and never
 135 * get freed - this significantly simplifies the debugging code.
 136 */
 
 
 
 137unsigned long nr_lock_classes;
 138static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 
 
 
 
 
 139
 140static inline struct lock_class *hlock_class(struct held_lock *hlock)
 141{
 142	if (!hlock->class_idx) {
 
 
 
 
 
 143		/*
 144		 * Someone passed in garbage, we give up.
 145		 */
 146		DEBUG_LOCKS_WARN_ON(1);
 147		return NULL;
 148	}
 149	return lock_classes + hlock->class_idx - 1;
 
 
 
 
 
 150}
 151
 152#ifdef CONFIG_LOCK_STAT
 153static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS],
 154		      cpu_lock_stats);
 155
 156static inline u64 lockstat_clock(void)
 157{
 158	return local_clock();
 159}
 160
 161static int lock_point(unsigned long points[], unsigned long ip)
 162{
 163	int i;
 164
 165	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 166		if (points[i] == 0) {
 167			points[i] = ip;
 168			break;
 169		}
 170		if (points[i] == ip)
 171			break;
 172	}
 173
 174	return i;
 175}
 176
 177static void lock_time_inc(struct lock_time *lt, u64 time)
 178{
 179	if (time > lt->max)
 180		lt->max = time;
 181
 182	if (time < lt->min || !lt->nr)
 183		lt->min = time;
 184
 185	lt->total += time;
 186	lt->nr++;
 187}
 188
 189static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 190{
 191	if (!src->nr)
 192		return;
 193
 194	if (src->max > dst->max)
 195		dst->max = src->max;
 196
 197	if (src->min < dst->min || !dst->nr)
 198		dst->min = src->min;
 199
 200	dst->total += src->total;
 201	dst->nr += src->nr;
 202}
 203
 204struct lock_class_stats lock_stats(struct lock_class *class)
 205{
 206	struct lock_class_stats stats;
 207	int cpu, i;
 208
 209	memset(&stats, 0, sizeof(struct lock_class_stats));
 210	for_each_possible_cpu(cpu) {
 211		struct lock_class_stats *pcs =
 212			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 213
 214		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 215			stats.contention_point[i] += pcs->contention_point[i];
 216
 217		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 218			stats.contending_point[i] += pcs->contending_point[i];
 219
 220		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 221		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 222
 223		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 224		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 225
 226		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 227			stats.bounces[i] += pcs->bounces[i];
 228	}
 229
 230	return stats;
 231}
 232
 233void clear_lock_stats(struct lock_class *class)
 234{
 235	int cpu;
 236
 237	for_each_possible_cpu(cpu) {
 238		struct lock_class_stats *cpu_stats =
 239			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 240
 241		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 242	}
 243	memset(class->contention_point, 0, sizeof(class->contention_point));
 244	memset(class->contending_point, 0, sizeof(class->contending_point));
 245}
 246
 247static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 248{
 249	return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
 250}
 251
 252static void put_lock_stats(struct lock_class_stats *stats)
 253{
 254	put_cpu_var(cpu_lock_stats);
 255}
 256
 257static void lock_release_holdtime(struct held_lock *hlock)
 258{
 259	struct lock_class_stats *stats;
 260	u64 holdtime;
 261
 262	if (!lock_stat)
 263		return;
 264
 265	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 266
 267	stats = get_lock_stats(hlock_class(hlock));
 268	if (hlock->read)
 269		lock_time_inc(&stats->read_holdtime, holdtime);
 270	else
 271		lock_time_inc(&stats->write_holdtime, holdtime);
 272	put_lock_stats(stats);
 273}
 274#else
 275static inline void lock_release_holdtime(struct held_lock *hlock)
 276{
 277}
 278#endif
 279
 280/*
 281 * We keep a global list of all lock classes. The list only grows,
 282 * never shrinks. The list is only accessed with the lockdep
 283 * spinlock lock held.
 
 284 */
 285LIST_HEAD(all_lock_classes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286
 287/*
 288 * The lockdep classes are in a hash-table as well, for fast lookup:
 289 */
 290#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 291#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 292#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 293#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 294
 295static struct list_head classhash_table[CLASSHASH_SIZE];
 296
 297/*
 298 * We put the lock dependency chains into a hash-table as well, to cache
 299 * their existence:
 300 */
 301#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 302#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 303#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 304#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 305
 306static struct list_head chainhash_table[CHAINHASH_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308/*
 309 * The hash key of the lock dependency chains is a hash itself too:
 310 * it's a hash of all locks taken up to that lock, including that lock.
 311 * It's a 64-bit hash, because it's important for the keys to be
 312 * unique.
 313 */
 314#define iterate_chain_key(key1, key2) \
 315	(((key1) << MAX_LOCKDEP_KEYS_BITS) ^ \
 316	((key1) >> (64-MAX_LOCKDEP_KEYS_BITS)) ^ \
 317	(key2))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319void lockdep_off(void)
 320{
 321	current->lockdep_recursion++;
 
 322}
 323EXPORT_SYMBOL(lockdep_off);
 324
 325void lockdep_on(void)
 326{
 327	current->lockdep_recursion--;
 328}
 329EXPORT_SYMBOL(lockdep_on);
 330
 331/*
 332 * Debugging switches:
 333 */
 334
 335#define VERBOSE			0
 336#define VERY_VERBOSE		0
 337
 338#if VERBOSE
 339# define HARDIRQ_VERBOSE	1
 340# define SOFTIRQ_VERBOSE	1
 341# define RECLAIM_VERBOSE	1
 342#else
 343# define HARDIRQ_VERBOSE	0
 344# define SOFTIRQ_VERBOSE	0
 345# define RECLAIM_VERBOSE	0
 346#endif
 347
 348#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
 349/*
 350 * Quick filtering for interesting events:
 351 */
 352static int class_filter(struct lock_class *class)
 353{
 354#if 0
 355	/* Example */
 356	if (class->name_version == 1 &&
 357			!strcmp(class->name, "lockname"))
 358		return 1;
 359	if (class->name_version == 1 &&
 360			!strcmp(class->name, "&struct->lockfield"))
 361		return 1;
 362#endif
 363	/* Filter everything else. 1 would be to allow everything else */
 364	return 0;
 365}
 366#endif
 367
 368static int verbose(struct lock_class *class)
 369{
 370#if VERBOSE
 371	return class_filter(class);
 372#endif
 373	return 0;
 374}
 375
 376/*
 377 * Stack-trace: tightly packed array of stack backtrace
 378 * addresses. Protected by the graph_lock.
 379 */
 380unsigned long nr_stack_trace_entries;
 381static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 382
 383static void print_lockdep_off(const char *bug_msg)
 384{
 385	printk(KERN_DEBUG "%s\n", bug_msg);
 386	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 
 387	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 
 388}
 389
 390static int save_trace(struct stack_trace *trace)
 391{
 392	trace->nr_entries = 0;
 393	trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
 394	trace->entries = stack_trace + nr_stack_trace_entries;
 395
 396	trace->skip = 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398	save_stack_trace(trace);
 
 
 
 
 
 399
 400	/*
 401	 * Some daft arches put -1 at the end to indicate its a full trace.
 402	 *
 403	 * <rant> this is buggy anyway, since it takes a whole extra entry so a
 404	 * complete trace that maxes out the entries provided will be reported
 405	 * as incomplete, friggin useless </rant>
 406	 */
 407	if (trace->nr_entries != 0 &&
 408	    trace->entries[trace->nr_entries-1] == ULONG_MAX)
 409		trace->nr_entries--;
 410
 411	trace->max_entries = trace->nr_entries;
 
 412
 413	nr_stack_trace_entries += trace->nr_entries;
 
 
 414
 415	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
 416		if (!debug_locks_off_graph_unlock())
 417			return 0;
 418
 419		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 420		dump_stack();
 421
 422		return 0;
 423	}
 
 424
 425	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 
 427
 428unsigned int nr_hardirq_chains;
 429unsigned int nr_softirq_chains;
 430unsigned int nr_process_chains;
 431unsigned int max_lockdep_depth;
 432
 433#ifdef CONFIG_DEBUG_LOCKDEP
 434/*
 435 * We cannot printk in early bootup code. Not even early_printk()
 436 * might work. So we mark any initialization errors and printk
 437 * about it later on, in lockdep_info().
 438 */
 439static int lockdep_init_error;
 440static const char *lock_init_error;
 441static unsigned long lockdep_init_trace_data[20];
 442static struct stack_trace lockdep_init_trace = {
 443	.max_entries = ARRAY_SIZE(lockdep_init_trace_data),
 444	.entries = lockdep_init_trace_data,
 445};
 446
 447/*
 448 * Various lockdep statistics:
 449 */
 450DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 451#endif
 452
 
 453/*
 454 * Locking printouts:
 455 */
 456
 457#define __USAGE(__STATE)						\
 458	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 459	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 460	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 461	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 462
 463static const char *usage_str[] =
 464{
 465#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 466#include "lockdep_states.h"
 467#undef LOCKDEP_STATE
 468	[LOCK_USED] = "INITIAL USE",
 
 
 
 469};
 
 470
 471const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
 472{
 473	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 474}
 475
 476static inline unsigned long lock_flag(enum lock_usage_bit bit)
 477{
 478	return 1UL << bit;
 479}
 480
 481static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 482{
 
 
 
 
 483	char c = '.';
 484
 485	if (class->usage_mask & lock_flag(bit + 2))
 
 
 
 
 
 
 
 
 486		c = '+';
 487	if (class->usage_mask & lock_flag(bit)) {
 488		c = '-';
 489		if (class->usage_mask & lock_flag(bit + 2))
 490			c = '?';
 491	}
 
 492
 493	return c;
 494}
 495
 496void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 497{
 498	int i = 0;
 499
 500#define LOCKDEP_STATE(__STATE) 						\
 501	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 502	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 503#include "lockdep_states.h"
 504#undef LOCKDEP_STATE
 505
 506	usage[i] = '\0';
 507}
 508
 509static void __print_lock_name(struct lock_class *class)
 510{
 511	char str[KSYM_NAME_LEN];
 512	const char *name;
 513
 514	name = class->name;
 515	if (!name) {
 516		name = __get_key_name(class->key, str);
 517		printk("%s", name);
 518	} else {
 519		printk("%s", name);
 520		if (class->name_version > 1)
 521			printk("#%d", class->name_version);
 522		if (class->subclass)
 523			printk("/%d", class->subclass);
 524	}
 525}
 526
 527static void print_lock_name(struct lock_class *class)
 528{
 529	char usage[LOCK_USAGE_CHARS];
 530
 531	get_usage_chars(class, usage);
 532
 533	printk(" (");
 534	__print_lock_name(class);
 535	printk("){%s}", usage);
 
 
 536}
 537
 538static void print_lockdep_cache(struct lockdep_map *lock)
 539{
 540	const char *name;
 541	char str[KSYM_NAME_LEN];
 542
 543	name = lock->name;
 544	if (!name)
 545		name = __get_key_name(lock->key->subkeys, str);
 546
 547	printk("%s", name);
 548}
 549
 550static void print_lock(struct held_lock *hlock)
 551{
 552	print_lock_name(hlock_class(hlock));
 553	printk(", at: ");
 554	print_ip_sym(hlock->acquire_ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555}
 556
 557static void lockdep_print_held_locks(struct task_struct *curr)
 558{
 559	int i, depth = curr->lockdep_depth;
 560
 561	if (!depth) {
 562		printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
 
 
 
 
 
 
 
 
 563		return;
 564	}
 565	printk("%d lock%s held by %s/%d:\n",
 566		depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
 567
 568	for (i = 0; i < depth; i++) {
 569		printk(" #%d: ", i);
 570		print_lock(curr->held_locks + i);
 571	}
 572}
 573
 574static void print_kernel_ident(void)
 575{
 576	printk("%s %.*s %s\n", init_utsname()->release,
 577		(int)strcspn(init_utsname()->version, " "),
 578		init_utsname()->version,
 579		print_tainted());
 580}
 581
 582static int very_verbose(struct lock_class *class)
 583{
 584#if VERY_VERBOSE
 585	return class_filter(class);
 586#endif
 587	return 0;
 588}
 589
 590/*
 591 * Is this the address of a static object:
 592 */
 593#ifdef __KERNEL__
 594static int static_obj(void *obj)
 595{
 596	unsigned long start = (unsigned long) &_stext,
 597		      end   = (unsigned long) &_end,
 598		      addr  = (unsigned long) obj;
 599
 
 
 
 600	/*
 601	 * static variable?
 602	 */
 603	if ((addr >= start) && (addr < end))
 604		return 1;
 605
 606	if (arch_is_kernel_data(addr))
 607		return 1;
 608
 609	/*
 610	 * in-kernel percpu var?
 611	 */
 612	if (is_kernel_percpu_address(addr))
 613		return 1;
 614
 615	/*
 616	 * module static or percpu var?
 617	 */
 618	return is_module_address(addr) || is_module_percpu_address(addr);
 619}
 620#endif
 621
 622/*
 623 * To make lock name printouts unique, we calculate a unique
 624 * class->name_version generation counter:
 
 625 */
 626static int count_matching_names(struct lock_class *new_class)
 627{
 628	struct lock_class *class;
 629	int count = 0;
 630
 631	if (!new_class->name)
 632		return 0;
 633
 634	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 635		if (new_class->key - new_class->subclass == class->key)
 636			return class->name_version;
 637		if (class->name && !strcmp(class->name, new_class->name))
 638			count = max(count, class->name_version);
 639	}
 640
 641	return count + 1;
 642}
 643
 644/*
 645 * Register a lock's class in the hash-table, if the class is not present
 646 * yet. Otherwise we look it up. We cache the result in the lock object
 647 * itself, so actual lookup of the hash should be once per lock object.
 648 */
 649static inline struct lock_class *
 650look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
 651{
 652	struct lockdep_subclass_key *key;
 653	struct list_head *hash_head;
 654	struct lock_class *class;
 655
 656#ifdef CONFIG_DEBUG_LOCKDEP
 657	/*
 658	 * If the architecture calls into lockdep before initializing
 659	 * the hashes then we'll warn about it later. (we cannot printk
 660	 * right now)
 661	 */
 662	if (unlikely(!lockdep_initialized)) {
 663		lockdep_init();
 664		lockdep_init_error = 1;
 665		lock_init_error = lock->name;
 666		save_stack_trace(&lockdep_init_trace);
 667	}
 668#endif
 669
 670	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 
 671		debug_locks_off();
 672		printk(KERN_ERR
 673			"BUG: looking up invalid subclass: %u\n", subclass);
 674		printk(KERN_ERR
 675			"turning off the locking correctness validator.\n");
 676		dump_stack();
 
 677		return NULL;
 678	}
 679
 680	/*
 681	 * Static locks do not have their class-keys yet - for them the key
 682	 * is the lock object itself:
 683	 */
 684	if (unlikely(!lock->key))
 685		lock->key = (void *)lock;
 686
 687	/*
 688	 * NOTE: the class-key must be unique. For dynamic locks, a static
 689	 * lock_class_key variable is passed in through the mutex_init()
 690	 * (or spin_lock_init()) call - which acts as the key. For static
 691	 * locks we use the lock object itself as the key.
 692	 */
 693	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 694			sizeof(struct lockdep_map));
 695
 696	key = lock->key->subkeys + subclass;
 697
 698	hash_head = classhashentry(key);
 699
 700	/*
 701	 * We can walk the hash lockfree, because the hash only
 702	 * grows, and we are careful when adding entries to the end:
 703	 */
 704	list_for_each_entry(class, hash_head, hash_entry) {
 
 
 
 705		if (class->key == key) {
 706			/*
 707			 * Huh! same key, different name? Did someone trample
 708			 * on some memory? We're most confused.
 709			 */
 710			WARN_ON_ONCE(class->name != lock->name);
 
 711			return class;
 712		}
 713	}
 714
 715	return NULL;
 716}
 717
 718/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719 * Register a lock's class in the hash-table, if the class is not present
 720 * yet. Otherwise we look it up. We cache the result in the lock object
 721 * itself, so actual lookup of the hash should be once per lock object.
 722 */
 723static inline struct lock_class *
 724register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
 725{
 726	struct lockdep_subclass_key *key;
 727	struct list_head *hash_head;
 728	struct lock_class *class;
 729	unsigned long flags;
 
 730
 731	class = look_up_lock_class(lock, subclass);
 732	if (likely(class))
 733		goto out_set_class_cache;
 734
 735	/*
 736	 * Debug-check: all keys must be persistent!
 737 	 */
 738	if (!static_obj(lock->key)) {
 739		debug_locks_off();
 740		printk("INFO: trying to register non-static key.\n");
 741		printk("the code is fine but needs lockdep annotation.\n");
 742		printk("turning off the locking correctness validator.\n");
 743		dump_stack();
 744
 745		return NULL;
 746	}
 747
 748	key = lock->key->subkeys + subclass;
 749	hash_head = classhashentry(key);
 750
 751	raw_local_irq_save(flags);
 752	if (!graph_lock()) {
 753		raw_local_irq_restore(flags);
 754		return NULL;
 755	}
 756	/*
 757	 * We have to do the hash-walk again, to avoid races
 758	 * with another CPU:
 759	 */
 760	list_for_each_entry(class, hash_head, hash_entry)
 761		if (class->key == key)
 762			goto out_unlock_set;
 763	/*
 764	 * Allocate a new key from the static array, and add it to
 765	 * the hash:
 766	 */
 767	if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
 
 
 
 768		if (!debug_locks_off_graph_unlock()) {
 769			raw_local_irq_restore(flags);
 770			return NULL;
 771		}
 772		raw_local_irq_restore(flags);
 773
 774		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
 775		dump_stack();
 776		return NULL;
 777	}
 778	class = lock_classes + nr_lock_classes++;
 
 779	debug_atomic_inc(nr_unused_locks);
 780	class->key = key;
 781	class->name = lock->name;
 782	class->subclass = subclass;
 783	INIT_LIST_HEAD(&class->lock_entry);
 784	INIT_LIST_HEAD(&class->locks_before);
 785	INIT_LIST_HEAD(&class->locks_after);
 786	class->name_version = count_matching_names(class);
 
 
 
 787	/*
 788	 * We use RCU's safe list-add method to make
 789	 * parallel walking of the hash-list safe:
 790	 */
 791	list_add_tail_rcu(&class->hash_entry, hash_head);
 792	/*
 793	 * Add it to the global list of classes:
 
 794	 */
 795	list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
 796
 797	if (verbose(class)) {
 798		graph_unlock();
 799		raw_local_irq_restore(flags);
 800
 801		printk("\nnew class %p: %s", class->key, class->name);
 802		if (class->name_version > 1)
 803			printk("#%d", class->name_version);
 804		printk("\n");
 805		dump_stack();
 806
 807		raw_local_irq_save(flags);
 808		if (!graph_lock()) {
 809			raw_local_irq_restore(flags);
 810			return NULL;
 811		}
 812	}
 813out_unlock_set:
 814	graph_unlock();
 815	raw_local_irq_restore(flags);
 816
 817out_set_class_cache:
 818	if (!subclass || force)
 819		lock->class_cache[0] = class;
 820	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
 821		lock->class_cache[subclass] = class;
 822
 823	/*
 824	 * Hash collision, did we smoke some? We found a class with a matching
 825	 * hash but the subclass -- which is hashed in -- didn't match.
 826	 */
 827	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
 828		return NULL;
 829
 830	return class;
 831}
 832
 833#ifdef CONFIG_PROVE_LOCKING
 834/*
 835 * Allocate a lockdep entry. (assumes the graph_lock held, returns
 836 * with NULL on failure)
 837 */
 838static struct lock_list *alloc_list_entry(void)
 839{
 840	if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
 
 
 
 841		if (!debug_locks_off_graph_unlock())
 842			return NULL;
 843
 844		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
 845		dump_stack();
 846		return NULL;
 847	}
 848	return list_entries + nr_list_entries++;
 
 
 849}
 850
 851/*
 852 * Add a new dependency to the head of the list:
 853 */
 854static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
 855			    struct list_head *head, unsigned long ip,
 856			    int distance, struct stack_trace *trace)
 
 857{
 858	struct lock_list *entry;
 859	/*
 860	 * Lock not present yet - get a new dependency struct and
 861	 * add it to the list:
 862	 */
 863	entry = alloc_list_entry();
 864	if (!entry)
 865		return 0;
 866
 867	entry->class = this;
 
 
 868	entry->distance = distance;
 869	entry->trace = *trace;
 870	/*
 871	 * Since we never remove from the dependency list, the list can
 872	 * be walked lockless by other CPUs, it's only allocation
 873	 * that must be protected by the spinlock. But this also means
 874	 * we must make new entries visible only once writes to the
 875	 * entry become visible - hence the RCU op:
 876	 */
 877	list_add_tail_rcu(&entry->entry, head);
 878
 879	return 1;
 880}
 881
 882/*
 883 * For good efficiency of modular, we use power of 2
 884 */
 885#define MAX_CIRCULAR_QUEUE_SIZE		4096UL
 886#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
 887
 888/*
 889 * The circular_queue and helpers is used to implement the
 890 * breadth-first search(BFS)algorithem, by which we can build
 891 * the shortest path from the next lock to be acquired to the
 892 * previous held lock if there is a circular between them.
 
 
 
 
 893 */
 894struct circular_queue {
 895	unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
 896	unsigned int  front, rear;
 897};
 898
 899static struct circular_queue lock_cq;
 900
 901unsigned int max_bfs_queue_depth;
 902
 903static unsigned int lockdep_dependency_gen_id;
 904
 905static inline void __cq_init(struct circular_queue *cq)
 906{
 907	cq->front = cq->rear = 0;
 908	lockdep_dependency_gen_id++;
 909}
 910
 911static inline int __cq_empty(struct circular_queue *cq)
 912{
 913	return (cq->front == cq->rear);
 914}
 915
 916static inline int __cq_full(struct circular_queue *cq)
 917{
 918	return ((cq->rear + 1) & CQ_MASK) == cq->front;
 919}
 920
 921static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
 922{
 923	if (__cq_full(cq))
 924		return -1;
 925
 926	cq->element[cq->rear] = elem;
 927	cq->rear = (cq->rear + 1) & CQ_MASK;
 928	return 0;
 929}
 930
 931static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
 
 
 
 
 932{
 
 
 933	if (__cq_empty(cq))
 934		return -1;
 935
 936	*elem = cq->element[cq->front];
 937	cq->front = (cq->front + 1) & CQ_MASK;
 938	return 0;
 
 939}
 940
 941static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
 942{
 943	return (cq->rear - cq->front) & CQ_MASK;
 944}
 945
 946static inline void mark_lock_accessed(struct lock_list *lock,
 947					struct lock_list *parent)
 948{
 949	unsigned long nr;
 
 950
 951	nr = lock - list_entries;
 952	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
 
 953	lock->parent = parent;
 954	lock->class->dep_gen_id = lockdep_dependency_gen_id;
 955}
 956
 957static inline unsigned long lock_accessed(struct lock_list *lock)
 958{
 959	unsigned long nr;
 960
 961	nr = lock - list_entries;
 962	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
 963	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
 964}
 965
 966static inline struct lock_list *get_lock_parent(struct lock_list *child)
 967{
 968	return child->parent;
 969}
 970
 971static inline int get_lock_depth(struct lock_list *child)
 972{
 973	int depth = 0;
 974	struct lock_list *parent;
 975
 976	while ((parent = get_lock_parent(child))) {
 977		child = parent;
 978		depth++;
 979	}
 980	return depth;
 981}
 982
 983static int __bfs(struct lock_list *source_entry,
 984		 void *data,
 985		 int (*match)(struct lock_list *entry, void *data),
 986		 struct lock_list **target_entry,
 987		 int forward)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	struct lock_list *entry;
 990	struct list_head *head;
 991	struct circular_queue *cq = &lock_cq;
 992	int ret = 1;
 993
 994	if (match(source_entry, data)) {
 995		*target_entry = source_entry;
 996		ret = 0;
 997		goto exit;
 998	}
 999
1000	if (forward)
1001		head = &source_entry->class->locks_after;
1002	else
1003		head = &source_entry->class->locks_before;
1004
1005	if (list_empty(head))
1006		goto exit;
 
1007
1008	__cq_init(cq);
1009	__cq_enqueue(cq, (unsigned long)source_entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011	while (!__cq_empty(cq)) {
1012		struct lock_list *lock;
 
 
 
 
 
1013
1014		__cq_dequeue(cq, (unsigned long *)&lock);
 
 
1015
1016		if (!lock->class) {
1017			ret = -2;
1018			goto exit;
1019		}
1020
1021		if (forward)
1022			head = &lock->class->locks_after;
1023		else
1024			head = &lock->class->locks_before;
 
 
 
 
1025
1026		list_for_each_entry(entry, head, entry) {
1027			if (!lock_accessed(entry)) {
1028				unsigned int cq_depth;
1029				mark_lock_accessed(entry, lock);
1030				if (match(entry, data)) {
1031					*target_entry = entry;
1032					ret = 0;
1033					goto exit;
1034				}
1035
1036				if (__cq_enqueue(cq, (unsigned long)entry)) {
1037					ret = -1;
1038					goto exit;
1039				}
1040				cq_depth = __cq_get_elem_count(cq);
1041				if (max_bfs_queue_depth < cq_depth)
1042					max_bfs_queue_depth = cq_depth;
1043			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044		}
1045	}
1046exit:
1047	return ret;
1048}
1049
1050static inline int __bfs_forwards(struct lock_list *src_entry,
1051			void *data,
1052			int (*match)(struct lock_list *entry, void *data),
1053			struct lock_list **target_entry)
 
 
1054{
1055	return __bfs(src_entry, data, match, target_entry, 1);
 
1056
1057}
1058
1059static inline int __bfs_backwards(struct lock_list *src_entry,
1060			void *data,
1061			int (*match)(struct lock_list *entry, void *data),
1062			struct lock_list **target_entry)
 
 
1063{
1064	return __bfs(src_entry, data, match, target_entry, 0);
 
1065
1066}
1067
1068/*
1069 * Recursive, forwards-direction lock-dependency checking, used for
1070 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1071 * checking.
1072 */
1073
1074/*
1075 * Print a dependency chain entry (this is only done when a deadlock
1076 * has been detected):
1077 */
1078static noinline int
1079print_circular_bug_entry(struct lock_list *target, int depth)
1080{
1081	if (debug_locks_silent)
1082		return 0;
1083	printk("\n-> #%u", depth);
1084	print_lock_name(target->class);
1085	printk(":\n");
1086	print_stack_trace(&target->trace, 6);
1087
1088	return 0;
1089}
1090
1091static void
1092print_circular_lock_scenario(struct held_lock *src,
1093			     struct held_lock *tgt,
1094			     struct lock_list *prt)
1095{
1096	struct lock_class *source = hlock_class(src);
1097	struct lock_class *target = hlock_class(tgt);
1098	struct lock_class *parent = prt->class;
1099
1100	/*
1101	 * A direct locking problem where unsafe_class lock is taken
1102	 * directly by safe_class lock, then all we need to show
1103	 * is the deadlock scenario, as it is obvious that the
1104	 * unsafe lock is taken under the safe lock.
1105	 *
1106	 * But if there is a chain instead, where the safe lock takes
1107	 * an intermediate lock (middle_class) where this lock is
1108	 * not the same as the safe lock, then the lock chain is
1109	 * used to describe the problem. Otherwise we would need
1110	 * to show a different CPU case for each link in the chain
1111	 * from the safe_class lock to the unsafe_class lock.
1112	 */
1113	if (parent != source) {
1114		printk("Chain exists of:\n  ");
1115		__print_lock_name(source);
1116		printk(" --> ");
1117		__print_lock_name(parent);
1118		printk(" --> ");
1119		__print_lock_name(target);
1120		printk("\n\n");
1121	}
1122
1123	printk(" Possible unsafe locking scenario:\n\n");
1124	printk("       CPU0                    CPU1\n");
1125	printk("       ----                    ----\n");
1126	printk("  lock(");
1127	__print_lock_name(target);
1128	printk(");\n");
1129	printk("                               lock(");
1130	__print_lock_name(parent);
1131	printk(");\n");
1132	printk("                               lock(");
1133	__print_lock_name(target);
1134	printk(");\n");
1135	printk("  lock(");
1136	__print_lock_name(source);
1137	printk(");\n");
1138	printk("\n *** DEADLOCK ***\n\n");
1139}
1140
1141/*
1142 * When a circular dependency is detected, print the
1143 * header first:
1144 */
1145static noinline int
1146print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1147			struct held_lock *check_src,
1148			struct held_lock *check_tgt)
1149{
1150	struct task_struct *curr = current;
1151
1152	if (debug_locks_silent)
1153		return 0;
1154
1155	printk("\n");
1156	printk("======================================================\n");
1157	printk("[ INFO: possible circular locking dependency detected ]\n");
1158	print_kernel_ident();
1159	printk("-------------------------------------------------------\n");
1160	printk("%s/%d is trying to acquire lock:\n",
1161		curr->comm, task_pid_nr(curr));
1162	print_lock(check_src);
1163	printk("\nbut task is already holding lock:\n");
 
 
1164	print_lock(check_tgt);
1165	printk("\nwhich lock already depends on the new lock.\n\n");
1166	printk("\nthe existing dependency chain (in reverse order) is:\n");
1167
1168	print_circular_bug_entry(entry, depth);
 
1169
1170	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171}
1172
1173static inline int class_equal(struct lock_list *entry, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174{
1175	return entry->class == data;
 
 
 
 
1176}
1177
1178static noinline int print_circular_bug(struct lock_list *this,
1179				struct lock_list *target,
1180				struct held_lock *check_src,
1181				struct held_lock *check_tgt)
1182{
1183	struct task_struct *curr = current;
1184	struct lock_list *parent;
1185	struct lock_list *first_parent;
1186	int depth;
1187
1188	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1189		return 0;
1190
1191	if (!save_trace(&this->trace))
1192		return 0;
 
1193
1194	depth = get_lock_depth(target);
1195
1196	print_circular_bug_header(target, depth, check_src, check_tgt);
1197
1198	parent = get_lock_parent(target);
1199	first_parent = parent;
1200
1201	while (parent) {
1202		print_circular_bug_entry(parent, --depth);
1203		parent = get_lock_parent(parent);
1204	}
1205
1206	printk("\nother info that might help us debug this:\n\n");
1207	print_circular_lock_scenario(check_src, check_tgt,
1208				     first_parent);
1209
1210	lockdep_print_held_locks(curr);
1211
1212	printk("\nstack backtrace:\n");
1213	dump_stack();
1214
1215	return 0;
1216}
1217
1218static noinline int print_bfs_bug(int ret)
1219{
1220	if (!debug_locks_off_graph_unlock())
1221		return 0;
1222
1223	/*
1224	 * Breadth-first-search failed, graph got corrupted?
1225	 */
1226	WARN(1, "lockdep bfs error:%d\n", ret);
1227
1228	return 0;
1229}
1230
1231static int noop_count(struct lock_list *entry, void *data)
1232{
1233	(*(unsigned long *)data)++;
1234	return 0;
1235}
1236
1237static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1238{
1239	unsigned long  count = 0;
1240	struct lock_list *uninitialized_var(target_entry);
1241
1242	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1243
1244	return count;
1245}
1246unsigned long lockdep_count_forward_deps(struct lock_class *class)
1247{
1248	unsigned long ret, flags;
1249	struct lock_list this;
1250
1251	this.parent = NULL;
1252	this.class = class;
1253
1254	local_irq_save(flags);
1255	arch_spin_lock(&lockdep_lock);
1256	ret = __lockdep_count_forward_deps(&this);
1257	arch_spin_unlock(&lockdep_lock);
1258	local_irq_restore(flags);
1259
1260	return ret;
1261}
1262
1263static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1264{
1265	unsigned long  count = 0;
1266	struct lock_list *uninitialized_var(target_entry);
1267
1268	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1269
1270	return count;
1271}
1272
1273unsigned long lockdep_count_backward_deps(struct lock_class *class)
1274{
1275	unsigned long ret, flags;
1276	struct lock_list this;
1277
1278	this.parent = NULL;
1279	this.class = class;
1280
1281	local_irq_save(flags);
1282	arch_spin_lock(&lockdep_lock);
1283	ret = __lockdep_count_backward_deps(&this);
1284	arch_spin_unlock(&lockdep_lock);
1285	local_irq_restore(flags);
1286
1287	return ret;
1288}
1289
1290/*
1291 * Prove that the dependency graph starting at <entry> can not
1292 * lead to <target>. Print an error and return 0 if it does.
1293 */
1294static noinline int
1295check_noncircular(struct lock_list *root, struct lock_class *target,
1296		struct lock_list **target_entry)
 
 
1297{
1298	int result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300	debug_atomic_inc(nr_cyclic_checks);
1301
1302	result = __bfs_forwards(root, target, class_equal, target_entry);
1303
1304	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
1305}
1306
1307#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
 
1308/*
1309 * Forwards and backwards subgraph searching, for the purposes of
1310 * proving that two subgraphs can be connected by a new dependency
1311 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312 */
 
 
 
 
 
 
 
 
 
1313
1314static inline int usage_match(struct lock_list *entry, void *bit)
 
 
 
 
 
 
 
 
 
1315{
1316	return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
 
 
 
1317}
1318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319
 
 
1320
1321/*
1322 * Find a node in the forwards-direction dependency sub-graph starting
1323 * at @root->class that matches @bit.
1324 *
1325 * Return 0 if such a node exists in the subgraph, and put that node
1326 * into *@target_entry.
1327 *
1328 * Return 1 otherwise and keep *@target_entry unchanged.
1329 * Return <0 on error.
1330 */
1331static int
1332find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1333			struct lock_list **target_entry)
1334{
1335	int result;
1336
1337	debug_atomic_inc(nr_find_usage_forwards_checks);
1338
1339	result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1340
1341	return result;
1342}
1343
1344/*
1345 * Find a node in the backwards-direction dependency sub-graph starting
1346 * at @root->class that matches @bit.
1347 *
1348 * Return 0 if such a node exists in the subgraph, and put that node
1349 * into *@target_entry.
1350 *
1351 * Return 1 otherwise and keep *@target_entry unchanged.
1352 * Return <0 on error.
1353 */
1354static int
1355find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1356			struct lock_list **target_entry)
1357{
1358	int result;
1359
1360	debug_atomic_inc(nr_find_usage_backwards_checks);
1361
1362	result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1363
1364	return result;
1365}
1366
1367static void print_lock_class_header(struct lock_class *class, int depth)
1368{
1369	int bit;
1370
1371	printk("%*s->", depth, "");
1372	print_lock_name(class);
1373	printk(" ops: %lu", class->ops);
1374	printk(" {\n");
 
 
1375
1376	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1377		if (class->usage_mask & (1 << bit)) {
1378			int len = depth;
1379
1380			len += printk("%*s   %s", depth, "", usage_str[bit]);
1381			len += printk(" at:\n");
1382			print_stack_trace(class->usage_traces + bit, len);
1383		}
1384	}
1385	printk("%*s }\n", depth, "");
1386
1387	printk("%*s ... key      at: ",depth,"");
1388	print_ip_sym((unsigned long)class->key);
1389}
1390
1391/*
1392 * printk the shortest lock dependencies from @start to @end in reverse order:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393 */
1394static void __used
1395print_shortest_lock_dependencies(struct lock_list *leaf,
1396				struct lock_list *root)
1397{
1398	struct lock_list *entry = leaf;
1399	int depth;
1400
1401	/*compute depth from generated tree by BFS*/
1402	depth = get_lock_depth(leaf);
1403
1404	do {
1405		print_lock_class_header(entry->class, depth);
1406		printk("%*s ... acquired at:\n", depth, "");
1407		print_stack_trace(&entry->trace, 2);
1408		printk("\n");
1409
1410		if (depth == 0 && (entry != root)) {
1411			printk("lockdep:%s bad path found in chain graph\n", __func__);
1412			break;
1413		}
1414
1415		entry = get_lock_parent(entry);
1416		depth--;
1417	} while (entry && (depth >= 0));
 
