Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.15
 
  1/*
  2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public License as
  6 * published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it would be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write the Free Software Foundation,
 15 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 16 */
 17
 18#include "xfs.h"
 19#include "xfs_fs.h"
 
 20#include "xfs_log_format.h"
 21#include "xfs_shared.h"
 22#include "xfs_trans_resv.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_error.h"
 27#include "xfs_alloc.h"
 28#include "xfs_extent_busy.h"
 29#include "xfs_discard.h"
 30#include "xfs_trans.h"
 31#include "xfs_trans_priv.h"
 32#include "xfs_log.h"
 33#include "xfs_log_priv.h"
 
 
 
 34
 35/*
 36 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
 37 * recover, so we don't allow failure here. Also, we allocate in a context that
 38 * we don't want to be issuing transactions from, so we need to tell the
 39 * allocation code this as well.
 40 *
 41 * We don't reserve any space for the ticket - we are going to steal whatever
 42 * space we require from transactions as they commit. To ensure we reserve all
 43 * the space required, we need to set the current reservation of the ticket to
 44 * zero so that we know to steal the initial transaction overhead from the
 45 * first transaction commit.
 46 */
 47static struct xlog_ticket *
 48xlog_cil_ticket_alloc(
 49	struct xlog	*log)
 50{
 51	struct xlog_ticket *tic;
 52
 53	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
 54				KM_SLEEP|KM_NOFS);
 55	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
 56
 57	/*
 58	 * set the current reservation to zero so we know to steal the basic
 59	 * transaction overhead reservation from the first transaction commit.
 60	 */
 61	tic->t_curr_res = 0;
 62	return tic;
 63}
 64
 65/*
 66 * After the first stage of log recovery is done, we know where the head and
 67 * tail of the log are. We need this log initialisation done before we can
 68 * initialise the first CIL checkpoint context.
 69 *
 70 * Here we allocate a log ticket to track space usage during a CIL push.  This
 71 * ticket is passed to xlog_write() directly so that we don't slowly leak log
 72 * space by failing to account for space used by log headers and additional
 73 * region headers for split regions.
 74 */
 75void
 76xlog_cil_init_post_recovery(
 77	struct xlog	*log)
 78{
 79	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
 80	log->l_cilp->xc_ctx->sequence = 1;
 81	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
 82								log->l_curr_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85/*
 86 * Prepare the log item for insertion into the CIL. Calculate the difference in
 87 * log space and vectors it will consume, and if it is a new item pin it as
 88 * well.
 89 */
 90STATIC void
 91xfs_cil_prepare_item(
 92	struct xlog		*log,
 93	struct xfs_log_vec	*lv,
 94	struct xfs_log_vec	*old_lv,
 95	int			*diff_len,
 96	int			*diff_iovecs)
 97{
 98	/* Account for the new LV being passed in */
 99	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
100		*diff_len += lv->lv_buf_len;
101		*diff_iovecs += lv->lv_niovecs;
102	}
103
104	/*
105	 * If there is no old LV, this is the first time we've seen the item in
106	 * this CIL context and so we need to pin it. If we are replacing the
107	 * old_lv, then remove the space it accounts for and free it.
108	 */
109	if (!old_lv)
110		lv->lv_item->li_ops->iop_pin(lv->lv_item);
111	else if (old_lv != lv) {
 
 
 
 
112		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
113
114		*diff_len -= old_lv->lv_buf_len;
115		*diff_iovecs -= old_lv->lv_niovecs;
116		kmem_free(old_lv);
117	}
118
119	/* attach new log vector to log item */
120	lv->lv_item->li_lv = lv;
121
122	/*
123	 * If this is the first time the item is being committed to the
124	 * CIL, store the sequence number on the log item so we can
125	 * tell in future commits whether this is the first checkpoint
126	 * the item is being committed into.
127	 */
128	if (!lv->lv_item->li_seq)
129		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
130}
131
132/*
133 * Format log item into a flat buffers
134 *
135 * For delayed logging, we need to hold a formatted buffer containing all the
136 * changes on the log item. This enables us to relog the item in memory and
137 * write it out asynchronously without needing to relock the object that was
138 * modified at the time it gets written into the iclog.
139 *
140 * This function builds a vector for the changes in each log item in the
141 * transaction. It then works out the length of the buffer needed for each log
142 * item, allocates them and formats the vector for the item into the buffer.
143 * The buffer is then attached to the log item are then inserted into the
144 * Committed Item List for tracking until the next checkpoint is written out.
 
 
145 *
146 * We don't set up region headers during this process; we simply copy the
147 * regions into the flat buffer. We can do this because we still have to do a
148 * formatting step to write the regions into the iclog buffer.  Writing the
149 * ophdrs during the iclog write means that we can support splitting large
150 * regions across iclog boundares without needing a change in the format of the
151 * item/region encapsulation.
152 *
153 * Hence what we need to do now is change the rewrite the vector array to point
154 * to the copied region inside the buffer we just allocated. This allows us to
155 * format the regions into the iclog as though they are being formatted
156 * directly out of the objects themselves.
157 */
158static void
159xlog_cil_insert_format_items(
160	struct xlog		*log,
161	struct xfs_trans	*tp,
162	int			*diff_len,
163	int			*diff_iovecs)
164{
165	struct xfs_log_item_desc *lidp;
166
167
168	/* Bail out if we didn't find a log item.  */
169	if (list_empty(&tp->t_items)) {
170		ASSERT(0);
171		return;
172	}
173
174	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
175		struct xfs_log_item *lip = lidp->lid_item;
176		struct xfs_log_vec *lv;
177		struct xfs_log_vec *old_lv;
178		int	niovecs = 0;
179		int	nbytes = 0;
180		int	buf_size;
181		bool	ordered = false;
182
183		/* Skip items which aren't dirty in this transaction. */
184		if (!(lidp->lid_flags & XFS_LID_DIRTY))
185			continue;
186
187		/* get number of vecs and size of data to be stored */
188		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
189
190		/* Skip items that do not have any vectors for writing */
191		if (!niovecs)
192			continue;
193
194		/*
195		 * Ordered items need to be tracked but we do not wish to write
196		 * them. We need a logvec to track the object, but we do not
197		 * need an iovec or buffer to be allocated for copying data.
198		 */
199		if (niovecs == XFS_LOG_VEC_ORDERED) {
 
200			ordered = true;
201			niovecs = 0;
202			nbytes = 0;
203		}
204
205		/*
206		 * We 64-bit align the length of each iovec so that the start
207		 * of the next one is naturally aligned.  We'll need to
208		 * account for that slack space here. Then round nbytes up
209		 * to 64-bit alignment so that the initial buffer alignment is
210		 * easy to calculate and verify.
211		 */
212		nbytes += niovecs * sizeof(uint64_t);
213		nbytes = round_up(nbytes, sizeof(uint64_t));
214
215		/* grab the old item if it exists for reservation accounting */
216		old_lv = lip->li_lv;
217
218		/*
219		 * The data buffer needs to start 64-bit aligned, so round up
220		 * that space to ensure we can align it appropriately and not
221		 * overrun the buffer.
222		 */
223		buf_size = nbytes +
224			   round_up((sizeof(struct xfs_log_vec) +
225				     niovecs * sizeof(struct xfs_log_iovec)),
226				    sizeof(uint64_t));
227
228		/* compare to existing item size */
229		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
 
230			/* same or smaller, optimise common overwrite case */
231			lv = lip->li_lv;
232			lv->lv_next = NULL;
233
234			if (ordered)
235				goto insert;
236
237			/*
238			 * set the item up as though it is a new insertion so
239			 * that the space reservation accounting is correct.
240			 */
241			*diff_iovecs -= lv->lv_niovecs;
242			*diff_len -= lv->lv_buf_len;
 
 
 
 
 
 
 
 
 
243		} else {
244			/* allocate new data chunk */
245			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
246			lv->lv_item = lip;
247			lv->lv_size = buf_size;
248			if (ordered) {
249				/* track as an ordered logvec */
250				ASSERT(lip->li_lv == NULL);
251				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
252				goto insert;
253			}
254			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
255		}
256
257		/* Ensure the lv is set up according to ->iop_size */
258		lv->lv_niovecs = niovecs;
259
260		/* The allocated data region lies beyond the iovec region */
261		lv->lv_buf_len = 0;
262		lv->lv_buf = (char *)lv + buf_size - nbytes;
263		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
264
265		lip->li_ops->iop_format(lip, lv);
266insert:
267		ASSERT(lv->lv_buf_len <= nbytes);
268		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
269	}
270}
271
272/*
273 * Insert the log items into the CIL and calculate the difference in space
274 * consumed by the item. Add the space to the checkpoint ticket and calculate
275 * if the change requires additional log metadata. If it does, take that space
276 * as well. Remove the amount of space we added to the checkpoint ticket from
277 * the current transaction ticket so that the accounting works out correctly.
278 */
279static void
280xlog_cil_insert_items(
281	struct xlog		*log,
282	struct xfs_trans	*tp)
283{
284	struct xfs_cil		*cil = log->l_cilp;
285	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
286	struct xfs_log_item_desc *lidp;
287	int			len = 0;
288	int			diff_iovecs = 0;
289	int			iclog_space;
 
290
291	ASSERT(tp);
292
293	/*
294	 * We can do this safely because the context can't checkpoint until we
295	 * are done so it doesn't matter exactly how we update the CIL.
296	 */
297	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
298
299	/*
300	 * Now (re-)position everything modified at the tail of the CIL.
301	 * We do this here so we only need to take the CIL lock once during
302	 * the transaction commit.
303	 */
304	spin_lock(&cil->xc_cil_lock);
305	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
306		struct xfs_log_item	*lip = lidp->lid_item;
307
308		/* Skip items which aren't dirty in this transaction. */
309		if (!(lidp->lid_flags & XFS_LID_DIRTY))
310			continue;
311
312		list_move_tail(&lip->li_cil, &cil->xc_cil);
313	}
314
315	/* account for space used by new iovec headers  */
316	len += diff_iovecs * sizeof(xlog_op_header_t);
 
