Loading...
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_log_format.h"
21#include "xfs_shared.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_mount.h"
26#include "xfs_error.h"
27#include "xfs_alloc.h"
28#include "xfs_extent_busy.h"
29#include "xfs_discard.h"
30#include "xfs_trans.h"
31#include "xfs_trans_priv.h"
32#include "xfs_log.h"
33#include "xfs_log_priv.h"
34
35/*
36 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
37 * recover, so we don't allow failure here. Also, we allocate in a context that
38 * we don't want to be issuing transactions from, so we need to tell the
39 * allocation code this as well.
40 *
41 * We don't reserve any space for the ticket - we are going to steal whatever
42 * space we require from transactions as they commit. To ensure we reserve all
43 * the space required, we need to set the current reservation of the ticket to
44 * zero so that we know to steal the initial transaction overhead from the
45 * first transaction commit.
46 */
47static struct xlog_ticket *
48xlog_cil_ticket_alloc(
49 struct xlog *log)
50{
51 struct xlog_ticket *tic;
52
53 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
54 KM_SLEEP|KM_NOFS);
55 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
56
57 /*
58 * set the current reservation to zero so we know to steal the basic
59 * transaction overhead reservation from the first transaction commit.
60 */
61 tic->t_curr_res = 0;
62 return tic;
63}
64
65/*
66 * After the first stage of log recovery is done, we know where the head and
67 * tail of the log are. We need this log initialisation done before we can
68 * initialise the first CIL checkpoint context.
69 *
70 * Here we allocate a log ticket to track space usage during a CIL push. This
71 * ticket is passed to xlog_write() directly so that we don't slowly leak log
72 * space by failing to account for space used by log headers and additional
73 * region headers for split regions.
74 */
75void
76xlog_cil_init_post_recovery(
77 struct xlog *log)
78{
79 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
80 log->l_cilp->xc_ctx->sequence = 1;
81 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
82 log->l_curr_block);
83}
84
85/*
86 * Prepare the log item for insertion into the CIL. Calculate the difference in
87 * log space and vectors it will consume, and if it is a new item pin it as
88 * well.
89 */
90STATIC void
91xfs_cil_prepare_item(
92 struct xlog *log,
93 struct xfs_log_vec *lv,
94 struct xfs_log_vec *old_lv,
95 int *diff_len,
96 int *diff_iovecs)
97{
98 /* Account for the new LV being passed in */
99 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
100 *diff_len += lv->lv_buf_len;
101 *diff_iovecs += lv->lv_niovecs;
102 }
103
104 /*
105 * If there is no old LV, this is the first time we've seen the item in
106 * this CIL context and so we need to pin it. If we are replacing the
107 * old_lv, then remove the space it accounts for and free it.
108 */
109 if (!old_lv)
110 lv->lv_item->li_ops->iop_pin(lv->lv_item);
111 else if (old_lv != lv) {
112 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
113
114 *diff_len -= old_lv->lv_buf_len;
115 *diff_iovecs -= old_lv->lv_niovecs;
116 kmem_free(old_lv);
117 }
118
119 /* attach new log vector to log item */
120 lv->lv_item->li_lv = lv;
121
122 /*
123 * If this is the first time the item is being committed to the
124 * CIL, store the sequence number on the log item so we can
125 * tell in future commits whether this is the first checkpoint
126 * the item is being committed into.
127 */
128 if (!lv->lv_item->li_seq)
129 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
130}
131
132/*
133 * Format log item into a flat buffers
134 *
135 * For delayed logging, we need to hold a formatted buffer containing all the
136 * changes on the log item. This enables us to relog the item in memory and
137 * write it out asynchronously without needing to relock the object that was
138 * modified at the time it gets written into the iclog.
139 *
140 * This function builds a vector for the changes in each log item in the
141 * transaction. It then works out the length of the buffer needed for each log
142 * item, allocates them and formats the vector for the item into the buffer.
143 * The buffer is then attached to the log item are then inserted into the
144 * Committed Item List for tracking until the next checkpoint is written out.
145 *
146 * We don't set up region headers during this process; we simply copy the
147 * regions into the flat buffer. We can do this because we still have to do a
148 * formatting step to write the regions into the iclog buffer. Writing the
149 * ophdrs during the iclog write means that we can support splitting large
150 * regions across iclog boundares without needing a change in the format of the
151 * item/region encapsulation.
152 *
153 * Hence what we need to do now is change the rewrite the vector array to point
154 * to the copied region inside the buffer we just allocated. This allows us to
155 * format the regions into the iclog as though they are being formatted
156 * directly out of the objects themselves.
157 */
158static void
159xlog_cil_insert_format_items(
160 struct xlog *log,
161 struct xfs_trans *tp,
162 int *diff_len,
163 int *diff_iovecs)
164{
165 struct xfs_log_item_desc *lidp;
166
167
168 /* Bail out if we didn't find a log item. */
169 if (list_empty(&tp->t_items)) {
170 ASSERT(0);
171 return;
172 }
173
174 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
175 struct xfs_log_item *lip = lidp->lid_item;
176 struct xfs_log_vec *lv;
177 struct xfs_log_vec *old_lv;
178 int niovecs = 0;
179 int nbytes = 0;
180 int buf_size;
181 bool ordered = false;
182
183 /* Skip items which aren't dirty in this transaction. */
184 if (!(lidp->lid_flags & XFS_LID_DIRTY))
185 continue;
186
187 /* get number of vecs and size of data to be stored */
188 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
189
190 /* Skip items that do not have any vectors for writing */
191 if (!niovecs)
192 continue;
193
194 /*
195 * Ordered items need to be tracked but we do not wish to write
196 * them. We need a logvec to track the object, but we do not
197 * need an iovec or buffer to be allocated for copying data.
198 */
199 if (niovecs == XFS_LOG_VEC_ORDERED) {
200 ordered = true;
201 niovecs = 0;
202 nbytes = 0;
203 }
204
205 /*
206 * We 64-bit align the length of each iovec so that the start
207 * of the next one is naturally aligned. We'll need to
208 * account for that slack space here. Then round nbytes up
209 * to 64-bit alignment so that the initial buffer alignment is
210 * easy to calculate and verify.
211 */
212 nbytes += niovecs * sizeof(uint64_t);
213 nbytes = round_up(nbytes, sizeof(uint64_t));
214
215 /* grab the old item if it exists for reservation accounting */
216 old_lv = lip->li_lv;
217
218 /*
219 * The data buffer needs to start 64-bit aligned, so round up
220 * that space to ensure we can align it appropriately and not
221 * overrun the buffer.
222 */
223 buf_size = nbytes +
224 round_up((sizeof(struct xfs_log_vec) +
225 niovecs * sizeof(struct xfs_log_iovec)),
226 sizeof(uint64_t));
227
228 /* compare to existing item size */
229 if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
230 /* same or smaller, optimise common overwrite case */
231 lv = lip->li_lv;
232 lv->lv_next = NULL;
233
234 if (ordered)
235 goto insert;
236
237 /*
238 * set the item up as though it is a new insertion so
239 * that the space reservation accounting is correct.
240 */
241 *diff_iovecs -= lv->lv_niovecs;
242 *diff_len -= lv->lv_buf_len;
243 } else {
244 /* allocate new data chunk */
245 lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
246 lv->lv_item = lip;
247 lv->lv_size = buf_size;
248 if (ordered) {
249 /* track as an ordered logvec */
250 ASSERT(lip->li_lv == NULL);
251 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
252 goto insert;
253 }
254 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
255 }
256
257 /* Ensure the lv is set up according to ->iop_size */
258 lv->lv_niovecs = niovecs;
259
260 /* The allocated data region lies beyond the iovec region */
261 lv->lv_buf_len = 0;
262 lv->lv_buf = (char *)lv + buf_size - nbytes;
263 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
264
265 lip->li_ops->iop_format(lip, lv);
266insert:
267 ASSERT(lv->lv_buf_len <= nbytes);
268 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
269 }
270}
271
272/*
273 * Insert the log items into the CIL and calculate the difference in space
274 * consumed by the item. Add the space to the checkpoint ticket and calculate
275 * if the change requires additional log metadata. If it does, take that space
276 * as well. Remove the amount of space we added to the checkpoint ticket from
277 * the current transaction ticket so that the accounting works out correctly.
278 */
279static void
280xlog_cil_insert_items(
281 struct xlog *log,
282 struct xfs_trans *tp)
283{
284 struct xfs_cil *cil = log->l_cilp;
285 struct xfs_cil_ctx *ctx = cil->xc_ctx;
286 struct xfs_log_item_desc *lidp;
287 int len = 0;
288 int diff_iovecs = 0;
289 int iclog_space;
290
291 ASSERT(tp);
292
293 /*
294 * We can do this safely because the context can't checkpoint until we
295 * are done so it doesn't matter exactly how we update the CIL.
296 */
297 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
298
299 /*
300 * Now (re-)position everything modified at the tail of the CIL.
301 * We do this here so we only need to take the CIL lock once during
302 * the transaction commit.