1418
1419	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420}
1421
1422static void
1423print_irq_lock_scenario(struct lock_list *safe_entry,
1424			struct lock_list *unsafe_entry,
1425			struct lock_class *prev_class,
1426			struct lock_class *next_class)
1427{
1428	struct lock_class *safe_class = safe_entry->class;
1429	struct lock_class *unsafe_class = unsafe_entry->class;
1430	struct lock_class *middle_class = prev_class;
1431
1432	if (middle_class == safe_class)
1433		middle_class = next_class;
1434
1435	/*
1436	 * A direct locking problem where unsafe_class lock is taken
1437	 * directly by safe_class lock, then all we need to show
1438	 * is the deadlock scenario, as it is obvious that the
1439	 * unsafe lock is taken under the safe lock.
1440	 *
1441	 * But if there is a chain instead, where the safe lock takes
1442	 * an intermediate lock (middle_class) where this lock is
1443	 * not the same as the safe lock, then the lock chain is
1444	 * used to describe the problem. Otherwise we would need
1445	 * to show a different CPU case for each link in the chain
1446	 * from the safe_class lock to the unsafe_class lock.
1447	 */
1448	if (middle_class != unsafe_class) {
1449		printk("Chain exists of:\n  ");
1450		__print_lock_name(safe_class);
1451		printk(" --> ");
1452		__print_lock_name(middle_class);
1453		printk(" --> ");
1454		__print_lock_name(unsafe_class);
1455		printk("\n\n");
1456	}
1457
1458	printk(" Possible interrupt unsafe locking scenario:\n\n");
1459	printk("       CPU0                    CPU1\n");
1460	printk("       ----                    ----\n");
1461	printk("  lock(");
1462	__print_lock_name(unsafe_class);
1463	printk(");\n");
1464	printk("                               local_irq_disable();\n");
1465	printk("                               lock(");
1466	__print_lock_name(safe_class);
1467	printk(");\n");
1468	printk("                               lock(");
1469	__print_lock_name(middle_class);
1470	printk(");\n");
1471	printk("  <Interrupt>\n");
1472	printk("    lock(");
1473	__print_lock_name(safe_class);
1474	printk(");\n");
1475	printk("\n *** DEADLOCK ***\n\n");
1476}
1477
1478static int
1479print_bad_irq_dependency(struct task_struct *curr,
1480			 struct lock_list *prev_root,
1481			 struct lock_list *next_root,
1482			 struct lock_list *backwards_entry,
1483			 struct lock_list *forwards_entry,
1484			 struct held_lock *prev,
1485			 struct held_lock *next,
1486			 enum lock_usage_bit bit1,
1487			 enum lock_usage_bit bit2,
1488			 const char *irqclass)
1489{
1490	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1491		return 0;
1492
1493	printk("\n");
1494	printk("======================================================\n");
1495	printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1496		irqclass, irqclass);
1497	print_kernel_ident();
1498	printk("------------------------------------------------------\n");
1499	printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1500		curr->comm, task_pid_nr(curr),
1501		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1502		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1503		curr->hardirqs_enabled,
1504		curr->softirqs_enabled);
1505	print_lock(next);
1506
1507	printk("\nand this task is already holding:\n");
1508	print_lock(prev);
1509	printk("which would create a new lock dependency:\n");
1510	print_lock_name(hlock_class(prev));
1511	printk(" ->");
1512	print_lock_name(hlock_class(next));
1513	printk("\n");
1514
1515	printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1516		irqclass);
1517	print_lock_name(backwards_entry->class);
1518	printk("\n... which became %s-irq-safe at:\n", irqclass);
1519
1520	print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1521
1522	printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1523	print_lock_name(forwards_entry->class);
1524	printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1525	printk("...");
1526
1527	print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1528
1529	printk("\nother info that might help us debug this:\n\n");
1530	print_irq_lock_scenario(backwards_entry, forwards_entry,
1531				hlock_class(prev), hlock_class(next));
1532
1533	lockdep_print_held_locks(curr);
1534
1535	printk("\nthe dependencies between %s-irq-safe lock", irqclass);
1536	printk(" and the holding lock:\n");
1537	if (!save_trace(&prev_root->trace))
1538		return 0;
1539	print_shortest_lock_dependencies(backwards_entry, prev_root);
1540
1541	printk("\nthe dependencies between the lock to be acquired");
1542	printk(" and %s-irq-unsafe lock:\n", irqclass);
1543	if (!save_trace(&next_root->trace))
1544		return 0;
1545	print_shortest_lock_dependencies(forwards_entry, next_root);
1546
1547	printk("\nstack backtrace:\n");
1548	dump_stack();
1549
1550	return 0;
1551}
1552
1553static int
1554check_usage(struct task_struct *curr, struct held_lock *prev,
1555	    struct held_lock *next, enum lock_usage_bit bit_backwards,
1556	    enum lock_usage_bit bit_forwards, const char *irqclass)
1557{
1558	int ret;
1559	struct lock_list this, that;
1560	struct lock_list *uninitialized_var(target_entry);
1561	struct lock_list *uninitialized_var(target_entry1);
1562
1563	this.parent = NULL;
1564
1565	this.class = hlock_class(prev);
1566	ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1567	if (ret < 0)
1568		return print_bfs_bug(ret);
1569	if (ret == 1)
1570		return ret;
1571
1572	that.parent = NULL;
1573	that.class = hlock_class(next);
1574	ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1575	if (ret < 0)
1576		return print_bfs_bug(ret);
1577	if (ret == 1)
1578		return ret;
1579
1580	return print_bad_irq_dependency(curr, &this, &that,
1581			target_entry, target_entry1,
1582			prev, next,
1583			bit_backwards, bit_forwards, irqclass);
1584}
1585
1586static const char *state_names[] = {
1587#define LOCKDEP_STATE(__STATE) \
1588	__stringify(__STATE),
1589#include "lockdep_states.h"
1590#undef LOCKDEP_STATE
1591};
1592
1593static const char *state_rnames[] = {
1594#define LOCKDEP_STATE(__STATE) \
1595	__stringify(__STATE)"-READ",
1596#include "lockdep_states.h"
1597#undef LOCKDEP_STATE
1598};
1599
1600static inline const char *state_name(enum lock_usage_bit bit)
1601{
1602	return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
 
 
 
1603}
1604
 
 
 
 
 
 
 
1605static int exclusive_bit(int new_bit)
1606{
1607	/*
1608	 * USED_IN
1609	 * USED_IN_READ
1610	 * ENABLED
1611	 * ENABLED_READ
1612	 *
1613	 * bit 0 - write/read
1614	 * bit 1 - used_in/enabled
1615	 * bit 2+  state
1616	 */
1617
1618	int state = new_bit & ~3;
1619	int dir = new_bit & 2;
1620
1621	/*
1622	 * keep state, bit flip the direction and strip read.
1623	 */
1624	return state | (dir ^ 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625}
1626
 
 
 
 
 
 
1627static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1628			   struct held_lock *next, enum lock_usage_bit bit)
1629{
 
 
 
 
 
 
 
1630	/*
1631	 * Prove that the new dependency does not connect a hardirq-safe
1632	 * lock with a hardirq-unsafe lock - to achieve this we search
1633	 * the backwards-subgraph starting at <prev>, and the
1634	 * forwards-subgraph starting at <next>:
1635	 */
1636	if (!check_usage(curr, prev, next, bit,
1637			   exclusive_bit(bit), state_name(bit)))
 
 
 
1638		return 0;
 
1639
1640	bit++; /* _READ */
 
 
1641
1642	/*
1643	 * Prove that the new dependency does not connect a hardirq-safe-read
1644	 * lock with a hardirq-unsafe lock - to achieve this we search
1645	 * the backwards-subgraph starting at <prev>, and the
1646	 * forwards-subgraph starting at <next>:
1647	 */
1648	if (!check_usage(curr, prev, next, bit,
1649			   exclusive_bit(bit), state_name(bit)))
 
 
 
 
 
1650		return 0;
 
 
 
1651
1652	return 1;
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655static int
1656check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1657		struct held_lock *next)
1658{
1659#define LOCKDEP_STATE(__STATE)						\
1660	if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE))	\
1661		return 0;
1662#include "lockdep_states.h"
1663#undef LOCKDEP_STATE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
 
 
 
1665	return 1;
1666}
1667
1668static void inc_chains(void)
1669{
1670	if (current->hardirq_context)
1671		nr_hardirq_chains++;
1672	else {
1673		if (current->softirq_context)
1674			nr_softirq_chains++;
1675		else
1676			nr_process_chains++;
1677	}
1678}
1679
1680#else
1681
1682static inline int
1683check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1684		struct held_lock *next)
 
 
 
 
 
 
 
 
1685{
1686	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687}
1688
1689static inline void inc_chains(void)
 
 
 
1690{
1691	nr_process_chains++;
1692}
1693
1694#endif
1695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696static void
1697print_deadlock_scenario(struct held_lock *nxt,
1698			     struct held_lock *prv)
1699{
1700	struct lock_class *next = hlock_class(nxt);
1701	struct lock_class *prev = hlock_class(prv);
1702
1703	printk(" Possible unsafe locking scenario:\n\n");
1704	printk("       CPU0\n");
1705	printk("       ----\n");
1706	printk("  lock(");
1707	__print_lock_name(prev);
1708	printk(");\n");
1709	printk("  lock(");
1710	__print_lock_name(next);
1711	printk(");\n");
1712	printk("\n *** DEADLOCK ***\n\n");
1713	printk(" May be due to missing lock nesting notation\n\n");
1714}
1715
1716static int
1717print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1718		   struct held_lock *next)
1719{
1720	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1721		return 0;
1722
1723	printk("\n");
1724	printk("=============================================\n");
1725	printk("[ INFO: possible recursive locking detected ]\n");
1726	print_kernel_ident();
1727	printk("---------------------------------------------\n");
1728	printk("%s/%d is trying to acquire lock:\n",
1729		curr->comm, task_pid_nr(curr));
1730	print_lock(next);
1731	printk("\nbut task is already holding lock:\n");
1732	print_lock(prev);
1733
1734	printk("\nother info that might help us debug this:\n");
1735	print_deadlock_scenario(next, prev);
1736	lockdep_print_held_locks(curr);
1737
1738	printk("\nstack backtrace:\n");
1739	dump_stack();
1740
1741	return 0;
1742}
1743
1744/*
1745 * Check whether we are holding such a class already.
1746 *
1747 * (Note that this has to be done separately, because the graph cannot
1748 * detect such classes of deadlocks.)
1749 *
1750 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
 
 
1751 */
1752static int
1753check_deadlock(struct task_struct *curr, struct held_lock *next,
1754	       struct lockdep_map *next_instance, int read)
1755{
1756	struct held_lock *prev;
1757	struct held_lock *nest = NULL;
1758	int i;
1759
1760	for (i = 0; i < curr->lockdep_depth; i++) {
1761		prev = curr->held_locks + i;
1762
1763		if (prev->instance == next->nest_lock)
1764			nest = prev;
1765
1766		if (hlock_class(prev) != hlock_class(next))
1767			continue;
1768
1769		/*
1770		 * Allow read-after-read recursion of the same
1771		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1772		 */
1773		if ((read == 2) && prev->read)
1774			return 2;
1775
1776		/*
1777		 * We're holding the nest_lock, which serializes this lock's
1778		 * nesting behaviour.
1779		 */
1780		if (nest)
1781			return 2;
1782
1783		return print_deadlock_bug(curr, prev, next);
 
1784	}
1785	return 1;
1786}
1787
1788/*
1789 * There was a chain-cache miss, and we are about to add a new dependency
1790 * to a previous lock. We recursively validate the following rules:
1791 *
1792 *  - would the adding of the <prev> -> <next> dependency create a
1793 *    circular dependency in the graph? [== circular deadlock]
1794 *
1795 *  - does the new prev->next dependency connect any hardirq-safe lock
1796 *    (in the full backwards-subgraph starting at <prev>) with any
1797 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1798 *    <next>)? [== illegal lock inversion with hardirq contexts]
1799 *
1800 *  - does the new prev->next dependency connect any softirq-safe lock
1801 *    (in the full backwards-subgraph starting at <prev>) with any
1802 *    softirq-unsafe lock (in the full forwards-subgraph starting at
1803 *    <next>)? [== illegal lock inversion with softirq contexts]
1804 *
1805 * any of these scenarios could lead to a deadlock.
1806 *
1807 * Then if all the validations pass, we add the forwards and backwards
1808 * dependency.
1809 */
1810static int
1811check_prev_add(struct task_struct *curr, struct held_lock *prev,
1812	       struct held_lock *next, int distance, int trylock_loop)
 
1813{
1814	struct lock_list *entry;
1815	int ret;
1816	struct lock_list this;
1817	struct lock_list *uninitialized_var(target_entry);
1818	/*
1819	 * Static variable, serialized by the graph_lock().
1820	 *
1821	 * We use this static variable to save the stack trace in case
1822	 * we call into this function multiple times due to encountering
1823	 * trylocks in the held lock stack.
1824	 */
1825	static struct stack_trace trace;
 
 
 
 
 
 
 
 
1826
1827	/*
1828	 * Prove that the new <prev> -> <next> dependency would not
1829	 * create a circular dependency in the graph. (We do this by
1830	 * forward-recursing into the graph starting at <next>, and
1831	 * checking whether we can reach <prev>.)
1832	 *
1833	 * We are using global variables to control the recursion, to
1834	 * keep the stackframe size of the recursive functions low:
 
1835	 */
1836	this.class = hlock_class(next);
1837	this.parent = NULL;
1838	ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1839	if (unlikely(!ret))
1840		return print_circular_bug(&this, target_entry, next, prev);
1841	else if (unlikely(ret < 0))
1842		return print_bfs_bug(ret);
1843
1844	if (!check_prev_add_irq(curr, prev, next))
1845		return 0;
1846
1847	/*
1848	 * For recursive read-locks we do all the dependency checks,
1849	 * but we dont store read-triggered dependencies (only
1850	 * write-triggered dependencies). This ensures that only the
1851	 * write-side dependencies matter, and that if for example a
1852	 * write-lock never takes any other locks, then the reads are
1853	 * equivalent to a NOP.
1854	 */
1855	if (next->read == 2 || prev->read == 2)
1856		return 1;
1857	/*
1858	 * Is the <prev> -> <next> dependency already present?
1859	 *
1860	 * (this may occur even though this is a new chain: consider
1861	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1862	 *  chains - the second one will be new, but L1 already has
1863	 *  L2 added to its dependency list, due to the first chain.)
1864	 */
1865	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1866		if (entry->class == hlock_class(next)) {
1867			if (distance == 1)
1868				entry->distance = 1;
1869			return 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870		}
1871	}
1872
1873	if (!trylock_loop && !save_trace(&trace))
 
 
 
 
1874		return 0;
 
 
 
 
 
 
 
 
1875
1876	/*
1877	 * Ok, all validations passed, add the new lock
1878	 * to the previous lock's dependency list:
1879	 */
1880	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
1881			       &hlock_class(prev)->locks_after,
1882			       next->acquire_ip, distance, &trace);
 
 
1883
1884	if (!ret)
1885		return 0;
1886
1887	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
1888			       &hlock_class(next)->locks_before,
1889			       next->acquire_ip, distance, &trace);
 
 
1890	if (!ret)
1891		return 0;
1892
1893	/*
1894	 * Debugging printouts:
1895	 */
1896	if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1897		graph_unlock();
1898		printk("\n new dependency: ");
1899		print_lock_name(hlock_class(prev));
1900		printk(" => ");
1901		print_lock_name(hlock_class(next));
1902		printk("\n");
1903		dump_stack();
1904		return graph_lock();
1905	}
1906	return 1;
1907}
1908
1909/*
1910 * Add the dependency to all directly-previous locks that are 'relevant'.
1911 * The ones that are relevant are (in increasing distance from curr):
1912 * all consecutive trylock entries and the final non-trylock entry - or
1913 * the end of this context's lock-chain - whichever comes first.
1914 */
1915static int
1916check_prevs_add(struct task_struct *curr, struct held_lock *next)
1917{
 
1918	int depth = curr->lockdep_depth;
1919	int trylock_loop = 0;
1920	struct held_lock *hlock;
1921
1922	/*
1923	 * Debugging checks.
1924	 *
1925	 * Depth must not be zero for a non-head lock:
1926	 */
1927	if (!depth)
1928		goto out_bug;
1929	/*
1930	 * At least two relevant locks must exist for this
1931	 * to be a head:
1932	 */
1933	if (curr->held_locks[depth].irq_context !=
1934			curr->held_locks[depth-1].irq_context)
1935		goto out_bug;
1936
1937	for (;;) {
1938		int distance = curr->lockdep_depth - depth + 1;
1939		hlock = curr->held_locks + depth - 1;
1940		/*
1941		 * Only non-recursive-read entries get new dependencies
1942		 * added:
1943		 */
1944		if (hlock->read != 2 && hlock->check) {
1945			if (!check_prev_add(curr, hlock, next,
1946						distance, trylock_loop))
1947				return 0;
 
1948			/*
1949			 * Stop after the first non-trylock entry,
1950			 * as non-trylock entries have added their
1951			 * own direct dependencies already, so this
1952			 * lock is connected to them indirectly:
1953			 */
1954			if (!hlock->trylock)
1955				break;
1956		}
 
1957		depth--;
1958		/*
1959		 * End of lock-stack?
1960		 */
1961		if (!depth)
1962			break;
1963		/*
1964		 * Stop the search if we cross into another context:
1965		 */
1966		if (curr->held_locks[depth].irq_context !=
1967				curr->held_locks[depth-1].irq_context)
1968			break;
1969		trylock_loop = 1;
1970	}
1971	return 1;
1972out_bug:
1973	if (!debug_locks_off_graph_unlock())
1974		return 0;
1975
1976	/*
1977	 * Clearly we all shouldn't be here, but since we made it we
1978	 * can reliable say we messed up our state. See the above two
1979	 * gotos for reasons why we could possibly end up here.
1980	 */
1981	WARN_ON(1);
1982
1983	return 0;
1984}
1985
1986unsigned long nr_lock_chains;
1987struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1988int nr_chain_hlocks;
1989static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 
 
 
 
1990
1991struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992{
1993	return lock_classes + chain_hlocks[chain->base + i];
 
 
 
 
 
 
 
 
 
 
 
1994}
1995
1996/*
1997 * Look up a dependency chain. If the key is not present yet then
1998 * add it and return 1 - in this case the new dependency chain is
1999 * validated. If the key is already hashed, return 0.
2000 * (On return with 1 graph_lock is held.)
2001 */
2002static inline int lookup_chain_cache(struct task_struct *curr,
2003				     struct held_lock *hlock,
2004				     u64 chain_key)
2005{
2006	struct lock_class *class = hlock_class(hlock);
2007	struct list_head *hash_head = chainhashentry(chain_key);
2008	struct lock_chain *chain;
2009	struct held_lock *hlock_curr;
2010	int i, j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012	/*
2013	 * We might need to take the graph lock, ensure we've got IRQs
2014	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2015	 * lockdep won't complain about its own locking errors.
2016	 */
2017	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2018		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2019	/*
2020	 * We can walk it lock-free, because entries only get added
2021	 * to the hash:
2022	 */
2023	list_for_each_entry(chain, hash_head, entry) {
2024		if (chain->chain_key == chain_key) {
2025cache_hit:
2026			debug_atomic_inc(chain_lookup_hits);
2027			if (very_verbose(class))
2028				printk("\nhash chain already cached, key: "
2029					"%016Lx tail class: [%p] %s\n",
2030					(unsigned long long)chain_key,
2031					class->key, class->name);
2032			return 0;
 
 
 
 
 
 
 
 
 
2033		}
 
 
2034	}
2035	if (very_verbose(class))
2036		printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
2037			(unsigned long long)chain_key, class->key, class->name);
2038	/*
2039	 * Allocate a new chain entry from the static array, and add
2040	 * it to the hash:
2041	 */
2042	if (!graph_lock())
2043		return 0;
 
 
 
 
 
 
 
2044	/*
2045	 * We have to walk the chain again locked - to avoid duplicates:
2046	 */
2047	list_for_each_entry(chain, hash_head, entry) {
2048		if (chain->chain_key == chain_key) {
2049			graph_unlock();
2050			goto cache_hit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051		}
2052	}
2053	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054		if (!debug_locks_off_graph_unlock())
2055			return 0;
2056
2057		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2058		dump_stack();
2059		return 0;
2060	}
2061	chain = lock_chains + nr_lock_chains++;
2062	chain->chain_key = chain_key;
2063	chain->irq_context = hlock->irq_context;
2064	/* Find the first held_lock of current chain */
2065	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2066		hlock_curr = curr->held_locks + i;
2067		if (hlock_curr->irq_context != hlock->irq_context)
2068			break;
2069	}
2070	i++;
2071	chain->depth = curr->lockdep_depth + 1 - i;
2072	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2073		chain->base = nr_chain_hlocks;
2074		nr_chain_hlocks += chain->depth;
2075		for (j = 0; j < chain->depth - 1; j++, i++) {
2076			int lock_id = curr->held_locks[i].class_idx - 1;
2077			chain_hlocks[chain->base + j] = lock_id;
2078		}
2079		chain_hlocks[chain->base + j] = class - lock_classes;
 
 
 
 
 
 
 
 
 
 
 
 
2080	}
2081	list_add_tail_rcu(&chain->entry, hash_head);
 
2082	debug_atomic_inc(chain_lookup_misses);
2083	inc_chains();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084
2085	return 1;
2086}
2087
2088static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
2089		struct held_lock *hlock, int chain_head, u64 chain_key)
 
2090{
2091	/*
2092	 * Trylock needs to maintain the stack of held locks, but it
2093	 * does not add new dependencies, because trylock can be done
2094	 * in any order.
2095	 *
2096	 * We look up the chain_key and do the O(N^2) check and update of
2097	 * the dependencies only if this is a new dependency chain.
2098	 * (If lookup_chain_cache() returns with 1 it acquires
2099	 * graph_lock for us)
2100	 */
2101	if (!hlock->trylock && hlock->check &&
2102	    lookup_chain_cache(curr, hlock, chain_key)) {
2103		/*
2104		 * Check whether last held lock:
2105		 *
2106		 * - is irq-safe, if this lock is irq-unsafe
2107		 * - is softirq-safe, if this lock is hardirq-unsafe
2108		 *
2109		 * And check whether the new lock's dependency graph
2110		 * could lead back to the previous lock.
 
 
 
2111		 *
2112		 * any of these scenarios could lead to a deadlock. If
2113		 * All validations
2114		 */
2115		int ret = check_deadlock(curr, hlock, lock, hlock->read);
 
 
 
 
2116
2117		if (!ret)
2118			return 0;
2119		/*
2120		 * Mark recursive read, as we jump over it when
2121		 * building dependencies (just like we jump over
2122		 * trylock entries):
2123		 */
2124		if (ret == 2)
2125			hlock->read = 2;
2126		/*
2127		 * Add dependency only if this lock is not the head
2128		 * of the chain, and if it's not a secondary read-lock:
 
 
 
 
2129		 */
2130		if (!chain_head && ret != 2)
2131			if (!check_prevs_add(curr, hlock))
2132				return 0;
 
 
2133		graph_unlock();
2134	} else
2135		/* after lookup_chain_cache(): */
2136		if (unlikely(!debug_locks))
2137			return 0;
 
2138
2139	return 1;
2140}
2141#else
2142static inline int validate_chain(struct task_struct *curr,
2143	       	struct lockdep_map *lock, struct held_lock *hlock,
2144		int chain_head, u64 chain_key)
2145{
2146	return 1;
2147}
2148#endif
 
 
2149
2150/*
2151 * We are building curr_chain_key incrementally, so double-check
2152 * it from scratch, to make sure that it's done correctly:
2153 */
2154static void check_chain_key(struct task_struct *curr)
2155{
2156#ifdef CONFIG_DEBUG_LOCKDEP
2157	struct held_lock *hlock, *prev_hlock = NULL;
2158	unsigned int i, id;
2159	u64 chain_key = 0;
2160
2161	for (i = 0; i < curr->lockdep_depth; i++) {
2162		hlock = curr->held_locks + i;
2163		if (chain_key != hlock->prev_chain_key) {
2164			debug_locks_off();
2165			/*
2166			 * We got mighty confused, our chain keys don't match
2167			 * with what we expect, someone trample on our task state?
2168			 */
2169			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2170				curr->lockdep_depth, i,
2171				(unsigned long long)chain_key,
2172				(unsigned long long)hlock->prev_chain_key);
2173			return;
2174		}
2175		id = hlock->class_idx - 1;
2176		/*
2177		 * Whoops ran out of static storage again?
 
2178		 */
2179		if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
2180			return;
2181
2182		if (prev_hlock && (prev_hlock->irq_context !=
2183							hlock->irq_context))
2184			chain_key = 0;
2185		chain_key = iterate_chain_key(chain_key, id);
2186		prev_hlock = hlock;
2187	}
2188	if (chain_key != curr->curr_chain_key) {
2189		debug_locks_off();
2190		/*
2191		 * More smoking hash instead of calculating it, damn see these
2192		 * numbers float.. I bet that a pink elephant stepped on my memory.
2193		 */
2194		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2195			curr->lockdep_depth, i,
2196			(unsigned long long)chain_key,
2197			(unsigned long long)curr->curr_chain_key);
2198	}
2199#endif
2200}
2201
2202static void
2203print_usage_bug_scenario(struct held_lock *lock)
 
 
 
2204{
2205	struct lock_class *class = hlock_class(lock);
2206
2207	printk(" Possible unsafe locking scenario:\n\n");
2208	printk("       CPU0\n");
2209	printk("       ----\n");
2210	printk("  lock(");
2211	__print_lock_name(class);
2212	printk(");\n");
2213	printk("  <Interrupt>\n");
2214	printk("    lock(");
2215	__print_lock_name(class);
2216	printk(");\n");
2217	printk("\n *** DEADLOCK ***\n\n");
2218}
2219
2220static int
2221print_usage_bug(struct task_struct *curr, struct held_lock *this,
2222		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2223{
2224	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2225		return 0;
2226
2227	printk("\n");
2228	printk("=================================\n");
2229	printk("[ INFO: inconsistent lock state ]\n");
2230	print_kernel_ident();
2231	printk("---------------------------------\n");
2232
2233	printk("inconsistent {%s} -> {%s} usage.\n",
2234		usage_str[prev_bit], usage_str[new_bit]);
2235
2236	printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2237		curr->comm, task_pid_nr(curr),
2238		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2239		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2240		trace_hardirqs_enabled(curr),
2241		trace_softirqs_enabled(curr));
2242	print_lock(this);
2243
2244	printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2245	print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2246
2247	print_irqtrace_events(curr);
2248	printk("\nother info that might help us debug this:\n");
2249	print_usage_bug_scenario(this);
2250
2251	lockdep_print_held_locks(curr);
2252
2253	printk("\nstack backtrace:\n");
2254	dump_stack();
2255
2256	return 0;
2257}
2258
2259/*
2260 * Print out an error if an invalid bit is set:
2261 */
2262static inline int
2263valid_state(struct task_struct *curr, struct held_lock *this,
2264	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2265{
2266	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2267		return print_usage_bug(curr, this, bad_bit, new_bit);
 
 
 
2268	return 1;
2269}
2270
2271static int mark_lock(struct task_struct *curr, struct held_lock *this,
2272		     enum lock_usage_bit new_bit);
2273
2274#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2275
2276/*
2277 * print irq inversion bug:
2278 */
2279static int
2280print_irq_inversion_bug(struct task_struct *curr,
2281			struct lock_list *root, struct lock_list *other,
2282			struct held_lock *this, int forwards,
2283			const char *irqclass)
2284{
2285	struct lock_list *entry = other;
2286	struct lock_list *middle = NULL;
2287	int depth;
2288
2289	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2290		return 0;
2291
2292	printk("\n");
2293	printk("=========================================================\n");
2294	printk("[ INFO: possible irq lock inversion dependency detected ]\n");
2295	print_kernel_ident();
2296	printk("---------------------------------------------------------\n");
2297	printk("%s/%d just changed the state of lock:\n",
2298		curr->comm, task_pid_nr(curr));
2299	print_lock(this);
2300	if (forwards)
2301		printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2302	else
2303		printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2304	print_lock_name(other->class);
2305	printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2306
2307	printk("\nother info that might help us debug this:\n");
2308
2309	/* Find a middle lock (if one exists) */
2310	depth = get_lock_depth(other);
2311	do {
2312		if (depth == 0 && (entry != root)) {
2313			printk("lockdep:%s bad path found in chain graph\n", __func__);
2314			break;
2315		}
2316		middle = entry;
2317		entry = get_lock_parent(entry);
2318		depth--;
2319	} while (entry && entry != root && (depth >= 0));
2320	if (forwards)
2321		print_irq_lock_scenario(root, other,
2322			middle ? middle->class : root->class, other->class);
2323	else
2324		print_irq_lock_scenario(other, root,
2325			middle ? middle->class : other->class, root->class);
2326
2327	lockdep_print_held_locks(curr);
2328
2329	printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2330	if (!save_trace(&root->trace))
2331		return 0;
 
2332	print_shortest_lock_dependencies(other, root);
2333
2334	printk("\nstack backtrace:\n");
2335	dump_stack();
2336
2337	return 0;
2338}
2339
2340/*
2341 * Prove that in the forwards-direction subgraph starting at <this>
2342 * there is no lock matching <mask>:
2343 */
2344static int
2345check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2346		     enum lock_usage_bit bit, const char *irqclass)
2347{
2348	int ret;
2349	struct lock_list root;
2350	struct lock_list *uninitialized_var(target_entry);
 
 
2351
2352	root.parent = NULL;
2353	root.class = hlock_class(this);
2354	ret = find_usage_forwards(&root, bit, &target_entry);
2355	if (ret < 0)
2356		return print_bfs_bug(ret);
2357	if (ret == 1)
2358		return ret;
 
2359
2360	return print_irq_inversion_bug(curr, &root, target_entry,
2361					this, 1, irqclass);
 
 
 
 
 
 
 
 
2362}
2363
2364/*
2365 * Prove that in the backwards-direction subgraph starting at <this>
2366 * there is no lock matching <mask>:
2367 */
2368static int
2369check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2370		      enum lock_usage_bit bit, const char *irqclass)
2371{
2372	int ret;
2373	struct lock_list root;
2374	struct lock_list *uninitialized_var(target_entry);
 
 
2375
2376	root.parent = NULL;
2377	root.class = hlock_class(this);
2378	ret = find_usage_backwards(&root, bit, &target_entry);
2379	if (ret < 0)
2380		return print_bfs_bug(ret);
2381	if (ret == 1)
2382		return ret;
 
2383
2384	return print_irq_inversion_bug(curr, &root, target_entry,
2385					this, 0, irqclass);
 
 
 
 
 
 
 
 
2386}
2387
2388void print_irqtrace_events(struct task_struct *curr)
2389{
2390	printk("irq event stamp: %u\n", curr->irq_events);
2391	printk("hardirqs last  enabled at (%u): ", curr->hardirq_enable_event);
2392	print_ip_sym(curr->hardirq_enable_ip);
2393	printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
2394	print_ip_sym(curr->hardirq_disable_ip);
2395	printk("softirqs last  enabled at (%u): ", curr->softirq_enable_event);
2396	print_ip_sym(curr->softirq_enable_ip);
2397	printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
2398	print_ip_sym(curr->softirq_disable_ip);
 
 
 
 
 
 
2399}
2400
2401static int HARDIRQ_verbose(struct lock_class *class)
2402{
2403#if HARDIRQ_VERBOSE
2404	return class_filter(class);
2405#endif
2406	return 0;
2407}
2408
2409static int SOFTIRQ_verbose(struct lock_class *class)
2410{
2411#if SOFTIRQ_VERBOSE
2412	return class_filter(class);
2413#endif
2414	return 0;
2415}
2416
2417static int RECLAIM_FS_verbose(struct lock_class *class)
2418{
2419#if RECLAIM_VERBOSE
2420	return class_filter(class);
2421#endif
2422	return 0;
2423}
2424
2425#define STRICT_READ_CHECKS	1
2426
2427static int (*state_verbose_f[])(struct lock_class *class) = {
2428#define LOCKDEP_STATE(__STATE) \
2429	__STATE##_verbose,
2430#include "lockdep_states.h"
2431#undef LOCKDEP_STATE
2432};
2433
2434static inline int state_verbose(enum lock_usage_bit bit,
2435				struct lock_class *class)
2436{
2437	return state_verbose_f[bit >> 2](class);
2438}
2439
2440typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2441			     enum lock_usage_bit bit, const char *name);
2442
2443static int
2444mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2445		enum lock_usage_bit new_bit)
2446{
2447	int excl_bit = exclusive_bit(new_bit);
2448	int read = new_bit & 1;
2449	int dir = new_bit & 2;
2450
2451	/*
2452	 * mark USED_IN has to look forwards -- to ensure no dependency
2453	 * has ENABLED state, which would allow recursion deadlocks.
2454	 *
2455	 * mark ENABLED has to look backwards -- to ensure no dependee
2456	 * has USED_IN state, which, again, would allow  recursion deadlocks.
2457	 */
2458	check_usage_f usage = dir ?
2459		check_usage_backwards : check_usage_forwards;
2460
2461	/*
2462	 * Validate that this particular lock does not have conflicting
2463	 * usage states.
2464	 */
2465	if (!valid_state(curr, this, new_bit, excl_bit))
2466		return 0;
2467
2468	/*
2469	 * Validate that the lock dependencies don't have conflicting usage
2470	 * states.
2471	 */
2472	if ((!read || !dir || STRICT_READ_CHECKS) &&
2473			!usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2474		return 0;
2475
 
2476	/*
2477	 * Check for read in write conflicts
 
2478	 */
2479	if (!read) {
2480		if (!valid_state(curr, this, new_bit, excl_bit + 1))
 
 
 
 
2481			return 0;
2482
2483		if (STRICT_READ_CHECKS &&
2484			!usage(curr, this, excl_bit + 1,
2485				state_name(new_bit + 1)))
 
 
2486			return 0;
2487	}
2488
2489	if (state_verbose(new_bit, hlock_class(this)))
2490		return 2;
2491
2492	return 1;
2493}
2494
2495enum mark_type {
2496#define LOCKDEP_STATE(__STATE)	__STATE,
2497#include "lockdep_states.h"
2498#undef LOCKDEP_STATE
2499};
2500
2501/*
2502 * Mark all held locks with a usage bit:
2503 */
2504static int
2505mark_held_locks(struct task_struct *curr, enum mark_type mark)
2506{
2507	enum lock_usage_bit usage_bit;
2508	struct held_lock *hlock;
2509	int i;
2510
2511	for (i = 0; i < curr->lockdep_depth; i++) {
 
2512		hlock = curr->held_locks + i;
2513
2514		usage_bit = 2 + (mark << 2); /* ENABLED */
2515		if (hlock->read)
2516			usage_bit += 1; /* READ */
2517
2518		BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2519
2520		if (!hlock->check)
2521			continue;
2522
2523		if (!mark_lock(curr, hlock, usage_bit))
2524			return 0;
2525	}
2526
2527	return 1;
2528}
2529
2530/*
2531 * Hardirqs will be enabled:
2532 */
2533static void __trace_hardirqs_on_caller(unsigned long ip)
2534{
2535	struct task_struct *curr = current;
2536
2537	/* we'll do an OFF -> ON transition: */
2538	curr->hardirqs_enabled = 1;
2539
2540	/*
2541	 * We are going to turn hardirqs on, so set the
2542	 * usage bit for all held locks:
2543	 */
2544	if (!mark_held_locks(curr, HARDIRQ))
2545		return;
2546	/*
2547	 * If we have softirqs enabled, then set the usage
2548	 * bit for all held locks. (disabled hardirqs prevented
2549	 * this bit from being set before)
2550	 */
2551	if (curr->softirqs_enabled)
2552		if (!mark_held_locks(curr, SOFTIRQ))
2553			return;
2554
2555	curr->hardirq_enable_ip = ip;
2556	curr->hardirq_enable_event = ++curr->irq_events;
2557	debug_atomic_inc(hardirqs_on_events);
2558}
2559
2560__visible void trace_hardirqs_on_caller(unsigned long ip)
 
 
 
 
 
 
 
 
 
2561{
2562	time_hardirqs_on(CALLER_ADDR0, ip);
 
 
 
 
 
 
 
2563
2564	if (unlikely(!debug_locks || current->lockdep_recursion))
2565		return;
2566
2567	if (unlikely(current->hardirqs_enabled)) {
2568		/*
2569		 * Neither irq nor preemption are disabled here
2570		 * so this is racy by nature but losing one hit
2571		 * in a stat is not a big deal.
2572		 */
2573		__debug_atomic_inc(redundant_hardirqs_on);
2574		return;
2575	}
2576
2577	/*
2578	 * We're enabling irqs and according to our state above irqs weren't
2579	 * already enabled, yet we find the hardware thinks they are in fact
2580	 * enabled.. someone messed up their IRQ state tracing.
2581	 */
2582	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2583		return;
2584
2585	/*
2586	 * See the fine text that goes along with this variable definition.
2587	 */
2588	if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled)))
2589		return;
2590
2591	/*
2592	 * Can't allow enabling interrupts while in an interrupt handler,
2593	 * that's general bad form and such. Recursion, limited stack etc..
2594	 */
2595	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2596		return;
2597
2598	current->lockdep_recursion = 1;
2599	__trace_hardirqs_on_caller(ip);
2600	current->lockdep_recursion = 0;
 
 
2601}
2602EXPORT_SYMBOL(trace_hardirqs_on_caller);
2603
2604void trace_hardirqs_on(void)
2605{
2606	trace_hardirqs_on_caller(CALLER_ADDR0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607}
2608EXPORT_SYMBOL(trace_hardirqs_on);
2609
2610/*
2611 * Hardirqs were disabled:
2612 */
2613__visible void trace_hardirqs_off_caller(unsigned long ip)
2614{
2615	struct task_struct *curr = current;
2616
2617	time_hardirqs_off(CALLER_ADDR0, ip);
2618
2619	if (unlikely(!debug_locks || current->lockdep_recursion))
 
 
 
 
 
 
 
 
2620		return;
2621
2622	/*
2623	 * So we're supposed to get called after you mask local IRQs, but for
2624	 * some reason the hardware doesn't quite think you did a proper job.
2625	 */
2626	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2627		return;
2628
2629	if (curr->hardirqs_enabled) {
 
 
2630		/*
2631		 * We have done an ON -> OFF transition:
2632		 */
2633		curr->hardirqs_enabled = 0;
2634		curr->hardirq_disable_ip = ip;
2635		curr->hardirq_disable_event = ++curr->irq_events;
2636		debug_atomic_inc(hardirqs_off_events);
2637	} else
2638		debug_atomic_inc(redundant_hardirqs_off);
 
2639}
2640EXPORT_SYMBOL(trace_hardirqs_off_caller);
2641
2642void trace_hardirqs_off(void)
2643{
2644	trace_hardirqs_off_caller(CALLER_ADDR0);
2645}
2646EXPORT_SYMBOL(trace_hardirqs_off);
2647
2648/*
2649 * Softirqs will be enabled:
2650 */
2651void trace_softirqs_on(unsigned long ip)
2652{
2653	struct task_struct *curr = current;
2654
2655	if (unlikely(!debug_locks || current->lockdep_recursion))
2656		return;
2657
2658	/*
2659	 * We fancy IRQs being disabled here, see softirq.c, avoids
2660	 * funny state and nesting things.
2661	 */
2662	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2663		return;
2664
2665	if (curr->softirqs_enabled) {
2666		debug_atomic_inc(redundant_softirqs_on);
2667		return;
2668	}
2669
2670	current->lockdep_recursion = 1;
2671	/*
2672	 * We'll do an OFF -> ON transition:
2673	 */
2674	curr->softirqs_enabled = 1;
2675	curr->softirq_enable_ip = ip;
2676	curr->softirq_enable_event = ++curr->irq_events;
2677	debug_atomic_inc(softirqs_on_events);
2678	/*
2679	 * We are going to turn softirqs on, so set the
2680	 * usage bit for all held locks, if hardirqs are
2681	 * enabled too:
2682	 */
2683	if (curr->hardirqs_enabled)
2684		mark_held_locks(curr, SOFTIRQ);
2685	current->lockdep_recursion = 0;
2686}
2687
2688/*
2689 * Softirqs were disabled:
2690 */
2691void trace_softirqs_off(unsigned long ip)
2692{
2693	struct task_struct *curr = current;
2694
2695	if (unlikely(!debug_locks || current->lockdep_recursion))
2696		return;
2697
2698	/*
2699	 * We fancy IRQs being disabled here, see softirq.c
2700	 */
2701	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2702		return;
2703
2704	if (curr->softirqs_enabled) {
 