317	ctx->nvecs += diff_iovecs;
318
319	/* attach the transaction to the CIL if it has any busy extents */
320	if (!list_empty(&tp->t_busy))
321		list_splice_init(&tp->t_busy, &ctx->busy_extents);
322
323	/*
324	 * Now transfer enough transaction reservation to the context ticket
325	 * for the checkpoint. The context ticket is special - the unit
326	 * reservation has to grow as well as the current reservation as we
327	 * steal from tickets so we can correctly determine the space used
328	 * during the transaction commit.
329	 */
330	if (ctx->ticket->t_curr_res == 0) {
331		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
332		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
 
333	}
334
335	/* do we need space for more log record headers? */
336	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
337	if (len > 0 && (ctx->space_used / iclog_space !=
338				(ctx->space_used + len) / iclog_space)) {
339		int hdrs;
340
341		hdrs = (len + iclog_space - 1) / iclog_space;
342		/* need to take into account split region headers, too */
343		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
344		ctx->ticket->t_unit_res += hdrs;
345		ctx->ticket->t_curr_res += hdrs;
346		tp->t_ticket->t_curr_res -= hdrs;
347		ASSERT(tp->t_ticket->t_curr_res >= len);
348	}
349	tp->t_ticket->t_curr_res -= len;
350	ctx->space_used += len;
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352	spin_unlock(&cil->xc_cil_lock);
 
 
 
353}
354
355static void
356xlog_cil_free_logvec(
357	struct xfs_log_vec	*log_vector)
358{
359	struct xfs_log_vec	*lv;
360
361	for (lv = log_vector; lv; ) {
362		struct xfs_log_vec *next = lv->lv_next;
363		kmem_free(lv);
364		lv = next;
365	}
366}
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368/*
369 * Mark all items committed and clear busy extents. We free the log vector
370 * chains in a separate pass so that we unpin the log items as quickly as
371 * possible.
372 */
373static void
374xlog_cil_committed(
375	void	*args,
376	int	abort)
377{
378	struct xfs_cil_ctx	*ctx = args;
379	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380
381	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
382					ctx->start_lsn, abort);
383
384	xfs_extent_busy_sort(&ctx->busy_extents);
385	xfs_extent_busy_clear(mp, &ctx->busy_extents,
386			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
387
388	spin_lock(&ctx->cil->xc_push_lock);
389	list_del(&ctx->committing);
390	spin_unlock(&ctx->cil->xc_push_lock);
391
392	xlog_cil_free_logvec(ctx->lv_chain);
393
394	if (!list_empty(&ctx->busy_extents)) {
395		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
 
 
 
396
397		xfs_discard_extents(mp, &ctx->busy_extents);
398		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
399	}
 
 
400
401	kmem_free(ctx);
 
 
 
 
402}
403
404/*
405 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
406 * is a background flush and so we can chose to ignore it. Otherwise, if the
407 * current sequence is the same as @push_seq we need to do a flush. If
408 * @push_seq is less than the current sequence, then it has already been
409 * flushed and we don't need to do anything - the caller will wait for it to
410 * complete if necessary.
411 *
412 * @push_seq is a value rather than a flag because that allows us to do an
413 * unlocked check of the sequence number for a match. Hence we can allows log
414 * forces to run racily and not issue pushes for the same sequence twice. If we
415 * get a race between multiple pushes for the same sequence they will block on
416 * the first one and then abort, hence avoiding needless pushes.
417 */
418STATIC int
419xlog_cil_push(
420	struct xlog		*log)
421{
422	struct xfs_cil		*cil = log->l_cilp;
 
 
423	struct xfs_log_vec	*lv;
424	struct xfs_cil_ctx	*ctx;
425	struct xfs_cil_ctx	*new_ctx;
426	struct xlog_in_core	*commit_iclog;
427	struct xlog_ticket	*tic;
428	int			num_iovecs;
429	int			error = 0;
430	struct xfs_trans_header thdr;
431	struct xfs_log_iovec	lhdr;
432	struct xfs_log_vec	lvhdr = { NULL };
 
433	xfs_lsn_t		commit_lsn;
434	xfs_lsn_t		push_seq;
435
436	if (!cil)
437		return 0;
438
439	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
440	new_ctx->ticket = xlog_cil_ticket_alloc(log);
441
442	down_write(&cil->xc_ctx_lock);
443	ctx = cil->xc_ctx;
444
445	spin_lock(&cil->xc_push_lock);
446	push_seq = cil->xc_push_seq;
447	ASSERT(push_seq <= ctx->sequence);
448
449	/*
 
 
 
 
 
 
 
 
 
 
 
450	 * Check if we've anything to push. If there is nothing, then we don't
451	 * move on to a new sequence number and so we have to be able to push
452	 * this sequence again later.
453	 */
454	if (list_empty(&cil->xc_cil)) {
455		cil->xc_push_seq = 0;
456		spin_unlock(&cil->xc_push_lock);
457		goto out_skip;
458	}
459	spin_unlock(&cil->xc_push_lock);
460
461
462	/* check for a previously pushed seqeunce */
463	if (push_seq < cil->xc_ctx->sequence)
 
464		goto out_skip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465
466	/*
467	 * pull all the log vectors off the items in the CIL, and
468	 * remove the items from the CIL. We don't need the CIL lock
469	 * here because it's only needed on the transaction commit
470	 * side which is currently locked out by the flush lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471	 */
472	lv = NULL;
473	num_iovecs = 0;
474	while (!list_empty(&cil->xc_cil)) {
475		struct xfs_log_item	*item;
476
477		item = list_first_entry(&cil->xc_cil,
478					struct xfs_log_item, li_cil);
479		list_del_init(&item->li_cil);
480		if (!ctx->lv_chain)
481			ctx->lv_chain = item->li_lv;
482		else
483			lv->lv_next = item->li_lv;
484		lv = item->li_lv;
485		item->li_lv = NULL;
486		num_iovecs += lv->lv_niovecs;
487	}
488
489	/*
490	 * initialise the new context and attach it to the CIL. Then attach
491	 * the current context to the CIL committing lsit so it can be found
492	 * during log forces to extract the commit lsn of the sequence that
493	 * needs to be forced.
494	 */
495	INIT_LIST_HEAD(&new_ctx->committing);
496	INIT_LIST_HEAD(&new_ctx->busy_extents);
497	new_ctx->sequence = ctx->sequence + 1;
498	new_ctx->cil = cil;
499	cil->xc_ctx = new_ctx;
500
501	/*
502	 * The switch is now done, so we can drop the context lock and move out
503	 * of a shared context. We can't just go straight to the commit record,
504	 * though - we need to synchronise with previous and future commits so
505	 * that the commit records are correctly ordered in the log to ensure
506	 * that we process items during log IO completion in the correct order.
507	 *
508	 * For example, if we get an EFI in one checkpoint and the EFD in the
509	 * next (e.g. due to log forces), we do not want the checkpoint with
510	 * the EFD to be committed before the checkpoint with the EFI.  Hence
511	 * we must strictly order the commit records of the checkpoints so
512	 * that: a) the checkpoint callbacks are attached to the iclogs in the
513	 * correct order; and b) the checkpoints are replayed in correct order
514	 * in log recovery.
515	 *
516	 * Hence we need to add this context to the committing context list so
517	 * that higher sequences will wait for us to write out a commit record
518	 * before they do.
519	 *
520	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
521	 * structure atomically with the addition of this sequence to the
522	 * committing list. This also ensures that we can do unlocked checks
523	 * against the current sequence in log forces without risking
524	 * deferencing a freed context pointer.
525	 */
526	spin_lock(&cil->xc_push_lock);
527	cil->xc_current_sequence = new_ctx->sequence;
528	list_add(&ctx->committing, &cil->xc_committing);
529	spin_unlock(&cil->xc_push_lock);
530	up_write(&cil->xc_ctx_lock);
531
532	/*
533	 * Build a checkpoint transaction header and write it to the log to
534	 * begin the transaction. We need to account for the space used by the
535	 * transaction header here as it is not accounted for in xlog_write().
536	 *
537	 * The LSN we need to pass to the log items on transaction commit is
538	 * the LSN reported by the first log vector write. If we use the commit
539	 * record lsn then we can move the tail beyond the grant write head.
540	 */
541	tic = ctx->ticket;
542	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
543	thdr.th_type = XFS_TRANS_CHECKPOINT;
544	thdr.th_tid = tic->t_tid;
545	thdr.th_num_items = num_iovecs;
546	lhdr.i_addr = &thdr;
547	lhdr.i_len = sizeof(xfs_trans_header_t);
548	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
549	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
550
551	lvhdr.lv_niovecs = 1;
552	lvhdr.lv_iovecp = &lhdr;
553	lvhdr.lv_next = ctx->lv_chain;
554
555	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
 
 
 
 
 
 
 
556	if (error)
557		goto out_abort_free_ticket;
558
559	/*
560	 * now that we've written the checkpoint into the log, strictly
561	 * order the commit records so replay will get them in the right order.
562	 */
563restart:
564	spin_lock(&cil->xc_push_lock);
565	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
566		/*
 
 
 
 
 
 
 
 
 
 
567		 * Higher sequences will wait for this one so skip them.
568		 * Don't wait for own own sequence, either.
569		 */
570		if (new_ctx->sequence >= ctx->sequence)
571			continue;
572		if (!new_ctx->commit_lsn) {
573			/*
574			 * It is still being pushed! Wait for the push to
575			 * complete, then start again from the beginning.
576			 */
577			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
578			goto restart;
579		}
580	}
581	spin_unlock(&cil->xc_push_lock);
582
583	/* xfs_log_done always frees the ticket on error. */
584	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
585	if (commit_lsn == -1)
586		goto out_abort;
587
588	/* attach all the transactions w/ busy extents to iclog */
589	ctx->log_cb.cb_func = xlog_cil_committed;
590	ctx->log_cb.cb_arg = ctx;
591	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
592	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593		goto out_abort;
 
