Loading...
1/*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/file.h>
14#include <linux/writeback.h>
15#include <linux/swap.h>
16#include <linux/migrate.h>
17
18#include <linux/sunrpc/clnt.h>
19#include <linux/nfs_fs.h>
20#include <linux/nfs_mount.h>
21#include <linux/nfs_page.h>
22#include <linux/backing-dev.h>
23#include <linux/export.h>
24
25#include <asm/uaccess.h>
26
27#include "delegation.h"
28#include "internal.h"
29#include "iostat.h"
30#include "nfs4_fs.h"
31#include "fscache.h"
32#include "pnfs.h"
33
34#include "nfstrace.h"
35
36#define NFSDBG_FACILITY NFSDBG_PAGECACHE
37
38#define MIN_POOL_WRITE (32)
39#define MIN_POOL_COMMIT (4)
40
41/*
42 * Local function declarations
43 */
44static void nfs_redirty_request(struct nfs_page *req);
45static const struct rpc_call_ops nfs_write_common_ops;
46static const struct rpc_call_ops nfs_commit_ops;
47static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
48static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
49
50static struct kmem_cache *nfs_wdata_cachep;
51static mempool_t *nfs_wdata_mempool;
52static struct kmem_cache *nfs_cdata_cachep;
53static mempool_t *nfs_commit_mempool;
54
55struct nfs_commit_data *nfs_commitdata_alloc(void)
56{
57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
58
59 if (p) {
60 memset(p, 0, sizeof(*p));
61 INIT_LIST_HEAD(&p->pages);
62 }
63 return p;
64}
65EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
66
67void nfs_commit_free(struct nfs_commit_data *p)
68{
69 mempool_free(p, nfs_commit_mempool);
70}
71EXPORT_SYMBOL_GPL(nfs_commit_free);
72
73struct nfs_write_header *nfs_writehdr_alloc(void)
74{
75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
76
77 if (p) {
78 struct nfs_pgio_header *hdr = &p->header;
79
80 memset(p, 0, sizeof(*p));
81 INIT_LIST_HEAD(&hdr->pages);
82 INIT_LIST_HEAD(&hdr->rpc_list);
83 spin_lock_init(&hdr->lock);
84 atomic_set(&hdr->refcnt, 0);
85 hdr->verf = &p->verf;
86 }
87 return p;
88}
89EXPORT_SYMBOL_GPL(nfs_writehdr_alloc);
90
91static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
92 unsigned int pagecount)
93{
94 struct nfs_write_data *data, *prealloc;
95
96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
97 if (prealloc->header == NULL)
98 data = prealloc;
99 else
100 data = kzalloc(sizeof(*data), GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 if (nfs_pgarray_set(&data->pages, pagecount)) {
105 data->header = hdr;
106 atomic_inc(&hdr->refcnt);
107 } else {
108 if (data != prealloc)
109 kfree(data);
110 data = NULL;
111 }
112out:
113 return data;
114}
115
116void nfs_writehdr_free(struct nfs_pgio_header *hdr)
117{
118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
119 mempool_free(whdr, nfs_wdata_mempool);
120}
121EXPORT_SYMBOL_GPL(nfs_writehdr_free);
122
123void nfs_writedata_release(struct nfs_write_data *wdata)
124{
125 struct nfs_pgio_header *hdr = wdata->header;
126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
127
128 put_nfs_open_context(wdata->args.context);
129 if (wdata->pages.pagevec != wdata->pages.page_array)
130 kfree(wdata->pages.pagevec);
131 if (wdata == &write_header->rpc_data) {
132 wdata->header = NULL;
133 wdata = NULL;
134 }
135 if (atomic_dec_and_test(&hdr->refcnt))
136 hdr->completion_ops->completion(hdr);
137 /* Note: we only free the rpc_task after callbacks are done.
138 * See the comment in rpc_free_task() for why
139 */
140 kfree(wdata);
141}
142EXPORT_SYMBOL_GPL(nfs_writedata_release);
143
144static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
145{
146 ctx->error = error;
147 smp_wmb();
148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
149}
150
151static struct nfs_page *
152nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page)
153{
154 struct nfs_page *req = NULL;
155
156 if (PagePrivate(page))
157 req = (struct nfs_page *)page_private(page);
158 else if (unlikely(PageSwapCache(page))) {
159 struct nfs_page *freq, *t;
160
161 /* Linearly search the commit list for the correct req */
162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) {
163 if (freq->wb_page == page) {
164 req = freq;
165 break;
166 }
167 }
168 }
169
170 if (req)
171 kref_get(&req->wb_kref);
172
173 return req;
174}
175
176static struct nfs_page *nfs_page_find_request(struct page *page)
177{
178 struct inode *inode = page_file_mapping(page)->host;
179 struct nfs_page *req = NULL;
180
181 spin_lock(&inode->i_lock);
182 req = nfs_page_find_request_locked(NFS_I(inode), page);
183 spin_unlock(&inode->i_lock);
184 return req;
185}
186
187/* Adjust the file length if we're writing beyond the end */
188static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
189{
190 struct inode *inode = page_file_mapping(page)->host;
191 loff_t end, i_size;
192 pgoff_t end_index;
193
194 spin_lock(&inode->i_lock);
195 i_size = i_size_read(inode);
196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
197 if (i_size > 0 && page_file_index(page) < end_index)
198 goto out;
199 end = page_file_offset(page) + ((loff_t)offset+count);
200 if (i_size >= end)
201 goto out;
202 i_size_write(inode, end);
203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
204out:
205 spin_unlock(&inode->i_lock);
206}
207
208/* A writeback failed: mark the page as bad, and invalidate the page cache */
209static void nfs_set_pageerror(struct page *page)
210{
211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
212}
213
214/* We can set the PG_uptodate flag if we see that a write request
215 * covers the full page.
216 */
217static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
218{
219 if (PageUptodate(page))
220 return;
221 if (base != 0)
222 return;
223 if (count != nfs_page_length(page))
224 return;
225 SetPageUptodate(page);
226}
227
228static int wb_priority(struct writeback_control *wbc)
229{
230 if (wbc->for_reclaim)
231 return FLUSH_HIGHPRI | FLUSH_STABLE;
232 if (wbc->for_kupdate || wbc->for_background)
233 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
234 return FLUSH_COND_STABLE;
235}
236
237/*
238 * NFS congestion control
239 */
240
241int nfs_congestion_kb;
242
243#define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
244#define NFS_CONGESTION_OFF_THRESH \
245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
246
247static void nfs_set_page_writeback(struct page *page)
248{
249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
250 int ret = test_set_page_writeback(page);
251
252 WARN_ON_ONCE(ret != 0);
253
254 if (atomic_long_inc_return(&nfss->writeback) >
255 NFS_CONGESTION_ON_THRESH) {
256 set_bdi_congested(&nfss->backing_dev_info,
257 BLK_RW_ASYNC);
258 }
259}
260
261static void nfs_end_page_writeback(struct page *page)
262{
263 struct inode *inode = page_file_mapping(page)->host;
264 struct nfs_server *nfss = NFS_SERVER(inode);
265
266 end_page_writeback(page);
267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
269}
270
271static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
272{
273 struct inode *inode = page_file_mapping(page)->host;
274 struct nfs_page *req;
275 int ret;
276
277 spin_lock(&inode->i_lock);
278 for (;;) {
279 req = nfs_page_find_request_locked(NFS_I(inode), page);
280 if (req == NULL)
281 break;
282 if (nfs_lock_request(req))
283 break;
284 /* Note: If we hold the page lock, as is the case in nfs_writepage,
285 * then the call to nfs_lock_request() will always
286 * succeed provided that someone hasn't already marked the
287 * request as dirty (in which case we don't care).
288 */
289 spin_unlock(&inode->i_lock);
290 if (!nonblock)
291 ret = nfs_wait_on_request(req);
292 else
293 ret = -EAGAIN;
294 nfs_release_request(req);
295 if (ret != 0)
296 return ERR_PTR(ret);
297 spin_lock(&inode->i_lock);
298 }
299 spin_unlock(&inode->i_lock);
300 return req;
301}
302
303/*
304 * Find an associated nfs write request, and prepare to flush it out
305 * May return an error if the user signalled nfs_wait_on_request().
306 */
307static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
308 struct page *page, bool nonblock)
309{
310 struct nfs_page *req;
311 int ret = 0;
312
313 req = nfs_find_and_lock_request(page, nonblock);
314 if (!req)
315 goto out;
316 ret = PTR_ERR(req);
317 if (IS_ERR(req))
318 goto out;
319
320 nfs_set_page_writeback(page);
321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
322
323 ret = 0;
324 if (!nfs_pageio_add_request(pgio, req)) {
325 nfs_redirty_request(req);
326 ret = pgio->pg_error;
327 }
328out:
329 return ret;
330}
331
332static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
333{
334 struct inode *inode = page_file_mapping(page)->host;
335 int ret;
336
337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
339
340 nfs_pageio_cond_complete(pgio, page_file_index(page));
341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
342 if (ret == -EAGAIN) {
343 redirty_page_for_writepage(wbc, page);
344 ret = 0;
345 }
346 return ret;
347}
348
349/*
350 * Write an mmapped page to the server.
351 */
352static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
353{
354 struct nfs_pageio_descriptor pgio;
355 int err;
356
357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio,
358 page->mapping->host,
359 wb_priority(wbc),
360 &nfs_async_write_completion_ops);
361 err = nfs_do_writepage(page, wbc, &pgio);
362 nfs_pageio_complete(&pgio);
363 if (err < 0)
364 return err;
365 if (pgio.pg_error < 0)
366 return pgio.pg_error;
367 return 0;
368}
369
370int nfs_writepage(struct page *page, struct writeback_control *wbc)
371{
372 int ret;
373
374 ret = nfs_writepage_locked(page, wbc);
375 unlock_page(page);
376 return ret;
377}
378
379static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
380{
381 int ret;
382
383 ret = nfs_do_writepage(page, wbc, data);
384 unlock_page(page);
385 return ret;
386}
387
388int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
389{
390 struct inode *inode = mapping->host;
391 unsigned long *bitlock = &NFS_I(inode)->flags;
392 struct nfs_pageio_descriptor pgio;
393 int err;
394
395 /* Stop dirtying of new pages while we sync */
396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
397 nfs_wait_bit_killable, TASK_KILLABLE);
398 if (err)
399 goto out_err;
400
401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
402
403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops);
404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
405 nfs_pageio_complete(&pgio);
406
407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
408 smp_mb__after_clear_bit();
409 wake_up_bit(bitlock, NFS_INO_FLUSHING);
410
411 if (err < 0)
412 goto out_err;
413 err = pgio.pg_error;
414 if (err < 0)
415 goto out_err;
416 return 0;
417out_err:
418 return err;
419}
420
421/*
422 * Insert a write request into an inode
423 */
424static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
425{
426 struct nfs_inode *nfsi = NFS_I(inode);
427
428 /* Lock the request! */
429 nfs_lock_request(req);
430
431 spin_lock(&inode->i_lock);
432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
433 inode->i_version++;
434 /*
435 * Swap-space should not get truncated. Hence no need to plug the race
436 * with invalidate/truncate.
437 */
438 if (likely(!PageSwapCache(req->wb_page))) {
439 set_bit(PG_MAPPED, &req->wb_flags);
440 SetPagePrivate(req->wb_page);
441 set_page_private(req->wb_page, (unsigned long)req);
442 }
443 nfsi->npages++;
444 kref_get(&req->wb_kref);
445 spin_unlock(&inode->i_lock);
446}
447
448/*
449 * Remove a write request from an inode
450 */
451static void nfs_inode_remove_request(struct nfs_page *req)
452{
453 struct inode *inode = req->wb_context->dentry->d_inode;
454 struct nfs_inode *nfsi = NFS_I(inode);
455
456 spin_lock(&inode->i_lock);
457 if (likely(!PageSwapCache(req->wb_page))) {
458 set_page_private(req->wb_page, 0);
459 ClearPagePrivate(req->wb_page);
460 clear_bit(PG_MAPPED, &req->wb_flags);
461 }
462 nfsi->npages--;
463 spin_unlock(&inode->i_lock);
464 nfs_release_request(req);
465}
466
467static void
468nfs_mark_request_dirty(struct nfs_page *req)
469{
470 __set_page_dirty_nobuffers(req->wb_page);
471}
472
473#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
474/**
475 * nfs_request_add_commit_list - add request to a commit list
476 * @req: pointer to a struct nfs_page
477 * @dst: commit list head
478 * @cinfo: holds list lock and accounting info
479 *
480 * This sets the PG_CLEAN bit, updates the cinfo count of
481 * number of outstanding requests requiring a commit as well as
482 * the MM page stats.
483 *
484 * The caller must _not_ hold the cinfo->lock, but must be
485 * holding the nfs_page lock.
486 */
487void
488nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
489 struct nfs_commit_info *cinfo)
490{
491 set_bit(PG_CLEAN, &(req)->wb_flags);
492 spin_lock(cinfo->lock);
493 nfs_list_add_request(req, dst);
494 cinfo->mds->ncommit++;
495 spin_unlock(cinfo->lock);
496 if (!cinfo->dreq) {
497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
499 BDI_RECLAIMABLE);
500 __mark_inode_dirty(req->wb_context->dentry->d_inode,
501 I_DIRTY_DATASYNC);
502 }
503}
504EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
505
506/**
507 * nfs_request_remove_commit_list - Remove request from a commit list
508 * @req: pointer to a nfs_page
509 * @cinfo: holds list lock and accounting info
510 *
511 * This clears the PG_CLEAN bit, and updates the cinfo's count of
512 * number of outstanding requests requiring a commit
513 * It does not update the MM page stats.
514 *
515 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
516 */
517void
518nfs_request_remove_commit_list(struct nfs_page *req,
519 struct nfs_commit_info *cinfo)
520{
521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
522 return;
523 nfs_list_remove_request(req);
524 cinfo->mds->ncommit--;
525}
526EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
527
528static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
529 struct inode *inode)
530{
531 cinfo->lock = &inode->i_lock;
532 cinfo->mds = &NFS_I(inode)->commit_info;
533 cinfo->ds = pnfs_get_ds_info(inode);
534 cinfo->dreq = NULL;
535 cinfo->completion_ops = &nfs_commit_completion_ops;
536}
537
538void nfs_init_cinfo(struct nfs_commit_info *cinfo,
539 struct inode *inode,
540 struct nfs_direct_req *dreq)
541{
542 if (dreq)
543 nfs_init_cinfo_from_dreq(cinfo, dreq);
544 else
545 nfs_init_cinfo_from_inode(cinfo, inode);
546}
547EXPORT_SYMBOL_GPL(nfs_init_cinfo);
548
549/*
550 * Add a request to the inode's commit list.