 
2705		/*
2706		 * We have done an ON -> OFF transition:
2707		 */
2708		curr->softirqs_enabled = 0;
2709		curr->softirq_disable_ip = ip;
2710		curr->softirq_disable_event = ++curr->irq_events;
2711		debug_atomic_inc(softirqs_off_events);
2712		/*
2713		 * Whoops, we wanted softirqs off, so why aren't they?
2714		 */
2715		DEBUG_LOCKS_WARN_ON(!softirq_count());
2716	} else
2717		debug_atomic_inc(redundant_softirqs_off);
2718}
2719
2720static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2721{
2722	struct task_struct *curr = current;
2723
2724	if (unlikely(!debug_locks))
2725		return;
2726
2727	/* no reclaim without waiting on it */
2728	if (!(gfp_mask & __GFP_WAIT))
2729		return;
2730
2731	/* this guy won't enter reclaim */
2732	if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2733		return;
2734
2735	/* We're only interested __GFP_FS allocations for now */
2736	if (!(gfp_mask & __GFP_FS))
2737		return;
2738
2739	/*
2740	 * Oi! Can't be having __GFP_FS allocations with IRQs disabled.
2741	 */
2742	if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2743		return;
2744
2745	mark_held_locks(curr, RECLAIM_FS);
2746}
2747
2748static void check_flags(unsigned long flags);
2749
2750void lockdep_trace_alloc(gfp_t gfp_mask)
2751{
2752	unsigned long flags;
2753
2754	if (unlikely(current->lockdep_recursion))
2755		return;
2756
2757	raw_local_irq_save(flags);
2758	check_flags(flags);
2759	current->lockdep_recursion = 1;
2760	__lockdep_trace_alloc(gfp_mask, flags);
2761	current->lockdep_recursion = 0;
2762	raw_local_irq_restore(flags);
2763}
2764
2765static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2766{
2767	/*
2768	 * If non-trylock use in a hardirq or softirq context, then
2769	 * mark the lock as used in these contexts:
2770	 */
2771	if (!hlock->trylock) {
2772		if (hlock->read) {
2773			if (curr->hardirq_context)
2774				if (!mark_lock(curr, hlock,
2775						LOCK_USED_IN_HARDIRQ_READ))
2776					return 0;
2777			if (curr->softirq_context)
2778				if (!mark_lock(curr, hlock,
2779						LOCK_USED_IN_SOFTIRQ_READ))
2780					return 0;
2781		} else {
2782			if (curr->hardirq_context)
2783				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2784					return 0;
2785			if (curr->softirq_context)
2786				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2787					return 0;
2788		}
2789	}
2790	if (!hlock->hardirqs_off) {
2791		if (hlock->read) {
2792			if (!mark_lock(curr, hlock,
2793					LOCK_ENABLED_HARDIRQ_READ))
2794				return 0;
2795			if (curr->softirqs_enabled)
2796				if (!mark_lock(curr, hlock,
2797						LOCK_ENABLED_SOFTIRQ_READ))
2798					return 0;
2799		} else {
2800			if (!mark_lock(curr, hlock,
2801					LOCK_ENABLED_HARDIRQ))
2802				return 0;
2803			if (curr->softirqs_enabled)
2804				if (!mark_lock(curr, hlock,
2805						LOCK_ENABLED_SOFTIRQ))
2806					return 0;
2807		}
2808	}
2809
2810	/*
2811	 * We reuse the irq context infrastructure more broadly as a general
2812	 * context checking code. This tests GFP_FS recursion (a lock taken
2813	 * during reclaim for a GFP_FS allocation is held over a GFP_FS
2814	 * allocation).
2815	 */
2816	if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2817		if (hlock->read) {
2818			if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2819					return 0;
2820		} else {
2821			if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2822					return 0;
2823		}
2824	}
2825
2826	return 1;
2827}
2828
 
 
 
 
 
 
2829static int separate_irq_context(struct task_struct *curr,
2830		struct held_lock *hlock)
2831{
2832	unsigned int depth = curr->lockdep_depth;
2833
2834	/*
2835	 * Keep track of points where we cross into an interrupt context:
2836	 */
2837	hlock->irq_context = 2*(curr->hardirq_context ? 1 : 0) +
2838				curr->softirq_context;
2839	if (depth) {
2840		struct held_lock *prev_hlock;
2841
2842		prev_hlock = curr->held_locks + depth-1;
2843		/*
2844		 * If we cross into another context, reset the
2845		 * hash key (this also prevents the checking and the
2846		 * adding of the dependency to 'prev'):
2847		 */
2848		if (prev_hlock->irq_context != hlock->irq_context)
2849			return 1;
2850	}
2851	return 0;
2852}
2853
2854#else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
2855
2856static inline
2857int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2858		enum lock_usage_bit new_bit)
2859{
2860	WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */
2861	return 1;
2862}
2863
2864static inline int mark_irqflags(struct task_struct *curr,
2865		struct held_lock *hlock)
2866{
2867	return 1;
2868}
2869
2870static inline int separate_irq_context(struct task_struct *curr,
2871		struct held_lock *hlock)
2872{
2873	return 0;
2874}
2875
2876void lockdep_trace_alloc(gfp_t gfp_mask)
2877{
2878}
2879
2880#endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
2881
2882/*
2883 * Mark a lock with a usage bit, and validate the state transition:
2884 */
2885static int mark_lock(struct task_struct *curr, struct held_lock *this,
2886			     enum lock_usage_bit new_bit)
2887{
2888	unsigned int new_mask = 1 << new_bit, ret = 1;
 
 
 
 
 
 
 
 
 
 
2889
2890	/*
2891	 * If already set then do not dirty the cacheline,
2892	 * nor do any checks:
2893	 */
2894	if (likely(hlock_class(this)->usage_mask & new_mask))
2895		return 1;
2896
2897	if (!graph_lock())
2898		return 0;
2899	/*
2900	 * Make sure we didn't race:
2901	 */
2902	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
2903		graph_unlock();
2904		return 1;
2905	}
 
2906
2907	hlock_class(this)->usage_mask |= new_mask;
2908
2909	if (!save_trace(hlock_class(this)->usage_traces + new_bit))
2910		return 0;
 
 
2911
2912	switch (new_bit) {
2913#define LOCKDEP_STATE(__STATE)			\
2914	case LOCK_USED_IN_##__STATE:		\
2915	case LOCK_USED_IN_##__STATE##_READ:	\
2916	case LOCK_ENABLED_##__STATE:		\
2917	case LOCK_ENABLED_##__STATE##_READ:
2918#include "lockdep_states.h"
2919#undef LOCKDEP_STATE
2920		ret = mark_lock_irq(curr, this, new_bit);
2921		if (!ret)
2922			return 0;
2923		break;
2924	case LOCK_USED:
2925		debug_atomic_dec(nr_unused_locks);
2926		break;
2927	default:
2928		if (!debug_locks_off_graph_unlock())
2929			return 0;
2930		WARN_ON(1);
2931		return 0;
2932	}
2933
 
2934	graph_unlock();
2935
2936	/*
2937	 * We must printk outside of the graph_lock:
2938	 */
2939	if (ret == 2) {
2940		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
2941		print_lock(this);
2942		print_irqtrace_events(curr);
2943		dump_stack();
2944	}
2945
2946	return ret;
2947}
2948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949/*
2950 * Initialize a lock instance's lock-class mapping info:
2951 */
2952void lockdep_init_map(struct lockdep_map *lock, const char *name,
2953		      struct lock_class_key *key, int subclass)
 
2954{
2955	int i;
2956
2957	kmemcheck_mark_initialized(lock, sizeof(*lock));
2958
2959	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
2960		lock->class_cache[i] = NULL;
2961
2962#ifdef CONFIG_LOCK_STAT
2963	lock->cpu = raw_smp_processor_id();
2964#endif
2965
2966	/*
2967	 * Can't be having no nameless bastards around this place!
2968	 */
2969	if (DEBUG_LOCKS_WARN_ON(!name)) {
2970		lock->name = "NULL";
2971		return;
2972	}
2973
2974	lock->name = name;
2975
 
 
 
 
2976	/*
2977	 * No key, no joy, we need to hash something.
2978	 */
2979	if (DEBUG_LOCKS_WARN_ON(!key))
2980		return;
2981	/*
2982	 * Sanity check, the lock-class key must be persistent:
 
2983	 */
2984	if (!static_obj(key)) {
2985		printk("BUG: key %p not in .data!\n", key);
2986		/*
2987		 * What it says above ^^^^^, I suggest you read it.
2988		 */
2989		DEBUG_LOCKS_WARN_ON(1);
2990		return;
2991	}
2992	lock->key = key;
2993
2994	if (unlikely(!debug_locks))
2995		return;
2996
2997	if (subclass)
 
 
 
 
 
 
 
2998		register_lock_class(lock, subclass, 1);
 
 
 
2999}
3000EXPORT_SYMBOL_GPL(lockdep_init_map);
3001
3002struct lock_class_key __lockdep_no_validate__;
3003EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3004
3005static int
3006print_lock_nested_lock_not_held(struct task_struct *curr,
3007				struct held_lock *hlock,
3008				unsigned long ip)
3009{
3010	if (!debug_locks_off())
3011		return 0;
3012	if (debug_locks_silent)
3013		return 0;
3014
3015	printk("\n");
3016	printk("==================================\n");
3017	printk("[ BUG: Nested lock was not taken ]\n");
3018	print_kernel_ident();
3019	printk("----------------------------------\n");
3020
3021	printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3022	print_lock(hlock);
3023
3024	printk("\nbut this task is not holding:\n");
3025	printk("%s\n", hlock->nest_lock->name);
3026
3027	printk("\nstack backtrace:\n");
3028	dump_stack();
3029
3030	printk("\nother info that might help us debug this:\n");
3031	lockdep_print_held_locks(curr);
3032
3033	printk("\nstack backtrace:\n");
3034	dump_stack();
3035
3036	return 0;
3037}
3038
3039static int __lock_is_held(struct lockdep_map *lock);
3040
3041/*
3042 * This gets called for every mutex_lock*()/spin_lock*() operation.
3043 * We maintain the dependency maps and validate the locking attempt:
 
 
 
 
3044 */
3045static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3046			  int trylock, int read, int check, int hardirqs_off,
3047			  struct lockdep_map *nest_lock, unsigned long ip,
3048			  int references)
3049{
3050	struct task_struct *curr = current;
3051	struct lock_class *class = NULL;
3052	struct held_lock *hlock;
3053	unsigned int depth, id;
3054	int chain_head = 0;
3055	int class_idx;
3056	u64 chain_key;
3057
3058	if (unlikely(!debug_locks))
3059		return 0;
3060
3061	/*
3062	 * Lockdep should run with IRQs disabled, otherwise we could
3063	 * get an interrupt which would want to take locks, which would
3064	 * end up in lockdep and have you got a head-ache already?
3065	 */
3066	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3067		return 0;
3068
3069	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3070		check = 0;
3071
3072	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3073		class = lock->class_cache[subclass];
3074	/*
3075	 * Not cached?
3076	 */
3077	if (unlikely(!class)) {
3078		class = register_lock_class(lock, subclass, 0);
3079		if (!class)
3080			return 0;
3081	}
3082	atomic_inc((atomic_t *)&class->ops);
 
 
3083	if (very_verbose(class)) {
3084		printk("\nacquire class [%p] %s", class->key, class->name);
3085		if (class->name_version > 1)
3086			printk("#%d", class->name_version);
3087		printk("\n");
3088		dump_stack();
3089	}
3090
3091	/*
3092	 * Add the lock to the list of currently held locks.
3093	 * (we dont increase the depth just yet, up until the
3094	 * dependency checks are done)
3095	 */
3096	depth = curr->lockdep_depth;
3097	/*
3098	 * Ran out of static storage for our per-task lock stack again have we?
3099	 */
3100	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3101		return 0;
3102
3103	class_idx = class - lock_classes + 1;
3104
3105	if (depth) {
3106		hlock = curr->held_locks + depth - 1;
3107		if (hlock->class_idx == class_idx && nest_lock) {
3108			if (hlock->references)
 
 
 
3109				hlock->references++;
3110			else
3111				hlock->references = 2;
3112
3113			return 1;
 
 
 
 
 
 
3114		}
3115	}
3116
3117	hlock = curr->held_locks + depth;
3118	/*
3119	 * Plain impossible, we just registered it and checked it weren't no
3120	 * NULL like.. I bet this mushroom I ate was good!
3121	 */
3122	if (DEBUG_LOCKS_WARN_ON(!class))
3123		return 0;
3124	hlock->class_idx = class_idx;
3125	hlock->acquire_ip = ip;
3126	hlock->instance = lock;
3127	hlock->nest_lock = nest_lock;
 
3128	hlock->trylock = trylock;
3129	hlock->read = read;
3130	hlock->check = check;
3131	hlock->hardirqs_off = !!hardirqs_off;
3132	hlock->references = references;
3133#ifdef CONFIG_LOCK_STAT
3134	hlock->waittime_stamp = 0;
3135	hlock->holdtime_stamp = lockstat_clock();
3136#endif
 
3137
3138	if (check && !mark_irqflags(curr, hlock))
3139		return 0;
3140
3141	/* mark it as used: */
3142	if (!mark_lock(curr, hlock, LOCK_USED))
3143		return 0;
3144
3145	/*
3146	 * Calculate the chain hash: it's the combined hash of all the
3147	 * lock keys along the dependency chain. We save the hash value
3148	 * at every step so that we can get the current hash easily
3149	 * after unlock. The chain hash is then used to cache dependency
3150	 * results.
3151	 *
3152	 * The 'key ID' is what is the most compact key value to drive
3153	 * the hash, not class->key.
3154	 */
3155	id = class - lock_classes;
3156	/*
3157	 * Whoops, we did it again.. ran straight out of our static allocation.
3158	 */
3159	if (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
3160		return 0;
3161
3162	chain_key = curr->curr_chain_key;
3163	if (!depth) {
3164		/*
3165		 * How can we have a chain hash when we ain't got no keys?!
3166		 */
3167		if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
3168			return 0;
3169		chain_head = 1;
3170	}
3171
3172	hlock->prev_chain_key = chain_key;
3173	if (separate_irq_context(curr, hlock)) {
3174		chain_key = 0;
3175		chain_head = 1;
3176	}
3177	chain_key = iterate_chain_key(chain_key, id);
 
 
 
 
 
3178
3179	if (nest_lock && !__lock_is_held(nest_lock))
3180		return print_lock_nested_lock_not_held(curr, hlock, ip);
 
 
3181
3182	if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
3183		return 0;
3184
3185	curr->curr_chain_key = chain_key;
3186	curr->lockdep_depth++;
3187	check_chain_key(curr);
3188#ifdef CONFIG_DEBUG_LOCKDEP
3189	if (unlikely(!debug_locks))
3190		return 0;
3191#endif
3192	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3193		debug_locks_off();
3194		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3195		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3196		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3197
3198		lockdep_print_held_locks(current);
3199		debug_show_all_locks();
3200		dump_stack();
3201
3202		return 0;
3203	}
3204
3205	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3206		max_lockdep_depth = curr->lockdep_depth;
3207
3208	return 1;
3209}
3210
3211static int
3212print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
3213			   unsigned long ip)
3214{
3215	if (!debug_locks_off())
3216		return 0;
3217	if (debug_locks_silent)
3218		return 0;
3219
3220	printk("\n");
3221	printk("=====================================\n");
3222	printk("[ BUG: bad unlock balance detected! ]\n");
3223	print_kernel_ident();
3224	printk("-------------------------------------\n");
3225	printk("%s/%d is trying to release lock (",
3226		curr->comm, task_pid_nr(curr));
3227	print_lockdep_cache(lock);
3228	printk(") at:\n");
3229	print_ip_sym(ip);
3230	printk("but there are no more locks to release!\n");
3231	printk("\nother info that might help us debug this:\n");
3232	lockdep_print_held_locks(curr);
3233
3234	printk("\nstack backtrace:\n");
3235	dump_stack();
3236
3237	return 0;
3238}
3239
3240/*
3241 * Common debugging checks for both nested and non-nested unlock:
3242 */
3243static int check_unlock(struct task_struct *curr, struct lockdep_map *lock,
3244			unsigned long ip)
3245{
3246	if (unlikely(!debug_locks))
3247		return 0;
3248	/*
3249	 * Lockdep should run with IRQs disabled, recursion, head-ache, etc..
3250	 */
3251	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3252		return 0;
3253
3254	if (curr->lockdep_depth <= 0)
3255		return print_unlock_imbalance_bug(curr, lock, ip);
3256
3257	return 1;
3258}
3259
3260static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
3261{
3262	if (hlock->instance == lock)
3263		return 1;
3264
3265	if (hlock->references) {
3266		struct lock_class *class = lock->class_cache[0];
3267
3268		if (!class)
3269			class = look_up_lock_class(lock, 0);
3270
3271		/*
3272		 * If look_up_lock_class() failed to find a class, we're trying
3273		 * to test if we hold a lock that has never yet been acquired.
3274		 * Clearly if the lock hasn't been acquired _ever_, we're not
3275		 * holding it either, so report failure.
3276		 */
3277		if (!class)
3278			return 0;
3279
3280		/*
3281		 * References, but not a lock we're actually ref-counting?
3282		 * State got messed up, follow the sites that change ->references
3283		 * and try to make sense of it.
3284		 */
3285		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3286			return 0;
3287
3288		if (hlock->class_idx == class - lock_classes + 1)
3289			return 1;
3290	}
3291
3292	return 0;
3293}
3294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295static int
3296__lock_set_class(struct lockdep_map *lock, const char *name,
3297		 struct lock_class_key *key, unsigned int subclass,
3298		 unsigned long ip)
3299{
3300	struct task_struct *curr = current;
3301	struct held_lock *hlock, *prev_hlock;
 
3302	struct lock_class *class;
3303	unsigned int depth;
3304	int i;
3305
 
 
 
3306	depth = curr->lockdep_depth;
3307	/*
3308	 * This function is about (re)setting the class of a held lock,
3309	 * yet we're not actually holding any locks. Naughty user!
3310	 */
3311	if (DEBUG_LOCKS_WARN_ON(!depth))
3312		return 0;
3313
3314	prev_hlock = NULL;
3315	for (i = depth-1; i >= 0; i--) {
3316		hlock = curr->held_locks + i;
3317		/*
3318		 * We must not cross into another context:
3319		 */
3320		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3321			break;
3322		if (match_held_lock(hlock, lock))
3323			goto found_it;
3324		prev_hlock = hlock;
3325	}
3326	return print_unlock_imbalance_bug(curr, lock, ip);
3327
3328found_it:
3329	lockdep_init_map(lock, name, key, 0);
 
3330	class = register_lock_class(lock, subclass, 0);
3331	hlock->class_idx = class - lock_classes + 1;
3332
3333	curr->lockdep_depth = i;
3334	curr->curr_chain_key = hlock->prev_chain_key;
3335
3336	for (; i < depth; i++) {
3337		hlock = curr->held_locks + i;
3338		if (!__lock_acquire(hlock->instance,
3339			hlock_class(hlock)->subclass, hlock->trylock,
3340				hlock->read, hlock->check, hlock->hardirqs_off,
3341				hlock->nest_lock, hlock->acquire_ip,
3342				hlock->references))
3343			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344	}
3345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346	/*
3347	 * I took it apart and put it back together again, except now I have
3348	 * these 'spare' parts.. where shall I put them.
3349	 */
3350	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3351		return 0;
 
3352	return 1;
3353}
3354
3355/*
3356 * Remove the lock to the list of currently held locks in a
3357 * potentially non-nested (out of order) manner. This is a
3358 * relatively rare operation, as all the unlock APIs default
3359 * to nested mode (which uses lock_release()):
3360 */
3361static int
3362lock_release_non_nested(struct task_struct *curr,
3363			struct lockdep_map *lock, unsigned long ip)
3364{
3365	struct held_lock *hlock, *prev_hlock;
3366	unsigned int depth;
 
3367	int i;
3368
3369	/*
3370	 * Check whether the lock exists in the current stack
3371	 * of held locks:
3372	 */
3373	depth = curr->lockdep_depth;
3374	/*
3375	 * So we're all set to release this lock.. wait what lock? We don't
3376	 * own any locks, you've been drinking again?
3377	 */
3378	if (DEBUG_LOCKS_WARN_ON(!depth))
 
3379		return 0;
 
3380
3381	prev_hlock = NULL;
3382	for (i = depth-1; i >= 0; i--) {
3383		hlock = curr->held_locks + i;
3384		/*
3385		 * We must not cross into another context:
3386		 */
3387		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3388			break;
3389		if (match_held_lock(hlock, lock))
3390			goto found_it;
3391		prev_hlock = hlock;
3392	}
3393	return print_unlock_imbalance_bug(curr, lock, ip);
3394
3395found_it:
3396	if (hlock->instance == lock)
3397		lock_release_holdtime(hlock);
3398
 
 
3399	if (hlock->references) {
3400		hlock->references--;
3401		if (hlock->references) {
3402			/*
3403			 * We had, and after removing one, still have
3404			 * references, the current lock stack is still
3405			 * valid. We're done!
3406			 */
3407			return 1;
3408		}
3409	}
3410
3411	/*
3412	 * We have the right lock to unlock, 'hlock' points to it.
3413	 * Now we remove it from the stack, and add back the other
3414	 * entries (if any), recalculating the hash along the way:
3415	 */
3416
3417	curr->lockdep_depth = i;
3418	curr->curr_chain_key = hlock->prev_chain_key;
3419
3420	for (i++; i < depth; i++) {
3421		hlock = curr->held_locks + i;
3422		if (!__lock_acquire(hlock->instance,
3423			hlock_class(hlock)->subclass, hlock->trylock,
3424				hlock->read, hlock->check, hlock->hardirqs_off,
3425				hlock->nest_lock, hlock->acquire_ip,
3426				hlock->references))
3427			return 0;
3428	}
3429
3430	/*
3431	 * We had N bottles of beer on the wall, we drank one, but now
3432	 * there's not N-1 bottles of beer left on the wall...
 
3433	 */
3434	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3435		return 0;
3436	return 1;
 
 
 
 
 
3437}
3438
3439/*
3440 * Remove the lock to the list of currently held locks - this gets
3441 * called on mutex_unlock()/spin_unlock*() (or on a failed
3442 * mutex_lock_interruptible()). This is done for unlocks that nest
3443 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3444 */
3445static int lock_release_nested(struct task_struct *curr,
3446			       struct lockdep_map *lock, unsigned long ip)
3447{
3448	struct held_lock *hlock;
3449	unsigned int depth;
3450
3451	/*
3452	 * Pop off the top of the lock stack:
3453	 */
3454	depth = curr->lockdep_depth - 1;
3455	hlock = curr->held_locks + depth;
3456
3457	/*
3458	 * Is the unlock non-nested:
3459	 */
3460	if (hlock->instance != lock || hlock->references)
3461		return lock_release_non_nested(curr, lock, ip);
3462	curr->lockdep_depth--;
3463
3464	/*
3465	 * No more locks, but somehow we've got hash left over, who left it?
3466	 */
3467	if (DEBUG_LOCKS_WARN_ON(!depth && (hlock->prev_chain_key != 0)))
3468		return 0;
3469
3470	curr->curr_chain_key = hlock->prev_chain_key;
 
3471
3472	lock_release_holdtime(hlock);
 
 
 
 
3473
3474#ifdef CONFIG_DEBUG_LOCKDEP
3475	hlock->prev_chain_key = 0;
3476	hlock->class_idx = 0;
3477	hlock->acquire_ip = 0;
3478	hlock->irq_context = 0;
3479#endif
3480	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
3481}
3482
3483/*
3484 * Remove the lock to the list of currently held locks - this gets
3485 * called on mutex_unlock()/spin_unlock*() (or on a failed
3486 * mutex_lock_interruptible()). This is done for unlocks that nest
3487 * perfectly. (i.e. the current top of the lock-stack is unlocked)
3488 */
3489static void
3490__lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3491{
3492	struct task_struct *curr = current;
 
3493
3494	if (!check_unlock(curr, lock, ip))
3495		return;
3496
3497	if (nested) {
3498		if (!lock_release_nested(curr, lock, ip))
3499			return;
3500	} else {
3501		if (!lock_release_non_nested(curr, lock, ip))
3502			return;
 
3503	}
3504
3505	check_chain_key(curr);
3506}
3507
3508static int __lock_is_held(struct lockdep_map *lock)
3509{
3510	struct task_struct *curr = current;
3511	int i;
3512
 
 
 
3513	for (i = 0; i < curr->lockdep_depth; i++) {
3514		struct held_lock *hlock = curr->held_locks + i;
3515
3516		if (match_held_lock(hlock, lock))
3517			return 1;
 
 
 
 
 
 
 
 
 
3518	}
3519
3520	return 0;
3521}
3522
3523/*
3524 * Check whether we follow the irq-flags state precisely:
3525 */
3526static void check_flags(unsigned long flags)
3527{
3528#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3529    defined(CONFIG_TRACE_IRQFLAGS)
3530	if (!debug_locks)
3531		return;
3532
 
 
 
3533	if (irqs_disabled_flags(flags)) {
3534		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3535			printk("possible reason: unannotated irqs-off.\n");
3536		}
3537	} else {
3538		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3539			printk("possible reason: unannotated irqs-on.\n");
3540		}
3541	}
3542
3543	/*
3544	 * We dont accurately track softirq state in e.g.
3545	 * hardirq contexts (such as on 4KSTACKS), so only
3546	 * check if not in hardirq contexts:
3547	 */
3548	if (!hardirq_count()) {
3549		if (softirq_count()) {
3550			/* like the above, but with softirqs */
3551			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3552		} else {
3553			/* lick the above, does it taste good? */
3554			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3555		}
3556	}
3557
3558	if (!debug_locks)
3559		print_irqtrace_events(current);
 
 
3560#endif
3561}
3562
3563void lock_set_class(struct lockdep_map *lock, const char *name,
3564		    struct lock_class_key *key, unsigned int subclass,
3565		    unsigned long ip)
3566{
3567	unsigned long flags;
3568
3569	if (unlikely(current->lockdep_recursion))
3570		return;
3571
3572	raw_local_irq_save(flags);
3573	current->lockdep_recursion = 1;
3574	check_flags(flags);
3575	if (__lock_set_class(lock, name, key, subclass, ip))
3576		check_chain_key(current);
3577	current->lockdep_recursion = 0;
3578	raw_local_irq_restore(flags);
3579}
3580EXPORT_SYMBOL_GPL(lock_set_class);
3581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3582/*
3583 * We are not always called with irqs disabled - do that here,
3584 * and also avoid lockdep recursion:
3585 */
3586void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3587			  int trylock, int read, int check,
3588			  struct lockdep_map *nest_lock, unsigned long ip)
3589{
3590	unsigned long flags;
3591
3592	if (unlikely(current->lockdep_recursion))
 
 
3593		return;
3594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3595	raw_local_irq_save(flags);
3596	check_flags(flags);
3597
3598	current->lockdep_recursion = 1;
3599	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3600	__lock_acquire(lock, subclass, trylock, read, check,
3601		       irqs_disabled_flags(flags), nest_lock, ip, 0);
3602	current->lockdep_recursion = 0;
3603	raw_local_irq_restore(flags);
3604}
3605EXPORT_SYMBOL_GPL(lock_acquire);
3606
3607void lock_release(struct lockdep_map *lock, int nested,
3608			  unsigned long ip)
3609{
3610	unsigned long flags;
3611
3612	if (unlikely(current->lockdep_recursion))
 
 
3613		return;
3614
3615	raw_local_irq_save(flags);
3616	check_flags(flags);
3617	current->lockdep_recursion = 1;
3618	trace_lock_release(lock, ip);
3619	__lock_release(lock, nested, ip);
3620	current->lockdep_recursion = 0;
 
3621	raw_local_irq_restore(flags);
3622}
3623EXPORT_SYMBOL_GPL(lock_release);
3624
3625int lock_is_held(struct lockdep_map *lock)
3626{
3627	unsigned long flags;
3628	int ret = 0;
3629
3630	if (unlikely(current->lockdep_recursion))
3631		return 1; /* avoid false negative lockdep_assert_held() */
 
 
 
 
3632
3633	raw_local_irq_save(flags);
3634	check_flags(flags);
3635
3636	current->lockdep_recursion = 1;
3637	ret = __lock_is_held(lock);
3638	current->lockdep_recursion = 0;
3639	raw_local_irq_restore(flags);
3640
3641	return ret;
3642}
3643EXPORT_SYMBOL_GPL(lock_is_held);
 
3644
3645void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3646{
3647	current->lockdep_reclaim_gfp = gfp_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3648}
 
3649
3650void lockdep_clear_current_reclaim_state(void)
3651{
3652	current->lockdep_reclaim_gfp = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653}
 
3654
3655#ifdef CONFIG_LOCK_STAT
3656static int
3657print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3658			   unsigned long ip)
3659{
3660	if (!debug_locks_off())
3661		return 0;
3662	if (debug_locks_silent)
3663		return 0;
3664
3665	printk("\n");
3666	printk("=================================\n");
3667	printk("[ BUG: bad contention detected! ]\n");
3668	print_kernel_ident();
3669	printk("---------------------------------\n");
3670	printk("%s/%d is trying to contend lock (",
3671		curr->comm, task_pid_nr(curr));
3672	print_lockdep_cache(lock);
3673	printk(") at:\n");
3674	print_ip_sym(ip);
3675	printk("but there are no locks held!\n");
3676	printk("\nother info that might help us debug this:\n");
3677	lockdep_print_held_locks(curr);
3678
3679	printk("\nstack backtrace:\n");
3680	dump_stack();
3681
3682	return 0;
3683}
3684
3685static void
3686__lock_contended(struct lockdep_map *lock, unsigned long ip)
3687{
3688	struct task_struct *curr = current;
3689	struct held_lock *hlock, *prev_hlock;
3690	struct lock_class_stats *stats;
3691	unsigned int depth;
3692	int i, contention_point, contending_point;
3693
3694	depth = curr->lockdep_depth;
3695	/*
3696	 * Whee, we contended on this lock, except it seems we're not
3697	 * actually trying to acquire anything much at all..
3698	 */
3699	if (DEBUG_LOCKS_WARN_ON(!depth))
3700		return;
3701
3702	prev_hlock = NULL;
3703	for (i = depth-1; i >= 0; i--) {
3704		hlock = curr->held_locks + i;
3705		/*
3706		 * We must not cross into another context:
3707		 */
3708		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3709			break;
3710		if (match_held_lock(hlock, lock))
3711			goto found_it;
3712		prev_hlock = hlock;
3713	}
3714	print_lock_contention_bug(curr, lock, ip);
3715	return;
3716
3717found_it:
3718	if (hlock->instance != lock)
3719		return;
3720
3721	hlock->waittime_stamp = lockstat_clock();
3722
3723	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3724	contending_point = lock_point(hlock_class(hlock)->contending_point,
3725				      lock->ip);
3726
3727	stats = get_lock_stats(hlock_class(hlock));
3728	if (contention_point < LOCKSTAT_POINTS)
3729		stats->contention_point[contention_point]++;
3730	if (contending_point < LOCKSTAT_POINTS)
3731		stats->contending_point[contending_point]++;
3732	if (lock->cpu != smp_processor_id())
3733		stats->bounces[bounce_contended + !!hlock->read]++;
3734	put_lock_stats(stats);
3735}
3736
3737static void
3738__lock_acquired(struct lockdep_map *lock, unsigned long ip)
3739{
3740	struct task_struct *curr = current;
3741	struct held_lock *hlock, *prev_hlock;
3742	struct lock_class_stats *stats;
3743	unsigned int depth;
3744	u64 now, waittime = 0;
3745	int i, cpu;
3746
3747	depth = curr->lockdep_depth;
3748	/*
3749	 * Yay, we acquired ownership of this lock we didn't try to
3750	 * acquire, how the heck did that happen?
3751	 */
3752	if (DEBUG_LOCKS_WARN_ON(!depth))
3753		return;
3754
3755	prev_hlock = NULL;
3756	for (i = depth-1; i >= 0; i--) {
3757		hlock = curr->held_locks + i;
3758		/*
3759		 * We must not cross into another context:
3760		 */
3761		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3762			break;
3763		if (match_held_lock(hlock, lock))
3764			goto found_it;
3765		prev_hlock = hlock;
3766	}
3767	print_lock_contention_bug(curr, lock, _RET_IP_);
3768	return;
3769
3770found_it:
3771	if (hlock->instance != lock)
3772		return;
3773
3774	cpu = smp_processor_id();
3775	if (hlock->waittime_stamp) {
3776		now = lockstat_clock();
3777		waittime = now - hlock->waittime_stamp;
3778		hlock->holdtime_stamp = now;
3779	}
3780
3781	trace_lock_acquired(lock, ip);
3782
3783	stats = get_lock_stats(hlock_class(hlock));
3784	if (waittime) {
3785		if (hlock->read)
3786			lock_time_inc(&stats->read_waittime, waittime);
3787		else
3788			lock_time_inc(&stats->write_waittime, waittime);
3789	}
3790	if (lock->cpu != cpu)
3791		stats->bounces[bounce_acquired + !!hlock->read]++;
3792	put_lock_stats(stats);
3793
3794	lock->cpu = cpu;
3795	lock->ip = ip;
3796}
3797
3798void lock_contended(struct lockdep_map *lock, unsigned long ip)
3799{
3800	unsigned long flags;
3801
3802	if (unlikely(!lock_stat))
3803		return;
3804
3805	if (unlikely(current->lockdep_recursion))
3806		return;
3807
3808	raw_local_irq_save(flags);
3809	check_flags(flags);
3810	current->lockdep_recursion = 1;
3811	trace_lock_contended(lock, ip);
3812	__lock_contended(lock, ip);
3813	current->lockdep_recursion = 0;
3814	raw_local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL_GPL(lock_contended);
3817
3818void lock_acquired(struct lockdep_map *lock, unsigned long ip)
3819{
3820	unsigned long flags;
3821
3822	if (unlikely(!lock_stat))
3823		return;
3824
3825	if (unlikely(current->lockdep_recursion))
3826		return;
3827
3828	raw_local_irq_save(flags);
3829	check_flags(flags);
3830	current->lockdep_recursion = 1;
3831	__lock_acquired(lock, ip);
3832	current->lockdep_recursion = 0;
3833	raw_local_irq_restore(flags);
3834}
3835EXPORT_SYMBOL_GPL(lock_acquired);
3836#endif
3837
3838/*
3839 * Used by the testsuite, sanitize the validator state
3840 * after a simulated failure:
3841 */
3842
3843void lockdep_reset(void)
3844{
3845	unsigned long flags;
3846	int i;
3847
3848	raw_local_irq_save(flags);
3849	current->curr_chain_key = 0;
3850	current->lockdep_depth = 0;
3851	current->lockdep_recursion = 0;
3852	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
3853	nr_hardirq_chains = 0;
3854	nr_softirq_chains = 0;
3855	nr_process_chains = 0;
3856	debug_locks = 1;
3857	for (i = 0; i < CHAINHASH_SIZE; i++)
3858		INIT_LIST_HEAD(chainhash_table + i);
3859	raw_local_irq_restore(flags);
3860}
3861
3862static void zap_class(struct lock_class *class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863{
 
3864	int i;
3865
 
 
3866	/*
3867	 * Remove all dependencies this lock is
3868	 * involved in:
3869	 */
3870	for (i = 0; i < nr_list_entries; i++) {
3871		if (list_entries[i].class == class)
3872			list_del_rcu(&list_entries[i].entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3873	}
3874	/*
3875	 * Unhash the class and remove it from the all_lock_classes list:
3876	 */
3877	list_del_rcu(&class->hash_entry);
3878	list_del_rcu(&class->lock_entry);
3879
3880	class->key = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881}
3882
3883static inline int within(const void *addr, void *start, unsigned long size)
3884{
3885	return addr >= start && addr < start + size;
3886}
3887
3888void lockdep_free_key_range(void *start, unsigned long size)
3889{
3890	struct lock_class *class, *next;
3891	struct list_head *head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892	unsigned long flags;
3893	int i;
3894	int locked;
 
3895
3896	raw_local_irq_save(flags);
3897	locked = graph_lock();
 
 
 
 
 
3898
3899	/*
3900	 * Unhash all classes that were created by this module:
3901	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902	for (i = 0; i < CLASSHASH_SIZE; i++) {
3903		head = classhash_table + i;
3904		if (list_empty(head))
3905			continue;
3906		list_for_each_entry_safe(class, next, head, hash_entry) {
3907			if (within(class->key, start, size))
3908				zap_class(class);
3909			else if (within(class->name, start, size))
3910				zap_class(class);
3911		}
3912	}
 
3913
3914	if (locked)
3915		graph_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3916	raw_local_irq_restore(flags);
 
 
 
 
 
 
3917}
3918
3919void lockdep_reset_lock(struct lockdep_map *lock)
 
 
 
 
3920{
3921	struct lock_class *class, *next;
3922	struct list_head *head;
3923	unsigned long flags;
3924	int i, j;
3925	int locked;
3926
3927	raw_local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3928
3929	/*
3930	 * Remove all classes this lock might have:
3931	 */
3932	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
3933		/*
3934		 * If the class exists we look it up and zap it:
3935		 */
3936		class = look_up_lock_class(lock, j);
3937		if (class)
3938			zap_class(class);
3939	}
3940	/*
3941	 * Debug check: in the end all mapped classes should
3942	 * be gone.
3943	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3944	locked = graph_lock();
3945	for (i = 0; i < CLASSHASH_SIZE; i++) {
3946		head = classhash_table + i;
3947		if (list_empty(head))
3948			continue;
3949		list_for_each_entry_safe(class, next, head, hash_entry) {
3950			int match = 0;
3951
3952			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
3953				match |= class == lock->class_cache[j];
 
3954
3955			if (unlikely(match)) {
3956				if (debug_locks_off_graph_unlock()) {
3957					/*
3958					 * We all just reset everything, how did it match?
3959					 */
3960					WARN_ON(1);
3961				}
3962				goto out_restore;
3963			}
3964		}
3965	}
3966	if (locked)
3967		graph_unlock();
3968
3969out_restore:
 
 
 
 
 
 
 
 
 
 
 
 
 
3970	raw_local_irq_restore(flags);
3971}
3972
3973void lockdep_init(void)
3974{
3975	int i;
3976
3977	/*
3978	 * Some architectures have their own start_kernel()
3979	 * code which calls lockdep_init(), while we also
3980	 * call lockdep_init() from the start_kernel() itself,
3981	 * and we want to initialize the hashes only once:
3982	 */
3983	if (lockdep_initialized)
 
 
 
 
 
 
 
 
 
 
 
3984		return;
3985
3986	for (i = 0; i < CLASSHASH_SIZE; i++)
3987		INIT_LIST_HEAD(classhash_table + i);
 
3988
3989	for (i = 0; i < CHAINHASH_SIZE; i++)
3990		INIT_LIST_HEAD(chainhash_table + i);
 
 
 
 
 