303 */
304 spin_lock(&cil->xc_cil_lock);
305 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
306 struct xfs_log_item *lip = lidp->lid_item;
307
308 /* Skip items which aren't dirty in this transaction. */
309 if (!(lidp->lid_flags & XFS_LID_DIRTY))
310 continue;
311
312 list_move_tail(&lip->li_cil, &cil->xc_cil);
313 }
314
315 /* account for space used by new iovec headers */
316 len += diff_iovecs * sizeof(xlog_op_header_t);
317 ctx->nvecs += diff_iovecs;
318
319 /* attach the transaction to the CIL if it has any busy extents */
320 if (!list_empty(&tp->t_busy))
321 list_splice_init(&tp->t_busy, &ctx->busy_extents);
322
323 /*
324 * Now transfer enough transaction reservation to the context ticket
325 * for the checkpoint. The context ticket is special - the unit
326 * reservation has to grow as well as the current reservation as we
327 * steal from tickets so we can correctly determine the space used
328 * during the transaction commit.
329 */
330 if (ctx->ticket->t_curr_res == 0) {
331 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
332 tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
333 }
334
335 /* do we need space for more log record headers? */
336 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
337 if (len > 0 && (ctx->space_used / iclog_space !=
338 (ctx->space_used + len) / iclog_space)) {
339 int hdrs;
340
341 hdrs = (len + iclog_space - 1) / iclog_space;
342 /* need to take into account split region headers, too */
343 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
344 ctx->ticket->t_unit_res += hdrs;
345 ctx->ticket->t_curr_res += hdrs;
346 tp->t_ticket->t_curr_res -= hdrs;
347 ASSERT(tp->t_ticket->t_curr_res >= len);
348 }
349 tp->t_ticket->t_curr_res -= len;
350 ctx->space_used += len;
351
352 spin_unlock(&cil->xc_cil_lock);
353}
354
355static void
356xlog_cil_free_logvec(
357 struct xfs_log_vec *log_vector)
358{
359 struct xfs_log_vec *lv;
360
361 for (lv = log_vector; lv; ) {
362 struct xfs_log_vec *next = lv->lv_next;
363 kmem_free(lv);
364 lv = next;
365 }
366}
367
368/*
369 * Mark all items committed and clear busy extents. We free the log vector
370 * chains in a separate pass so that we unpin the log items as quickly as
371 * possible.
372 */
373static void
374xlog_cil_committed(
375 void *args,
376 int abort)
377{
378 struct xfs_cil_ctx *ctx = args;
379 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
380
381 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
382 ctx->start_lsn, abort);
383
384 xfs_extent_busy_sort(&ctx->busy_extents);
385 xfs_extent_busy_clear(mp, &ctx->busy_extents,
386 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
387
388 spin_lock(&ctx->cil->xc_push_lock);
389 list_del(&ctx->committing);
390 spin_unlock(&ctx->cil->xc_push_lock);
391
392 xlog_cil_free_logvec(ctx->lv_chain);
393
394 if (!list_empty(&ctx->busy_extents)) {
395 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
396
397 xfs_discard_extents(mp, &ctx->busy_extents);
398 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
399 }
400
401 kmem_free(ctx);
402}
403
404/*
405 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
406 * is a background flush and so we can chose to ignore it. Otherwise, if the
407 * current sequence is the same as @push_seq we need to do a flush. If
408 * @push_seq is less than the current sequence, then it has already been
409 * flushed and we don't need to do anything - the caller will wait for it to
410 * complete if necessary.
411 *
412 * @push_seq is a value rather than a flag because that allows us to do an
413 * unlocked check of the sequence number for a match. Hence we can allows log
414 * forces to run racily and not issue pushes for the same sequence twice. If we
415 * get a race between multiple pushes for the same sequence they will block on
416 * the first one and then abort, hence avoiding needless pushes.
417 */
418STATIC int
419xlog_cil_push(
420 struct xlog *log)
421{
422 struct xfs_cil *cil = log->l_cilp;
423 struct xfs_log_vec *lv;
424 struct xfs_cil_ctx *ctx;
425 struct xfs_cil_ctx *new_ctx;
426 struct xlog_in_core *commit_iclog;
427 struct xlog_ticket *tic;
428 int num_iovecs;
429 int error = 0;
430 struct xfs_trans_header thdr;
431 struct xfs_log_iovec lhdr;
432 struct xfs_log_vec lvhdr = { NULL };
433 xfs_lsn_t commit_lsn;
434 xfs_lsn_t push_seq;
435
436 if (!cil)
437 return 0;
438
439 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
440 new_ctx->ticket = xlog_cil_ticket_alloc(log);
441
442 down_write(&cil->xc_ctx_lock);
443 ctx = cil->xc_ctx;
444
445 spin_lock(&cil->xc_push_lock);
446 push_seq = cil->xc_push_seq;
447 ASSERT(push_seq <= ctx->sequence);
448
449 /*
450 * Check if we've anything to push. If there is nothing, then we don't
451 * move on to a new sequence number and so we have to be able to push
452 * this sequence again later.
453 */
454 if (list_empty(&cil->xc_cil)) {
455 cil->xc_push_seq = 0;
456 spin_unlock(&cil->xc_push_lock);
457 goto out_skip;
458 }
459 spin_unlock(&cil->xc_push_lock);
460
461
462 /* check for a previously pushed seqeunce */
463 if (push_seq < cil->xc_ctx->sequence)
464 goto out_skip;
465
466 /*
467 * pull all the log vectors off the items in the CIL, and
468 * remove the items from the CIL. We don't need the CIL lock
469 * here because it's only needed on the transaction commit
470 * side which is currently locked out by the flush lock.
471 */
472 lv = NULL;
473 num_iovecs = 0;
474 while (!list_empty(&cil->xc_cil)) {
475 struct xfs_log_item *item;
476
477 item = list_first_entry(&cil->xc_cil,
478 struct xfs_log_item, li_cil);
479 list_del_init(&item->li_cil);
480 if (!ctx->lv_chain)
481 ctx->lv_chain = item->li_lv;
482 else
483 lv->lv_next = item->li_lv;
484 lv = item->li_lv;
485 item->li_lv = NULL;
486 num_iovecs += lv->lv_niovecs;
487 }
488
489 /*
490 * initialise the new context and attach it to the CIL. Then attach
491 * the current context to the CIL committing lsit so it can be found
492 * during log forces to extract the commit lsn of the sequence that
493 * needs to be forced.
494 */
495 INIT_LIST_HEAD(&new_ctx->committing);
496 INIT_LIST_HEAD(&new_ctx->busy_extents);
497 new_ctx->sequence = ctx->sequence + 1;
498 new_ctx->cil = cil;
499 cil->xc_ctx = new_ctx;
500
501 /*
502 * The switch is now done, so we can drop the context lock and move out
503 * of a shared context. We can't just go straight to the commit record,
504 * though - we need to synchronise with previous and future commits so
505 * that the commit records are correctly ordered in the log to ensure
506 * that we process items during log IO completion in the correct order.
507 *
508 * For example, if we get an EFI in one checkpoint and the EFD in the
509 * next (e.g. due to log forces), we do not want the checkpoint with
510 * the EFD to be committed before the checkpoint with the EFI. Hence
511 * we must strictly order the commit records of the checkpoints so
512 * that: a) the checkpoint callbacks are attached to the iclogs in the
513 * correct order; and b) the checkpoints are replayed in correct order
514 * in log recovery.
515 *
516 * Hence we need to add this context to the committing context list so
517 * that higher sequences will wait for us to write out a commit record
518 * before they do.
519 *
520 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
521 * structure atomically with the addition of this sequence to the
522 * committing list. This also ensures that we can do unlocked checks
523 * against the current sequence in log forces without risking
524 * deferencing a freed context pointer.
525 */
526 spin_lock(&cil->xc_push_lock);
527 cil->xc_current_sequence = new_ctx->sequence;
528 list_add(&ctx->committing, &cil->xc_committing);
529 spin_unlock(&cil->xc_push_lock);
530 up_write(&cil->xc_ctx_lock);
531
532 /*
533 * Build a checkpoint transaction header and write it to the log to
534 * begin the transaction. We need to account for the space used by the
535 * transaction header here as it is not accounted for in xlog_write().
536 *
537 * The LSN we need to pass to the log items on transaction commit is
538 * the LSN reported by the first log vector write. If we use the commit
539 * record lsn then we can move the tail beyond the grant write head.
540 */
541 tic = ctx->ticket;
542 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
543 thdr.th_type = XFS_TRANS_CHECKPOINT;
544 thdr.th_tid = tic->t_tid;
545 thdr.th_num_items = num_iovecs;
546 lhdr.i_addr = &thdr;
547 lhdr.i_len = sizeof(xfs_trans_header_t);
548 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
549 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
550
551 lvhdr.lv_niovecs = 1;
552 lvhdr.lv_iovecp = &lhdr;
553 lvhdr.lv_next = ctx->lv_chain;
554
555 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
556 if (error)
557 goto out_abort_free_ticket;
558
559 /*
560 * now that we've written the checkpoint into the log, strictly
561 * order the commit records so replay will get them in the right order.
562 */
563restart:
564 spin_lock(&cil->xc_push_lock);
565 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
566 /*
567 * Higher sequences will wait for this one so skip them.
568 * Don't wait for own own sequence, either.
569 */
570 if (new_ctx->sequence >= ctx->sequence)
571 continue;
572 if (!new_ctx->commit_lsn) {
573 /*
574 * It is still being pushed! Wait for the push to
575 * complete, then start again from the beginning.