551 */
552void
553nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
554 struct nfs_commit_info *cinfo)
555{
556 if (pnfs_mark_request_commit(req, lseg, cinfo))
557 return;
558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
559}
560
561static void
562nfs_clear_page_commit(struct page *page)
563{
564 dec_zone_page_state(page, NR_UNSTABLE_NFS);
565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE);
566}
567
568static void
569nfs_clear_request_commit(struct nfs_page *req)
570{
571 if (test_bit(PG_CLEAN, &req->wb_flags)) {
572 struct inode *inode = req->wb_context->dentry->d_inode;
573 struct nfs_commit_info cinfo;
574
575 nfs_init_cinfo_from_inode(&cinfo, inode);
576 if (!pnfs_clear_request_commit(req, &cinfo)) {
577 spin_lock(cinfo.lock);
578 nfs_request_remove_commit_list(req, &cinfo);
579 spin_unlock(cinfo.lock);
580 }
581 nfs_clear_page_commit(req->wb_page);
582 }
583}
584
585static inline
586int nfs_write_need_commit(struct nfs_write_data *data)
587{
588 if (data->verf.committed == NFS_DATA_SYNC)
589 return data->header->lseg == NULL;
590 return data->verf.committed != NFS_FILE_SYNC;
591}
592
593#else
594static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
595 struct inode *inode)
596{
597}
598
599void nfs_init_cinfo(struct nfs_commit_info *cinfo,
600 struct inode *inode,
601 struct nfs_direct_req *dreq)
602{
603}
604
605void
606nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
607 struct nfs_commit_info *cinfo)
608{
609}
610
611static void
612nfs_clear_request_commit(struct nfs_page *req)
613{
614}
615
616static inline
617int nfs_write_need_commit(struct nfs_write_data *data)
618{
619 return 0;
620}
621
622#endif
623
624static void nfs_write_completion(struct nfs_pgio_header *hdr)
625{
626 struct nfs_commit_info cinfo;
627 unsigned long bytes = 0;
628
629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
630 goto out;
631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
632 while (!list_empty(&hdr->pages)) {
633 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
634
635 bytes += req->wb_bytes;
636 nfs_list_remove_request(req);
637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
638 (hdr->good_bytes < bytes)) {
639 nfs_set_pageerror(req->wb_page);
640 nfs_context_set_write_error(req->wb_context, hdr->error);
641 goto remove_req;
642 }
643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
644 nfs_mark_request_dirty(req);
645 goto next;
646 }
647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf));
649 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
650 goto next;
651 }
652remove_req:
653 nfs_inode_remove_request(req);
654next:
655 nfs_unlock_request(req);
656 nfs_end_page_writeback(req->wb_page);
657 nfs_release_request(req);
658 }
659out:
660 hdr->release(hdr);
661}
662
663#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
664static unsigned long
665nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
666{
667 return cinfo->mds->ncommit;
668}
669
670/* cinfo->lock held by caller */
671int
672nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
673 struct nfs_commit_info *cinfo, int max)
674{
675 struct nfs_page *req, *tmp;
676 int ret = 0;
677
678 list_for_each_entry_safe(req, tmp, src, wb_list) {
679 if (!nfs_lock_request(req))
680 continue;
681 kref_get(&req->wb_kref);
682 if (cond_resched_lock(cinfo->lock))
683 list_safe_reset_next(req, tmp, wb_list);
684 nfs_request_remove_commit_list(req, cinfo);
685 nfs_list_add_request(req, dst);
686 ret++;
687 if ((ret == max) && !cinfo->dreq)
688 break;
689 }
690 return ret;
691}
692
693/*
694 * nfs_scan_commit - Scan an inode for commit requests
695 * @inode: NFS inode to scan
696 * @dst: mds destination list
697 * @cinfo: mds and ds lists of reqs ready to commit
698 *
699 * Moves requests from the inode's 'commit' request list.
700 * The requests are *not* checked to ensure that they form a contiguous set.
701 */
702int
703nfs_scan_commit(struct inode *inode, struct list_head *dst,
704 struct nfs_commit_info *cinfo)
705{
706 int ret = 0;
707
708 spin_lock(cinfo->lock);
709 if (cinfo->mds->ncommit > 0) {
710 const int max = INT_MAX;
711
712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
713 cinfo, max);
714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
715 }
716 spin_unlock(cinfo->lock);
717 return ret;
718}
719
720#else
721static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
722{
723 return 0;
724}
725
726int nfs_scan_commit(struct inode *inode, struct list_head *dst,
727 struct nfs_commit_info *cinfo)
728{
729 return 0;
730}
731#endif
732
733/*
734 * Search for an existing write request, and attempt to update
735 * it to reflect a new dirty region on a given page.
736 *
737 * If the attempt fails, then the existing request is flushed out
738 * to disk.
739 */
740static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
741 struct page *page,
742 unsigned int offset,
743 unsigned int bytes)
744{
745 struct nfs_page *req;
746 unsigned int rqend;
747 unsigned int end;
748 int error;
749
750 if (!PagePrivate(page))
751 return NULL;
752
753 end = offset + bytes;
754 spin_lock(&inode->i_lock);
755
756 for (;;) {
757 req = nfs_page_find_request_locked(NFS_I(inode), page);
758 if (req == NULL)
759 goto out_unlock;
760
761 rqend = req->wb_offset + req->wb_bytes;
762 /*
763 * Tell the caller to flush out the request if
764 * the offsets are non-contiguous.
765 * Note: nfs_flush_incompatible() will already
766 * have flushed out requests having wrong owners.
767 */
768 if (offset > rqend
769 || end < req->wb_offset)
770 goto out_flushme;
771
772 if (nfs_lock_request(req))
773 break;
774
775 /* The request is locked, so wait and then retry */
776 spin_unlock(&inode->i_lock);
777 error = nfs_wait_on_request(req);
778 nfs_release_request(req);
779 if (error != 0)
780 goto out_err;
781 spin_lock(&inode->i_lock);
782 }
783
784 /* Okay, the request matches. Update the region */
785 if (offset < req->wb_offset) {
786 req->wb_offset = offset;
787 req->wb_pgbase = offset;
788 }
789 if (end > rqend)
790 req->wb_bytes = end - req->wb_offset;
791 else
792 req->wb_bytes = rqend - req->wb_offset;
793out_unlock:
794 spin_unlock(&inode->i_lock);
795 if (req)
796 nfs_clear_request_commit(req);
797 return req;
798out_flushme:
799 spin_unlock(&inode->i_lock);
800 nfs_release_request(req);
801 error = nfs_wb_page(inode, page);
802out_err:
803 return ERR_PTR(error);
804}
805
806/*
807 * Try to update an existing write request, or create one if there is none.
808 *
809 * Note: Should always be called with the Page Lock held to prevent races
810 * if we have to add a new request. Also assumes that the caller has
811 * already called nfs_flush_incompatible() if necessary.
812 */
813static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
814 struct page *page, unsigned int offset, unsigned int bytes)
815{
816 struct inode *inode = page_file_mapping(page)->host;
817 struct nfs_page *req;
818
819 req = nfs_try_to_update_request(inode, page, offset, bytes);
820 if (req != NULL)
821 goto out;
822 req = nfs_create_request(ctx, inode, page, offset, bytes);
823 if (IS_ERR(req))
824 goto out;
825 nfs_inode_add_request(inode, req);
826out:
827 return req;
828}
829
830static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
831 unsigned int offset, unsigned int count)
832{
833 struct nfs_page *req;
834
835 req = nfs_setup_write_request(ctx, page, offset, count);
836 if (IS_ERR(req))
837 return PTR_ERR(req);
838 /* Update file length */
839 nfs_grow_file(page, offset, count);
840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
841 nfs_mark_request_dirty(req);
842 nfs_unlock_and_release_request(req);
843 return 0;
844}
845
846int nfs_flush_incompatible(struct file *file, struct page *page)
847{
848 struct nfs_open_context *ctx = nfs_file_open_context(file);
849 struct nfs_lock_context *l_ctx;
850 struct nfs_page *req;
851 int do_flush, status;
852 /*
853 * Look for a request corresponding to this page. If there
854 * is one, and it belongs to another file, we flush it out
855 * before we try to copy anything into the page. Do this
856 * due to the lack of an ACCESS-type call in NFSv2.
857 * Also do the same if we find a request from an existing
858 * dropped page.
859 */
860 do {
861 req = nfs_page_find_request(page);
862 if (req == NULL)
863 return 0;
864 l_ctx = req->wb_lock_context;
865 do_flush = req->wb_page != page || req->wb_context != ctx;
866 if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) {
867 do_flush |= l_ctx->lockowner.l_owner != current->files
868 || l_ctx->lockowner.l_pid != current->tgid;
869 }
870 nfs_release_request(req);
871 if (!do_flush)
872 return 0;
873 status = nfs_wb_page(page_file_mapping(page)->host, page);
874 } while (status == 0);
875 return status;
876}
877
878/*
879 * Avoid buffered writes when a open context credential's key would
880 * expire soon.
881 *
882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
883 *
884 * Return 0 and set a credential flag which triggers the inode to flush
885 * and performs NFS_FILE_SYNC writes if the key will expired within
886 * RPC_KEY_EXPIRE_TIMEO.
887 */
888int
889nfs_key_timeout_notify(struct file *filp, struct inode *inode)
890{
891 struct nfs_open_context *ctx = nfs_file_open_context(filp);
892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
893
894 return rpcauth_key_timeout_notify(auth, ctx->cred);
895}
896
897/*
898 * Test if the open context credential key is marked to expire soon.
899 */
900bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
901{
902 return rpcauth_cred_key_to_expire(ctx->cred);
903}
904
905/*
906 * If the page cache is marked as unsafe or invalid, then we can't rely on
907 * the PageUptodate() flag. In this case, we will need to turn off
908 * write optimisations that depend on the page contents being correct.
909 */
910static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
911{
912 struct nfs_inode *nfsi = NFS_I(inode);
913
914 if (nfs_have_delegated_attributes(inode))
915 goto out;
916 if (nfsi->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE))
917 return false;
918 smp_rmb();
919 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
920 return false;
921out:
922 return PageUptodate(page) != 0;
923}
924
925/* If we know the page is up to date, and we're not using byte range locks (or
926 * if we have the whole file locked for writing), it may be more efficient to
927 * extend the write to cover the entire page in order to avoid fragmentation
928 * inefficiencies.
929 *
930 * If the file is opened for synchronous writes then we can just skip the rest
931 * of the checks.
932 */
933static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
934{
935 if (file->f_flags & O_DSYNC)
936 return 0;
937 if (!nfs_write_pageuptodate(page, inode))
938 return 0;
939 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
940 return 1;
941 if (inode->i_flock == NULL || (inode->i_flock->fl_start == 0 &&
942 inode->i_flock->fl_end == OFFSET_MAX &&
943 inode->i_flock->fl_type != F_RDLCK))
944 return 1;
945 return 0;
946}
947
948/*
949 * Update and possibly write a cached page of an NFS file.
950 *
951 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
952 * things with a page scheduled for an RPC call (e.g. invalidate it).
953 */
954int nfs_updatepage(struct file *file, struct page *page,
955 unsigned int offset, unsigned int count)
956{
957 struct nfs_open_context *ctx = nfs_file_open_context(file);
958 struct inode *inode = page_file_mapping(page)->host;
959 int status = 0;
960
961 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
962
963 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
964 file, count, (long long)(page_file_offset(page) + offset));
965
966 if (nfs_can_extend_write(file, page, inode)) {
967 count = max(count + offset, nfs_page_length(page));
968 offset = 0;
969 }
970
971 status = nfs_writepage_setup(ctx, page, offset, count);
972 if (status < 0)
973 nfs_set_pageerror(page);
974 else
975 __set_page_dirty_nobuffers(page);
976
977 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
978 status, (long long)i_size_read(inode));
979 return status;
980}
981
982static int flush_task_priority(int how)
983{
984 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
985 case FLUSH_HIGHPRI:
986 return RPC_PRIORITY_HIGH;
987 case FLUSH_LOWPRI:
988 return RPC_PRIORITY_LOW;
989 }
990 return RPC_PRIORITY_NORMAL;
991}
992
993int nfs_initiate_write(struct rpc_clnt *clnt,
994 struct nfs_write_data *data,
995 const struct rpc_call_ops *call_ops,
996 int how, int flags)
997{
998 struct inode *inode = data->header->inode;
999 int priority = flush_task_priority(how);
1000 struct rpc_task *task;
1001 struct rpc_message msg = {
1002 .rpc_argp = &data->args,
1003 .rpc_resp = &data->res,
1004 .rpc_cred = data->header->cred,
1005 };
1006 struct rpc_task_setup task_setup_data = {
1007 .rpc_client = clnt,
1008 .task = &data->task,
1009 .rpc_message = &msg,
1010 .callback_ops = call_ops,
1011 .callback_data = data,
1012 .workqueue = nfsiod_workqueue,
1013 .flags = RPC_TASK_ASYNC | flags,
1014 .priority = priority,
1015 };
1016 int ret = 0;
1017
1018 /* Set up the initial task struct. */
1019 NFS_PROTO(inode)->write_setup(data, &msg);
1020
1021 dprintk("NFS: %5u initiated write call "
1022 "(req %s/%llu, %u bytes @ offset %llu)\n",
1023 data->task.tk_pid,
1024 inode->i_sb->s_id,
1025 (unsigned long long)NFS_FILEID(inode),
1026 data->args.count,
1027 (unsigned long long)data->args.offset);
1028
1029 nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client,
1030 &task_setup_data.rpc_client, &msg, data);
1031
1032 task = rpc_run_task(&task_setup_data);
1033 if (IS_ERR(task)) {
1034 ret = PTR_ERR(task);
1035 goto out;
1036 }
1037 if (how & FLUSH_SYNC) {
1038 ret = rpc_wait_for_completion_task(task);
1039 if (ret == 0)
1040 ret = task->tk_status;
1041 }
1042 rpc_put_task(task);
1043out:
1044 return ret;
1045}
1046EXPORT_SYMBOL_GPL(nfs_initiate_write);
1047
1048/*
1049 * Set up the argument/result storage required for the RPC call.
1050 */
1051static void nfs_write_rpcsetup(struct nfs_write_data *data,
1052 unsigned int count, unsigned int offset,
1053 int how, struct nfs_commit_info *cinfo)
1054{
1055 struct nfs_page *req = data->header->req;
1056
1057 /* Set up the RPC argument and reply structs
1058 * NB: take care not to mess about with data->commit et al. */
1059
1060 data->args.fh = NFS_FH(data->header->inode);
1061 data->args.offset = req_offset(req) + offset;
1062 /* pnfs_set_layoutcommit needs this */
1063 data->mds_offset = data->args.offset;
1064 data->args.pgbase = req->wb_pgbase + offset;
1065 data->args.pages = data->pages.pagevec;
1066 data->args.count = count;
1067 data->args.context = get_nfs_open_context(req->wb_context);
1068 data->args.lock_context = req->wb_lock_context;
1069 data->args.stable = NFS_UNSTABLE;
1070 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
1071 case 0:
1072 break;
1073 case FLUSH_COND_STABLE:
1074 if (nfs_reqs_to_commit(cinfo))
1075 break;
1076 default:
1077 data->args.stable = NFS_FILE_SYNC;
1078 }
1079
1080 data->res.fattr = &data->fattr;
1081 data->res.count = count;
1082 data->res.verf = &data->verf;
1083 nfs_fattr_init(&data->fattr);
1084}
1085
1086static int nfs_do_write(struct nfs_write_data *data,
1087 const struct rpc_call_ops *call_ops,
1088 int how)
1089{
1090 struct inode *inode = data->header->inode;
1091
1092 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
1093}
1094
1095static int nfs_do_multiple_writes(struct list_head *head,
1096 const struct rpc_call_ops *call_ops,
1097 int how)
1098{
1099 struct nfs_write_data *data;
1100 int ret = 0;
1101
1102 while (!list_empty(head)) {
1103 int ret2;
1104
1105 data = list_first_entry(head, struct nfs_write_data, list);
1106 list_del_init(&data->list);
1107
1108 ret2 = nfs_do_write(data, call_ops, how);
1109 if (ret == 0)
1110 ret = ret2;
1111 }
1112 return ret;
1113}
1114
1115/* If a nfs_flush_* function fails, it should remove reqs from @head and
1116 * call this on each, which will prepare them to be retried on next
1117 * writeback using standard nfs.