 
 
 
 
 
 
 
3991
3992	lockdep_initialized = 1;
 
3993}
 
3994
3995void __init lockdep_info(void)
3996{
3997	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
3998
3999	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
4000	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
4001	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
4002	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
4003	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
4004	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
4005	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
4006
4007	printk(" memory used by lock dependency info: %lu kB\n",
4008		(sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
4009		sizeof(struct list_head) * CLASSHASH_SIZE +
4010		sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
4011		sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
4012		sizeof(struct list_head) * CHAINHASH_SIZE
 
 
4013#ifdef CONFIG_PROVE_LOCKING
4014		+ sizeof(struct circular_queue)
 
 
 
4015#endif
4016		) / 1024
4017		);
4018
4019	printk(" per task-struct memory footprint: %lu bytes\n",
4020		sizeof(struct held_lock) * MAX_LOCK_DEPTH);
4021
4022#ifdef CONFIG_DEBUG_LOCKDEP
4023	if (lockdep_init_error) {
4024		printk("WARNING: lockdep init error! lock-%s was acquired"
4025			"before lockdep_init\n", lock_init_error);
4026		printk("Call stack leading to lockdep invocation was:\n");
4027		print_stack_trace(&lockdep_init_trace, 0);
4028	}
4029#endif
 
 
 
4030}
4031
4032static void
4033print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
4034		     const void *mem_to, struct held_lock *hlock)
4035{
4036	if (!debug_locks_off())
4037		return;
4038	if (debug_locks_silent)
4039		return;
4040
4041	printk("\n");
4042	printk("=========================\n");
4043	printk("[ BUG: held lock freed! ]\n");
4044	print_kernel_ident();
4045	printk("-------------------------\n");
4046	printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
4047		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
4048	print_lock(hlock);
4049	lockdep_print_held_locks(curr);
4050
4051	printk("\nstack backtrace:\n");
4052	dump_stack();
4053}
4054
4055static inline int not_in_range(const void* mem_from, unsigned long mem_len,
4056				const void* lock_from, unsigned long lock_len)
4057{
4058	return lock_from + lock_len <= mem_from ||
4059		mem_from + mem_len <= lock_from;
4060}
4061
4062/*
4063 * Called when kernel memory is freed (or unmapped), or if a lock
4064 * is destroyed or reinitialized - this code checks whether there is
4065 * any held lock in the memory range of <from> to <to>:
4066 */
4067void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
4068{
4069	struct task_struct *curr = current;
4070	struct held_lock *hlock;
4071	unsigned long flags;
4072	int i;
4073
4074	if (unlikely(!debug_locks))
4075		return;
4076
4077	local_irq_save(flags);
4078	for (i = 0; i < curr->lockdep_depth; i++) {
4079		hlock = curr->held_locks + i;
4080
4081		if (not_in_range(mem_from, mem_len, hlock->instance,
4082					sizeof(*hlock->instance)))
4083			continue;
4084
4085		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
4086		break;
4087	}
4088	local_irq_restore(flags);
4089}
4090EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
4091
4092static void print_held_locks_bug(void)
4093{
4094	if (!debug_locks_off())
4095		return;
4096	if (debug_locks_silent)
4097		return;
4098
4099	printk("\n");
4100	printk("=====================================\n");
4101	printk("[ BUG: %s/%d still has locks held! ]\n",
4102	       current->comm, task_pid_nr(current));
4103	print_kernel_ident();
4104	printk("-------------------------------------\n");
4105	lockdep_print_held_locks(current);
4106	printk("\nstack backtrace:\n");
4107	dump_stack();
4108}
4109
4110void debug_check_no_locks_held(void)
4111{
4112	if (unlikely(current->lockdep_depth > 0))
4113		print_held_locks_bug();
4114}
4115EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
4116
4117#ifdef __KERNEL__
4118void debug_show_all_locks(void)
4119{
4120	struct task_struct *g, *p;
4121	int count = 10;
4122	int unlock = 1;
4123
4124	if (unlikely(!debug_locks)) {
4125		printk("INFO: lockdep is turned off.\n");
4126		return;
4127	}
4128	printk("\nShowing all locks held in the system:\n");
4129
4130	/*
4131	 * Here we try to get the tasklist_lock as hard as possible,
4132	 * if not successful after 2 seconds we ignore it (but keep
4133	 * trying). This is to enable a debug printout even if a
4134	 * tasklist_lock-holding task deadlocks or crashes.
4135	 */
4136retry:
4137	if (!read_trylock(&tasklist_lock)) {
4138		if (count == 10)
4139			printk("hm, tasklist_lock locked, retrying... ");
4140		if (count) {
4141			count--;
4142			printk(" #%d", 10-count);
4143			mdelay(200);
4144			goto retry;
4145		}
4146		printk(" ignoring it.\n");
4147		unlock = 0;
4148	} else {
4149		if (count != 10)
4150			printk(KERN_CONT " locked it.\n");
4151	}
4152
4153	do_each_thread(g, p) {
4154		/*
4155		 * It's not reliable to print a task's held locks
4156		 * if it's not sleeping (or if it's not the current
4157		 * task):
4158		 */
4159		if (p->state == TASK_RUNNING && p != current)
4160			continue;
4161		if (p->lockdep_depth)
4162			lockdep_print_held_locks(p);
4163		if (!unlock)
4164			if (read_trylock(&tasklist_lock))
4165				unlock = 1;
4166	} while_each_thread(g, p);
4167
4168	printk("\n");
4169	printk("=============================================\n\n");
4170
4171	if (unlock)
4172		read_unlock(&tasklist_lock);
4173}
4174EXPORT_SYMBOL_GPL(debug_show_all_locks);
4175#endif
4176
4177/*
4178 * Careful: only use this function if you are sure that
4179 * the task cannot run in parallel!
4180 */
4181void debug_show_held_locks(struct task_struct *task)
4182{
4183	if (unlikely(!debug_locks)) {
4184		printk("INFO: lockdep is turned off.\n");
4185		return;
4186	}
4187	lockdep_print_held_locks(task);
4188}
4189EXPORT_SYMBOL_GPL(debug_show_held_locks);
4190
4191asmlinkage __visible void lockdep_sys_exit(void)
4192{
4193	struct task_struct *curr = current;
4194
4195	if (unlikely(curr->lockdep_depth)) {
4196		if (!debug_locks_off())
4197			return;
4198		printk("\n");
4199		printk("================================================\n");
4200		printk("[ BUG: lock held when returning to user space! ]\n");
4201		print_kernel_ident();
4202		printk("------------------------------------------------\n");
4203		printk("%s/%d is leaving the kernel with locks still held!\n",
4204				curr->comm, curr->pid);
4205		lockdep_print_held_locks(curr);
4206	}
 
 
 
 
 
 
4207}
4208
4209void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
4210{
4211	struct task_struct *curr = current;
 
4212
4213#ifndef CONFIG_PROVE_RCU_REPEATEDLY
4214	if (!debug_locks_off())
4215		return;
4216#endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */
4217	/* Note: the following can be executed concurrently, so be careful. */
4218	printk("\n");
4219	printk("===============================\n");
4220	printk("[ INFO: suspicious RCU usage. ]\n");
4221	print_kernel_ident();
4222	printk("-------------------------------\n");
4223	printk("%s:%d %s!\n", file, line, s);
4224	printk("\nother info that might help us debug this:\n\n");
4225	printk("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
4226	       !rcu_lockdep_current_cpu_online()
4227			? "RCU used illegally from offline CPU!\n"
4228			: !rcu_is_watching()
4229				? "RCU used illegally from idle CPU!\n"
4230				: "",
4231	       rcu_scheduler_active, debug_locks);
4232
4233	/*
4234	 * If a CPU is in the RCU-free window in idle (ie: in the section
4235	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
4236	 * considers that CPU to be in an "extended quiescent state",
4237	 * which means that RCU will be completely ignoring that CPU.
4238	 * Therefore, rcu_read_lock() and friends have absolutely no
4239	 * effect on a CPU running in that state. In other words, even if
4240	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
4241	 * delete data structures out from under it.  RCU really has no
4242	 * choice here: we need to keep an RCU-free window in idle where
4243	 * the CPU may possibly enter into low power mode. This way we can
4244	 * notice an extended quiescent state to other CPUs that started a grace
4245	 * period. Otherwise we would delay any grace period as long as we run
4246	 * in the idle task.
4247	 *
4248	 * So complain bitterly if someone does call rcu_read_lock(),
4249	 * rcu_read_lock_bh() and so on from extended quiescent states.
4250	 */
4251	if (!rcu_is_watching())
4252		printk("RCU used illegally from extended quiescent state!\n");
4253
4254	lockdep_print_held_locks(curr);
4255	printk("\nstack backtrace:\n");
4256	dump_stack();
4257}
4258EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
  57#include <linux/lockdep.h>
  58
  59#include <asm/sections.h>
  60
  61#include "lockdep_internals.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/lock.h>
  65
  66#ifdef CONFIG_PROVE_LOCKING
  67int prove_locking = 1;
  68module_param(prove_locking, int, 0644);
  69#else
  70#define prove_locking 0
  71#endif
  72
  73#ifdef CONFIG_LOCK_STAT
  74int lock_stat = 1;
  75module_param(lock_stat, int, 0644);
  76#else
  77#define lock_stat 0
  78#endif
  79
  80DEFINE_PER_CPU(unsigned int, lockdep_recursion);
  81EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
  82
  83static __always_inline bool lockdep_enabled(void)
  84{
  85	if (!debug_locks)
  86		return false;
  87
  88	if (this_cpu_read(lockdep_recursion))
  89		return false;
  90
  91	if (current->lockdep_recursion)
  92		return false;
  93
  94	return true;
  95}
  96
  97/*
  98 * lockdep_lock: protects the lockdep graph, the hashes and the
  99 *               class/list/hash allocators.
 100 *
 101 * This is one of the rare exceptions where it's justified
 102 * to use a raw spinlock - we really dont want the spinlock
 103 * code to recurse back into the lockdep code...
 104 */
 105static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 106static struct task_struct *__owner;
 107
 108static inline void lockdep_lock(void)
 109{
 110	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 111
 112	__this_cpu_inc(lockdep_recursion);
 113	arch_spin_lock(&__lock);
 114	__owner = current;
 115}
 116
 117static inline void lockdep_unlock(void)
 118{
 119	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 120
 121	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 122		return;
 123
 124	__owner = NULL;
 125	arch_spin_unlock(&__lock);
 126	__this_cpu_dec(lockdep_recursion);
 127}
 128
 129static inline bool lockdep_assert_locked(void)
 130{
 131	return DEBUG_LOCKS_WARN_ON(__owner != current);
 132}
 133
 134static struct task_struct *lockdep_selftest_task_struct;
 135
 136
 137static int graph_lock(void)
 138{
 139	lockdep_lock();
 140	/*
 141	 * Make sure that if another CPU detected a bug while
 142	 * walking the graph we dont change it (while the other
 143	 * CPU is busy printing out stuff with the graph lock
 144	 * dropped already)
 145	 */
 146	if (!debug_locks) {
 147		lockdep_unlock();
 148		return 0;
 149	}
 
 
 150	return 1;
 151}
 152
 153static inline void graph_unlock(void)
 154{
 155	lockdep_unlock();
 
 
 
 
 
 
 
 
 
 
 156}
 157
 158/*
 159 * Turn lock debugging off and return with 0 if it was off already,
 160 * and also release the graph lock:
 161 */
 162static inline int debug_locks_off_graph_unlock(void)
 163{
 164	int ret = debug_locks_off();
 165
 166	lockdep_unlock();
 167
 168	return ret;
 169}
 170
 
 
 171unsigned long nr_list_entries;
 172static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 173static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 174
 175/*
 176 * All data structures here are protected by the global debug_lock.
 177 *
 178 * nr_lock_classes is the number of elements of lock_classes[] that is
 179 * in use.
 180 */
 181#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 182#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 183static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 184unsigned long nr_lock_classes;
 185unsigned long nr_zapped_classes;
 186#ifndef CONFIG_DEBUG_LOCKDEP
 187static
 188#endif
 189struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 190static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 191
 192static inline struct lock_class *hlock_class(struct held_lock *hlock)
 193{
 194	unsigned int class_idx = hlock->class_idx;
 195
 196	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 197	barrier();
 198
 199	if (!test_bit(class_idx, lock_classes_in_use)) {
 200		/*
 201		 * Someone passed in garbage, we give up.
 202		 */
 203		DEBUG_LOCKS_WARN_ON(1);
 204		return NULL;
 205	}
 206
 207	/*
 208	 * At this point, if the passed hlock->class_idx is still garbage,
 209	 * we just have to live with it
 210	 */
 211	return lock_classes + class_idx;
 212}
 213
 214#ifdef CONFIG_LOCK_STAT
 215static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 
 216
 217static inline u64 lockstat_clock(void)
 218{
 219	return local_clock();
 220}
 221
 222static int lock_point(unsigned long points[], unsigned long ip)
 223{
 224	int i;
 225
 226	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 227		if (points[i] == 0) {
 228			points[i] = ip;
 229			break;
 230		}
 231		if (points[i] == ip)
 232			break;
 233	}
 234
 235	return i;
 236}
 237
 238static void lock_time_inc(struct lock_time *lt, u64 time)
 239{
 240	if (time > lt->max)
 241		lt->max = time;
 242
 243	if (time < lt->min || !lt->nr)
 244		lt->min = time;
 245
 246	lt->total += time;
 247	lt->nr++;
 248}
 249
 250static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 251{
 252	if (!src->nr)
 253		return;
 254
 255	if (src->max > dst->max)
 256		dst->max = src->max;
 257
 258	if (src->min < dst->min || !dst->nr)
 259		dst->min = src->min;
 260
 261	dst->total += src->total;
 262	dst->nr += src->nr;
 263}
 264
 265struct lock_class_stats lock_stats(struct lock_class *class)
 266{
 267	struct lock_class_stats stats;
 268	int cpu, i;
 269
 270	memset(&stats, 0, sizeof(struct lock_class_stats));
 271	for_each_possible_cpu(cpu) {
 272		struct lock_class_stats *pcs =
 273			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 274
 275		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 276			stats.contention_point[i] += pcs->contention_point[i];
 277
 278		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 279			stats.contending_point[i] += pcs->contending_point[i];
 280
 281		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 282		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 283
 284		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 285		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 286
 287		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 288			stats.bounces[i] += pcs->bounces[i];
 289	}
 290
 291	return stats;
 292}
 293
 294void clear_lock_stats(struct lock_class *class)
 295{
 296	int cpu;
 297
 298	for_each_possible_cpu(cpu) {
 299		struct lock_class_stats *cpu_stats =
 300			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 301
 302		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 303	}
 304	memset(class->contention_point, 0, sizeof(class->contention_point));
 305	memset(class->contending_point, 0, sizeof(class->contending_point));
 306}
 307
 308static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 309{
 310	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 
 
 
 
 
 311}
 312
 313static void lock_release_holdtime(struct held_lock *hlock)
 314{
 315	struct lock_class_stats *stats;
 316	u64 holdtime;
 317
 318	if (!lock_stat)
 319		return;
 320
 321	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 322
 323	stats = get_lock_stats(hlock_class(hlock));
 324	if (hlock->read)
 325		lock_time_inc(&stats->read_holdtime, holdtime);
 326	else
 327		lock_time_inc(&stats->write_holdtime, holdtime);
 
 328}
 329#else
 330static inline void lock_release_holdtime(struct held_lock *hlock)
 331{
 332}
 333#endif
 334
 335/*
 336 * We keep a global list of all lock classes. The list is only accessed with
 337 * the lockdep spinlock lock held. free_lock_classes is a list with free
 338 * elements. These elements are linked together by the lock_entry member in
 339 * struct lock_class.
 340 */
 341LIST_HEAD(all_lock_classes);
 342static LIST_HEAD(free_lock_classes);
 343
 344/**
 345 * struct pending_free - information about data structures about to be freed
 346 * @zapped: Head of a list with struct lock_class elements.
 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 348 *	are about to be freed.
 349 */
 350struct pending_free {
 351	struct list_head zapped;
 352	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 353};
 354
 355/**
 356 * struct delayed_free - data structures used for delayed freeing
 357 *
 358 * A data structure for delayed freeing of data structures that may be
 359 * accessed by RCU readers at the time these were freed.
 360 *
 361 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 362 * @index:     Index of @pf to which freed data structures are added.
 363 * @scheduled: Whether or not an RCU callback has been scheduled.
 364 * @pf:        Array with information about data structures about to be freed.
 365 */
 366static struct delayed_free {
 367	struct rcu_head		rcu_head;
 368	int			index;
 369	int			scheduled;
 370	struct pending_free	pf[2];
 371} delayed_free;
 372
 373/*
 374 * The lockdep classes are in a hash-table as well, for fast lookup:
 375 */
 376#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 377#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 378#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 379#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 380
 381static struct hlist_head classhash_table[CLASSHASH_SIZE];
 382
 383/*
 384 * We put the lock dependency chains into a hash-table as well, to cache
 385 * their existence:
 386 */
 387#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 388#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 389#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 390#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 391
 392static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 393
 394/*
 395 * the id of held_lock
 396 */
 397static inline u16 hlock_id(struct held_lock *hlock)
 398{
 399	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 400
 401	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 402}
 403
 404static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 405{
 406	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 407}
 408
 409/*
 410 * The hash key of the lock dependency chains is a hash itself too:
 411 * it's a hash of all locks taken up to that lock, including that lock.
 412 * It's a 64-bit hash, because it's important for the keys to be
 413 * unique.
 414 */
 415static inline u64 iterate_chain_key(u64 key, u32 idx)
 416{
 417	u32 k0 = key, k1 = key >> 32;
 418
 419	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 420
 421	return k0 | (u64)k1 << 32;
 422}
 423
 424void lockdep_init_task(struct task_struct *task)
 425{
 426	task->lockdep_depth = 0; /* no locks held yet */
 427	task->curr_chain_key = INITIAL_CHAIN_KEY;
 428	task->lockdep_recursion = 0;
 429}
 430
 431static __always_inline void lockdep_recursion_inc(void)
 432{
 433	__this_cpu_inc(lockdep_recursion);
 434}
 435
 436static __always_inline void lockdep_recursion_finish(void)
 437{
 438	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 439		__this_cpu_write(lockdep_recursion, 0);
 440}
 
 441
 442void lockdep_set_selftest_task(struct task_struct *task)
 443{
 444	lockdep_selftest_task_struct = task;
 445}
 
 446
 447/*
 448 * Debugging switches:
 449 */
 450
 451#define VERBOSE			0
 452#define VERY_VERBOSE		0
 453
 454#if VERBOSE
 455# define HARDIRQ_VERBOSE	1
 456# define SOFTIRQ_VERBOSE	1
 
 457#else
 458# define HARDIRQ_VERBOSE	0
 459# define SOFTIRQ_VERBOSE	0
 
 460#endif
 461
 462#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 463/*
 464 * Quick filtering for interesting events:
 465 */
 466static int class_filter(struct lock_class *class)
 467{
 468#if 0
 469	/* Example */
 470	if (class->name_version == 1 &&
 471			!strcmp(class->name, "lockname"))
 472		return 1;
 473	if (class->name_version == 1 &&
 474			!strcmp(class->name, "&struct->lockfield"))
 475		return 1;
 476#endif
 477	/* Filter everything else. 1 would be to allow everything else */
 478	return 0;
 479}
 480#endif
 481
 482static int verbose(struct lock_class *class)
 483{
 484#if VERBOSE
 485	return class_filter(class);
 486#endif
 487	return 0;
 488}
 489
 
 
 
 
 
 
 
 490static void print_lockdep_off(const char *bug_msg)
 491{
 492	printk(KERN_DEBUG "%s\n", bug_msg);
 493	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 494#ifdef CONFIG_LOCK_STAT
 495	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 496#endif
 497}
 498
 499unsigned long nr_stack_trace_entries;
 
 
 
 
 500
 501#ifdef CONFIG_PROVE_LOCKING
 502/**
 503 * struct lock_trace - single stack backtrace
 504 * @hash_entry:	Entry in a stack_trace_hash[] list.
 505 * @hash:	jhash() of @entries.
 506 * @nr_entries:	Number of entries in @entries.
 507 * @entries:	Actual stack backtrace.
 508 */
 509struct lock_trace {
 510	struct hlist_node	hash_entry;
 511	u32			hash;
 512	u32			nr_entries;
 513	unsigned long		entries[] __aligned(sizeof(unsigned long));
 514};
 515#define LOCK_TRACE_SIZE_IN_LONGS				\
 516	(sizeof(struct lock_trace) / sizeof(unsigned long))
 517/*
 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 519 */
 520static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 521static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 522
 523static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 524{
 525	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 526		memcmp(t1->entries, t2->entries,
 527		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 528}
 529
 530static struct lock_trace *save_trace(void)
 531{
 532	struct lock_trace *trace, *t2;
 533	struct hlist_head *hash_head;
 534	u32 hash;
 535	int max_entries;
 
 
 
 
 536
 537	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 538	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 539
 540	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 541	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 542		LOCK_TRACE_SIZE_IN_LONGS;
 543
 544	if (max_entries <= 0) {
 545		if (!debug_locks_off_graph_unlock())
 546			return NULL;
 547
 548		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 549		dump_stack();
 550
 551		return NULL;
 552	}
 553	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 554
 555	hash = jhash(trace->entries, trace->nr_entries *
 556		     sizeof(trace->entries[0]), 0);
 557	trace->hash = hash;
 558	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 559	hlist_for_each_entry(t2, hash_head, hash_entry) {
 560		if (traces_identical(trace, t2))
 561			return t2;
 562	}
 563	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 564	hlist_add_head(&trace->hash_entry, hash_head);
 565
 566	return trace;
 567}
 568
 569/* Return the number of stack traces in the stack_trace[] array. */
 570u64 lockdep_stack_trace_count(void)
 571{
 572	struct lock_trace *trace;
 573	u64 c = 0;
 574	int i;
 575
 576	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 577		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 578			c++;
 579		}
 580	}
 581
 582	return c;
 583}
 584
 585/* Return the number of stack hash chains that have at least one stack trace. */
 586u64 lockdep_stack_hash_count(void)
 587{
 588	u64 c = 0;
 589	int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 592		if (!hlist_empty(&stack_trace_hash[i]))
 593			c++;
 594
 595	return c;
 596}
 597#endif
 598
 599unsigned int nr_hardirq_chains;
 600unsigned int nr_softirq_chains;
 601unsigned int nr_process_chains;
 602unsigned int max_lockdep_depth;
 603
 604#ifdef CONFIG_DEBUG_LOCKDEP
 605/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 606 * Various lockdep statistics:
 607 */
 608DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 609#endif
 610
 611#ifdef CONFIG_PROVE_LOCKING
 612/*
 613 * Locking printouts:
 614 */
 615
 616#define __USAGE(__STATE)						\
 617	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 618	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 619	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 620	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 621
 622static const char *usage_str[] =
 623{
 624#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 625#include "lockdep_states.h"
 626#undef LOCKDEP_STATE
 627	[LOCK_USED] = "INITIAL USE",
 628	[LOCK_USED_READ] = "INITIAL READ USE",
 629	/* abused as string storage for verify_lock_unused() */
 630	[LOCK_USAGE_STATES] = "IN-NMI",
 631};
 632#endif
 633
 634const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 635{
 636	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 637}
 638
 639static inline unsigned long lock_flag(enum lock_usage_bit bit)
 640{
 641	return 1UL << bit;
 642}
 643
 644static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 645{
 646	/*
 647	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 648	 * irq context), which is the safest usage category.
 649	 */
 650	char c = '.';
 651
 652	/*
 653	 * The order of the following usage checks matters, which will
 654	 * result in the outcome character as follows:
 655	 *
 656	 * - '+': irq is enabled and not in irq context
 657	 * - '-': in irq context and irq is disabled
 658	 * - '?': in irq context and irq is enabled
 659	 */
 660	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 661		c = '+';
 662		if (class->usage_mask & lock_flag(bit))
 
 
 663			c = '?';
 664	} else if (class->usage_mask & lock_flag(bit))
 665		c = '-';
 666
 667	return c;
 668}
 669
 670void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 671{
 672	int i = 0;
 673
 674#define LOCKDEP_STATE(__STATE) 						\
 675	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 676	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 677#include "lockdep_states.h"
 678#undef LOCKDEP_STATE
 679
 680	usage[i] = '\0';
 681}
 682
 683static void __print_lock_name(struct lock_class *class)
 684{
 685	char str[KSYM_NAME_LEN];
 686	const char *name;
 687
 688	name = class->name;
 689	if (!name) {
 690		name = __get_key_name(class->key, str);
 691		printk(KERN_CONT "%s", name);
 692	} else {
 693		printk(KERN_CONT "%s", name);
 694		if (class->name_version > 1)
 695			printk(KERN_CONT "#%d", class->name_version);
 696		if (class->subclass)
 697			printk(KERN_CONT "/%d", class->subclass);
 698	}
 699}
 700
 701static void print_lock_name(struct lock_class *class)
 702{
 703	char usage[LOCK_USAGE_CHARS];
 704
 705	get_usage_chars(class, usage);
 706
 707	printk(KERN_CONT " (");
 708	__print_lock_name(class);
 709	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 710			class->wait_type_outer ?: class->wait_type_inner,
 711			class->wait_type_inner);
 712}
 713
 714static void print_lockdep_cache(struct lockdep_map *lock)
 715{
 716	const char *name;
 717	char str[KSYM_NAME_LEN];
 718
 719	name = lock->name;
 720	if (!name)
 721		name = __get_key_name(lock->key->subkeys, str);
 722
 723	printk(KERN_CONT "%s", name);
 724}
 725
 726static void print_lock(struct held_lock *hlock)
 727{
 728	/*
 729	 * We can be called locklessly through debug_show_all_locks() so be
 730	 * extra careful, the hlock might have been released and cleared.
 731	 *
 732	 * If this indeed happens, lets pretend it does not hurt to continue
 733	 * to print the lock unless the hlock class_idx does not point to a
 734	 * registered class. The rationale here is: since we don't attempt
 735	 * to distinguish whether we are in this situation, if it just
 736	 * happened we can't count on class_idx to tell either.
 737	 */
 738	struct lock_class *lock = hlock_class(hlock);
 739
 740	if (!lock) {
 741		printk(KERN_CONT "<RELEASED>\n");
 742		return;
 743	}
 744
 745	printk(KERN_CONT "%px", hlock->instance);
 746	print_lock_name(lock);
 747	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 748}
 749
 750static void lockdep_print_held_locks(struct task_struct *p)
 751{
 752	int i, depth = READ_ONCE(p->lockdep_depth);
 753
 754	if (!depth)
 755		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 756	else
 757		printk("%d lock%s held by %s/%d:\n", depth,
 758		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 759	/*
 760	 * It's not reliable to print a task's held locks if it's not sleeping
 761	 * and it's not the current task.
 762	 */
 763	if (p != current && task_is_running(p))
 764		return;
 
 
 
 
 765	for (i = 0; i < depth; i++) {
 766		printk(" #%d: ", i);
 767		print_lock(p->held_locks + i);
 768	}
 769}
 770
 771static void print_kernel_ident(void)
 772{
 773	printk("%s %.*s %s\n", init_utsname()->release,
 774		(int)strcspn(init_utsname()->version, " "),
 775		init_utsname()->version,
 776		print_tainted());
 777}
 778
 779static int very_verbose(struct lock_class *class)
 780{
 781#if VERY_VERBOSE
 782	return class_filter(class);
 783#endif
 784	return 0;
 785}
 786
 787/*
 788 * Is this the address of a static object:
 789 */
 790#ifdef __KERNEL__
 791static int static_obj(const void *obj)
 792{
 793	unsigned long start = (unsigned long) &_stext,
 794		      end   = (unsigned long) &_end,
 795		      addr  = (unsigned long) obj;
 796
 797	if (arch_is_kernel_initmem_freed(addr))
 798		return 0;
 799
 800	/*
 801	 * static variable?
 802	 */
 803	if ((addr >= start) && (addr < end))
 804		return 1;
 805
 806	if (arch_is_kernel_data(addr))
 807		return 1;
 808
 809	/*
 810	 * in-kernel percpu var?
 811	 */
 812	if (is_kernel_percpu_address(addr))
 813		return 1;
 814
 815	/*
 816	 * module static or percpu var?
 817	 */
 818	return is_module_address(addr) || is_module_percpu_address(addr);
 819}
 820#endif
 821
 822/*
 823 * To make lock name printouts unique, we calculate a unique
 824 * class->name_version generation counter. The caller must hold the graph
 825 * lock.
 826 */
 827static int count_matching_names(struct lock_class *new_class)
 828{
 829	struct lock_class *class;
 830	int count = 0;
 831
 832	if (!new_class->name)
 833		return 0;
 834
 835	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 836		if (new_class->key - new_class->subclass == class->key)
 837			return class->name_version;
 838		if (class->name && !strcmp(class->name, new_class->name))
 839			count = max(count, class->name_version);
 840	}
 841
 842	return count + 1;
 843}
 844
 845/* used from NMI context -- must be lockless */
 846static noinstr struct lock_class *
 847look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 
 
 
 
 848{
 849	struct lockdep_subclass_key *key;
 850	struct hlist_head *hash_head;
 851	struct lock_class *class;
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 854		instrumentation_begin();
 855		debug_locks_off();
 856		printk(KERN_ERR
 857			"BUG: looking up invalid subclass: %u\n", subclass);
 858		printk(KERN_ERR
 859			"turning off the locking correctness validator.\n");
 860		dump_stack();
 861		instrumentation_end();
 862		return NULL;
 863	}
 864
 865	/*
 866	 * If it is not initialised then it has never been locked,
 867	 * so it won't be present in the hash table.
 868	 */
 869	if (unlikely(!lock->key))
 870		return NULL;
 871
 872	/*
 873	 * NOTE: the class-key must be unique. For dynamic locks, a static
 874	 * lock_class_key variable is passed in through the mutex_init()
 875	 * (or spin_lock_init()) call - which acts as the key. For static
 876	 * locks we use the lock object itself as the key.
 877	 */
 878	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 879			sizeof(struct lockdep_map));
 880
 881	key = lock->key->subkeys + subclass;
 882
 883	hash_head = classhashentry(key);
 884
 885	/*
 886	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 
 887	 */
 888	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 889		return NULL;
 890
 891	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 892		if (class->key == key) {
 893			/*
 894			 * Huh! same key, different name? Did someone trample
 895			 * on some memory? We're most confused.
 896			 */
 897			WARN_ON_ONCE(class->name != lock->name &&
 898				     lock->key != &__lockdep_no_validate__);
 899			return class;
 900		}
 901	}
 902
 903	return NULL;
 904}
 905
 906/*
 907 * Static locks do not have their class-keys yet - for them the key is
 908 * the lock object itself. If the lock is in the per cpu area, the
 909 * canonical address of the lock (per cpu offset removed) is used.
 910 */
 911static bool assign_lock_key(struct lockdep_map *lock)
 912{
 913	unsigned long can_addr, addr = (unsigned long)lock;
 914
 915#ifdef __KERNEL__
 916	/*
 917	 * lockdep_free_key_range() assumes that struct lock_class_key
 918	 * objects do not overlap. Since we use the address of lock
 919	 * objects as class key for static objects, check whether the
 920	 * size of lock_class_key objects does not exceed the size of
 921	 * the smallest lock object.
 922	 */
 923	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 924#endif
 925
 926	if (__is_kernel_percpu_address(addr, &can_addr))
 927		lock->key = (void *)can_addr;
 928	else if (__is_module_percpu_address(addr, &can_addr))
 929		lock->key = (void *)can_addr;
 930	else if (static_obj(lock))
 931		lock->key = (void *)lock;
 932	else {
 933		/* Debug-check: all keys must be persistent! */
 934		debug_locks_off();
 935		pr_err("INFO: trying to register non-static key.\n");
 936		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 937		pr_err("you didn't initialize this object before use?\n");
 938		pr_err("turning off the locking correctness validator.\n");
 939		dump_stack();
 940		return false;
 941	}
 942
 943	return true;
 944}
 945
 946#ifdef CONFIG_DEBUG_LOCKDEP
 947
 948/* Check whether element @e occurs in list @h */
 949static bool in_list(struct list_head *e, struct list_head *h)
 950{
 951	struct list_head *f;
 952
 953	list_for_each(f, h) {
 954		if (e == f)
 955			return true;
 956	}
 957
 958	return false;
 959}
 960
 961/*
 962 * Check whether entry @e occurs in any of the locks_after or locks_before
 963 * lists.
 964 */
 965static bool in_any_class_list(struct list_head *e)
 966{
 967	struct lock_class *class;
 968	int i;
 969
 970	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 971		class = &lock_classes[i];
 972		if (in_list(e, &class->locks_after) ||
 973		    in_list(e, &class->locks_before))
 974			return true;
 975	}
 976	return false;
 977}
 978
 979static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
 980{
 981	struct lock_list *e;
 982
 983	list_for_each_entry(e, h, entry) {
 984		if (e->links_to != c) {
 985			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
 986			       c->name ? : "(?)",
 987			       (unsigned long)(e - list_entries),
 988			       e->links_to && e->links_to->name ?
 989			       e->links_to->name : "(?)",
 990			       e->class && e->class->name ? e->class->name :
 991			       "(?)");
 992			return false;
 993		}
 994	}
 995	return true;
 996}
 997
 998#ifdef CONFIG_PROVE_LOCKING
 999static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000#endif
1001
1002static bool check_lock_chain_key(struct lock_chain *chain)
1003{
1004#ifdef CONFIG_PROVE_LOCKING
1005	u64 chain_key = INITIAL_CHAIN_KEY;
1006	int i;
1007
1008	for (i = chain->base; i < chain->base + chain->depth; i++)
1009		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010	/*
1011	 * The 'unsigned long long' casts avoid that a compiler warning
1012	 * is reported when building tools/lib/lockdep.
1013	 */
1014	if (chain->chain_key != chain_key) {
1015		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016		       (unsigned long long)(chain - lock_chains),
1017		       (unsigned long long)chain->chain_key,
1018		       (unsigned long long)chain_key);
1019		return false;
1020	}
1021#endif
1022	return true;
1023}
1024
1025static bool in_any_zapped_class_list(struct lock_class *class)
1026{
1027	struct pending_free *pf;
1028	int i;
1029
1030	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031		if (in_list(&class->lock_entry, &pf->zapped))
1032			return true;
1033	}
1034
1035	return false;
1036}
1037
1038static bool __check_data_structures(void)
1039{
1040	struct lock_class *class;
1041	struct lock_chain *chain;
1042	struct hlist_head *head;
1043	struct lock_list *e;
1044	int i;
1045
1046	/* Check whether all classes occur in a lock list. */
1047	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048		class = &lock_classes[i];
1049		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050		    !in_list(&class->lock_entry, &free_lock_classes) &&
1051		    !in_any_zapped_class_list(class)) {
1052			printk(KERN_INFO "class %px/%s is not in any class list\n",
1053			       class, class->name ? : "(?)");
1054			return false;
1055		}
1056	}
1057
1058	/* Check whether all classes have valid lock lists. */
1059	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060		class = &lock_classes[i];
1061		if (!class_lock_list_valid(class, &class->locks_before))
1062			return false;
1063		if (!class_lock_list_valid(class, &class->locks_after))
1064			return false;
1065	}
1066
1067	/* Check the chain_key of all lock chains. */
1068	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069		head = chainhash_table + i;
1070		hlist_for_each_entry_rcu(chain, head, entry) {
1071			if (!check_lock_chain_key(chain))
1072				return false;
1073		}
1074	}
1075
1076	/*
1077	 * Check whether all list entries that are in use occur in a class
1078	 * lock list.
1079	 */
1080	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081		e = list_entries + i;
1082		if (!in_any_class_list(&e->entry)) {
1083			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084			       (unsigned int)(e - list_entries),
1085			       e->class->name ? : "(?)",
1086			       e->links_to->name ? : "(?)");
1087			return false;
1088		}
1089	}
1090
1091	/*
1092	 * Check whether all list entries that are not in use do not occur in
1093	 * a class lock list.
1094	 */
1095	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096		e = list_entries + i;
1097		if (in_any_class_list(&e->entry)) {
1098			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099			       (unsigned int)(e - list_entries),
1100			       e->class && e->class->name ? e->class->name :
1101			       "(?)",
1102			       e->links_to && e->links_to->name ?
1103			       e->links_to->name : "(?)");
1104			return false;
1105		}
1106	}
1107
1108	return true;
1109}
1110
1111int check_consistency = 0;
1112module_param(check_consistency, int, 0644);
1113
1114static void check_data_structures(void)
1115{
1116	static bool once = false;
1117
1118	if (check_consistency && !once) {
1119		if (!__check_data_structures()) {
1120			once = true;
1121			WARN_ON(once);
1122		}
1123	}
1124}
1125
1126#else /* CONFIG_DEBUG_LOCKDEP */
1127
1128static inline void check_data_structures(void) { }
1129
1130#endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132static void init_chain_block_buckets(void);
1133
1134/*
1135 * Initialize the lock_classes[] array elements, the free_lock_classes list
1136 * and also the delayed_free structure.
1137 */
1138static void init_data_structures_once(void)
1139{
1140	static bool __read_mostly ds_initialized, rcu_head_initialized;
1141	int i;
1142
1143	if (likely(rcu_head_initialized))
1144		return;
1145
1146	if (system_state >= SYSTEM_SCHEDULING) {
1147		init_rcu_head(&delayed_free.rcu_head);
1148		rcu_head_initialized = true;
1149	}
1150
1151	if (ds_initialized)
1152		return;
1153
1154	ds_initialized = true;
1155
1156	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163	}
1164	init_chain_block_buckets();
1165}
1166
1167static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168{
1169	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171	return lock_keys_hash + hash;
1172}
1173
1174/* Register a dynamically allocated key. */
1175void lockdep_register_key(struct lock_class_key *key)
1176{
1177	struct hlist_head *hash_head;
1178	struct lock_class_key *k;
1179	unsigned long flags;
1180
1181	if (WARN_ON_ONCE(static_obj(key)))
1182		return;
1183	hash_head = keyhashentry(key);
1184
1185	raw_local_irq_save(flags);
1186	if (!graph_lock())
1187		goto restore_irqs;
1188	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189		if (WARN_ON_ONCE(k == key))
1190			goto out_unlock;
1191	}
1192	hlist_add_head_rcu(&key->hash_entry, hash_head);
1193out_unlock:
1194	graph_unlock();
1195restore_irqs:
1196	raw_local_irq_restore(flags);
1197}
1198EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200/* Check whether a key has been registered as a dynamic key. */
1201static bool is_dynamic_key(const struct lock_class_key *key)
1202{
1203	struct hlist_head *hash_head;
1204	struct lock_class_key *k;
1205	bool found = false;
1206
1207	if (WARN_ON_ONCE(static_obj(key)))
1208		return false;
1209
1210	/*
1211	 * If lock debugging is disabled lock_keys_hash[] may contain
1212	 * pointers to memory that has already been freed. Avoid triggering
1213	 * a use-after-free in that case by returning early.
1214	 */
1215	if (!debug_locks)
1216		return true;
1217
1218	hash_head = keyhashentry(key);
1219
1220	rcu_read_lock();
1221	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222		if (k == key) {
1223			found = true;
1224			break;
1225		}
1226	}
1227	rcu_read_unlock();
1228
1229	return found;
1230}
1231
1232/*
1233 * Register a lock's class in the hash-table, if the class is not present
1234 * yet. Otherwise we look it up. We cache the result in the lock object
1235 * itself, so actual lookup of the hash should be once per lock object.
1236 */
1237static struct lock_class *
1238register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239{
1240	struct lockdep_subclass_key *key;
1241	struct hlist_head *hash_head;
1242	struct lock_class *class;
1243
1244	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246	class = look_up_lock_class(lock, subclass);
1247	if (likely(class))
1248		goto out_set_class_cache;
1249
1250	if (!lock->key) {
1251		if (!assign_lock_key(lock))
1252			return NULL;
1253	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
 
 
 
 
 
 
1254		return NULL;
1255	}
1256
1257	key = lock->key->subkeys + subclass;
1258	hash_head = classhashentry(key);
1259
 
1260	if (!graph_lock()) {
 
1261		return NULL;
1262	}
1263	/*
1264	 * We have to do the hash-walk again, to avoid races
1265	 * with another CPU:
1266	 */
1267	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268		if (class->key == key)
1269			goto out_unlock_set;
1270	}
1271
1272	init_data_structures_once();
1273
1274	/* Allocate a new lock class and add it to the hash. */
1275	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276					 lock_entry);
1277	if (!class) {
1278		if (!debug_locks_off_graph_unlock()) {
 
1279			return NULL;
1280		}
 
1281
1282		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283		dump_stack();
1284		return NULL;
1285	}
1286	nr_lock_classes++;
1287	__set_bit(class - lock_classes, lock_classes_in_use);
1288	debug_atomic_inc(nr_unused_locks);
1289	class->key = key;
1290	class->name = lock->name;
1291	class->subclass = subclass;
1292	WARN_ON_ONCE(!list_empty(&class->locks_before));
1293	WARN_ON_ONCE(!list_empty(&class->locks_after));
 
1294	class->name_version = count_matching_names(class);
1295	class->wait_type_inner = lock->wait_type_inner;
1296	class->wait_type_outer = lock->wait_type_outer;
1297	class->lock_type = lock->lock_type;
1298	/*
1299	 * We use RCU's safe list-add method to make
1300	 * parallel walking of the hash-list safe:
1301	 */
1302	hlist_add_head_rcu(&class->hash_entry, hash_head);
1303	/*
1304	 * Remove the class from the free list and add it to the global list
1305	 * of classes.
1306	 */
1307	list_move_tail(&class->lock_entry, &all_lock_classes);
1308
1309	if (verbose(class)) {
1310		graph_unlock();
 
1311
1312		printk("\nnew class %px: %s", class->key, class->name);
1313		if (class->name_version > 1)
1314			printk(KERN_CONT "#%d", class->name_version);
1315		printk(KERN_CONT "\n");
1316		dump_stack();
1317
 
1318		if (!graph_lock()) {
 
1319			return NULL;
1320		}
1321	}
1322out_unlock_set:
1323	graph_unlock();
 
1324
1325out_set_class_cache:
1326	if (!subclass || force)
1327		lock->class_cache[0] = class;
1328	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329		lock->class_cache[subclass] = class;
1330
1331	/*
1332	 * Hash collision, did we smoke some? We found a class with a matching
1333	 * hash but the subclass -- which is hashed in -- didn't match.
1334	 */
1335	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336		return NULL;
1337
1338	return class;
1339}
1340
1341#ifdef CONFIG_PROVE_LOCKING
1342/*
1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344 * with NULL on failure)
1345 */
1346static struct lock_list *alloc_list_entry(void)
1347{
1348	int idx = find_first_zero_bit(list_entries_in_use,
1349				      ARRAY_SIZE(list_entries));
1350
1351	if (idx >= ARRAY_SIZE(list_entries)) {
1352		if (!debug_locks_off_graph_unlock())
1353			return NULL;
1354
1355		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356		dump_stack();
1357		return NULL;
1358	}
1359	nr_list_entries++;
1360	__set_bit(idx, list_entries_in_use);
1361	return list_entries + idx;
1362}
1363
1364/*
1365 * Add a new dependency to the head of the list:
1366 */
1367static int add_lock_to_list(struct lock_class *this,
1368			    struct lock_class *links_to, struct list_head *head,
1369			    unsigned long ip, u16 distance, u8 dep,
1370			    const struct lock_trace *trace)
1371{
1372	struct lock_list *entry;
1373	/*
1374	 * Lock not present yet - get a new dependency struct and
1375	 * add it to the list:
1376	 */
1377	entry = alloc_list_entry();
1378	if (!entry)
1379		return 0;
1380
1381	entry->class = this;
1382	entry->links_to = links_to;
1383	entry->dep = dep;
1384	entry->distance = distance;
1385	entry->trace = trace;
1386	/*
1387	 * Both allocation and removal are done under the graph lock; but
1388	 * iteration is under RCU-sched; see look_up_lock_class() and
1389	 * lockdep_free_key_range().
 