 
 
 
594
595	/*
596	 * now the checkpoint commit is complete and we've attached the
597	 * callbacks to the iclog we can assign the commit LSN to the context
598	 * and wake up anyone who is waiting for the commit to complete.
599	 */
600	spin_lock(&cil->xc_push_lock);
601	ctx->commit_lsn = commit_lsn;
602	wake_up_all(&cil->xc_commit_wait);
603	spin_unlock(&cil->xc_push_lock);
604
605	/* release the hounds! */
606	return xfs_log_release_iclog(log->l_mp, commit_iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607
608out_skip:
609	up_write(&cil->xc_ctx_lock);
610	xfs_log_ticket_put(new_ctx->ticket);
611	kmem_free(new_ctx);
612	return 0;
613
614out_abort_free_ticket:
615	xfs_log_ticket_put(tic);
616out_abort:
617	xlog_cil_committed(ctx, XFS_LI_ABORTED);
618	return XFS_ERROR(EIO);
619}
620
621static void
622xlog_cil_push_work(
623	struct work_struct	*work)
624{
625	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
626							xc_push_work);
627	xlog_cil_push(cil->xc_log);
628}
629
630/*
631 * We need to push CIL every so often so we don't cache more than we can fit in
632 * the log. The limit really is that a checkpoint can't be more than half the
633 * log (the current checkpoint is not allowed to overwrite the previous
634 * checkpoint), but commit latency and memory usage limit this to a smaller
635 * size.
636 */
637static void
638xlog_cil_push_background(
639	struct xlog	*log)
640{
641	struct xfs_cil	*cil = log->l_cilp;
642
643	/*
644	 * The cil won't be empty because we are called while holding the
645	 * context lock so whatever we added to the CIL will still be there
646	 */
647	ASSERT(!list_empty(&cil->xc_cil));
648
649	/*
650	 * don't do a background push if we haven't used up all the
651	 * space available yet.
652	 */
653	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
 
654		return;
 
655
656	spin_lock(&cil->xc_push_lock);
657	if (cil->xc_push_seq < cil->xc_current_sequence) {
658		cil->xc_push_seq = cil->xc_current_sequence;
659		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
660	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661	spin_unlock(&cil->xc_push_lock);
662
663}
664
665/*
666 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
667 * number that is passed. When it returns, the work will be queued for
668 * @push_seq, but it won't be completed. The caller is expected to do any
669 * waiting for push_seq to complete if it is required.
670 */
671static void
672xlog_cil_push_now(
673	struct xlog	*log,
674	xfs_lsn_t	push_seq)
675{
676	struct xfs_cil	*cil = log->l_cilp;
677
678	if (!cil)
679		return;
680
681	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
682
683	/* start on any pending background push to minimise wait time on it */
684	flush_work(&cil->xc_push_work);
685
686	/*
687	 * If the CIL is empty or we've already pushed the sequence then
688	 * there's no work we need to do.
689	 */
690	spin_lock(&cil->xc_push_lock);
691	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
692		spin_unlock(&cil->xc_push_lock);
693		return;
694	}
695
696	cil->xc_push_seq = push_seq;
697	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
698	spin_unlock(&cil->xc_push_lock);
699}
700
701bool
702xlog_cil_empty(
703	struct xlog	*log)
704{
705	struct xfs_cil	*cil = log->l_cilp;
706	bool		empty = false;
707
708	spin_lock(&cil->xc_push_lock);
709	if (list_empty(&cil->xc_cil))
710		empty = true;
711	spin_unlock(&cil->xc_push_lock);
712	return empty;
713}
714
715/*
716 * Commit a transaction with the given vector to the Committed Item List.
717 *
718 * To do this, we need to format the item, pin it in memory if required and
719 * account for the space used by the transaction. Once we have done that we
720 * need to release the unused reservation for the transaction, attach the
721 * transaction to the checkpoint context so we carry the busy extents through
722 * to checkpoint completion, and then unlock all the items in the transaction.
723 *
724 * Called with the context lock already held in read mode to lock out
725 * background commit, returns without it held once background commits are
726 * allowed again.
727 */
728void
729xfs_log_commit_cil(
730	struct xfs_mount	*mp,
731	struct xfs_trans	*tp,
732	xfs_lsn_t		*commit_lsn,
733	int			flags)
734{
735	struct xlog		*log = mp->m_log;
736	struct xfs_cil		*cil = log->l_cilp;
737	int			log_flags = 0;
738
739	if (flags & XFS_TRANS_RELEASE_LOG_RES)
740		log_flags = XFS_LOG_REL_PERM_RESERV;
 
 
 
 
741
742	/* lock out background commit */
743	down_read(&cil->xc_ctx_lock);
744
745	xlog_cil_insert_items(log, tp);
746
747	/* check we didn't blow the reservation */
748	if (tp->t_ticket->t_curr_res < 0)
749		xlog_print_tic_res(mp, tp->t_ticket);
750
751	tp->t_commit_lsn = cil->xc_ctx->sequence;
752	if (commit_lsn)
753		*commit_lsn = tp->t_commit_lsn;
754
755	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
756	xfs_trans_unreserve_and_mod_sb(tp);
757
758	/*
759	 * Once all the items of the transaction have been copied to the CIL,
760	 * the items can be unlocked and freed.
761	 *
762	 * This needs to be done before we drop the CIL context lock because we
763	 * have to update state in the log items and unlock them before they go
764	 * to disk. If we don't, then the CIL checkpoint can race with us and
765	 * we can run checkpoint completion before we've updated and unlocked
766	 * the log items. This affects (at least) processing of stale buffers,
767	 * inodes and EFIs.
768	 */
769	xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
 
 
 
 
 
 
 
770
 
771	xlog_cil_push_background(log);
772
773	up_read(&cil->xc_ctx_lock);
774}
775
776/*
777 * Conditionally push the CIL based on the sequence passed in.
778 *
779 * We only need to push if we haven't already pushed the sequence
780 * number given. Hence the only time we will trigger a push here is
781 * if the push sequence is the same as the current context.
782 *
783 * We return the current commit lsn to allow the callers to determine if a
784 * iclog flush is necessary following this call.
785 */
786xfs_lsn_t
787xlog_cil_force_lsn(
788	struct xlog	*log,
789	xfs_lsn_t	sequence)
790{
791	struct xfs_cil		*cil = log->l_cilp;
792	struct xfs_cil_ctx	*ctx;
793	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
794
795	ASSERT(sequence <= cil->xc_current_sequence);
796
797	/*
798	 * check to see if we need to force out the current context.
799	 * xlog_cil_push() handles racing pushes for the same sequence,
800	 * so no need to deal with it here.
801	 */
802restart:
803	xlog_cil_push_now(log, sequence);
804
805	/*
806	 * See if we can find a previous sequence still committing.
807	 * We need to wait for all previous sequence commits to complete
808	 * before allowing the force of push_seq to go ahead. Hence block
809	 * on commits for those as well.
810	 */
811	spin_lock(&cil->xc_push_lock);
812	list_for_each_entry(ctx, &cil->xc_committing, committing) {
 
 
 
 
 
 
 
813		if (ctx->sequence > sequence)
814			continue;
815		if (!ctx->commit_lsn) {
816			/*
817			 * It is still being pushed! Wait for the push to
818			 * complete, then start again from the beginning.
819			 */
820			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
821			goto restart;
822		}
823		if (ctx->sequence != sequence)
824			continue;
825		/* found it! */
826		commit_lsn = ctx->commit_lsn;
827	}
828
829	/*
830	 * The call to xlog_cil_push_now() executes the push in the background.
831	 * Hence by the time we have got here it our sequence may not have been
832	 * pushed yet. This is true if the current sequence still matches the
833	 * push sequence after the above wait loop and the CIL still contains
834	 * dirty objects.
 
835	 *
836	 * When the push occurs, it will empty the CIL and
837	 * atomically increment the currect sequence past the push sequence and
838	 * move it into the committing list. Of course, if the CIL is clean at
839	 * the time of the push, it won't have pushed the CIL at all, so in that
840	 * case we should try the push for this sequence again from the start
841	 * just in case.
842	 */
843
844	if (sequence == cil->xc_current_sequence &&
845	    !list_empty(&cil->xc_cil)) {
846		spin_unlock(&cil->xc_push_lock);
847		goto restart;
848	}
849
850	spin_unlock(&cil->xc_push_lock);
851	return commit_lsn;
 
 
 
 
 
 
 
 
 
 
 
852}
853
854/*
855 * Check if the current log item was first committed in this sequence.
856 * We can't rely on just the log item being in the CIL, we have to check
857 * the recorded commit sequence number.
858 *
859 * Note: for this to be used in a non-racy manner, it has to be called with
860 * CIL flushing locked out. As a result, it should only be used during the
861 * transaction commit process when deciding what to format into the item.
862 */
863bool
864xfs_log_item_in_current_chkpt(
865	struct xfs_log_item *lip)
866{
867	struct xfs_cil_ctx *ctx;
868
869	if (list_empty(&lip->li_cil))
870		return false;
871
872	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
873
874	/*
875	 * li_seq is written on the first commit of a log item to record the
876	 * first checkpoint it is written to. Hence if it is different to the
877	 * current sequence, we're in a new checkpoint.
878	 */
879	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
880		return false;
881	return true;
882}
883
884/*
885 * Perform initial CIL structure initialisation.
886 */
887int
888xlog_cil_init(
889	struct xlog	*log)
890{
891	struct xfs_cil	*cil;
892	struct xfs_cil_ctx *ctx;
893
894	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
895	if (!cil)
896		return ENOMEM;
897
898	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
899	if (!ctx) {
900		kmem_free(cil);
901		return ENOMEM;
902	}
903
904	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
905	INIT_LIST_HEAD(&cil->xc_cil);
906	INIT_LIST_HEAD(&cil->xc_committing);
907	spin_lock_init(&cil->xc_cil_lock);
908	spin_lock_init(&cil->xc_push_lock);
 