1118 */
1119static void nfs_redirty_request(struct nfs_page *req)
1120{
1121 nfs_mark_request_dirty(req);
1122 nfs_unlock_request(req);
1123 nfs_end_page_writeback(req->wb_page);
1124 nfs_release_request(req);
1125}
1126
1127static void nfs_async_write_error(struct list_head *head)
1128{
1129 struct nfs_page *req;
1130
1131 while (!list_empty(head)) {
1132 req = nfs_list_entry(head->next);
1133 nfs_list_remove_request(req);
1134 nfs_redirty_request(req);
1135 }
1136}
1137
1138static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1139 .error_cleanup = nfs_async_write_error,
1140 .completion = nfs_write_completion,
1141};
1142
1143static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
1144 struct nfs_pgio_header *hdr)
1145{
1146 set_bit(NFS_IOHDR_REDO, &hdr->flags);
1147 while (!list_empty(&hdr->rpc_list)) {
1148 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
1149 struct nfs_write_data, list);
1150 list_del(&data->list);
1151 nfs_writedata_release(data);
1152 }
1153 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1154}
1155
1156/*
1157 * Generate multiple small requests to write out a single
1158 * contiguous dirty area on one page.
1159 */
1160static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
1161 struct nfs_pgio_header *hdr)
1162{
1163 struct nfs_page *req = hdr->req;
1164 struct page *page = req->wb_page;
1165 struct nfs_write_data *data;
1166 size_t wsize = desc->pg_bsize, nbytes;
1167 unsigned int offset;
1168 int requests = 0;
1169 struct nfs_commit_info cinfo;
1170
1171 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1172
1173 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1174 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
1175 desc->pg_count > wsize))
1176 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1177
1178
1179 offset = 0;
1180 nbytes = desc->pg_count;
1181 do {
1182 size_t len = min(nbytes, wsize);
1183
1184 data = nfs_writedata_alloc(hdr, 1);
1185 if (!data) {
1186 nfs_flush_error(desc, hdr);
1187 return -ENOMEM;
1188 }
1189 data->pages.pagevec[0] = page;
1190 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
1191 list_add(&data->list, &hdr->rpc_list);
1192 requests++;
1193 nbytes -= len;
1194 offset += len;
1195 } while (nbytes != 0);
1196 nfs_list_remove_request(req);
1197 nfs_list_add_request(req, &hdr->pages);
1198 desc->pg_rpc_callops = &nfs_write_common_ops;
1199 return 0;
1200}
1201
1202/*
1203 * Create an RPC task for the given write request and kick it.
1204 * The page must have been locked by the caller.
1205 *
1206 * It may happen that the page we're passed is not marked dirty.
1207 * This is the case if nfs_updatepage detects a conflicting request
1208 * that has been written but not committed.
1209 */
1210static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
1211 struct nfs_pgio_header *hdr)
1212{
1213 struct nfs_page *req;
1214 struct page **pages;
1215 struct nfs_write_data *data;
1216 struct list_head *head = &desc->pg_list;
1217 struct nfs_commit_info cinfo;
1218
1219 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
1220 desc->pg_count));
1221 if (!data) {
1222 nfs_flush_error(desc, hdr);
1223 return -ENOMEM;
1224 }
1225
1226 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1227 pages = data->pages.pagevec;
1228 while (!list_empty(head)) {
1229 req = nfs_list_entry(head->next);
1230 nfs_list_remove_request(req);
1231 nfs_list_add_request(req, &hdr->pages);
1232 *pages++ = req->wb_page;
1233 }
1234
1235 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1236 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
1237 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1238
1239 /* Set up the argument struct */
1240 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
1241 list_add(&data->list, &hdr->rpc_list);
1242 desc->pg_rpc_callops = &nfs_write_common_ops;
1243 return 0;
1244}
1245
1246int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
1247 struct nfs_pgio_header *hdr)
1248{
1249 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1250 return nfs_flush_multi(desc, hdr);
1251 return nfs_flush_one(desc, hdr);
1252}
1253EXPORT_SYMBOL_GPL(nfs_generic_flush);
1254
1255static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1256{
1257 struct nfs_write_header *whdr;
1258 struct nfs_pgio_header *hdr;
1259 int ret;
1260
1261 whdr = nfs_writehdr_alloc();
1262 if (!whdr) {
1263 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1264 return -ENOMEM;
1265 }
1266 hdr = &whdr->header;
1267 nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
1268 atomic_inc(&hdr->refcnt);
1269 ret = nfs_generic_flush(desc, hdr);
1270 if (ret == 0)
1271 ret = nfs_do_multiple_writes(&hdr->rpc_list,
1272 desc->pg_rpc_callops,
1273 desc->pg_ioflags);
1274 if (atomic_dec_and_test(&hdr->refcnt))
1275 hdr->completion_ops->completion(hdr);
1276 return ret;
1277}
1278
1279static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1280 .pg_test = nfs_generic_pg_test,
1281 .pg_doio = nfs_generic_pg_writepages,
1282};
1283
1284void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1285 struct inode *inode, int ioflags,
1286 const struct nfs_pgio_completion_ops *compl_ops)
1287{
1288 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
1289 NFS_SERVER(inode)->wsize, ioflags);
1290}
1291EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1292
1293void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1294{
1295 pgio->pg_ops = &nfs_pageio_write_ops;
1296 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1297}
1298EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1299
1300
1301void nfs_write_prepare(struct rpc_task *task, void *calldata)
1302{
1303 struct nfs_write_data *data = calldata;
1304 int err;
1305 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
1306 if (err)
1307 rpc_exit(task, err);
1308}
1309
1310void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1311{
1312 struct nfs_commit_data *data = calldata;
1313
1314 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1315}
1316
1317/*
1318 * Handle a write reply that flushes a whole page.
1319 *
1320 * FIXME: There is an inherent race with invalidate_inode_pages and
1321 * writebacks since the page->count is kept > 1 for as long
1322 * as the page has a write request pending.
1323 */
1324static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
1325{
1326 struct nfs_write_data *data = calldata;
1327
1328 nfs_writeback_done(task, data);
1329}
1330
1331static void nfs_writeback_release_common(void *calldata)
1332{
1333 struct nfs_write_data *data = calldata;
1334 struct nfs_pgio_header *hdr = data->header;
1335 int status = data->task.tk_status;
1336
1337 if ((status >= 0) && nfs_write_need_commit(data)) {
1338 spin_lock(&hdr->lock);
1339 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
1340 ; /* Do nothing */
1341 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
1342 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
1343 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
1344 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
1345 spin_unlock(&hdr->lock);
1346 }
1347 nfs_writedata_release(data);
1348}
1349
1350static const struct rpc_call_ops nfs_write_common_ops = {
1351 .rpc_call_prepare = nfs_write_prepare,
1352 .rpc_call_done = nfs_writeback_done_common,
1353 .rpc_release = nfs_writeback_release_common,
1354};
1355
1356
1357/*
1358 * This function is called when the WRITE call is complete.
1359 */
1360void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1361{
1362 struct nfs_writeargs *argp = &data->args;
1363 struct nfs_writeres *resp = &data->res;
1364 struct inode *inode = data->header->inode;
1365 int status;
1366
1367 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1368 task->tk_pid, task->tk_status);
1369
1370 /*
1371 * ->write_done will attempt to use post-op attributes to detect
1372 * conflicting writes by other clients. A strict interpretation
1373 * of close-to-open would allow us to continue caching even if
1374 * another writer had changed the file, but some applications
1375 * depend on tighter cache coherency when writing.
1376 */
1377 status = NFS_PROTO(inode)->write_done(task, data);
1378 if (status != 0)
1379 return;
1380 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1381
1382#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1383 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1384 /* We tried a write call, but the server did not
1385 * commit data to stable storage even though we
1386 * requested it.
1387 * Note: There is a known bug in Tru64 < 5.0 in which
1388 * the server reports NFS_DATA_SYNC, but performs
1389 * NFS_FILE_SYNC. We therefore implement this checking
1390 * as a dprintk() in order to avoid filling syslog.
1391 */
1392 static unsigned long complain;
1393
1394 /* Note this will print the MDS for a DS write */
1395 if (time_before(complain, jiffies)) {
1396 dprintk("NFS: faulty NFS server %s:"
1397 " (committed = %d) != (stable = %d)\n",
1398 NFS_SERVER(inode)->nfs_client->cl_hostname,
1399 resp->verf->committed, argp->stable);
1400 complain = jiffies + 300 * HZ;
1401 }
1402 }
1403#endif
1404 if (task->tk_status < 0)
1405 nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
1406 else if (resp->count < argp->count) {
1407 static unsigned long complain;
1408
1409 /* This a short write! */
1410 nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
1411
1412 /* Has the server at least made some progress? */
1413 if (resp->count == 0) {
1414 if (time_before(complain, jiffies)) {
1415 printk(KERN_WARNING
1416 "NFS: Server wrote zero bytes, expected %u.\n",
1417 argp->count);
1418 complain = jiffies + 300 * HZ;
1419 }
1420 nfs_set_pgio_error(data->header, -EIO, argp->offset);
1421 task->tk_status = -EIO;
1422 return;
1423 }
1424 /* Was this an NFSv2 write or an NFSv3 stable write? */
1425 if (resp->verf->committed != NFS_UNSTABLE) {
1426 /* Resend from where the server left off */
1427 data->mds_offset += resp->count;
1428 argp->offset += resp->count;
1429 argp->pgbase += resp->count;
1430 argp->count -= resp->count;
1431 } else {
1432 /* Resend as a stable write in order to avoid
1433 * headaches in the case of a server crash.
1434 */
1435 argp->stable = NFS_FILE_SYNC;
1436 }
1437 rpc_restart_call_prepare(task);
1438 }
1439}
1440
1441
1442#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1443static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1444{
1445 int ret;
1446
1447 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1448 return 1;
1449 if (!may_wait)
1450 return 0;
1451 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1452 NFS_INO_COMMIT,
1453 nfs_wait_bit_killable,
1454 TASK_KILLABLE);
1455 return (ret < 0) ? ret : 1;
1456}
1457
1458static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1459{
1460 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1461 smp_mb__after_clear_bit();
1462 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1463}
1464
1465void nfs_commitdata_release(struct nfs_commit_data *data)
1466{
1467 put_nfs_open_context(data->context);
1468 nfs_commit_free(data);
1469}
1470EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1471
1472int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1473 const struct rpc_call_ops *call_ops,
1474 int how, int flags)
1475{
1476 struct rpc_task *task;
1477 int priority = flush_task_priority(how);
1478 struct rpc_message msg = {
1479 .rpc_argp = &data->args,
1480 .rpc_resp = &data->res,
1481 .rpc_cred = data->cred,
1482 };
1483 struct rpc_task_setup task_setup_data = {
1484 .task = &data->task,
1485 .rpc_client = clnt,
1486 .rpc_message = &msg,
1487 .callback_ops = call_ops,
1488 .callback_data = data,
1489 .workqueue = nfsiod_workqueue,
1490 .flags = RPC_TASK_ASYNC | flags,
1491 .priority = priority,
1492 };
1493 /* Set up the initial task struct. */
1494 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1495
1496 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1497
1498 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1499 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1500
1501 task = rpc_run_task(&task_setup_data);
1502 if (IS_ERR(task))
1503 return PTR_ERR(task);
1504 if (how & FLUSH_SYNC)
1505 rpc_wait_for_completion_task(task);
1506 rpc_put_task(task);
1507 return 0;
1508}
1509EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1510
1511/*
1512 * Set up the argument/result storage required for the RPC call.
1513 */
1514void nfs_init_commit(struct nfs_commit_data *data,
1515 struct list_head *head,
1516 struct pnfs_layout_segment *lseg,
1517 struct nfs_commit_info *cinfo)
1518{
1519 struct nfs_page *first = nfs_list_entry(head->next);
1520 struct inode *inode = first->wb_context->dentry->d_inode;
1521
1522 /* Set up the RPC argument and reply structs
1523 * NB: take care not to mess about with data->commit et al. */
1524
1525 list_splice_init(head, &data->pages);
1526
1527 data->inode = inode;
1528 data->cred = first->wb_context->cred;
1529 data->lseg = lseg; /* reference transferred */
1530 data->mds_ops = &nfs_commit_ops;
1531 data->completion_ops = cinfo->completion_ops;
1532 data->dreq = cinfo->dreq;
1533
1534 data->args.fh = NFS_FH(data->inode);
1535 /* Note: we always request a commit of the entire inode */
1536 data->args.offset = 0;
1537 data->args.count = 0;
1538 data->context = get_nfs_open_context(first->wb_context);
1539 data->res.fattr = &data->fattr;
1540 data->res.verf = &data->verf;
1541 nfs_fattr_init(&data->fattr);
1542}
1543EXPORT_SYMBOL_GPL(nfs_init_commit);
1544
1545void nfs_retry_commit(struct list_head *page_list,
1546 struct pnfs_layout_segment *lseg,
1547 struct nfs_commit_info *cinfo)
1548{
1549 struct nfs_page *req;
1550
1551 while (!list_empty(page_list)) {
1552 req = nfs_list_entry(page_list->next);
1553 nfs_list_remove_request(req);
1554 nfs_mark_request_commit(req, lseg, cinfo);
1555 if (!cinfo->dreq) {
1556 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1557 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
1558 BDI_RECLAIMABLE);
1559 }
1560 nfs_unlock_and_release_request(req);
1561 }
1562}
1563EXPORT_SYMBOL_GPL(nfs_retry_commit);
1564
1565/*
1566 * Commit dirty pages
1567 */
1568static int
1569nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1570 struct nfs_commit_info *cinfo)
1571{
1572 struct nfs_commit_data *data;
1573
1574 data = nfs_commitdata_alloc();
1575
1576 if (!data)
1577 goto out_bad;
1578
1579 /* Set up the argument struct */
1580 nfs_init_commit(data, head, NULL, cinfo);
1581 atomic_inc(&cinfo->mds->rpcs_out);
1582 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
1583 how, 0);
1584 out_bad:
1585 nfs_retry_commit(head, NULL, cinfo);
1586 cinfo->completion_ops->error_cleanup(NFS_I(inode));
1587 return -ENOMEM;
1588}
1589
1590/*
1591 * COMMIT call returned
1592 */
1593static void nfs_commit_done(struct rpc_task *task, void *calldata)
1594{
1595 struct nfs_commit_data *data = calldata;
1596
1597 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1598 task->tk_pid, task->tk_status);
1599
1600 /* Call the NFS version-specific code */
1601 NFS_PROTO(data->inode)->commit_done(task, data);
1602}
1603
1604static void nfs_commit_release_pages(struct nfs_commit_data *data)
1605{
1606 struct nfs_page *req;
1607 int status = data->task.tk_status;
1608 struct nfs_commit_info cinfo;
1609
1610 while (!list_empty(&data->pages)) {
1611 req = nfs_list_entry(data->pages.next);
1612 nfs_list_remove_request(req);
1613 nfs_clear_page_commit(req->wb_page);
1614
1615 dprintk("NFS: commit (%s/%llu %d@%lld)",
1616 req->wb_context->dentry->d_sb->s_id,
1617 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1618 req->wb_bytes,
1619 (long long)req_offset(req));
1620 if (status < 0) {
1621 nfs_context_set_write_error(req->wb_context, status);
1622 nfs_inode_remove_request(req);
1623 dprintk(", error = %d\n", status);
1624 goto next;
1625 }
1626
1627 /* Okay, COMMIT succeeded, apparently. Check the verifier
1628 * returned by the server against all stored verfs. */
1629 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
1630 /* We have a match */
1631 nfs_inode_remove_request(req);
1632 dprintk(" OK\n");
1633 goto next;
1634 }
1635 /* We have a mismatch. Write the page again */
1636 dprintk(" mismatch\n");
1637 nfs_mark_request_dirty(req);
1638 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1639 next:
1640 nfs_unlock_and_release_request(req);
1641 }
1642 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1643 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
1644 nfs_commit_clear_lock(NFS_I(data->inode));
1645}
1646
1647static void nfs_commit_release(void *calldata)
1648{
1649 struct nfs_commit_data *data = calldata;
1650
1651 data->completion_ops->completion(data);
1652 nfs_commitdata_release(calldata);
1653}
1654
1655static const struct rpc_call_ops nfs_commit_ops = {
1656 .rpc_call_prepare = nfs_commit_prepare,
1657 .rpc_call_done = nfs_commit_done,
1658 .rpc_release = nfs_commit_release,
1659};
1660
1661static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1662 .completion = nfs_commit_release_pages,
1663 .error_cleanup = nfs_commit_clear_lock,
1664};
1665
1666int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1667 int how, struct nfs_commit_info *cinfo)
1668{
1669 int status;
1670
1671 status = pnfs_commit_list(inode, head, how, cinfo);
1672 if (status == PNFS_NOT_ATTEMPTED)
1673 status = nfs_commit_list(inode, head, how, cinfo);
1674 return status;
1675}
1676
1677int nfs_commit_inode(struct inode *inode, int how)
1678{
1679 LIST_HEAD(head);
1680 struct nfs_commit_info cinfo;
1681 int may_wait = how & FLUSH_SYNC;
1682 int res;
1683
1684 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1685 if (res <= 0)
1686 goto out_mark_dirty;
1687 nfs_init_cinfo_from_inode(&cinfo, inode);
1688 res = nfs_scan_commit(inode, &head, &cinfo);
1689 if (res) {
1690 int error;
1691
1692 error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1693 if (error < 0)
1694 return error;
1695 if (!may_wait)
1696 goto out_mark_dirty;
1697 error = wait_on_bit(&NFS_I(inode)->flags,
1698 NFS_INO_COMMIT,
1699 nfs_wait_bit_killable,
1700 TASK_KILLABLE);
1701 if (error < 0)
1702 return error;
1703 } else
1704 nfs_commit_clear_lock(NFS_I(inode));
1705 return res;
1706 /* Note: If we exit without ensuring that the commit is complete,
1707 * we must mark the inode as dirty. Otherwise, future calls to
1708 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1709 * that the data is on the disk.