 
1390	 */
1391	list_add_tail_rcu(&entry->entry, head);
1392
1393	return 1;
1394}
1395
1396/*
1397 * For good efficiency of modular, we use power of 2
1398 */
1399#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402/*
1403 * The circular_queue and helpers are used to implement graph
1404 * breadth-first search (BFS) algorithm, by which we can determine
1405 * whether there is a path from a lock to another. In deadlock checks,
1406 * a path from the next lock to be acquired to a previous held lock
1407 * indicates that adding the <prev> -> <next> lock dependency will
1408 * produce a circle in the graph. Breadth-first search instead of
1409 * depth-first search is used in order to find the shortest (circular)
1410 * path.
1411 */
1412struct circular_queue {
1413	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414	unsigned int  front, rear;
1415};
1416
1417static struct circular_queue lock_cq;
1418
1419unsigned int max_bfs_queue_depth;
1420
1421static unsigned int lockdep_dependency_gen_id;
1422
1423static inline void __cq_init(struct circular_queue *cq)
1424{
1425	cq->front = cq->rear = 0;
1426	lockdep_dependency_gen_id++;
1427}
1428
1429static inline int __cq_empty(struct circular_queue *cq)
1430{
1431	return (cq->front == cq->rear);
1432}
1433
1434static inline int __cq_full(struct circular_queue *cq)
1435{
1436	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437}
1438
1439static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440{
1441	if (__cq_full(cq))
1442		return -1;
1443
1444	cq->element[cq->rear] = elem;
1445	cq->rear = (cq->rear + 1) & CQ_MASK;
1446	return 0;
1447}
1448
1449/*
1450 * Dequeue an element from the circular_queue, return a lock_list if
1451 * the queue is not empty, or NULL if otherwise.
1452 */
1453static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454{
1455	struct lock_list * lock;
1456
1457	if (__cq_empty(cq))
1458		return NULL;
1459
1460	lock = cq->element[cq->front];
1461	cq->front = (cq->front + 1) & CQ_MASK;
1462
1463	return lock;
1464}
1465
1466static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467{
1468	return (cq->rear - cq->front) & CQ_MASK;
1469}
1470
1471static inline void mark_lock_accessed(struct lock_list *lock)
 
1472{
1473	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474}
1475
1476static inline void visit_lock_entry(struct lock_list *lock,
1477				    struct lock_list *parent)
1478{
1479	lock->parent = parent;
 
1480}
1481
1482static inline unsigned long lock_accessed(struct lock_list *lock)
1483{
 
 
 
 
1484	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485}
1486
1487static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488{
1489	return child->parent;
1490}
1491
1492static inline int get_lock_depth(struct lock_list *child)
1493{
1494	int depth = 0;
1495	struct lock_list *parent;
1496
1497	while ((parent = get_lock_parent(child))) {
1498		child = parent;
1499		depth++;
1500	}
1501	return depth;
1502}
1503
1504/*
1505 * Return the forward or backward dependency list.
1506 *
1507 * @lock:   the lock_list to get its class's dependency list
1508 * @offset: the offset to struct lock_class to determine whether it is
1509 *          locks_after or locks_before
1510 */
1511static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512{
1513	void *lock_class = lock->class;
1514
1515	return lock_class + offset;
1516}
1517/*
1518 * Return values of a bfs search:
1519 *
1520 * BFS_E* indicates an error
1521 * BFS_R* indicates a result (match or not)
1522 *
1523 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524 *
1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526 *
1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528 *             *@target_entry.
1529 *
1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531 *               _unchanged_.
1532 */
1533enum bfs_result {
1534	BFS_EINVALIDNODE = -2,
1535	BFS_EQUEUEFULL = -1,
1536	BFS_RMATCH = 0,
1537	BFS_RNOMATCH = 1,
1538};
1539
1540/*
1541 * bfs_result < 0 means error
1542 */
1543static inline bool bfs_error(enum bfs_result res)
1544{
1545	return res < 0;
1546}
1547
1548/*
1549 * DEP_*_BIT in lock_list::dep
1550 *
1551 * For dependency @prev -> @next:
1552 *
1553 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554 *       (->read == 2)
1555 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557 *   EN: @prev is exclusive locker and @next is non-recursive locker
1558 *
1559 * Note that we define the value of DEP_*_BITs so that:
1560 *   bit0 is prev->read == 0
1561 *   bit1 is next->read != 2
1562 */
1563#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573static inline unsigned int
1574__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575{
1576	return (prev->read == 0) + ((next->read != 2) << 1);
1577}
1578
1579static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580{
1581	return 1U << __calc_dep_bit(prev, next);
1582}
1583
1584/*
1585 * calculate the dep_bit for backwards edges. We care about whether @prev is
1586 * shared and whether @next is recursive.
1587 */
1588static inline unsigned int
1589__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590{
1591	return (next->read != 2) + ((prev->read == 0) << 1);
1592}
1593
1594static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595{
1596	return 1U << __calc_dep_bitb(prev, next);
1597}
1598
1599/*
1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601 * search.
1602 */
1603static inline void __bfs_init_root(struct lock_list *lock,
1604				   struct lock_class *class)
1605{
1606	lock->class = class;
1607	lock->parent = NULL;
1608	lock->only_xr = 0;
1609}
1610
1611/*
1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613 * root for a BFS search.
1614 *
1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617 * and -(S*)->.
1618 */
1619static inline void bfs_init_root(struct lock_list *lock,
1620				 struct held_lock *hlock)
1621{
1622	__bfs_init_root(lock, hlock_class(hlock));
1623	lock->only_xr = (hlock->read == 2);
1624}
1625
1626/*
1627 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628 *
1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632 */
1633static inline void bfs_init_rootb(struct lock_list *lock,
1634				  struct held_lock *hlock)
1635{
1636	__bfs_init_root(lock, hlock_class(hlock));
1637	lock->only_xr = (hlock->read != 0);
1638}
1639
1640static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641{
1642	if (!lock || !lock->parent)
1643		return NULL;
1644
1645	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646				     &lock->entry, struct lock_list, entry);
1647}
1648
1649/*
1650 * Breadth-First Search to find a strong path in the dependency graph.
1651 *
1652 * @source_entry: the source of the path we are searching for.
1653 * @data: data used for the second parameter of @match function
1654 * @match: match function for the search
1655 * @target_entry: pointer to the target of a matched path
1656 * @offset: the offset to struct lock_class to determine whether it is
1657 *          locks_after or locks_before
1658 *
1659 * We may have multiple edges (considering different kinds of dependencies,
1660 * e.g. ER and SN) between two nodes in the dependency graph. But
1661 * only the strong dependency path in the graph is relevant to deadlocks. A
1662 * strong dependency path is a dependency path that doesn't have two adjacent
1663 * dependencies as -(*R)-> -(S*)->, please see:
1664 *
1665 *         Documentation/locking/lockdep-design.rst
1666 *
1667 * for more explanation of the definition of strong dependency paths
1668 *
1669 * In __bfs(), we only traverse in the strong dependency path:
1670 *
1671 *     In lock_list::only_xr, we record whether the previous dependency only
1672 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673 *     filter out any -(S*)-> in the current dependency and after that, the
1674 *     ->only_xr is set according to whether we only have -(*R)-> left.
1675 */
1676static enum bfs_result __bfs(struct lock_list *source_entry,
1677			     void *data,
1678			     bool (*match)(struct lock_list *entry, void *data),
1679			     bool (*skip)(struct lock_list *entry, void *data),
1680			     struct lock_list **target_entry,
1681			     int offset)
1682{
1683	struct circular_queue *cq = &lock_cq;
1684	struct lock_list *lock = NULL;
1685	struct lock_list *entry;
1686	struct list_head *head;
1687	unsigned int cq_depth;
1688	bool first;
1689
1690	lockdep_assert_locked();
 
 
 
 
1691
1692	__cq_init(cq);
1693	__cq_enqueue(cq, source_entry);
 
 
1694
1695	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696		if (!lock->class)
1697			return BFS_EINVALIDNODE;
1698
1699		/*
1700		 * Step 1: check whether we already finish on this one.
1701		 *
1702		 * If we have visited all the dependencies from this @lock to
1703		 * others (iow, if we have visited all lock_list entries in
1704		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705		 * and visit all the dependencies in the list and mark this
1706		 * list accessed.
1707		 */
1708		if (lock_accessed(lock))
1709			continue;
1710		else
1711			mark_lock_accessed(lock);
1712
1713		/*
1714		 * Step 2: check whether prev dependency and this form a strong
1715		 *         dependency path.
1716		 */
1717		if (lock->parent) { /* Parent exists, check prev dependency */
1718			u8 dep = lock->dep;
1719			bool prev_only_xr = lock->parent->only_xr;
1720
1721			/*
1722			 * Mask out all -(S*)-> if we only have *R in previous
1723			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724			 * dependency.
1725			 */
1726			if (prev_only_xr)
1727				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729			/* If nothing left, we skip */
1730			if (!dep)
1731				continue;
1732
1733			/* If there are only -(*R)-> left, set that for the next step */
1734			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
 
1735		}
1736
1737		/*
1738		 * Step 3: we haven't visited this and there is a strong
1739		 *         dependency path to this, so check with @match.
1740		 *         If @skip is provide and returns true, we skip this
1741		 *         lock (and any path this lock is in).
1742		 */
1743		if (skip && skip(lock, data))
1744			continue;
1745
1746		if (match(lock, data)) {
1747			*target_entry = lock;
1748			return BFS_RMATCH;
1749		}
 
 
 
 
 
1750
1751		/*
1752		 * Step 4: if not match, expand the path by adding the
1753		 *         forward or backwards dependencies in the search
1754		 *
1755		 */
1756		first = true;
1757		head = get_dep_list(lock, offset);
1758		list_for_each_entry_rcu(entry, head, entry) {
1759			visit_lock_entry(entry, lock);
1760
1761			/*
1762			 * Note we only enqueue the first of the list into the
1763			 * queue, because we can always find a sibling
1764			 * dependency from one (see __bfs_next()), as a result
1765			 * the space of queue is saved.
1766			 */
1767			if (!first)
1768				continue;
1769
1770			first = false;
1771
1772			if (__cq_enqueue(cq, entry))
1773				return BFS_EQUEUEFULL;
1774
1775			cq_depth = __cq_get_elem_count(cq);
1776			if (max_bfs_queue_depth < cq_depth)
1777				max_bfs_queue_depth = cq_depth;
1778		}
1779	}
1780
1781	return BFS_RNOMATCH;
1782}
1783
1784static inline enum bfs_result
1785__bfs_forwards(struct lock_list *src_entry,
1786	       void *data,
1787	       bool (*match)(struct lock_list *entry, void *data),
1788	       bool (*skip)(struct lock_list *entry, void *data),
1789	       struct lock_list **target_entry)
1790{
1791	return __bfs(src_entry, data, match, skip, target_entry,
1792		     offsetof(struct lock_class, locks_after));
1793
1794}
1795
1796static inline enum bfs_result
1797__bfs_backwards(struct lock_list *src_entry,
1798		void *data,
1799		bool (*match)(struct lock_list *entry, void *data),
1800	       bool (*skip)(struct lock_list *entry, void *data),
1801		struct lock_list **target_entry)
1802{
1803	return __bfs(src_entry, data, match, skip, target_entry,
1804		     offsetof(struct lock_class, locks_before));
1805
1806}
1807
1808static void print_lock_trace(const struct lock_trace *trace,
1809			     unsigned int spaces)
1810{
1811	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812}
1813
1814/*
1815 * Print a dependency chain entry (this is only done when a deadlock
1816 * has been detected):
1817 */
1818static noinline void
1819print_circular_bug_entry(struct lock_list *target, int depth)
1820{
1821	if (debug_locks_silent)
1822		return;
1823	printk("\n-> #%u", depth);
1824	print_lock_name(target->class);
1825	printk(KERN_CONT ":\n");
1826	print_lock_trace(target->trace, 6);
 
 
1827}
1828
1829static void
1830print_circular_lock_scenario(struct held_lock *src,
1831			     struct held_lock *tgt,
1832			     struct lock_list *prt)
1833{
1834	struct lock_class *source = hlock_class(src);
1835	struct lock_class *target = hlock_class(tgt);
1836	struct lock_class *parent = prt->class;
1837
1838	/*
1839	 * A direct locking problem where unsafe_class lock is taken
1840	 * directly by safe_class lock, then all we need to show
1841	 * is the deadlock scenario, as it is obvious that the
1842	 * unsafe lock is taken under the safe lock.
1843	 *
1844	 * But if there is a chain instead, where the safe lock takes
1845	 * an intermediate lock (middle_class) where this lock is
1846	 * not the same as the safe lock, then the lock chain is
1847	 * used to describe the problem. Otherwise we would need
1848	 * to show a different CPU case for each link in the chain
1849	 * from the safe_class lock to the unsafe_class lock.
1850	 */
1851	if (parent != source) {
1852		printk("Chain exists of:\n  ");
1853		__print_lock_name(source);
1854		printk(KERN_CONT " --> ");
1855		__print_lock_name(parent);
1856		printk(KERN_CONT " --> ");
1857		__print_lock_name(target);
1858		printk(KERN_CONT "\n\n");
1859	}
1860
1861	printk(" Possible unsafe locking scenario:\n\n");
1862	printk("       CPU0                    CPU1\n");
1863	printk("       ----                    ----\n");
1864	printk("  lock(");
1865	__print_lock_name(target);
1866	printk(KERN_CONT ");\n");
1867	printk("                               lock(");
1868	__print_lock_name(parent);
1869	printk(KERN_CONT ");\n");
1870	printk("                               lock(");
1871	__print_lock_name(target);
1872	printk(KERN_CONT ");\n");
1873	printk("  lock(");
1874	__print_lock_name(source);
1875	printk(KERN_CONT ");\n");
1876	printk("\n *** DEADLOCK ***\n\n");
1877}
1878
1879/*
1880 * When a circular dependency is detected, print the
1881 * header first:
1882 */
1883static noinline void
1884print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885			struct held_lock *check_src,
1886			struct held_lock *check_tgt)
1887{
1888	struct task_struct *curr = current;
1889
1890	if (debug_locks_silent)
1891		return;
1892
1893	pr_warn("\n");
1894	pr_warn("======================================================\n");
1895	pr_warn("WARNING: possible circular locking dependency detected\n");
1896	print_kernel_ident();
1897	pr_warn("------------------------------------------------------\n");
1898	pr_warn("%s/%d is trying to acquire lock:\n",
1899		curr->comm, task_pid_nr(curr));
1900	print_lock(check_src);
1901
1902	pr_warn("\nbut task is already holding lock:\n");
1903
1904	print_lock(check_tgt);
1905	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908	print_circular_bug_entry(entry, depth);
1909}
1910
1911/*
1912 * We are about to add A -> B into the dependency graph, and in __bfs() a
1913 * strong dependency path A -> .. -> B is found: hlock_class equals
1914 * entry->class.
1915 *
1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923 *
1924 * We need to make sure both the start and the end of A -> .. -> B is not
1925 * weaker than A -> B. For the start part, please see the comment in
1926 * check_redundant(). For the end part, we need:
1927 *
1928 * Either
1929 *
1930 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931 *
1932 * or
1933 *
1934 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935 *
1936 */
1937static inline bool hlock_equal(struct lock_list *entry, void *data)
1938{
1939	struct held_lock *hlock = (struct held_lock *)data;
1940
1941	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944}
1945
1946/*
1947 * We are about to add B -> A into the dependency graph, and in __bfs() a
1948 * strong dependency path A -> .. -> B is found: hlock_class equals
1949 * entry->class.
1950 *
1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952 * dependency cycle, that means:
1953 *
1954 * Either
1955 *
1956 *     a) B -> A is -(E*)->
1957 *
1958 * or
1959 *
1960 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961 *
1962 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963 */
1964static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965{
1966	struct held_lock *hlock = (struct held_lock *)data;
1967
1968	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1970		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971}
1972
1973static noinline void print_circular_bug(struct lock_list *this,
1974				struct lock_list *target,
1975				struct held_lock *check_src,
1976				struct held_lock *check_tgt)
1977{
1978	struct task_struct *curr = current;
1979	struct lock_list *parent;
1980	struct lock_list *first_parent;
1981	int depth;
1982
1983	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984		return;
1985
1986	this->trace = save_trace();
1987	if (!this->trace)
1988		return;
1989
1990	depth = get_lock_depth(target);
1991
1992	print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994	parent = get_lock_parent(target);
1995	first_parent = parent;
1996
1997	while (parent) {
1998		print_circular_bug_entry(parent, --depth);
1999		parent = get_lock_parent(parent);
2000	}
2001
2002	printk("\nother info that might help us debug this:\n\n");
2003	print_circular_lock_scenario(check_src, check_tgt,
2004				     first_parent);
2005
2006	lockdep_print_held_locks(curr);
2007
2008	printk("\nstack backtrace:\n");
2009	dump_stack();
 
 
2010}
2011
2012static noinline void print_bfs_bug(int ret)
2013{
2014	if (!debug_locks_off_graph_unlock())
2015		return;
2016
2017	/*
2018	 * Breadth-first-search failed, graph got corrupted?
2019	 */
2020	WARN(1, "lockdep bfs error:%d\n", ret);
 
 
2021}
2022
2023static bool noop_count(struct lock_list *entry, void *data)
2024{
2025	(*(unsigned long *)data)++;
2026	return false;
2027}
2028
2029static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030{
2031	unsigned long  count = 0;
2032	struct lock_list *target_entry;
2033
2034	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036	return count;
2037}
2038unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039{
2040	unsigned long ret, flags;
2041	struct lock_list this;
2042
2043	__bfs_init_root(&this, class);
 
2044
2045	raw_local_irq_save(flags);
2046	lockdep_lock();
2047	ret = __lockdep_count_forward_deps(&this);
2048	lockdep_unlock();
2049	raw_local_irq_restore(flags);
2050
2051	return ret;
2052}
2053
2054static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055{
2056	unsigned long  count = 0;
2057	struct lock_list *target_entry;
2058
2059	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061	return count;
2062}
2063
2064unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065{
2066	unsigned long ret, flags;
2067	struct lock_list this;
2068
2069	__bfs_init_root(&this, class);
 
2070
2071	raw_local_irq_save(flags);
2072	lockdep_lock();
2073	ret = __lockdep_count_backward_deps(&this);
2074	lockdep_unlock();
2075	raw_local_irq_restore(flags);
2076
2077	return ret;
2078}
2079
2080/*
2081 * Check that the dependency graph starting at <src> can lead to
2082 * <target> or not.
2083 */
2084static noinline enum bfs_result
2085check_path(struct held_lock *target, struct lock_list *src_entry,
2086	   bool (*match)(struct lock_list *entry, void *data),
2087	   bool (*skip)(struct lock_list *entry, void *data),
2088	   struct lock_list **target_entry)
2089{
2090	enum bfs_result ret;
2091
2092	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094	if (unlikely(bfs_error(ret)))
2095		print_bfs_bug(ret);
2096
2097	return ret;
2098}
2099
2100/*
2101 * Prove that the dependency graph starting at <src> can not
2102 * lead to <target>. If it can, there is a circle when adding
2103 * <target> -> <src> dependency.
2104 *
2105 * Print an error and return BFS_RMATCH if it does.
2106 */
2107static noinline enum bfs_result
2108check_noncircular(struct held_lock *src, struct held_lock *target,
2109		  struct lock_trace **const trace)
2110{
2111	enum bfs_result ret;
2112	struct lock_list *target_entry;
2113	struct lock_list src_entry;
2114
2115	bfs_init_root(&src_entry, src);
2116
2117	debug_atomic_inc(nr_cyclic_checks);
2118
2119	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121	if (unlikely(ret == BFS_RMATCH)) {
2122		if (!*trace) {
2123			/*
2124			 * If save_trace fails here, the printing might
2125			 * trigger a WARN but because of the !nr_entries it
2126			 * should not do bad things.
2127			 */
2128			*trace = save_trace();
2129		}
2130
2131		print_circular_bug(&src_entry, target_entry, src, target);
2132	}
2133
2134	return ret;
2135}
2136
2137#ifdef CONFIG_TRACE_IRQFLAGS
2138
2139/*
2140 * Forwards and backwards subgraph searching, for the purposes of
2141 * proving that two subgraphs can be connected by a new dependency
2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143 *
2144 * A irq safe->unsafe deadlock happens with the following conditions:
2145 *
2146 * 1) We have a strong dependency path A -> ... -> B
2147 *
2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149 *    irq can create a new dependency B -> A (consider the case that a holder
2150 *    of B gets interrupted by an irq whose handler will try to acquire A).
2151 *
2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153 *    strong circle:
2154 *
2155 *      For the usage bits of B:
2156 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157 *           ENABLED_IRQ usage suffices.
2158 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159 *           ENABLED_IRQ_*_READ usage suffices.
2160 *
2161 *      For the usage bits of A:
2162 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163 *           USED_IN_IRQ usage suffices.
2164 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165 *           USED_IN_IRQ_*_READ usage suffices.
2166 */
2167
2168/*
2169 * There is a strong dependency path in the dependency graph: A -> B, and now
2170 * we need to decide which usage bit of A should be accumulated to detect
2171 * safe->unsafe bugs.
2172 *
2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175 *
2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177 * path, any usage of A should be considered. Otherwise, we should only
2178 * consider _READ usage.
2179 */
2180static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181{
2182	if (!entry->only_xr)
2183		*(unsigned long *)mask |= entry->class->usage_mask;
2184	else /* Mask out _READ usage bits */
2185		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187	return false;
2188}
2189
2190/*
2191 * There is a strong dependency path in the dependency graph: A -> B, and now
2192 * we need to decide which usage bit of B conflicts with the usage bits of A,
2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194 *
2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196 * path, any usage of B should be considered. Otherwise, we should only
2197 * consider _READ usage.
2198 */
2199static inline bool usage_match(struct lock_list *entry, void *mask)
2200{
2201	if (!entry->only_xr)
2202		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203	else /* Mask out _READ usage bits */
2204		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205}
2206
2207static inline bool usage_skip(struct lock_list *entry, void *mask)
2208{
2209	/*
2210	 * Skip local_lock() for irq inversion detection.
2211	 *
2212	 * For !RT, local_lock() is not a real lock, so it won't carry any
2213	 * dependency.
2214	 *
2215	 * For RT, an irq inversion happens when we have lock A and B, and on
2216	 * some CPU we can have:
2217	 *
2218	 *	lock(A);
2219	 *	<interrupted>
2220	 *	  lock(B);
2221	 *
2222	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223	 *
2224	 * Now we prove local_lock() cannot exist in that dependency. First we
2225	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227	 * wait context check will complain. And since B is not a sleep lock,
2228	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229	 * local_lock() is 3, which is greater than 2, therefore there is no
2230	 * way the local_lock() exists in the dependency B -> ... -> A.
2231	 *
2232	 * As a result, we will skip local_lock(), when we search for irq
2233	 * inversion bugs.
2234	 */
2235	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237			return false;
2238
2239		return true;
2240	}
2241
2242	return false;
2243}
2244
2245/*
2246 * Find a node in the forwards-direction dependency sub-graph starting
2247 * at @root->class that matches @bit.
2248 *
2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250 * into *@target_entry.
 
 
 
2251 */
2252static enum bfs_result
2253find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254			struct lock_list **target_entry)
2255{
2256	enum bfs_result result;
2257
2258	debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262	return result;
2263}
2264
2265/*
2266 * Find a node in the backwards-direction dependency sub-graph starting
2267 * at @root->class that matches @bit.
 
 
 
 
 
 
2268 */
2269static enum bfs_result
2270find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271			struct lock_list **target_entry)
2272{
2273	enum bfs_result result;
2274
2275	debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279	return result;
2280}
2281
2282static void print_lock_class_header(struct lock_class *class, int depth)
2283{
2284	int bit;
2285
2286	printk("%*s->", depth, "");
2287	print_lock_name(class);
2288#ifdef CONFIG_DEBUG_LOCKDEP
2289	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290#endif
2291	printk(KERN_CONT " {\n");
2292
2293	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294		if (class->usage_mask & (1 << bit)) {
2295			int len = depth;
2296
2297			len += printk("%*s   %s", depth, "", usage_str[bit]);
2298			len += printk(KERN_CONT " at:\n");
2299			print_lock_trace(class->usage_traces[bit], len);
2300		}
2301	}
2302	printk("%*s }\n", depth, "");
2303
2304	printk("%*s ... key      at: [<%px>] %pS\n",
2305		depth, "", class->key, class->key);
2306}
2307
2308/*
2309 * Dependency path printing:
2310 *
2311 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312 * printing out each lock in the dependency path will help on understanding how
2313 * the deadlock could happen. Here are some details about dependency path
2314 * printing:
2315 *
2316 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2317 * 	for a lock dependency A -> B, there are two lock_lists:
2318 *
2319 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2320 * 		->links_to is A. In this case, we can say the lock_list is
2321 * 		"A -> B" (forwards case).
2322 *
2323 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2324 * 		and ->links_to is B. In this case, we can say the lock_list is
2325 * 		"B <- A" (bacwards case).
2326 *
2327 * 	The ->trace of both a) and b) point to the call trace where B was
2328 * 	acquired with A held.
2329 *
2330 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331 * 	represent a certain lock dependency, it only provides an initial entry
2332 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2333 * 	->class is A, as a result BFS will search all dependencies starting with
2334 * 	A, e.g. A -> B or A -> C.
2335 *
2336 * 	The notation of a forwards helper lock_list is like "-> A", which means
2337 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2338 * 	or A -> C.
2339 *
2340 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2341 * 	we should search the backwards dependencies ending with "B", e.g.
2342 * 	B <- A or B <- C.
2343 */
2344
2345/*
2346 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347 *
2348 * We have a lock dependency path as follow:
2349 *
2350 *    @root                                                                 @leaf
2351 *      |                                                                     |
2352 *      V                                                                     V
2353 *	          ->parent                                   ->parent
2354 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2355 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2356 *
2357 * , so it's natural that we start from @leaf and print every ->class and
2358 * ->trace until we reach the @root.
2359 */
2360static void __used
2361print_shortest_lock_dependencies(struct lock_list *leaf,
2362				 struct lock_list *root)
2363{
2364	struct lock_list *entry = leaf;
2365	int depth;
2366
2367	/*compute depth from generated tree by BFS*/
2368	depth = get_lock_depth(leaf);
2369
2370	do {
2371		print_lock_class_header(entry->class, depth);
2372		printk("%*s ... acquired at:\n", depth, "");
2373		print_lock_trace(entry->trace, 2);
2374		printk("\n");
2375
2376		if (depth == 0 && (entry != root)) {
2377			printk("lockdep:%s bad path found in chain graph\n", __func__);
2378			break;
2379		}
2380
2381		entry = get_lock_parent(entry);
2382		depth--;
2383	} while (entry && (depth >= 0));
2384}
2385
2386/*
2387 * printk the shortest lock dependencies from @leaf to @root.
2388 *
2389 * We have a lock dependency path (from a backwards search) as follow:
2390 *
2391 *    @leaf                                                                 @root
2392 *      |                                                                     |
2393 *      V                                                                     V
2394 *	          ->parent                                   ->parent
2395 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2396 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2397 *
2398 * , so when we iterate from @leaf to @root, we actually print the lock
2399 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400 *
2401 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403 * trace of L1 in the dependency path, which is alright, because most of the
2404 * time we can figure out where L1 is held from the call trace of L2.
2405 */
2406static void __used
2407print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408					   struct lock_list *root)
2409{
2410	struct lock_list *entry = leaf;
2411	const struct lock_trace *trace = NULL;
2412	int depth;
2413
2414	/*compute depth from generated tree by BFS*/
2415	depth = get_lock_depth(leaf);
2416
2417	do {
2418		print_lock_class_header(entry->class, depth);
2419		if (trace) {
2420			printk("%*s ... acquired at:\n", depth, "");
2421			print_lock_trace(trace, 2);
2422			printk("\n");
2423		}
2424
2425		/*
2426		 * Record the pointer to the trace for the next lock_list
2427		 * entry, see the comments for the function.
2428		 */
2429		trace = entry->trace;
2430
2431		if (depth == 0 && (entry != root)) {
2432			printk("lockdep:%s bad path found in chain graph\n", __func__);
2433			break;
2434		}
2435
2436		entry = get_lock_parent(entry);
2437		depth--;
2438	} while (entry && (depth >= 0));
2439}
2440
2441static void
2442print_irq_lock_scenario(struct lock_list *safe_entry,
2443			struct lock_list *unsafe_entry,
2444			struct lock_class *prev_class,
2445			struct lock_class *next_class)
2446{
2447	struct lock_class *safe_class = safe_entry->class;
2448	struct lock_class *unsafe_class = unsafe_entry->class;
2449	struct lock_class *middle_class = prev_class;
2450
2451	if (middle_class == safe_class)
2452		middle_class = next_class;
2453
2454	/*
2455	 * A direct locking problem where unsafe_class lock is taken
2456	 * directly by safe_class lock, then all we need to show
2457	 * is the deadlock scenario, as it is obvious that the
2458	 * unsafe lock is taken under the safe lock.
2459	 *
2460	 * But if there is a chain instead, where the safe lock takes
2461	 * an intermediate lock (middle_class) where this lock is
2462	 * not the same as the safe lock, then the lock chain is
2463	 * used to describe the problem. Otherwise we would need
2464	 * to show a different CPU case for each link in the chain
2465	 * from the safe_class lock to the unsafe_class lock.
2466	 */
2467	if (middle_class != unsafe_class) {
2468		printk("Chain exists of:\n  ");
2469		__print_lock_name(safe_class);
2470		printk(KERN_CONT " --> ");
2471		__print_lock_name(middle_class);
2472		printk(KERN_CONT " --> ");
2473		__print_lock_name(unsafe_class);
2474		printk(KERN_CONT "\n\n");
2475	}
2476
2477	printk(" Possible interrupt unsafe locking scenario:\n\n");
2478	printk("       CPU0                    CPU1\n");
2479	printk("       ----                    ----\n");
2480	printk("  lock(");
2481	__print_lock_name(unsafe_class);
2482	printk(KERN_CONT ");\n");
2483	printk("                               local_irq_disable();\n");
2484	printk("                               lock(");
2485	__print_lock_name(safe_class);
2486	printk(KERN_CONT ");\n");
2487	printk("                               lock(");
2488	__print_lock_name(middle_class);
2489	printk(KERN_CONT ");\n");
2490	printk("  <Interrupt>\n");
2491	printk("    lock(");
2492	__print_lock_name(safe_class);
2493	printk(KERN_CONT ");\n");
2494	printk("\n *** DEADLOCK ***\n\n");
2495}
2496
2497static void
2498print_bad_irq_dependency(struct task_struct *curr,
2499			 struct lock_list *prev_root,
2500			 struct lock_list *next_root,
2501			 struct lock_list *backwards_entry,
2502			 struct lock_list *forwards_entry,
2503			 struct held_lock *prev,
2504			 struct held_lock *next,
2505			 enum lock_usage_bit bit1,
2506			 enum lock_usage_bit bit2,
2507			 const char *irqclass)
2508{
2509	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510		return;
2511
2512	pr_warn("\n");
2513	pr_warn("=====================================================\n");
2514	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515		irqclass, irqclass);
2516	print_kernel_ident();
2517	pr_warn("-----------------------------------------------------\n");
2518	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519		curr->comm, task_pid_nr(curr),
2520		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522		lockdep_hardirqs_enabled(),
2523		curr->softirqs_enabled);
2524	print_lock(next);
2525
2526	pr_warn("\nand this task is already holding:\n");
2527	print_lock(prev);
2528	pr_warn("which would create a new lock dependency:\n");
2529	print_lock_name(hlock_class(prev));
2530	pr_cont(" ->");
2531	print_lock_name(hlock_class(next));
2532	pr_cont("\n");
2533
2534	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535		irqclass);
2536	print_lock_name(backwards_entry->class);
2537	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538
2539	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540
2541	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542	print_lock_name(forwards_entry->class);
2543	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544	pr_warn("...");
2545
2546	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547
2548	pr_warn("\nother info that might help us debug this:\n\n");
2549	print_irq_lock_scenario(backwards_entry, forwards_entry,
2550				hlock_class(prev), hlock_class(next));
2551
2552	lockdep_print_held_locks(curr);
2553
2554	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2556
2557	pr_warn("\nthe dependencies between the lock to be acquired");
2558	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2559	next_root->trace = save_trace();
2560	if (!next_root->trace)
2561		return;
 
 
2562	print_shortest_lock_dependencies(forwards_entry, next_root);
2563
2564	pr_warn("\nstack backtrace:\n");
2565	dump_stack();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566}
2567
2568static const char *state_names[] = {
2569#define LOCKDEP_STATE(__STATE) \
2570	__stringify(__STATE),
2571#include "lockdep_states.h"
2572#undef LOCKDEP_STATE
2573};
2574
2575static const char *state_rnames[] = {
2576#define LOCKDEP_STATE(__STATE) \
2577	__stringify(__STATE)"-READ",
2578#include "lockdep_states.h"
2579#undef LOCKDEP_STATE
2580};
2581
2582static inline const char *state_name(enum lock_usage_bit bit)
2583{
2584	if (bit & LOCK_USAGE_READ_MASK)
2585		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2586	else
2587		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2588}
2589
2590/*
2591 * The bit number is encoded like:
2592 *
2593 *  bit0: 0 exclusive, 1 read lock
2594 *  bit1: 0 used in irq, 1 irq enabled
2595 *  bit2-n: state
2596 */
2597static int exclusive_bit(int new_bit)
2598{
2599	int state = new_bit & LOCK_USAGE_STATE_MASK;
2600	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 
 
 
 
 
 
 
 
 
 
 
2601
2602	/*
2603	 * keep state, bit flip the direction and strip read.
2604	 */
2605	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2606}
2607
2608/*
2609 * Observe that when given a bitmask where each bitnr is encoded as above, a
2610 * right shift of the mask transforms the individual bitnrs as -1 and
2611 * conversely, a left shift transforms into +1 for the individual bitnrs.
2612 *
2613 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2614 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2615 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2616 *
2617 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2618 *
2619 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2620 * all bits set) and recompose with bitnr1 flipped.
2621 */
2622static unsigned long invert_dir_mask(unsigned long mask)
2623{
2624	unsigned long excl = 0;
2625
2626	/* Invert dir */
2627	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2628	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2629
2630	return excl;
2631}
2632
2633/*
2634 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2635 * usage may cause deadlock too, for example:
2636 *
2637 * P1				P2
2638 * <irq disabled>
2639 * write_lock(l1);		<irq enabled>
2640 *				read_lock(l2);
2641 * write_lock(l2);
2642 * 				<in irq>
2643 * 				read_lock(l1);
2644 *
2645 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2646 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2647 * deadlock.
2648 *
2649 * In fact, all of the following cases may cause deadlocks:
2650 *
2651 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2652 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2653 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2654 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2655 *
2656 * As a result, to calculate the "exclusive mask", first we invert the
2657 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2658 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2659 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2660 */
2661static unsigned long exclusive_mask(unsigned long mask)
2662{
2663	unsigned long excl = invert_dir_mask(mask);
2664
2665	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2666	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2667
2668	return excl;
2669}
2670
2671/*
2672 * Retrieve the _possible_ original mask to which @mask is
2673 * exclusive. Ie: this is the opposite of exclusive_mask().
2674 * Note that 2 possible original bits can match an exclusive
2675 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2676 * cleared. So both are returned for each exclusive bit.
2677 */
2678static unsigned long original_mask(unsigned long mask)
2679{
2680	unsigned long excl = invert_dir_mask(mask);
2681
2682	/* Include read in existing usages */
2683	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2684	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2685
2686	return excl;
2687}
2688
2689/*
2690 * Find the first pair of bit match between an original
2691 * usage mask and an exclusive usage mask.
2692 */
2693static int find_exclusive_match(unsigned long mask,
2694				unsigned long excl_mask,
2695				enum lock_usage_bit *bitp,
2696				enum lock_usage_bit *excl_bitp)
2697{
2698	int bit, excl, excl_read;
2699
2700	for_each_set_bit(bit, &mask, LOCK_USED) {
2701		/*
2702		 * exclusive_bit() strips the read bit, however,
2703		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2704		 * to search excl | LOCK_USAGE_READ_MASK as well.
2705		 */
2706		excl = exclusive_bit(bit);
2707		excl_read = excl | LOCK_USAGE_READ_MASK;
2708		if (excl_mask & lock_flag(excl)) {
2709			*bitp = bit;
2710			*excl_bitp = excl;
2711			return 0;
2712		} else if (excl_mask & lock_flag(excl_read)) {
2713			*bitp = bit;
2714			*excl_bitp = excl_read;
2715			return 0;
2716		}
2717	}
2718	return -1;
2719}
2720
2721/*
2722 * Prove that the new dependency does not connect a hardirq-safe(-read)
2723 * lock with a hardirq-unsafe lock - to achieve this we search
2724 * the backwards-subgraph starting at <prev>, and the
2725 * forwards-subgraph starting at <next>:
2726 */
2727static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2728			   struct held_lock *next)
2729{
2730	unsigned long usage_mask = 0, forward_mask, backward_mask;
2731	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2732	struct lock_list *target_entry1;
2733	struct lock_list *target_entry;
2734	struct lock_list this, that;
2735	enum bfs_result ret;
2736
2737	/*
2738	 * Step 1: gather all hard/soft IRQs usages backward in an
2739	 * accumulated usage mask.
 