909	init_rwsem(&cil->xc_ctx_lock);
910	init_waitqueue_head(&cil->xc_commit_wait);
911
912	INIT_LIST_HEAD(&ctx->committing);
913	INIT_LIST_HEAD(&ctx->busy_extents);
914	ctx->sequence = 1;
915	ctx->cil = cil;
916	cil->xc_ctx = ctx;
917	cil->xc_current_sequence = ctx->sequence;
918
919	cil->xc_log = log;
920	log->l_cilp = cil;
921	return 0;
922}
923
924void
925xlog_cil_destroy(
926	struct xlog	*log)
927{
928	if (log->l_cilp->xc_ctx) {
929		if (log->l_cilp->xc_ctx->ticket)
930			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
931		kmem_free(log->l_cilp->xc_ctx);
932	}
933
934	ASSERT(list_empty(&log->l_cilp->xc_cil));
935	kmem_free(log->l_cilp);
936}
937
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
  13#include "xfs_extent_busy.h"
 
  14#include "xfs_trans.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_log.h"
  17#include "xfs_log_priv.h"
  18#include "xfs_trace.h"
  19
  20struct workqueue_struct *xfs_discard_wq;
  21
  22/*
  23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
  24 * recover, so we don't allow failure here. Also, we allocate in a context that
  25 * we don't want to be issuing transactions from, so we need to tell the
  26 * allocation code this as well.
  27 *
  28 * We don't reserve any space for the ticket - we are going to steal whatever
  29 * space we require from transactions as they commit. To ensure we reserve all
  30 * the space required, we need to set the current reservation of the ticket to
  31 * zero so that we know to steal the initial transaction overhead from the
  32 * first transaction commit.
  33 */
  34static struct xlog_ticket *
  35xlog_cil_ticket_alloc(
  36	struct xlog	*log)
  37{
  38	struct xlog_ticket *tic;
  39
  40	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
 
 
  41
  42	/*
  43	 * set the current reservation to zero so we know to steal the basic
  44	 * transaction overhead reservation from the first transaction commit.
  45	 */
  46	tic->t_curr_res = 0;
  47	return tic;
  48}
  49
  50/*
  51 * After the first stage of log recovery is done, we know where the head and
  52 * tail of the log are. We need this log initialisation done before we can
  53 * initialise the first CIL checkpoint context.
  54 *
  55 * Here we allocate a log ticket to track space usage during a CIL push.  This
  56 * ticket is passed to xlog_write() directly so that we don't slowly leak log
  57 * space by failing to account for space used by log headers and additional
  58 * region headers for split regions.
  59 */
  60void
  61xlog_cil_init_post_recovery(
  62	struct xlog	*log)
  63{
  64	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
  65	log->l_cilp->xc_ctx->sequence = 1;
  66}
  67
  68static inline int
  69xlog_cil_iovec_space(
  70	uint	niovecs)
  71{
  72	return round_up((sizeof(struct xfs_log_vec) +
  73					niovecs * sizeof(struct xfs_log_iovec)),
  74			sizeof(uint64_t));
  75}
  76
  77/*
  78 * Allocate or pin log vector buffers for CIL insertion.
  79 *
  80 * The CIL currently uses disposable buffers for copying a snapshot of the
  81 * modified items into the log during a push. The biggest problem with this is
  82 * the requirement to allocate the disposable buffer during the commit if:
  83 *	a) does not exist; or
  84 *	b) it is too small
  85 *
  86 * If we do this allocation within xlog_cil_insert_format_items(), it is done
  87 * under the xc_ctx_lock, which means that a CIL push cannot occur during
  88 * the memory allocation. This means that we have a potential deadlock situation
  89 * under low memory conditions when we have lots of dirty metadata pinned in
  90 * the CIL and we need a CIL commit to occur to free memory.
  91 *
  92 * To avoid this, we need to move the memory allocation outside the
  93 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
  94 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
  95 * vector buffers between the check and the formatting of the item into the
  96 * log vector buffer within the xc_ctx_lock.
  97 *
  98 * Because the log vector buffer needs to be unchanged during the CIL push
  99 * process, we cannot share the buffer between the transaction commit (which
 100 * modifies the buffer) and the CIL push context that is writing the changes
 101 * into the log. This means skipping preallocation of buffer space is
 102 * unreliable, but we most definitely do not want to be allocating and freeing
 103 * buffers unnecessarily during commits when overwrites can be done safely.
 104 *
 105 * The simplest solution to this problem is to allocate a shadow buffer when a
 106 * log item is committed for the second time, and then to only use this buffer
 107 * if necessary. The buffer can remain attached to the log item until such time
 108 * it is needed, and this is the buffer that is reallocated to match the size of
 109 * the incoming modification. Then during the formatting of the item we can swap
 110 * the active buffer with the new one if we can't reuse the existing buffer. We
 111 * don't free the old buffer as it may be reused on the next modification if
 112 * it's size is right, otherwise we'll free and reallocate it at that point.
 113 *
 114 * This function builds a vector for the changes in each log item in the
 115 * transaction. It then works out the length of the buffer needed for each log
 116 * item, allocates them and attaches the vector to the log item in preparation
 117 * for the formatting step which occurs under the xc_ctx_lock.
 118 *
 119 * While this means the memory footprint goes up, it avoids the repeated
 120 * alloc/free pattern that repeated modifications of an item would otherwise
 121 * cause, and hence minimises the CPU overhead of such behaviour.
 122 */
 123static void
 124xlog_cil_alloc_shadow_bufs(
 125	struct xlog		*log,
 126	struct xfs_trans	*tp)
 127{
 128	struct xfs_log_item	*lip;
 129
 130	list_for_each_entry(lip, &tp->t_items, li_trans) {
 131		struct xfs_log_vec *lv;
 132		int	niovecs = 0;
 133		int	nbytes = 0;
 134		int	buf_size;
 135		bool	ordered = false;
 136
 137		/* Skip items which aren't dirty in this transaction. */
 138		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 139			continue;
 140
 141		/* get number of vecs and size of data to be stored */
 142		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
 143
 144		/*
 145		 * Ordered items need to be tracked but we do not wish to write
 146		 * them. We need a logvec to track the object, but we do not
 147		 * need an iovec or buffer to be allocated for copying data.
 148		 */
 149		if (niovecs == XFS_LOG_VEC_ORDERED) {
 150			ordered = true;
 151			niovecs = 0;
 152			nbytes = 0;
 153		}
 154
 155		/*
 156		 * We 64-bit align the length of each iovec so that the start
 157		 * of the next one is naturally aligned.  We'll need to
 158		 * account for that slack space here. Then round nbytes up
 159		 * to 64-bit alignment so that the initial buffer alignment is
 160		 * easy to calculate and verify.
 161		 */
 162		nbytes += niovecs * sizeof(uint64_t);
 163		nbytes = round_up(nbytes, sizeof(uint64_t));
 164
 165		/*
 166		 * The data buffer needs to start 64-bit aligned, so round up
 167		 * that space to ensure we can align it appropriately and not
 168		 * overrun the buffer.
 169		 */
 170		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
 171
 172		/*
 173		 * if we have no shadow buffer, or it is too small, we need to
 174		 * reallocate it.
 175		 */
 176		if (!lip->li_lv_shadow ||
 177		    buf_size > lip->li_lv_shadow->lv_size) {
 178
 179			/*
 180			 * We free and allocate here as a realloc would copy
 181			 * unnecessary data. We don't use kmem_zalloc() for the
 182			 * same reason - we don't need to zero the data area in
 183			 * the buffer, only the log vector header and the iovec
 184			 * storage.
 185			 */
 186			kmem_free(lip->li_lv_shadow);
 187
 188			lv = kmem_alloc_large(buf_size, KM_NOFS);
 189			memset(lv, 0, xlog_cil_iovec_space(niovecs));
 190
 191			lv->lv_item = lip;
 192			lv->lv_size = buf_size;
 193			if (ordered)
 194				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 195			else
 196				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
 197			lip->li_lv_shadow = lv;
 198		} else {
 199			/* same or smaller, optimise common overwrite case */
 200			lv = lip->li_lv_shadow;
 201			if (ordered)
 202				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
 203			else
 204				lv->lv_buf_len = 0;
 205			lv->lv_bytes = 0;
 206			lv->lv_next = NULL;
 207		}
 208
 209		/* Ensure the lv is set up according to ->iop_size */
 210		lv->lv_niovecs = niovecs;
 211
 212		/* The allocated data region lies beyond the iovec region */
 213		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
 214	}
 215
 216}
 217
 218/*
 219 * Prepare the log item for insertion into the CIL. Calculate the difference in
 220 * log space and vectors it will consume, and if it is a new item pin it as
 221 * well.
 222 */
 223STATIC void
 224xfs_cil_prepare_item(
 225	struct xlog		*log,
 226	struct xfs_log_vec	*lv,
 227	struct xfs_log_vec	*old_lv,
 228	int			*diff_len,
 229	int			*diff_iovecs)
 230{
 231	/* Account for the new LV being passed in */
 232	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
 233		*diff_len += lv->lv_bytes;
 234		*diff_iovecs += lv->lv_niovecs;
 235	}
 236
 237	/*
 238	 * If there is no old LV, this is the first time we've seen the item in
 239	 * this CIL context and so we need to pin it. If we are replacing the
 240	 * old_lv, then remove the space it accounts for and make it the shadow
 241	 * buffer for later freeing. In both cases we are now switching to the
 242	 * shadow buffer, so update the pointer to it appropriately.
 243	 */
 244	if (!old_lv) {
 245		if (lv->lv_item->li_ops->iop_pin)
 246			lv->lv_item->li_ops->iop_pin(lv->lv_item);
 247		lv->lv_item->li_lv_shadow = NULL;
 248	} else if (old_lv != lv) {
 249		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
 250
 251		*diff_len -= old_lv->lv_bytes;
 252		*diff_iovecs -= old_lv->lv_niovecs;
 253		lv->lv_item->li_lv_shadow = old_lv;
 254	}
 255
 256	/* attach new log vector to log item */
 257	lv->lv_item->li_lv = lv;
 258
 259	/*
 260	 * If this is the first time the item is being committed to the
 261	 * CIL, store the sequence number on the log item so we can
 262	 * tell in future commits whether this is the first checkpoint
 263	 * the item is being committed into.
 264	 */
 265	if (!lv->lv_item->li_seq)
 266		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
 267}
 268
 269/*
 270 * Format log item into a flat buffers
 271 *
 272 * For delayed logging, we need to hold a formatted buffer containing all the
 273 * changes on the log item. This enables us to relog the item in memory and
 274 * write it out asynchronously without needing to relock the object that was
 275 * modified at the time it gets written into the iclog.
 276 *
 277 * This function takes the prepared log vectors attached to each log item, and
 278 * formats the changes into the log vector buffer. The buffer it uses is
 279 * dependent on the current state of the vector in the CIL - the shadow lv is
 280 * guaranteed to be large enough for the current modification, but we will only
 281 * use that if we can't reuse the existing lv. If we can't reuse the existing
 282 * lv, then simple swap it out for the shadow lv. We don't free it - that is
 283 * done lazily either by th enext modification or the freeing of the log item.
 284 *
 285 * We don't set up region headers during this process; we simply copy the
 286 * regions into the flat buffer. We can do this because we still have to do a
 287 * formatting step to write the regions into the iclog buffer.  Writing the
 288 * ophdrs during the iclog write means that we can support splitting large
 289 * regions across iclog boundares without needing a change in the format of the
 290 * item/region encapsulation.
 291 *
 292 * Hence what we need to do now is change the rewrite the vector array to point
 293 * to the copied region inside the buffer we just allocated. This allows us to
 294 * format the regions into the iclog as though they are being formatted
 295 * directly out of the objects themselves.
 296 */
 297static void
 298xlog_cil_insert_format_items(
 299	struct xlog		*log,
 300	struct xfs_trans	*tp,
 301	int			*diff_len,
 302	int			*diff_iovecs)
 303{
 304	struct xfs_log_item	*lip;
 305
 306
 307	/* Bail out if we didn't find a log item.  */
 308	if (list_empty(&tp->t_items)) {
 309		ASSERT(0);
 310		return;
 311	}
 312
 313	list_for_each_entry(lip, &tp->t_items, li_trans) {
 