1710 */
1711out_mark_dirty:
1712 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1713 return res;
1714}
1715
1716static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1717{
1718 struct nfs_inode *nfsi = NFS_I(inode);
1719 int flags = FLUSH_SYNC;
1720 int ret = 0;
1721
1722 /* no commits means nothing needs to be done */
1723 if (!nfsi->commit_info.ncommit)
1724 return ret;
1725
1726 if (wbc->sync_mode == WB_SYNC_NONE) {
1727 /* Don't commit yet if this is a non-blocking flush and there
1728 * are a lot of outstanding writes for this mapping.
1729 */
1730 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
1731 goto out_mark_dirty;
1732
1733 /* don't wait for the COMMIT response */
1734 flags = 0;
1735 }
1736
1737 ret = nfs_commit_inode(inode, flags);
1738 if (ret >= 0) {
1739 if (wbc->sync_mode == WB_SYNC_NONE) {
1740 if (ret < wbc->nr_to_write)
1741 wbc->nr_to_write -= ret;
1742 else
1743 wbc->nr_to_write = 0;
1744 }
1745 return 0;
1746 }
1747out_mark_dirty:
1748 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1749 return ret;
1750}
1751#else
1752static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1753{
1754 return 0;
1755}
1756#endif
1757
1758int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1759{
1760 return nfs_commit_unstable_pages(inode, wbc);
1761}
1762EXPORT_SYMBOL_GPL(nfs_write_inode);
1763
1764/*
1765 * flush the inode to disk.
1766 */
1767int nfs_wb_all(struct inode *inode)
1768{
1769 struct writeback_control wbc = {
1770 .sync_mode = WB_SYNC_ALL,
1771 .nr_to_write = LONG_MAX,
1772 .range_start = 0,
1773 .range_end = LLONG_MAX,
1774 };
1775 int ret;
1776
1777 trace_nfs_writeback_inode_enter(inode);
1778
1779 ret = sync_inode(inode, &wbc);
1780
1781 trace_nfs_writeback_inode_exit(inode, ret);
1782 return ret;
1783}
1784EXPORT_SYMBOL_GPL(nfs_wb_all);
1785
1786int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1787{
1788 struct nfs_page *req;
1789 int ret = 0;
1790
1791 for (;;) {
1792 wait_on_page_writeback(page);
1793 req = nfs_page_find_request(page);
1794 if (req == NULL)
1795 break;
1796 if (nfs_lock_request(req)) {
1797 nfs_clear_request_commit(req);
1798 nfs_inode_remove_request(req);
1799 /*
1800 * In case nfs_inode_remove_request has marked the
1801 * page as being dirty
1802 */
1803 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1804 nfs_unlock_and_release_request(req);
1805 break;
1806 }
1807 ret = nfs_wait_on_request(req);
1808 nfs_release_request(req);
1809 if (ret < 0)
1810 break;
1811 }
1812 return ret;
1813}
1814
1815/*
1816 * Write back all requests on one page - we do this before reading it.
1817 */
1818int nfs_wb_page(struct inode *inode, struct page *page)
1819{
1820 loff_t range_start = page_file_offset(page);
1821 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1822 struct writeback_control wbc = {
1823 .sync_mode = WB_SYNC_ALL,
1824 .nr_to_write = 0,
1825 .range_start = range_start,
1826 .range_end = range_end,
1827 };
1828 int ret;
1829
1830 trace_nfs_writeback_page_enter(inode);
1831
1832 for (;;) {
1833 wait_on_page_writeback(page);
1834 if (clear_page_dirty_for_io(page)) {
1835 ret = nfs_writepage_locked(page, &wbc);
1836 if (ret < 0)
1837 goto out_error;
1838 continue;
1839 }
1840 ret = 0;
1841 if (!PagePrivate(page))
1842 break;
1843 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1844 if (ret < 0)
1845 goto out_error;
1846 }
1847out_error:
1848 trace_nfs_writeback_page_exit(inode, ret);
1849 return ret;
1850}
1851
1852#ifdef CONFIG_MIGRATION
1853int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1854 struct page *page, enum migrate_mode mode)
1855{
1856 /*
1857 * If PagePrivate is set, then the page is currently associated with
1858 * an in-progress read or write request. Don't try to migrate it.
1859 *
1860 * FIXME: we could do this in principle, but we'll need a way to ensure
1861 * that we can safely release the inode reference while holding
1862 * the page lock.
1863 */
1864 if (PagePrivate(page))
1865 return -EBUSY;
1866
1867 if (!nfs_fscache_release_page(page, GFP_KERNEL))
1868 return -EBUSY;
1869
1870 return migrate_page(mapping, newpage, page, mode);
1871}
1872#endif
1873
1874int __init nfs_init_writepagecache(void)
1875{
1876 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1877 sizeof(struct nfs_write_header),
1878 0, SLAB_HWCACHE_ALIGN,
1879 NULL);
1880 if (nfs_wdata_cachep == NULL)
1881 return -ENOMEM;
1882
1883 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1884 nfs_wdata_cachep);
1885 if (nfs_wdata_mempool == NULL)
1886 goto out_destroy_write_cache;
1887
1888 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
1889 sizeof(struct nfs_commit_data),
1890 0, SLAB_HWCACHE_ALIGN,
1891 NULL);
1892 if (nfs_cdata_cachep == NULL)
1893 goto out_destroy_write_mempool;
1894
1895 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1896 nfs_cdata_cachep);
1897 if (nfs_commit_mempool == NULL)
1898 goto out_destroy_commit_cache;
1899
1900 /*
1901 * NFS congestion size, scale with available memory.
1902 *
1903 * 64MB: 8192k
1904 * 128MB: 11585k
1905 * 256MB: 16384k
1906 * 512MB: 23170k
1907 * 1GB: 32768k
1908 * 2GB: 46340k
1909 * 4GB: 65536k
1910 * 8GB: 92681k
1911 * 16GB: 131072k
1912 *
1913 * This allows larger machines to have larger/more transfers.
1914 * Limit the default to 256M
1915 */
1916 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1917 if (nfs_congestion_kb > 256*1024)
1918 nfs_congestion_kb = 256*1024;
1919
1920 return 0;
1921
1922out_destroy_commit_cache:
1923 kmem_cache_destroy(nfs_cdata_cachep);
1924out_destroy_write_mempool:
1925 mempool_destroy(nfs_wdata_mempool);
1926out_destroy_write_cache:
1927 kmem_cache_destroy(nfs_wdata_cachep);
1928 return -ENOMEM;
1929}
1930
1931void nfs_destroy_writepagecache(void)
1932{
1933 mempool_destroy(nfs_commit_mempool);
1934 kmem_cache_destroy(nfs_cdata_cachep);
1935 mempool_destroy(nfs_wdata_mempool);
1936 kmem_cache_destroy(nfs_wdata_cachep);
1937}
1938
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/write.c
4 *
5 * Write file data over NFS.
6 *
7 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8 */
9
10#include <linux/types.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/pagemap.h>
14#include <linux/file.h>
15#include <linux/writeback.h>
16#include <linux/swap.h>
17#include <linux/migrate.h>
18
19#include <linux/sunrpc/clnt.h>
20#include <linux/nfs_fs.h>
21#include <linux/nfs_mount.h>
22#include <linux/nfs_page.h>
23#include <linux/backing-dev.h>
24#include <linux/export.h>
25#include <linux/freezer.h>
26#include <linux/wait.h>
27#include <linux/iversion.h>
28
29#include <linux/uaccess.h>
30#include <linux/sched/mm.h>
31
32#include "delegation.h"
33#include "internal.h"
34#include "iostat.h"
35#include "nfs4_fs.h"
36#include "fscache.h"
37#include "pnfs.h"
38
39#include "nfstrace.h"
40
41#define NFSDBG_FACILITY NFSDBG_PAGECACHE
42
43#define MIN_POOL_WRITE (32)
44#define MIN_POOL_COMMIT (4)
45
46struct nfs_io_completion {
47 void (*complete)(void *data);
48 void *data;
49 struct kref refcount;
50};
51
52/*
53 * Local function declarations
54 */
55static void nfs_redirty_request(struct nfs_page *req);
56static const struct rpc_call_ops nfs_commit_ops;
57static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59static const struct nfs_rw_ops nfs_rw_write_ops;
60static void nfs_inode_remove_request(struct nfs_page *req);
61static void nfs_clear_request_commit(struct nfs_page *req);
62static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 struct inode *inode);
64static struct nfs_page *
65nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 struct page *page);
67
68static struct kmem_cache *nfs_wdata_cachep;
69static mempool_t *nfs_wdata_mempool;
70static struct kmem_cache *nfs_cdata_cachep;
71static mempool_t *nfs_commit_mempool;
72
73struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74{
75 struct nfs_commit_data *p;
76
77 if (never_fail)
78 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 else {
80 /* It is OK to do some reclaim, not no safe to wait
81 * for anything to be returned to the pool.
82 * mempool_alloc() cannot handle that particular combination,
83 * so we need two separate attempts.
84 */
85 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 if (!p)
87 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 __GFP_NOWARN | __GFP_NORETRY);
89 if (!p)
90 return NULL;
91 }
92
93 memset(p, 0, sizeof(*p));
94 INIT_LIST_HEAD(&p->pages);
95 return p;
96}
97EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98
99void nfs_commit_free(struct nfs_commit_data *p)
100{
101 mempool_free(p, nfs_commit_mempool);
102}
103EXPORT_SYMBOL_GPL(nfs_commit_free);
104
105static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106{
107 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108
109 memset(p, 0, sizeof(*p));
110 p->rw_mode = FMODE_WRITE;
111 return p;
112}
113
114static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115{
116 mempool_free(hdr, nfs_wdata_mempool);
117}
118
119static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120{
121 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122}
123
124static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 void (*complete)(void *), void *data)
126{
127 ioc->complete = complete;
128 ioc->data = data;
129 kref_init(&ioc->refcount);
130}
131
132static void nfs_io_completion_release(struct kref *kref)
133{
134 struct nfs_io_completion *ioc = container_of(kref,
135 struct nfs_io_completion, refcount);
136 ioc->complete(ioc->data);
137 kfree(ioc);
138}
139
140static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141{
142 if (ioc != NULL)
143 kref_get(&ioc->refcount);
144}
145
146static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147{
148 if (ioc != NULL)
149 kref_put(&ioc->refcount, nfs_io_completion_release);
150}
151
152static void
153nfs_page_set_inode_ref(struct nfs_page *req, struct inode *inode)
154{
155 if (!test_and_set_bit(PG_INODE_REF, &req->wb_flags)) {
156 kref_get(&req->wb_kref);
157 atomic_long_inc(&NFS_I(inode)->nrequests);
158 }
159}
160
161static int
162nfs_cancel_remove_inode(struct nfs_page *req, struct inode *inode)
163{
164 int ret;
165
166 if (!test_bit(PG_REMOVE, &req->wb_flags))
167 return 0;
168 ret = nfs_page_group_lock(req);
169 if (ret)
170 return ret;
171 if (test_and_clear_bit(PG_REMOVE, &req->wb_flags))
172 nfs_page_set_inode_ref(req, inode);
173 nfs_page_group_unlock(req);
174 return 0;
175}
176
177static struct nfs_page *
178nfs_page_private_request(struct page *page)
179{
180 if (!PagePrivate(page))
181 return NULL;
182 return (struct nfs_page *)page_private(page);
183}
184
185/*
186 * nfs_page_find_head_request_locked - find head request associated with @page
187 *
188 * must be called while holding the inode lock.
189 *
190 * returns matching head request with reference held, or NULL if not found.
191 */
192static struct nfs_page *
193nfs_page_find_private_request(struct page *page)
194{
195 struct address_space *mapping = page_file_mapping(page);
196 struct nfs_page *req;
197
198 if (!PagePrivate(page))
199 return NULL;
200 spin_lock(&mapping->private_lock);
201 req = nfs_page_private_request(page);
202 if (req) {
203 WARN_ON_ONCE(req->wb_head != req);
204 kref_get(&req->wb_kref);
205 }
206 spin_unlock(&mapping->private_lock);
207 return req;
208}
209
210static struct nfs_page *
211nfs_page_find_swap_request(struct page *page)
212{
213 struct inode *inode = page_file_mapping(page)->host;
214 struct nfs_inode *nfsi = NFS_I(inode);
215 struct nfs_page *req = NULL;
216 if (!PageSwapCache(page))
217 return NULL;
218 mutex_lock(&nfsi->commit_mutex);
219 if (PageSwapCache(page)) {
220 req = nfs_page_search_commits_for_head_request_locked(nfsi,
221 page);
222 if (req) {
223 WARN_ON_ONCE(req->wb_head != req);
224 kref_get(&req->wb_kref);
225 }
226 }
227 mutex_unlock(&nfsi->commit_mutex);
228 return req;
229}
230
231/*
232 * nfs_page_find_head_request - find head request associated with @page
233 *
234 * returns matching head request with reference held, or NULL if not found.