 
2740	 */
2741	bfs_init_rootb(&this, prev);
2742
2743	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2744	if (bfs_error(ret)) {
2745		print_bfs_bug(ret);
2746		return 0;
2747	}
2748
2749	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2750	if (!usage_mask)
2751		return 1;
2752
2753	/*
2754	 * Step 2: find exclusive uses forward that match the previous
2755	 * backward accumulated mask.
 
 
2756	 */
2757	forward_mask = exclusive_mask(usage_mask);
2758
2759	bfs_init_root(&that, next);
2760
2761	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2762	if (bfs_error(ret)) {
2763		print_bfs_bug(ret);
2764		return 0;
2765	}
2766	if (ret == BFS_RNOMATCH)
2767		return 1;
2768
2769	/*
2770	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2771	 * list whose usage mask matches the exclusive usage mask from the
2772	 * lock found on the forward list.
2773	 *
2774	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2775	 * the follow case:
2776	 *
2777	 * When trying to add A -> B to the graph, we find that there is a
2778	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2779	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2780	 * invert bits of M's usage_mask, we will find another lock N that is
2781	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2782	 * cause a inversion deadlock.
2783	 */
2784	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2785
2786	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2787	if (bfs_error(ret)) {
2788		print_bfs_bug(ret);
 
 
 
2789		return 0;
2790	}
2791	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2792		return 1;
2793
2794	/*
2795	 * Step 4: narrow down to a pair of incompatible usage bits
2796	 * and report it.
2797	 */
2798	ret = find_exclusive_match(target_entry->class->usage_mask,
2799				   target_entry1->class->usage_mask,
2800				   &backward_bit, &forward_bit);
2801	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2802		return 1;
2803
2804	print_bad_irq_dependency(curr, &this, &that,
2805				 target_entry, target_entry1,
2806				 prev, next,
2807				 backward_bit, forward_bit,
2808				 state_name(backward_bit));
2809
2810	return 0;
2811}
2812
2813#else
2814
2815static inline int check_irq_usage(struct task_struct *curr,
2816				  struct held_lock *prev, struct held_lock *next)
2817{
2818	return 1;
2819}
2820
2821static inline bool usage_skip(struct lock_list *entry, void *mask)
2822{
2823	return false;
 
 
 
 
 
 
 
2824}
2825
2826#endif /* CONFIG_TRACE_IRQFLAGS */
2827
2828#ifdef CONFIG_LOCKDEP_SMALL
2829/*
2830 * Check that the dependency graph starting at <src> can lead to
2831 * <target> or not. If it can, <src> -> <target> dependency is already
2832 * in the graph.
2833 *
2834 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2835 * any error appears in the bfs search.
2836 */
2837static noinline enum bfs_result
2838check_redundant(struct held_lock *src, struct held_lock *target)
2839{
2840	enum bfs_result ret;
2841	struct lock_list *target_entry;
2842	struct lock_list src_entry;
2843
2844	bfs_init_root(&src_entry, src);
2845	/*
2846	 * Special setup for check_redundant().
2847	 *
2848	 * To report redundant, we need to find a strong dependency path that
2849	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2850	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2851	 * we achieve this by setting the initial node's ->only_xr to true in
2852	 * that case. And if <prev> is S, we set initial ->only_xr to false
2853	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2854	 */
2855	src_entry.only_xr = src->read == 0;
2856
2857	debug_atomic_inc(nr_redundant_checks);
2858
2859	/*
2860	 * Note: we skip local_lock() for redundant check, because as the
2861	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2862	 * the same.
2863	 */
2864	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2865
2866	if (ret == BFS_RMATCH)
2867		debug_atomic_inc(nr_redundant);
2868
2869	return ret;
2870}
2871
2872#else
2873
2874static inline enum bfs_result
2875check_redundant(struct held_lock *src, struct held_lock *target)
2876{
2877	return BFS_RNOMATCH;
2878}
2879
2880#endif
2881
2882static void inc_chains(int irq_context)
2883{
2884	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2885		nr_hardirq_chains++;
2886	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2887		nr_softirq_chains++;
2888	else
2889		nr_process_chains++;
2890}
2891
2892static void dec_chains(int irq_context)
2893{
2894	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2895		nr_hardirq_chains--;
2896	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2897		nr_softirq_chains--;
2898	else
2899		nr_process_chains--;
2900}
2901
2902static void
2903print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
 
2904{
2905	struct lock_class *next = hlock_class(nxt);
2906	struct lock_class *prev = hlock_class(prv);
2907
2908	printk(" Possible unsafe locking scenario:\n\n");
2909	printk("       CPU0\n");
2910	printk("       ----\n");
2911	printk("  lock(");
2912	__print_lock_name(prev);
2913	printk(KERN_CONT ");\n");
2914	printk("  lock(");
2915	__print_lock_name(next);
2916	printk(KERN_CONT ");\n");
2917	printk("\n *** DEADLOCK ***\n\n");
2918	printk(" May be due to missing lock nesting notation\n\n");
2919}
2920
2921static void
2922print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2923		   struct held_lock *next)
2924{
2925	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2926		return;
2927
2928	pr_warn("\n");
2929	pr_warn("============================================\n");
2930	pr_warn("WARNING: possible recursive locking detected\n");
2931	print_kernel_ident();
2932	pr_warn("--------------------------------------------\n");
2933	pr_warn("%s/%d is trying to acquire lock:\n",
2934		curr->comm, task_pid_nr(curr));
2935	print_lock(next);
2936	pr_warn("\nbut task is already holding lock:\n");
2937	print_lock(prev);
2938
2939	pr_warn("\nother info that might help us debug this:\n");
2940	print_deadlock_scenario(next, prev);
2941	lockdep_print_held_locks(curr);
2942
2943	pr_warn("\nstack backtrace:\n");
2944	dump_stack();
 
 
2945}
2946
2947/*
2948 * Check whether we are holding such a class already.
2949 *
2950 * (Note that this has to be done separately, because the graph cannot
2951 * detect such classes of deadlocks.)
2952 *
2953 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2954 * lock class is held but nest_lock is also held, i.e. we rely on the
2955 * nest_lock to avoid the deadlock.
2956 */
2957static int
2958check_deadlock(struct task_struct *curr, struct held_lock *next)
 
2959{
2960	struct held_lock *prev;
2961	struct held_lock *nest = NULL;
2962	int i;
2963
2964	for (i = 0; i < curr->lockdep_depth; i++) {
2965		prev = curr->held_locks + i;
2966
2967		if (prev->instance == next->nest_lock)
2968			nest = prev;
2969
2970		if (hlock_class(prev) != hlock_class(next))
2971			continue;
2972
2973		/*
2974		 * Allow read-after-read recursion of the same
2975		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2976		 */
2977		if ((next->read == 2) && prev->read)
2978			continue;
2979
2980		/*
2981		 * We're holding the nest_lock, which serializes this lock's
2982		 * nesting behaviour.
2983		 */
2984		if (nest)
2985			return 2;
2986
2987		print_deadlock_bug(curr, prev, next);
2988		return 0;
2989	}
2990	return 1;
2991}
2992
2993/*
2994 * There was a chain-cache miss, and we are about to add a new dependency
2995 * to a previous lock. We validate the following rules:
2996 *
2997 *  - would the adding of the <prev> -> <next> dependency create a
2998 *    circular dependency in the graph? [== circular deadlock]
2999 *
3000 *  - does the new prev->next dependency connect any hardirq-safe lock
3001 *    (in the full backwards-subgraph starting at <prev>) with any
3002 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3003 *    <next>)? [== illegal lock inversion with hardirq contexts]
3004 *
3005 *  - does the new prev->next dependency connect any softirq-safe lock
3006 *    (in the full backwards-subgraph starting at <prev>) with any
3007 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3008 *    <next>)? [== illegal lock inversion with softirq contexts]
3009 *
3010 * any of these scenarios could lead to a deadlock.
3011 *
3012 * Then if all the validations pass, we add the forwards and backwards
3013 * dependency.
3014 */
3015static int
3016check_prev_add(struct task_struct *curr, struct held_lock *prev,
3017	       struct held_lock *next, u16 distance,
3018	       struct lock_trace **const trace)
3019{
3020	struct lock_list *entry;
3021	enum bfs_result ret;
3022
3023	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3024		/*
3025		 * The warning statements below may trigger a use-after-free
3026		 * of the class name. It is better to trigger a use-after free
3027		 * and to have the class name most of the time instead of not
3028		 * having the class name available.
3029		 */
3030		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3031			  "Detected use-after-free of lock class %px/%s\n",
3032			  hlock_class(prev),
3033			  hlock_class(prev)->name);
3034		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3035			  "Detected use-after-free of lock class %px/%s\n",
3036			  hlock_class(next),
3037			  hlock_class(next)->name);
3038		return 2;
3039	}
3040
3041	/*
3042	 * Prove that the new <prev> -> <next> dependency would not
3043	 * create a circular dependency in the graph. (We do this by
3044	 * a breadth-first search into the graph starting at <next>,
3045	 * and check whether we can reach <prev>.)
3046	 *
3047	 * The search is limited by the size of the circular queue (i.e.,
3048	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3049	 * in the graph whose neighbours are to be checked.
3050	 */
3051	ret = check_noncircular(next, prev, trace);
3052	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3053		return 0;
 
 
 
 
3054
3055	if (!check_irq_usage(curr, prev, next))
3056		return 0;
3057
3058	/*
 
 
 
 
 
 
 
 
 
 
3059	 * Is the <prev> -> <next> dependency already present?
3060	 *
3061	 * (this may occur even though this is a new chain: consider
3062	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3063	 *  chains - the second one will be new, but L1 already has
3064	 *  L2 added to its dependency list, due to the first chain.)
3065	 */
3066	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3067		if (entry->class == hlock_class(next)) {
3068			if (distance == 1)
3069				entry->distance = 1;
3070			entry->dep |= calc_dep(prev, next);
3071
3072			/*
3073			 * Also, update the reverse dependency in @next's
3074			 * ->locks_before list.
3075			 *
3076			 *  Here we reuse @entry as the cursor, which is fine
3077			 *  because we won't go to the next iteration of the
3078			 *  outer loop:
3079			 *
3080			 *  For normal cases, we return in the inner loop.
3081			 *
3082			 *  If we fail to return, we have inconsistency, i.e.
3083			 *  <prev>::locks_after contains <next> while
3084			 *  <next>::locks_before doesn't contain <prev>. In
3085			 *  that case, we return after the inner and indicate
3086			 *  something is wrong.
3087			 */
3088			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3089				if (entry->class == hlock_class(prev)) {
3090					if (distance == 1)
3091						entry->distance = 1;
3092					entry->dep |= calc_depb(prev, next);
3093					return 1;
3094				}
3095			}
3096
3097			/* <prev> is not found in <next>::locks_before */
3098			return 0;
3099		}
3100	}
3101
3102	/*
3103	 * Is the <prev> -> <next> link redundant?
3104	 */
3105	ret = check_redundant(prev, next);
3106	if (bfs_error(ret))
3107		return 0;
3108	else if (ret == BFS_RMATCH)
3109		return 2;
3110
3111	if (!*trace) {
3112		*trace = save_trace();
3113		if (!*trace)
3114			return 0;
3115	}
3116
3117	/*
3118	 * Ok, all validations passed, add the new lock
3119	 * to the previous lock's dependency list:
3120	 */
3121	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3122			       &hlock_class(prev)->locks_after,
3123			       next->acquire_ip, distance,
3124			       calc_dep(prev, next),
3125			       *trace);
3126
3127	if (!ret)
3128		return 0;
3129
3130	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131			       &hlock_class(next)->locks_before,
3132			       next->acquire_ip, distance,
3133			       calc_depb(prev, next),
3134			       *trace);
3135	if (!ret)
3136		return 0;
3137
3138	return 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
3139}
3140
3141/*
3142 * Add the dependency to all directly-previous locks that are 'relevant'.
3143 * The ones that are relevant are (in increasing distance from curr):
3144 * all consecutive trylock entries and the final non-trylock entry - or
3145 * the end of this context's lock-chain - whichever comes first.
3146 */
3147static int
3148check_prevs_add(struct task_struct *curr, struct held_lock *next)
3149{
3150	struct lock_trace *trace = NULL;
3151	int depth = curr->lockdep_depth;
 
3152	struct held_lock *hlock;
3153
3154	/*
3155	 * Debugging checks.
3156	 *
3157	 * Depth must not be zero for a non-head lock:
3158	 */
3159	if (!depth)
3160		goto out_bug;
3161	/*
3162	 * At least two relevant locks must exist for this
3163	 * to be a head:
3164	 */
3165	if (curr->held_locks[depth].irq_context !=
3166			curr->held_locks[depth-1].irq_context)
3167		goto out_bug;
3168
3169	for (;;) {
3170		u16 distance = curr->lockdep_depth - depth + 1;
3171		hlock = curr->held_locks + depth - 1;
3172
3173		if (hlock->check) {
3174			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3175			if (!ret)
 
 
 
3176				return 0;
3177
3178			/*
3179			 * Stop after the first non-trylock entry,
3180			 * as non-trylock entries have added their
3181			 * own direct dependencies already, so this
3182			 * lock is connected to them indirectly:
3183			 */
3184			if (!hlock->trylock)
3185				break;
3186		}
3187
3188		depth--;
3189		/*
3190		 * End of lock-stack?
3191		 */
3192		if (!depth)
3193			break;
3194		/*
3195		 * Stop the search if we cross into another context:
3196		 */
3197		if (curr->held_locks[depth].irq_context !=
3198				curr->held_locks[depth-1].irq_context)
3199			break;
 
3200	}
3201	return 1;
3202out_bug:
3203	if (!debug_locks_off_graph_unlock())
3204		return 0;
3205
3206	/*
3207	 * Clearly we all shouldn't be here, but since we made it we
3208	 * can reliable say we messed up our state. See the above two
3209	 * gotos for reasons why we could possibly end up here.
3210	 */
3211	WARN_ON(1);
3212
3213	return 0;
3214}
3215
 
3216struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3217static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3218static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3219unsigned long nr_zapped_lock_chains;
3220unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3221unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3222unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3223
3224/*
3225 * The first 2 chain_hlocks entries in the chain block in the bucket
3226 * list contains the following meta data:
3227 *
3228 *   entry[0]:
3229 *     Bit    15 - always set to 1 (it is not a class index)
3230 *     Bits 0-14 - upper 15 bits of the next block index
3231 *   entry[1]    - lower 16 bits of next block index
3232 *
3233 * A next block index of all 1 bits means it is the end of the list.
3234 *
3235 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3236 * the chain block size:
3237 *
3238 *   entry[2] - upper 16 bits of the chain block size
3239 *   entry[3] - lower 16 bits of the chain block size
3240 */
3241#define MAX_CHAIN_BUCKETS	16
3242#define CHAIN_BLK_FLAG		(1U << 15)
3243#define CHAIN_BLK_LIST_END	0xFFFFU
3244
3245static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3246
3247static inline int size_to_bucket(int size)
3248{
3249	if (size > MAX_CHAIN_BUCKETS)
3250		return 0;
3251
3252	return size - 1;
3253}
3254
3255/*
3256 * Iterate all the chain blocks in a bucket.
3257 */
3258#define for_each_chain_block(bucket, prev, curr)		\
3259	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3260	     (curr) >= 0;					\
3261	     (prev) = (curr), (curr) = chain_block_next(curr))
3262
3263/*
3264 * next block or -1
3265 */
3266static inline int chain_block_next(int offset)
3267{
3268	int next = chain_hlocks[offset];
3269
3270	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3271
3272	if (next == CHAIN_BLK_LIST_END)
3273		return -1;
3274
3275	next &= ~CHAIN_BLK_FLAG;
3276	next <<= 16;
3277	next |= chain_hlocks[offset + 1];
3278
3279	return next;
3280}
3281
3282/*
3283 * bucket-0 only
 
 
 
3284 */
3285static inline int chain_block_size(int offset)
 
 
3286{
3287	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3288}
3289
3290static inline void init_chain_block(int offset, int next, int bucket, int size)
3291{
3292	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3293	chain_hlocks[offset + 1] = (u16)next;
3294
3295	if (size && !bucket) {
3296		chain_hlocks[offset + 2] = size >> 16;
3297		chain_hlocks[offset + 3] = (u16)size;
3298	}
3299}
3300
3301static inline void add_chain_block(int offset, int size)
3302{
3303	int bucket = size_to_bucket(size);
3304	int next = chain_block_buckets[bucket];
3305	int prev, curr;
3306
3307	if (unlikely(size < 2)) {
3308		/*
3309		 * We can't store single entries on the freelist. Leak them.
3310		 *
3311		 * One possible way out would be to uniquely mark them, other
3312		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3313		 * the block before it is re-added.
3314		 */
3315		if (size)
3316			nr_lost_chain_hlocks++;
3317		return;
3318	}
3319
3320	nr_free_chain_hlocks += size;
3321	if (!bucket) {
3322		nr_large_chain_blocks++;
3323
3324		/*
3325		 * Variable sized, sort large to small.
3326		 */
3327		for_each_chain_block(0, prev, curr) {
3328			if (size >= chain_block_size(curr))
3329				break;
3330		}
3331		init_chain_block(offset, curr, 0, size);
3332		if (prev < 0)
3333			chain_block_buckets[0] = offset;
3334		else
3335			init_chain_block(prev, offset, 0, 0);
3336		return;
3337	}
3338	/*
3339	 * Fixed size, add to head.
 
 
3340	 */
3341	init_chain_block(offset, next, bucket, size);
3342	chain_block_buckets[bucket] = offset;
3343}
3344
3345/*
3346 * Only the first block in the list can be deleted.
3347 *
3348 * For the variable size bucket[0], the first block (the largest one) is
3349 * returned, broken up and put back into the pool. So if a chain block of
3350 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3351 * queued up after the primordial chain block and never be used until the
3352 * hlock entries in the primordial chain block is almost used up. That
3353 * causes fragmentation and reduce allocation efficiency. That can be
3354 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3355 */
3356static inline void del_chain_block(int bucket, int size, int next)
3357{
3358	nr_free_chain_hlocks -= size;
3359	chain_block_buckets[bucket] = next;
3360
3361	if (!bucket)
3362		nr_large_chain_blocks--;
3363}
3364
3365static void init_chain_block_buckets(void)
3366{
3367	int i;
3368
3369	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3370		chain_block_buckets[i] = -1;
3371
3372	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3373}
3374
3375/*
3376 * Return offset of a chain block of the right size or -1 if not found.
3377 *
3378 * Fairly simple worst-fit allocator with the addition of a number of size
3379 * specific free lists.
3380 */
3381static int alloc_chain_hlocks(int req)
3382{
3383	int bucket, curr, size;
3384
3385	/*
3386	 * We rely on the MSB to act as an escape bit to denote freelist
3387	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3388	 */
3389	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3390
3391	init_data_structures_once();
3392
3393	if (nr_free_chain_hlocks < req)
3394		return -1;
3395
3396	/*
3397	 * We require a minimum of 2 (u16) entries to encode a freelist
3398	 * 'pointer'.
3399	 */
3400	req = max(req, 2);
3401	bucket = size_to_bucket(req);
3402	curr = chain_block_buckets[bucket];
3403
3404	if (bucket) {
3405		if (curr >= 0) {
3406			del_chain_block(bucket, req, chain_block_next(curr));
3407			return curr;
3408		}
3409		/* Try bucket 0 */
3410		curr = chain_block_buckets[0];
3411	}
3412
 
 
3413	/*
3414	 * The variable sized freelist is sorted by size; the first entry is
3415	 * the largest. Use it if it fits.
3416	 */
3417	if (curr >= 0) {
3418		size = chain_block_size(curr);
3419		if (likely(size >= req)) {
3420			del_chain_block(0, size, chain_block_next(curr));
3421			add_chain_block(curr + req, size - req);
3422			return curr;
3423		}
3424	}
3425
3426	/*
3427	 * Last resort, split a block in a larger sized bucket.
3428	 */
3429	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3430		bucket = size_to_bucket(size);
3431		curr = chain_block_buckets[bucket];
3432		if (curr < 0)
3433			continue;
3434
3435		del_chain_block(bucket, size, chain_block_next(curr));
3436		add_chain_block(curr + req, size - req);
3437		return curr;
3438	}
3439
3440	return -1;
3441}
3442
3443static inline void free_chain_hlocks(int base, int size)
3444{
3445	add_chain_block(base, max(size, 2));
3446}
3447
3448struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3449{
3450	u16 chain_hlock = chain_hlocks[chain->base + i];
3451	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3452
3453	return lock_classes + class_idx - 1;
3454}
3455
3456/*
3457 * Returns the index of the first held_lock of the current chain
3458 */
3459static inline int get_first_held_lock(struct task_struct *curr,
3460					struct held_lock *hlock)
3461{
3462	int i;
3463	struct held_lock *hlock_curr;
3464
3465	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3466		hlock_curr = curr->held_locks + i;
3467		if (hlock_curr->irq_context != hlock->irq_context)
3468			break;
3469
3470	}
3471
3472	return ++i;
3473}
3474
3475#ifdef CONFIG_DEBUG_LOCKDEP
3476/*
3477 * Returns the next chain_key iteration
3478 */
3479static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3480{
3481	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3482
3483	printk(" hlock_id:%d -> chain_key:%016Lx",
3484		(unsigned int)hlock_id,
3485		(unsigned long long)new_chain_key);
3486	return new_chain_key;
3487}
3488
3489static void
3490print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3491{
3492	struct held_lock *hlock;
3493	u64 chain_key = INITIAL_CHAIN_KEY;
3494	int depth = curr->lockdep_depth;
3495	int i = get_first_held_lock(curr, hlock_next);
3496
3497	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3498		hlock_next->irq_context);
3499	for (; i < depth; i++) {
3500		hlock = curr->held_locks + i;
3501		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3502
3503		print_lock(hlock);
3504	}
3505
3506	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3507	print_lock(hlock_next);
3508}
3509
3510static void print_chain_keys_chain(struct lock_chain *chain)
3511{
3512	int i;
3513	u64 chain_key = INITIAL_CHAIN_KEY;
3514	u16 hlock_id;
3515
3516	printk("depth: %u\n", chain->depth);
3517	for (i = 0; i < chain->depth; i++) {
3518		hlock_id = chain_hlocks[chain->base + i];
3519		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3520
3521		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3522		printk("\n");
3523	}
3524}
3525
3526static void print_collision(struct task_struct *curr,
3527			struct held_lock *hlock_next,
3528			struct lock_chain *chain)
3529{
3530	pr_warn("\n");
3531	pr_warn("============================\n");
3532	pr_warn("WARNING: chain_key collision\n");
3533	print_kernel_ident();
3534	pr_warn("----------------------------\n");
3535	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3536	pr_warn("Hash chain already cached but the contents don't match!\n");
3537
3538	pr_warn("Held locks:");
3539	print_chain_keys_held_locks(curr, hlock_next);
3540
3541	pr_warn("Locks in cached chain:");
3542	print_chain_keys_chain(chain);
3543
3544	pr_warn("\nstack backtrace:\n");
3545	dump_stack();
3546}
3547#endif
3548
3549/*
3550 * Checks whether the chain and the current held locks are consistent
3551 * in depth and also in content. If they are not it most likely means
3552 * that there was a collision during the calculation of the chain_key.
3553 * Returns: 0 not passed, 1 passed
3554 */
3555static int check_no_collision(struct task_struct *curr,
3556			struct held_lock *hlock,
3557			struct lock_chain *chain)
3558{
3559#ifdef CONFIG_DEBUG_LOCKDEP
3560	int i, j, id;
3561
3562	i = get_first_held_lock(curr, hlock);
3563
3564	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3565		print_collision(curr, hlock, chain);
3566		return 0;
3567	}
3568
3569	for (j = 0; j < chain->depth - 1; j++, i++) {
3570		id = hlock_id(&curr->held_locks[i]);
3571
3572		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3573			print_collision(curr, hlock, chain);
3574			return 0;
3575		}
3576	}
3577#endif
3578	return 1;
3579}
3580
3581/*
3582 * Given an index that is >= -1, return the index of the next lock chain.
3583 * Return -2 if there is no next lock chain.
3584 */
3585long lockdep_next_lockchain(long i)
3586{
3587	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3588	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3589}
3590
3591unsigned long lock_chain_count(void)
3592{
3593	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3594}
3595
3596/* Must be called with the graph lock held. */
3597static struct lock_chain *alloc_lock_chain(void)
3598{
3599	int idx = find_first_zero_bit(lock_chains_in_use,
3600				      ARRAY_SIZE(lock_chains));
3601
3602	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3603		return NULL;
3604	__set_bit(idx, lock_chains_in_use);
3605	return lock_chains + idx;
3606}
3607
3608/*
3609 * Adds a dependency chain into chain hashtable. And must be called with
3610 * graph_lock held.
3611 *
3612 * Return 0 if fail, and graph_lock is released.
3613 * Return 1 if succeed, with graph_lock held.
3614 */
3615static inline int add_chain_cache(struct task_struct *curr,
3616				  struct held_lock *hlock,
3617				  u64 chain_key)
3618{
3619	struct hlist_head *hash_head = chainhashentry(chain_key);
3620	struct lock_chain *chain;
3621	int i, j;
3622
3623	/*
3624	 * The caller must hold the graph lock, ensure we've got IRQs
3625	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3626	 * lockdep won't complain about its own locking errors.
3627	 */
3628	if (lockdep_assert_locked())
3629		return 0;
3630
3631	chain = alloc_lock_chain();
3632	if (!chain) {
3633		if (!debug_locks_off_graph_unlock())
3634			return 0;
3635
3636		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3637		dump_stack();
3638		return 0;
3639	}
 
3640	chain->chain_key = chain_key;
3641	chain->irq_context = hlock->irq_context;
3642	i = get_first_held_lock(curr, hlock);
 
 
 
 
 
 
3643	chain->depth = curr->lockdep_depth + 1 - i;
3644
3645	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3646	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3647	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3648
3649	j = alloc_chain_hlocks(chain->depth);
3650	if (j < 0) {
3651		if (!debug_locks_off_graph_unlock())
3652			return 0;
3653
3654		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3655		dump_stack();
3656		return 0;
3657	}
3658
3659	chain->base = j;
3660	for (j = 0; j < chain->depth - 1; j++, i++) {
3661		int lock_id = hlock_id(curr->held_locks + i);
3662
3663		chain_hlocks[chain->base + j] = lock_id;
3664	}
3665	chain_hlocks[chain->base + j] = hlock_id(hlock);
3666	hlist_add_head_rcu(&chain->entry, hash_head);
3667	debug_atomic_inc(chain_lookup_misses);
3668	inc_chains(chain->irq_context);
3669
3670	return 1;
3671}
3672
3673/*
3674 * Look up a dependency chain. Must be called with either the graph lock or
3675 * the RCU read lock held.
3676 */
3677static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3678{
3679	struct hlist_head *hash_head = chainhashentry(chain_key);
3680	struct lock_chain *chain;
3681
3682	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3683		if (READ_ONCE(chain->chain_key) == chain_key) {
3684			debug_atomic_inc(chain_lookup_hits);
3685			return chain;
3686		}
3687	}
3688	return NULL;
3689}
3690
3691/*
3692 * If the key is not present yet in dependency chain cache then
3693 * add it and return 1 - in this case the new dependency chain is
3694 * validated. If the key is already hashed, return 0.
3695 * (On return with 1 graph_lock is held.)
3696 */
3697static inline int lookup_chain_cache_add(struct task_struct *curr,
3698					 struct held_lock *hlock,
3699					 u64 chain_key)
3700{
3701	struct lock_class *class = hlock_class(hlock);
3702	struct lock_chain *chain = lookup_chain_cache(chain_key);
3703
3704	if (chain) {
3705cache_hit:
3706		if (!check_no_collision(curr, hlock, chain))
3707			return 0;
3708
3709		if (very_verbose(class)) {
3710			printk("\nhash chain already cached, key: "
3711					"%016Lx tail class: [%px] %s\n",
3712					(unsigned long long)chain_key,
3713					class->key, class->name);
3714		}
3715
3716		return 0;
3717	}
3718
3719	if (very_verbose(class)) {
3720		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3721			(unsigned long long)chain_key, class->key, class->name);
3722	}
3723
3724	if (!graph_lock())
3725		return 0;
3726
3727	/*
3728	 * We have to walk the chain again locked - to avoid duplicates:
3729	 */
3730	chain = lookup_chain_cache(chain_key);
3731	if (chain) {
3732		graph_unlock();
3733		goto cache_hit;
3734	}
3735
3736	if (!add_chain_cache(curr, hlock, chain_key))
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int validate_chain(struct task_struct *curr,
3743			  struct held_lock *hlock,
3744			  int chain_head, u64 chain_key)
3745{
3746	/*
3747	 * Trylock needs to maintain the stack of held locks, but it
3748	 * does not add new dependencies, because trylock can be done
3749	 * in any order.
3750	 *
3751	 * We look up the chain_key and do the O(N^2) check and update of
3752	 * the dependencies only if this is a new dependency chain.
3753	 * (If lookup_chain_cache_add() return with 1 it acquires
3754	 * graph_lock for us)
3755	 */
3756	if (!hlock->trylock && hlock->check &&
3757	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3758		/*
3759		 * Check whether last held lock:
3760		 *
3761		 * - is irq-safe, if this lock is irq-unsafe
3762		 * - is softirq-safe, if this lock is hardirq-unsafe
3763		 *
3764		 * And check whether the new lock's dependency graph
3765		 * could lead back to the previous lock:
3766		 *
3767		 * - within the current held-lock stack
3768		 * - across our accumulated lock dependency records
3769		 *
3770		 * any of these scenarios could lead to a deadlock.
 