576 */
577 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
578 goto restart;
579 }
580 }
581 spin_unlock(&cil->xc_push_lock);
582
583 /* xfs_log_done always frees the ticket on error. */
584 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
585 if (commit_lsn == -1)
586 goto out_abort;
587
588 /* attach all the transactions w/ busy extents to iclog */
589 ctx->log_cb.cb_func = xlog_cil_committed;
590 ctx->log_cb.cb_arg = ctx;
591 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
592 if (error)
593 goto out_abort;
594
595 /*
596 * now the checkpoint commit is complete and we've attached the
597 * callbacks to the iclog we can assign the commit LSN to the context
598 * and wake up anyone who is waiting for the commit to complete.
599 */
600 spin_lock(&cil->xc_push_lock);
601 ctx->commit_lsn = commit_lsn;
602 wake_up_all(&cil->xc_commit_wait);
603 spin_unlock(&cil->xc_push_lock);
604
605 /* release the hounds! */
606 return xfs_log_release_iclog(log->l_mp, commit_iclog);
607
608out_skip:
609 up_write(&cil->xc_ctx_lock);
610 xfs_log_ticket_put(new_ctx->ticket);
611 kmem_free(new_ctx);
612 return 0;
613
614out_abort_free_ticket:
615 xfs_log_ticket_put(tic);
616out_abort:
617 xlog_cil_committed(ctx, XFS_LI_ABORTED);
618 return XFS_ERROR(EIO);
619}
620
621static void
622xlog_cil_push_work(
623 struct work_struct *work)
624{
625 struct xfs_cil *cil = container_of(work, struct xfs_cil,
626 xc_push_work);
627 xlog_cil_push(cil->xc_log);
628}
629
630/*
631 * We need to push CIL every so often so we don't cache more than we can fit in
632 * the log. The limit really is that a checkpoint can't be more than half the
633 * log (the current checkpoint is not allowed to overwrite the previous
634 * checkpoint), but commit latency and memory usage limit this to a smaller
635 * size.
636 */
637static void
638xlog_cil_push_background(
639 struct xlog *log)
640{
641 struct xfs_cil *cil = log->l_cilp;
642
643 /*
644 * The cil won't be empty because we are called while holding the
645 * context lock so whatever we added to the CIL will still be there
646 */
647 ASSERT(!list_empty(&cil->xc_cil));
648
649 /*
650 * don't do a background push if we haven't used up all the
651 * space available yet.
652 */
653 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
654 return;
655
656 spin_lock(&cil->xc_push_lock);
657 if (cil->xc_push_seq < cil->xc_current_sequence) {
658 cil->xc_push_seq = cil->xc_current_sequence;
659 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
660 }
661 spin_unlock(&cil->xc_push_lock);
662
663}
664
665/*
666 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
667 * number that is passed. When it returns, the work will be queued for
668 * @push_seq, but it won't be completed. The caller is expected to do any
669 * waiting for push_seq to complete if it is required.
670 */
671static void
672xlog_cil_push_now(
673 struct xlog *log,
674 xfs_lsn_t push_seq)
675{
676 struct xfs_cil *cil = log->l_cilp;
677
678 if (!cil)
679 return;
680
681 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
682
683 /* start on any pending background push to minimise wait time on it */
684 flush_work(&cil->xc_push_work);
685
686 /*
687 * If the CIL is empty or we've already pushed the sequence then
688 * there's no work we need to do.
689 */
690 spin_lock(&cil->xc_push_lock);
691 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
692 spin_unlock(&cil->xc_push_lock);
693 return;
694 }
695
696 cil->xc_push_seq = push_seq;
697 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
698 spin_unlock(&cil->xc_push_lock);
699}
700
701bool
702xlog_cil_empty(
703 struct xlog *log)
704{
705 struct xfs_cil *cil = log->l_cilp;
706 bool empty = false;
707
708 spin_lock(&cil->xc_push_lock);
709 if (list_empty(&cil->xc_cil))
710 empty = true;
711 spin_unlock(&cil->xc_push_lock);
712 return empty;
713}
714
715/*
716 * Commit a transaction with the given vector to the Committed Item List.
717 *
718 * To do this, we need to format the item, pin it in memory if required and
719 * account for the space used by the transaction. Once we have done that we
720 * need to release the unused reservation for the transaction, attach the
721 * transaction to the checkpoint context so we carry the busy extents through
722 * to checkpoint completion, and then unlock all the items in the transaction.
723 *
724 * Called with the context lock already held in read mode to lock out
725 * background commit, returns without it held once background commits are
726 * allowed again.
727 */
728void
729xfs_log_commit_cil(
730 struct xfs_mount *mp,
731 struct xfs_trans *tp,
732 xfs_lsn_t *commit_lsn,
733 int flags)
734{
735 struct xlog *log = mp->m_log;
736 struct xfs_cil *cil = log->l_cilp;
737 int log_flags = 0;
738
739 if (flags & XFS_TRANS_RELEASE_LOG_RES)
740 log_flags = XFS_LOG_REL_PERM_RESERV;
741
742 /* lock out background commit */
743 down_read(&cil->xc_ctx_lock);
744
745 xlog_cil_insert_items(log, tp);
746
747 /* check we didn't blow the reservation */
748 if (tp->t_ticket->t_curr_res < 0)
749 xlog_print_tic_res(mp, tp->t_ticket);
750
751 tp->t_commit_lsn = cil->xc_ctx->sequence;
752 if (commit_lsn)
753 *commit_lsn = tp->t_commit_lsn;
754
755 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
756 xfs_trans_unreserve_and_mod_sb(tp);
757
758 /*
759 * Once all the items of the transaction have been copied to the CIL,
760 * the items can be unlocked and freed.
761 *
762 * This needs to be done before we drop the CIL context lock because we
763 * have to update state in the log items and unlock them before they go
764 * to disk. If we don't, then the CIL checkpoint can race with us and
765 * we can run checkpoint completion before we've updated and unlocked
766 * the log items. This affects (at least) processing of stale buffers,
767 * inodes and EFIs.
768 */
769 xfs_trans_free_items(tp, tp->t_commit_lsn, 0);
770
771 xlog_cil_push_background(log);
772
773 up_read(&cil->xc_ctx_lock);
774}
775
776/*
777 * Conditionally push the CIL based on the sequence passed in.
778 *
779 * We only need to push if we haven't already pushed the sequence
780 * number given. Hence the only time we will trigger a push here is
781 * if the push sequence is the same as the current context.
782 *
783 * We return the current commit lsn to allow the callers to determine if a
784 * iclog flush is necessary following this call.
785 */
786xfs_lsn_t
787xlog_cil_force_lsn(
788 struct xlog *log,
789 xfs_lsn_t sequence)
790{
791 struct xfs_cil *cil = log->l_cilp;
792 struct xfs_cil_ctx *ctx;
793 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
794
795 ASSERT(sequence <= cil->xc_current_sequence);
796
797 /*
798 * check to see if we need to force out the current context.
799 * xlog_cil_push() handles racing pushes for the same sequence,
800 * so no need to deal with it here.
801 */
802restart:
803 xlog_cil_push_now(log, sequence);
804
805 /*
806 * See if we can find a previous sequence still committing.
807 * We need to wait for all previous sequence commits to complete
808 * before allowing the force of push_seq to go ahead. Hence block
809 * on commits for those as well.
810 */
811 spin_lock(&cil->xc_push_lock);
812 list_for_each_entry(ctx, &cil->xc_committing, committing) {
813 if (ctx->sequence > sequence)
814 continue;
815 if (!ctx->commit_lsn) {
816 /*
817 * It is still being pushed! Wait for the push to
818 * complete, then start again from the beginning.
819 */
820 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
821 goto restart;
822 }
823 if (ctx->sequence != sequence)
824 continue;
825 /* found it! */
826 commit_lsn = ctx->commit_lsn;
827 }
828
829 /*
830 * The call to xlog_cil_push_now() executes the push in the background.
831 * Hence by the time we have got here it our sequence may not have been
832 * pushed yet. This is true if the current sequence still matches the
833 * push sequence after the above wait loop and the CIL still contains
834 * dirty objects.
835 *
836 * When the push occurs, it will empty the CIL and
837 * atomically increment the currect sequence past the push sequence and
838 * move it into the committing list. Of course, if the CIL is clean at
839 * the time of the push, it won't have pushed the CIL at all, so in that
840 * case we should try the push for this sequence again from the start
841 * just in case.
842 */
843
844 if (sequence == cil->xc_current_sequence &&
845 !list_empty(&cil->xc_cil)) {
846 spin_unlock(&cil->xc_push_lock);
847 goto restart;
848 }
849
850 spin_unlock(&cil->xc_push_lock);
851 return commit_lsn;
852}
853
854/*
855 * Check if the current log item was first committed in this sequence.
856 * We can't rely on just the log item being in the CIL, we have to check
857 * the recorded commit sequence number.
858 *
859 * Note: for this to be used in a non-racy manner, it has to be called with
860 * CIL flushing locked out. As a result, it should only be used during the
861 * transaction commit process when deciding what to format into the item.
862 */
863bool
864xfs_log_item_in_current_chkpt(
865 struct xfs_log_item *lip)
866{
867 struct xfs_cil_ctx *ctx;
868
869 if (list_empty(&lip->li_cil))
870 return false;
871
872 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
873
874 /*
875 * li_seq is written on the first commit of a log item to record the
876 * first checkpoint it is written to. Hence if it is different to the
877 * current sequence, we're in a new checkpoint.