235 */
236static struct nfs_page *nfs_page_find_head_request(struct page *page)
237{
238 struct nfs_page *req;
239
240 req = nfs_page_find_private_request(page);
241 if (!req)
242 req = nfs_page_find_swap_request(page);
243 return req;
244}
245
246static struct nfs_page *nfs_find_and_lock_page_request(struct page *page)
247{
248 struct inode *inode = page_file_mapping(page)->host;
249 struct nfs_page *req, *head;
250 int ret;
251
252 for (;;) {
253 req = nfs_page_find_head_request(page);
254 if (!req)
255 return req;
256 head = nfs_page_group_lock_head(req);
257 if (head != req)
258 nfs_release_request(req);
259 if (IS_ERR(head))
260 return head;
261 ret = nfs_cancel_remove_inode(head, inode);
262 if (ret < 0) {
263 nfs_unlock_and_release_request(head);
264 return ERR_PTR(ret);
265 }
266 /* Ensure that nobody removed the request before we locked it */
267 if (head == nfs_page_private_request(page))
268 break;
269 if (PageSwapCache(page))
270 break;
271 nfs_unlock_and_release_request(head);
272 }
273 return head;
274}
275
276/* Adjust the file length if we're writing beyond the end */
277static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
278{
279 struct inode *inode = page_file_mapping(page)->host;
280 loff_t end, i_size;
281 pgoff_t end_index;
282
283 spin_lock(&inode->i_lock);
284 i_size = i_size_read(inode);
285 end_index = (i_size - 1) >> PAGE_SHIFT;
286 if (i_size > 0 && page_index(page) < end_index)
287 goto out;
288 end = page_file_offset(page) + ((loff_t)offset+count);
289 if (i_size >= end)
290 goto out;
291 i_size_write(inode, end);
292 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
293 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
294out:
295 spin_unlock(&inode->i_lock);
296}
297
298/* A writeback failed: mark the page as bad, and invalidate the page cache */
299static void nfs_set_pageerror(struct address_space *mapping)
300{
301 struct inode *inode = mapping->host;
302
303 nfs_zap_mapping(mapping->host, mapping);
304 /* Force file size revalidation */
305 spin_lock(&inode->i_lock);
306 nfs_set_cache_invalid(inode, NFS_INO_REVAL_FORCED |
307 NFS_INO_REVAL_PAGECACHE |
308 NFS_INO_INVALID_SIZE);
309 spin_unlock(&inode->i_lock);
310}
311
312static void nfs_mapping_set_error(struct page *page, int error)
313{
314 struct address_space *mapping = page_file_mapping(page);
315
316 SetPageError(page);
317 mapping_set_error(mapping, error);
318 nfs_set_pageerror(mapping);
319}
320
321/*
322 * nfs_page_group_search_locked
323 * @head - head request of page group
324 * @page_offset - offset into page
325 *
326 * Search page group with head @head to find a request that contains the
327 * page offset @page_offset.
328 *
329 * Returns a pointer to the first matching nfs request, or NULL if no
330 * match is found.
331 *
332 * Must be called with the page group lock held
333 */
334static struct nfs_page *
335nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
336{
337 struct nfs_page *req;
338
339 req = head;
340 do {
341 if (page_offset >= req->wb_pgbase &&
342 page_offset < (req->wb_pgbase + req->wb_bytes))
343 return req;
344
345 req = req->wb_this_page;
346 } while (req != head);
347
348 return NULL;
349}
350
351/*
352 * nfs_page_group_covers_page
353 * @head - head request of page group
354 *
355 * Return true if the page group with head @head covers the whole page,
356 * returns false otherwise
357 */
358static bool nfs_page_group_covers_page(struct nfs_page *req)
359{
360 struct nfs_page *tmp;
361 unsigned int pos = 0;
362 unsigned int len = nfs_page_length(req->wb_page);
363
364 nfs_page_group_lock(req);
365
366 for (;;) {
367 tmp = nfs_page_group_search_locked(req->wb_head, pos);
368 if (!tmp)
369 break;
370 pos = tmp->wb_pgbase + tmp->wb_bytes;
371 }
372
373 nfs_page_group_unlock(req);
374 return pos >= len;
375}
376
377/* We can set the PG_uptodate flag if we see that a write request
378 * covers the full page.
379 */
380static void nfs_mark_uptodate(struct nfs_page *req)
381{
382 if (PageUptodate(req->wb_page))
383 return;
384 if (!nfs_page_group_covers_page(req))
385 return;
386 SetPageUptodate(req->wb_page);
387}
388
389static int wb_priority(struct writeback_control *wbc)
390{
391 int ret = 0;
392
393 if (wbc->sync_mode == WB_SYNC_ALL)
394 ret = FLUSH_COND_STABLE;
395 return ret;
396}
397
398/*
399 * NFS congestion control
400 */
401
402int nfs_congestion_kb;
403
404#define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
405#define NFS_CONGESTION_OFF_THRESH \
406 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
407
408static void nfs_set_page_writeback(struct page *page)
409{
410 struct inode *inode = page_file_mapping(page)->host;
411 struct nfs_server *nfss = NFS_SERVER(inode);
412 int ret = test_set_page_writeback(page);
413
414 WARN_ON_ONCE(ret != 0);
415
416 if (atomic_long_inc_return(&nfss->writeback) >
417 NFS_CONGESTION_ON_THRESH)
418 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
419}
420
421static void nfs_end_page_writeback(struct nfs_page *req)
422{
423 struct inode *inode = page_file_mapping(req->wb_page)->host;
424 struct nfs_server *nfss = NFS_SERVER(inode);
425 bool is_done;
426
427 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
428 nfs_unlock_request(req);
429 if (!is_done)
430 return;
431
432 end_page_writeback(req->wb_page);
433 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
434 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
435}
436
437/*
438 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
439 *
440 * @destroy_list - request list (using wb_this_page) terminated by @old_head
441 * @old_head - the old head of the list
442 *
443 * All subrequests must be locked and removed from all lists, so at this point
444 * they are only "active" in this function, and possibly in nfs_wait_on_request
445 * with a reference held by some other context.
446 */
447static void
448nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
449 struct nfs_page *old_head,
450 struct inode *inode)
451{
452 while (destroy_list) {
453 struct nfs_page *subreq = destroy_list;
454
455 destroy_list = (subreq->wb_this_page == old_head) ?
456 NULL : subreq->wb_this_page;
457
458 /* Note: lock subreq in order to change subreq->wb_head */
459 nfs_page_set_headlock(subreq);
460 WARN_ON_ONCE(old_head != subreq->wb_head);
461
462 /* make sure old group is not used */
463 subreq->wb_this_page = subreq;
464 subreq->wb_head = subreq;
465
466 clear_bit(PG_REMOVE, &subreq->wb_flags);
467
468 /* Note: races with nfs_page_group_destroy() */
469 if (!kref_read(&subreq->wb_kref)) {
470 /* Check if we raced with nfs_page_group_destroy() */
471 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) {
472 nfs_page_clear_headlock(subreq);
473 nfs_free_request(subreq);
474 } else
475 nfs_page_clear_headlock(subreq);
476 continue;
477 }
478 nfs_page_clear_headlock(subreq);
479
480 nfs_release_request(old_head);
481
482 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
483 nfs_release_request(subreq);
484 atomic_long_dec(&NFS_I(inode)->nrequests);
485 }
486
487 /* subreq is now totally disconnected from page group or any
488 * write / commit lists. last chance to wake any waiters */
489 nfs_unlock_and_release_request(subreq);
490 }
491}
492
493/*
494 * nfs_join_page_group - destroy subrequests of the head req
495 * @head: the page used to lookup the "page group" of nfs_page structures
496 * @inode: Inode to which the request belongs.
497 *
498 * This function joins all sub requests to the head request by first
499 * locking all requests in the group, cancelling any pending operations
500 * and finally updating the head request to cover the whole range covered by
501 * the (former) group. All subrequests are removed from any write or commit
502 * lists, unlinked from the group and destroyed.
503 */
504void
505nfs_join_page_group(struct nfs_page *head, struct inode *inode)
506{
507 struct nfs_page *subreq;
508 struct nfs_page *destroy_list = NULL;
509 unsigned int pgbase, off, bytes;
510
511 pgbase = head->wb_pgbase;
512 bytes = head->wb_bytes;
513 off = head->wb_offset;
514 for (subreq = head->wb_this_page; subreq != head;
515 subreq = subreq->wb_this_page) {
516 /* Subrequests should always form a contiguous range */
517 if (pgbase > subreq->wb_pgbase) {
518 off -= pgbase - subreq->wb_pgbase;
519 bytes += pgbase - subreq->wb_pgbase;
520 pgbase = subreq->wb_pgbase;
521 }
522 bytes = max(subreq->wb_pgbase + subreq->wb_bytes
523 - pgbase, bytes);
524 }
525
526 /* Set the head request's range to cover the former page group */
527 head->wb_pgbase = pgbase;
528 head->wb_bytes = bytes;
529 head->wb_offset = off;
530
531 /* Now that all requests are locked, make sure they aren't on any list.
532 * Commit list removal accounting is done after locks are dropped */
533 subreq = head;
534 do {
535 nfs_clear_request_commit(subreq);
536 subreq = subreq->wb_this_page;
537 } while (subreq != head);
538
539 /* unlink subrequests from head, destroy them later */
540 if (head->wb_this_page != head) {
541 /* destroy list will be terminated by head */
542 destroy_list = head->wb_this_page;
543 head->wb_this_page = head;
544 }
545
546 nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
547}
548
549/*
550 * nfs_lock_and_join_requests - join all subreqs to the head req
551 * @page: the page used to lookup the "page group" of nfs_page structures
552 *
553 * This function joins all sub requests to the head request by first
554 * locking all requests in the group, cancelling any pending operations
555 * and finally updating the head request to cover the whole range covered by
556 * the (former) group. All subrequests are removed from any write or commit
557 * lists, unlinked from the group and destroyed.
558 *
559 * Returns a locked, referenced pointer to the head request - which after
560 * this call is guaranteed to be the only request associated with the page.
561 * Returns NULL if no requests are found for @page, or a ERR_PTR if an
562 * error was encountered.
563 */
564static struct nfs_page *
565nfs_lock_and_join_requests(struct page *page)
566{
567 struct inode *inode = page_file_mapping(page)->host;
568 struct nfs_page *head;
569 int ret;
570
571 /*
572 * A reference is taken only on the head request which acts as a
573 * reference to the whole page group - the group will not be destroyed
574 * until the head reference is released.
575 */
576 head = nfs_find_and_lock_page_request(page);
577 if (IS_ERR_OR_NULL(head))
578 return head;
579
580 /* lock each request in the page group */
581 ret = nfs_page_group_lock_subrequests(head);
582 if (ret < 0) {
583 nfs_unlock_and_release_request(head);
584 return ERR_PTR(ret);
585 }
586
587 nfs_join_page_group(head, inode);
588
589 return head;
590}
591
592static void nfs_write_error(struct nfs_page *req, int error)
593{
594 trace_nfs_write_error(req, error);
595 nfs_mapping_set_error(req->wb_page, error);
596 nfs_inode_remove_request(req);
597 nfs_end_page_writeback(req);
598 nfs_release_request(req);
599}
600
601/*
602 * Find an associated nfs write request, and prepare to flush it out
603 * May return an error if the user signalled nfs_wait_on_request().
604 */
605static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
606 struct page *page)
607{
608 struct nfs_page *req;
609 int ret = 0;
610
611 req = nfs_lock_and_join_requests(page);
612 if (!req)
613 goto out;
614 ret = PTR_ERR(req);
615 if (IS_ERR(req))
616 goto out;
617
618 nfs_set_page_writeback(page);
619 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
620
621 /* If there is a fatal error that covers this write, just exit */
622 ret = pgio->pg_error;
623 if (nfs_error_is_fatal_on_server(ret))
624 goto out_launder;
625
626 ret = 0;
627 if (!nfs_pageio_add_request(pgio, req)) {
628 ret = pgio->pg_error;
629 /*
630 * Remove the problematic req upon fatal errors on the server
631 */
632 if (nfs_error_is_fatal(ret)) {
633 if (nfs_error_is_fatal_on_server(ret))
634 goto out_launder;
635 } else
636 ret = -EAGAIN;
637 nfs_redirty_request(req);
638 pgio->pg_error = 0;
639 } else
640 nfs_add_stats(page_file_mapping(page)->host,
641 NFSIOS_WRITEPAGES, 1);
642out:
643 return ret;
644out_launder:
645 nfs_write_error(req, ret);
646 return 0;
647}
648
649static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
650 struct nfs_pageio_descriptor *pgio)
651{
652 int ret;
653
654 nfs_pageio_cond_complete(pgio, page_index(page));
655 ret = nfs_page_async_flush(pgio, page);
656 if (ret == -EAGAIN) {
657 redirty_page_for_writepage(wbc, page);
658 ret = AOP_WRITEPAGE_ACTIVATE;
659 }
660 return ret;
661}
662
663/*
664 * Write an mmapped page to the server.
665 */
666static int nfs_writepage_locked(struct page *page,
667 struct writeback_control *wbc)
668{
669 struct nfs_pageio_descriptor pgio;
670 struct inode *inode = page_file_mapping(page)->host;
671 int err;
672
673 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
674 nfs_pageio_init_write(&pgio, inode, 0,
675 false, &nfs_async_write_completion_ops);
676 err = nfs_do_writepage(page, wbc, &pgio);
677 pgio.pg_error = 0;
678 nfs_pageio_complete(&pgio);
679 if (err < 0)
680 return err;
681 if (nfs_error_is_fatal(pgio.pg_error))
682 return pgio.pg_error;
683 return 0;
684}
685
686int nfs_writepage(struct page *page, struct writeback_control *wbc)
687{
688 int ret;
689
690 ret = nfs_writepage_locked(page, wbc);
691 if (ret != AOP_WRITEPAGE_ACTIVATE)
692 unlock_page(page);
693 return ret;
694}
695
696static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
697{
698 int ret;
699
700 ret = nfs_do_writepage(page, wbc, data);
701 if (ret != AOP_WRITEPAGE_ACTIVATE)
702 unlock_page(page);
703 return ret;
704}
705
706static void nfs_io_completion_commit(void *inode)
707{
708 nfs_commit_inode(inode, 0);
709}
710
711int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
712{
713 struct inode *inode = mapping->host;
714 struct nfs_pageio_descriptor pgio;
715 struct nfs_io_completion *ioc = NULL;
716 unsigned int mntflags = NFS_SERVER(inode)->flags;
717 int priority = 0;
718 int err;
719
720 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
721
722 if (!(mntflags & NFS_MOUNT_WRITE_EAGER) || wbc->for_kupdate ||
723 wbc->for_background || wbc->for_sync || wbc->for_reclaim) {
724 ioc = nfs_io_completion_alloc(GFP_KERNEL);
725 if (ioc)
726 nfs_io_completion_init(ioc, nfs_io_completion_commit,
727 inode);
728 priority = wb_priority(wbc);
729 }
730
731 nfs_pageio_init_write(&pgio, inode, priority, false,
732 &nfs_async_write_completion_ops);
733 pgio.pg_io_completion = ioc;
734 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
735 pgio.pg_error = 0;
736 nfs_pageio_complete(&pgio);
737 nfs_io_completion_put(ioc);
738
739 if (err < 0)
740 goto out_err;
741 err = pgio.pg_error;
742 if (nfs_error_is_fatal(err))
743 goto out_err;
744 return 0;
745out_err:
746 return err;
747}
748
749/*
750 * Insert a write request into an inode
751 */
752static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
753{
754 struct address_space *mapping = page_file_mapping(req->wb_page);
755 struct nfs_inode *nfsi = NFS_I(inode);
756
757 WARN_ON_ONCE(req->wb_this_page != req);
758
759 /* Lock the request! */
760 nfs_lock_request(req);
761
762 /*
763 * Swap-space should not get truncated. Hence no need to plug the race
764 * with invalidate/truncate.