 314		struct xfs_log_vec *lv;
 315		struct xfs_log_vec *old_lv = NULL;
 316		struct xfs_log_vec *shadow;
 
 
 317		bool	ordered = false;
 318
 319		/* Skip items which aren't dirty in this transaction. */
 320		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 
 
 
 
 
 
 
 321			continue;
 322
 323		/*
 324		 * The formatting size information is already attached to
 325		 * the shadow lv on the log item.
 
 326		 */
 327		shadow = lip->li_lv_shadow;
 328		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
 329			ordered = true;
 
 
 
 330
 331		/* Skip items that do not have any vectors for writing */
 332		if (!shadow->lv_niovecs && !ordered)
 333			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335		/* compare to existing item size */
 336		old_lv = lip->li_lv;
 337		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
 338			/* same or smaller, optimise common overwrite case */
 339			lv = lip->li_lv;
 340			lv->lv_next = NULL;
 341
 342			if (ordered)
 343				goto insert;
 344
 345			/*
 346			 * set the item up as though it is a new insertion so
 347			 * that the space reservation accounting is correct.
 348			 */
 349			*diff_iovecs -= lv->lv_niovecs;
 350			*diff_len -= lv->lv_bytes;
 351
 352			/* Ensure the lv is set up according to ->iop_size */
 353			lv->lv_niovecs = shadow->lv_niovecs;
 354
 355			/* reset the lv buffer information for new formatting */
 356			lv->lv_buf_len = 0;
 357			lv->lv_bytes = 0;
 358			lv->lv_buf = (char *)lv +
 359					xlog_cil_iovec_space(lv->lv_niovecs);
 360		} else {
 361			/* switch to shadow buffer! */
 362			lv = shadow;
 363			lv->lv_item = lip;
 
 364			if (ordered) {
 365				/* track as an ordered logvec */
 366				ASSERT(lip->li_lv == NULL);
 
 367				goto insert;
 368			}
 
 369		}
 370
 
 
 
 
 
 
 371		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
 
 372		lip->li_ops->iop_format(lip, lv);
 373insert:
 
 374		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
 375	}
 376}
 377
 378/*
 379 * Insert the log items into the CIL and calculate the difference in space
 380 * consumed by the item. Add the space to the checkpoint ticket and calculate
 381 * if the change requires additional log metadata. If it does, take that space
 382 * as well. Remove the amount of space we added to the checkpoint ticket from
 383 * the current transaction ticket so that the accounting works out correctly.
 384 */
 385static void
 386xlog_cil_insert_items(
 387	struct xlog		*log,
 388	struct xfs_trans	*tp)
 389{
 390	struct xfs_cil		*cil = log->l_cilp;
 391	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
 392	struct xfs_log_item	*lip;
 393	int			len = 0;
 394	int			diff_iovecs = 0;
 395	int			iclog_space;
 396	int			iovhdr_res = 0, split_res = 0, ctx_res = 0;
 397
 398	ASSERT(tp);
 399
 400	/*
 401	 * We can do this safely because the context can't checkpoint until we
 402	 * are done so it doesn't matter exactly how we update the CIL.
 403	 */
 404	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
 405
 
 
 
 
 
 406	spin_lock(&cil->xc_cil_lock);
 
 
 
 
 
 
 
 
 
 407
 408	/* account for space used by new iovec headers  */
 409	iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
 410	len += iovhdr_res;
 411	ctx->nvecs += diff_iovecs;
 412
 413	/* attach the transaction to the CIL if it has any busy extents */
 414	if (!list_empty(&tp->t_busy))
 415		list_splice_init(&tp->t_busy, &ctx->busy_extents);
 416
 417	/*
 418	 * Now transfer enough transaction reservation to the context ticket
 419	 * for the checkpoint. The context ticket is special - the unit
 420	 * reservation has to grow as well as the current reservation as we
 421	 * steal from tickets so we can correctly determine the space used
 422	 * during the transaction commit.
 423	 */
 424	if (ctx->ticket->t_curr_res == 0) {
 425		ctx_res = ctx->ticket->t_unit_res;
 426		ctx->ticket->t_curr_res = ctx_res;
 427		tp->t_ticket->t_curr_res -= ctx_res;
 428	}
 429
 430	/* do we need space for more log record headers? */
 431	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
 432	if (len > 0 && (ctx->space_used / iclog_space !=
 433				(ctx->space_used + len) / iclog_space)) {
 434		split_res = (len + iclog_space - 1) / iclog_space;
 
 
 435		/* need to take into account split region headers, too */
 436		split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
 437		ctx->ticket->t_unit_res += split_res;
 438		ctx->ticket->t_curr_res += split_res;
 439		tp->t_ticket->t_curr_res -= split_res;
 440		ASSERT(tp->t_ticket->t_curr_res >= len);
 441	}
 442	tp->t_ticket->t_curr_res -= len;
 443	ctx->space_used += len;
 444
 445	/*
 446	 * If we've overrun the reservation, dump the tx details before we move
 447	 * the log items. Shutdown is imminent...
 448	 */
 449	if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
 450		xfs_warn(log->l_mp, "Transaction log reservation overrun:");
 451		xfs_warn(log->l_mp,
 452			 "  log items: %d bytes (iov hdrs: %d bytes)",
 453			 len, iovhdr_res);
 454		xfs_warn(log->l_mp, "  split region headers: %d bytes",
 455			 split_res);
 456		xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
 457		xlog_print_trans(tp);
 458	}
 459
 460	/*
 461	 * Now (re-)position everything modified at the tail of the CIL.
 462	 * We do this here so we only need to take the CIL lock once during
 463	 * the transaction commit.
 464	 */
 465	list_for_each_entry(lip, &tp->t_items, li_trans) {
 466
 467		/* Skip items which aren't dirty in this transaction. */
 468		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 469			continue;
 470
 471		/*
 472		 * Only move the item if it isn't already at the tail. This is
 473		 * to prevent a transient list_empty() state when reinserting
 474		 * an item that is already the only item in the CIL.
 475		 */
 476		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
 477			list_move_tail(&lip->li_cil, &cil->xc_cil);
 478	}
 479
 480	spin_unlock(&cil->xc_cil_lock);
 481
 482	if (tp->t_ticket->t_curr_res < 0)
 483		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
 484}
 485
 486static void
 487xlog_cil_free_logvec(
 488	struct xfs_log_vec	*log_vector)
 489{
 490	struct xfs_log_vec	*lv;
 491
 492	for (lv = log_vector; lv; ) {
 493		struct xfs_log_vec *next = lv->lv_next;
 494		kmem_free(lv);
 495		lv = next;
 496	}
 497}
 498
 499static void
 500xlog_discard_endio_work(
 501	struct work_struct	*work)
 502{
 503	struct xfs_cil_ctx	*ctx =
 504		container_of(work, struct xfs_cil_ctx, discard_endio_work);
 505	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
 506
 507	xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
 508	kmem_free(ctx);
 509}
 510
 511/*
 512 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
 513 * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
 514 * get the execution delayed up to 30 seconds for weird reasons.
 515 */
 516static void
 517xlog_discard_endio(
 518	struct bio		*bio)
 519{
 520	struct xfs_cil_ctx	*ctx = bio->bi_private;
 521
 522	INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
 523	queue_work(xfs_discard_wq, &ctx->discard_endio_work);
 524	bio_put(bio);
 525}
 526
 527static void
 528xlog_discard_busy_extents(
 529	struct xfs_mount	*mp,
 530	struct xfs_cil_ctx	*ctx)
 531{
 532	struct list_head	*list = &ctx->busy_extents;
 533	struct xfs_extent_busy	*busyp;
 534	struct bio		*bio = NULL;
 535	struct blk_plug		plug;
 536	int			error = 0;
 537
 538	ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
 539
 540	blk_start_plug(&plug);
 541	list_for_each_entry(busyp, list, list) {
 542		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
 543					 busyp->length);
 544
 545		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
 546				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
 547				XFS_FSB_TO_BB(mp, busyp->length),
 548				GFP_NOFS, 0, &bio);
 549		if (error && error != -EOPNOTSUPP) {
 550			xfs_info(mp,
 551	 "discard failed for extent [0x%llx,%u], error %d",
 552				 (unsigned long long)busyp->bno,
 553				 busyp->length,
 554				 error);
 555			break;
 556		}
 557	}
 558
 559	if (bio) {
 560		bio->bi_private = ctx;
 561		bio->bi_end_io = xlog_discard_endio;
 562		submit_bio(bio);
 563	} else {
 564		xlog_discard_endio_work(&ctx->discard_endio_work);
 565	}
 566	blk_finish_plug(&plug);
 567}
 568
 569/*
 570 * Mark all items committed and clear busy extents. We free the log vector
 571 * chains in a separate pass so that we unpin the log items as quickly as
 572 * possible.
 573 */
 574static void
 575xlog_cil_committed(
 576	struct xfs_cil_ctx	*ctx)
 