878 */
879 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
880 return false;
881 return true;
882}
883
884/*
885 * Perform initial CIL structure initialisation.
886 */
887int
888xlog_cil_init(
889 struct xlog *log)
890{
891 struct xfs_cil *cil;
892 struct xfs_cil_ctx *ctx;
893
894 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
895 if (!cil)
896 return ENOMEM;
897
898 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
899 if (!ctx) {
900 kmem_free(cil);
901 return ENOMEM;
902 }
903
904 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
905 INIT_LIST_HEAD(&cil->xc_cil);
906 INIT_LIST_HEAD(&cil->xc_committing);
907 spin_lock_init(&cil->xc_cil_lock);
908 spin_lock_init(&cil->xc_push_lock);
909 init_rwsem(&cil->xc_ctx_lock);
910 init_waitqueue_head(&cil->xc_commit_wait);
911
912 INIT_LIST_HEAD(&ctx->committing);
913 INIT_LIST_HEAD(&ctx->busy_extents);
914 ctx->sequence = 1;
915 ctx->cil = cil;
916 cil->xc_ctx = ctx;
917 cil->xc_current_sequence = ctx->sequence;
918
919 cil->xc_log = log;
920 log->l_cilp = cil;
921 return 0;
922}
923
924void
925xlog_cil_destroy(
926 struct xlog *log)
927{
928 if (log->l_cilp->xc_ctx) {
929 if (log->l_cilp->xc_ctx->ticket)
930 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
931 kmem_free(log->l_cilp->xc_ctx);
932 }
933
934 ASSERT(list_empty(&log->l_cilp->xc_cil));
935 kmem_free(log->l_cilp);
936}
937
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4 */
5
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_shared.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_extent_busy.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_log.h"
17#include "xfs_log_priv.h"
18#include "xfs_trace.h"
19
20struct workqueue_struct *xfs_discard_wq;
21
22/*
23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24 * recover, so we don't allow failure here. Also, we allocate in a context that
25 * we don't want to be issuing transactions from, so we need to tell the
26 * allocation code this as well.
27 *
28 * We don't reserve any space for the ticket - we are going to steal whatever
29 * space we require from transactions as they commit. To ensure we reserve all
30 * the space required, we need to set the current reservation of the ticket to
31 * zero so that we know to steal the initial transaction overhead from the
32 * first transaction commit.
33 */
34static struct xlog_ticket *
35xlog_cil_ticket_alloc(
36 struct xlog *log)
37{
38 struct xlog_ticket *tic;
39
40 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
41
42 /*
43 * set the current reservation to zero so we know to steal the basic
44 * transaction overhead reservation from the first transaction commit.
45 */
46 tic->t_curr_res = 0;
47 return tic;
48}
49
50/*
51 * After the first stage of log recovery is done, we know where the head and
52 * tail of the log are. We need this log initialisation done before we can
53 * initialise the first CIL checkpoint context.
54 *
55 * Here we allocate a log ticket to track space usage during a CIL push. This
56 * ticket is passed to xlog_write() directly so that we don't slowly leak log
57 * space by failing to account for space used by log headers and additional
58 * region headers for split regions.
59 */
60void
61xlog_cil_init_post_recovery(
62 struct xlog *log)
63{
64 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
65 log->l_cilp->xc_ctx->sequence = 1;
66}
67
68static inline int
69xlog_cil_iovec_space(
70 uint niovecs)
71{
72 return round_up((sizeof(struct xfs_log_vec) +
73 niovecs * sizeof(struct xfs_log_iovec)),
74 sizeof(uint64_t));
75}
76
77/*
78 * Allocate or pin log vector buffers for CIL insertion.
79 *
80 * The CIL currently uses disposable buffers for copying a snapshot of the
81 * modified items into the log during a push. The biggest problem with this is
82 * the requirement to allocate the disposable buffer during the commit if:
83 * a) does not exist; or
84 * b) it is too small
85 *
86 * If we do this allocation within xlog_cil_insert_format_items(), it is done
87 * under the xc_ctx_lock, which means that a CIL push cannot occur during
88 * the memory allocation. This means that we have a potential deadlock situation
89 * under low memory conditions when we have lots of dirty metadata pinned in
90 * the CIL and we need a CIL commit to occur to free memory.
91 *
92 * To avoid this, we need to move the memory allocation outside the
93 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
94 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
95 * vector buffers between the check and the formatting of the item into the
96 * log vector buffer within the xc_ctx_lock.
97 *
98 * Because the log vector buffer needs to be unchanged during the CIL push
99 * process, we cannot share the buffer between the transaction commit (which
100 * modifies the buffer) and the CIL push context that is writing the changes
101 * into the log. This means skipping preallocation of buffer space is
102 * unreliable, but we most definitely do not want to be allocating and freeing
103 * buffers unnecessarily during commits when overwrites can be done safely.
104 *
105 * The simplest solution to this problem is to allocate a shadow buffer when a
106 * log item is committed for the second time, and then to only use this buffer
107 * if necessary. The buffer can remain attached to the log item until such time
108 * it is needed, and this is the buffer that is reallocated to match the size of
109 * the incoming modification. Then during the formatting of the item we can swap
110 * the active buffer with the new one if we can't reuse the existing buffer. We
111 * don't free the old buffer as it may be reused on the next modification if
112 * it's size is right, otherwise we'll free and reallocate it at that point.
113 *
114 * This function builds a vector for the changes in each log item in the
115 * transaction. It then works out the length of the buffer needed for each log
116 * item, allocates them and attaches the vector to the log item in preparation
117 * for the formatting step which occurs under the xc_ctx_lock.
118 *
119 * While this means the memory footprint goes up, it avoids the repeated
120 * alloc/free pattern that repeated modifications of an item would otherwise
121 * cause, and hence minimises the CPU overhead of such behaviour.
122 */
123static void
124xlog_cil_alloc_shadow_bufs(
125 struct xlog *log,
126 struct xfs_trans *tp)
127{
128 struct xfs_log_item *lip;
129
130 list_for_each_entry(lip, &tp->t_items, li_trans) {
131 struct xfs_log_vec *lv;
132 int niovecs = 0;
133 int nbytes = 0;
134 int buf_size;
135 bool ordered = false;
136
137 /* Skip items which aren't dirty in this transaction. */
138 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
139 continue;
140
141 /* get number of vecs and size of data to be stored */
142 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
143
144 /*
145 * Ordered items need to be tracked but we do not wish to write
146 * them. We need a logvec to track the object, but we do not
147 * need an iovec or buffer to be allocated for copying data.
148 */
149 if (niovecs == XFS_LOG_VEC_ORDERED) {
150 ordered = true;
151 niovecs = 0;
152 nbytes = 0;
153 }
154
155 /*
156 * We 64-bit align the length of each iovec so that the start
157 * of the next one is naturally aligned. We'll need to
158 * account for that slack space here. Then round nbytes up
159 * to 64-bit alignment so that the initial buffer alignment is
160 * easy to calculate and verify.
161 */
162 nbytes += niovecs * sizeof(uint64_t);
163 nbytes = round_up(nbytes, sizeof(uint64_t));
164
165 /*
166 * The data buffer needs to start 64-bit aligned, so round up
167 * that space to ensure we can align it appropriately and not
168 * overrun the buffer.
169 */
170 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
171
172 /*
173 * if we have no shadow buffer, or it is too small, we need to
174 * reallocate it.
175 */
176 if (!lip->li_lv_shadow ||
177 buf_size > lip->li_lv_shadow->lv_size) {
178
179 /*
180 * We free and allocate here as a realloc would copy
181 * unnecessary data. We don't use kmem_zalloc() for the
182 * same reason - we don't need to zero the data area in
183 * the buffer, only the log vector header and the iovec
184 * storage.
185 */
186 kmem_free(lip->li_lv_shadow);
187
188 lv = kmem_alloc_large(buf_size, KM_NOFS);
189 memset(lv, 0, xlog_cil_iovec_space(niovecs));
190
191 lv->lv_item = lip;
192 lv->lv_size = buf_size;
193 if (ordered)
194 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
195 else
196 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
197 lip->li_lv_shadow = lv;
198 } else {
199 /* same or smaller, optimise common overwrite case */
200 lv = lip->li_lv_shadow;
201 if (ordered)
202 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
203 else
204 lv->lv_buf_len = 0;
205 lv->lv_bytes = 0;
206 lv->lv_next = NULL;
207 }
208
209 /* Ensure the lv is set up according to ->iop_size */
210 lv->lv_niovecs = niovecs;
211
212 /* The allocated data region lies beyond the iovec region */
213 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
214 }
215
216}
217
218/*
219 * Prepare the log item for insertion into the CIL. Calculate the difference in
220 * log space and vectors it will consume, and if it is a new item pin it as
221 * well.
222 */
223STATIC void
224xfs_cil_prepare_item(
225 struct xlog *log,
226 struct xfs_log_vec *lv,
227 struct xfs_log_vec *old_lv,
228 int *diff_len,
229 int *diff_iovecs)
230{
231 /* Account for the new LV being passed in */
232 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
233 *diff_len += lv->lv_bytes;
234 *diff_iovecs += lv->lv_niovecs;
235 }
236
237 /*
238 * If there is no old LV, this is the first time we've seen the item in
239 * this CIL context and so we need to pin it. If we are replacing the
240 * old_lv, then remove the space it accounts for and make it the shadow
241 * buffer for later freeing. In both cases we are now switching to the
242 * shadow buffer, so update the pointer to it appropriately.