765 */
766 spin_lock(&mapping->private_lock);
767 if (likely(!PageSwapCache(req->wb_page))) {
768 set_bit(PG_MAPPED, &req->wb_flags);
769 SetPagePrivate(req->wb_page);
770 set_page_private(req->wb_page, (unsigned long)req);
771 }
772 spin_unlock(&mapping->private_lock);
773 atomic_long_inc(&nfsi->nrequests);
774 /* this a head request for a page group - mark it as having an
775 * extra reference so sub groups can follow suit.
776 * This flag also informs pgio layer when to bump nrequests when
777 * adding subrequests. */
778 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
779 kref_get(&req->wb_kref);
780}
781
782/*
783 * Remove a write request from an inode
784 */
785static void nfs_inode_remove_request(struct nfs_page *req)
786{
787 struct address_space *mapping = page_file_mapping(req->wb_page);
788 struct inode *inode = mapping->host;
789 struct nfs_inode *nfsi = NFS_I(inode);
790 struct nfs_page *head;
791
792 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
793 head = req->wb_head;
794
795 spin_lock(&mapping->private_lock);
796 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
797 set_page_private(head->wb_page, 0);
798 ClearPagePrivate(head->wb_page);
799 clear_bit(PG_MAPPED, &head->wb_flags);
800 }
801 spin_unlock(&mapping->private_lock);
802 }
803
804 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
805 nfs_release_request(req);
806 atomic_long_dec(&nfsi->nrequests);
807 }
808}
809
810static void
811nfs_mark_request_dirty(struct nfs_page *req)
812{
813 if (req->wb_page)
814 __set_page_dirty_nobuffers(req->wb_page);
815}
816
817/*
818 * nfs_page_search_commits_for_head_request_locked
819 *
820 * Search through commit lists on @inode for the head request for @page.
821 * Must be called while holding the inode (which is cinfo) lock.
822 *
823 * Returns the head request if found, or NULL if not found.
824 */
825static struct nfs_page *
826nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
827 struct page *page)
828{
829 struct nfs_page *freq, *t;
830 struct nfs_commit_info cinfo;
831 struct inode *inode = &nfsi->vfs_inode;
832
833 nfs_init_cinfo_from_inode(&cinfo, inode);
834
835 /* search through pnfs commit lists */
836 freq = pnfs_search_commit_reqs(inode, &cinfo, page);
837 if (freq)
838 return freq->wb_head;
839
840 /* Linearly search the commit list for the correct request */
841 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
842 if (freq->wb_page == page)
843 return freq->wb_head;
844 }
845
846 return NULL;
847}
848
849/**
850 * nfs_request_add_commit_list_locked - add request to a commit list
851 * @req: pointer to a struct nfs_page
852 * @dst: commit list head
853 * @cinfo: holds list lock and accounting info
854 *
855 * This sets the PG_CLEAN bit, updates the cinfo count of
856 * number of outstanding requests requiring a commit as well as
857 * the MM page stats.
858 *
859 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
860 * nfs_page lock.
861 */
862void
863nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
864 struct nfs_commit_info *cinfo)
865{
866 set_bit(PG_CLEAN, &req->wb_flags);
867 nfs_list_add_request(req, dst);
868 atomic_long_inc(&cinfo->mds->ncommit);
869}
870EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
871
872/**
873 * nfs_request_add_commit_list - add request to a commit list
874 * @req: pointer to a struct nfs_page
875 * @cinfo: holds list lock and accounting info
876 *
877 * This sets the PG_CLEAN bit, updates the cinfo count of
878 * number of outstanding requests requiring a commit as well as
879 * the MM page stats.
880 *
881 * The caller must _not_ hold the cinfo->lock, but must be
882 * holding the nfs_page lock.
883 */
884void
885nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
886{
887 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
888 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
889 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
890 if (req->wb_page)
891 nfs_mark_page_unstable(req->wb_page, cinfo);
892}
893EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
894
895/**
896 * nfs_request_remove_commit_list - Remove request from a commit list
897 * @req: pointer to a nfs_page
898 * @cinfo: holds list lock and accounting info
899 *
900 * This clears the PG_CLEAN bit, and updates the cinfo's count of
901 * number of outstanding requests requiring a commit
902 * It does not update the MM page stats.
903 *
904 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
905 */
906void
907nfs_request_remove_commit_list(struct nfs_page *req,
908 struct nfs_commit_info *cinfo)
909{
910 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
911 return;
912 nfs_list_remove_request(req);
913 atomic_long_dec(&cinfo->mds->ncommit);
914}
915EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
916
917static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
918 struct inode *inode)
919{
920 cinfo->inode = inode;
921 cinfo->mds = &NFS_I(inode)->commit_info;
922 cinfo->ds = pnfs_get_ds_info(inode);
923 cinfo->dreq = NULL;
924 cinfo->completion_ops = &nfs_commit_completion_ops;
925}
926
927void nfs_init_cinfo(struct nfs_commit_info *cinfo,
928 struct inode *inode,
929 struct nfs_direct_req *dreq)
930{
931 if (dreq)
932 nfs_init_cinfo_from_dreq(cinfo, dreq);
933 else
934 nfs_init_cinfo_from_inode(cinfo, inode);
935}
936EXPORT_SYMBOL_GPL(nfs_init_cinfo);
937
938/*
939 * Add a request to the inode's commit list.
940 */
941void
942nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
943 struct nfs_commit_info *cinfo, u32 ds_commit_idx)
944{
945 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
946 return;
947 nfs_request_add_commit_list(req, cinfo);
948}
949
950static void
951nfs_clear_page_commit(struct page *page)
952{
953 dec_node_page_state(page, NR_WRITEBACK);
954 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
955 WB_WRITEBACK);
956}
957
958/* Called holding the request lock on @req */
959static void
960nfs_clear_request_commit(struct nfs_page *req)
961{
962 if (test_bit(PG_CLEAN, &req->wb_flags)) {
963 struct nfs_open_context *ctx = nfs_req_openctx(req);
964 struct inode *inode = d_inode(ctx->dentry);
965 struct nfs_commit_info cinfo;
966
967 nfs_init_cinfo_from_inode(&cinfo, inode);
968 mutex_lock(&NFS_I(inode)->commit_mutex);
969 if (!pnfs_clear_request_commit(req, &cinfo)) {
970 nfs_request_remove_commit_list(req, &cinfo);
971 }
972 mutex_unlock(&NFS_I(inode)->commit_mutex);
973 nfs_clear_page_commit(req->wb_page);
974 }
975}
976
977int nfs_write_need_commit(struct nfs_pgio_header *hdr)
978{
979 if (hdr->verf.committed == NFS_DATA_SYNC)
980 return hdr->lseg == NULL;
981 return hdr->verf.committed != NFS_FILE_SYNC;
982}
983
984static void nfs_async_write_init(struct nfs_pgio_header *hdr)
985{
986 nfs_io_completion_get(hdr->io_completion);
987}
988
989static void nfs_write_completion(struct nfs_pgio_header *hdr)
990{
991 struct nfs_commit_info cinfo;
992 unsigned long bytes = 0;
993
994 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
995 goto out;
996 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
997 while (!list_empty(&hdr->pages)) {
998 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
999
1000 bytes += req->wb_bytes;
1001 nfs_list_remove_request(req);
1002 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1003 (hdr->good_bytes < bytes)) {
1004 trace_nfs_comp_error(req, hdr->error);
1005 nfs_mapping_set_error(req->wb_page, hdr->error);
1006 goto remove_req;
1007 }
1008 if (nfs_write_need_commit(hdr)) {
1009 /* Reset wb_nio, since the write was successful. */
1010 req->wb_nio = 0;
1011 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1012 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1013 hdr->pgio_mirror_idx);
1014 goto next;
1015 }
1016remove_req:
1017 nfs_inode_remove_request(req);
1018next:
1019 nfs_end_page_writeback(req);
1020 nfs_release_request(req);
1021 }
1022out:
1023 nfs_io_completion_put(hdr->io_completion);
1024 hdr->release(hdr);
1025}
1026
1027unsigned long
1028nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1029{
1030 return atomic_long_read(&cinfo->mds->ncommit);
1031}
1032
1033/* NFS_I(cinfo->inode)->commit_mutex held by caller */
1034int
1035nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1036 struct nfs_commit_info *cinfo, int max)
1037{
1038 struct nfs_page *req, *tmp;
1039 int ret = 0;
1040
1041restart:
1042 list_for_each_entry_safe(req, tmp, src, wb_list) {
1043 kref_get(&req->wb_kref);
1044 if (!nfs_lock_request(req)) {
1045 int status;
1046
1047 /* Prevent deadlock with nfs_lock_and_join_requests */
1048 if (!list_empty(dst)) {
1049 nfs_release_request(req);
1050 continue;
1051 }
1052 /* Ensure we make progress to prevent livelock */
1053 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1054 status = nfs_wait_on_request(req);
1055 nfs_release_request(req);
1056 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1057 if (status < 0)
1058 break;
1059 goto restart;
1060 }
1061 nfs_request_remove_commit_list(req, cinfo);
1062 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1063 nfs_list_add_request(req, dst);
1064 ret++;
1065 if ((ret == max) && !cinfo->dreq)
1066 break;
1067 cond_resched();
1068 }
1069 return ret;
1070}
1071EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1072
1073/*
1074 * nfs_scan_commit - Scan an inode for commit requests
1075 * @inode: NFS inode to scan
1076 * @dst: mds destination list
1077 * @cinfo: mds and ds lists of reqs ready to commit
1078 *
1079 * Moves requests from the inode's 'commit' request list.
1080 * The requests are *not* checked to ensure that they form a contiguous set.
1081 */
1082int
1083nfs_scan_commit(struct inode *inode, struct list_head *dst,
1084 struct nfs_commit_info *cinfo)
1085{
1086 int ret = 0;
1087
1088 if (!atomic_long_read(&cinfo->mds->ncommit))
1089 return 0;
1090 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1091 if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1092 const int max = INT_MAX;
1093
1094 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1095 cinfo, max);
1096 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1097 }
1098 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1099 return ret;
1100}
1101
1102/*
1103 * Search for an existing write request, and attempt to update
1104 * it to reflect a new dirty region on a given page.
1105 *
1106 * If the attempt fails, then the existing request is flushed out
1107 * to disk.
1108 */
1109static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1110 struct page *page,
1111 unsigned int offset,
1112 unsigned int bytes)
1113{
1114 struct nfs_page *req;
1115 unsigned int rqend;
1116 unsigned int end;
1117 int error;
1118
1119 end = offset + bytes;
1120
1121 req = nfs_lock_and_join_requests(page);
1122 if (IS_ERR_OR_NULL(req))
1123 return req;
1124
1125 rqend = req->wb_offset + req->wb_bytes;
1126 /*
1127 * Tell the caller to flush out the request if
1128 * the offsets are non-contiguous.
1129 * Note: nfs_flush_incompatible() will already
1130 * have flushed out requests having wrong owners.
1131 */
1132 if (offset > rqend || end < req->wb_offset)
1133 goto out_flushme;
1134
1135 /* Okay, the request matches. Update the region */
1136 if (offset < req->wb_offset) {
1137 req->wb_offset = offset;
1138 req->wb_pgbase = offset;
1139 }
1140 if (end > rqend)
1141 req->wb_bytes = end - req->wb_offset;
1142 else
1143 req->wb_bytes = rqend - req->wb_offset;
1144 req->wb_nio = 0;
1145 return req;
1146out_flushme:
1147 /*
1148 * Note: we mark the request dirty here because
1149 * nfs_lock_and_join_requests() cannot preserve
1150 * commit flags, so we have to replay the write.
1151 */
1152 nfs_mark_request_dirty(req);
1153 nfs_unlock_and_release_request(req);
1154 error = nfs_wb_page(inode, page);
1155 return (error < 0) ? ERR_PTR(error) : NULL;
1156}
1157
1158/*
1159 * Try to update an existing write request, or create one if there is none.
1160 *
1161 * Note: Should always be called with the Page Lock held to prevent races
1162 * if we have to add a new request. Also assumes that the caller has
1163 * already called nfs_flush_incompatible() if necessary.
1164 */
1165static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1166 struct page *page, unsigned int offset, unsigned int bytes)
1167{
1168 struct inode *inode = page_file_mapping(page)->host;
1169 struct nfs_page *req;
1170
1171 req = nfs_try_to_update_request(inode, page, offset, bytes);
1172 if (req != NULL)
1173 goto out;
1174 req = nfs_create_request(ctx, page, offset, bytes);
1175 if (IS_ERR(req))
1176 goto out;
1177 nfs_inode_add_request(inode, req);
1178out:
1179 return req;
1180}
1181
1182static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1183 unsigned int offset, unsigned int count)
1184{
1185 struct nfs_page *req;
1186
1187 req = nfs_setup_write_request(ctx, page, offset, count);
1188 if (IS_ERR(req))
1189 return PTR_ERR(req);
1190 /* Update file length */
1191 nfs_grow_file(page, offset, count);
1192 nfs_mark_uptodate(req);
1193 nfs_mark_request_dirty(req);
1194 nfs_unlock_and_release_request(req);
1195 return 0;
1196}
1197
1198int nfs_flush_incompatible(struct file *file, struct page *page)
1199{
1200 struct nfs_open_context *ctx = nfs_file_open_context(file);
1201 struct nfs_lock_context *l_ctx;
1202 struct file_lock_context *flctx = file_inode(file)->i_flctx;
1203 struct nfs_page *req;
1204 int do_flush, status;
1205 /*
1206 * Look for a request corresponding to this page. If there
1207 * is one, and it belongs to another file, we flush it out
1208 * before we try to copy anything into the page. Do this
1209 * due to the lack of an ACCESS-type call in NFSv2.
1210 * Also do the same if we find a request from an existing
1211 * dropped page.
1212 */
1213 do {
1214 req = nfs_page_find_head_request(page);
1215 if (req == NULL)
1216 return 0;
1217 l_ctx = req->wb_lock_context;
1218 do_flush = req->wb_page != page ||
1219 !nfs_match_open_context(nfs_req_openctx(req), ctx);
1220 if (l_ctx && flctx &&
1221 !(list_empty_careful(&flctx->flc_posix) &&
1222 list_empty_careful(&flctx->flc_flock))) {
1223 do_flush |= l_ctx->lockowner != current->files;
1224 }
1225 nfs_release_request(req);
1226 if (!do_flush)
1227 return 0;
1228 status = nfs_wb_page(page_file_mapping(page)->host, page);
1229 } while (status == 0);
1230 return status;
1231}
1232
1233/*
1234 * Avoid buffered writes when a open context credential's key would
1235 * expire soon.