 577{
 
 578	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
 579	bool			abort = XLOG_FORCED_SHUTDOWN(ctx->cil->xc_log);
 580
 581	/*
 582	 * If the I/O failed, we're aborting the commit and already shutdown.
 583	 * Wake any commit waiters before aborting the log items so we don't
 584	 * block async log pushers on callbacks. Async log pushers explicitly do
 585	 * not wait on log force completion because they may be holding locks
 586	 * required to unpin items.
 587	 */
 588	if (abort) {
 589		spin_lock(&ctx->cil->xc_push_lock);
 590		wake_up_all(&ctx->cil->xc_commit_wait);
 591		spin_unlock(&ctx->cil->xc_push_lock);
 592	}
 593
 594	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
 595					ctx->start_lsn, abort);
 596
 597	xfs_extent_busy_sort(&ctx->busy_extents);
 598	xfs_extent_busy_clear(mp, &ctx->busy_extents,
 599			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
 600
 601	spin_lock(&ctx->cil->xc_push_lock);
 602	list_del(&ctx->committing);
 603	spin_unlock(&ctx->cil->xc_push_lock);
 604
 605	xlog_cil_free_logvec(ctx->lv_chain);
 606
 607	if (!list_empty(&ctx->busy_extents))
 608		xlog_discard_busy_extents(mp, ctx);
 609	else
 610		kmem_free(ctx);
 611}
 612
 613void
 614xlog_cil_process_committed(
 615	struct list_head	*list)
 616{
 617	struct xfs_cil_ctx	*ctx;
 618
 619	while ((ctx = list_first_entry_or_null(list,
 620			struct xfs_cil_ctx, iclog_entry))) {
 621		list_del(&ctx->iclog_entry);
 622		xlog_cil_committed(ctx);
 623	}
 624}
 625
 626/*
 627 * Push the Committed Item List to the log.
 628 *
 629 * If the current sequence is the same as xc_push_seq we need to do a flush. If
 630 * xc_push_seq is less than the current sequence, then it has already been
 631 * flushed and we don't need to do anything - the caller will wait for it to
 632 * complete if necessary.
 633 *
 634 * xc_push_seq is checked unlocked against the sequence number for a match.
 635 * Hence we can allow log forces to run racily and not issue pushes for the
 636 * same sequence twice.  If we get a race between multiple pushes for the same
 637 * sequence they will block on the first one and then abort, hence avoiding
 638 * needless pushes.
 639 */
 640static void
 641xlog_cil_push_work(
 642	struct work_struct	*work)
 643{
 644	struct xfs_cil		*cil =
 645		container_of(work, struct xfs_cil, xc_push_work);
 646	struct xlog		*log = cil->xc_log;
 647	struct xfs_log_vec	*lv;
 648	struct xfs_cil_ctx	*ctx;
 649	struct xfs_cil_ctx	*new_ctx;
 650	struct xlog_in_core	*commit_iclog;
 651	struct xlog_ticket	*tic;
 652	int			num_iovecs;
 653	int			error = 0;
 654	struct xfs_trans_header thdr;
 655	struct xfs_log_iovec	lhdr;
 656	struct xfs_log_vec	lvhdr = { NULL };
 657	xfs_lsn_t		preflush_tail_lsn;
 658	xfs_lsn_t		commit_lsn;
 659	xfs_csn_t		push_seq;
 660	struct bio		bio;
 661	DECLARE_COMPLETION_ONSTACK(bdev_flush);
 
 662
 663	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
 664	new_ctx->ticket = xlog_cil_ticket_alloc(log);
 665
 666	down_write(&cil->xc_ctx_lock);
 667	ctx = cil->xc_ctx;
 668
 669	spin_lock(&cil->xc_push_lock);
 670	push_seq = cil->xc_push_seq;
 671	ASSERT(push_seq <= ctx->sequence);
 672
 673	/*
 674	 * As we are about to switch to a new, empty CIL context, we no longer
 675	 * need to throttle tasks on CIL space overruns. Wake any waiters that
 676	 * the hard push throttle may have caught so they can start committing
 677	 * to the new context. The ctx->xc_push_lock provides the serialisation
 678	 * necessary for safely using the lockless waitqueue_active() check in
 679	 * this context.
 680	 */
 681	if (waitqueue_active(&cil->xc_push_wait))
 682		wake_up_all(&cil->xc_push_wait);
 683
 684	/*
 685	 * Check if we've anything to push. If there is nothing, then we don't
 686	 * move on to a new sequence number and so we have to be able to push
 687	 * this sequence again later.
 688	 */
 689	if (list_empty(&cil->xc_cil)) {
 690		cil->xc_push_seq = 0;
 691		spin_unlock(&cil->xc_push_lock);
 692		goto out_skip;
 693	}
 
 694
 695
 696	/* check for a previously pushed sequence */
 697	if (push_seq < cil->xc_ctx->sequence) {
 698		spin_unlock(&cil->xc_push_lock);
 699		goto out_skip;
 700	}
 701
 702	/*
 703	 * We are now going to push this context, so add it to the committing
 704	 * list before we do anything else. This ensures that anyone waiting on
 705	 * this push can easily detect the difference between a "push in
 706	 * progress" and "CIL is empty, nothing to do".
 707	 *
 708	 * IOWs, a wait loop can now check for:
 709	 *	the current sequence not being found on the committing list;
 710	 *	an empty CIL; and
 711	 *	an unchanged sequence number
 712	 * to detect a push that had nothing to do and therefore does not need
 713	 * waiting on. If the CIL is not empty, we get put on the committing
 714	 * list before emptying the CIL and bumping the sequence number. Hence
 715	 * an empty CIL and an unchanged sequence number means we jumped out
 716	 * above after doing nothing.
 717	 *
 718	 * Hence the waiter will either find the commit sequence on the
 719	 * committing list or the sequence number will be unchanged and the CIL
 720	 * still dirty. In that latter case, the push has not yet started, and
 721	 * so the waiter will have to continue trying to check the CIL
 722	 * committing list until it is found. In extreme cases of delay, the
 723	 * sequence may fully commit between the attempts the wait makes to wait
 724	 * on the commit sequence.
 725	 */
 726	list_add(&ctx->committing, &cil->xc_committing);
 727	spin_unlock(&cil->xc_push_lock);
 728
 729	/*
 730	 * The CIL is stable at this point - nothing new will be added to it
 731	 * because we hold the flush lock exclusively. Hence we can now issue
 732	 * a cache flush to ensure all the completed metadata in the journal we
 733	 * are about to overwrite is on stable storage.
 734	 *
 735	 * Because we are issuing this cache flush before we've written the
 736	 * tail lsn to the iclog, we can have metadata IO completions move the
 737	 * tail forwards between the completion of this flush and the iclog
 738	 * being written. In this case, we need to re-issue the cache flush
 739	 * before the iclog write. To detect whether the log tail moves, sample
 740	 * the tail LSN *before* we issue the flush.
 741	 */
 742	preflush_tail_lsn = atomic64_read(&log->l_tail_lsn);
 743	xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev,
 744				&bdev_flush);
 745
 746	/*
 747	 * Pull all the log vectors off the items in the CIL, and remove the
 748	 * items from the CIL. We don't need the CIL lock here because it's only
 749	 * needed on the transaction commit side which is currently locked out
 750	 * by the flush lock.
 751	 */
 752	lv = NULL;
 753	num_iovecs = 0;
 754	while (!list_empty(&cil->xc_cil)) {
 755		struct xfs_log_item	*item;
 756
 757		item = list_first_entry(&cil->xc_cil,
 758					struct xfs_log_item, li_cil);
 759		list_del_init(&item->li_cil);
 760		if (!ctx->lv_chain)
 761			ctx->lv_chain = item->li_lv;
 762		else
 763			lv->lv_next = item->li_lv;
 764		lv = item->li_lv;
 765		item->li_lv = NULL;
 766		num_iovecs += lv->lv_niovecs;
 767	}
 768
 769	/*
 770	 * initialise the new context and attach it to the CIL. Then attach
 771	 * the current context to the CIL committing list so it can be found
 772	 * during log forces to extract the commit lsn of the sequence that
 773	 * needs to be forced.
 774	 */
 775	INIT_LIST_HEAD(&new_ctx->committing);
 776	INIT_LIST_HEAD(&new_ctx->busy_extents);
 777	new_ctx->sequence = ctx->sequence + 1;
 778	new_ctx->cil = cil;
 779	cil->xc_ctx = new_ctx;
 780
 781	/*
 782	 * The switch is now done, so we can drop the context lock and move out
 783	 * of a shared context. We can't just go straight to the commit record,
 784	 * though - we need to synchronise with previous and future commits so
 785	 * that the commit records are correctly ordered in the log to ensure
 786	 * that we process items during log IO completion in the correct order.
 787	 *
 788	 * For example, if we get an EFI in one checkpoint and the EFD in the
 789	 * next (e.g. due to log forces), we do not want the checkpoint with
 790	 * the EFD to be committed before the checkpoint with the EFI.  Hence
 791	 * we must strictly order the commit records of the checkpoints so
 792	 * that: a) the checkpoint callbacks are attached to the iclogs in the
 793	 * correct order; and b) the checkpoints are replayed in correct order
 794	 * in log recovery.
 795	 *
 796	 * Hence we need to add this context to the committing context list so
 797	 * that higher sequences will wait for us to write out a commit record
 798	 * before they do.
 799	 *
 800	 * xfs_log_force_seq requires us to mirror the new sequence into the cil
 801	 * structure atomically with the addition of this sequence to the
 802	 * committing list. This also ensures that we can do unlocked checks
 803	 * against the current sequence in log forces without risking
 804	 * deferencing a freed context pointer.
 805	 */
 806	spin_lock(&cil->xc_push_lock);
 807	cil->xc_current_sequence = new_ctx->sequence;
 