3771		 */
3772		/*
3773		 * The simple case: does the current hold the same lock
3774		 * already?
3775		 */
3776		int ret = check_deadlock(curr, hlock);
3777
3778		if (!ret)
3779			return 0;
3780		/*
 
 
 
 
 
 
 
3781		 * Add dependency only if this lock is not the head
3782		 * of the chain, and if the new lock introduces no more
3783		 * lock dependency (because we already hold a lock with the
3784		 * same lock class) nor deadlock (because the nest_lock
3785		 * serializes nesting locks), see the comments for
3786		 * check_deadlock().
3787		 */
3788		if (!chain_head && ret != 2) {
3789			if (!check_prevs_add(curr, hlock))
3790				return 0;
3791		}
3792
3793		graph_unlock();
3794	} else {
3795		/* after lookup_chain_cache_add(): */
3796		if (unlikely(!debug_locks))
3797			return 0;
3798	}
3799
3800	return 1;
3801}
3802#else
3803static inline int validate_chain(struct task_struct *curr,
3804				 struct held_lock *hlock,
3805				 int chain_head, u64 chain_key)
3806{
3807	return 1;
3808}
3809
3810static void init_chain_block_buckets(void)	{ }
3811#endif /* CONFIG_PROVE_LOCKING */
3812
3813/*
3814 * We are building curr_chain_key incrementally, so double-check
3815 * it from scratch, to make sure that it's done correctly:
3816 */
3817static void check_chain_key(struct task_struct *curr)
3818{
3819#ifdef CONFIG_DEBUG_LOCKDEP
3820	struct held_lock *hlock, *prev_hlock = NULL;
3821	unsigned int i;
3822	u64 chain_key = INITIAL_CHAIN_KEY;
3823
3824	for (i = 0; i < curr->lockdep_depth; i++) {
3825		hlock = curr->held_locks + i;
3826		if (chain_key != hlock->prev_chain_key) {
3827			debug_locks_off();
3828			/*
3829			 * We got mighty confused, our chain keys don't match
3830			 * with what we expect, someone trample on our task state?
3831			 */
3832			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3833				curr->lockdep_depth, i,
3834				(unsigned long long)chain_key,
3835				(unsigned long long)hlock->prev_chain_key);
3836			return;
3837		}
3838
3839		/*
3840		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3841		 * it registered lock class index?
3842		 */
3843		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3844			return;
3845
3846		if (prev_hlock && (prev_hlock->irq_context !=
3847							hlock->irq_context))
3848			chain_key = INITIAL_CHAIN_KEY;
3849		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3850		prev_hlock = hlock;
3851	}
3852	if (chain_key != curr->curr_chain_key) {
3853		debug_locks_off();
3854		/*
3855		 * More smoking hash instead of calculating it, damn see these
3856		 * numbers float.. I bet that a pink elephant stepped on my memory.
3857		 */
3858		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3859			curr->lockdep_depth, i,
3860			(unsigned long long)chain_key,
3861			(unsigned long long)curr->curr_chain_key);
3862	}
3863#endif
3864}
3865
3866#ifdef CONFIG_PROVE_LOCKING
3867static int mark_lock(struct task_struct *curr, struct held_lock *this,
3868		     enum lock_usage_bit new_bit);
3869
3870static void print_usage_bug_scenario(struct held_lock *lock)
3871{
3872	struct lock_class *class = hlock_class(lock);
3873
3874	printk(" Possible unsafe locking scenario:\n\n");
3875	printk("       CPU0\n");
3876	printk("       ----\n");
3877	printk("  lock(");
3878	__print_lock_name(class);
3879	printk(KERN_CONT ");\n");
3880	printk("  <Interrupt>\n");
3881	printk("    lock(");
3882	__print_lock_name(class);
3883	printk(KERN_CONT ");\n");
3884	printk("\n *** DEADLOCK ***\n\n");
3885}
3886
3887static void
3888print_usage_bug(struct task_struct *curr, struct held_lock *this,
3889		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3890{
3891	if (!debug_locks_off() || debug_locks_silent)
3892		return;
3893
3894	pr_warn("\n");
3895	pr_warn("================================\n");
3896	pr_warn("WARNING: inconsistent lock state\n");
3897	print_kernel_ident();
3898	pr_warn("--------------------------------\n");
3899
3900	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3901		usage_str[prev_bit], usage_str[new_bit]);
3902
3903	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3904		curr->comm, task_pid_nr(curr),
3905		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3906		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3907		lockdep_hardirqs_enabled(),
3908		lockdep_softirqs_enabled(curr));
3909	print_lock(this);
3910
3911	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3912	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3913
3914	print_irqtrace_events(curr);
3915	pr_warn("\nother info that might help us debug this:\n");
3916	print_usage_bug_scenario(this);
3917
3918	lockdep_print_held_locks(curr);
3919
3920	pr_warn("\nstack backtrace:\n");
3921	dump_stack();
 
 
3922}
3923
3924/*
3925 * Print out an error if an invalid bit is set:
3926 */
3927static inline int
3928valid_state(struct task_struct *curr, struct held_lock *this,
3929	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3930{
3931	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3932		graph_unlock();
3933		print_usage_bug(curr, this, bad_bit, new_bit);
3934		return 0;
3935	}
3936	return 1;
3937}
3938
 
 
 
 
3939
3940/*
3941 * print irq inversion bug:
3942 */
3943static void
3944print_irq_inversion_bug(struct task_struct *curr,
3945			struct lock_list *root, struct lock_list *other,
3946			struct held_lock *this, int forwards,
3947			const char *irqclass)
3948{
3949	struct lock_list *entry = other;
3950	struct lock_list *middle = NULL;
3951	int depth;
3952
3953	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3954		return;
3955
3956	pr_warn("\n");
3957	pr_warn("========================================================\n");
3958	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3959	print_kernel_ident();
3960	pr_warn("--------------------------------------------------------\n");
3961	pr_warn("%s/%d just changed the state of lock:\n",
3962		curr->comm, task_pid_nr(curr));
3963	print_lock(this);
3964	if (forwards)
3965		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3966	else
3967		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3968	print_lock_name(other->class);
3969	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3970
3971	pr_warn("\nother info that might help us debug this:\n");
3972
3973	/* Find a middle lock (if one exists) */
3974	depth = get_lock_depth(other);
3975	do {
3976		if (depth == 0 && (entry != root)) {
3977			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3978			break;
3979		}
3980		middle = entry;
3981		entry = get_lock_parent(entry);
3982		depth--;
3983	} while (entry && entry != root && (depth >= 0));
3984	if (forwards)
3985		print_irq_lock_scenario(root, other,
3986			middle ? middle->class : root->class, other->class);
3987	else
3988		print_irq_lock_scenario(other, root,
3989			middle ? middle->class : other->class, root->class);
3990
3991	lockdep_print_held_locks(curr);
3992
3993	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3994	root->trace = save_trace();
3995	if (!root->trace)
3996		return;
3997	print_shortest_lock_dependencies(other, root);
3998
3999	pr_warn("\nstack backtrace:\n");
4000	dump_stack();
 
 
4001}
4002
4003/*
4004 * Prove that in the forwards-direction subgraph starting at <this>
4005 * there is no lock matching <mask>:
4006 */
4007static int
4008check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4009		     enum lock_usage_bit bit)
4010{
4011	enum bfs_result ret;
4012	struct lock_list root;
4013	struct lock_list *target_entry;
4014	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4015	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4016
4017	bfs_init_root(&root, this);
4018	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4019	if (bfs_error(ret)) {
4020		print_bfs_bug(ret);
4021		return 0;
4022	}
4023	if (ret == BFS_RNOMATCH)
4024		return 1;
4025
4026	/* Check whether write or read usage is the match */
4027	if (target_entry->class->usage_mask & lock_flag(bit)) {
4028		print_irq_inversion_bug(curr, &root, target_entry,
4029					this, 1, state_name(bit));
4030	} else {
4031		print_irq_inversion_bug(curr, &root, target_entry,
4032					this, 1, state_name(read_bit));
4033	}
4034
4035	return 0;
4036}
4037
4038/*
4039 * Prove that in the backwards-direction subgraph starting at <this>
4040 * there is no lock matching <mask>:
4041 */
4042static int
4043check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4044		      enum lock_usage_bit bit)
4045{
4046	enum bfs_result ret;
4047	struct lock_list root;
4048	struct lock_list *target_entry;
4049	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4050	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4051
4052	bfs_init_rootb(&root, this);
4053	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4054	if (bfs_error(ret)) {
4055		print_bfs_bug(ret);
4056		return 0;
4057	}
4058	if (ret == BFS_RNOMATCH)
4059		return 1;
4060
4061	/* Check whether write or read usage is the match */
4062	if (target_entry->class->usage_mask & lock_flag(bit)) {
4063		print_irq_inversion_bug(curr, &root, target_entry,
4064					this, 0, state_name(bit));
4065	} else {
4066		print_irq_inversion_bug(curr, &root, target_entry,
4067					this, 0, state_name(read_bit));
4068	}
4069
4070	return 0;
4071}
4072
4073void print_irqtrace_events(struct task_struct *curr)
4074{
4075	const struct irqtrace_events *trace = &curr->irqtrace;
4076
4077	printk("irq event stamp: %u\n", trace->irq_events);
4078	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4079		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4080		(void *)trace->hardirq_enable_ip);
4081	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4082		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4083		(void *)trace->hardirq_disable_ip);
4084	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4085		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4086		(void *)trace->softirq_enable_ip);
4087	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4088		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4089		(void *)trace->softirq_disable_ip);
4090}
4091
4092static int HARDIRQ_verbose(struct lock_class *class)
4093{
4094#if HARDIRQ_VERBOSE
4095	return class_filter(class);
4096#endif
4097	return 0;
4098}
4099
4100static int SOFTIRQ_verbose(struct lock_class *class)
4101{
4102#if SOFTIRQ_VERBOSE
4103	return class_filter(class);
4104#endif
4105	return 0;
4106}
4107
 
 
 
 
 
 
 
 
 
 
4108static int (*state_verbose_f[])(struct lock_class *class) = {
4109#define LOCKDEP_STATE(__STATE) \
4110	__STATE##_verbose,
4111#include "lockdep_states.h"
4112#undef LOCKDEP_STATE
4113};
4114
4115static inline int state_verbose(enum lock_usage_bit bit,
4116				struct lock_class *class)
4117{
4118	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4119}
4120
4121typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4122			     enum lock_usage_bit bit, const char *name);
4123
4124static int
4125mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4126		enum lock_usage_bit new_bit)
4127{
4128	int excl_bit = exclusive_bit(new_bit);
4129	int read = new_bit & LOCK_USAGE_READ_MASK;
4130	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 
 
 
 
 
 
 
 
 
 
4131
4132	/*
4133	 * Validate that this particular lock does not have conflicting
4134	 * usage states.
4135	 */
4136	if (!valid_state(curr, this, new_bit, excl_bit))
4137		return 0;
4138
4139	/*
4140	 * Check for read in write conflicts
 
4141	 */
4142	if (!read && !valid_state(curr, this, new_bit,
4143				  excl_bit + LOCK_USAGE_READ_MASK))
4144		return 0;
4145
4146
4147	/*
4148	 * Validate that the lock dependencies don't have conflicting usage
4149	 * states.
4150	 */
4151	if (dir) {
4152		/*
4153		 * mark ENABLED has to look backwards -- to ensure no dependee
4154		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4155		 */
4156		if (!check_usage_backwards(curr, this, excl_bit))
4157			return 0;
4158	} else {
4159		/*
4160		 * mark USED_IN has to look forwards -- to ensure no dependency
4161		 * has ENABLED state, which would allow recursion deadlocks.
4162		 */
4163		if (!check_usage_forwards(curr, this, excl_bit))
4164			return 0;
4165	}
4166
4167	if (state_verbose(new_bit, hlock_class(this)))
4168		return 2;
4169
4170	return 1;
4171}
4172
 
 
 
 
 
 
4173/*
4174 * Mark all held locks with a usage bit:
4175 */
4176static int
4177mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4178{
 
4179	struct held_lock *hlock;
4180	int i;
4181
4182	for (i = 0; i < curr->lockdep_depth; i++) {
4183		enum lock_usage_bit hlock_bit = base_bit;
4184		hlock = curr->held_locks + i;
4185
 
4186		if (hlock->read)
4187			hlock_bit += LOCK_USAGE_READ_MASK;
4188
4189		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4190
4191		if (!hlock->check)
4192			continue;
4193
4194		if (!mark_lock(curr, hlock, hlock_bit))
4195			return 0;
4196	}
4197
4198	return 1;
4199}
4200
4201/*
4202 * Hardirqs will be enabled:
4203 */
4204static void __trace_hardirqs_on_caller(void)
4205{
4206	struct task_struct *curr = current;
4207
 
 
 
4208	/*
4209	 * We are going to turn hardirqs on, so set the
4210	 * usage bit for all held locks:
4211	 */
4212	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4213		return;
4214	/*
4215	 * If we have softirqs enabled, then set the usage
4216	 * bit for all held locks. (disabled hardirqs prevented
4217	 * this bit from being set before)
4218	 */
4219	if (curr->softirqs_enabled)
4220		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
 
 
 
 
 
4221}
4222
4223/**
4224 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4225 * @ip:		Caller address
4226 *
4227 * Invoked before a possible transition to RCU idle from exit to user or
4228 * guest mode. This ensures that all RCU operations are done before RCU
4229 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4230 * invoked to set the final state.
4231 */
4232void lockdep_hardirqs_on_prepare(unsigned long ip)
4233{
4234	if (unlikely(!debug_locks))
4235		return;
4236
4237	/*
4238	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4239	 */
4240	if (unlikely(in_nmi()))
4241		return;
4242
4243	if (unlikely(this_cpu_read(lockdep_recursion)))
4244		return;
4245
4246	if (unlikely(lockdep_hardirqs_enabled())) {
4247		/*
4248		 * Neither irq nor preemption are disabled here
4249		 * so this is racy by nature but losing one hit
4250		 * in a stat is not a big deal.
4251		 */
4252		__debug_atomic_inc(redundant_hardirqs_on);
4253		return;
4254	}
4255
4256	/*
4257	 * We're enabling irqs and according to our state above irqs weren't
4258	 * already enabled, yet we find the hardware thinks they are in fact
4259	 * enabled.. someone messed up their IRQ state tracing.
4260	 */
4261	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262		return;
4263
4264	/*
4265	 * See the fine text that goes along with this variable definition.
4266	 */
4267	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4268		return;
4269
4270	/*
4271	 * Can't allow enabling interrupts while in an interrupt handler,
4272	 * that's general bad form and such. Recursion, limited stack etc..
4273	 */
4274	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4275		return;
4276
4277	current->hardirq_chain_key = current->curr_chain_key;
4278
4279	lockdep_recursion_inc();
4280	__trace_hardirqs_on_caller();
4281	lockdep_recursion_finish();
4282}
4283EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4284
4285void noinstr lockdep_hardirqs_on(unsigned long ip)
4286{
4287	struct irqtrace_events *trace = &current->irqtrace;
4288
4289	if (unlikely(!debug_locks))
4290		return;
4291
4292	/*
4293	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4294	 * tracking state and hardware state are out of sync.
4295	 *
4296	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4297	 * and not rely on hardware state like normal interrupts.
4298	 */
4299	if (unlikely(in_nmi())) {
4300		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301			return;
4302
4303		/*
4304		 * Skip:
4305		 *  - recursion check, because NMI can hit lockdep;
4306		 *  - hardware state check, because above;
4307		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4308		 */
4309		goto skip_checks;
4310	}
4311
4312	if (unlikely(this_cpu_read(lockdep_recursion)))
4313		return;
4314
4315	if (lockdep_hardirqs_enabled()) {
4316		/*
4317		 * Neither irq nor preemption are disabled here
4318		 * so this is racy by nature but losing one hit
4319		 * in a stat is not a big deal.
4320		 */
4321		__debug_atomic_inc(redundant_hardirqs_on);
4322		return;
4323	}
4324
4325	/*
4326	 * We're enabling irqs and according to our state above irqs weren't
4327	 * already enabled, yet we find the hardware thinks they are in fact
4328	 * enabled.. someone messed up their IRQ state tracing.
4329	 */
4330	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4331		return;
4332
4333	/*
4334	 * Ensure the lock stack remained unchanged between
4335	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4336	 */
4337	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4338			    current->curr_chain_key);
4339
4340skip_checks:
4341	/* we'll do an OFF -> ON transition: */
4342	__this_cpu_write(hardirqs_enabled, 1);
4343	trace->hardirq_enable_ip = ip;
4344	trace->hardirq_enable_event = ++trace->irq_events;
4345	debug_atomic_inc(hardirqs_on_events);
4346}
4347EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4348
4349/*
4350 * Hardirqs were disabled:
4351 */
4352void noinstr lockdep_hardirqs_off(unsigned long ip)
4353{
4354	if (unlikely(!debug_locks))
4355		return;
 
4356
4357	/*
4358	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4359	 * they will restore the software state. This ensures the software
4360	 * state is consistent inside NMIs as well.
4361	 */
4362	if (in_nmi()) {
4363		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4364			return;
4365	} else if (__this_cpu_read(lockdep_recursion))
4366		return;
4367
4368	/*
4369	 * So we're supposed to get called after you mask local IRQs, but for
4370	 * some reason the hardware doesn't quite think you did a proper job.
4371	 */
4372	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373		return;
4374
4375	if (lockdep_hardirqs_enabled()) {
4376		struct irqtrace_events *trace = &current->irqtrace;
4377
4378		/*
4379		 * We have done an ON -> OFF transition:
4380		 */
4381		__this_cpu_write(hardirqs_enabled, 0);
4382		trace->hardirq_disable_ip = ip;
4383		trace->hardirq_disable_event = ++trace->irq_events;
4384		debug_atomic_inc(hardirqs_off_events);
4385	} else {
4386		debug_atomic_inc(redundant_hardirqs_off);
4387	}
4388}
4389EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
 
 
 
 
 
 
4390
4391/*
4392 * Softirqs will be enabled:
4393 */
4394void lockdep_softirqs_on(unsigned long ip)
4395{
4396	struct irqtrace_events *trace = &current->irqtrace;
4397
4398	if (unlikely(!lockdep_enabled()))
4399		return;
4400
4401	/*
4402	 * We fancy IRQs being disabled here, see softirq.c, avoids
4403	 * funny state and nesting things.
4404	 */
4405	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4406		return;
4407
4408	if (current->softirqs_enabled) {
4409		debug_atomic_inc(redundant_softirqs_on);
4410		return;
4411	}
4412
4413	lockdep_recursion_inc();
4414	/*
4415	 * We'll do an OFF -> ON transition:
4416	 */
4417	current->softirqs_enabled = 1;
4418	trace->softirq_enable_ip = ip;
4419	trace->softirq_enable_event = ++trace->irq_events;
4420	debug_atomic_inc(softirqs_on_events);
4421	/*
4422	 * We are going to turn softirqs on, so set the
4423	 * usage bit for all held locks, if hardirqs are
4424	 * enabled too:
4425	 */
4426	if (lockdep_hardirqs_enabled())
4427		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4428	lockdep_recursion_finish();
4429}
4430
4431/*
4432 * Softirqs were disabled:
4433 */
4434void lockdep_softirqs_off(unsigned long ip)
4435{
4436	if (unlikely(!lockdep_enabled()))
 
 
4437		return;
4438
4439	/*
4440	 * We fancy IRQs being disabled here, see softirq.c
4441	 */
4442	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4443		return;
4444
4445	if (current->softirqs_enabled) {
4446		struct irqtrace_events *trace = &current->irqtrace;
4447
4448		/*
4449		 * We have done an ON -> OFF transition:
4450		 */
4451		current->softirqs_enabled = 0;
4452		trace->softirq_disable_ip = ip;
4453		trace->softirq_disable_event = ++trace->irq_events;
4454		debug_atomic_inc(softirqs_off_events);
4455		/*
4456		 * Whoops, we wanted softirqs off, so why aren't they?
4457		 */
4458		DEBUG_LOCKS_WARN_ON(!softirq_count());
4459	} else
4460		debug_atomic_inc(redundant_softirqs_off);
4461}
4462
4463static int
4464mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4465{
4466	if (!check)
4467		goto lock_used;
 
 
 
 
 
 
 
 
 
 
4468
 
 
4469	/*
4470	 * If non-trylock use in a hardirq or softirq context, then
4471	 * mark the lock as used in these contexts:
4472	 */
4473	if (!hlock->trylock) {
4474		if (hlock->read) {
4475			if (lockdep_hardirq_context())
4476				if (!mark_lock(curr, hlock,
4477						LOCK_USED_IN_HARDIRQ_READ))
4478					return 0;
4479			if (curr->softirq_context)
4480				if (!mark_lock(curr, hlock,
4481						LOCK_USED_IN_SOFTIRQ_READ))
4482					return 0;
4483		} else {
4484			if (lockdep_hardirq_context())
4485				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4486					return 0;
4487			if (curr->softirq_context)
4488				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4489					return 0;
4490		}
4491	}
4492	if (!hlock->hardirqs_off) {
4493		if (hlock->read) {
4494			if (!mark_lock(curr, hlock,
4495					LOCK_ENABLED_HARDIRQ_READ))
4496				return 0;
4497			if (curr->softirqs_enabled)
4498				if (!mark_lock(curr, hlock,
4499						LOCK_ENABLED_SOFTIRQ_READ))
4500					return 0;
4501		} else {
4502			if (!mark_lock(curr, hlock,
4503					LOCK_ENABLED_HARDIRQ))
4504				return 0;
4505			if (curr->softirqs_enabled)
4506				if (!mark_lock(curr, hlock,
4507						LOCK_ENABLED_SOFTIRQ))
4508					return 0;
4509		}
4510	}
4511
4512lock_used:
4513	/* mark it as used: */
4514	if (!mark_lock(curr, hlock, LOCK_USED))
4515		return 0;
 
 
 
 
 
 
 
 
 
 
 
4516
4517	return 1;
4518}
4519
4520static inline unsigned int task_irq_context(struct task_struct *task)
4521{
4522	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4523	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4524}
4525
4526static int separate_irq_context(struct task_struct *curr,
4527		struct held_lock *hlock)
4528{
4529	unsigned int depth = curr->lockdep_depth;
4530
4531	/*
4532	 * Keep track of points where we cross into an interrupt context:
4533	 */
 
 
4534	if (depth) {
4535		struct held_lock *prev_hlock;
4536
4537		prev_hlock = curr->held_locks + depth-1;
4538		/*
4539		 * If we cross into another context, reset the
4540		 * hash key (this also prevents the checking and the
4541		 * adding of the dependency to 'prev'):
4542		 */
4543		if (prev_hlock->irq_context != hlock->irq_context)
4544			return 1;
4545	}
4546	return 0;
4547}
4548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4549/*
4550 * Mark a lock with a usage bit, and validate the state transition:
4551 */
4552static int mark_lock(struct task_struct *curr, struct held_lock *this,
4553			     enum lock_usage_bit new_bit)
4554{
4555	unsigned int new_mask, ret = 1;
4556
4557	if (new_bit >= LOCK_USAGE_STATES) {
4558		DEBUG_LOCKS_WARN_ON(1);
4559		return 0;
4560	}
4561
4562	if (new_bit == LOCK_USED && this->read)
4563		new_bit = LOCK_USED_READ;
4564
4565	new_mask = 1 << new_bit;
4566
4567	/*
4568	 * If already set then do not dirty the cacheline,
4569	 * nor do any checks:
4570	 */
4571	if (likely(hlock_class(this)->usage_mask & new_mask))
4572		return 1;
4573
4574	if (!graph_lock())
4575		return 0;
4576	/*
4577	 * Make sure we didn't race:
4578	 */
4579	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4580		goto unlock;
4581
4582	if (!hlock_class(this)->usage_mask)
4583		debug_atomic_dec(nr_unused_locks);
4584
4585	hlock_class(this)->usage_mask |= new_mask;
4586
4587	if (new_bit < LOCK_TRACE_STATES) {
4588		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4589			return 0;
4590	}
4591
4592	if (new_bit < LOCK_USED) {
 
 
 
 
 
 
 
4593		ret = mark_lock_irq(curr, this, new_bit);
4594		if (!ret)
4595			return 0;
 
 
 
 
 
 
 
 
 
4596	}
4597
4598unlock:
4599	graph_unlock();
4600
4601	/*
4602	 * We must printk outside of the graph_lock:
4603	 */
4604	if (ret == 2) {
4605		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4606		print_lock(this);
4607		print_irqtrace_events(curr);
4608		dump_stack();
4609	}
4610
4611	return ret;
4612}
4613
4614static inline short task_wait_context(struct task_struct *curr)
4615{
4616	/*
4617	 * Set appropriate wait type for the context; for IRQs we have to take
4618	 * into account force_irqthread as that is implied by PREEMPT_RT.
4619	 */
4620	if (lockdep_hardirq_context()) {
4621		/*
4622		 * Check if force_irqthreads will run us threaded.
4623		 */
4624		if (curr->hardirq_threaded || curr->irq_config)
4625			return LD_WAIT_CONFIG;
4626
4627		return LD_WAIT_SPIN;
4628	} else if (curr->softirq_context) {
4629		/*
4630		 * Softirqs are always threaded.
4631		 */
4632		return LD_WAIT_CONFIG;
4633	}
4634
4635	return LD_WAIT_MAX;
4636}
4637
4638static int
4639print_lock_invalid_wait_context(struct task_struct *curr,
4640				struct held_lock *hlock)
4641{
4642	short curr_inner;
4643
4644	if (!debug_locks_off())
4645		return 0;
4646	if (debug_locks_silent)
4647		return 0;
4648
4649	pr_warn("\n");
4650	pr_warn("=============================\n");
4651	pr_warn("[ BUG: Invalid wait context ]\n");
4652	print_kernel_ident();
4653	pr_warn("-----------------------------\n");
4654
4655	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4656	print_lock(hlock);
4657
4658	pr_warn("other info that might help us debug this:\n");
4659
4660	curr_inner = task_wait_context(curr);
4661	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4662
4663	lockdep_print_held_locks(curr);
4664
4665	pr_warn("stack backtrace:\n");
4666	dump_stack();
4667
4668	return 0;
4669}
4670
4671/*
4672 * Verify the wait_type context.
4673 *
4674 * This check validates we takes locks in the right wait-type order; that is it
4675 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4676 * acquire spinlocks inside raw_spinlocks and the sort.
4677 *
4678 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4679 * can be taken from (pretty much) any context but also has constraints.
4680 * However when taken in a stricter environment the RCU lock does not loosen
4681 * the constraints.
4682 *
4683 * Therefore we must look for the strictest environment in the lock stack and
4684 * compare that to the lock we're trying to acquire.
4685 */
4686static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4687{
4688	u8 next_inner = hlock_class(next)->wait_type_inner;
4689	u8 next_outer = hlock_class(next)->wait_type_outer;
4690	u8 curr_inner;
4691	int depth;
4692
4693	if (!next_inner || next->trylock)
4694		return 0;
4695
4696	if (!next_outer)
4697		next_outer = next_inner;
4698
4699	/*
4700	 * Find start of current irq_context..
4701	 */
4702	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4703		struct held_lock *prev = curr->held_locks + depth;
4704		if (prev->irq_context != next->irq_context)
4705			break;
4706	}
4707	depth++;
4708
4709	curr_inner = task_wait_context(curr);
4710
4711	for (; depth < curr->lockdep_depth; depth++) {
4712		struct held_lock *prev = curr->held_locks + depth;
4713		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4714
4715		if (prev_inner) {
4716			/*
4717			 * We can have a bigger inner than a previous one
4718			 * when outer is smaller than inner, as with RCU.
4719			 *
4720			 * Also due to trylocks.
4721			 */
4722			curr_inner = min(curr_inner, prev_inner);
4723		}
4724	}
4725
4726	if (next_outer > curr_inner)
4727		return print_lock_invalid_wait_context(curr, next);
4728
4729	return 0;
4730}
4731
4732#else /* CONFIG_PROVE_LOCKING */
4733
4734static inline int
4735mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4736{
4737	return 1;
4738}
4739
4740static inline unsigned int task_irq_context(struct task_struct *task)
4741{
4742	return 0;
4743}
4744
4745static inline int separate_irq_context(struct task_struct *curr,
4746		struct held_lock *hlock)
4747{
4748	return 0;
4749}
4750
4751static inline int check_wait_context(struct task_struct *curr,
4752				     struct held_lock *next)
4753{
4754	return 0;
4755}
4756
4757#endif /* CONFIG_PROVE_LOCKING */
4758
4759/*
4760 * Initialize a lock instance's lock-class mapping info:
4761 */
4762void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4763			    struct lock_class_key *key, int subclass,
4764			    u8 inner, u8 outer, u8 lock_type)
4765{
4766	int i;
4767
 
 
4768	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4769		lock->class_cache[i] = NULL;
4770
4771#ifdef CONFIG_LOCK_STAT
4772	lock->cpu = raw_smp_processor_id();
4773#endif
4774
4775	/*
4776	 * Can't be having no nameless bastards around this place!
4777	 */
4778	if (DEBUG_LOCKS_WARN_ON(!name)) {
4779		lock->name = "NULL";
4780		return;
4781	}
4782
4783	lock->name = name;
4784
4785	lock->wait_type_outer = outer;
4786	lock->wait_type_inner = inner;
4787	lock->lock_type = lock_type;
4788
4789	/*
4790	 * No key, no joy, we need to hash something.
4791	 */
4792	if (DEBUG_LOCKS_WARN_ON(!key))
4793		return;
4794	/*
4795	 * Sanity check, the lock-class key must either have been allocated
4796	 * statically or must have been registered as a dynamic key.
4797	 */
4798	if (!static_obj(key) && !is_dynamic_key(key)) {
4799		if (debug_locks)
4800			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
 
 
4801		DEBUG_LOCKS_WARN_ON(1);
4802		return;
4803	}
4804	lock->key = key;
4805
4806	if (unlikely(!debug_locks))
4807		return;
4808
4809	if (subclass) {
4810		unsigned long flags;
4811
4812		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4813			return;
4814
4815		raw_local_irq_save(flags);
4816		lockdep_recursion_inc();
4817		register_lock_class(lock, subclass, 1);
4818		lockdep_recursion_finish();
4819		raw_local_irq_restore(flags);
4820	}
4821}
4822EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4823
4824struct lock_class_key __lockdep_no_validate__;
4825EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4826
4827static void
4828print_lock_nested_lock_not_held(struct task_struct *curr,
4829				struct held_lock *hlock,
4830				unsigned long ip)
4831{
4832	if (!debug_locks_off())
4833		return;
4834	if (debug_locks_silent)
4835		return;
4836
4837	pr_warn("\n");
4838	pr_warn("==================================\n");
4839	pr_warn("WARNING: Nested lock was not taken\n");
4840	print_kernel_ident();
4841	pr_warn("----------------------------------\n");
4842
4843	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4844	print_lock(hlock);
4845
4846	pr_warn("\nbut this task is not holding:\n");
4847	pr_warn("%s\n", hlock->nest_lock->name);
4848
4849	pr_warn("\nstack backtrace:\n");
4850	dump_stack();
4851
4852	pr_warn("\nother info that might help us debug this:\n");
4853	lockdep_print_held_locks(curr);
4854
4855	pr_warn("\nstack backtrace:\n");
4856	dump_stack();
 
 
4857}
4858
4859static int __lock_is_held(const struct lockdep_map *lock, int read);
4860
4861/*
4862 * This gets called for every mutex_lock*()/spin_lock*() operation.
4863 * We maintain the dependency maps and validate the locking attempt:
4864 *
4865 * The callers must make sure that IRQs are disabled before calling it,
4866 * otherwise we could get an interrupt which would want to take locks,
4867 * which would end up in lockdep again.
4868 */
4869static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4870			  int trylock, int read, int check, int hardirqs_off,
4871			  struct lockdep_map *nest_lock, unsigned long ip,
4872			  int references, int pin_count)
4873{
4874	struct task_struct *curr = current;
4875	struct lock_class *class = NULL;
4876	struct held_lock *hlock;
4877	unsigned int depth;
4878	int chain_head = 0;
4879	int class_idx;
4880	u64 chain_key;
4881
4882	if (unlikely(!debug_locks))
4883		return 0;
4884
 
 
 
 
 
 
 
 
4885	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4886		check = 0;
4887
4888	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4889		class = lock->class_cache[subclass];
4890	/*
4891	 * Not cached?
4892	 */
4893	if (unlikely(!class)) {
4894		class = register_lock_class(lock, subclass, 0);
4895		if (!class)
4896			return 0;
4897	}
4898
4899	debug_class_ops_inc(class);
4900
4901	if (very_verbose(class)) {
4902		printk("\nacquire class [%px] %s", class->key, class->name);
4903		if (class->name_version > 1)
4904			printk(KERN_CONT "#%d", class->name_version);
4905		printk(KERN_CONT "\n");
4906		dump_stack();
4907	}
4908
4909	/*
4910	 * Add the lock to the list of currently held locks.
4911	 * (we dont increase the depth just yet, up until the
4912	 * dependency checks are done)
4913	 */
4914	depth = curr->lockdep_depth;
4915	/*
4916	 * Ran out of static storage for our per-task lock stack again have we?
4917	 */
4918	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4919		return 0;
4920
4921	class_idx = class - lock_classes;
4922
4923	if (depth) { /* we're holding locks */
4924		hlock = curr->held_locks + depth - 1;
4925		if (hlock->class_idx == class_idx && nest_lock) {
4926			if (!references)
4927				references++;
4928
4929			if (!hlock->references)
4930				hlock->references++;
 
 
4931
4932			hlock->references += references;
4933
4934			/* Overflow */
4935			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4936				return 0;
4937
4938			return 2;
4939		}
4940	}
4941
4942	hlock = curr->held_locks + depth;
4943	/*
4944	 * Plain impossible, we just registered it and checked it weren't no
4945	 * NULL like.. I bet this mushroom I ate was good!
4946	 */
4947	if (DEBUG_LOCKS_WARN_ON(!class))
4948		return 0;
4949	hlock->class_idx = class_idx;
4950	hlock->acquire_ip = ip;
4951	hlock->instance = lock;
4952	hlock->nest_lock = nest_lock;
4953	hlock->irq_context = task_irq_context(curr);
4954	hlock->trylock = trylock;
4955	hlock->read = read;
4956	hlock->check = check;
4957	hlock->hardirqs_off = !!hardirqs_off;
4958	hlock->references = references;
4959#ifdef CONFIG_LOCK_STAT
4960	hlock->waittime_stamp = 0;
4961	hlock->holdtime_stamp = lockstat_clock();
4962#endif
4963	hlock->pin_count = pin_count;
4964
4965	if (check_wait_context(curr, hlock))
4966		return 0;
4967
4968	/* Initialize the lock usage bit */
4969	if (!mark_usage(curr, hlock, check))
4970		return 0;
4971
4972	/*
4973	 * Calculate the chain hash: it's the combined hash of all the
4974	 * lock keys along the dependency chain. We save the hash value
4975	 * at every step so that we can get the current hash easily
4976	 * after unlock. The chain hash is then used to cache dependency
4977	 * results.
4978	 *
4979	 * The 'key ID' is what is the most compact key value to drive
4980	 * the hash, not class->key.
4981	 */
 
4982	/*
4983	 * Whoops, we did it again.. class_idx is invalid.
4984	 */
4985	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4986		return 0;
4987
4988	chain_key = curr->curr_chain_key;
4989	if (!depth) {
4990		/*
4991		 * How can we have a chain hash when we ain't got no keys?!
4992		 */
4993		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4994			return 0;
4995		chain_head = 1;
4996	}
4997
4998	hlock->prev_chain_key = chain_key;
4999	if (separate_irq_context(curr, hlock)) {
5000		chain_key = INITIAL_CHAIN_KEY;
5001		chain_head = 1;
5002	}
5003	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5004
5005	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5006		print_lock_nested_lock_not_held(curr, hlock, ip);
5007		return 0;
5008	}
5009
5010	if (!debug_locks_silent) {
5011		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5012		WARN_ON_ONCE(!hlock_class(hlock)->key);
5013	}
5014
5015	if (!validate_chain(curr, hlock, chain_head, chain_key))
5016		return 0;
5017
5018	curr->curr_chain_key = chain_key;
5019	curr->lockdep_depth++;
5020	check_chain_key(curr);
5021#ifdef CONFIG_DEBUG_LOCKDEP
5022	if (unlikely(!debug_locks))
5023		return 0;
5024#endif
5025	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5026		debug_locks_off();
5027		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5028		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5029		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5030
5031		lockdep_print_held_locks(current);
5032		debug_show_all_locks();
5033		dump_stack();
5034
5035		return 0;
5036	}
5037
5038	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5039		max_lockdep_depth = curr->lockdep_depth;
5040
5041	return 1;
5042}
5043
5044static void print_unlock_imbalance_bug(struct task_struct *curr,
5045				       struct lockdep_map *lock,
5046				       unsigned long ip)
5047{
5048	if (!debug_locks_off())
5049		return;
5050	if (debug_locks_silent)
5051		return;
5052
5053	pr_warn("\n");
5054	pr_warn("=====================================\n");
5055	pr_warn("WARNING: bad unlock balance detected!\n");
5056	print_kernel_ident();
5057	pr_warn("-------------------------------------\n");
5058	pr_warn("%s/%d is trying to release lock (",
5059		curr->comm, task_pid_nr(curr));
5060	print_lockdep_cache(lock);
5061	pr_cont(") at:\n");
5062	print_ip_sym(KERN_WARNING, ip);
5063	pr_warn("but there are no more locks to release!\n");
5064	pr_warn("\nother info that might help us debug this:\n");
5065	lockdep_print_held_locks(curr);
5066
5067	pr_warn("\nstack backtrace:\n");
5068	dump_stack();
 
 
5069}
5070
5071static noinstr int match_held_lock(const struct held_lock *hlock,
5072				   const struct lockdep_map *lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5073{
5074	if (hlock->instance == lock)
5075		return 1;
5076
5077	if (hlock->references) {
5078		const struct lock_class *class = lock->class_cache[0];
5079
5080		if (!class)
5081			class = look_up_lock_class(lock, 0);
5082
5083		/*
5084		 * If look_up_lock_class() failed to find a class, we're trying
5085		 * to test if we hold a lock that has never yet been acquired.
5086		 * Clearly if the lock hasn't been acquired _ever_, we're not
5087		 * holding it either, so report failure.
5088		 */
5089		if (!class)
5090			return 0;
5091
5092		/*
5093		 * References, but not a lock we're actually ref-counting?
5094		 * State got messed up, follow the sites that change ->references
5095		 * and try to make sense of it.
5096		 */
5097		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5098			return 0;
5099
5100		if (hlock->class_idx == class - lock_classes)
5101			return 1;
5102	}
5103
5104	return 0;
5105}
5106
5107/* @depth must not be zero */
5108static struct held_lock *find_held_lock(struct task_struct *curr,
5109					struct lockdep_map *lock,
5110					unsigned int depth, int *idx)
5111{
5112	struct held_lock *ret, *hlock, *prev_hlock;
5113	int i;
5114
5115	i = depth - 1;
5116	hlock = curr->held_locks + i;
5117	ret = hlock;
5118	if (match_held_lock(hlock, lock))
5119		goto out;
5120
5121	ret = NULL;
5122	for (i--, prev_hlock = hlock--;
5123	     i >= 0;
5124	     i--, prev_hlock = hlock--) {
5125		/*
5126		 * We must not cross into another context:
5127		 */
5128		if (prev_hlock->irq_context != hlock->irq_context) {
5129			ret = NULL;
5130			break;
5131		}
5132		if (match_held_lock(hlock, lock)) {
5133			ret = hlock;
5134			break;
5135		}
5136	}
5137
5138out:
5139	*idx = i;
5140	return ret;
5141}
5142
5143static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5144				int idx, unsigned int *merged)
5145{
5146	struct held_lock *hlock;
5147	int first_idx = idx;
5148
5149	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5150		return 0;
5151
5152	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5153		switch (__lock_acquire(hlock->instance,
5154				    hlock_class(hlock)->subclass,
5155				    hlock->trylock,
5156				    hlock->read, hlock->check,
5157				    hlock->hardirqs_off,
5158				    hlock->nest_lock, hlock->acquire_ip,
5159				    hlock->references, hlock->pin_count)) {
5160		case 0:
5161			return 1;
5162		case 1:
5163			break;
5164		case 2:
5165			*merged += (idx == first_idx);
5166			break;
5167		default:
5168			WARN_ON(1);
5169			return 0;
5170		}
5171	}
5172	return 0;
5173}
5174
5175static int
5176__lock_set_class(struct lockdep_map *lock, const char *name,
5177		 struct lock_class_key *key, unsigned int subclass,
5178		 unsigned long ip)
5179{
5180	struct task_struct *curr = current;
5181	unsigned int depth, merged = 0;
5182	struct held_lock *hlock;
5183	struct lock_class *class;
 
5184	int i;
5185
5186	if (unlikely(!debug_locks))
5187		return 0;
5188
5189	depth = curr->lockdep_depth;
5190	/*
5191	 * This function is about (re)setting the class of a held lock,
5192	 * yet we're not actually holding any locks. Naughty user!
5193	 */
5194	if (DEBUG_LOCKS_WARN_ON(!depth))
5195		return 0;
5196
5197	hlock = find_held_lock(curr, lock, depth, &i);
5198	if (!hlock) {
5199		print_unlock_imbalance_bug(curr, lock, ip);
5200		return 0;
 
 
 
 
 
 
 
5201	}
 
5202
5203	lockdep_init_map_waits(lock, name, key, 0,
5204			       lock->wait_type_inner,
5205			       lock->wait_type_outer);
5206	class = register_lock_class(lock, subclass, 0);
5207	hlock->class_idx = class - lock_classes;
5208
5209	curr->lockdep_depth = i;
5210	curr->curr_chain_key = hlock->prev_chain_key;
5211
5212	if (reacquire_held_locks(curr, depth, i, &merged))
5213		return 0;
5214
5215	/*
5216	 * I took it apart and put it back together again, except now I have
5217	 * these 'spare' parts.. where shall I put them.
5218	 */
5219	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5220		return 0;
5221	return 1;
5222}
5223
5224static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5225{
5226	struct task_struct *curr = current;
5227	unsigned int depth, merged = 0;
5228	struct held_lock *hlock;
5229	int i;
5230
5231	if (unlikely(!debug_locks))
5232		return 0;
5233
5234	depth = curr->lockdep_depth;
5235	/*
5236	 * This function is about (re)setting the class of a held lock,
5237	 * yet we're not actually holding any locks. Naughty user!
5238	 */
5239	if (DEBUG_LOCKS_WARN_ON(!depth))
5240		return 0;
5241
5242	hlock = find_held_lock(curr, lock, depth, &i);
5243	if (!hlock) {
5244		print_unlock_imbalance_bug(curr, lock, ip);
5245		return 0;
5246	}
5247
5248	curr->lockdep_depth = i;
5249	curr->curr_chain_key = hlock->prev_chain_key;
5250
5251	WARN(hlock->read, "downgrading a read lock");
5252	hlock->read = 1;
5253	hlock->acquire_ip = ip;
5254
5255	if (reacquire_held_locks(curr, depth, i, &merged))
5256		return 0;
5257
5258	/* Merging can't happen with unchanged classes.. */
5259	if (DEBUG_LOCKS_WARN_ON(merged))
5260		return 0;
5261
5262	/*
5263	 * I took it apart and put it back together again, except now I have
5264	 * these 'spare' parts.. where shall I put them.
5265	 */
5266	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5267		return 0;
5268
5269	return 1;
5270}
5271
5272/*
5273 * Remove the lock from the list of currently held locks - this gets
5274 * called on mutex_unlock()/spin_unlock*() (or on a failed
5275 * mutex_lock_interruptible()).
 