1236 *
1237 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1238 *
1239 * Return 0 and set a credential flag which triggers the inode to flush
1240 * and performs NFS_FILE_SYNC writes if the key will expired within
1241 * RPC_KEY_EXPIRE_TIMEO.
1242 */
1243int
1244nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1245{
1246 struct nfs_open_context *ctx = nfs_file_open_context(filp);
1247
1248 if (nfs_ctx_key_to_expire(ctx, inode) &&
1249 !ctx->ll_cred)
1250 /* Already expired! */
1251 return -EACCES;
1252 return 0;
1253}
1254
1255/*
1256 * Test if the open context credential key is marked to expire soon.
1257 */
1258bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1259{
1260 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1261 struct rpc_cred *cred = ctx->ll_cred;
1262 struct auth_cred acred = {
1263 .cred = ctx->cred,
1264 };
1265
1266 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1267 put_rpccred(cred);
1268 ctx->ll_cred = NULL;
1269 cred = NULL;
1270 }
1271 if (!cred)
1272 cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1273 if (!cred || IS_ERR(cred))
1274 return true;
1275 ctx->ll_cred = cred;
1276 return !!(cred->cr_ops->crkey_timeout &&
1277 cred->cr_ops->crkey_timeout(cred));
1278}
1279
1280/*
1281 * If the page cache is marked as unsafe or invalid, then we can't rely on
1282 * the PageUptodate() flag. In this case, we will need to turn off
1283 * write optimisations that depend on the page contents being correct.
1284 */
1285static bool nfs_write_pageuptodate(struct page *page, struct inode *inode,
1286 unsigned int pagelen)
1287{
1288 struct nfs_inode *nfsi = NFS_I(inode);
1289
1290 if (nfs_have_delegated_attributes(inode))
1291 goto out;
1292 if (nfsi->cache_validity &
1293 (NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE))
1294 return false;
1295 smp_rmb();
1296 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags) && pagelen != 0)
1297 return false;
1298out:
1299 if (nfsi->cache_validity & NFS_INO_INVALID_DATA && pagelen != 0)
1300 return false;
1301 return PageUptodate(page) != 0;
1302}
1303
1304static bool
1305is_whole_file_wrlock(struct file_lock *fl)
1306{
1307 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1308 fl->fl_type == F_WRLCK;
1309}
1310
1311/* If we know the page is up to date, and we're not using byte range locks (or
1312 * if we have the whole file locked for writing), it may be more efficient to
1313 * extend the write to cover the entire page in order to avoid fragmentation
1314 * inefficiencies.
1315 *
1316 * If the file is opened for synchronous writes then we can just skip the rest
1317 * of the checks.
1318 */
1319static int nfs_can_extend_write(struct file *file, struct page *page,
1320 struct inode *inode, unsigned int pagelen)
1321{
1322 int ret;
1323 struct file_lock_context *flctx = inode->i_flctx;
1324 struct file_lock *fl;
1325
1326 if (file->f_flags & O_DSYNC)
1327 return 0;
1328 if (!nfs_write_pageuptodate(page, inode, pagelen))
1329 return 0;
1330 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1331 return 1;
1332 if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1333 list_empty_careful(&flctx->flc_posix)))
1334 return 1;
1335
1336 /* Check to see if there are whole file write locks */
1337 ret = 0;
1338 spin_lock(&flctx->flc_lock);
1339 if (!list_empty(&flctx->flc_posix)) {
1340 fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1341 fl_list);
1342 if (is_whole_file_wrlock(fl))
1343 ret = 1;
1344 } else if (!list_empty(&flctx->flc_flock)) {
1345 fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1346 fl_list);
1347 if (fl->fl_type == F_WRLCK)
1348 ret = 1;
1349 }
1350 spin_unlock(&flctx->flc_lock);
1351 return ret;
1352}
1353
1354/*
1355 * Update and possibly write a cached page of an NFS file.
1356 *
1357 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1358 * things with a page scheduled for an RPC call (e.g. invalidate it).
1359 */
1360int nfs_updatepage(struct file *file, struct page *page,
1361 unsigned int offset, unsigned int count)
1362{
1363 struct nfs_open_context *ctx = nfs_file_open_context(file);
1364 struct address_space *mapping = page_file_mapping(page);
1365 struct inode *inode = mapping->host;
1366 unsigned int pagelen = nfs_page_length(page);
1367 int status = 0;
1368
1369 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1370
1371 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
1372 file, count, (long long)(page_file_offset(page) + offset));
1373
1374 if (!count)
1375 goto out;
1376
1377 if (nfs_can_extend_write(file, page, inode, pagelen)) {
1378 count = max(count + offset, pagelen);
1379 offset = 0;
1380 }
1381
1382 status = nfs_writepage_setup(ctx, page, offset, count);
1383 if (status < 0)
1384 nfs_set_pageerror(mapping);
1385 else
1386 __set_page_dirty_nobuffers(page);
1387out:
1388 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
1389 status, (long long)i_size_read(inode));
1390 return status;
1391}
1392
1393static int flush_task_priority(int how)
1394{
1395 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1396 case FLUSH_HIGHPRI:
1397 return RPC_PRIORITY_HIGH;
1398 case FLUSH_LOWPRI:
1399 return RPC_PRIORITY_LOW;
1400 }
1401 return RPC_PRIORITY_NORMAL;
1402}
1403
1404static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1405 struct rpc_message *msg,
1406 const struct nfs_rpc_ops *rpc_ops,
1407 struct rpc_task_setup *task_setup_data, int how)
1408{
1409 int priority = flush_task_priority(how);
1410
1411 task_setup_data->priority = priority;
1412 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1413 trace_nfs_initiate_write(hdr);
1414}
1415
1416/* If a nfs_flush_* function fails, it should remove reqs from @head and
1417 * call this on each, which will prepare them to be retried on next
1418 * writeback using standard nfs.
1419 */
1420static void nfs_redirty_request(struct nfs_page *req)
1421{
1422 /* Bump the transmission count */
1423 req->wb_nio++;
1424 nfs_mark_request_dirty(req);
1425 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1426 nfs_end_page_writeback(req);
1427 nfs_release_request(req);
1428}
1429
1430static void nfs_async_write_error(struct list_head *head, int error)
1431{
1432 struct nfs_page *req;
1433
1434 while (!list_empty(head)) {
1435 req = nfs_list_entry(head->next);
1436 nfs_list_remove_request(req);
1437 if (nfs_error_is_fatal(error))
1438 nfs_write_error(req, error);
1439 else
1440 nfs_redirty_request(req);
1441 }
1442}
1443
1444static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1445{
1446 nfs_async_write_error(&hdr->pages, 0);
1447 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1448 hdr->args.offset + hdr->args.count - 1);
1449}
1450
1451static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1452 .init_hdr = nfs_async_write_init,
1453 .error_cleanup = nfs_async_write_error,
1454 .completion = nfs_write_completion,
1455 .reschedule_io = nfs_async_write_reschedule_io,
1456};
1457
1458void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1459 struct inode *inode, int ioflags, bool force_mds,
1460 const struct nfs_pgio_completion_ops *compl_ops)
1461{
1462 struct nfs_server *server = NFS_SERVER(inode);
1463 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1464
1465#ifdef CONFIG_NFS_V4_1
1466 if (server->pnfs_curr_ld && !force_mds)
1467 pg_ops = server->pnfs_curr_ld->pg_write_ops;
1468#endif
1469 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1470 server->wsize, ioflags);
1471}
1472EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1473
1474void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1475{
1476 struct nfs_pgio_mirror *mirror;
1477
1478 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1479 pgio->pg_ops->pg_cleanup(pgio);
1480
1481 pgio->pg_ops = &nfs_pgio_rw_ops;
1482
1483 nfs_pageio_stop_mirroring(pgio);
1484
1485 mirror = &pgio->pg_mirrors[0];
1486 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1487}
1488EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1489
1490
1491void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1492{
1493 struct nfs_commit_data *data = calldata;
1494
1495 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1496}
1497
1498/*
1499 * Special version of should_remove_suid() that ignores capabilities.
1500 */
1501static int nfs_should_remove_suid(const struct inode *inode)
1502{
1503 umode_t mode = inode->i_mode;
1504 int kill = 0;
1505
1506 /* suid always must be killed */
1507 if (unlikely(mode & S_ISUID))
1508 kill = ATTR_KILL_SUID;
1509
1510 /*
1511 * sgid without any exec bits is just a mandatory locking mark; leave
1512 * it alone. If some exec bits are set, it's a real sgid; kill it.
1513 */
1514 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1515 kill |= ATTR_KILL_SGID;
1516
1517 if (unlikely(kill && S_ISREG(mode)))
1518 return kill;
1519
1520 return 0;
1521}
1522
1523static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1524 struct nfs_fattr *fattr)
1525{
1526 struct nfs_pgio_args *argp = &hdr->args;
1527 struct nfs_pgio_res *resp = &hdr->res;
1528 u64 size = argp->offset + resp->count;
1529
1530 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1531 fattr->size = size;
1532 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1533 fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1534 return;
1535 }
1536 if (size != fattr->size)
1537 return;
1538 /* Set attribute barrier */
1539 nfs_fattr_set_barrier(fattr);
1540 /* ...and update size */
1541 fattr->valid |= NFS_ATTR_FATTR_SIZE;
1542}
1543
1544void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1545{
1546 struct nfs_fattr *fattr = &hdr->fattr;
1547 struct inode *inode = hdr->inode;
1548
1549 spin_lock(&inode->i_lock);
1550 nfs_writeback_check_extend(hdr, fattr);
1551 nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1552 spin_unlock(&inode->i_lock);
1553}
1554EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1555
1556/*
1557 * This function is called when the WRITE call is complete.
1558 */
1559static int nfs_writeback_done(struct rpc_task *task,
1560 struct nfs_pgio_header *hdr,
1561 struct inode *inode)
1562{
1563 int status;
1564
1565 /*
1566 * ->write_done will attempt to use post-op attributes to detect
1567 * conflicting writes by other clients. A strict interpretation
1568 * of close-to-open would allow us to continue caching even if
1569 * another writer had changed the file, but some applications
1570 * depend on tighter cache coherency when writing.
1571 */
1572 status = NFS_PROTO(inode)->write_done(task, hdr);
1573 if (status != 0)
1574 return status;
1575
1576 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1577 trace_nfs_writeback_done(task, hdr);
1578
1579 if (hdr->res.verf->committed < hdr->args.stable &&
1580 task->tk_status >= 0) {
1581 /* We tried a write call, but the server did not
1582 * commit data to stable storage even though we
1583 * requested it.
1584 * Note: There is a known bug in Tru64 < 5.0 in which
1585 * the server reports NFS_DATA_SYNC, but performs
1586 * NFS_FILE_SYNC. We therefore implement this checking
1587 * as a dprintk() in order to avoid filling syslog.
1588 */
1589 static unsigned long complain;
1590
1591 /* Note this will print the MDS for a DS write */
1592 if (time_before(complain, jiffies)) {
1593 dprintk("NFS: faulty NFS server %s:"
1594 " (committed = %d) != (stable = %d)\n",
1595 NFS_SERVER(inode)->nfs_client->cl_hostname,
1596 hdr->res.verf->committed, hdr->args.stable);
1597 complain = jiffies + 300 * HZ;
1598 }
1599 }
1600
1601 /* Deal with the suid/sgid bit corner case */
1602 if (nfs_should_remove_suid(inode)) {
1603 spin_lock(&inode->i_lock);
1604 nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE);
1605 spin_unlock(&inode->i_lock);
1606 }
1607 return 0;
1608}
1609
1610/*
1611 * This function is called when the WRITE call is complete.
1612 */
1613static void nfs_writeback_result(struct rpc_task *task,
1614 struct nfs_pgio_header *hdr)
1615{
1616 struct nfs_pgio_args *argp = &hdr->args;
1617 struct nfs_pgio_res *resp = &hdr->res;
1618
1619 if (resp->count < argp->count) {
1620 static unsigned long complain;
1621
1622 /* This a short write! */
1623 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1624
1625 /* Has the server at least made some progress? */
1626 if (resp->count == 0) {
1627 if (time_before(complain, jiffies)) {
1628 printk(KERN_WARNING
1629 "NFS: Server wrote zero bytes, expected %u.\n",
1630 argp->count);
1631 complain = jiffies + 300 * HZ;
1632 }
1633 nfs_set_pgio_error(hdr, -EIO, argp->offset);
1634 task->tk_status = -EIO;
1635 return;
1636 }
1637
1638 /* For non rpc-based layout drivers, retry-through-MDS */
1639 if (!task->tk_ops) {
1640 hdr->pnfs_error = -EAGAIN;
1641 return;
1642 }
1643
1644 /* Was this an NFSv2 write or an NFSv3 stable write? */
1645 if (resp->verf->committed != NFS_UNSTABLE) {
1646 /* Resend from where the server left off */
1647 hdr->mds_offset += resp->count;
1648 argp->offset += resp->count;
1649 argp->pgbase += resp->count;
1650 argp->count -= resp->count;
1651 } else {
1652 /* Resend as a stable write in order to avoid
1653 * headaches in the case of a server crash.
1654 */
1655 argp->stable = NFS_FILE_SYNC;
1656 }
1657 resp->count = 0;
1658 resp->verf->committed = 0;
1659 rpc_restart_call_prepare(task);
1660 }
1661}
1662
1663static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1664{
1665 return wait_var_event_killable(&cinfo->rpcs_out,
1666 !atomic_read(&cinfo->rpcs_out));
1667}
1668
1669static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1670{
1671 atomic_inc(&cinfo->rpcs_out);
1672}
1673
1674static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1675{
1676 if (atomic_dec_and_test(&cinfo->rpcs_out))
1677 wake_up_var(&cinfo->rpcs_out);
1678}
1679
1680void nfs_commitdata_release(struct nfs_commit_data *data)
1681{
1682 put_nfs_open_context(data->context);
1683 nfs_commit_free(data);
1684}
1685EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1686
1687int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1688 const struct nfs_rpc_ops *nfs_ops,
1689 const struct rpc_call_ops *call_ops,
1690 int how, int flags)
1691{
1692 struct rpc_task *task;
1693 int priority = flush_task_priority(how);
1694 struct rpc_message msg = {
1695 .rpc_argp = &data->args,
1696 .rpc_resp = &data->res,
1697 .rpc_cred = data->cred,
1698 };
1699 struct rpc_task_setup task_setup_data = {
1700 .task = &data->task,
1701 .rpc_client = clnt,
1702 .rpc_message = &msg,
1703 .callback_ops = call_ops,
1704 .callback_data = data,
1705 .workqueue = nfsiod_workqueue,
1706 .flags = RPC_TASK_ASYNC | flags,
1707 .priority = priority,
1708 };
1709 /* Set up the initial task struct. */
1710 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1711 trace_nfs_initiate_commit(data);
1712
1713 dprintk("NFS: initiated commit call\n");
1714
1715 task = rpc_run_task(&task_setup_data);
1716 if (IS_ERR(task))
1717 return PTR_ERR(task);
1718 if (how & FLUSH_SYNC)
1719 rpc_wait_for_completion_task(task);
1720 rpc_put_task(task);
1721 return 0;
1722}
1723EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1724
1725static loff_t nfs_get_lwb(struct list_head *head)
1726{
1727 loff_t lwb = 0;
1728 struct nfs_page *req;
1729
1730 list_for_each_entry(req, head, wb_list)
1731 if (lwb < (req_offset(req) + req->wb_bytes))
1732 lwb = req_offset(req) + req->wb_bytes;
1733
1734 return lwb;
1735}
1736
1737/*
1738 * Set up the argument/result storage required for the RPC call.