243 */
244 if (!old_lv) {
245 if (lv->lv_item->li_ops->iop_pin)
246 lv->lv_item->li_ops->iop_pin(lv->lv_item);
247 lv->lv_item->li_lv_shadow = NULL;
248 } else if (old_lv != lv) {
249 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
250
251 *diff_len -= old_lv->lv_bytes;
252 *diff_iovecs -= old_lv->lv_niovecs;
253 lv->lv_item->li_lv_shadow = old_lv;
254 }
255
256 /* attach new log vector to log item */
257 lv->lv_item->li_lv = lv;
258
259 /*
260 * If this is the first time the item is being committed to the
261 * CIL, store the sequence number on the log item so we can
262 * tell in future commits whether this is the first checkpoint
263 * the item is being committed into.
264 */
265 if (!lv->lv_item->li_seq)
266 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
267}
268
269/*
270 * Format log item into a flat buffers
271 *
272 * For delayed logging, we need to hold a formatted buffer containing all the
273 * changes on the log item. This enables us to relog the item in memory and
274 * write it out asynchronously without needing to relock the object that was
275 * modified at the time it gets written into the iclog.
276 *
277 * This function takes the prepared log vectors attached to each log item, and
278 * formats the changes into the log vector buffer. The buffer it uses is
279 * dependent on the current state of the vector in the CIL - the shadow lv is
280 * guaranteed to be large enough for the current modification, but we will only
281 * use that if we can't reuse the existing lv. If we can't reuse the existing
282 * lv, then simple swap it out for the shadow lv. We don't free it - that is
283 * done lazily either by th enext modification or the freeing of the log item.
284 *
285 * We don't set up region headers during this process; we simply copy the
286 * regions into the flat buffer. We can do this because we still have to do a
287 * formatting step to write the regions into the iclog buffer. Writing the
288 * ophdrs during the iclog write means that we can support splitting large
289 * regions across iclog boundares without needing a change in the format of the
290 * item/region encapsulation.
291 *
292 * Hence what we need to do now is change the rewrite the vector array to point
293 * to the copied region inside the buffer we just allocated. This allows us to
294 * format the regions into the iclog as though they are being formatted
295 * directly out of the objects themselves.
296 */
297static void
298xlog_cil_insert_format_items(
299 struct xlog *log,
300 struct xfs_trans *tp,
301 int *diff_len,
302 int *diff_iovecs)
303{
304 struct xfs_log_item *lip;
305
306
307 /* Bail out if we didn't find a log item. */
308 if (list_empty(&tp->t_items)) {
309 ASSERT(0);
310 return;
311 }
312
313 list_for_each_entry(lip, &tp->t_items, li_trans) {
314 struct xfs_log_vec *lv;
315 struct xfs_log_vec *old_lv = NULL;
316 struct xfs_log_vec *shadow;
317 bool ordered = false;
318
319 /* Skip items which aren't dirty in this transaction. */
320 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
321 continue;
322
323 /*
324 * The formatting size information is already attached to
325 * the shadow lv on the log item.
326 */
327 shadow = lip->li_lv_shadow;
328 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
329 ordered = true;
330
331 /* Skip items that do not have any vectors for writing */
332 if (!shadow->lv_niovecs && !ordered)
333 continue;
334
335 /* compare to existing item size */
336 old_lv = lip->li_lv;
337 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
338 /* same or smaller, optimise common overwrite case */
339 lv = lip->li_lv;
340 lv->lv_next = NULL;
341
342 if (ordered)
343 goto insert;
344
345 /*
346 * set the item up as though it is a new insertion so
347 * that the space reservation accounting is correct.
348 */
349 *diff_iovecs -= lv->lv_niovecs;
350 *diff_len -= lv->lv_bytes;
351
352 /* Ensure the lv is set up according to ->iop_size */
353 lv->lv_niovecs = shadow->lv_niovecs;
354
355 /* reset the lv buffer information for new formatting */
356 lv->lv_buf_len = 0;
357 lv->lv_bytes = 0;
358 lv->lv_buf = (char *)lv +
359 xlog_cil_iovec_space(lv->lv_niovecs);
360 } else {
361 /* switch to shadow buffer! */
362 lv = shadow;
363 lv->lv_item = lip;
364 if (ordered) {
365 /* track as an ordered logvec */
366 ASSERT(lip->li_lv == NULL);
367 goto insert;
368 }
369 }
370
371 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
372 lip->li_ops->iop_format(lip, lv);
373insert:
374 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
375 }
376}
377
378/*
379 * Insert the log items into the CIL and calculate the difference in space
380 * consumed by the item. Add the space to the checkpoint ticket and calculate
381 * if the change requires additional log metadata. If it does, take that space
382 * as well. Remove the amount of space we added to the checkpoint ticket from
383 * the current transaction ticket so that the accounting works out correctly.
384 */
385static void
386xlog_cil_insert_items(
387 struct xlog *log,
388 struct xfs_trans *tp)
389{
390 struct xfs_cil *cil = log->l_cilp;
391 struct xfs_cil_ctx *ctx = cil->xc_ctx;
392 struct xfs_log_item *lip;
393 int len = 0;
394 int diff_iovecs = 0;
395 int iclog_space;
396 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
397
398 ASSERT(tp);
399
400 /*
401 * We can do this safely because the context can't checkpoint until we
402 * are done so it doesn't matter exactly how we update the CIL.
403 */
404 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
405
406 spin_lock(&cil->xc_cil_lock);
407
408 /* account for space used by new iovec headers */
409 iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
410 len += iovhdr_res;
411 ctx->nvecs += diff_iovecs;
412
413 /* attach the transaction to the CIL if it has any busy extents */
414 if (!list_empty(&tp->t_busy))
415 list_splice_init(&tp->t_busy, &ctx->busy_extents);
416
417 /*
418 * Now transfer enough transaction reservation to the context ticket
419 * for the checkpoint. The context ticket is special - the unit
420 * reservation has to grow as well as the current reservation as we
421 * steal from tickets so we can correctly determine the space used
422 * during the transaction commit.
423 */
424 if (ctx->ticket->t_curr_res == 0) {
425 ctx_res = ctx->ticket->t_unit_res;
426 ctx->ticket->t_curr_res = ctx_res;
427 tp->t_ticket->t_curr_res -= ctx_res;
428 }
429
430 /* do we need space for more log record headers? */
431 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
432 if (len > 0 && (ctx->space_used / iclog_space !=
433 (ctx->space_used + len) / iclog_space)) {
434 split_res = (len + iclog_space - 1) / iclog_space;
435 /* need to take into account split region headers, too */
436 split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
437 ctx->ticket->t_unit_res += split_res;
438 ctx->ticket->t_curr_res += split_res;
439 tp->t_ticket->t_curr_res -= split_res;
440 ASSERT(tp->t_ticket->t_curr_res >= len);
441 }
442 tp->t_ticket->t_curr_res -= len;
443 ctx->space_used += len;
444
445 /*
446 * If we've overrun the reservation, dump the tx details before we move
447 * the log items. Shutdown is imminent...
448 */
449 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
450 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
451 xfs_warn(log->l_mp,
452 " log items: %d bytes (iov hdrs: %d bytes)",
453 len, iovhdr_res);
454 xfs_warn(log->l_mp, " split region headers: %d bytes",
455 split_res);
456 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
457 xlog_print_trans(tp);
458 }
459
460 /*
461 * Now (re-)position everything modified at the tail of the CIL.
462 * We do this here so we only need to take the CIL lock once during
463 * the transaction commit.
464 */
465 list_for_each_entry(lip, &tp->t_items, li_trans) {
466
467 /* Skip items which aren't dirty in this transaction. */
468 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
469 continue;
470
471 /*
472 * Only move the item if it isn't already at the tail. This is
473 * to prevent a transient list_empty() state when reinserting
474 * an item that is already the only item in the CIL.
475 */
476 if (!list_is_last(&lip->li_cil, &cil->xc_cil))
477 list_move_tail(&lip->li_cil, &cil->xc_cil);
478 }
479
480 spin_unlock(&cil->xc_cil_lock);
481
482 if (tp->t_ticket->t_curr_res < 0)
483 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
484}
485
486static void
487xlog_cil_free_logvec(
488 struct xfs_log_vec *log_vector)
489{
490 struct xfs_log_vec *lv;
491
492 for (lv = log_vector; lv; ) {
493 struct xfs_log_vec *next = lv->lv_next;
494 kmem_free(lv);
495 lv = next;
496 }
497}
498
499static void
500xlog_discard_endio_work(
501 struct work_struct *work)
502{
503 struct xfs_cil_ctx *ctx =
504 container_of(work, struct xfs_cil_ctx, discard_endio_work);
505 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
506
507 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
508 kmem_free(ctx);
509}
510
511/*
512 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
513 * pagb_lock. Note that we need a unbounded workqueue, otherwise we might
514 * get the execution delayed up to 30 seconds for weird reasons.