5276 */
5277static int
5278__lock_release(struct lockdep_map *lock, unsigned long ip)
 
5279{
5280	struct task_struct *curr = current;
5281	unsigned int depth, merged = 1;
5282	struct held_lock *hlock;
5283	int i;
5284
5285	if (unlikely(!debug_locks))
5286		return 0;
5287
 
5288	depth = curr->lockdep_depth;
5289	/*
5290	 * So we're all set to release this lock.. wait what lock? We don't
5291	 * own any locks, you've been drinking again?
5292	 */
5293	if (depth <= 0) {
5294		print_unlock_imbalance_bug(curr, lock, ip);
5295		return 0;
5296	}
5297
5298	/*
5299	 * Check whether the lock exists in the current stack
5300	 * of held locks:
5301	 */
5302	hlock = find_held_lock(curr, lock, depth, &i);
5303	if (!hlock) {
5304		print_unlock_imbalance_bug(curr, lock, ip);
5305		return 0;
 
 
 
5306	}
 
5307
 
5308	if (hlock->instance == lock)
5309		lock_release_holdtime(hlock);
5310
5311	WARN(hlock->pin_count, "releasing a pinned lock\n");
5312
5313	if (hlock->references) {
5314		hlock->references--;
5315		if (hlock->references) {
5316			/*
5317			 * We had, and after removing one, still have
5318			 * references, the current lock stack is still
5319			 * valid. We're done!
5320			 */
5321			return 1;
5322		}
5323	}
5324
5325	/*
5326	 * We have the right lock to unlock, 'hlock' points to it.
5327	 * Now we remove it from the stack, and add back the other
5328	 * entries (if any), recalculating the hash along the way:
5329	 */
5330
5331	curr->lockdep_depth = i;
5332	curr->curr_chain_key = hlock->prev_chain_key;
5333
5334	/*
5335	 * The most likely case is when the unlock is on the innermost
5336	 * lock. In this case, we are done!
5337	 */
5338	if (i == depth-1)
5339		return 1;
5340
5341	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5342		return 0;
5343
5344	/*
5345	 * We had N bottles of beer on the wall, we drank one, but now
5346	 * there's not N-1 bottles of beer left on the wall...
5347	 * Pouring two of the bottles together is acceptable.
5348	 */
5349	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5350
5351	/*
5352	 * Since reacquire_held_locks() would have called check_chain_key()
5353	 * indirectly via __lock_acquire(), we don't need to do it again
5354	 * on return.
5355	 */
5356	return 0;
5357}
5358
5359static __always_inline
5360int __lock_is_held(const struct lockdep_map *lock, int read)
 
 
 
 
 
 
5361{
5362	struct task_struct *curr = current;
5363	int i;
5364
5365	for (i = 0; i < curr->lockdep_depth; i++) {
5366		struct held_lock *hlock = curr->held_locks + i;
 
 
 
5367
5368		if (match_held_lock(hlock, lock)) {
5369			if (read == -1 || hlock->read == read)
5370				return LOCK_STATE_HELD;
 
 
 
5371
5372			return LOCK_STATE_NOT_HELD;
5373		}
5374	}
 
 
5375
5376	return LOCK_STATE_NOT_HELD;
5377}
5378
5379static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5380{
5381	struct pin_cookie cookie = NIL_COOKIE;
5382	struct task_struct *curr = current;
5383	int i;
5384
5385	if (unlikely(!debug_locks))
5386		return cookie;
5387
5388	for (i = 0; i < curr->lockdep_depth; i++) {
5389		struct held_lock *hlock = curr->held_locks + i;
5390
5391		if (match_held_lock(hlock, lock)) {
5392			/*
5393			 * Grab 16bits of randomness; this is sufficient to not
5394			 * be guessable and still allows some pin nesting in
5395			 * our u32 pin_count.
5396			 */
5397			cookie.val = 1 + (prandom_u32() >> 16);
5398			hlock->pin_count += cookie.val;
5399			return cookie;
5400		}
5401	}
5402
5403	WARN(1, "pinning an unheld lock\n");
5404	return cookie;
5405}
5406
5407static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
 
 
 
 
 
 
 
5408{
5409	struct task_struct *curr = current;
5410	int i;
5411
5412	if (unlikely(!debug_locks))
5413		return;
5414
5415	for (i = 0; i < curr->lockdep_depth; i++) {
5416		struct held_lock *hlock = curr->held_locks + i;
5417
5418		if (match_held_lock(hlock, lock)) {
5419			hlock->pin_count += cookie.val;
5420			return;
5421		}
5422	}
5423
5424	WARN(1, "pinning an unheld lock\n");
5425}
5426
5427static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5428{
5429	struct task_struct *curr = current;
5430	int i;
5431
5432	if (unlikely(!debug_locks))
5433		return;
5434
5435	for (i = 0; i < curr->lockdep_depth; i++) {
5436		struct held_lock *hlock = curr->held_locks + i;
5437
5438		if (match_held_lock(hlock, lock)) {
5439			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5440				return;
5441
5442			hlock->pin_count -= cookie.val;
5443
5444			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5445				hlock->pin_count = 0;
5446
5447			return;
5448		}
5449	}
5450
5451	WARN(1, "unpinning an unheld lock\n");
5452}
5453
5454/*
5455 * Check whether we follow the irq-flags state precisely:
5456 */
5457static noinstr void check_flags(unsigned long flags)
5458{
5459#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
 
5460	if (!debug_locks)
5461		return;
5462
5463	/* Get the warning out..  */
5464	instrumentation_begin();
5465
5466	if (irqs_disabled_flags(flags)) {
5467		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5468			printk("possible reason: unannotated irqs-off.\n");
5469		}
5470	} else {
5471		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5472			printk("possible reason: unannotated irqs-on.\n");
5473		}
5474	}
5475
5476	/*
5477	 * We dont accurately track softirq state in e.g.
5478	 * hardirq contexts (such as on 4KSTACKS), so only
5479	 * check if not in hardirq contexts:
5480	 */
5481	if (!hardirq_count()) {
5482		if (softirq_count()) {
5483			/* like the above, but with softirqs */
5484			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5485		} else {
5486			/* lick the above, does it taste good? */
5487			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5488		}
5489	}
5490
5491	if (!debug_locks)
5492		print_irqtrace_events(current);
5493
5494	instrumentation_end();
5495#endif
5496}
5497
5498void lock_set_class(struct lockdep_map *lock, const char *name,
5499		    struct lock_class_key *key, unsigned int subclass,
5500		    unsigned long ip)
5501{
5502	unsigned long flags;
5503
5504	if (unlikely(!lockdep_enabled()))
5505		return;
5506
5507	raw_local_irq_save(flags);
5508	lockdep_recursion_inc();
5509	check_flags(flags);
5510	if (__lock_set_class(lock, name, key, subclass, ip))
5511		check_chain_key(current);
5512	lockdep_recursion_finish();
5513	raw_local_irq_restore(flags);
5514}
5515EXPORT_SYMBOL_GPL(lock_set_class);
5516
5517void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5518{
5519	unsigned long flags;
5520
5521	if (unlikely(!lockdep_enabled()))
5522		return;
5523
5524	raw_local_irq_save(flags);
5525	lockdep_recursion_inc();
5526	check_flags(flags);
5527	if (__lock_downgrade(lock, ip))
5528		check_chain_key(current);
5529	lockdep_recursion_finish();
5530	raw_local_irq_restore(flags);
5531}
5532EXPORT_SYMBOL_GPL(lock_downgrade);
5533
5534/* NMI context !!! */
5535static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5536{
5537#ifdef CONFIG_PROVE_LOCKING
5538	struct lock_class *class = look_up_lock_class(lock, subclass);
5539	unsigned long mask = LOCKF_USED;
5540
5541	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5542	if (!class)
5543		return;
5544
5545	/*
5546	 * READ locks only conflict with USED, such that if we only ever use
5547	 * READ locks, there is no deadlock possible -- RCU.
5548	 */
5549	if (!hlock->read)
5550		mask |= LOCKF_USED_READ;
5551
5552	if (!(class->usage_mask & mask))
5553		return;
5554
5555	hlock->class_idx = class - lock_classes;
5556
5557	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5558#endif
5559}
5560
5561static bool lockdep_nmi(void)
5562{
5563	if (raw_cpu_read(lockdep_recursion))
5564		return false;
5565
5566	if (!in_nmi())
5567		return false;
5568
5569	return true;
5570}
5571
5572/*
5573 * read_lock() is recursive if:
5574 * 1. We force lockdep think this way in selftests or
5575 * 2. The implementation is not queued read/write lock or
5576 * 3. The locker is at an in_interrupt() context.
5577 */
5578bool read_lock_is_recursive(void)
5579{
5580	return force_read_lock_recursive ||
5581	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5582	       in_interrupt();
5583}
5584EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5585
5586/*
5587 * We are not always called with irqs disabled - do that here,
5588 * and also avoid lockdep recursion:
5589 */
5590void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5591			  int trylock, int read, int check,
5592			  struct lockdep_map *nest_lock, unsigned long ip)
5593{
5594	unsigned long flags;
5595
5596	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5597
5598	if (!debug_locks)
5599		return;
5600
5601	if (unlikely(!lockdep_enabled())) {
5602		/* XXX allow trylock from NMI ?!? */
5603		if (lockdep_nmi() && !trylock) {
5604			struct held_lock hlock;
5605
5606			hlock.acquire_ip = ip;
5607			hlock.instance = lock;
5608			hlock.nest_lock = nest_lock;
5609			hlock.irq_context = 2; // XXX
5610			hlock.trylock = trylock;
5611			hlock.read = read;
5612			hlock.check = check;
5613			hlock.hardirqs_off = true;
5614			hlock.references = 0;
5615
5616			verify_lock_unused(lock, &hlock, subclass);
5617		}
5618		return;
5619	}
5620
5621	raw_local_irq_save(flags);
5622	check_flags(flags);
5623
5624	lockdep_recursion_inc();
 
5625	__lock_acquire(lock, subclass, trylock, read, check,
5626		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5627	lockdep_recursion_finish();
5628	raw_local_irq_restore(flags);
5629}
5630EXPORT_SYMBOL_GPL(lock_acquire);
5631
5632void lock_release(struct lockdep_map *lock, unsigned long ip)
 
5633{
5634	unsigned long flags;
5635
5636	trace_lock_release(lock, ip);
5637
5638	if (unlikely(!lockdep_enabled()))
5639		return;
5640
5641	raw_local_irq_save(flags);
5642	check_flags(flags);
5643
5644	lockdep_recursion_inc();
5645	if (__lock_release(lock, ip))
5646		check_chain_key(current);
5647	lockdep_recursion_finish();
5648	raw_local_irq_restore(flags);
5649}
5650EXPORT_SYMBOL_GPL(lock_release);
5651
5652noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5653{
5654	unsigned long flags;
5655	int ret = LOCK_STATE_NOT_HELD;
5656
5657	/*
5658	 * Avoid false negative lockdep_assert_held() and
5659	 * lockdep_assert_not_held().
5660	 */
5661	if (unlikely(!lockdep_enabled()))
5662		return LOCK_STATE_UNKNOWN;
5663
5664	raw_local_irq_save(flags);
5665	check_flags(flags);
5666
5667	lockdep_recursion_inc();
5668	ret = __lock_is_held(lock, read);
5669	lockdep_recursion_finish();
5670	raw_local_irq_restore(flags);
5671
5672	return ret;
5673}
5674EXPORT_SYMBOL_GPL(lock_is_held_type);
5675NOKPROBE_SYMBOL(lock_is_held_type);
5676
5677struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5678{
5679	struct pin_cookie cookie = NIL_COOKIE;
5680	unsigned long flags;
5681
5682	if (unlikely(!lockdep_enabled()))
5683		return cookie;
5684
5685	raw_local_irq_save(flags);
5686	check_flags(flags);
5687
5688	lockdep_recursion_inc();
5689	cookie = __lock_pin_lock(lock);
5690	lockdep_recursion_finish();
5691	raw_local_irq_restore(flags);
5692
5693	return cookie;
5694}
5695EXPORT_SYMBOL_GPL(lock_pin_lock);
5696
5697void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5698{
5699	unsigned long flags;
5700
5701	if (unlikely(!lockdep_enabled()))
5702		return;
5703
5704	raw_local_irq_save(flags);
5705	check_flags(flags);
5706
5707	lockdep_recursion_inc();
5708	__lock_repin_lock(lock, cookie);
5709	lockdep_recursion_finish();
5710	raw_local_irq_restore(flags);
5711}
5712EXPORT_SYMBOL_GPL(lock_repin_lock);
5713
5714void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5715{
5716	unsigned long flags;
5717
5718	if (unlikely(!lockdep_enabled()))
5719		return;
5720
5721	raw_local_irq_save(flags);
5722	check_flags(flags);
5723
5724	lockdep_recursion_inc();
5725	__lock_unpin_lock(lock, cookie);
5726	lockdep_recursion_finish();
5727	raw_local_irq_restore(flags);
5728}
5729EXPORT_SYMBOL_GPL(lock_unpin_lock);
5730
5731#ifdef CONFIG_LOCK_STAT
5732static void print_lock_contention_bug(struct task_struct *curr,
5733				      struct lockdep_map *lock,
5734				      unsigned long ip)
5735{
5736	if (!debug_locks_off())
5737		return;
5738	if (debug_locks_silent)
5739		return;
5740
5741	pr_warn("\n");
5742	pr_warn("=================================\n");
5743	pr_warn("WARNING: bad contention detected!\n");
5744	print_kernel_ident();
5745	pr_warn("---------------------------------\n");
5746	pr_warn("%s/%d is trying to contend lock (",
5747		curr->comm, task_pid_nr(curr));
5748	print_lockdep_cache(lock);
5749	pr_cont(") at:\n");
5750	print_ip_sym(KERN_WARNING, ip);
5751	pr_warn("but there are no locks held!\n");
5752	pr_warn("\nother info that might help us debug this:\n");
5753	lockdep_print_held_locks(curr);
5754
5755	pr_warn("\nstack backtrace:\n");
5756	dump_stack();
 
 
5757}
5758
5759static void
5760__lock_contended(struct lockdep_map *lock, unsigned long ip)
5761{
5762	struct task_struct *curr = current;
5763	struct held_lock *hlock;
5764	struct lock_class_stats *stats;
5765	unsigned int depth;
5766	int i, contention_point, contending_point;
5767
5768	depth = curr->lockdep_depth;
5769	/*
5770	 * Whee, we contended on this lock, except it seems we're not
5771	 * actually trying to acquire anything much at all..
5772	 */
5773	if (DEBUG_LOCKS_WARN_ON(!depth))
5774		return;
5775
5776	hlock = find_held_lock(curr, lock, depth, &i);
5777	if (!hlock) {
5778		print_lock_contention_bug(curr, lock, ip);
5779		return;
 
 
 
 
 
 
 
5780	}
 
 
5781
 
5782	if (hlock->instance != lock)
5783		return;
5784
5785	hlock->waittime_stamp = lockstat_clock();
5786
5787	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5788	contending_point = lock_point(hlock_class(hlock)->contending_point,
5789				      lock->ip);
5790
5791	stats = get_lock_stats(hlock_class(hlock));
5792	if (contention_point < LOCKSTAT_POINTS)
5793		stats->contention_point[contention_point]++;
5794	if (contending_point < LOCKSTAT_POINTS)
5795		stats->contending_point[contending_point]++;
5796	if (lock->cpu != smp_processor_id())
5797		stats->bounces[bounce_contended + !!hlock->read]++;
 
5798}
5799
5800static void
5801__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5802{
5803	struct task_struct *curr = current;
5804	struct held_lock *hlock;
5805	struct lock_class_stats *stats;
5806	unsigned int depth;
5807	u64 now, waittime = 0;
5808	int i, cpu;
5809
5810	depth = curr->lockdep_depth;
5811	/*
5812	 * Yay, we acquired ownership of this lock we didn't try to
5813	 * acquire, how the heck did that happen?
5814	 */
5815	if (DEBUG_LOCKS_WARN_ON(!depth))
5816		return;
5817
5818	hlock = find_held_lock(curr, lock, depth, &i);
5819	if (!hlock) {
5820		print_lock_contention_bug(curr, lock, _RET_IP_);
5821		return;
 
 
 
 
 
 
 
5822	}
 
 
5823
 
5824	if (hlock->instance != lock)
5825		return;
5826
5827	cpu = smp_processor_id();
5828	if (hlock->waittime_stamp) {
5829		now = lockstat_clock();
5830		waittime = now - hlock->waittime_stamp;
5831		hlock->holdtime_stamp = now;
5832	}
5833
 
 
5834	stats = get_lock_stats(hlock_class(hlock));
5835	if (waittime) {
5836		if (hlock->read)
5837			lock_time_inc(&stats->read_waittime, waittime);
5838		else
5839			lock_time_inc(&stats->write_waittime, waittime);
5840	}
5841	if (lock->cpu != cpu)
5842		stats->bounces[bounce_acquired + !!hlock->read]++;
 
5843
5844	lock->cpu = cpu;
5845	lock->ip = ip;
5846}
5847
5848void lock_contended(struct lockdep_map *lock, unsigned long ip)
5849{
5850	unsigned long flags;
5851
5852	trace_lock_contended(lock, ip);
 
5853
5854	if (unlikely(!lock_stat || !lockdep_enabled()))
5855		return;
5856
5857	raw_local_irq_save(flags);
5858	check_flags(flags);
5859	lockdep_recursion_inc();
 
5860	__lock_contended(lock, ip);
5861	lockdep_recursion_finish();
5862	raw_local_irq_restore(flags);
5863}
5864EXPORT_SYMBOL_GPL(lock_contended);
5865
5866void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5867{
5868	unsigned long flags;
5869
5870	trace_lock_acquired(lock, ip);
 
5871
5872	if (unlikely(!lock_stat || !lockdep_enabled()))
5873		return;
5874
5875	raw_local_irq_save(flags);
5876	check_flags(flags);
5877	lockdep_recursion_inc();
5878	__lock_acquired(lock, ip);
5879	lockdep_recursion_finish();
5880	raw_local_irq_restore(flags);
5881}
5882EXPORT_SYMBOL_GPL(lock_acquired);
5883#endif
5884
5885/*
5886 * Used by the testsuite, sanitize the validator state
5887 * after a simulated failure:
5888 */
5889
5890void lockdep_reset(void)
5891{
5892	unsigned long flags;
5893	int i;
5894
5895	raw_local_irq_save(flags);
5896	lockdep_init_task(current);
 
 
5897	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5898	nr_hardirq_chains = 0;
5899	nr_softirq_chains = 0;
5900	nr_process_chains = 0;
5901	debug_locks = 1;
5902	for (i = 0; i < CHAINHASH_SIZE; i++)
5903		INIT_HLIST_HEAD(chainhash_table + i);
5904	raw_local_irq_restore(flags);
5905}
5906
5907/* Remove a class from a lock chain. Must be called with the graph lock held. */
5908static void remove_class_from_lock_chain(struct pending_free *pf,
5909					 struct lock_chain *chain,
5910					 struct lock_class *class)
5911{
5912#ifdef CONFIG_PROVE_LOCKING
5913	int i;
5914
5915	for (i = chain->base; i < chain->base + chain->depth; i++) {
5916		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5917			continue;
5918		/*
5919		 * Each lock class occurs at most once in a lock chain so once
5920		 * we found a match we can break out of this loop.
5921		 */
5922		goto free_lock_chain;
5923	}
5924	/* Since the chain has not been modified, return. */
5925	return;
5926
5927free_lock_chain:
5928	free_chain_hlocks(chain->base, chain->depth);
5929	/* Overwrite the chain key for concurrent RCU readers. */
5930	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5931	dec_chains(chain->irq_context);
5932
5933	/*
5934	 * Note: calling hlist_del_rcu() from inside a
5935	 * hlist_for_each_entry_rcu() loop is safe.
5936	 */
5937	hlist_del_rcu(&chain->entry);
5938	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5939	nr_zapped_lock_chains++;
5940#endif
5941}
5942
5943/* Must be called with the graph lock held. */
5944static void remove_class_from_lock_chains(struct pending_free *pf,
5945					  struct lock_class *class)
5946{
5947	struct lock_chain *chain;
5948	struct hlist_head *head;
5949	int i;
5950
5951	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5952		head = chainhash_table + i;
5953		hlist_for_each_entry_rcu(chain, head, entry) {
5954			remove_class_from_lock_chain(pf, chain, class);
5955		}
5956	}
5957}
5958
5959/*
5960 * Remove all references to a lock class. The caller must hold the graph lock.
5961 */
5962static void zap_class(struct pending_free *pf, struct lock_class *class)
5963{
5964	struct lock_list *entry;
5965	int i;
5966
5967	WARN_ON_ONCE(!class->key);
5968
5969	/*
5970	 * Remove all dependencies this lock is
5971	 * involved in:
5972	 */
5973	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5974		entry = list_entries + i;
5975		if (entry->class != class && entry->links_to != class)
5976			continue;
5977		__clear_bit(i, list_entries_in_use);
5978		nr_list_entries--;
5979		list_del_rcu(&entry->entry);
5980	}
5981	if (list_empty(&class->locks_after) &&
5982	    list_empty(&class->locks_before)) {
5983		list_move_tail(&class->lock_entry, &pf->zapped);
5984		hlist_del_rcu(&class->hash_entry);
5985		WRITE_ONCE(class->key, NULL);
5986		WRITE_ONCE(class->name, NULL);
5987		nr_lock_classes--;
5988		__clear_bit(class - lock_classes, lock_classes_in_use);
5989	} else {
5990		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991			  class->name);
5992	}
 
 
 
 
 
5993
5994	remove_class_from_lock_chains(pf, class);
5995	nr_zapped_classes++;
5996}
5997
5998static void reinit_class(struct lock_class *class)
5999{
6000	void *const p = class;
6001	const unsigned int offset = offsetof(struct lock_class, key);
6002
6003	WARN_ON_ONCE(!class->lock_entry.next);
6004	WARN_ON_ONCE(!list_empty(&class->locks_after));
6005	WARN_ON_ONCE(!list_empty(&class->locks_before));
6006	memset(p + offset, 0, sizeof(*class) - offset);
6007	WARN_ON_ONCE(!class->lock_entry.next);
6008	WARN_ON_ONCE(!list_empty(&class->locks_after));
6009	WARN_ON_ONCE(!list_empty(&class->locks_before));
6010}
6011
6012static inline int within(const void *addr, void *start, unsigned long size)
6013{
6014	return addr >= start && addr < start + size;
6015}
6016
6017static bool inside_selftest(void)
6018{
6019	return current == lockdep_selftest_task_struct;
6020}
6021
6022/* The caller must hold the graph lock. */
6023static struct pending_free *get_pending_free(void)
6024{
6025	return delayed_free.pf + delayed_free.index;
6026}
6027
6028static void free_zapped_rcu(struct rcu_head *cb);
6029
6030/*
6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032 * the graph lock held.
6033 */
6034static void call_rcu_zapped(struct pending_free *pf)
6035{
6036	WARN_ON_ONCE(inside_selftest());
6037
6038	if (list_empty(&pf->zapped))
6039		return;
6040
6041	if (delayed_free.scheduled)
6042		return;
6043
6044	delayed_free.scheduled = true;
6045
6046	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047	delayed_free.index ^= 1;
6048
6049	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050}
6051
6052/* The caller must hold the graph lock. May be called from RCU context. */
6053static void __free_zapped_classes(struct pending_free *pf)
6054{
6055	struct lock_class *class;
6056
6057	check_data_structures();
6058
6059	list_for_each_entry(class, &pf->zapped, lock_entry)
6060		reinit_class(class);
6061
6062	list_splice_init(&pf->zapped, &free_lock_classes);
6063
6064#ifdef CONFIG_PROVE_LOCKING
6065	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068#endif
6069}
6070
6071static void free_zapped_rcu(struct rcu_head *ch)
6072{
6073	struct pending_free *pf;
6074	unsigned long flags;
6075
6076	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077		return;
6078
6079	raw_local_irq_save(flags);
6080	lockdep_lock();
6081
6082	/* closed head */
6083	pf = delayed_free.pf + (delayed_free.index ^ 1);
6084	__free_zapped_classes(pf);
6085	delayed_free.scheduled = false;
6086
6087	/*
6088	 * If there's anything on the open list, close and start a new callback.
6089	 */
6090	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091
6092	lockdep_unlock();
6093	raw_local_irq_restore(flags);
6094}
6095
6096/*
6097 * Remove all lock classes from the class hash table and from the
6098 * all_lock_classes list whose key or name is in the address range [start,
6099 * start + size). Move these lock classes to the zapped_classes list. Must
6100 * be called with the graph lock held.
6101 */
6102static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103				     unsigned long size)
6104{
6105	struct lock_class *class;
6106	struct hlist_head *head;
6107	int i;
6108
6109	/* Unhash all classes that were created by a module. */
6110	for (i = 0; i < CLASSHASH_SIZE; i++) {
6111		head = classhash_table + i;
6112		hlist_for_each_entry_rcu(class, head, hash_entry) {
6113			if (!within(class->key, start, size) &&
6114			    !within(class->name, start, size))
6115				continue;
6116			zap_class(pf, class);
 
 
6117		}
6118	}
6119}
6120
6121/*
6122 * Used in module.c to remove lock classes from memory that is going to be
6123 * freed; and possibly re-used by other modules.
6124 *
6125 * We will have had one synchronize_rcu() before getting here, so we're
6126 * guaranteed nobody will look up these exact classes -- they're properly dead
6127 * but still allocated.
6128 */
6129static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130{
6131	struct pending_free *pf;
6132	unsigned long flags;
6133
6134	init_data_structures_once();
6135
6136	raw_local_irq_save(flags);
6137	lockdep_lock();
6138	pf = get_pending_free();
6139	__lockdep_free_key_range(pf, start, size);
6140	call_rcu_zapped(pf);
6141	lockdep_unlock();
6142	raw_local_irq_restore(flags);
6143
6144	/*
6145	 * Wait for any possible iterators from look_up_lock_class() to pass
6146	 * before continuing to free the memory they refer to.
6147	 */
6148	synchronize_rcu();
6149}
6150
6151/*
6152 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153 * Ignores debug_locks. Must only be used by the lockdep selftests.
6154 */
6155static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156{
6157	struct pending_free *pf = delayed_free.pf;
 
6158	unsigned long flags;
6159
6160	init_data_structures_once();
6161
6162	raw_local_irq_save(flags);
6163	lockdep_lock();
6164	__lockdep_free_key_range(pf, start, size);
6165	__free_zapped_classes(pf);
6166	lockdep_unlock();
6167	raw_local_irq_restore(flags);
6168}
6169
6170void lockdep_free_key_range(void *start, unsigned long size)
6171{
6172	init_data_structures_once();
6173
6174	if (inside_selftest())
6175		lockdep_free_key_range_imm(start, size);
6176	else
6177		lockdep_free_key_range_reg(start, size);
6178}
6179
6180/*
6181 * Check whether any element of the @lock->class_cache[] array refers to a
6182 * registered lock class. The caller must hold either the graph lock or the
6183 * RCU read lock.
6184 */
6185static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186{
6187	struct lock_class *class;
6188	struct hlist_head *head;
6189	int i, j;
6190
6191	for (i = 0; i < CLASSHASH_SIZE; i++) {
6192		head = classhash_table + i;
6193		hlist_for_each_entry_rcu(class, head, hash_entry) {
6194			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195				if (lock->class_cache[j] == class)
6196					return true;
6197		}
6198	}
6199	return false;
6200}
6201
6202/* The caller must hold the graph lock. Does not sleep. */
6203static void __lockdep_reset_lock(struct pending_free *pf,
6204				 struct lockdep_map *lock)
6205{
6206	struct lock_class *class;
6207	int j;
6208
6209	/*
6210	 * Remove all classes this lock might have:
6211	 */
6212	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213		/*
6214		 * If the class exists we look it up and zap it:
6215		 */
6216		class = look_up_lock_class(lock, j);
6217		if (class)
6218			zap_class(pf, class);
6219	}
6220	/*
6221	 * Debug check: in the end all mapped classes should
6222	 * be gone.
6223	 */
6224	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225		debug_locks_off();
6226}
6227
6228/*
6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230 * released data structures from RCU context.
6231 */
6232static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233{
6234	struct pending_free *pf;
6235	unsigned long flags;
6236	int locked;
6237
6238	raw_local_irq_save(flags);
6239	locked = graph_lock();
6240	if (!locked)
6241		goto out_irq;
 
 
 
 
6242
6243	pf = get_pending_free();
6244	__lockdep_reset_lock(pf, lock);
6245	call_rcu_zapped(pf);
6246
6247	graph_unlock();
6248out_irq:
6249	raw_local_irq_restore(flags);
6250}
 
 
 
 
 
 
 
 
 
6251
6252/*
6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254 * lockdep selftests.
6255 */
6256static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257{
6258	struct pending_free *pf = delayed_free.pf;
6259	unsigned long flags;
6260
6261	raw_local_irq_save(flags);
6262	lockdep_lock();
6263	__lockdep_reset_lock(pf, lock);
6264	__free_zapped_classes(pf);
6265	lockdep_unlock();
6266	raw_local_irq_restore(flags);
6267}
6268
6269void lockdep_reset_lock(struct lockdep_map *lock)
6270{
6271	init_data_structures_once();
6272
6273	if (inside_selftest())
6274		lockdep_reset_lock_imm(lock);
6275	else
6276		lockdep_reset_lock_reg(lock);
6277}
6278
6279/* Unregister a dynamically allocated key. */
6280void lockdep_unregister_key(struct lock_class_key *key)
6281{
6282	struct hlist_head *hash_head = keyhashentry(key);
6283	struct lock_class_key *k;
6284	struct pending_free *pf;
6285	unsigned long flags;
6286	bool found = false;
6287
6288	might_sleep();
6289
6290	if (WARN_ON_ONCE(static_obj(key)))
6291		return;
6292
6293	raw_local_irq_save(flags);
6294	if (!graph_lock())
6295		goto out_irq;
6296
6297	pf = get_pending_free();
6298	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6299		if (k == key) {
6300			hlist_del_rcu(&k->hash_entry);
6301			found = true;
6302			break;
6303		}
6304	}
6305	WARN_ON_ONCE(!found);
6306	__lockdep_free_key_range(pf, key, 1);
6307	call_rcu_zapped(pf);
6308	graph_unlock();
6309out_irq:
6310	raw_local_irq_restore(flags);
6311
6312	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6313	synchronize_rcu();
6314}
6315EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6316
6317void __init lockdep_init(void)
6318{
6319	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6320
6321	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6322	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6323	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6324	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6325	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6326	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6327	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6328
6329	printk(" memory used by lock dependency info: %zu kB\n",
6330	       (sizeof(lock_classes) +
6331		sizeof(lock_classes_in_use) +
6332		sizeof(classhash_table) +
6333		sizeof(list_entries) +
6334		sizeof(list_entries_in_use) +
6335		sizeof(chainhash_table) +
6336		sizeof(delayed_free)
6337#ifdef CONFIG_PROVE_LOCKING
6338		+ sizeof(lock_cq)
6339		+ sizeof(lock_chains)
6340		+ sizeof(lock_chains_in_use)
6341		+ sizeof(chain_hlocks)
6342#endif
6343		) / 1024
6344		);
6345
6346#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6347	printk(" memory used for stack traces: %zu kB\n",
6348	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6349	       );
 
 
 
 
 
 
6350#endif
6351
6352	printk(" per task-struct memory footprint: %zu bytes\n",
6353	       sizeof(((struct task_struct *)NULL)->held_locks));
6354}
6355
6356static void
6357print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6358		     const void *mem_to, struct held_lock *hlock)
6359{
6360	if (!debug_locks_off())
6361		return;
6362	if (debug_locks_silent)
6363		return;
6364
6365	pr_warn("\n");
6366	pr_warn("=========================\n");
6367	pr_warn("WARNING: held lock freed!\n");
6368	print_kernel_ident();
6369	pr_warn("-------------------------\n");
6370	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6371		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6372	print_lock(hlock);
6373	lockdep_print_held_locks(curr);
6374
6375	pr_warn("\nstack backtrace:\n");
6376	dump_stack();
6377}
6378
6379static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6380				const void* lock_from, unsigned long lock_len)
6381{
6382	return lock_from + lock_len <= mem_from ||
6383		mem_from + mem_len <= lock_from;
6384}
6385
6386/*
6387 * Called when kernel memory is freed (or unmapped), or if a lock
6388 * is destroyed or reinitialized - this code checks whether there is
6389 * any held lock in the memory range of <from> to <to>:
6390 */
6391void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6392{
6393	struct task_struct *curr = current;
6394	struct held_lock *hlock;
6395	unsigned long flags;
6396	int i;
6397
6398	if (unlikely(!debug_locks))
6399		return;
6400
6401	raw_local_irq_save(flags);
6402	for (i = 0; i < curr->lockdep_depth; i++) {
6403		hlock = curr->held_locks + i;
6404
6405		if (not_in_range(mem_from, mem_len, hlock->instance,
6406					sizeof(*hlock->instance)))
6407			continue;
6408
6409		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6410		break;
6411	}
6412	raw_local_irq_restore(flags);
6413}
6414EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6415
6416static void print_held_locks_bug(void)
6417{
6418	if (!debug_locks_off())
6419		return;
6420	if (debug_locks_silent)
6421		return;
6422
6423	pr_warn("\n");
6424	pr_warn("====================================\n");
6425	pr_warn("WARNING: %s/%d still has locks held!\n",
6426	       current->comm, task_pid_nr(current));
6427	print_kernel_ident();
6428	pr_warn("------------------------------------\n");
6429	lockdep_print_held_locks(current);
6430	pr_warn("\nstack backtrace:\n");
6431	dump_stack();
6432}
6433
6434void debug_check_no_locks_held(void)
6435{
6436	if (unlikely(current->lockdep_depth > 0))
6437		print_held_locks_bug();
6438}
6439EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6440
6441#ifdef __KERNEL__
6442void debug_show_all_locks(void)
6443{
6444	struct task_struct *g, *p;
 
 
6445
6446	if (unlikely(!debug_locks)) {
6447		pr_warn("INFO: lockdep is turned off.\n");
6448		return;
6449	}
6450	pr_warn("\nShowing all locks held in the system:\n");
6451
6452	rcu_read_lock();
6453	for_each_process_thread(g, p) {
6454		if (!p->lockdep_depth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6455			continue;
6456		lockdep_print_held_locks(p);
6457		touch_nmi_watchdog();
6458		touch_all_softlockup_watchdogs();
6459	}
6460	rcu_read_unlock();
 
 
 
 
6461
6462	pr_warn("\n");
6463	pr_warn("=============================================\n\n");
6464}
6465EXPORT_SYMBOL_GPL(debug_show_all_locks);
6466#endif
6467
6468/*
6469 * Careful: only use this function if you are sure that
6470 * the task cannot run in parallel!
6471 */
6472void debug_show_held_locks(struct task_struct *task)
6473{
6474	if (unlikely(!debug_locks)) {
6475		printk("INFO: lockdep is turned off.\n");
6476		return;
6477	}
6478	lockdep_print_held_locks(task);
6479}
6480EXPORT_SYMBOL_GPL(debug_show_held_locks);
6481
6482asmlinkage __visible void lockdep_sys_exit(void)
6483{
6484	struct task_struct *curr = current;
6485
6486	if (unlikely(curr->lockdep_depth)) {
6487		if (!debug_locks_off())
6488			return;
6489		pr_warn("\n");
6490		pr_warn("================================================\n");
6491		pr_warn("WARNING: lock held when returning to user space!\n");
6492		print_kernel_ident();
6493		pr_warn("------------------------------------------------\n");
6494		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6495				curr->comm, curr->pid);
6496		lockdep_print_held_locks(curr);
6497	}
6498
6499	/*
6500	 * The lock history for each syscall should be independent. So wipe the
6501	 * slate clean on return to userspace.
6502	 */
6503	lockdep_invariant_state(false);
6504}
6505
6506void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6507{
6508	struct task_struct *curr = current;
6509	int dl = READ_ONCE(debug_locks);
6510
 
 
 
 
6511	/* Note: the following can be executed concurrently, so be careful. */
6512	pr_warn("\n");
6513	pr_warn("=============================\n");
6514	pr_warn("WARNING: suspicious RCU usage\n");
6515	print_kernel_ident();
6516	pr_warn("-----------------------------\n");
6517	pr_warn("%s:%d %s!\n", file, line, s);
6518	pr_warn("\nother info that might help us debug this:\n\n");
6519	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6520	       !rcu_lockdep_current_cpu_online()
6521			? "RCU used illegally from offline CPU!\n"
6522			: "",
6523	       rcu_scheduler_active, dl,
6524	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
 
6525
6526	/*
6527	 * If a CPU is in the RCU-free window in idle (ie: in the section
6528	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6529	 * considers that CPU to be in an "extended quiescent state",
6530	 * which means that RCU will be completely ignoring that CPU.
6531	 * Therefore, rcu_read_lock() and friends have absolutely no
6532	 * effect on a CPU running in that state. In other words, even if
6533	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6534	 * delete data structures out from under it.  RCU really has no
6535	 * choice here: we need to keep an RCU-free window in idle where
6536	 * the CPU may possibly enter into low power mode. This way we can
6537	 * notice an extended quiescent state to other CPUs that started a grace
6538	 * period. Otherwise we would delay any grace period as long as we run
6539	 * in the idle task.
6540	 *
6541	 * So complain bitterly if someone does call rcu_read_lock(),
6542	 * rcu_read_lock_bh() and so on from extended quiescent states.
6543	 */
6544	if (!rcu_is_watching())
6545		pr_warn("RCU used illegally from extended quiescent state!\n");
6546
6547	lockdep_print_held_locks(curr);
6548	pr_warn("\nstack backtrace:\n");
6549	dump_stack();
6550}
6551EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);