1739 */
1740void nfs_init_commit(struct nfs_commit_data *data,
1741 struct list_head *head,
1742 struct pnfs_layout_segment *lseg,
1743 struct nfs_commit_info *cinfo)
1744{
1745 struct nfs_page *first;
1746 struct nfs_open_context *ctx;
1747 struct inode *inode;
1748
1749 /* Set up the RPC argument and reply structs
1750 * NB: take care not to mess about with data->commit et al. */
1751
1752 if (head)
1753 list_splice_init(head, &data->pages);
1754
1755 first = nfs_list_entry(data->pages.next);
1756 ctx = nfs_req_openctx(first);
1757 inode = d_inode(ctx->dentry);
1758
1759 data->inode = inode;
1760 data->cred = ctx->cred;
1761 data->lseg = lseg; /* reference transferred */
1762 /* only set lwb for pnfs commit */
1763 if (lseg)
1764 data->lwb = nfs_get_lwb(&data->pages);
1765 data->mds_ops = &nfs_commit_ops;
1766 data->completion_ops = cinfo->completion_ops;
1767 data->dreq = cinfo->dreq;
1768
1769 data->args.fh = NFS_FH(data->inode);
1770 /* Note: we always request a commit of the entire inode */
1771 data->args.offset = 0;
1772 data->args.count = 0;
1773 data->context = get_nfs_open_context(ctx);
1774 data->res.fattr = &data->fattr;
1775 data->res.verf = &data->verf;
1776 nfs_fattr_init(&data->fattr);
1777}
1778EXPORT_SYMBOL_GPL(nfs_init_commit);
1779
1780void nfs_retry_commit(struct list_head *page_list,
1781 struct pnfs_layout_segment *lseg,
1782 struct nfs_commit_info *cinfo,
1783 u32 ds_commit_idx)
1784{
1785 struct nfs_page *req;
1786
1787 while (!list_empty(page_list)) {
1788 req = nfs_list_entry(page_list->next);
1789 nfs_list_remove_request(req);
1790 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1791 if (!cinfo->dreq)
1792 nfs_clear_page_commit(req->wb_page);
1793 nfs_unlock_and_release_request(req);
1794 }
1795}
1796EXPORT_SYMBOL_GPL(nfs_retry_commit);
1797
1798static void
1799nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1800 struct nfs_page *req)
1801{
1802 __set_page_dirty_nobuffers(req->wb_page);
1803}
1804
1805/*
1806 * Commit dirty pages
1807 */
1808static int
1809nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1810 struct nfs_commit_info *cinfo)
1811{
1812 struct nfs_commit_data *data;
1813 unsigned short task_flags = 0;
1814
1815 /* another commit raced with us */
1816 if (list_empty(head))
1817 return 0;
1818
1819 data = nfs_commitdata_alloc(true);
1820
1821 /* Set up the argument struct */
1822 nfs_init_commit(data, head, NULL, cinfo);
1823 atomic_inc(&cinfo->mds->rpcs_out);
1824 if (NFS_SERVER(inode)->nfs_client->cl_minorversion)
1825 task_flags = RPC_TASK_MOVEABLE;
1826 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1827 data->mds_ops, how,
1828 RPC_TASK_CRED_NOREF | task_flags);
1829}
1830
1831/*
1832 * COMMIT call returned
1833 */
1834static void nfs_commit_done(struct rpc_task *task, void *calldata)
1835{
1836 struct nfs_commit_data *data = calldata;
1837
1838 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1839 task->tk_pid, task->tk_status);
1840
1841 /* Call the NFS version-specific code */
1842 NFS_PROTO(data->inode)->commit_done(task, data);
1843 trace_nfs_commit_done(task, data);
1844}
1845
1846static void nfs_commit_release_pages(struct nfs_commit_data *data)
1847{
1848 const struct nfs_writeverf *verf = data->res.verf;
1849 struct nfs_page *req;
1850 int status = data->task.tk_status;
1851 struct nfs_commit_info cinfo;
1852 struct nfs_server *nfss;
1853
1854 while (!list_empty(&data->pages)) {
1855 req = nfs_list_entry(data->pages.next);
1856 nfs_list_remove_request(req);
1857 if (req->wb_page)
1858 nfs_clear_page_commit(req->wb_page);
1859
1860 dprintk("NFS: commit (%s/%llu %d@%lld)",
1861 nfs_req_openctx(req)->dentry->d_sb->s_id,
1862 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1863 req->wb_bytes,
1864 (long long)req_offset(req));
1865 if (status < 0) {
1866 if (req->wb_page) {
1867 trace_nfs_commit_error(req, status);
1868 nfs_mapping_set_error(req->wb_page, status);
1869 nfs_inode_remove_request(req);
1870 }
1871 dprintk_cont(", error = %d\n", status);
1872 goto next;
1873 }
1874
1875 /* Okay, COMMIT succeeded, apparently. Check the verifier
1876 * returned by the server against all stored verfs. */
1877 if (nfs_write_match_verf(verf, req)) {
1878 /* We have a match */
1879 if (req->wb_page)
1880 nfs_inode_remove_request(req);
1881 dprintk_cont(" OK\n");
1882 goto next;
1883 }
1884 /* We have a mismatch. Write the page again */
1885 dprintk_cont(" mismatch\n");
1886 nfs_mark_request_dirty(req);
1887 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1888 next:
1889 nfs_unlock_and_release_request(req);
1890 /* Latency breaker */
1891 cond_resched();
1892 }
1893 nfss = NFS_SERVER(data->inode);
1894 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1895 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1896
1897 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1898 nfs_commit_end(cinfo.mds);
1899}
1900
1901static void nfs_commit_release(void *calldata)
1902{
1903 struct nfs_commit_data *data = calldata;
1904
1905 data->completion_ops->completion(data);
1906 nfs_commitdata_release(calldata);
1907}
1908
1909static const struct rpc_call_ops nfs_commit_ops = {
1910 .rpc_call_prepare = nfs_commit_prepare,
1911 .rpc_call_done = nfs_commit_done,
1912 .rpc_release = nfs_commit_release,
1913};
1914
1915static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1916 .completion = nfs_commit_release_pages,
1917 .resched_write = nfs_commit_resched_write,
1918};
1919
1920int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1921 int how, struct nfs_commit_info *cinfo)
1922{
1923 int status;
1924
1925 status = pnfs_commit_list(inode, head, how, cinfo);
1926 if (status == PNFS_NOT_ATTEMPTED)
1927 status = nfs_commit_list(inode, head, how, cinfo);
1928 return status;
1929}
1930
1931static int __nfs_commit_inode(struct inode *inode, int how,
1932 struct writeback_control *wbc)
1933{
1934 LIST_HEAD(head);
1935 struct nfs_commit_info cinfo;
1936 int may_wait = how & FLUSH_SYNC;
1937 int ret, nscan;
1938
1939 nfs_init_cinfo_from_inode(&cinfo, inode);
1940 nfs_commit_begin(cinfo.mds);
1941 for (;;) {
1942 ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1943 if (ret <= 0)
1944 break;
1945 ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1946 if (ret < 0)
1947 break;
1948 ret = 0;
1949 if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1950 if (nscan < wbc->nr_to_write)
1951 wbc->nr_to_write -= nscan;
1952 else
1953 wbc->nr_to_write = 0;
1954 }
1955 if (nscan < INT_MAX)
1956 break;
1957 cond_resched();
1958 }
1959 nfs_commit_end(cinfo.mds);
1960 if (ret || !may_wait)
1961 return ret;
1962 return wait_on_commit(cinfo.mds);
1963}
1964
1965int nfs_commit_inode(struct inode *inode, int how)
1966{
1967 return __nfs_commit_inode(inode, how, NULL);
1968}
1969EXPORT_SYMBOL_GPL(nfs_commit_inode);
1970
1971int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1972{
1973 struct nfs_inode *nfsi = NFS_I(inode);
1974 int flags = FLUSH_SYNC;
1975 int ret = 0;
1976
1977 if (wbc->sync_mode == WB_SYNC_NONE) {
1978 /* no commits means nothing needs to be done */
1979 if (!atomic_long_read(&nfsi->commit_info.ncommit))
1980 goto check_requests_outstanding;
1981
1982 /* Don't commit yet if this is a non-blocking flush and there
1983 * are a lot of outstanding writes for this mapping.
1984 */
1985 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1986 goto out_mark_dirty;
1987
1988 /* don't wait for the COMMIT response */
1989 flags = 0;
1990 }
1991
1992 ret = __nfs_commit_inode(inode, flags, wbc);
1993 if (!ret) {
1994 if (flags & FLUSH_SYNC)
1995 return 0;
1996 } else if (atomic_long_read(&nfsi->commit_info.ncommit))
1997 goto out_mark_dirty;
1998
1999check_requests_outstanding:
2000 if (!atomic_read(&nfsi->commit_info.rpcs_out))
2001 return ret;
2002out_mark_dirty:
2003 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
2004 return ret;
2005}
2006EXPORT_SYMBOL_GPL(nfs_write_inode);
2007
2008/*
2009 * Wrapper for filemap_write_and_wait_range()
2010 *
2011 * Needed for pNFS in order to ensure data becomes visible to the
2012 * client.
2013 */
2014int nfs_filemap_write_and_wait_range(struct address_space *mapping,
2015 loff_t lstart, loff_t lend)
2016{
2017 int ret;
2018
2019 ret = filemap_write_and_wait_range(mapping, lstart, lend);
2020 if (ret == 0)
2021 ret = pnfs_sync_inode(mapping->host, true);
2022 return ret;
2023}
2024EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2025
2026/*
2027 * flush the inode to disk.
2028 */
2029int nfs_wb_all(struct inode *inode)
2030{
2031 int ret;
2032
2033 trace_nfs_writeback_inode_enter(inode);
2034
2035 ret = filemap_write_and_wait(inode->i_mapping);
2036 if (ret)
2037 goto out;
2038 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2039 if (ret < 0)
2040 goto out;
2041 pnfs_sync_inode(inode, true);
2042 ret = 0;
2043
2044out:
2045 trace_nfs_writeback_inode_exit(inode, ret);
2046 return ret;
2047}
2048EXPORT_SYMBOL_GPL(nfs_wb_all);
2049
2050int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2051{
2052 struct nfs_page *req;
2053 int ret = 0;
2054
2055 wait_on_page_writeback(page);
2056
2057 /* blocking call to cancel all requests and join to a single (head)
2058 * request */
2059 req = nfs_lock_and_join_requests(page);
2060
2061 if (IS_ERR(req)) {
2062 ret = PTR_ERR(req);
2063 } else if (req) {
2064 /* all requests from this page have been cancelled by
2065 * nfs_lock_and_join_requests, so just remove the head
2066 * request from the inode / page_private pointer and
2067 * release it */
2068 nfs_inode_remove_request(req);
2069 nfs_unlock_and_release_request(req);
2070 }
2071
2072 return ret;
2073}
2074
2075/*
2076 * Write back all requests on one page - we do this before reading it.
2077 */
2078int nfs_wb_page(struct inode *inode, struct page *page)
2079{
2080 loff_t range_start = page_file_offset(page);
2081 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2082 struct writeback_control wbc = {
2083 .sync_mode = WB_SYNC_ALL,
2084 .nr_to_write = 0,
2085 .range_start = range_start,
2086 .range_end = range_end,
2087 };
2088 int ret;
2089
2090 trace_nfs_writeback_page_enter(inode);
2091
2092 for (;;) {
2093 wait_on_page_writeback(page);
2094 if (clear_page_dirty_for_io(page)) {
2095 ret = nfs_writepage_locked(page, &wbc);
2096 if (ret < 0)
2097 goto out_error;
2098 continue;
2099 }
2100 ret = 0;
2101 if (!PagePrivate(page))
2102 break;
2103 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2104 if (ret < 0)
2105 goto out_error;
2106 }
2107out_error:
2108 trace_nfs_writeback_page_exit(inode, ret);
2109 return ret;
2110}
2111
2112#ifdef CONFIG_MIGRATION
2113int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2114 struct page *page, enum migrate_mode mode)
2115{
2116 /*
2117 * If PagePrivate is set, then the page is currently associated with
2118 * an in-progress read or write request. Don't try to migrate it.
2119 *
2120 * FIXME: we could do this in principle, but we'll need a way to ensure
2121 * that we can safely release the inode reference while holding
2122 * the page lock.
2123 */
2124 if (PagePrivate(page))
2125 return -EBUSY;
2126
2127 if (!nfs_fscache_release_page(page, GFP_KERNEL))
2128 return -EBUSY;
2129
2130 return migrate_page(mapping, newpage, page, mode);
2131}
2132#endif
2133
2134int __init nfs_init_writepagecache(void)
2135{
2136 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2137 sizeof(struct nfs_pgio_header),
2138 0, SLAB_HWCACHE_ALIGN,
2139 NULL);
2140 if (nfs_wdata_cachep == NULL)
2141 return -ENOMEM;
2142
2143 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2144 nfs_wdata_cachep);
2145 if (nfs_wdata_mempool == NULL)
2146 goto out_destroy_write_cache;
2147
2148 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2149 sizeof(struct nfs_commit_data),
2150 0, SLAB_HWCACHE_ALIGN,
2151 NULL);
2152 if (nfs_cdata_cachep == NULL)
2153 goto out_destroy_write_mempool;
2154
2155 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2156 nfs_cdata_cachep);
2157 if (nfs_commit_mempool == NULL)
2158 goto out_destroy_commit_cache;
2159
2160 /*
2161 * NFS congestion size, scale with available memory.
2162 *
2163 * 64MB: 8192k
2164 * 128MB: 11585k
2165 * 256MB: 16384k
2166 * 512MB: 23170k
2167 * 1GB: 32768k
2168 * 2GB: 46340k
2169 * 4GB: 65536k
2170 * 8GB: 92681k
2171 * 16GB: 131072k
2172 *
2173 * This allows larger machines to have larger/more transfers.
2174 * Limit the default to 256M
2175 */
2176 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2177 if (nfs_congestion_kb > 256*1024)
2178 nfs_congestion_kb = 256*1024;
2179
2180 return 0;
2181
2182out_destroy_commit_cache:
2183 kmem_cache_destroy(nfs_cdata_cachep);
2184out_destroy_write_mempool:
2185 mempool_destroy(nfs_wdata_mempool);
2186out_destroy_write_cache:
2187 kmem_cache_destroy(nfs_wdata_cachep);
2188 return -ENOMEM;
2189}
2190
2191void nfs_destroy_writepagecache(void)
2192{
2193 mempool_destroy(nfs_commit_mempool);
2194 kmem_cache_destroy(nfs_cdata_cachep);
2195 mempool_destroy(nfs_wdata_mempool);
2196 kmem_cache_destroy(nfs_wdata_cachep);
2197}
2198
2199static const struct nfs_rw_ops nfs_rw_write_ops = {
2200 .rw_alloc_header = nfs_writehdr_alloc,
2201 .rw_free_header = nfs_writehdr_free,
2202 .rw_done = nfs_writeback_done,
2203 .rw_result = nfs_writeback_result,
2204 .rw_initiate = nfs_initiate_write,
2205};