515 */
516static void
517xlog_discard_endio(
518 struct bio *bio)
519{
520 struct xfs_cil_ctx *ctx = bio->bi_private;
521
522 INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
523 queue_work(xfs_discard_wq, &ctx->discard_endio_work);
524 bio_put(bio);
525}
526
527static void
528xlog_discard_busy_extents(
529 struct xfs_mount *mp,
530 struct xfs_cil_ctx *ctx)
531{
532 struct list_head *list = &ctx->busy_extents;
533 struct xfs_extent_busy *busyp;
534 struct bio *bio = NULL;
535 struct blk_plug plug;
536 int error = 0;
537
538 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
539
540 blk_start_plug(&plug);
541 list_for_each_entry(busyp, list, list) {
542 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
543 busyp->length);
544
545 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
546 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
547 XFS_FSB_TO_BB(mp, busyp->length),
548 GFP_NOFS, 0, &bio);
549 if (error && error != -EOPNOTSUPP) {
550 xfs_info(mp,
551 "discard failed for extent [0x%llx,%u], error %d",
552 (unsigned long long)busyp->bno,
553 busyp->length,
554 error);
555 break;
556 }
557 }
558
559 if (bio) {
560 bio->bi_private = ctx;
561 bio->bi_end_io = xlog_discard_endio;
562 submit_bio(bio);
563 } else {
564 xlog_discard_endio_work(&ctx->discard_endio_work);
565 }
566 blk_finish_plug(&plug);
567}
568
569/*
570 * Mark all items committed and clear busy extents. We free the log vector
571 * chains in a separate pass so that we unpin the log items as quickly as
572 * possible.
573 */
574static void
575xlog_cil_committed(
576 struct xfs_cil_ctx *ctx)
577{
578 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
579 bool abort = XLOG_FORCED_SHUTDOWN(ctx->cil->xc_log);
580
581 /*
582 * If the I/O failed, we're aborting the commit and already shutdown.
583 * Wake any commit waiters before aborting the log items so we don't
584 * block async log pushers on callbacks. Async log pushers explicitly do
585 * not wait on log force completion because they may be holding locks
586 * required to unpin items.
587 */
588 if (abort) {
589 spin_lock(&ctx->cil->xc_push_lock);
590 wake_up_all(&ctx->cil->xc_commit_wait);
591 spin_unlock(&ctx->cil->xc_push_lock);
592 }
593
594 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
595 ctx->start_lsn, abort);
596
597 xfs_extent_busy_sort(&ctx->busy_extents);
598 xfs_extent_busy_clear(mp, &ctx->busy_extents,
599 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
600
601 spin_lock(&ctx->cil->xc_push_lock);
602 list_del(&ctx->committing);
603 spin_unlock(&ctx->cil->xc_push_lock);
604
605 xlog_cil_free_logvec(ctx->lv_chain);
606
607 if (!list_empty(&ctx->busy_extents))
608 xlog_discard_busy_extents(mp, ctx);
609 else
610 kmem_free(ctx);
611}
612
613void
614xlog_cil_process_committed(
615 struct list_head *list)
616{
617 struct xfs_cil_ctx *ctx;
618
619 while ((ctx = list_first_entry_or_null(list,
620 struct xfs_cil_ctx, iclog_entry))) {
621 list_del(&ctx->iclog_entry);
622 xlog_cil_committed(ctx);
623 }
624}
625
626/*
627 * Push the Committed Item List to the log.
628 *
629 * If the current sequence is the same as xc_push_seq we need to do a flush. If
630 * xc_push_seq is less than the current sequence, then it has already been
631 * flushed and we don't need to do anything - the caller will wait for it to
632 * complete if necessary.
633 *
634 * xc_push_seq is checked unlocked against the sequence number for a match.
635 * Hence we can allow log forces to run racily and not issue pushes for the
636 * same sequence twice. If we get a race between multiple pushes for the same
637 * sequence they will block on the first one and then abort, hence avoiding
638 * needless pushes.
639 */
640static void
641xlog_cil_push_work(
642 struct work_struct *work)
643{
644 struct xfs_cil *cil =
645 container_of(work, struct xfs_cil, xc_push_work);
646 struct xlog *log = cil->xc_log;
647 struct xfs_log_vec *lv;
648 struct xfs_cil_ctx *ctx;
649 struct xfs_cil_ctx *new_ctx;
650 struct xlog_in_core *commit_iclog;
651 struct xlog_ticket *tic;
652 int num_iovecs;
653 int error = 0;
654 struct xfs_trans_header thdr;
655 struct xfs_log_iovec lhdr;
656 struct xfs_log_vec lvhdr = { NULL };
657 xfs_lsn_t preflush_tail_lsn;
658 xfs_lsn_t commit_lsn;
659 xfs_csn_t push_seq;
660 struct bio bio;
661 DECLARE_COMPLETION_ONSTACK(bdev_flush);
662
663 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
664 new_ctx->ticket = xlog_cil_ticket_alloc(log);
665
666 down_write(&cil->xc_ctx_lock);
667 ctx = cil->xc_ctx;
668
669 spin_lock(&cil->xc_push_lock);
670 push_seq = cil->xc_push_seq;
671 ASSERT(push_seq <= ctx->sequence);
672
673 /*
674 * As we are about to switch to a new, empty CIL context, we no longer
675 * need to throttle tasks on CIL space overruns. Wake any waiters that
676 * the hard push throttle may have caught so they can start committing
677 * to the new context. The ctx->xc_push_lock provides the serialisation
678 * necessary for safely using the lockless waitqueue_active() check in
679 * this context.
680 */
681 if (waitqueue_active(&cil->xc_push_wait))
682 wake_up_all(&cil->xc_push_wait);
683
684 /*
685 * Check if we've anything to push. If there is nothing, then we don't
686 * move on to a new sequence number and so we have to be able to push
687 * this sequence again later.
688 */
689 if (list_empty(&cil->xc_cil)) {
690 cil->xc_push_seq = 0;
691 spin_unlock(&cil->xc_push_lock);
692 goto out_skip;
693 }
694
695
696 /* check for a previously pushed sequence */
697 if (push_seq < cil->xc_ctx->sequence) {
698 spin_unlock(&cil->xc_push_lock);
699 goto out_skip;
700 }
701
702 /*
703 * We are now going to push this context, so add it to the committing
704 * list before we do anything else. This ensures that anyone waiting on
705 * this push can easily detect the difference between a "push in
706 * progress" and "CIL is empty, nothing to do".
707 *
708 * IOWs, a wait loop can now check for:
709 * the current sequence not being found on the committing list;
710 * an empty CIL; and
711 * an unchanged sequence number
712 * to detect a push that had nothing to do and therefore does not need
713 * waiting on. If the CIL is not empty, we get put on the committing
714 * list before emptying the CIL and bumping the sequence number. Hence
715 * an empty CIL and an unchanged sequence number means we jumped out
716 * above after doing nothing.
717 *
718 * Hence the waiter will either find the commit sequence on the
719 * committing list or the sequence number will be unchanged and the CIL
720 * still dirty. In that latter case, the push has not yet started, and
721 * so the waiter will have to continue trying to check the CIL
722 * committing list until it is found. In extreme cases of delay, the
723 * sequence may fully commit between the attempts the wait makes to wait
724 * on the commit sequence.
725 */
726 list_add(&ctx->committing, &cil->xc_committing);
727 spin_unlock(&cil->xc_push_lock);
728
729 /*
730 * The CIL is stable at this point - nothing new will be added to it
731 * because we hold the flush lock exclusively. Hence we can now issue
732 * a cache flush to ensure all the completed metadata in the journal we
733 * are about to overwrite is on stable storage.
734 *
735 * Because we are issuing this cache flush before we've written the
736 * tail lsn to the iclog, we can have metadata IO completions move the
737 * tail forwards between the completion of this flush and the iclog
738 * being written. In this case, we need to re-issue the cache flush
739 * before the iclog write. To detect whether the log tail moves, sample
740 * the tail LSN *before* we issue the flush.
741 */
742 preflush_tail_lsn = atomic64_read(&log->l_tail_lsn);
743 xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev,
744 &bdev_flush);
745
746 /*
747 * Pull all the log vectors off the items in the CIL, and remove the
748 * items from the CIL. We don't need the CIL lock here because it's only
749 * needed on the transaction commit side which is currently locked out
750 * by the flush lock.
751 */
752 lv = NULL;
753 num_iovecs = 0;
754 while (!list_empty(&cil->xc_cil)) {
755 struct xfs_log_item *item;
756
757 item = list_first_entry(&cil->xc_cil,
758 struct xfs_log_item, li_cil);
759 list_del_init(&item->li_cil);
760 if (!ctx->lv_chain)
761 ctx->lv_chain = item->li_lv;
762 else
763 lv->lv_next = item->li_lv;
764 lv = item->li_lv;
765 item->li_lv = NULL;
766 num_iovecs += lv->lv_niovecs;
767 }
768
769 /*
770 * initialise the new context and attach it to the CIL. Then attach
771 * the current context to the CIL committing list so it can be found
772 * during log forces to extract the commit lsn of the sequence that
773 * needs to be forced.
774 */
775 INIT_LIST_HEAD(&new_ctx->committing);
776 INIT_LIST_HEAD(&new_ctx->busy_extents);
777 new_ctx->sequence = ctx->sequence + 1;
778 new_ctx->cil = cil;
779 cil->xc_ctx = new_ctx;
780
781 /*
782 * The switch is now done, so we can drop the context lock and move out
783 * of a shared context. We can't just go straight to the commit record,
784 * though - we need to synchronise with previous and future commits so
785 * that the commit records are correctly ordered in the log to ensure
786 * that we process items during log IO completion in the correct order.