 808	spin_unlock(&cil->xc_push_lock);
 809	up_write(&cil->xc_ctx_lock);
 810
 811	/*
 812	 * Build a checkpoint transaction header and write it to the log to
 813	 * begin the transaction. We need to account for the space used by the
 814	 * transaction header here as it is not accounted for in xlog_write().
 815	 *
 816	 * The LSN we need to pass to the log items on transaction commit is
 817	 * the LSN reported by the first log vector write. If we use the commit
 818	 * record lsn then we can move the tail beyond the grant write head.
 819	 */
 820	tic = ctx->ticket;
 821	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
 822	thdr.th_type = XFS_TRANS_CHECKPOINT;
 823	thdr.th_tid = tic->t_tid;
 824	thdr.th_num_items = num_iovecs;
 825	lhdr.i_addr = &thdr;
 826	lhdr.i_len = sizeof(xfs_trans_header_t);
 827	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
 828	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
 829
 830	lvhdr.lv_niovecs = 1;
 831	lvhdr.lv_iovecp = &lhdr;
 832	lvhdr.lv_next = ctx->lv_chain;
 833
 834	/*
 835	 * Before we format and submit the first iclog, we have to ensure that
 836	 * the metadata writeback ordering cache flush is complete.
 837	 */
 838	wait_for_completion(&bdev_flush);
 839
 840	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL,
 841				XLOG_START_TRANS);
 842	if (error)
 843		goto out_abort_free_ticket;
 844
 845	/*
 846	 * now that we've written the checkpoint into the log, strictly
 847	 * order the commit records so replay will get them in the right order.
 848	 */
 849restart:
 850	spin_lock(&cil->xc_push_lock);
 851	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
 852		/*
 853		 * Avoid getting stuck in this loop because we were woken by the
 854		 * shutdown, but then went back to sleep once already in the
 855		 * shutdown state.
 856		 */
 857		if (XLOG_FORCED_SHUTDOWN(log)) {
 858			spin_unlock(&cil->xc_push_lock);
 859			goto out_abort_free_ticket;
 860		}
 861
 862		/*
 863		 * Higher sequences will wait for this one so skip them.
 864		 * Don't wait for our own sequence, either.
 865		 */
 866		if (new_ctx->sequence >= ctx->sequence)
 867			continue;
 868		if (!new_ctx->commit_lsn) {
 869			/*
 870			 * It is still being pushed! Wait for the push to
 871			 * complete, then start again from the beginning.
 872			 */
 873			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
 874			goto restart;
 875		}
 876	}
 877	spin_unlock(&cil->xc_push_lock);
 878
 879	error = xlog_commit_record(log, tic, &commit_iclog, &commit_lsn);
 
 
 
 
 
 
 
 
 880	if (error)
 881		goto out_abort_free_ticket;
 882
 883	xfs_log_ticket_ungrant(log, tic);
 884
 885	/*
 886	 * Once we attach the ctx to the iclog, a shutdown can process the
 887	 * iclog, run the callbacks and free the ctx. The only thing preventing
 888	 * this potential UAF situation here is that we are holding the
 889	 * icloglock. Hence we cannot access the ctx once we have attached the
 890	 * callbacks and dropped the icloglock.
 891	 */
 892	spin_lock(&log->l_icloglock);
 893	if (commit_iclog->ic_state == XLOG_STATE_IOERROR) {
 894		spin_unlock(&log->l_icloglock);
 895		goto out_abort;
 896	}
 897	ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
 898		      commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
 899	list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
 900
 901	/*
 902	 * now the checkpoint commit is complete and we've attached the
 903	 * callbacks to the iclog we can assign the commit LSN to the context
 904	 * and wake up anyone who is waiting for the commit to complete.
 905	 */
 906	spin_lock(&cil->xc_push_lock);
 907	ctx->commit_lsn = commit_lsn;
 908	wake_up_all(&cil->xc_commit_wait);
 909	spin_unlock(&cil->xc_push_lock);
 910
 911	/*
 912	 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
 913	 * to complete before we submit the commit_iclog. We can't use state
 914	 * checks for this - ACTIVE can be either a past completed iclog or a
 915	 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
 916	 * past or future iclog awaiting IO or ordered IO completion to be run.
 917	 * In the latter case, if it's a future iclog and we wait on it, the we
 918	 * will hang because it won't get processed through to ic_force_wait
 919	 * wakeup until this commit_iclog is written to disk.  Hence we use the
 920	 * iclog header lsn and compare it to the commit lsn to determine if we
 921	 * need to wait on iclogs or not.
 922	 *
 923	 * NOTE: It is not safe to reference the ctx after this check as we drop
 924	 * the icloglock if we have to wait for completion of other iclogs.
 925	 */
 926	if (ctx->start_lsn != commit_lsn) {
 927		xfs_lsn_t	plsn;
 928
 929		plsn = be64_to_cpu(commit_iclog->ic_prev->ic_header.h_lsn);
 930		if (plsn && XFS_LSN_CMP(plsn, commit_lsn) < 0) {
 931			/*
 932			 * Waiting on ic_force_wait orders the completion of
 933			 * iclogs older than ic_prev. Hence we only need to wait
 934			 * on the most recent older iclog here.
 935			 */
 936			xlog_wait_on_iclog(commit_iclog->ic_prev);
 937			spin_lock(&log->l_icloglock);
 938		}
 939
 940		/*
 941		 * We need to issue a pre-flush so that the ordering for this
 942		 * checkpoint is correctly preserved down to stable storage.
 943		 */
 944		commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
 945	}
 946
 947	/*
 948	 * The commit iclog must be written to stable storage to guarantee
 949	 * journal IO vs metadata writeback IO is correctly ordered on stable
 950	 * storage.
 951	 */
 952	commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
 953	xlog_state_release_iclog(log, commit_iclog, preflush_tail_lsn);
 954	spin_unlock(&log->l_icloglock);
 955	return;
 956
 957out_skip:
 958	up_write(&cil->xc_ctx_lock);
 959	xfs_log_ticket_put(new_ctx->ticket);
 960	kmem_free(new_ctx);
 961	return;
 962
 963out_abort_free_ticket:
 964	xfs_log_ticket_ungrant(log, tic);
 965out_abort:
 966	ASSERT(XLOG_FORCED_SHUTDOWN(log));
 967	xlog_cil_committed(ctx);
 
 
 
 
 
 
 
 
 
 968}
 969
 970/*
 971 * We need to push CIL every so often so we don't cache more than we can fit in
 972 * the log. The limit really is that a checkpoint can't be more than half the
 973 * log (the current checkpoint is not allowed to overwrite the previous
 974 * checkpoint), but commit latency and memory usage limit this to a smaller
 975 * size.
 976 */
 977static void
 978xlog_cil_push_background(
 979	struct xlog	*log) __releases(cil->xc_ctx_lock)
 980{
 981	struct xfs_cil	*cil = log->l_cilp;
 982
 983	/*
 984	 * The cil won't be empty because we are called while holding the
 985	 * context lock so whatever we added to the CIL will still be there
 986	 */
 987	ASSERT(!list_empty(&cil->xc_cil));
 988
 989	/*
 990	 * Don't do a background push if we haven't used up all the
 991	 * space available yet.
 992	 */
 993	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
 994		up_read(&cil->xc_ctx_lock);
 995		return;
 996	}
 997
 998	spin_lock(&cil->xc_push_lock);
 999	if (cil->xc_push_seq < cil->xc_current_sequence) {
1000		cil->xc_push_seq = cil->xc_current_sequence;
1001		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
1002	}
1003
1004	/*
1005	 * Drop the context lock now, we can't hold that if we need to sleep
1006	 * because we are over the blocking threshold. The push_lock is still
1007	 * held, so blocking threshold sleep/wakeup is still correctly
1008	 * serialised here.
1009	 */
1010	up_read(&cil->xc_ctx_lock);
1011
1012	/*
1013	 * If we are well over the space limit, throttle the work that is being
1014	 * done until the push work on this context has begun. Enforce the hard
1015	 * throttle on all transaction commits once it has been activated, even
1016	 * if the committing transactions have resulted in the space usage
1017	 * dipping back down under the hard limit.
1018	 *
1019	 * The ctx->xc_push_lock provides the serialisation necessary for safely
1020	 * using the lockless waitqueue_active() check in this context.
1021	 */
1022	if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1023	    waitqueue_active(&cil->xc_push_wait)) {
1024		trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1025		ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1026		xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1027		return;
1028	}
1029
1030	spin_unlock(&cil->xc_push_lock);
1031
1032}
1033
1034/*
1035 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1036 * number that is passed. When it returns, the work will be queued for
1037 * @push_seq, but it won't be completed. The caller is expected to do any
1038 * waiting for push_seq to complete if it is required.
1039 */
1040static void
1041xlog_cil_push_now(
1042	struct xlog	*log,
1043	xfs_lsn_t	push_seq)
1044{
1045	struct xfs_cil	*cil = log->l_cilp;
1046
1047	if (!cil)
1048		return;
1049
1050	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1051
1052	/* start on any pending background push to minimise wait time on it */
1053	flush_work(&cil->xc_push_work);
1054
1055	/*
1056	 * If the CIL is empty or we've already pushed the sequence then
1057	 * there's no work we need to do.
1058	 */
1059	spin_lock(&cil->xc_push_lock);
1060	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1061		spin_unlock(&cil->xc_push_lock);
1062		return;
1063	}
1064
1065	cil->xc_push_seq = push_seq;
1066	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
1067	spin_unlock(&cil->xc_push_lock);
1068}
1069
1070bool
1071xlog_cil_empty(
1072	struct xlog	*log)
1073{
1074	struct xfs_cil	*cil = log->l_cilp;
1075	bool		empty = false;
1076
1077	spin_lock(&cil->xc_push_lock);
1078	if (list_empty(&cil->xc_cil))
1079		empty = true;
1080	spin_unlock(&cil->xc_push_lock);
1081	return empty;
1082}
1083
1084/*
1085 * Commit a transaction with the given vector to the Committed Item List.
1086 *
1087 * To do this, we need to format the item, pin it in memory if required and
1088 * account for the space used by the transaction. Once we have done that we
1089 * need to release the unused reservation for the transaction, attach the
1090 * transaction to the checkpoint context so we carry the busy extents through
1091 * to checkpoint completion, and then unlock all the items in the transaction.
1092 *
1093 * Called with the context lock already held in read mode to lock out
1094 * background commit, returns without it held once background commits are
1095 * allowed again.
1096 */
1097void
1098xlog_cil_commit(
1099	struct xlog		*log,
1100	struct xfs_trans	*tp,
1101	xfs_csn_t		*commit_seq,
1102	bool			regrant)
1103{
 