787 *
788 * For example, if we get an EFI in one checkpoint and the EFD in the
789 * next (e.g. due to log forces), we do not want the checkpoint with
790 * the EFD to be committed before the checkpoint with the EFI. Hence
791 * we must strictly order the commit records of the checkpoints so
792 * that: a) the checkpoint callbacks are attached to the iclogs in the
793 * correct order; and b) the checkpoints are replayed in correct order
794 * in log recovery.
795 *
796 * Hence we need to add this context to the committing context list so
797 * that higher sequences will wait for us to write out a commit record
798 * before they do.
799 *
800 * xfs_log_force_seq requires us to mirror the new sequence into the cil
801 * structure atomically with the addition of this sequence to the
802 * committing list. This also ensures that we can do unlocked checks
803 * against the current sequence in log forces without risking
804 * deferencing a freed context pointer.
805 */
806 spin_lock(&cil->xc_push_lock);
807 cil->xc_current_sequence = new_ctx->sequence;
808 spin_unlock(&cil->xc_push_lock);
809 up_write(&cil->xc_ctx_lock);
810
811 /*
812 * Build a checkpoint transaction header and write it to the log to
813 * begin the transaction. We need to account for the space used by the
814 * transaction header here as it is not accounted for in xlog_write().
815 *
816 * The LSN we need to pass to the log items on transaction commit is
817 * the LSN reported by the first log vector write. If we use the commit
818 * record lsn then we can move the tail beyond the grant write head.
819 */
820 tic = ctx->ticket;
821 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
822 thdr.th_type = XFS_TRANS_CHECKPOINT;
823 thdr.th_tid = tic->t_tid;
824 thdr.th_num_items = num_iovecs;
825 lhdr.i_addr = &thdr;
826 lhdr.i_len = sizeof(xfs_trans_header_t);
827 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
828 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
829
830 lvhdr.lv_niovecs = 1;
831 lvhdr.lv_iovecp = &lhdr;
832 lvhdr.lv_next = ctx->lv_chain;
833
834 /*
835 * Before we format and submit the first iclog, we have to ensure that
836 * the metadata writeback ordering cache flush is complete.
837 */
838 wait_for_completion(&bdev_flush);
839
840 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL,
841 XLOG_START_TRANS);
842 if (error)
843 goto out_abort_free_ticket;
844
845 /*
846 * now that we've written the checkpoint into the log, strictly
847 * order the commit records so replay will get them in the right order.
848 */
849restart:
850 spin_lock(&cil->xc_push_lock);
851 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
852 /*
853 * Avoid getting stuck in this loop because we were woken by the
854 * shutdown, but then went back to sleep once already in the
855 * shutdown state.
856 */
857 if (XLOG_FORCED_SHUTDOWN(log)) {
858 spin_unlock(&cil->xc_push_lock);
859 goto out_abort_free_ticket;
860 }
861
862 /*
863 * Higher sequences will wait for this one so skip them.
864 * Don't wait for our own sequence, either.
865 */
866 if (new_ctx->sequence >= ctx->sequence)
867 continue;
868 if (!new_ctx->commit_lsn) {
869 /*
870 * It is still being pushed! Wait for the push to
871 * complete, then start again from the beginning.
872 */
873 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
874 goto restart;
875 }
876 }
877 spin_unlock(&cil->xc_push_lock);
878
879 error = xlog_commit_record(log, tic, &commit_iclog, &commit_lsn);
880 if (error)
881 goto out_abort_free_ticket;
882
883 xfs_log_ticket_ungrant(log, tic);
884
885 /*
886 * Once we attach the ctx to the iclog, a shutdown can process the
887 * iclog, run the callbacks and free the ctx. The only thing preventing
888 * this potential UAF situation here is that we are holding the
889 * icloglock. Hence we cannot access the ctx once we have attached the
890 * callbacks and dropped the icloglock.
891 */
892 spin_lock(&log->l_icloglock);
893 if (commit_iclog->ic_state == XLOG_STATE_IOERROR) {
894 spin_unlock(&log->l_icloglock);
895 goto out_abort;
896 }
897 ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
898 commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
899 list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
900
901 /*
902 * now the checkpoint commit is complete and we've attached the
903 * callbacks to the iclog we can assign the commit LSN to the context
904 * and wake up anyone who is waiting for the commit to complete.
905 */
906 spin_lock(&cil->xc_push_lock);
907 ctx->commit_lsn = commit_lsn;
908 wake_up_all(&cil->xc_commit_wait);
909 spin_unlock(&cil->xc_push_lock);
910
911 /*
912 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
913 * to complete before we submit the commit_iclog. We can't use state
914 * checks for this - ACTIVE can be either a past completed iclog or a
915 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
916 * past or future iclog awaiting IO or ordered IO completion to be run.
917 * In the latter case, if it's a future iclog and we wait on it, the we
918 * will hang because it won't get processed through to ic_force_wait
919 * wakeup until this commit_iclog is written to disk. Hence we use the
920 * iclog header lsn and compare it to the commit lsn to determine if we
921 * need to wait on iclogs or not.
922 *
923 * NOTE: It is not safe to reference the ctx after this check as we drop
924 * the icloglock if we have to wait for completion of other iclogs.
925 */
926 if (ctx->start_lsn != commit_lsn) {
927 xfs_lsn_t plsn;
928
929 plsn = be64_to_cpu(commit_iclog->ic_prev->ic_header.h_lsn);
930 if (plsn && XFS_LSN_CMP(plsn, commit_lsn) < 0) {
931 /*
932 * Waiting on ic_force_wait orders the completion of
933 * iclogs older than ic_prev. Hence we only need to wait
934 * on the most recent older iclog here.
935 */
936 xlog_wait_on_iclog(commit_iclog->ic_prev);
937 spin_lock(&log->l_icloglock);
938 }
939
940 /*
941 * We need to issue a pre-flush so that the ordering for this
942 * checkpoint is correctly preserved down to stable storage.
943 */
944 commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
945 }
946
947 /*
948 * The commit iclog must be written to stable storage to guarantee
949 * journal IO vs metadata writeback IO is correctly ordered on stable
950 * storage.
951 */
952 commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
953 xlog_state_release_iclog(log, commit_iclog, preflush_tail_lsn);
954 spin_unlock(&log->l_icloglock);
955 return;
956
957out_skip:
958 up_write(&cil->xc_ctx_lock);
959 xfs_log_ticket_put(new_ctx->ticket);
960 kmem_free(new_ctx);
961 return;
962
963out_abort_free_ticket:
964 xfs_log_ticket_ungrant(log, tic);
965out_abort:
966 ASSERT(XLOG_FORCED_SHUTDOWN(log));
967 xlog_cil_committed(ctx);
968}
969
970/*
971 * We need to push CIL every so often so we don't cache more than we can fit in
972 * the log. The limit really is that a checkpoint can't be more than half the
973 * log (the current checkpoint is not allowed to overwrite the previous
974 * checkpoint), but commit latency and memory usage limit this to a smaller
975 * size.
976 */
977static void
978xlog_cil_push_background(
979 struct xlog *log) __releases(cil->xc_ctx_lock)
980{
981 struct xfs_cil *cil = log->l_cilp;
982
983 /*
984 * The cil won't be empty because we are called while holding the
985 * context lock so whatever we added to the CIL will still be there
986 */
987 ASSERT(!list_empty(&cil->xc_cil));
988
989 /*
990 * Don't do a background push if we haven't used up all the
991 * space available yet.
992 */
993 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
994 up_read(&cil->xc_ctx_lock);
995 return;
996 }
997
998 spin_lock(&cil->xc_push_lock);
999 if (cil->xc_push_seq < cil->xc_current_sequence) {
1000 cil->xc_push_seq = cil->xc_current_sequence;
1001 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
1002 }
1003
1004 /*
1005 * Drop the context lock now, we can't hold that if we need to sleep
1006 * because we are over the blocking threshold. The push_lock is still
1007 * held, so blocking threshold sleep/wakeup is still correctly
1008 * serialised here.
1009 */
1010 up_read(&cil->xc_ctx_lock);
1011
1012 /*
1013 * If we are well over the space limit, throttle the work that is being
1014 * done until the push work on this context has begun. Enforce the hard
1015 * throttle on all transaction commits once it has been activated, even
1016 * if the committing transactions have resulted in the space usage
1017 * dipping back down under the hard limit.
1018 *
1019 * The ctx->xc_push_lock provides the serialisation necessary for safely
1020 * using the lockless waitqueue_active() check in this context.
1021 */
1022 if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1023 waitqueue_active(&cil->xc_push_wait)) {
1024 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1025 ASSERT(cil->xc_ctx->space_used < log->l_logsize);
1026 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1027 return;
1028 }
1029
1030 spin_unlock(&cil->xc_push_lock);
1031
1032}
1033
1034/*
1035 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1036 * number that is passed. When it returns, the work will be queued for
1037 * @push_seq, but it won't be completed. The caller is expected to do any
1038 * waiting for push_seq to complete if it is required.
1039 */
1040static void
1041xlog_cil_push_now(
1042 struct xlog *log,
1043 xfs_lsn_t push_seq)
1044{
1045 struct xfs_cil *cil = log->l_cilp;
1046
1047 if (!cil)
1048 return;
1049
1050 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1051
1052 /* start on any pending background push to minimise wait time on it */
1053 flush_work(&cil->xc_push_work);
1054
1055 /*
1056 * If the CIL is empty or we've already pushed the sequence then
1057 * there's no work we need to do.