1104	struct xfs_cil		*cil = log->l_cilp;
1105	struct xfs_log_item	*lip, *next;
1106
1107	/*
1108	 * Do all necessary memory allocation before we lock the CIL.
1109	 * This ensures the allocation does not deadlock with a CIL
1110	 * push in memory reclaim (e.g. from kswapd).
1111	 */
1112	xlog_cil_alloc_shadow_bufs(log, tp);
1113
1114	/* lock out background commit */
1115	down_read(&cil->xc_ctx_lock);
1116
1117	xlog_cil_insert_items(log, tp);
1118
1119	if (regrant && !XLOG_FORCED_SHUTDOWN(log))
1120		xfs_log_ticket_regrant(log, tp->t_ticket);
1121	else
1122		xfs_log_ticket_ungrant(log, tp->t_ticket);
1123	tp->t_ticket = NULL;
 
 
 
 
1124	xfs_trans_unreserve_and_mod_sb(tp);
1125
1126	/*
1127	 * Once all the items of the transaction have been copied to the CIL,
1128	 * the items can be unlocked and possibly freed.
1129	 *
1130	 * This needs to be done before we drop the CIL context lock because we
1131	 * have to update state in the log items and unlock them before they go
1132	 * to disk. If we don't, then the CIL checkpoint can race with us and
1133	 * we can run checkpoint completion before we've updated and unlocked
1134	 * the log items. This affects (at least) processing of stale buffers,
1135	 * inodes and EFIs.
1136	 */
1137	trace_xfs_trans_commit_items(tp, _RET_IP_);
1138	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1139		xfs_trans_del_item(lip);
1140		if (lip->li_ops->iop_committing)
1141			lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1142	}
1143	if (commit_seq)
1144		*commit_seq = cil->xc_ctx->sequence;
1145
1146	/* xlog_cil_push_background() releases cil->xc_ctx_lock */
1147	xlog_cil_push_background(log);
 
 
1148}
1149
1150/*
1151 * Conditionally push the CIL based on the sequence passed in.
1152 *
1153 * We only need to push if we haven't already pushed the sequence
1154 * number given. Hence the only time we will trigger a push here is
1155 * if the push sequence is the same as the current context.
1156 *
1157 * We return the current commit lsn to allow the callers to determine if a
1158 * iclog flush is necessary following this call.
1159 */
1160xfs_lsn_t
1161xlog_cil_force_seq(
1162	struct xlog	*log,
1163	xfs_csn_t	sequence)
1164{
1165	struct xfs_cil		*cil = log->l_cilp;
1166	struct xfs_cil_ctx	*ctx;
1167	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
1168
1169	ASSERT(sequence <= cil->xc_current_sequence);
1170
1171	/*
1172	 * check to see if we need to force out the current context.
1173	 * xlog_cil_push() handles racing pushes for the same sequence,
1174	 * so no need to deal with it here.
1175	 */
1176restart:
1177	xlog_cil_push_now(log, sequence);
1178
1179	/*
1180	 * See if we can find a previous sequence still committing.
1181	 * We need to wait for all previous sequence commits to complete
1182	 * before allowing the force of push_seq to go ahead. Hence block
1183	 * on commits for those as well.
1184	 */
1185	spin_lock(&cil->xc_push_lock);
1186	list_for_each_entry(ctx, &cil->xc_committing, committing) {
1187		/*
1188		 * Avoid getting stuck in this loop because we were woken by the
1189		 * shutdown, but then went back to sleep once already in the
1190		 * shutdown state.
1191		 */
1192		if (XLOG_FORCED_SHUTDOWN(log))
1193			goto out_shutdown;
1194		if (ctx->sequence > sequence)
1195			continue;
1196		if (!ctx->commit_lsn) {
1197			/*
1198			 * It is still being pushed! Wait for the push to
1199			 * complete, then start again from the beginning.
1200			 */
1201			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1202			goto restart;
1203		}
1204		if (ctx->sequence != sequence)
1205			continue;
1206		/* found it! */
1207		commit_lsn = ctx->commit_lsn;
1208	}
1209
1210	/*
1211	 * The call to xlog_cil_push_now() executes the push in the background.
1212	 * Hence by the time we have got here it our sequence may not have been
1213	 * pushed yet. This is true if the current sequence still matches the
1214	 * push sequence after the above wait loop and the CIL still contains
1215	 * dirty objects. This is guaranteed by the push code first adding the
1216	 * context to the committing list before emptying the CIL.
1217	 *
1218	 * Hence if we don't find the context in the committing list and the
1219	 * current sequence number is unchanged then the CIL contents are
1220	 * significant.  If the CIL is empty, if means there was nothing to push
1221	 * and that means there is nothing to wait for. If the CIL is not empty,
1222	 * it means we haven't yet started the push, because if it had started
1223	 * we would have found the context on the committing list.
1224	 */
 
1225	if (sequence == cil->xc_current_sequence &&
1226	    !list_empty(&cil->xc_cil)) {
1227		spin_unlock(&cil->xc_push_lock);
1228		goto restart;
1229	}
1230
1231	spin_unlock(&cil->xc_push_lock);
1232	return commit_lsn;
1233
1234	/*
1235	 * We detected a shutdown in progress. We need to trigger the log force
1236	 * to pass through it's iclog state machine error handling, even though
1237	 * we are already in a shutdown state. Hence we can't return
1238	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1239	 * LSN is already stable), so we return a zero LSN instead.
1240	 */
1241out_shutdown:
1242	spin_unlock(&cil->xc_push_lock);
1243	return 0;
1244}
1245
1246/*
1247 * Check if the current log item was first committed in this sequence.
1248 * We can't rely on just the log item being in the CIL, we have to check
1249 * the recorded commit sequence number.
1250 *
1251 * Note: for this to be used in a non-racy manner, it has to be called with
1252 * CIL flushing locked out. As a result, it should only be used during the
1253 * transaction commit process when deciding what to format into the item.
1254 */
1255bool
1256xfs_log_item_in_current_chkpt(
1257	struct xfs_log_item *lip)
1258{
1259	struct xfs_cil_ctx *ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1260
1261	if (list_empty(&lip->li_cil))
1262		return false;
1263
 
 
1264	/*
1265	 * li_seq is written on the first commit of a log item to record the
1266	 * first checkpoint it is written to. Hence if it is different to the
1267	 * current sequence, we're in a new checkpoint.
1268	 */
1269	return lip->li_seq == ctx->sequence;
 
 
1270}
1271
1272/*
1273 * Perform initial CIL structure initialisation.
1274 */
1275int
1276xlog_cil_init(
1277	struct xlog	*log)
1278{
1279	struct xfs_cil	*cil;
1280	struct xfs_cil_ctx *ctx;
1281
1282	cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1283	if (!cil)
1284		return -ENOMEM;
1285
1286	ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
1287	if (!ctx) {
1288		kmem_free(cil);
1289		return -ENOMEM;
1290	}
1291
1292	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1293	INIT_LIST_HEAD(&cil->xc_cil);
1294	INIT_LIST_HEAD(&cil->xc_committing);
1295	spin_lock_init(&cil->xc_cil_lock);
1296	spin_lock_init(&cil->xc_push_lock);
1297	init_waitqueue_head(&cil->xc_push_wait);
1298	init_rwsem(&cil->xc_ctx_lock);
1299	init_waitqueue_head(&cil->xc_commit_wait);
1300
1301	INIT_LIST_HEAD(&ctx->committing);
1302	INIT_LIST_HEAD(&ctx->busy_extents);
1303	ctx->sequence = 1;
1304	ctx->cil = cil;
1305	cil->xc_ctx = ctx;
1306	cil->xc_current_sequence = ctx->sequence;
1307
1308	cil->xc_log = log;
1309	log->l_cilp = cil;
1310	return 0;
1311}
1312
1313void
1314xlog_cil_destroy(
1315	struct xlog	*log)
1316{
1317	if (log->l_cilp->xc_ctx) {
1318		if (log->l_cilp->xc_ctx->ticket)
1319			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1320		kmem_free(log->l_cilp->xc_ctx);
1321	}
1322
1323	ASSERT(list_empty(&log->l_cilp->xc_cil));
1324	kmem_free(log->l_cilp);
1325}
1326