1058 */
1059 spin_lock(&cil->xc_push_lock);
1060 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
1061 spin_unlock(&cil->xc_push_lock);
1062 return;
1063 }
1064
1065 cil->xc_push_seq = push_seq;
1066 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
1067 spin_unlock(&cil->xc_push_lock);
1068}
1069
1070bool
1071xlog_cil_empty(
1072 struct xlog *log)
1073{
1074 struct xfs_cil *cil = log->l_cilp;
1075 bool empty = false;
1076
1077 spin_lock(&cil->xc_push_lock);
1078 if (list_empty(&cil->xc_cil))
1079 empty = true;
1080 spin_unlock(&cil->xc_push_lock);
1081 return empty;
1082}
1083
1084/*
1085 * Commit a transaction with the given vector to the Committed Item List.
1086 *
1087 * To do this, we need to format the item, pin it in memory if required and
1088 * account for the space used by the transaction. Once we have done that we
1089 * need to release the unused reservation for the transaction, attach the
1090 * transaction to the checkpoint context so we carry the busy extents through
1091 * to checkpoint completion, and then unlock all the items in the transaction.
1092 *
1093 * Called with the context lock already held in read mode to lock out
1094 * background commit, returns without it held once background commits are
1095 * allowed again.
1096 */
1097void
1098xlog_cil_commit(
1099 struct xlog *log,
1100 struct xfs_trans *tp,
1101 xfs_csn_t *commit_seq,
1102 bool regrant)
1103{
1104 struct xfs_cil *cil = log->l_cilp;
1105 struct xfs_log_item *lip, *next;
1106
1107 /*
1108 * Do all necessary memory allocation before we lock the CIL.
1109 * This ensures the allocation does not deadlock with a CIL
1110 * push in memory reclaim (e.g. from kswapd).
1111 */
1112 xlog_cil_alloc_shadow_bufs(log, tp);
1113
1114 /* lock out background commit */
1115 down_read(&cil->xc_ctx_lock);
1116
1117 xlog_cil_insert_items(log, tp);
1118
1119 if (regrant && !XLOG_FORCED_SHUTDOWN(log))
1120 xfs_log_ticket_regrant(log, tp->t_ticket);
1121 else
1122 xfs_log_ticket_ungrant(log, tp->t_ticket);
1123 tp->t_ticket = NULL;
1124 xfs_trans_unreserve_and_mod_sb(tp);
1125
1126 /*
1127 * Once all the items of the transaction have been copied to the CIL,
1128 * the items can be unlocked and possibly freed.
1129 *
1130 * This needs to be done before we drop the CIL context lock because we
1131 * have to update state in the log items and unlock them before they go
1132 * to disk. If we don't, then the CIL checkpoint can race with us and
1133 * we can run checkpoint completion before we've updated and unlocked
1134 * the log items. This affects (at least) processing of stale buffers,
1135 * inodes and EFIs.
1136 */
1137 trace_xfs_trans_commit_items(tp, _RET_IP_);
1138 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1139 xfs_trans_del_item(lip);
1140 if (lip->li_ops->iop_committing)
1141 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1142 }
1143 if (commit_seq)
1144 *commit_seq = cil->xc_ctx->sequence;
1145
1146 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1147 xlog_cil_push_background(log);
1148}
1149
1150/*
1151 * Conditionally push the CIL based on the sequence passed in.
1152 *
1153 * We only need to push if we haven't already pushed the sequence
1154 * number given. Hence the only time we will trigger a push here is
1155 * if the push sequence is the same as the current context.
1156 *
1157 * We return the current commit lsn to allow the callers to determine if a
1158 * iclog flush is necessary following this call.
1159 */
1160xfs_lsn_t
1161xlog_cil_force_seq(
1162 struct xlog *log,
1163 xfs_csn_t sequence)
1164{
1165 struct xfs_cil *cil = log->l_cilp;
1166 struct xfs_cil_ctx *ctx;
1167 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1168
1169 ASSERT(sequence <= cil->xc_current_sequence);
1170
1171 /*
1172 * check to see if we need to force out the current context.
1173 * xlog_cil_push() handles racing pushes for the same sequence,
1174 * so no need to deal with it here.
1175 */
1176restart:
1177 xlog_cil_push_now(log, sequence);
1178
1179 /*
1180 * See if we can find a previous sequence still committing.
1181 * We need to wait for all previous sequence commits to complete
1182 * before allowing the force of push_seq to go ahead. Hence block
1183 * on commits for those as well.
1184 */
1185 spin_lock(&cil->xc_push_lock);
1186 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1187 /*
1188 * Avoid getting stuck in this loop because we were woken by the
1189 * shutdown, but then went back to sleep once already in the
1190 * shutdown state.
1191 */
1192 if (XLOG_FORCED_SHUTDOWN(log))
1193 goto out_shutdown;
1194 if (ctx->sequence > sequence)
1195 continue;
1196 if (!ctx->commit_lsn) {
1197 /*
1198 * It is still being pushed! Wait for the push to
1199 * complete, then start again from the beginning.
1200 */
1201 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1202 goto restart;
1203 }
1204 if (ctx->sequence != sequence)
1205 continue;
1206 /* found it! */
1207 commit_lsn = ctx->commit_lsn;
1208 }
1209
1210 /*
1211 * The call to xlog_cil_push_now() executes the push in the background.
1212 * Hence by the time we have got here it our sequence may not have been
1213 * pushed yet. This is true if the current sequence still matches the
1214 * push sequence after the above wait loop and the CIL still contains
1215 * dirty objects. This is guaranteed by the push code first adding the
1216 * context to the committing list before emptying the CIL.
1217 *
1218 * Hence if we don't find the context in the committing list and the
1219 * current sequence number is unchanged then the CIL contents are
1220 * significant. If the CIL is empty, if means there was nothing to push
1221 * and that means there is nothing to wait for. If the CIL is not empty,
1222 * it means we haven't yet started the push, because if it had started
1223 * we would have found the context on the committing list.
1224 */
1225 if (sequence == cil->xc_current_sequence &&
1226 !list_empty(&cil->xc_cil)) {
1227 spin_unlock(&cil->xc_push_lock);
1228 goto restart;
1229 }
1230
1231 spin_unlock(&cil->xc_push_lock);
1232 return commit_lsn;
1233
1234 /*
1235 * We detected a shutdown in progress. We need to trigger the log force
1236 * to pass through it's iclog state machine error handling, even though
1237 * we are already in a shutdown state. Hence we can't return
1238 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1239 * LSN is already stable), so we return a zero LSN instead.
1240 */
1241out_shutdown:
1242 spin_unlock(&cil->xc_push_lock);
1243 return 0;
1244}
1245
1246/*
1247 * Check if the current log item was first committed in this sequence.
1248 * We can't rely on just the log item being in the CIL, we have to check
1249 * the recorded commit sequence number.
1250 *
1251 * Note: for this to be used in a non-racy manner, it has to be called with
1252 * CIL flushing locked out. As a result, it should only be used during the
1253 * transaction commit process when deciding what to format into the item.
1254 */
1255bool
1256xfs_log_item_in_current_chkpt(
1257 struct xfs_log_item *lip)
1258{
1259 struct xfs_cil_ctx *ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1260
1261 if (list_empty(&lip->li_cil))
1262 return false;
1263
1264 /*
1265 * li_seq is written on the first commit of a log item to record the
1266 * first checkpoint it is written to. Hence if it is different to the
1267 * current sequence, we're in a new checkpoint.
1268 */
1269 return lip->li_seq == ctx->sequence;
1270}
1271
1272/*
1273 * Perform initial CIL structure initialisation.
1274 */
1275int
1276xlog_cil_init(
1277 struct xlog *log)
1278{
1279 struct xfs_cil *cil;
1280 struct xfs_cil_ctx *ctx;
1281
1282 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1283 if (!cil)
1284 return -ENOMEM;
1285
1286 ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
1287 if (!ctx) {
1288 kmem_free(cil);
1289 return -ENOMEM;
1290 }
1291
1292 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1293 INIT_LIST_HEAD(&cil->xc_cil);
1294 INIT_LIST_HEAD(&cil->xc_committing);
1295 spin_lock_init(&cil->xc_cil_lock);
1296 spin_lock_init(&cil->xc_push_lock);
1297 init_waitqueue_head(&cil->xc_push_wait);
1298 init_rwsem(&cil->xc_ctx_lock);
1299 init_waitqueue_head(&cil->xc_commit_wait);
1300
1301 INIT_LIST_HEAD(&ctx->committing);
1302 INIT_LIST_HEAD(&ctx->busy_extents);
1303 ctx->sequence = 1;
1304 ctx->cil = cil;
1305 cil->xc_ctx = ctx;
1306 cil->xc_current_sequence = ctx->sequence;
1307
1308 cil->xc_log = log;
1309 log->l_cilp = cil;
1310 return 0;
1311}
1312
1313void
1314xlog_cil_destroy(
1315 struct xlog *log)
1316{
1317 if (log->l_cilp->xc_ctx) {
1318 if (log->l_cilp->xc_ctx->ticket)
1319 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1320 kmem_free(log->l_cilp->xc_ctx);
1321 }
1322
1323 ASSERT(list_empty(&log->l_cilp->xc_cil));
1324 kmem_free(log->l_cilp);
1325}
1326